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ABSTRACT 

Analysis and Implementation of a 

Navigation System with Vanishing Points in a Generalized 

Environment 

by 

Roif Schuster 

The development of accurate sensors is of crucial importance in navigation of mobile 

autonomous robots. The following master's thesis analyzes the use of vanishing 

points for robot navigation. Parallel lines in the environment of the robot are used 

to compute vanishing points which serve as a reference for guiding a robot. To 

accomplish the navigation tasks, three subtasks are to be performed: detection of 

straight lines, computation of vanishing points, and robot navigation with vanishing 

points. 

An edge detection algorithm is presented that combines Sobel and Laplacian 

of Gaussian operators. The algorithm preserves the precision of the Laplacian of 

Gaussian operator while the Sobel operator is mainly used for filtering image noise. 

A method to determine the Laplacian of Gaussian kernel is described. Recursive 

subdivision is used to detect raw lines in the edges. Raw lines are approximated by 

straight lines using a least squares fit. 

Several methods for detecting vanishing points are presented. The cross-

product method as introduced by Magee and Aggarval is described in detail. The 

method is modified in order to make the detection of vanishing points appropriate 

for an indoor environment. The navigation section derives the properties of van-

ishing points under camera rotation and translation. Using these properties, the 

location of the vanishing points can serve as a reference for robot navigation. A 

model of the robot environment is defined, summarizing the minimal number of 

constraints necessary for the method to work. 

Finally, the limitations as well as the advantages of using vanishing points 

in robot navigation are described. 
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Chapter 1 

INTRODUCTION 

It has always been the goal of science and engineering to understand nature and to 

use that understanding for the benefits of the human society. Today's technology 

provides many conveniences for our daily life. Many innovations and developments 

extend the capabilities of human beings beyond their natural limits. For example, 

technology enables us to travel fast from one place to the other and it enables us 

to communicate with each other across long distances. 

Part of this general development in technology are attempts to build robotic 

systems that have human-like intelligence and are capable of moving independently 

in their environment. These robotic systems can, for examples, be used to perform 

hazardous tasks and monotonous work. 

The cardinal problem of all robotic systems is how they access information 

about their environment. It is essential for the robot to be able to access information 

about its position, orientation or speed with respect to its environment. This can 

be achieved by using sensors to measure distance, angular turn, radiation and 

temperature. However, the current development in sensors and sensor integration 

is still far from reaching the capabilities of the human sensing system. 

This is the motivation to analyze the usefulness of vanishing points in robot 
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navigation. The objective is to navigate a mobile robot based on the vanishing 

points of parallel lines in its environment. The overall analysis can be summarized 

in three steps. First, the robot detects the lines in its environment using a vision 

system together with an edge detection and line fitting algorithm. Second, the 

vanishing points are computed using the data of the detected lines . In the third 

step, the position of the vanishing points are integrated in the navigation process of 

the robot. This master's thesis presents all three steps with the theoretical analysis 

as well as the results of the implementation. Furthermore, a model of the robot 

environment is defined summarizing the essential assumptions which are necessary 

for the method to work. 
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Chapter 2 

EDGE DETECTION 

2.1 INTRODUCTION 

Many theories and algorithms applied to high-level vision tasks assume that the 

pictures are already segmented, i.e., the desired features (lines, edges etc.) of the 

picture are enhanced. Hence edge detection is of crucial importance in Image 

Processing and Computer Vision. Various edge detectors can be classified into two 

broad classes, depending on their principle: 

1. First derivative operators (Gradient operators) respond to an edge with a 

broad peak, which degrades the resolution of edge detection [HM86, p293]. 

2. Second derivative operators (Laplacian operators), which respond with a zero-

crossing to an edge, are generally regarded as very precise (in a noise free envi-

ronment). Since they use the second derivative, they enhance high frequency 

image noise. 

Both types of operators have been studied extensively and their advantages 

and drawbacks are well known (see [GW87] for a good overview). The basic idea 

presented in this work is to combine the advantages of both types of operators. 
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Both the first and second derivative operators are applied separately to the original 

image. Then the results are combined by accepting only those zero-crossings in the 

result of the second derivative operator as an edge point, if at the same location, 

the result of the first derivative operator is above a certain threshold. Hence, the 

first derivative operator acts like a mask filter on the result of the second derivative 

operator. It eliminates all those zero-crossings in the result of the second derivative 

operator that are not located on a gradient with sufficient slope. Thus one can 

make use of the precision of the second derivative operator (zero-crossings) and 

"mask out" the high frequency image noise with the first derivative operator. 

2.2 FIRST DERIVATIVE OPERATORS 

The slope m of the one dimensional analog function g (x) is defined as m = dg (x) I dx . 

In similar fashion we can approximate the vertical and horizontal gradient of a two-

dimensional function f (x, y) as 

These first order differences of f (x, y) are commonly expressed as convolution op-

erators which convolve f(x,y) with the patterns 

Since these first order difference operators are odd order derivatives, they are not 

isotropic, i.e., rotation invariant (in the sense that rotating image h and then apply-

ing the operator gives the same result as applying the operator to image h and then 
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Figure 2.1: Convolution kernel from the second derivative: (a) Blurred edge, (b)-
(c) first and second derivative of (a), (d) approximation of second derivative in a 
convolution kernel. 

rotating the output). See [RK82a, page 238] for a precise definition of 'isotropic'. 

However, these first order difference operators can be made isotropic by taking the 

sum of the squares of the vertical component Ax f(x, y) and the horizontal compo-

nent Ay f (x , y). 

At this point it might be interesting to observe that we can derive the same 

convolution kernels using properties of pattern matching: if we define a template g 

according to the gray values of the edge to be detected, a match of g in an image h 

gives a possible location of an edge element. If we are interested in a sharp match 

response rather than in the actual gray level result of the match, it is advantageous 

to define template g as the second derivative of the edge [RK82b, page 43]. If we 

look at the two step edge with a cross section of ... aaa[(a+b)/2]bbb ... , the second 

order differences would turn out to be ... 00[(b — a)/2]0[(a — b)/2]00 ... , which 

have values proportional to the template [1 0 -1] (see Figure 2.1). This template is 

the exact equivalence of the convolution kernels derived for the first order difference 

operator. The only difference between the two methods is that while edge detection 
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Figure 2.2: Sobel convolution applied to an asymmetrical edge: (a) original edge, 
(b) result of Sobel convolution with original edge, (c) thresholded Sobel result. 

convolves the convolution kernels with the image, pattern matching correlates the 

template with the image (i.e., correlation does not involve flipping either the image 

or the template). 

One can improve the convolution kernel by smoothing in the direction of the 

expected edge and assigning different weight-factors according to the distance to 

the center of the kernel. The resulting operator is called the Sobel operator. The 

vertical and horizontal convolution masks are defined by 

The main disadvantage of the first derivative operators is that it locates 

the edge with a relatively broad peak. This makes thresholding and perhaps even 

thinning necessary, and limits the resolution of detecting the edge. Figure 2.2 

illustrates these properties as well as the fact that in the case of asymmetrical 

edges, the center of the original edge is not necessarily at the center of the detected 

broad peak. 
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2.3 SECOND DERIVATIVE OPERATORS 

The second derivative operator can be derived in similar fashion: the second deriva-

tive of the function g(x) is given by d2g(x)/dx 2. Hence the second derivative of the 

two dimensional discrete function f(x, y) can be approximated by the difference 

between the first order differences on the right and left side of the center point: 

Since these are even order derivatives one can simply add the vertical and horizontal 

components to form an isotropic operator [RK82a, page 238], i.e., rotation invariant 

operator (Laplacian operator): 

which is the digital convolution of f(x,y) with the kernel 

From this it is obvious that the Laplacian operator takes the difference between 

gray value at (x, y), which is the center point of the kernel, and the average in the 

neighborhood of (x, y) [RK82b, page 242]. This operator has the main disadvantage 

of responding sharply to single pixel noise. Like the first derivative operator, one 

can improve this operator by implementing smoothing capabilities. Here we use 

the second derivative of a Gaussian Distribution Function (Figure 2.3(b)). The 

mathematical equations for the continuous and one dimensional case are given by 



First we have to select the size of the Laplacian convolution kernel based on 

the desired edge detection as well as the hardware and the time constraints. The 

constant o-, which determines the shape and the extent of the LoG G"(x, y), has 

to correspond to the size of the kernel in the sense that it has to be possible to 

approximate the shape of G"(x,y) within the kernel. Huertas and Medioni [HM86] 

stated that it is sufficient if the kernel covers ±3a from the origin of the continuous 

Laplacian G"(x, y). Since 99.73% of the area of a one dimensional Gaussian lies 

between +3a, the area of the second derivative must be very close to zero. 
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Figure 2.3: Gaussian Functions: (a) Gaussian Distribution Function G(x), (b) 
Second Derivative G"(x). 
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The second step is to quantize the continuous LoG (x , y) into the discrete 

LoG G"d (z,j) where i and j are integer values. The straight forward way to do this 

is to evaluate G" (x y) at the grid points (z, j) with 

and round it to the nearest integer. This method is not very accurate and has 

the consequence that the resulting values of G"d (z, j) do not sum up to zero any 

more, and hence corrections become necessary. If higher accuracy is desired, block 

averages of the continuous LoG G" (x , y) can be used to compute the discrete LoG 

G' ,̀1 (1, ) using 

See [HL86] and [Bre84] for details on quantization with bilinear interpolation and 

higher order interpolants. 

In the third step, we have to ensure that the sum of all the elements of the 

LoG kernel is equal to zero, to avoid any bias when performing the LoG convolution. 

If the kernel elements do not sum up to zero after the quantization, we have to 

adjust their values. To further illustrate these findings we perform Steps 1 to 3 in 

an example: 

1. Hardware and time constraints are assumed to limit the kernel size to 7. For 

this kernel size, a good approximation of the shape of the LoG can be achieved 

with a = 1. 

2. Quantize the continuous LoG with point evaluations G"d(z, j) = G"(z, j). 

Scale the resulting values by 60, and then round them off to the nearest 

integers. 

3. Alter some kernel values to make the sum of the kernel values equal to zero. 

10 



2.3.2 Properties of the Laplacian Operator 

Analyzing the Laplacian of Gaussian kernel (LoG) we find that it performs weighted 

averaging in the center of the kernel (negative kernel values) as well as in the 

neighborhood of the center (positive kernel values). Convolving an image f(x, y) 

with that kernel results in the smoothed second derivative f"(x,y) of that image. 

Note that the values of f"(x,y) change their sign (zero crossings) whenever 

a curvature change in the original f(x, y) occurs (Figure 2.4). This means that 

we get positive values on one side of the edge and negative values on the other 

side of the edge and zero in between (only in case of very low contrast edges). 

In order to detect the zero-crossings, the LoG result should be thresholded at 0 

(with f"bin(x,y) = 1 if f"(x,y) < 0, and f"oin(x,  Y) = 0 otherwise). Hence the 

zero-crossings provide a precise and blur-free means of detecting an edge. 
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2.4 COMBINING FIRST AND SECOND 
DERIVATIVE OPERATORS 

From the analysis of the first and second order operators it is apparent that both 

operators have significant drawbacks. Although relatively stable with respect to 

image noise, the Sobel operator only provides an approximate location of the edge. 

The Laplacian on the other hand detects the edge location precisely (zero-crossings), 

but it is very susceptible to image noise. Zero crossings caused by image noise are 

thus falsely detected as edges. Hence we need additional constraints in order to 

extract more precise edges in noisy images using the second derivative operator. 

Different types of constraints can be applied (see [HL86] for an overview). For 

example, we can "and" the zero-crossing contours of several successive scales of 

resolution, an approach which requires much more computational effort. Another 

possibility is to use the measure of the slope of the LoG image at the zero-crossing 

as a constraint. A zero-crossing is accepted as edge point, if the Sobel operator 

applied to the LoG image is above a threshold at the location of the zero-crossing. 

Our approach uses the result of the Sobel operator applied to the original 

image as the constraint for the zero-crossings. We detect the zero-crossings in the 

LoG of the original image. A zero-crossing is accepted as the location of an edge 

point, if at the same location the result of the Sobel convolution with the original 

image is above a threshold. Figure 2.6 illustrates the algorithm in a block diagram. 

The algorithm can be summarized in five steps: 

1. Convolve original image f(x,y) with vertical and horizontal Sobel kernels 

(see Chapter 2.2). The vertical and horizontal components are normalized 

and their absolute values are added. The result is called the Sobel image 

fs(x, Y)- 

12 



Figure 2.5: Sobel and Laplacian operator applied to an edge: (a) original edge, (b) 
result of Sobel and LoG convolution, (c) accepted zero-crossing in binary represen-
tation of (b). 
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Figure 2.6: Simplified block dzagram of the edge detection algorithm. 
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5. Scan every 8th row of the binary LoG image f Lbin(x, y) until a zero-crossing is 

found. If at that location the Sobel image is above a threshold (f Sbm, (xo, yo) =- 

1), this point is accepted as the start point of an curve (at (xo, yo)). 

Starting at (xo, yo) a tracing routine is used to search for consecutive loca-

tions which meet the two conditions: for each location, (1) a zero-crossing 

is found in the binary LoG image, and (2) the gray level in the Sobel im-

age exceeds the threshold t. The x-, y-coordinates of the points which fulfill 

both requirements are stored in an array and labeled with the name of that 

curve. Assuming that (xn, yn ) and (xn+i , y„.1_1) are consecutive points on the 

curve, then the algorithm searches for the next point (x7i.+2, yn+2) in the 8-

neighborhood of (xn+i , yn+i). This search scans the 8 neighboring points of 

(x,-i-ki., Yri+i) (except (x„, yri ), the previous point on the curve), until a point 

is found that meets both requirements. Hence there are a maximum of seven 

neighboring points scanned. The tracing algorithm reaches the end of a curve 

if none of the seven neighboring points meets both requirements. 

If the end of an curve is reached, the algorithm resumes the 8th row scan at 

the point following the start point (xo, yo  + 1). The search for the next start 

15 



Figure 2.7: Recursive Subdivision for line fitting. 

point of a curve begins. The end of the 8th row scan occurs when the bottom 

of the image is reached. 

From the above discussion and the block diagram (Figure 2.5), it is clear that 

this algorithm still preserves the precision of the second derivative operator (LoG) 

but uses the first derivative operator (Sobel) as a constraint to mask out those 

zero-crossings resulting from image noise. 

2.5 LINE FITTING 

For many applications of image processing like object recognition or detection of 

vanishing points, it is important to find straight lines in an image. The proposed 
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technique for line detection assumes that the image is segmented, i.e., the curves 

are detected. The approach uses two steps to detect which parts of the curves can 

be considered straight lines. The first step does recursive subdivision of the curve 

and the second step performs a least-squared-error fitting. 

The x, y-locations of the curve points are the input data for the recursive 

subdivision. Recursive subdivision is used to break up a curve segment into many 

smaller curve segments. A curve segment is split at the point which has the largest 

perpendicular distance to a straight line connecting the start and end point of the 

curve segment. This breaking up of curve segments is applied recursively until the 

average distance between the curve segment and the straight line connecting the 

start and end point of the curve segment is less than a threshold d. A curve segment 

which cannot be divided any further is called a raw line. 

Figure 2.7 illustrates the recursive subdivision. Determine a straight line 

between point 1 and point 2. Find the point on the curve segment that has the 

largest perpendicular average distance to the line connecting the end points. Since 

the average distance is larger than the threshold d, the curve segment is split up 

at point 3. In Figure 2.7(b), there are now two straight lines connecting the start 

and end points of the two curve segments. No point on the curve segment between 

points 2 and 3 has a perpendicular average distance on to the straight link that 

exceeds the threshold d. Therefore, this curve segment is considered as a raw line. 

Following this procedure in the same manner, new break points (points 4 and 5) 

are detected as shown in Figures 2.7(c) and 2.7(d). 

The second step of the line detection algorithm fits a straight line through 

the set of points on the raw line. This is done by using a least squares fitting 

17 



where (x„ y,) are the coordinates of points in the set, and N is the total number 

of points in the set. Refer to [S588] and [Rei91] for further discussion. For many 

applications of line fitting very short line segments are not useful. Therefore, a 

line segments is accepted only if its length exceeds n pixels. Small segments are 

discarded. Figure 2.11 shows the results of applying the algorithm to a segmented 

image 1. In this case, the average distance threshold d is defined to be 0.5 pixels. 

and the minimum line length n is set to be 40 pixels. 

2.6 RESULTS AND CONCLUSION 

The Figures 2.8-2.11 show the results of applying the edge detection and line fitting 

algorithm to a test image (Figure 2.8, 2.9 (top images)) which contains low and 

high contrast edges, straight and curved contours, and open and closed borders. 

The images in Figure 2.8-2.10 demonstrate clearly how precisely the edge 

detection algorithm detects the various types of edges in the original image, and how 

effectively the noise can be eliminated. The threshold applied to the Sobel operator 

adjusts the sensitivity of the algorithm to the noise. A low threshold causes more 

"noisy" zero-crossings to be accepted as edge points. A high threshold filters out 

'The program for the line fitting algorithm has been written by Dr. A. Bamhashemi, Siemens 
Corporate Research 
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virtually all zero-crossings resulting from image noise along with some desirable 

zero-crossings. Hence there are contradicting requirements for the threshold. In 

that situation we can add another constraint for noise filtering: since image noise 

is usually local, a minimum length of a curve is required to be accepted as an edge. 

The images in Figure 2.11 illustrate the result of the line fitting algorithm 

applied to the curves detected by the combined Sobel and LoG-operators. 

The edge detection algorithms are implemented in the PC-based MATRON, 

vision system, which provides the digitization as well as low level image processing 

operations. The images are taken by a SONY CCD camera with a zoom lens (12.5 

- 75mm). The program for both the edge detection and the line fitting algorithm 

are is written in C. 

As demonstrated in the resulting pictures (Figures 2.8-2.11), the algorithms 

appears to be appropriate for many applications when both high resolution edge 

detection and good noise suppression are required. 
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Figure 2.8: The top image is the original image, and the bottom image results from 
applying the Sobel operator and using a threshold of t = 30 on the original image. 
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Figure 2.9: The bottom image results from applying the LoG operator and 'using a 
threshold oft = 0 on the original image (top image). 
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Figure 2.10: Combining the results of both, the Sobel and the LoG operators yields 
the top image. Discarding short segments results in the bottom image. 
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Figure 2.11: Applying the line fitting algorithm to the detected curve segments zn 
the top image results in the bottom image. 
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Chapter 3 

DETECTION OF VANISHING 
POINTS 

3.1 INTRODUCTION 

A fundamental problem in computer vision is how, given a two dimensional image, 

to derive information about the three-dimensional space. The problem is difficult 

because under perspective projection not only is the depth lost, but also the length 

and orientation of objects are also not invariant. 

One method to derive information about three dimensional space from two 

dimensional images is by finding the vanishing points. Given two parallel lines on 

a plane in three-dimensional space, their projections onto the image plane intersect 

at a vanishing point, which provides information about the direction of the lines 

and provides a constraint on the orientation of the plane. Two such independent 

constraints determine the orientation of the plane uniquely. This method of deriving 

information about three-dimensional space from vanishing points combined with 

a priori knowledge of the three-dimensional space, is frequently used in camera 

calibration [CT90], three dimensional measurement [WR84] and robot navigation 
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Figure 3.1: Camera model and imaging transform of point Po . 

[Bad74]. 

3.2 PROPERTIES OF IMAGING 

The concept of vanishing points is based on the imaging transformation from real 

three-dimensional space into the two-dimensional image plane of the camera. In 

order to understand vanishing points, we first have to explore the properties of 

imaging. 

3.2.1 The Imaging Transform 

We define the camera coordinate system with the z-axis in the direction of the 

optical axis of the camera and the xy-plane in the image plane (Figure 3.1). In 

this coordinate system the center of projection is located at the origin 0, and the 

optical center L of the lens is at the point (0, 0, f), where f is the focal length 

of the lens. In this camera model, the imaging transform simply maps any point 
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P0, in the three-dimensional space (scene point), through L into point P„ in the 

two-dimensional image plane (image point). Then by similar triangles we have 



where vector c represents any point in the camera coordinate system in Cartesian 

form. The first two components of c are the (x2 , y,) coordinates in the image plane 

of the projected scene point V ( \ - -0, Yo, Z0 ), as shown earlier by Equation 3.1. The 

third component of c is of no interest in terms of the transform from the three-

dimensional space into the two dimensional image plane (it acts as a free variable 

in the inverse imaging transform [GW87]). The imaging transform maps many 

scene points Pm  into one image point (xi , yi ). Namely, all the scene points Pr, on 

the line through (x„ y„ 0) and (0, 0, f) correspond to the image point (x2,  yi ). 

For further derivation it is useful to define the following property of the imaging 

transform: 

PROPERTY 1:  Straight lines in scene space, map into straight lines on the 

image plane [RK82b]. 

PROOF:  Any straight line 1 in three-dimensional space and the point (0, 0, f) 

(center of the lens) can be used to define a plane A. It is obvious that the intersection 

of the plane A with the image plane represents the projection of line 1 and this 

intersection is also a straight line, named 1'. For the mathematical proof, consider 

line 1 represented by equation 

which passes through the point (X0, YO, Zo). In the above equation, vd  = (a b c)T  

is the unit vector in the direction of the line and v = (x y z)T  is the vector pointing 

to any point on the straight line 1. Then the plane A is defined by the equation 
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3.2.2 Concept of Vanishing Points 

The concept of vanishing points is closely related to the properties of the imaging 

transform described above in Subsection 3.2.1. At this point it is convenient to 

simplify the camera model used in Subsection 3.2.1 and define the following camera 

model: the origin of the system coincides with the center of the lens and the z-axis 
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For later reference it is useful to define two properties. 

PROPERTY 2:  The vanishing point V of a straight line / in three-dimensional 

space must lie on a line L on the image plane. Any segment of line 1, projected 

onto the image plane, is part of line L [RK82b]. 

PROOF: Since the vanishing point VL  of a straight line 1 is defined as the 

projection of the line-point with A -- oo on the image plane (see Equations 3.12 

and 3.13), it is clear that the vanishing point has to lie on line L, the image of the 

line 1, or on its extension [KK82]. 

PROPERTY 3:  Let 52 be a set of parallel lines in three-dimensional space. Then 

all lines of 11 must have the same vanishing point 170. 

PROOF:  All lines of the set 9 are parallel, and hence their direction unit vectors 

vd  are equivalent. Then using Equation 3.14 the unit vectors vil, pointing towards 

the vanishing point VQ , are equivalent to the direction vectors vd. 

All these findings about the concept of vanishing points are well understood 

and are partly described in [Bar83], [Bad74] and [CT90]. For a complete summary, 

refer to [KK82]. 
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3.3 METHODS TO DETERMINE VANISHING 
POINTS 

There are various methods to determine the vanishing points in a two dimensional 

image. These methods are more or less suitable depending on the requirements 

imposed by the application (precision, computation time etc.) and the heuristics 

available from a priori knowledge of the three dimensional scene. To provide an 

overview, we first briefly mention four methods to determine vanishing points, and 

in the following section we describe the cross-product method in details. 

The objective is to find the principal vanishing points of a three dimensional 

scene, from a two-dimensional image. The three principal vanishing points of a 

room are defined as the vanishing points of the three room axes x, y and z (or 

of lines parallel to these axes). As shown in Subsection 3.2.2, parallel lines in a 

three-dimensional scene have the same vanishing point in the image plane (Prop-

erty 3). The vanishing point of a three-dimensional line lies on the projection of 

that line in the image plane or on its extension (Property 2). Hence, given a two-

dimensional image with detected line segments, we can determine vanishing points 

by finding the intersections of line segments (or their extensions). Note that not 

every intersection between lines is a vanishing point, and hence we have to distin-

guish between "accidental" intersections of line segments and vanishing points. To 

solve this problem we have to use the heuristics that a principal vanishing point 

is formed by the intersection of many line segments. This assumption is true for 

many man-made indoor and outdoor objects [SK80]. 

Kender [Ken79] presents a two step approach to determine vanishing points. 

The first step maps line segments with a common vanishing point into circles that 

pass through the origin. The vanishing point itself appears at the point on the circle 
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that is most distant from the origin. Determining which lines are associated with 

the same vanishing point involves finding circles in this space. This is a problem 

which requires a complicated search. Therefore in the second step, Kender maps 

the lines using a Hough like parameterization. Thus, the problem of determining 

vanishing points reduces to finding lines in the space. 

Barnard [Bar83] determines the plane A which contains the lens center and 

the line segment in the image plane. The great circle which results by intersecting 

the plane A with the Gaussian sphere is traced out in an angular (azimuth, ele-

vation) parameterization of the Gaussian sphere. After all great circles have been 

traced, vanishing points appear in the parameterized space as elements with a high 

occurrence rate, i.e., many great circles representing various lines pass through this 

element on the Gaussian sphere. The primary problem that Barnard points out is 

that using elevation and azimuth to divide the sphere causes sphere elements to be 

non-uniform in size. L. Quan and R. Mohr [QM89] suggest a hierarchical search 

to find vanishing points on the Gaussian sphere. This improves the computational 

efficiency of the method. 

Badler [Bad74] suggests a method based on cross products. The vector to-

wards an intersection is computed with the cross product of vectors to line segments 

and the cross product of normal vectors of planes associated with the line segments. 

We refer to this method as the cross-product method. The work of Magee and Ag-

garwal [MA84] extends this cross-product method to address the issues of working 

in calibrated as well as non-calibrated imaging systems. A more detailed description 

of that approach is given in Subsection 3.4. 

Shafer et al. [KK82] deal with vanishing point issues as they relate to gradi-

ent space under orthographic and perspective projections. Their derivations show 

that lines, which are parallel in three-dimensional space, have a unique vanish- 
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ing point that is determinable by using gradient operations. Relationships among 

points, lines, and planes in the gradient space are also presented. 

Weiss et al. [WH88] provide an error analysis on the detection of vanishing 

points, vanishing lines and the orientation of a plane associated with a vanishing 

line. 

3.4 CROSS-PRODUCT METHOD 

The Cross-Product Method has been described by Magee and Aggarwal [MA84] and 

is based on a previous work by Barnard [Bar83]. The approach uses the Gaussian 

sphere to represent points on the image plane (Figure 3.2). Any point (x, y) on 

the image plane (z = f) can be mapped onto the Gaussian sphere (centered at 

the origin) using p/ 1p 1, where p = (x y f)T. Any vector from the origin to 

a point, mapped on the Gaussian sphere, can be uniquely described in terms of 

azimuth a (the angle between the projection of the vector on the xy-plane and the 

x-axis) and the elevation i  (the angle between the vector and the xy-plane). There 

are two main reasons for using the Gaussian Sphere. As described in Subsection 

3.2.2 vanishing points can be finite and infinite. Infinite vanishing points on the 

image plane are difficult to handle in an algorithm (due to computation as well as 

representation). The Gaussian sphere accommodates both finite and infinite cases 

of line intersections or vanishing points. Moreover, the mapping onto the Gaussian 

sphere converts the distance between two points in the image plane into an angle. 

This is a much more natural way of looking at the three dimensional space and 

has advantages when defining the clustering criterion for intersections (Subsection 

3.5.2). 
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Figure 3.2: Gaussian sphere and computation of the vector pointing towards the 
intersection of two line segments (f denotes the focal length) 

3.4.1 Computing the Directions of Intersections 

Magee and Aggarwal [MA84] suggest a computationally efficient way to find the 

intersections of line segments. Instead of using Barnard's great circles on a Gaussian 

sphere [Bar83], they find the vector pointing towards the line intersection using 

three cross products. Assuming two line segments 112  and 134  on the image plane 

(Figure 3.3), we can define four vectors to the start and end points of the line 

segments as 



If the line segments or their extensions have an intersection in the image plane, the 

vector i is directed towards the point of intersection (see Figure 3.3 for illustration). 

If the lines are exactly parallel in the image plane then i = 0. Due to the properties 

of cross products, vector i might point in the opposite direction (with z2  < 0), 

rather than towards the point of intersection. The algorithm which processes the 

intersection has to be prepared for this case. 
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Figure 3.3: Computation of the vector towards the intersection of the line segments 

3.4.2 Processing the Intersections 

Assuming an image with the line segments detected, we can summarize the cross-

product method in four steps [MA84]. 

STEP 1: Given the line segments and the vectors pointing towards their 

start and end points, we can compute the vector i pointing towards the intersection 

of the line segments using three cross products (Subsection 3.4.1). To ensure that 

all vectors i point to the hemisphere of the Gaussian sphere where z, > 0, the 

z, component of i has to be examined. If z, is negative we have to negate each 

component of i, which results in —i (collinear to i). 

STEP 2: Since we do not know which line segments form a common van-

ishing point, we have to compute all intersections between all possible pairs of line 
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segments. These are N(N — 1)/2 intersections (where N denotes the number of 

line segments). This can be a very large number. In order to limit the number of 

intersections, we do not accept a vector i if it points towards the interior of either 

of the two line segments that are used to compute vector i. In general, vanish-

ing points cannot lie between the start and the end-point of a line segment since 

vanishing points are defined with A approaching infinity (Equation 3.13). There-

fore this constraint filters out intersections which are not true vanishing points of 

three dimensional parallel lines. There are other filtering constraints which will be 

discussed later. 

STEP 3: The accepted intersection vectors i are represented with azimuth 

a and elevation /3, which are defined by 



(see [MA84] for details). This is done by comparing the first association against the 

rest. If the number of associations (a„3), within the angular distance 6, is larger 

than some threshold t, then those associations are tagged as belonging to the same 

vanishing point. The algorithm then proceeds with finding other vanishing points 

using only the untagged associations. Hence the algorithm accepts an (a, 3) pair as 

a vanishing point if it finds more associations than a threshold t within an angular 

distance of 6. This implies the heuristics, that the image has more intersections 

within distance 6 from a vanishing point than "accidental" intersections within a 

distance 6. 

In addition to describing this algorithm, Magee and Aggarwal [MA84] prove 

that this method works even if the focal length f is not known. Substituting f with 

a positive number s in the vectors defined by Equation 3.15 will still yield the same 

intersecting points in the image. The lines contributing to one vanishing point can 

still be grouped. Hence costly camera calibration procedures can be avoided. Note 

that the algorithm is sensitive to very large as well as very small values of s. A 

reasonable value for s is the image width and height in pixels. It is obvious that 

applying the algorithm in an uncalibrated system can cluster the lines contributing 

to one vanishing point, but it does not determine the true direction of the vanishing 

point from the center of the lens in the three dimensional space. 

3.5 MODIFIED CROSS-PRODUCT METHOD 

The cross-product method is appropriate for images with strong, distinguished 

vanishing points and only few accidental intersections which do not belong to any 
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vanishing point. In general, this is not true for real indoor or outdoor images. In 

particular in an indoor environment we cannot assume that the vanishing point we 

want to determine accommodates more than a certain number of lines and we are 

confronted with many accidental intersections, which do not contribute to a van-

ishing point. In addition, in images of a typical indoor ceiling grid, we get many 

parallel line segments very close to each other (see Figure 3.4). Naturally, the in-

tersections of those line segments are not useful since they are very inaccurate (see 

Subsection 3.5.2). In order to use the cross-product method in an indoor environ-

ment with the requirements mentioned above, we modify the following features of 

the algorithm: 

• Additional constraints for filtering line segments, intersections and (a, /.3) as-

sociations at different stages of the algorithm. 

• Different representation of (a, 0) associations and different clustering algo-

rithm. 

• New approach to distinguish between determined vanishing points. 

The last item addresses an issue which is not included in the cross-product method. 

If we want to use the vanishing points for specific applications, we need additional 

constraints to select a particular vanishing point from all vanishing points deter-

mined by the cross-product method. One of the most significant changes to the 

original approach of Magee and Aggarwal [MA84] is the different representation 

of the (a, /3) associations. We define a two-dimensional array (accumulator) with 

128 x 32 elements. Each accumulator element represented by (a, b) contains a list 

of line segments and the count of those line segments. We quantize the occurring 

(a, /3) association in the accumulator such that the values of a (0° to 360°) are 

mapped into a (128 sections) and the values of /3 (0° to 90°) are mapped into b (32 
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Figure 3.5: Two dimensional accumulator array representing the Gaussian sphere. 

sections). See Figure 3.5 for illustration. Thus we define a grid on the Gaussian 

sphere with an angular width and height of 2.81 degrees since 

360° / 128 = 90° / 32 = 1.28° . (3.27) 

In general, the areas on the Gaussian sphere that the accumulator elements 

correspond to are not equal. Other forms of representation, such as tessellated 

regular polyhedra, might be better suited to represent the sphere, but they are 

rather complicated to implement. Note that for a constant azimuth a, the areas 

on the Gaussian Sphere are equal. The algorithms of [Bar83] and [QM89] use the 

same representation. 

3.5.1 Implementation of modified cross-product method 

The cross-product method has been modified according to the different require-

ments and constraints in an indoor environment. It can be summarized in five 

steps. 
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STEP 1: As before, we can compute vector i, pointing towards the inter-

section of the line segments, with three cross products (Subsection 3.4.1). Here we 

add two constraints: 

• Only consider those line segments which are longer than a minimum length 

imm • 

• Do not intersect line segments that are approximately parallel and very close 

to each other. 

Both constraints are introduced to limit the number of intersections and to increase 

the accuracy. The location of intersections computed with short line segments are 

not accurate (see Subsection 3.5.2). The same is true for line segments which are 

approximately parallel and close to each other. The second constraint is imple-

mented using the p, 9 representation of lines. If pi  and 01  of line segment /1  both 

differ from p2  and 92  of line segment /2  within certain limits, then we do not com-

pute the intersection of that pair of line segments. As in the original cross-product 

method, we have to ensure that all vectors i pointing towards intersections, point 

to the hemisphere of the Gaussian sphere where z > 0. 

STEP 2: Indoor scenes usually produce images with many "accidental" in-

tersections, i.e., intersections that are not associated with a vanishing point. Figure 

3.6 displays the accumulator with all computed intersections (the algorithm does 

not filter intersections). A large number of accumulator elements contain inter-

sections (white elements) and it is clear that the detection of vanishing points is 

possibly ambiguous. This illustrates the importance of intersection filtering. For 

the indoor environment the constraint for intersection filtering used in the origi-

nal cross-product method falls short of filtering capabilities. It is not sufficient to 

check whether an intersection is lying inside either one of the line segments which 
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are forming that intersection. Additional constraints are necessary, for example: 

• Do not accept intersections that are interior to extended line segments. Line 

segments can be extended on both sides of the segments by a constant factor. 

• Do not accept intersections that are inside the image plane (or the image 

plane extended by a constant factor). 

Experiments show that the constraint using extended lines is sufficient for ordinary 

indoor scenes. In case of images from an indoor ceiling grid (most line segments in 

two directional groups) it seems to be practical to accept only those intersections 

which are outside of the actual image plane with image width and image height in 

pixels. Since all line segments are oriented in two directional groups most of the 

"accidental" intersections are inside the image plane. Note that this last constraint 

can only be used for images which have their vanishing point outside of the image 

plane. This may not be true for many indoor scenes. Remember that all these 

constraints are intended to increase the computational efficiency. If there are no 

time requirements and there is enough system memory available, this step can be 

ignored. 

STEP 3: Equations 3.24 and 3.25 are used to compute the angles a and 

/3 of the accepted intersection represented by i = (x, y2  zi )T. Then we find the 

accumulator grid element (an , ki ) corresponding to the intersection (a, /3) on the 

Gaussian sphere. The line segments associated with the intersection (a, /3), are 

added to the line list of the accumulator element (an , bn) (if they are not already 

there). According to the number of line segments actually added to the line list, the 

line count of the accumulator element (an , b,,,) is increased. After all intersections 

are processed, the accumulator provides the number of line segments that intersect 

within each grid element on the Gaussian sphere. 
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STEP 4: Given the line count in each accumulator element we have to 

cluster adjacent accumulator elements which have non-zero line count. Adjacent 

accumulator elements that have a non-zero line count most likely contribute to 

the same vanishing point. The clustering algorithm scans the accumulator twice 

(row by row, top to bottom) and labels connected elements that have non-zero line 

count (clusters), with the same label [R,K82a, page 241]. In the first scan for each 

non-zero accumulator element (x, y) four neighbors uo  to u3  are examined. 

Based on the labels of uo  to u3  the algorithm assigns a label to the accumulator 

element (x, y). Three cases have to be considered. First, if there is no label found in 

uo  to u3, (x, y) is assigned a new label. Second, if there is only one label found in uo  

to u3, this label is assigned to (x, y). Third, if there are two different labels Lo  and 

L1  found in tto  to u3, label Lo  is assigned to (x, y) and the fact that Lo  is equivalent 

to L1  is recorded. Once the first scan is completed, pairs of equivalent labels are 

sorted into equivalence classes, and one label is chosen to represent each class. The 

second scan replaces each label in the accumulator with the representative of its 

class. After the second scan is completed all accumulator elements of one cluster 

are labeled with one unique label. 

Now that we have found the clusters of intersections we can approximate 

the center of the intersections with weighted averaging. With the line count as the 

weight for each accumulator element, the center of a cluster (a —center 7 center) can be 

computed with 



where n, represents the line count, a, and bi  indicate the position of the element 

in the accumulator and K is the number of accumulator elements in that cluster. 

The constant factors only transform the accumulator representation into angles in 

degrees. 

Hence this modified cross-product method provides the direction of all van-

ishing point candidates uniquely determined with azimuth acenter  and elevation 

.13center • Now the desired vanishing point has to be selected from the group of candi-

dates. Here we have to rely on heuristics and a przorz knowledge from the images. 

For most applications it is sufficient to use the highest number of intersecting line 

segments as a selection criterion. Applying this criterion we select the vanishing 

point candidate with the highest sum of line counts (Eil'il  n,) within its cluster as 

the vanishing point. Depending on the application, this might not yield the desired 

results. We might want to detect a vanishing point which does not necessarily have 

the highest number of line segments associated with its location. Provided that 

there exists some a przorz knowledge of the approximate location of the vanishing 

point, it is possible to define a window in the accumulator describing the area where 

the vanishing point is expected to be. If we apply the above constraint only inside 

the window, we can select a vanishing point which has the highest line count within 

the window but not necessarily within the entire accumulator. 

3.5.2 Error Considerations 

The entire process of determining the vanishing points introduces many different 

sources of error. The errors that resulted in obtaining the line segments can be 

summarized in three groups. 
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Figure 3.7: Shift Error of line intersections: Assuming an error bound d parallel 
the line 12, then the error of the intersection is a function of the angle y between 
the lines. 
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• Errors related to the optical system: There is perspective distortion associ-

ated with the imaging transform (Subsection 3.2.1). Pincushion and barrel 

distortion [RK82b, page 26] result from a slight change of scale in the image. 

In pincushion distortion, the scale of the image increases with distance from 

the center of the image. Barrel distortion is related to a scale decrease with 

the distance from the center of the image. 

• Errors related to the digitization of the image in the image plane: Here we 

have to consider the spacial quantization in discrete pixels and the quantiza-

tion of the detected light in discrete gray values as a source of error. 

• Errors related to image processing: Errors result from edge detection and line 

fitting. 

The above errors primarily result from the extraction of line segments. Discrepancy 

in the extracted line segments will inevitably cause errors in the intersection points 

of the line segments, and thus errors in the vanishing points. There are two types 

of errors, shift and turn errors. Figure 3.7 shows the shift errors associated with 

line /2. Line l2  can be located anywhere between 12 and /12' where its direction is 

parallel to l2 . Figure 3.7 illustrates that shift errors are a function of the angle 

between the line segments. The larger the angle y between the line segments li  and 

/2 , the smaller is the error in detecting the intersection. This implies that stronger 

perspective distortion of line segments in three dimensional space reduces the er-

ror in detecting the intersection. Conversely, approximately parallel line segments 

produce inaccurate intersections. 

Errors that cause an end point of a line segment to move to a nearby pixel 

location such that the line segment is turned, is referred to as turn errors. Assume 

that errors in an extracted line segment can cause its end points to be located 
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Figure 3.8: Turn error of line intersections: Assuming a turn of the line 12  within 
a eight pixel neighborhood, then the error of the intersection is a function of the 
length s of line 12  and the distance between the lines. 
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within its 8 pixel neighborhood as shown in Figure 3.8. Lines l2 and P2 ' show the 

worst case turn of line /2 . Again, for simplicity /1  is assumed to have no error. The 

turn error is a function of the length of the line segment. The longer s (the length 

of line segment /2 ) is, the smaller is the error e. Also, the farther the separation of 

the line segments /2  and /1  (Figure 3.8(b)), the larger is the error e. These are the 

reasons why intersections of short line segments are not accurate. Errors in both 

line segments, /1  and /2  will cause the intersecting point to be located within an 

area of error. 

The cross-product method maps the lines segments onto the Gaussian sphere. 

The error associated with the line segments can be mapped similarly. Therefore. 

the intersection error on the Gaussian sphere is the same as described above. Weiss 

et al. [NR88] provide a complete error analysis on the Gaussian sphere. They as-

sume an error associated with the detection of line segments. Then they propagate 

the errors of vanishing points, vanishing lines and surface orientation based on the 

error of the line segments. 

3.6 RESULTS AND CONCLUSION 

The modified cross-product method described above has been applied to images of 

indoor scenes. Figure 3.4 shows the original image of a room ceiling with a common 

grid pattern, texture and lamps. The edges and lines have been detected by the 

combined Laplacian and Sobel operators and the line fitting algorithm described in 

Chapter 2. The detected lines are shown in Figure 3.9 (top image). The ceiling grid 

contains two groups of detected lines. They are referred to as horizontal and verti-

cal line group. The lines of each group should form one common vanishing point. 

The modified cross-product method is applied to the detected lines. Since the im- 
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age has a large number of "accidental" intersections within or close to the image 

plane (see Figure 3.6), the algorithm eliminates those intersections that are located 

within the image plane extended by a constant factor. Figure 3.9 (bottom image) 

shows the resulting intersection detected by the modified cross-product method. It 

displays the two-dimensional accumulator array representing the Gaussian sphere 

with (a , 0 ) elements. White accumulator elements indicate that there are intersec-

tions located within that area of the Gaussian sphere. Black accumulator elements 

do not contain any intersections. Three large clusters are detected. The smallest 

cluster around (a = 285°,,(3 = 40°) results from the vertical line group. The other 

two clusters on the right and the left of the first one result from the horizontal line 

group. Since these lines are almost parallel, their angle of intersection is very small, 

and thus the error of intersection is very large (see Subsection 3.5.2). The intersec-

tions of that line group are not located within one accumulator element only, they 

are spread over a large region. Since there are more horizontal lines than vertical 

lines detected, the clusters resulting from the horizontal lines have a higher line 

count. If we want to select the cluster of the vertical lines as a vanishing point, we 

have to use a window (provided the approximate location of the vanishing point is 

known). The window concept is described in Subsection 3.5.1. Figure 3.9 (bottom 

image) shows the window used to select the cluster of the horizontal lines as the 

vanishing point. 

This shows clearly that the modifications made to the original cross-product 

method are necessary to enable the algorithm to work in an indoor environment. 

These results illustrate the advantages and limitations of vanishing points as well 

as the usefulness of the modified cross-product method. 
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Chapter 4 

NAVIGATION 

4.1 INTRODUCTION 

In general, any approach to robot navigation that uses any type of sensors requires 

a model of the environment of the robot. In other words, if we want to obtain 

information about the environment of the robot via sensors, we first have to define 

that environment. Hence we have to make certain assumptions. For example, Elfes 

[Elf87], [ME89] chooses a probabilistic approach using sonar sensors. This implies 

that there are objects in the environment of the robot that reflect sonar signals. 

For any navigation method using sensors, the model of the environment has to be 

defined as general as possible to include a broad class of objects. 

Recent research work on autonomous mobile robots shows that current de-

velopment is still far from achieving human-like performance. The current so-called 

intelligent and autonomous robotic systems are still very primitive as compared to 

human sensing and reaction capabilities. Therefore it is still interesting to investi-

gate little facets of the overall task separately. In this work, we look into vanishing 

points and their usefulness in robot navigation. We are not concerned with func-

tions or "behaviors" [Bro89] like obstacle avoidance or object detection. The focus 
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here is on guiding a mobile robot in a specific direction using the vanishing points 

of lines in the robot environment. The robot environment is mostly assumed to be 

an indoor environment where the lines can be ceiling or floor patterns, but the tech-

nique is not restricted to that environment. An attempt is made to define a model 

for the robot environment which contains a minimum of constraints necessary for 

navigation based on vanishing points (Section 4.2). 

4.2 DEFINITION OF THE GENERIC MODEL 

As mentioned above, robot navigation with sensors requires a model of the envi-

ronment of the robot. Binford and Kriegman [KB88] suggest the definition of a 

generic model. A generic model is a single model that describes a large class of 

objects. This implies that the generic model of an environment is as general as 

possible and uses a minimum of constraints on the environment. A generic model 

should not represent a particular environment, instead it should describe a large 

class of environments. This ensures that the sensoring of the navigation method is 

applicable to many different environments. 

Binford and Kriegman [KB88] define a generic model for buildings and in-

door environments. The functional constraint on the generic building model asserts 

that the primary occupants of buildings are people, which determines the scale of 

a building. The minimum dimensions of building elements, like doors, ceilings and 

walls, are constrained by the size of a typical large person. Economics is consid-

ered to place the limit on the maximum dimensions of buildings. It is often too 

expensive to make something larger than necessary. One of the primary physical 

constraints on buildings is gravity. A floor which is planar for motion efficiency, is 

generally normal to the gravity vector. In buildings with multiple stories, the floors 
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constrain the ceilings. Hence they are also normal to the gravity vector. 

The generic model for the environment of a robot guided by vanishing points 

can be defined with three constraints: 

• A minimum of two parallel, straight lines are detected by the camera. 

• The direction of the lines is known with respect to the robot environment. 

• The direction of the lines is not parallel to the image plane of the camera. 

The underlying principles which make these constraints sufficient are explained 

later (Section 4.4). This generic model describes any environment which provides 

parallel, straight lines with any known direction (not parallel to image plane). This 

covers a wide range of different indoor and outdoor environments. In the following 

we use the generic model in an indoor environment. In an indoor environment. any 

pattern with straight lines, like the ceiling grid, the wall paper, or the floor tiles can 

be used for navigation with vanishing points. There are no assumptions necessary 

on the orientation of the surfaces containing the lines (ceilings, floors, walls). Only 

the direction of the lines with respect to the environment has to be known. 

4.3 COORDINATE TRANSFORM 

Before we explore the properties of vanishing points in navigation, we have to define 

the relationship between the objects detected by the camera and the environment 

of the robot. We can define two coordinate systems (three dimensional). The first 

one represents a room in an indoor environment (room system), and the second 

one represents the space the camera points to (camera system). The origin of the 

camera system can be located at any point in the room system. The two coordinate 
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systems can be rotated with respect to each other. If we want to find the relation 

between the room system and the camera system, we have to consider translation 

and rotation (if both systems are assumed of equal scale). In general, translation 

and rotation can be expressed as matrices. The translation matrix T is defined by 

(see [RK82a] and [GW87] for the derivation of the matrices). Let the room system 

be described with the x', y' and z'-axes and the camera system be represented by 

the x, y and z-axes (Figure 4.1). Let pi,. = (kx' , ky' , kz' , k)T be the vector 

representing the point P' in the room system, and let p be the corresponding point 

and ph  = (kx , ky , kz , k)T be the vector in the camera system. The vectors are 

give in homogeneous coordinates, where k is an arbitrary non-zero constant. Then 
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The matrix T essentially shifts the origin of the room system by (T.,, Ty, Ti), such 

that it coincides with the origin of the camera system (Figure 4.1). The matrix R. 

represents the rotation around the y'-axis, where iz is the angle between the z-axis 

and the y', z'-plane. The matrix R, describes the rotation around the x'-axis, where 

zi is the angle between the z-axis and the x', z'-plane. Note that the angle of each 

rotation is defined to be clockwise from the view-point of an observer who is looking 

along the positive x-or y-axis towards the origin. 

Assuming that the camera is standing on the x', z'-plane (floor), we call 

itt the turn of the camera with respect to the y', z'-plane. Analogously, the angle 

between the camera and the x', z'-plane (floor) is called tzlt (ii). Hence, given the 

turn and the tilt of the camera, plus the translation (Tx, Ty, Tz ) of the origins, any 

point P' in the room system can be transformed into the corresponding point P in 

the camera system. 

4.4 VANISHING POINTS WITH MOVING 
CAMERA 

Vanishing points are detected in the camera system, based on parallel lines in the 

room system. In order to examine vanishing points when the camera is moving, 

the relationship between the lines in the camera system and the corresponding lines 

in the room system have to be defined. Equation 4.5 establishes the coordinate 

transform between points. This can easily be used to transform lines from the 

room system into the camera system . In general, a line, 1` = fo  + A' 1,1' , in the 

58 



Line 1' in the room system can be transformed into line 1 in the camera system 

by the coordinate transform. To simplify the derivation, the vector 1'0  to the base 

point of line 1' is assumed to be (La , H, 0). Without loss of generality, we can define 

equally use any vector pointing to any point on the line, l'. In addition, there are 

no assumptions made regarding the direction of the line 1'. The direction vector 1'd  

can point in any direction. Using Equation 4.5, we transform the vector 10 (base 

point) and the direction vector I'd, separately. The vector 1'0  (base point) can be 

transformed by 

where foh  = [L„, , H , 0 , 1] (the subscript h indicates homogeneous coordinates), 

and T, R77 and Rkt  are defined in Equation 4.1, 4.2 and 4.3, respectively. Analo-

gously, the direction vector I'd  (room system) can be transformed into Id  (camera 

system) using 

where ldh  = [a' , b' , c' , 1]. Here it is not necessary to apply the translation 

T, since the direction vector is an independent vector, without a specific location 

associated with it. Equations 4.8 and 4.9 determine the parameters of line 1 in the 

camera system uniquely. Hence, after converting loh, ldh  into Cartesian coordi- 
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This is the transformation of line 1' (room system) into line 1 (camera system). 

Assuming there is no translation and rotation (T, = Ty  = T., = it = 77 = 0), 

it can be shown easily that the two lines 1' (Equation 4.6) and 1 (Equation 4.10) 

are identical. Equation 4.10 describes the transformation of lines in terms of the 

location and orientation of the camera in the room system. This enables us to 

determine the location of the vanishing points as a function of the parameters of 

the line 1. We know from Chapter 3 that the vanishing point is defined as the 

line point with A —> oc, projected into the image (zA  = f). Therefore, applying 

Equation 3.13 on line 1 given by Equation 4.10, the vanishing point in the image 

plane is 

it is assumed tnat line I is not parallel to the image plane wnicn implies mat me 

denominators in Equation 4.11 are not equal to zero [— b' sin g + (a' sin y + 

c' cos it) cos g 0 0]. From Equation 4.11 it is clear that the vanishing point VI  

is determined by the direction of the line l' [l'd  = (a', b', c')], and the turn and tilt 

of the camera in the room system (it, 77). The vanishing point VI  does not depend 

on the location of the line 1' or the translation (Tx, Ty, Ti). Any set of parallel 

lines has the same vanishing point (see Subsection 3.2.2, Property 3). Therefore 

any line 1' with the direction la has the same vanishing point V/  no matter where 

it is located in the room. This is a very fundamental property of vanishing points 
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and has serious implications on the application of vanishing points in navigation. 

It is clear that Equation 4.11 is valid for the very general case defined in 

the generic model (Section 4.2). There are no assumptions made concerning the 

orientation of the lines (a', b', c') and the orientation of the camera Ca , 77). Hence, 

since only the minimum constraints of the generic model are made, this vanishing 

point can be called a generalized vanishing point. 

4.4.1 Rotational Movement 

To illustrate the properties of generalized vanishing points, Equation 4.11 is sim-

plified by adding constraints to the generic model: We assume the lines are located 

in the ceiling of the room. Additional, the lines are assumed to be parallel to the 

z'-axis of the room system (Figure 4.1). The equation of the line 1' = to + A' ld  

can be rewritten as 





Now we can analyze the movement of vanishing points in the image plane 

for any given movement of the camera (kt , ri). Assuming the camera is pointing 

in the direction of the z-axis (it = 77 = 0), the vanishing point is located at the 

origin of the image plane (V = (0, 0)). If the camera is rotating (it variable) with a 

constant tilt (7/ constant), the vanishing points form a horizontal line in the image 

plane (Figure 4.2(a)). For each rotation ,u there exists a unique vanishing point 

on that horizontal line. If the camera tilt is varied (7) variable) while there is no 

rotation (p constant), the vanishing points are located on a symmetrically shaped 

curve in the image plane (Figure 4.2(a)). Figure 4.2(b) illustrates the movement 

of vanishing points for various ([1,0, with either one being held constant. If ,u or 

ri approach 90 degrees, the vanishing point approaches infinity. In any other cases, 

Equations 4.14 and 4.15 enable us to predict the location of the vanishing point for 

any given rotation /..t and tilt 7/ of the camera. 

4.4.2 Translational Movement 

It is an intrinsic property of vanishing points that they are insensitive to transla-

tion [CT90]. A translation of the camera in the room system does not change the 

location of the vanishing point. This results from the definition of the vanishing 

point. The vector v1  from the focal point toward the vanishing point in the image 

plane is parallel to the direction vector I'd  of the line in the room system (Equa-

tion 3.14). Since the direction vector I'd  of the line is an independent vector, the 

vanishing point has to be independent from the location of the camera and the 

location of the line. Therefore, any translation of the camera that does not change 

the direction of the optical axis (z-axis), has no influence on the vanishing point. 
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4.5 NAVIGATING THE ROBOT 

The previous sections assume a rotating camera which is located on the floor (x, z-

plane) of the room system. For robot navigation the camera is mounted on the 

robot such that it is pointing in the direction the robot moves to. The angle µ now 

represents the turn of the robot, the angle y still represents the tilt of the camera 

(Figure 4.1). 

In this section we define a model of the robot environment which includes 

many constraints and assumptions. The next section generalizes the environment 

applying the generic model. The objective here is to navigate the robot parallel 

to the straight lines located on the ceiling of a room. For simplicity, let the lines 

be parallel to z-axis of the room (Figure 4.1). These lines can be some kind of a 

ceiling pattern or a ceiling grid. The camera is pointing up to the ceiling (y < 90°) 

and takes pictures of the ceiling lines. Line segments are extracted by the edge 

detection and line fitting algorithms (Chapter 2). Intersections between pairs of 

line segments are then determined by the modified cross-product method (Section 

3.5) . This algorithm provides the location of the vanishing point of the ceiling 

lines. In the previous section, we discussed how to compute the vanishing point for 

a given turn and tilt. Here, the vanishing point is given, and the turn and tilt of 

the robot are to be computed. This can be done by rewriting Equations 4.14 and 



In order to compute the turn 7.t, we need the location (a , [3) of the vanishing 

point and the tilt of the camera (Equation 4.20). It is obvious from Equation 4.14 

and Figure 4.1 that it is a function of the location of the vanishing point and the 

tilt of the camera. In Equation 4.21 we only need the location of the vanishing 

point (a, 0) to determine the tilt 77. For the navigation of the robot the tilt of the 

camera is assumed to be constant. Equation 4.20 can thus be used to compute the 

rotation of the robot necessary to align it with the lines. Figure 4.3(a) shows two 

ceiling lines and the robot in two positions. In Position 0, it is facing the desired 

direction, parallel to the ceiling lines (,(7,0  = 0°). Therefore, the vanishing point 

V/30  is located on the y-axis of the image plane (Figure 4.3(b)). Because of the 

tilt of the camera (770  = —35°), the vanishing point is located below the origin. In 

Position 1 the robot is turned to the left (µo  = 30°). This results in a vanishing 

point shifted to the right. Figure 4.3(c) illustrates that movement of the vanishing 

point (VP1). Based on the vanishing point (VP') and the tilt q, Equation 4.20 can 

be used to determine the angle 7.4 between the ceiling lines and the direction the 

robot is directed to. Since the robot should be navigated parallel to the lines, it 
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has to be rotated back into the direction of the lines with 

AR = ilv , (4.22) 

where /I R  denotes the angle of the robot rotation. Equation 4.22 is called the 

navigation crzterzon. This method of computing the rotation it, can be used in a 

recursive navigation procedure. 

The procedure starts with taking a picture from the ceiling, finding the 

vanishing points and computing the robot rotation pR. In the next step the robot 

rotates ill? degrees which aligns the robot with the ceiling lines (see Figure 4.3 for 

illustration), and then it moves forward. Then, a picture is taken from this new 

position of the robot, and /IR  is computed again. The robot rotates and moves 

forward and again the procedure repeats itself such that the vanishing points are 

used as a guiding reference for the direction of the robot. 

4.6 GENERALIZATION OF THE NAVIGA-
TION ENVIRONMENT 

The generalization described in this section is twofold. First, the direction that 

the robot should move toward is not restricted to be parallel to the lines. Any 

direction can be chosen except the direction perpendicular to the lines (vanishing 

points at infinity). Second, the robot environment is generalized according to the 

generic model (Section 4.2). We assume an environment with a minimum number 

of constraints. This ensures that the navigation method is appropriate for a large 

class of different environments and applications. 

The generic model requires that a minimum of two straight parallel lines are 

to be detected by the camera. In addition, the direction of the lines are known with 
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respect to the robot environment. The direction of the lines is represented by two 

angles /Li, and ri L , where pi, denotes the angle with respect to the y', z'-plane and 17 L  

represents the tilt with respect to the x', z'-plane. Again, it has to be ensured that 

the lines are not parallel to the image plane of the camera. With this minimum 

number of constraints assumed on the environment of the robot, it is possible to 

redefine the navigation criterion in Section 4.5. 

Similar to Section 4.5, the vanishing point is given in azimuth and elevation 

representation (a , /3). In addition, the direction of the lines in the room is known, 

and denoted as ,a L  and !I L  (see Figure 4.4). Now it is possible to analyze the 

movement of the vanishing points considering both the orientation of the camera 

(fin , 7/7,) and the orientation of the lines (uL, , r/L). The location of the vanishing 

point is based on the direction of the lines with respect to the camera system. 

This implies that a rotation of the camera system by pc degrees results in the same 

vanishing point as a rotation of the line by --µ degrees. For example, a rotation of 

the camera system by pi  = 30° results in the vanishing point (a1, )31). If we rotate 

the direction of the lines (instead of the camera) by pi, = —30°, the vanishing 

point is in the same location (a1, /31). In order to find the orientation of the robot 

with respect to the direction of the lines, we have to subtract the angle fin  by 'Li, 

as follows 



This equation is called the generalized navigation criterion. Figure 4.4 illustrates 

this concept. Comparing Figure 4.3(b) and Figure 4.4(b), both diagrams show the 

vanishing point for the robot pointing in the direction of the z-axis (POS 0). The 

vanishing points are not in the same location because the lines in Figure 4.3(a) are 

turned and tilted (u L  = 71L  = 20°). Note that the vanishing point is shifted down 

and right. 

In Position 1 (Figure 4.4(a),(c)), the robot is turned left (it i  = —30°). 

This moves the vanishing point VP]. further to the right. As described above, the 

vanishing point VPi  given in (a , /3) representation, can be converted into it, using 

Equation 4.20. Note that the tilt 77 consists of the tilt of the camera minus the tilt 

of the lines (77 = 71„, — 77 L). Assuming that the robot has to be turned back in the 

direction it had in Position 0, we can calculate the rotation uR  using Equation 4.25. 

The generalized navigation criterion is valid for a large class of environments 

defined in the generic model. It also permits to chose any direction for the robot 

to move in (except perpendicular to the lines). 
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4.7 RESULTS AND CONCLUSION 

The robot used for the navigation experiments is HERO 2000 (Model ET-19, man-

ufactured by Heath Company). The navigation process is implemented on a PC, 

with the software written in C. The robot and the camera are linked to the PC via 

cable connections. The navigation process assumes an environment with the lines 

located in the ceiling of an indoor scene, where the robot is supposed to move in 

a direction parallel to the lines (Figure 4.1). Figure 4.5 shows images of a ceiling 

pattern with the robot pointing in three different directions. The line segments 

have been detected with the edge detection and line fitting algorithms described 

in Chapter 2. Refer to Figure 3.4 for an original image of the ceiling pattern. In 

the top image of Figure 4.5 the robot is turned to the left (/2o = —30°). In the 

middle image, the robot is facing the direction parallel to the lines (po  = 0°). In 

the bottom image, the robot is turned to the right (po  = 30°). Figure 4.6 shows 

the results of the detected vanishing points corresponding to the three respective 

directions which the robot points to (images in Figure 4.5). The accepted inter-

sections are displayed in the accumulator array representing azimuth and elevation 

(a, /9) on the Gaussian sphere (see Section 3.5 for explanation). The vanishing 

point is selected with the window shown in the accumulator. The location of the 

vanishing point within the window is marked with a cross. From Figure 4.6, it is 

obvious that a robot turning to the left (negative ,a) results in the vanishing point 

being shifted to the right. Conversely a robot turn to the right (positive /2) results 

in shifting the vanishing point to the left. The (a, 3) location of the vanishing 

point is used to compute the angle between the lines and the direction the robot 

is pointing to (Equation 4.20). The experimental results for computing the rota-

tion /2R  from detected vanishing points are given in Figure 4.7. The graph shows 
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Figure 4.7: Experimental results of using vanishing points to determine rotation ,aR  

for robot turn ii (see text). 

the computed ki R  as a function of robot turns ,a, where ,u R  represents the rotation 

necessary to point the robot into the direction of the lines. The error associated 

with the computed fiR  is approximately +2.5 degrees. This is sufficient for navi-

gating the robot considering the inaccuracies of the robot movements itself (robot 

translation and rotation are inaccurate). These results demonstrate the usefulness 

of vanishing points in robot navigation. Vanishing points provide a reference for 

detecting robot rotation. This is true not only for parallel ceiling lines, but in gen-

eral for any two parallel lines in indoor or outdoor environments. This opens a vast 
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field of applications of this navigation technique. Like any other sensor, vanishing 

points have intrinsic limitations in their sensing capabilities. They are not sensitive 

to translation which imposes a serious problem in navigation. The robot can be 

shifted towards a wall or an obstacle, and the vanishing point would still be in the 

same place. Hence, integrating the vanishing point techniques with other sensors 

are recommended. 
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