
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1991

Analysis and implementation of a navigation system using Analysis and implementation of a navigation system using

vanishing points in a generalized environment vanishing points in a generalized environment

Rolf Schuster
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Schuster, Rolf, "Analysis and implementation of a navigation system using vanishing points in a
generalized environment" (1991). Theses. 2608.
https://digitalcommons.njit.edu/theses/2608

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2608?utm_source=digitalcommons.njit.edu%2Ftheses%2F2608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Analysis and Implementation of a

Navigation System with Vanishing Points in a Generalized

Environment

by

Roif Schuster

The development of accurate sensors is of crucial importance in navigation of mobile

autonomous robots. The following master's thesis analyzes the use of vanishing

points for robot navigation. Parallel lines in the environment of the robot are used

to compute vanishing points which serve as a reference for guiding a robot. To

accomplish the navigation tasks, three subtasks are to be performed: detection of

straight lines, computation of vanishing points, and robot navigation with vanishing

points.

An edge detection algorithm is presented that combines Sobel and Laplacian

of Gaussian operators. The algorithm preserves the precision of the Laplacian of

Gaussian operator while the Sobel operator is mainly used for filtering image noise.

A method to determine the Laplacian of Gaussian kernel is described. Recursive

subdivision is used to detect raw lines in the edges. Raw lines are approximated by

straight lines using a least squares fit.

Several methods for detecting vanishing points are presented. The cross-

product method as introduced by Magee and Aggarval is described in detail. The

method is modified in order to make the detection of vanishing points appropriate

for an indoor environment. The navigation section derives the properties of van-

ishing points under camera rotation and translation. Using these properties, the

location of the vanishing points can serve as a reference for robot navigation. A

model of the robot environment is defined, summarizing the minimal number of

constraints necessary for the method to work.

Finally, the limitations as well as the advantages of using vanishing points

in robot navigation are described.

)
Analysis and Implementation of a

Navigation System using Vanishing Points

in a Generalized Environment

by

Rolf Schuster

A Thesis

Submitted to the Faculty of the Graduate Division of the

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering

May 1991

APPROVAL PAGE

Analysis and Implementation of a

Navigation System with Vanishing Points in a Generalized

Environment

by

Rolf Schuster

7 I

Dr. N. Ansari, Thesis Adviser

Assistant Professor, New Jersey Institute of Technology

Dr. E. Hou, Committee Member

Assistant Professor, New Jersey Institute of Technology

•

Dr. A. Banihashemi, Committee Member

Senior Researcher, Siemens Corporate Research, Princeton, New Jersey

BIOGRAPHICAL SKETCH

Author : Rolf Schuster

Degree : Master of Science in Electrical Engineering

Date : May, 1991

Date of Birth :

Place of Birth :

Education :

• BACHELOR OF SCIENCE in Telecommunications and Electronics, Fach-

hochschule fiir Technik, Mannheim, Germany, 1989

• MASTER OF SCIENCE in Electrical Engineering, New Jersey Institute of

Technology, Newark, New Jersey, 1991

Experience :

• RESEARCH ASSISTANT, Siemens Corporate Research, Princeton, USA,

Jul. 90 - May 91

• ELECTRICAL ENGINEER, Siemens AG, Bensheim, West Germany, Mar.

89 - Aug. 89

• TEACHING ASSISTANT, Fachhochschule fur Technik, Mannheim, West

Germany, Mar. 88 - Dec. 88

• ASSOCIATE ENGINEER, University of Swansea, Swansea, Great Britain,

Mar. 86 - Aug. 86

iii

to Heike -

hoping it was worth the wait ...

iv

ACKNOWLEDGMENT

At this point I would like to express my thanks to Professor Nirwan Ansari for his

strong personal and academic support and the considerable amount of time he has

spent on our regular meetings. Special thanks goes to Professor Edwin Hou and

Dr. Ali Banihashemi for serving as members of the committee.

Most of the research work was done at Siemens Corporate Research, a R&D com-

pany with excellent facilities in Princeton, New Jersey. I appreciate the opportunity

of working there not only because of the outstanding research environment, but also

because of the many very helpful specialists like Ali Banihashemi, Bruce Laden-

dorf and Keith Andress who often have contributed valuable ideas to my work.

I am particular grateful to Ali Banihashemi for his guidance and time intense •

help especially with difficult parts of the research. Gus Tsikos, Don Guise, Ruth

Weitzenfeld and Angelica Formento also assisted me with my work at Siemens

Corporate Research.

Special thanks to Sukhmani Kaur who helped me with typing and formating the

thesis. Finally I would like to thank all my friends for their moral support and

useful hints as well as their patient accepting me in that situation.

v

Contents

1 INTRODUCTION 1

2 EDGE DETECTION 3

2.1 INTRODUCTION 3

2.2 FIRST DERIVATIVE OPERATORS 4

2.3 SECOND DERIVATIVE OPERATORS 7

2.3.1 Determining the Laplacian Convolution Kernel 8

2.3.2 Properties of the Laplacian Operator 11

2.4 COMBINING FIRST AND SECOND DERIVATIVE OPERATORS 12

2.5 LINE FITTING 16

2.6 RESULTS AND CONCLUSION 18

3 DETECTION OF VANISHING POINTS 24

3.1 INTRODUCTION 24

3.2 PROPERTIES OF IMAGING 25

3.2.1 The Imaging Transform 25

3.2.2 Concept of Vanishing Points 28

vi

3.3 METHODS TO DETERMINE VANISHING POINTS 31

3.4 CROSS-PRODUCT METHOD 33

3.4.1 Computing the Directions of Intersections 34

3.4.2 Processing the Intersections 36

3.5 MODIFIED CROSS-PRODUCT METHOD 38

3.5.1 Implementation of modified cross-product method 41

3.5.2 Error Considerations 46

3.6 RESULTS AND CONCLUSION 50

4 NAVIGATION 53

4.1 INTRODUCTION 53

4.2 DEFINITION OF THE GENERIC MODEL 54

4.3 COORDINATE TRANSFORM 55

4.4 VANISHING POINTS WITH MOVING CAMERA 58

4.4.1 Rotational Movement 61

4.4.2 Translational Movement 63

4.5 NAVIGATING THE ROBOT 64

4.6 GENERALIZATION OF THE NAVIGATION ENVIRONMENT . 67

4.7 RESULTS AND CONCLUSION 71

BIBLIOGRAPHY 76

vii

List of Figures

2.1 Convolution kernel from the second derivative 5

2.2 Sobel convolution applied to an asymmetrical edge. 6

2.3 Gaussian Functions. 9

2.4 Laplacian operator applied to an edge. 11

2.5 Sobel and Laplacian operator applied to an edge. 13

2.6 Simplified block diagram of the edge detection algorithm 14

2.7 Recursive Subdivision for line fitting. 16

2.8 Resulting images: Applying the Sobel operator and thresholding. 20

2.9 Resulting images: Applying the Laplacian operator and thresholding. 21

2.10 Resulting images: Combining Sobel and Laplacian operators 22

2.11 Resulting images: Applying the line fitting algorithm 23

3.1 Camera model and imaging transform of point P0 25

3.2 Gaussian sphere and image plane 34

3.3 Computation of the vector towards the intersection of two line segments 36

3.4 Image of a common ceiling pattern under perspective distortion. . . 39

3.5 Two dimensional accumulator array representing the Gaussian sphere. 41

viii ,.

3.6 Line segments in ceiling pattern and intersections of line segments. . 43

3.7 Shift Error of line intersections. 47

3.8 Turn error of line intersections. 49

3.9 Line segments in ceiling pattern and intersections of line segments 51

4.1 Definition of the room and camera coordinate system 57

4.2 Movement of vanishing points as a function of the angles ,ti and ri . 62

4.3 Vanishing points used for robot navigation. 66

4.4 Vanishing points used for robot navigation with rotated and tilted

parallel lines. 68

4.5 Lines in ceiling pattern with the robot facing three different directions. 72

4.6 Detected intersection and vanishing points with the robot facing

three different directions 73

4.7 Results of using vanishing points to find the turn. 74

ix

Chapter 1

INTRODUCTION

It has always been the goal of science and engineering to understand nature and to

use that understanding for the benefits of the human society. Today's technology

provides many conveniences for our daily life. Many innovations and developments

extend the capabilities of human beings beyond their natural limits. For example,

technology enables us to travel fast from one place to the other and it enables us

to communicate with each other across long distances.

Part of this general development in technology are attempts to build robotic

systems that have human-like intelligence and are capable of moving independently

in their environment. These robotic systems can, for examples, be used to perform

hazardous tasks and monotonous work.

The cardinal problem of all robotic systems is how they access information

about their environment. It is essential for the robot to be able to access information

about its position, orientation or speed with respect to its environment. This can

be achieved by using sensors to measure distance, angular turn, radiation and

temperature. However, the current development in sensors and sensor integration

is still far from reaching the capabilities of the human sensing system.

This is the motivation to analyze the usefulness of vanishing points in robot

1

navigation. The objective is to navigate a mobile robot based on the vanishing

points of parallel lines in its environment. The overall analysis can be summarized

in three steps. First, the robot detects the lines in its environment using a vision

system together with an edge detection and line fitting algorithm. Second, the

vanishing points are computed using the data of the detected lines . In the third

step, the position of the vanishing points are integrated in the navigation process of

the robot. This master's thesis presents all three steps with the theoretical analysis

as well as the results of the implementation. Furthermore, a model of the robot

environment is defined summarizing the essential assumptions which are necessary

for the method to work.

2

Chapter 2

EDGE DETECTION

2.1 INTRODUCTION

Many theories and algorithms applied to high-level vision tasks assume that the

pictures are already segmented, i.e., the desired features (lines, edges etc.) of the

picture are enhanced. Hence edge detection is of crucial importance in Image

Processing and Computer Vision. Various edge detectors can be classified into two

broad classes, depending on their principle:

1. First derivative operators (Gradient operators) respond to an edge with a

broad peak, which degrades the resolution of edge detection [HM86, p293].

2. Second derivative operators (Laplacian operators), which respond with a zero-

crossing to an edge, are generally regarded as very precise (in a noise free envi-

ronment). Since they use the second derivative, they enhance high frequency

image noise.

Both types of operators have been studied extensively and their advantages

and drawbacks are well known (see [GW87] for a good overview). The basic idea

presented in this work is to combine the advantages of both types of operators.

3

Both the first and second derivative operators are applied separately to the original

image. Then the results are combined by accepting only those zero-crossings in the

result of the second derivative operator as an edge point, if at the same location,

the result of the first derivative operator is above a certain threshold. Hence, the

first derivative operator acts like a mask filter on the result of the second derivative

operator. It eliminates all those zero-crossings in the result of the second derivative

operator that are not located on a gradient with sufficient slope. Thus one can

make use of the precision of the second derivative operator (zero-crossings) and

"mask out" the high frequency image noise with the first derivative operator.

2.2 FIRST DERIVATIVE OPERATORS

The slope m of the one dimensional analog function g (x) is defined as m = dg (x) I dx .

In similar fashion we can approximate the vertical and horizontal gradient of a two-

dimensional function f (x, y) as

These first order differences of f (x, y) are commonly expressed as convolution op-

erators which convolve f(x,y) with the patterns

Since these first order difference operators are odd order derivatives, they are not

isotropic, i.e., rotation invariant (in the sense that rotating image h and then apply-

ing the operator gives the same result as applying the operator to image h and then

4

Figure 2.1: Convolution kernel from the second derivative: (a) Blurred edge, (b)-
(c) first and second derivative of (a), (d) approximation of second derivative in a
convolution kernel.

rotating the output). See [RK82a, page 238] for a precise definition of 'isotropic'.

However, these first order difference operators can be made isotropic by taking the

sum of the squares of the vertical component Ax f(x, y) and the horizontal compo-

nent Ay f (x , y).

At this point it might be interesting to observe that we can derive the same

convolution kernels using properties of pattern matching: if we define a template g

according to the gray values of the edge to be detected, a match of g in an image h

gives a possible location of an edge element. If we are interested in a sharp match

response rather than in the actual gray level result of the match, it is advantageous

to define template g as the second derivative of the edge [RK82b, page 43]. If we

look at the two step edge with a cross section of ... aaa[(a+b)/2]bbb ... , the second

order differences would turn out to be ... 00[(b — a)/2]0[(a — b)/2]00 ... , which

have values proportional to the template [1 0 -1] (see Figure 2.1). This template is

the exact equivalence of the convolution kernels derived for the first order difference

operator. The only difference between the two methods is that while edge detection

5

Figure 2.2: Sobel convolution applied to an asymmetrical edge: (a) original edge,
(b) result of Sobel convolution with original edge, (c) thresholded Sobel result.

convolves the convolution kernels with the image, pattern matching correlates the

template with the image (i.e., correlation does not involve flipping either the image

or the template).

One can improve the convolution kernel by smoothing in the direction of the

expected edge and assigning different weight-factors according to the distance to

the center of the kernel. The resulting operator is called the Sobel operator. The

vertical and horizontal convolution masks are defined by

The main disadvantage of the first derivative operators is that it locates

the edge with a relatively broad peak. This makes thresholding and perhaps even

thinning necessary, and limits the resolution of detecting the edge. Figure 2.2

illustrates these properties as well as the fact that in the case of asymmetrical

edges, the center of the original edge is not necessarily at the center of the detected

broad peak.

6

2.3 SECOND DERIVATIVE OPERATORS

The second derivative operator can be derived in similar fashion: the second deriva-

tive of the function g(x) is given by d2g(x)/dx 2. Hence the second derivative of the

two dimensional discrete function f(x, y) can be approximated by the difference

between the first order differences on the right and left side of the center point:

Since these are even order derivatives one can simply add the vertical and horizontal

components to form an isotropic operator [RK82a, page 238], i.e., rotation invariant

operator (Laplacian operator):

which is the digital convolution of f(x,y) with the kernel

From this it is obvious that the Laplacian operator takes the difference between

gray value at (x, y), which is the center point of the kernel, and the average in the

neighborhood of (x, y) [RK82b, page 242]. This operator has the main disadvantage

of responding sharply to single pixel noise. Like the first derivative operator, one

can improve this operator by implementing smoothing capabilities. Here we use

the second derivative of a Gaussian Distribution Function (Figure 2.3(b)). The

mathematical equations for the continuous and one dimensional case are given by

First we have to select the size of the Laplacian convolution kernel based on

the desired edge detection as well as the hardware and the time constraints. The

constant o-, which determines the shape and the extent of the LoG G"(x, y), has

to correspond to the size of the kernel in the sense that it has to be possible to

approximate the shape of G"(x,y) within the kernel. Huertas and Medioni [HM86]

stated that it is sufficient if the kernel covers ±3a from the origin of the continuous

Laplacian G"(x, y). Since 99.73% of the area of a one dimensional Gaussian lies

between +3a, the area of the second derivative must be very close to zero.

8

Figure 2.3: Gaussian Functions: (a) Gaussian Distribution Function G(x), (b)
Second Derivative G"(x).

9

The second step is to quantize the continuous LoG (x , y) into the discrete

LoG G"d (z,j) where i and j are integer values. The straight forward way to do this

is to evaluate G" (x y) at the grid points (z, j) with

and round it to the nearest integer. This method is not very accurate and has

the consequence that the resulting values of G"d (z, j) do not sum up to zero any

more, and hence corrections become necessary. If higher accuracy is desired, block

averages of the continuous LoG G" (x , y) can be used to compute the discrete LoG

G' ,̀1 (1,) using

See [HL86] and [Bre84] for details on quantization with bilinear interpolation and

higher order interpolants.

In the third step, we have to ensure that the sum of all the elements of the

LoG kernel is equal to zero, to avoid any bias when performing the LoG convolution.

If the kernel elements do not sum up to zero after the quantization, we have to

adjust their values. To further illustrate these findings we perform Steps 1 to 3 in

an example:

1. Hardware and time constraints are assumed to limit the kernel size to 7. For

this kernel size, a good approximation of the shape of the LoG can be achieved

with a = 1.

2. Quantize the continuous LoG with point evaluations G"d(z, j) = G"(z, j).

Scale the resulting values by 60, and then round them off to the nearest

integers.

3. Alter some kernel values to make the sum of the kernel values equal to zero.

10

2.3.2 Properties of the Laplacian Operator

Analyzing the Laplacian of Gaussian kernel (LoG) we find that it performs weighted

averaging in the center of the kernel (negative kernel values) as well as in the

neighborhood of the center (positive kernel values). Convolving an image f(x, y)

with that kernel results in the smoothed second derivative f"(x,y) of that image.

Note that the values of f"(x,y) change their sign (zero crossings) whenever

a curvature change in the original f(x, y) occurs (Figure 2.4). This means that

we get positive values on one side of the edge and negative values on the other

side of the edge and zero in between (only in case of very low contrast edges).

In order to detect the zero-crossings, the LoG result should be thresholded at 0

(with f"bin(x,y) = 1 if f"(x,y) < 0, and f"oin(x, Y) = 0 otherwise). Hence the

zero-crossings provide a precise and blur-free means of detecting an edge.

11

2.4 COMBINING FIRST AND SECOND
DERIVATIVE OPERATORS

From the analysis of the first and second order operators it is apparent that both

operators have significant drawbacks. Although relatively stable with respect to

image noise, the Sobel operator only provides an approximate location of the edge.

The Laplacian on the other hand detects the edge location precisely (zero-crossings),

but it is very susceptible to image noise. Zero crossings caused by image noise are

thus falsely detected as edges. Hence we need additional constraints in order to

extract more precise edges in noisy images using the second derivative operator.

Different types of constraints can be applied (see [HL86] for an overview). For

example, we can "and" the zero-crossing contours of several successive scales of

resolution, an approach which requires much more computational effort. Another

possibility is to use the measure of the slope of the LoG image at the zero-crossing

as a constraint. A zero-crossing is accepted as edge point, if the Sobel operator

applied to the LoG image is above a threshold at the location of the zero-crossing.

Our approach uses the result of the Sobel operator applied to the original

image as the constraint for the zero-crossings. We detect the zero-crossings in the

LoG of the original image. A zero-crossing is accepted as the location of an edge

point, if at the same location the result of the Sobel convolution with the original

image is above a threshold. Figure 2.6 illustrates the algorithm in a block diagram.

The algorithm can be summarized in five steps:

1. Convolve original image f(x,y) with vertical and horizontal Sobel kernels

(see Chapter 2.2). The vertical and horizontal components are normalized

and their absolute values are added. The result is called the Sobel image

fs(x, Y)-

12

Figure 2.5: Sobel and Laplacian operator applied to an edge: (a) original edge, (b)
result of Sobel and LoG convolution, (c) accepted zero-crossing in binary represen-
tation of (b).

13

Figure 2.6: Simplified block dzagram of the edge detection algorithm.

14

5. Scan every 8th row of the binary LoG image f Lbin(x, y) until a zero-crossing is

found. If at that location the Sobel image is above a threshold (f Sbm, (xo, yo) =-

1), this point is accepted as the start point of an curve (at (xo, yo)).

Starting at (xo, yo) a tracing routine is used to search for consecutive loca-

tions which meet the two conditions: for each location, (1) a zero-crossing

is found in the binary LoG image, and (2) the gray level in the Sobel im-

age exceeds the threshold t. The x-, y-coordinates of the points which fulfill

both requirements are stored in an array and labeled with the name of that

curve. Assuming that (xn, yn) and (xn+i , y„.1_1) are consecutive points on the

curve, then the algorithm searches for the next point (x7i.+2, yn+2) in the 8-

neighborhood of (xn+i , yn+i). This search scans the 8 neighboring points of

(x,-i-ki., Yri+i) (except (x„, yri), the previous point on the curve), until a point

is found that meets both requirements. Hence there are a maximum of seven

neighboring points scanned. The tracing algorithm reaches the end of a curve

if none of the seven neighboring points meets both requirements.

If the end of an curve is reached, the algorithm resumes the 8th row scan at

the point following the start point (xo, yo + 1). The search for the next start

15

Figure 2.7: Recursive Subdivision for line fitting.

point of a curve begins. The end of the 8th row scan occurs when the bottom

of the image is reached.

From the above discussion and the block diagram (Figure 2.5), it is clear that

this algorithm still preserves the precision of the second derivative operator (LoG)

but uses the first derivative operator (Sobel) as a constraint to mask out those

zero-crossings resulting from image noise.

2.5 LINE FITTING

For many applications of image processing like object recognition or detection of

vanishing points, it is important to find straight lines in an image. The proposed

16

technique for line detection assumes that the image is segmented, i.e., the curves

are detected. The approach uses two steps to detect which parts of the curves can

be considered straight lines. The first step does recursive subdivision of the curve

and the second step performs a least-squared-error fitting.

The x, y-locations of the curve points are the input data for the recursive

subdivision. Recursive subdivision is used to break up a curve segment into many

smaller curve segments. A curve segment is split at the point which has the largest

perpendicular distance to a straight line connecting the start and end point of the

curve segment. This breaking up of curve segments is applied recursively until the

average distance between the curve segment and the straight line connecting the

start and end point of the curve segment is less than a threshold d. A curve segment

which cannot be divided any further is called a raw line.

Figure 2.7 illustrates the recursive subdivision. Determine a straight line

between point 1 and point 2. Find the point on the curve segment that has the

largest perpendicular average distance to the line connecting the end points. Since

the average distance is larger than the threshold d, the curve segment is split up

at point 3. In Figure 2.7(b), there are now two straight lines connecting the start

and end points of the two curve segments. No point on the curve segment between

points 2 and 3 has a perpendicular average distance on to the straight link that

exceeds the threshold d. Therefore, this curve segment is considered as a raw line.

Following this procedure in the same manner, new break points (points 4 and 5)

are detected as shown in Figures 2.7(c) and 2.7(d).

The second step of the line detection algorithm fits a straight line through

the set of points on the raw line. This is done by using a least squares fitting

17

where (x„ y,) are the coordinates of points in the set, and N is the total number

of points in the set. Refer to [S588] and [Rei91] for further discussion. For many

applications of line fitting very short line segments are not useful. Therefore, a

line segments is accepted only if its length exceeds n pixels. Small segments are

discarded. Figure 2.11 shows the results of applying the algorithm to a segmented

image 1. In this case, the average distance threshold d is defined to be 0.5 pixels.

and the minimum line length n is set to be 40 pixels.

2.6 RESULTS AND CONCLUSION

The Figures 2.8-2.11 show the results of applying the edge detection and line fitting

algorithm to a test image (Figure 2.8, 2.9 (top images)) which contains low and

high contrast edges, straight and curved contours, and open and closed borders.

The images in Figure 2.8-2.10 demonstrate clearly how precisely the edge

detection algorithm detects the various types of edges in the original image, and how

effectively the noise can be eliminated. The threshold applied to the Sobel operator

adjusts the sensitivity of the algorithm to the noise. A low threshold causes more

"noisy" zero-crossings to be accepted as edge points. A high threshold filters out

'The program for the line fitting algorithm has been written by Dr. A. Bamhashemi, Siemens
Corporate Research

18

virtually all zero-crossings resulting from image noise along with some desirable

zero-crossings. Hence there are contradicting requirements for the threshold. In

that situation we can add another constraint for noise filtering: since image noise

is usually local, a minimum length of a curve is required to be accepted as an edge.

The images in Figure 2.11 illustrate the result of the line fitting algorithm

applied to the curves detected by the combined Sobel and LoG-operators.

The edge detection algorithms are implemented in the PC-based MATRON,

vision system, which provides the digitization as well as low level image processing

operations. The images are taken by a SONY CCD camera with a zoom lens (12.5

- 75mm). The program for both the edge detection and the line fitting algorithm

are is written in C.

As demonstrated in the resulting pictures (Figures 2.8-2.11), the algorithms

appears to be appropriate for many applications when both high resolution edge

detection and good noise suppression are required.

19

Figure 2.8: The top image is the original image, and the bottom image results from
applying the Sobel operator and using a threshold of t = 30 on the original image.

20

Figure 2.9: The bottom image results from applying the LoG operator and 'using a
threshold oft = 0 on the original image (top image).

21

Figure 2.10: Combining the results of both, the Sobel and the LoG operators yields
the top image. Discarding short segments results in the bottom image.

99

Figure 2.11: Applying the line fitting algorithm to the detected curve segments zn
the top image results in the bottom image.

23

Chapter 3

DETECTION OF VANISHING
POINTS

3.1 INTRODUCTION

A fundamental problem in computer vision is how, given a two dimensional image,

to derive information about the three-dimensional space. The problem is difficult

because under perspective projection not only is the depth lost, but also the length

and orientation of objects are also not invariant.

One method to derive information about three dimensional space from two

dimensional images is by finding the vanishing points. Given two parallel lines on

a plane in three-dimensional space, their projections onto the image plane intersect

at a vanishing point, which provides information about the direction of the lines

and provides a constraint on the orientation of the plane. Two such independent

constraints determine the orientation of the plane uniquely. This method of deriving

information about three-dimensional space from vanishing points combined with

a priori knowledge of the three-dimensional space, is frequently used in camera

calibration [CT90], three dimensional measurement [WR84] and robot navigation

24

Figure 3.1: Camera model and imaging transform of point Po .

[Bad74].

3.2 PROPERTIES OF IMAGING

The concept of vanishing points is based on the imaging transformation from real

three-dimensional space into the two-dimensional image plane of the camera. In

order to understand vanishing points, we first have to explore the properties of

imaging.

3.2.1 The Imaging Transform

We define the camera coordinate system with the z-axis in the direction of the

optical axis of the camera and the xy-plane in the image plane (Figure 3.1). In

this coordinate system the center of projection is located at the origin 0, and the

optical center L of the lens is at the point (0, 0, f), where f is the focal length

of the lens. In this camera model, the imaging transform simply maps any point

25

P0, in the three-dimensional space (scene point), through L into point P„ in the

two-dimensional image plane (image point). Then by similar triangles we have

where vector c represents any point in the camera coordinate system in Cartesian

form. The first two components of c are the (x2 , y,) coordinates in the image plane

of the projected scene point V (\ - -0, Yo, Z0), as shown earlier by Equation 3.1. The

third component of c is of no interest in terms of the transform from the three-

dimensional space into the two dimensional image plane (it acts as a free variable

in the inverse imaging transform [GW87]). The imaging transform maps many

scene points Pm into one image point (xi , yi). Namely, all the scene points Pr, on

the line through (x„ y„ 0) and (0, 0, f) correspond to the image point (x2, yi).

For further derivation it is useful to define the following property of the imaging

transform:

PROPERTY 1: Straight lines in scene space, map into straight lines on the

image plane [RK82b].

PROOF: Any straight line 1 in three-dimensional space and the point (0, 0, f)

(center of the lens) can be used to define a plane A. It is obvious that the intersection

of the plane A with the image plane represents the projection of line 1 and this

intersection is also a straight line, named 1'. For the mathematical proof, consider

line 1 represented by equation

which passes through the point (X0, YO, Zo). In the above equation, vd = (a b c)T

is the unit vector in the direction of the line and v = (x y z)T is the vector pointing

to any point on the straight line 1. Then the plane A is defined by the equation

27

3.2.2 Concept of Vanishing Points

The concept of vanishing points is closely related to the properties of the imaging

transform described above in Subsection 3.2.1. At this point it is convenient to

simplify the camera model used in Subsection 3.2.1 and define the following camera

model: the origin of the system coincides with the center of the lens and the z-axis

28

For later reference it is useful to define two properties.

PROPERTY 2: The vanishing point V of a straight line / in three-dimensional

space must lie on a line L on the image plane. Any segment of line 1, projected

onto the image plane, is part of line L [RK82b].

PROOF: Since the vanishing point VL of a straight line 1 is defined as the

projection of the line-point with A -- oo on the image plane (see Equations 3.12

and 3.13), it is clear that the vanishing point has to lie on line L, the image of the

line 1, or on its extension [KK82].

PROPERTY 3: Let 52 be a set of parallel lines in three-dimensional space. Then

all lines of 11 must have the same vanishing point 170.

PROOF: All lines of the set 9 are parallel, and hence their direction unit vectors

vd are equivalent. Then using Equation 3.14 the unit vectors vil, pointing towards

the vanishing point VQ , are equivalent to the direction vectors vd.

All these findings about the concept of vanishing points are well understood

and are partly described in [Bar83], [Bad74] and [CT90]. For a complete summary,

refer to [KK82].

30

3.3 METHODS TO DETERMINE VANISHING
POINTS

There are various methods to determine the vanishing points in a two dimensional

image. These methods are more or less suitable depending on the requirements

imposed by the application (precision, computation time etc.) and the heuristics

available from a priori knowledge of the three dimensional scene. To provide an

overview, we first briefly mention four methods to determine vanishing points, and

in the following section we describe the cross-product method in details.

The objective is to find the principal vanishing points of a three dimensional

scene, from a two-dimensional image. The three principal vanishing points of a

room are defined as the vanishing points of the three room axes x, y and z (or

of lines parallel to these axes). As shown in Subsection 3.2.2, parallel lines in a

three-dimensional scene have the same vanishing point in the image plane (Prop-

erty 3). The vanishing point of a three-dimensional line lies on the projection of

that line in the image plane or on its extension (Property 2). Hence, given a two-

dimensional image with detected line segments, we can determine vanishing points

by finding the intersections of line segments (or their extensions). Note that not

every intersection between lines is a vanishing point, and hence we have to distin-

guish between "accidental" intersections of line segments and vanishing points. To

solve this problem we have to use the heuristics that a principal vanishing point

is formed by the intersection of many line segments. This assumption is true for

many man-made indoor and outdoor objects [SK80].

Kender [Ken79] presents a two step approach to determine vanishing points.

The first step maps line segments with a common vanishing point into circles that

pass through the origin. The vanishing point itself appears at the point on the circle

31

that is most distant from the origin. Determining which lines are associated with

the same vanishing point involves finding circles in this space. This is a problem

which requires a complicated search. Therefore in the second step, Kender maps

the lines using a Hough like parameterization. Thus, the problem of determining

vanishing points reduces to finding lines in the space.

Barnard [Bar83] determines the plane A which contains the lens center and

the line segment in the image plane. The great circle which results by intersecting

the plane A with the Gaussian sphere is traced out in an angular (azimuth, ele-

vation) parameterization of the Gaussian sphere. After all great circles have been

traced, vanishing points appear in the parameterized space as elements with a high

occurrence rate, i.e., many great circles representing various lines pass through this

element on the Gaussian sphere. The primary problem that Barnard points out is

that using elevation and azimuth to divide the sphere causes sphere elements to be

non-uniform in size. L. Quan and R. Mohr [QM89] suggest a hierarchical search

to find vanishing points on the Gaussian sphere. This improves the computational

efficiency of the method.

Badler [Bad74] suggests a method based on cross products. The vector to-

wards an intersection is computed with the cross product of vectors to line segments

and the cross product of normal vectors of planes associated with the line segments.

We refer to this method as the cross-product method. The work of Magee and Ag-

garwal [MA84] extends this cross-product method to address the issues of working

in calibrated as well as non-calibrated imaging systems. A more detailed description

of that approach is given in Subsection 3.4.

Shafer et al. [KK82] deal with vanishing point issues as they relate to gradi-

ent space under orthographic and perspective projections. Their derivations show

that lines, which are parallel in three-dimensional space, have a unique vanish-

32

ing point that is determinable by using gradient operations. Relationships among

points, lines, and planes in the gradient space are also presented.

Weiss et al. [WH88] provide an error analysis on the detection of vanishing

points, vanishing lines and the orientation of a plane associated with a vanishing

line.

3.4 CROSS-PRODUCT METHOD

The Cross-Product Method has been described by Magee and Aggarwal [MA84] and

is based on a previous work by Barnard [Bar83]. The approach uses the Gaussian

sphere to represent points on the image plane (Figure 3.2). Any point (x, y) on

the image plane (z = f) can be mapped onto the Gaussian sphere (centered at

the origin) using p/ 1p 1, where p = (x y f)T. Any vector from the origin to

a point, mapped on the Gaussian sphere, can be uniquely described in terms of

azimuth a (the angle between the projection of the vector on the xy-plane and the

x-axis) and the elevation i (the angle between the vector and the xy-plane). There

are two main reasons for using the Gaussian Sphere. As described in Subsection

3.2.2 vanishing points can be finite and infinite. Infinite vanishing points on the

image plane are difficult to handle in an algorithm (due to computation as well as

representation). The Gaussian sphere accommodates both finite and infinite cases

of line intersections or vanishing points. Moreover, the mapping onto the Gaussian

sphere converts the distance between two points in the image plane into an angle.

This is a much more natural way of looking at the three dimensional space and

has advantages when defining the clustering criterion for intersections (Subsection

3.5.2).

33

Figure 3.2: Gaussian sphere and computation of the vector pointing towards the
intersection of two line segments (f denotes the focal length)

3.4.1 Computing the Directions of Intersections

Magee and Aggarwal [MA84] suggest a computationally efficient way to find the

intersections of line segments. Instead of using Barnard's great circles on a Gaussian

sphere [Bar83], they find the vector pointing towards the line intersection using

three cross products. Assuming two line segments 112 and 134 on the image plane

(Figure 3.3), we can define four vectors to the start and end points of the line

segments as

If the line segments or their extensions have an intersection in the image plane, the

vector i is directed towards the point of intersection (see Figure 3.3 for illustration).

If the lines are exactly parallel in the image plane then i = 0. Due to the properties

of cross products, vector i might point in the opposite direction (with z2 < 0),

rather than towards the point of intersection. The algorithm which processes the

intersection has to be prepared for this case.

35

Figure 3.3: Computation of the vector towards the intersection of the line segments

3.4.2 Processing the Intersections

Assuming an image with the line segments detected, we can summarize the cross-

product method in four steps [MA84].

STEP 1: Given the line segments and the vectors pointing towards their

start and end points, we can compute the vector i pointing towards the intersection

of the line segments using three cross products (Subsection 3.4.1). To ensure that

all vectors i point to the hemisphere of the Gaussian sphere where z, > 0, the

z, component of i has to be examined. If z, is negative we have to negate each

component of i, which results in —i (collinear to i).

STEP 2: Since we do not know which line segments form a common van-

ishing point, we have to compute all intersections between all possible pairs of line

36

segments. These are N(N — 1)/2 intersections (where N denotes the number of

line segments). This can be a very large number. In order to limit the number of

intersections, we do not accept a vector i if it points towards the interior of either

of the two line segments that are used to compute vector i. In general, vanish-

ing points cannot lie between the start and the end-point of a line segment since

vanishing points are defined with A approaching infinity (Equation 3.13). There-

fore this constraint filters out intersections which are not true vanishing points of

three dimensional parallel lines. There are other filtering constraints which will be

discussed later.

STEP 3: The accepted intersection vectors i are represented with azimuth

a and elevation /3, which are defined by

(see [MA84] for details). This is done by comparing the first association against the

rest. If the number of associations (a„3), within the angular distance 6, is larger

than some threshold t, then those associations are tagged as belonging to the same

vanishing point. The algorithm then proceeds with finding other vanishing points

using only the untagged associations. Hence the algorithm accepts an (a, 3) pair as

a vanishing point if it finds more associations than a threshold t within an angular

distance of 6. This implies the heuristics, that the image has more intersections

within distance 6 from a vanishing point than "accidental" intersections within a

distance 6.

In addition to describing this algorithm, Magee and Aggarwal [MA84] prove

that this method works even if the focal length f is not known. Substituting f with

a positive number s in the vectors defined by Equation 3.15 will still yield the same

intersecting points in the image. The lines contributing to one vanishing point can

still be grouped. Hence costly camera calibration procedures can be avoided. Note

that the algorithm is sensitive to very large as well as very small values of s. A

reasonable value for s is the image width and height in pixels. It is obvious that

applying the algorithm in an uncalibrated system can cluster the lines contributing

to one vanishing point, but it does not determine the true direction of the vanishing

point from the center of the lens in the three dimensional space.

3.5 MODIFIED CROSS-PRODUCT METHOD

The cross-product method is appropriate for images with strong, distinguished

vanishing points and only few accidental intersections which do not belong to any

38

vanishing point. In general, this is not true for real indoor or outdoor images. In

particular in an indoor environment we cannot assume that the vanishing point we

want to determine accommodates more than a certain number of lines and we are

confronted with many accidental intersections, which do not contribute to a van-

ishing point. In addition, in images of a typical indoor ceiling grid, we get many

parallel line segments very close to each other (see Figure 3.4). Naturally, the in-

tersections of those line segments are not useful since they are very inaccurate (see

Subsection 3.5.2). In order to use the cross-product method in an indoor environ-

ment with the requirements mentioned above, we modify the following features of

the algorithm:

• Additional constraints for filtering line segments, intersections and (a, /.3) as-

sociations at different stages of the algorithm.

• Different representation of (a, 0) associations and different clustering algo-

rithm.

• New approach to distinguish between determined vanishing points.

The last item addresses an issue which is not included in the cross-product method.

If we want to use the vanishing points for specific applications, we need additional

constraints to select a particular vanishing point from all vanishing points deter-

mined by the cross-product method. One of the most significant changes to the

original approach of Magee and Aggarwal [MA84] is the different representation

of the (a, /3) associations. We define a two-dimensional array (accumulator) with

128 x 32 elements. Each accumulator element represented by (a, b) contains a list

of line segments and the count of those line segments. We quantize the occurring

(a, /3) association in the accumulator such that the values of a (0° to 360°) are

mapped into a (128 sections) and the values of /3 (0° to 90°) are mapped into b (32

40

Figure 3.5: Two dimensional accumulator array representing the Gaussian sphere.

sections). See Figure 3.5 for illustration. Thus we define a grid on the Gaussian

sphere with an angular width and height of 2.81 degrees since

360° / 128 = 90° / 32 = 1.28° . (3.27)

In general, the areas on the Gaussian sphere that the accumulator elements

correspond to are not equal. Other forms of representation, such as tessellated

regular polyhedra, might be better suited to represent the sphere, but they are

rather complicated to implement. Note that for a constant azimuth a, the areas

on the Gaussian Sphere are equal. The algorithms of [Bar83] and [QM89] use the

same representation.

3.5.1 Implementation of modified cross-product method

The cross-product method has been modified according to the different require-

ments and constraints in an indoor environment. It can be summarized in five

steps.

41

STEP 1: As before, we can compute vector i, pointing towards the inter-

section of the line segments, with three cross products (Subsection 3.4.1). Here we

add two constraints:

• Only consider those line segments which are longer than a minimum length

imm •

• Do not intersect line segments that are approximately parallel and very close

to each other.

Both constraints are introduced to limit the number of intersections and to increase

the accuracy. The location of intersections computed with short line segments are

not accurate (see Subsection 3.5.2). The same is true for line segments which are

approximately parallel and close to each other. The second constraint is imple-

mented using the p, 9 representation of lines. If pi and 01 of line segment /1 both

differ from p2 and 92 of line segment /2 within certain limits, then we do not com-

pute the intersection of that pair of line segments. As in the original cross-product

method, we have to ensure that all vectors i pointing towards intersections, point

to the hemisphere of the Gaussian sphere where z > 0.

STEP 2: Indoor scenes usually produce images with many "accidental" in-

tersections, i.e., intersections that are not associated with a vanishing point. Figure

3.6 displays the accumulator with all computed intersections (the algorithm does

not filter intersections). A large number of accumulator elements contain inter-

sections (white elements) and it is clear that the detection of vanishing points is

possibly ambiguous. This illustrates the importance of intersection filtering. For

the indoor environment the constraint for intersection filtering used in the origi-

nal cross-product method falls short of filtering capabilities. It is not sufficient to

check whether an intersection is lying inside either one of the line segments which

42

are forming that intersection. Additional constraints are necessary, for example:

• Do not accept intersections that are interior to extended line segments. Line

segments can be extended on both sides of the segments by a constant factor.

• Do not accept intersections that are inside the image plane (or the image

plane extended by a constant factor).

Experiments show that the constraint using extended lines is sufficient for ordinary

indoor scenes. In case of images from an indoor ceiling grid (most line segments in

two directional groups) it seems to be practical to accept only those intersections

which are outside of the actual image plane with image width and image height in

pixels. Since all line segments are oriented in two directional groups most of the

"accidental" intersections are inside the image plane. Note that this last constraint

can only be used for images which have their vanishing point outside of the image

plane. This may not be true for many indoor scenes. Remember that all these

constraints are intended to increase the computational efficiency. If there are no

time requirements and there is enough system memory available, this step can be

ignored.

STEP 3: Equations 3.24 and 3.25 are used to compute the angles a and

/3 of the accepted intersection represented by i = (x, y2 zi)T. Then we find the

accumulator grid element (an , ki) corresponding to the intersection (a, /3) on the

Gaussian sphere. The line segments associated with the intersection (a, /3), are

added to the line list of the accumulator element (an , bn) (if they are not already

there). According to the number of line segments actually added to the line list, the

line count of the accumulator element (an , b,,,) is increased. After all intersections

are processed, the accumulator provides the number of line segments that intersect

within each grid element on the Gaussian sphere.

44

STEP 4: Given the line count in each accumulator element we have to

cluster adjacent accumulator elements which have non-zero line count. Adjacent

accumulator elements that have a non-zero line count most likely contribute to

the same vanishing point. The clustering algorithm scans the accumulator twice

(row by row, top to bottom) and labels connected elements that have non-zero line

count (clusters), with the same label [R,K82a, page 241]. In the first scan for each

non-zero accumulator element (x, y) four neighbors uo to u3 are examined.

Based on the labels of uo to u3 the algorithm assigns a label to the accumulator

element (x, y). Three cases have to be considered. First, if there is no label found in

uo to u3, (x, y) is assigned a new label. Second, if there is only one label found in uo

to u3, this label is assigned to (x, y). Third, if there are two different labels Lo and

L1 found in tto to u3, label Lo is assigned to (x, y) and the fact that Lo is equivalent

to L1 is recorded. Once the first scan is completed, pairs of equivalent labels are

sorted into equivalence classes, and one label is chosen to represent each class. The

second scan replaces each label in the accumulator with the representative of its

class. After the second scan is completed all accumulator elements of one cluster

are labeled with one unique label.

Now that we have found the clusters of intersections we can approximate

the center of the intersections with weighted averaging. With the line count as the

weight for each accumulator element, the center of a cluster (a —center 7 center) can be

computed with

where n, represents the line count, a, and bi indicate the position of the element

in the accumulator and K is the number of accumulator elements in that cluster.

The constant factors only transform the accumulator representation into angles in

degrees.

Hence this modified cross-product method provides the direction of all van-

ishing point candidates uniquely determined with azimuth acenter and elevation

.13center • Now the desired vanishing point has to be selected from the group of candi-

dates. Here we have to rely on heuristics and a przorz knowledge from the images.

For most applications it is sufficient to use the highest number of intersecting line

segments as a selection criterion. Applying this criterion we select the vanishing

point candidate with the highest sum of line counts (Eil'il n,) within its cluster as

the vanishing point. Depending on the application, this might not yield the desired

results. We might want to detect a vanishing point which does not necessarily have

the highest number of line segments associated with its location. Provided that

there exists some a przorz knowledge of the approximate location of the vanishing

point, it is possible to define a window in the accumulator describing the area where

the vanishing point is expected to be. If we apply the above constraint only inside

the window, we can select a vanishing point which has the highest line count within

the window but not necessarily within the entire accumulator.

3.5.2 Error Considerations

The entire process of determining the vanishing points introduces many different

sources of error. The errors that resulted in obtaining the line segments can be

summarized in three groups.

46

Figure 3.7: Shift Error of line intersections: Assuming an error bound d parallel
the line 12, then the error of the intersection is a function of the angle y between
the lines.

47

• Errors related to the optical system: There is perspective distortion associ-

ated with the imaging transform (Subsection 3.2.1). Pincushion and barrel

distortion [RK82b, page 26] result from a slight change of scale in the image.

In pincushion distortion, the scale of the image increases with distance from

the center of the image. Barrel distortion is related to a scale decrease with

the distance from the center of the image.

• Errors related to the digitization of the image in the image plane: Here we

have to consider the spacial quantization in discrete pixels and the quantiza-

tion of the detected light in discrete gray values as a source of error.

• Errors related to image processing: Errors result from edge detection and line

fitting.

The above errors primarily result from the extraction of line segments. Discrepancy

in the extracted line segments will inevitably cause errors in the intersection points

of the line segments, and thus errors in the vanishing points. There are two types

of errors, shift and turn errors. Figure 3.7 shows the shift errors associated with

line /2. Line l2 can be located anywhere between 12 and /12' where its direction is

parallel to l2 . Figure 3.7 illustrates that shift errors are a function of the angle

between the line segments. The larger the angle y between the line segments li and

/2 , the smaller is the error in detecting the intersection. This implies that stronger

perspective distortion of line segments in three dimensional space reduces the er-

ror in detecting the intersection. Conversely, approximately parallel line segments

produce inaccurate intersections.

Errors that cause an end point of a line segment to move to a nearby pixel

location such that the line segment is turned, is referred to as turn errors. Assume

that errors in an extracted line segment can cause its end points to be located

48

Figure 3.8: Turn error of line intersections: Assuming a turn of the line 12 within
a eight pixel neighborhood, then the error of the intersection is a function of the
length s of line 12 and the distance between the lines.

49

within its 8 pixel neighborhood as shown in Figure 3.8. Lines l2 and P2 ' show the

worst case turn of line /2 . Again, for simplicity /1 is assumed to have no error. The

turn error is a function of the length of the line segment. The longer s (the length

of line segment /2) is, the smaller is the error e. Also, the farther the separation of

the line segments /2 and /1 (Figure 3.8(b)), the larger is the error e. These are the

reasons why intersections of short line segments are not accurate. Errors in both

line segments, /1 and /2 will cause the intersecting point to be located within an

area of error.

The cross-product method maps the lines segments onto the Gaussian sphere.

The error associated with the line segments can be mapped similarly. Therefore.

the intersection error on the Gaussian sphere is the same as described above. Weiss

et al. [NR88] provide a complete error analysis on the Gaussian sphere. They as-

sume an error associated with the detection of line segments. Then they propagate

the errors of vanishing points, vanishing lines and surface orientation based on the

error of the line segments.

3.6 RESULTS AND CONCLUSION

The modified cross-product method described above has been applied to images of

indoor scenes. Figure 3.4 shows the original image of a room ceiling with a common

grid pattern, texture and lamps. The edges and lines have been detected by the

combined Laplacian and Sobel operators and the line fitting algorithm described in

Chapter 2. The detected lines are shown in Figure 3.9 (top image). The ceiling grid

contains two groups of detected lines. They are referred to as horizontal and verti-

cal line group. The lines of each group should form one common vanishing point.

The modified cross-product method is applied to the detected lines. Since the im-

50

age has a large number of "accidental" intersections within or close to the image

plane (see Figure 3.6), the algorithm eliminates those intersections that are located

within the image plane extended by a constant factor. Figure 3.9 (bottom image)

shows the resulting intersection detected by the modified cross-product method. It

displays the two-dimensional accumulator array representing the Gaussian sphere

with (a , 0) elements. White accumulator elements indicate that there are intersec-

tions located within that area of the Gaussian sphere. Black accumulator elements

do not contain any intersections. Three large clusters are detected. The smallest

cluster around (a = 285°,,(3 = 40°) results from the vertical line group. The other

two clusters on the right and the left of the first one result from the horizontal line

group. Since these lines are almost parallel, their angle of intersection is very small,

and thus the error of intersection is very large (see Subsection 3.5.2). The intersec-

tions of that line group are not located within one accumulator element only, they

are spread over a large region. Since there are more horizontal lines than vertical

lines detected, the clusters resulting from the horizontal lines have a higher line

count. If we want to select the cluster of the vertical lines as a vanishing point, we

have to use a window (provided the approximate location of the vanishing point is

known). The window concept is described in Subsection 3.5.1. Figure 3.9 (bottom

image) shows the window used to select the cluster of the horizontal lines as the

vanishing point.

This shows clearly that the modifications made to the original cross-product

method are necessary to enable the algorithm to work in an indoor environment.

These results illustrate the advantages and limitations of vanishing points as well

as the usefulness of the modified cross-product method.

52

Chapter 4

NAVIGATION

4.1 INTRODUCTION

In general, any approach to robot navigation that uses any type of sensors requires

a model of the environment of the robot. In other words, if we want to obtain

information about the environment of the robot via sensors, we first have to define

that environment. Hence we have to make certain assumptions. For example, Elfes

[Elf87], [ME89] chooses a probabilistic approach using sonar sensors. This implies

that there are objects in the environment of the robot that reflect sonar signals.

For any navigation method using sensors, the model of the environment has to be

defined as general as possible to include a broad class of objects.

Recent research work on autonomous mobile robots shows that current de-

velopment is still far from achieving human-like performance. The current so-called

intelligent and autonomous robotic systems are still very primitive as compared to

human sensing and reaction capabilities. Therefore it is still interesting to investi-

gate little facets of the overall task separately. In this work, we look into vanishing

points and their usefulness in robot navigation. We are not concerned with func-

tions or "behaviors" [Bro89] like obstacle avoidance or object detection. The focus

53

here is on guiding a mobile robot in a specific direction using the vanishing points

of lines in the robot environment. The robot environment is mostly assumed to be

an indoor environment where the lines can be ceiling or floor patterns, but the tech-

nique is not restricted to that environment. An attempt is made to define a model

for the robot environment which contains a minimum of constraints necessary for

navigation based on vanishing points (Section 4.2).

4.2 DEFINITION OF THE GENERIC MODEL

As mentioned above, robot navigation with sensors requires a model of the envi-

ronment of the robot. Binford and Kriegman [KB88] suggest the definition of a

generic model. A generic model is a single model that describes a large class of

objects. This implies that the generic model of an environment is as general as

possible and uses a minimum of constraints on the environment. A generic model

should not represent a particular environment, instead it should describe a large

class of environments. This ensures that the sensoring of the navigation method is

applicable to many different environments.

Binford and Kriegman [KB88] define a generic model for buildings and in-

door environments. The functional constraint on the generic building model asserts

that the primary occupants of buildings are people, which determines the scale of

a building. The minimum dimensions of building elements, like doors, ceilings and

walls, are constrained by the size of a typical large person. Economics is consid-

ered to place the limit on the maximum dimensions of buildings. It is often too

expensive to make something larger than necessary. One of the primary physical

constraints on buildings is gravity. A floor which is planar for motion efficiency, is

generally normal to the gravity vector. In buildings with multiple stories, the floors

54

constrain the ceilings. Hence they are also normal to the gravity vector.

The generic model for the environment of a robot guided by vanishing points

can be defined with three constraints:

• A minimum of two parallel, straight lines are detected by the camera.

• The direction of the lines is known with respect to the robot environment.

• The direction of the lines is not parallel to the image plane of the camera.

The underlying principles which make these constraints sufficient are explained

later (Section 4.4). This generic model describes any environment which provides

parallel, straight lines with any known direction (not parallel to image plane). This

covers a wide range of different indoor and outdoor environments. In the following

we use the generic model in an indoor environment. In an indoor environment. any

pattern with straight lines, like the ceiling grid, the wall paper, or the floor tiles can

be used for navigation with vanishing points. There are no assumptions necessary

on the orientation of the surfaces containing the lines (ceilings, floors, walls). Only

the direction of the lines with respect to the environment has to be known.

4.3 COORDINATE TRANSFORM

Before we explore the properties of vanishing points in navigation, we have to define

the relationship between the objects detected by the camera and the environment

of the robot. We can define two coordinate systems (three dimensional). The first

one represents a room in an indoor environment (room system), and the second

one represents the space the camera points to (camera system). The origin of the

camera system can be located at any point in the room system. The two coordinate

55

systems can be rotated with respect to each other. If we want to find the relation

between the room system and the camera system, we have to consider translation

and rotation (if both systems are assumed of equal scale). In general, translation

and rotation can be expressed as matrices. The translation matrix T is defined by

(see [RK82a] and [GW87] for the derivation of the matrices). Let the room system

be described with the x', y' and z'-axes and the camera system be represented by

the x, y and z-axes (Figure 4.1). Let pi,. = (kx' , ky' , kz' , k)T be the vector

representing the point P' in the room system, and let p be the corresponding point

and ph = (kx , ky , kz , k)T be the vector in the camera system. The vectors are

give in homogeneous coordinates, where k is an arbitrary non-zero constant. Then

56

The matrix T essentially shifts the origin of the room system by (T.,, Ty, Ti), such

that it coincides with the origin of the camera system (Figure 4.1). The matrix R.

represents the rotation around the y'-axis, where iz is the angle between the z-axis

and the y', z'-plane. The matrix R, describes the rotation around the x'-axis, where

zi is the angle between the z-axis and the x', z'-plane. Note that the angle of each

rotation is defined to be clockwise from the view-point of an observer who is looking

along the positive x-or y-axis towards the origin.

Assuming that the camera is standing on the x', z'-plane (floor), we call

itt the turn of the camera with respect to the y', z'-plane. Analogously, the angle

between the camera and the x', z'-plane (floor) is called tzlt (ii). Hence, given the

turn and the tilt of the camera, plus the translation (Tx, Ty, Tz) of the origins, any

point P' in the room system can be transformed into the corresponding point P in

the camera system.

4.4 VANISHING POINTS WITH MOVING
CAMERA

Vanishing points are detected in the camera system, based on parallel lines in the

room system. In order to examine vanishing points when the camera is moving,

the relationship between the lines in the camera system and the corresponding lines

in the room system have to be defined. Equation 4.5 establishes the coordinate

transform between points. This can easily be used to transform lines from the

room system into the camera system . In general, a line, 1` = fo + A' 1,1' , in the

58

Line 1' in the room system can be transformed into line 1 in the camera system

by the coordinate transform. To simplify the derivation, the vector 1'0 to the base

point of line 1' is assumed to be (La , H, 0). Without loss of generality, we can define

equally use any vector pointing to any point on the line, l'. In addition, there are

no assumptions made regarding the direction of the line 1'. The direction vector 1'd

can point in any direction. Using Equation 4.5, we transform the vector 10 (base

point) and the direction vector I'd, separately. The vector 1'0 (base point) can be

transformed by

where foh = [L„, , H , 0 , 1] (the subscript h indicates homogeneous coordinates),

and T, R77 and Rkt are defined in Equation 4.1, 4.2 and 4.3, respectively. Analo-

gously, the direction vector I'd (room system) can be transformed into Id (camera

system) using

where ldh = [a' , b' , c' , 1]. Here it is not necessary to apply the translation

T, since the direction vector is an independent vector, without a specific location

associated with it. Equations 4.8 and 4.9 determine the parameters of line 1 in the

camera system uniquely. Hence, after converting loh, ldh into Cartesian coordi-

59

This is the transformation of line 1' (room system) into line 1 (camera system).

Assuming there is no translation and rotation (T, = Ty = T., = it = 77 = 0),

it can be shown easily that the two lines 1' (Equation 4.6) and 1 (Equation 4.10)

are identical. Equation 4.10 describes the transformation of lines in terms of the

location and orientation of the camera in the room system. This enables us to

determine the location of the vanishing points as a function of the parameters of

the line 1. We know from Chapter 3 that the vanishing point is defined as the

line point with A —> oc, projected into the image (zA = f). Therefore, applying

Equation 3.13 on line 1 given by Equation 4.10, the vanishing point in the image

plane is

it is assumed tnat line I is not parallel to the image plane wnicn implies mat me

denominators in Equation 4.11 are not equal to zero [— b' sin g + (a' sin y +

c' cos it) cos g 0 0]. From Equation 4.11 it is clear that the vanishing point VI

is determined by the direction of the line l' [l'd = (a', b', c')], and the turn and tilt

of the camera in the room system (it, 77). The vanishing point VI does not depend

on the location of the line 1' or the translation (Tx, Ty, Ti). Any set of parallel

lines has the same vanishing point (see Subsection 3.2.2, Property 3). Therefore

any line 1' with the direction la has the same vanishing point V/ no matter where

it is located in the room. This is a very fundamental property of vanishing points

60

and has serious implications on the application of vanishing points in navigation.

It is clear that Equation 4.11 is valid for the very general case defined in

the generic model (Section 4.2). There are no assumptions made concerning the

orientation of the lines (a', b', c') and the orientation of the camera Ca , 77). Hence,

since only the minimum constraints of the generic model are made, this vanishing

point can be called a generalized vanishing point.

4.4.1 Rotational Movement

To illustrate the properties of generalized vanishing points, Equation 4.11 is sim-

plified by adding constraints to the generic model: We assume the lines are located

in the ceiling of the room. Additional, the lines are assumed to be parallel to the

z'-axis of the room system (Figure 4.1). The equation of the line 1' = to + A' ld

can be rewritten as

Now we can analyze the movement of vanishing points in the image plane

for any given movement of the camera (kt , ri). Assuming the camera is pointing

in the direction of the z-axis (it = 77 = 0), the vanishing point is located at the

origin of the image plane (V = (0, 0)). If the camera is rotating (it variable) with a

constant tilt (7/ constant), the vanishing points form a horizontal line in the image

plane (Figure 4.2(a)). For each rotation ,u there exists a unique vanishing point

on that horizontal line. If the camera tilt is varied (7) variable) while there is no

rotation (p constant), the vanishing points are located on a symmetrically shaped

curve in the image plane (Figure 4.2(a)). Figure 4.2(b) illustrates the movement

of vanishing points for various ([1,0, with either one being held constant. If ,u or

ri approach 90 degrees, the vanishing point approaches infinity. In any other cases,

Equations 4.14 and 4.15 enable us to predict the location of the vanishing point for

any given rotation /..t and tilt 7/ of the camera.

4.4.2 Translational Movement

It is an intrinsic property of vanishing points that they are insensitive to transla-

tion [CT90]. A translation of the camera in the room system does not change the

location of the vanishing point. This results from the definition of the vanishing

point. The vector v1 from the focal point toward the vanishing point in the image

plane is parallel to the direction vector I'd of the line in the room system (Equa-

tion 3.14). Since the direction vector I'd of the line is an independent vector, the

vanishing point has to be independent from the location of the camera and the

location of the line. Therefore, any translation of the camera that does not change

the direction of the optical axis (z-axis), has no influence on the vanishing point.

63

4.5 NAVIGATING THE ROBOT

The previous sections assume a rotating camera which is located on the floor (x, z-

plane) of the room system. For robot navigation the camera is mounted on the

robot such that it is pointing in the direction the robot moves to. The angle µ now

represents the turn of the robot, the angle y still represents the tilt of the camera

(Figure 4.1).

In this section we define a model of the robot environment which includes

many constraints and assumptions. The next section generalizes the environment

applying the generic model. The objective here is to navigate the robot parallel

to the straight lines located on the ceiling of a room. For simplicity, let the lines

be parallel to z-axis of the room (Figure 4.1). These lines can be some kind of a

ceiling pattern or a ceiling grid. The camera is pointing up to the ceiling (y < 90°)

and takes pictures of the ceiling lines. Line segments are extracted by the edge

detection and line fitting algorithms (Chapter 2). Intersections between pairs of

line segments are then determined by the modified cross-product method (Section

3.5) . This algorithm provides the location of the vanishing point of the ceiling

lines. In the previous section, we discussed how to compute the vanishing point for

a given turn and tilt. Here, the vanishing point is given, and the turn and tilt of

the robot are to be computed. This can be done by rewriting Equations 4.14 and

In order to compute the turn 7.t, we need the location (a , [3) of the vanishing

point and the tilt of the camera (Equation 4.20). It is obvious from Equation 4.14

and Figure 4.1 that it is a function of the location of the vanishing point and the

tilt of the camera. In Equation 4.21 we only need the location of the vanishing

point (a, 0) to determine the tilt 77. For the navigation of the robot the tilt of the

camera is assumed to be constant. Equation 4.20 can thus be used to compute the

rotation of the robot necessary to align it with the lines. Figure 4.3(a) shows two

ceiling lines and the robot in two positions. In Position 0, it is facing the desired

direction, parallel to the ceiling lines (,(7,0 = 0°). Therefore, the vanishing point

V/30 is located on the y-axis of the image plane (Figure 4.3(b)). Because of the

tilt of the camera (770 = —35°), the vanishing point is located below the origin. In

Position 1 the robot is turned to the left (µo = 30°). This results in a vanishing

point shifted to the right. Figure 4.3(c) illustrates that movement of the vanishing

point (VP1). Based on the vanishing point (VP') and the tilt q, Equation 4.20 can

be used to determine the angle 7.4 between the ceiling lines and the direction the

robot is directed to. Since the robot should be navigated parallel to the lines, it

65

has to be rotated back into the direction of the lines with

AR = ilv , (4.22)

where /I R denotes the angle of the robot rotation. Equation 4.22 is called the

navigation crzterzon. This method of computing the rotation it, can be used in a

recursive navigation procedure.

The procedure starts with taking a picture from the ceiling, finding the

vanishing points and computing the robot rotation pR. In the next step the robot

rotates ill? degrees which aligns the robot with the ceiling lines (see Figure 4.3 for

illustration), and then it moves forward. Then, a picture is taken from this new

position of the robot, and /IR is computed again. The robot rotates and moves

forward and again the procedure repeats itself such that the vanishing points are

used as a guiding reference for the direction of the robot.

4.6 GENERALIZATION OF THE NAVIGA-
TION ENVIRONMENT

The generalization described in this section is twofold. First, the direction that

the robot should move toward is not restricted to be parallel to the lines. Any

direction can be chosen except the direction perpendicular to the lines (vanishing

points at infinity). Second, the robot environment is generalized according to the

generic model (Section 4.2). We assume an environment with a minimum number

of constraints. This ensures that the navigation method is appropriate for a large

class of different environments and applications.

The generic model requires that a minimum of two straight parallel lines are

to be detected by the camera. In addition, the direction of the lines are known with

67

respect to the robot environment. The direction of the lines is represented by two

angles /Li, and ri L , where pi, denotes the angle with respect to the y', z'-plane and 17 L

represents the tilt with respect to the x', z'-plane. Again, it has to be ensured that

the lines are not parallel to the image plane of the camera. With this minimum

number of constraints assumed on the environment of the robot, it is possible to

redefine the navigation criterion in Section 4.5.

Similar to Section 4.5, the vanishing point is given in azimuth and elevation

representation (a , /3). In addition, the direction of the lines in the room is known,

and denoted as ,a L and !I L (see Figure 4.4). Now it is possible to analyze the

movement of the vanishing points considering both the orientation of the camera

(fin , 7/7,) and the orientation of the lines (uL, , r/L). The location of the vanishing

point is based on the direction of the lines with respect to the camera system.

This implies that a rotation of the camera system by pc degrees results in the same

vanishing point as a rotation of the line by --µ degrees. For example, a rotation of

the camera system by pi = 30° results in the vanishing point (a1,)31). If we rotate

the direction of the lines (instead of the camera) by pi, = —30°, the vanishing

point is in the same location (a1, /31). In order to find the orientation of the robot

with respect to the direction of the lines, we have to subtract the angle fin by 'Li,

as follows

This equation is called the generalized navigation criterion. Figure 4.4 illustrates

this concept. Comparing Figure 4.3(b) and Figure 4.4(b), both diagrams show the

vanishing point for the robot pointing in the direction of the z-axis (POS 0). The

vanishing points are not in the same location because the lines in Figure 4.3(a) are

turned and tilted (u L = 71L = 20°). Note that the vanishing point is shifted down

and right.

In Position 1 (Figure 4.4(a),(c)), the robot is turned left (it i = —30°).

This moves the vanishing point VP]. further to the right. As described above, the

vanishing point VPi given in (a , /3) representation, can be converted into it, using

Equation 4.20. Note that the tilt 77 consists of the tilt of the camera minus the tilt

of the lines (77 = 71„, — 77 L). Assuming that the robot has to be turned back in the

direction it had in Position 0, we can calculate the rotation uR using Equation 4.25.

The generalized navigation criterion is valid for a large class of environments

defined in the generic model. It also permits to chose any direction for the robot

to move in (except perpendicular to the lines).

70

4.7 RESULTS AND CONCLUSION

The robot used for the navigation experiments is HERO 2000 (Model ET-19, man-

ufactured by Heath Company). The navigation process is implemented on a PC,

with the software written in C. The robot and the camera are linked to the PC via

cable connections. The navigation process assumes an environment with the lines

located in the ceiling of an indoor scene, where the robot is supposed to move in

a direction parallel to the lines (Figure 4.1). Figure 4.5 shows images of a ceiling

pattern with the robot pointing in three different directions. The line segments

have been detected with the edge detection and line fitting algorithms described

in Chapter 2. Refer to Figure 3.4 for an original image of the ceiling pattern. In

the top image of Figure 4.5 the robot is turned to the left (/2o = —30°). In the

middle image, the robot is facing the direction parallel to the lines (po = 0°). In

the bottom image, the robot is turned to the right (po = 30°). Figure 4.6 shows

the results of the detected vanishing points corresponding to the three respective

directions which the robot points to (images in Figure 4.5). The accepted inter-

sections are displayed in the accumulator array representing azimuth and elevation

(a, /9) on the Gaussian sphere (see Section 3.5 for explanation). The vanishing

point is selected with the window shown in the accumulator. The location of the

vanishing point within the window is marked with a cross. From Figure 4.6, it is

obvious that a robot turning to the left (negative ,a) results in the vanishing point

being shifted to the right. Conversely a robot turn to the right (positive /2) results

in shifting the vanishing point to the left. The (a, 3) location of the vanishing

point is used to compute the angle between the lines and the direction the robot

is pointing to (Equation 4.20). The experimental results for computing the rota-

tion /2R from detected vanishing points are given in Figure 4.7. The graph shows

71

Figure 4.7: Experimental results of using vanishing points to determine rotation ,aR

for robot turn ii (see text).

the computed ki R as a function of robot turns ,a, where ,u R represents the rotation

necessary to point the robot into the direction of the lines. The error associated

with the computed fiR is approximately +2.5 degrees. This is sufficient for navi-

gating the robot considering the inaccuracies of the robot movements itself (robot

translation and rotation are inaccurate). These results demonstrate the usefulness

of vanishing points in robot navigation. Vanishing points provide a reference for

detecting robot rotation. This is true not only for parallel ceiling lines, but in gen-

eral for any two parallel lines in indoor or outdoor environments. This opens a vast

74

field of applications of this navigation technique. Like any other sensor, vanishing

points have intrinsic limitations in their sensing capabilities. They are not sensitive

to translation which imposes a serious problem in navigation. The robot can be

shifted towards a wall or an obstacle, and the vanishing point would still be in the

same place. Hence, integrating the vanishing point techniques with other sensors

are recommended.

75

Bibliography

[Bad74] N. Badler. Three-dimensional motion from two-dimensional picture se-

quences. Technical report, Department of Computer Science, University

of Toronto, 1974.

[Bar83] S. T. Barnard. Methods for interpreting perspective images. Journal

of Artificial Intelligence (Netherlands), 21(4):435-462, November 1983.

ISSN: 0004-3702.

[Bre84] V. Brezins. Accuracy of laplacian edge operators. Computer Vision;

Graphics and Image Processing, 27:195-210, August 1984.

[Bro89] R. A. Brooks. Engineering approach to building complete, intelligent

beings. In Proc. SPIE - Int. Soc. Opt. Eng. (USA), pages vol.1002, 618-

625, 1989.

[CT90] B. Caprile and V. Torre. Using vanishing points for camera calibration.

International Journal of Computer Vision, pages 127-139, 1990.

[E1f87] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal

of Robotics & Automation (USA), RA-3(3):249-265, June 1987. 0882-

4967/87/0600-0249$01.00.

[GW87] R. C. Gonzalez and P. Wintz. Digital Image Processing. Addison Wesley

Publishing Company, second edition, 1987.

76

[HL86] R. Hummel and D. Lowe. Computing gaussian blur. In Proceedings of

the Eighth International Conference on Pattern Recognition (Cat. No

86CH2342-4), pages 910-912. IEEE Computer Society, IEEE Computer

Society Press, October 1986. ISBN: 0 8186 0742 4.

[HIV186] J. S. Chen; A. Hertas and G. Medioni. Very fast convolution with

laplacian-of-gaussian masks. In Proceedings CVPR '86: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (Cat.

No.86CH2290-5), pages 293-298. IEEE Computer Society, IEEE Com-

puter Society Press, June 1986. ISBN 0 8186 0721 1.

[KB88] D. J. Kriegman and T. 0. Binford. Generic models for robot navigation.

In Proceedings of the 1988 IEEE International Conference on Robotics

and Automation (Cat. No.88CH2555-1), pages Vol.2, 746-751. Robotics

Laboratory, Department of Computer Science, Stanford University, IEEE

Comput. Soc. Press, Washington, DC, USA, 1988. CH2555-1/88/0000-

074601.00; ISBN 0 8186 0852 8.

[Ken79] J. R. Kender. Shape from texture: An aggregation transform that maps

a class of textures into surface orientation. Technical report, Department

of Computer Science, Carnegie-Mellon University, 1979.

[KK82] S. A. Shafer; T. Kanade and J. R. Kender. Gradient space under or-

thographie and perspective. In Proceedings of the Workshop on Computer

Vision: Representation and Control, pages 26-34. IEEE, New York, NY,

USA, 1982. CH1793-9/82/0000/0026$00.75.

[MA84] M. J. Magee and J. K. Aggrawal. Determining vanishing points from

perspective images. Computer Vision, Graphics, and Image Processing,

vol.26, no.2:256-67, 1984.

77

[1\4E89] L. Mattheis and A. Elfes. Probabilistic estimation mechanisms and tes-

selated representations for sensor fusion. In Proc. SPIE - Int. Soc. Opt.

Eng. (USA), pages Vol.1003, 2-11, 1989.

[NR88] R. S. Weiss; H. Nakatani and E. M. Riseman. An error analysis for surface

orientation from vanishing points. In Proc. SPIE Int. Soc. Opt. Eng.

(USA) vol.97.4, pages 187-194, 1988.

[QM89] L. Quan and R. Mohr. Determining perspective structures using hierarchi-

cal hough transform. Pattern Recognition Letters (Netherlands), 9(4):279-

286, May 1989. 0167-8655/89/$3.50.

[Rei91] Harald Reinhard. Digitale bildverarbeitung, kamera kalibrierung kamera-

kalibrierung far ein stereo-vision system. Master's thesis, Fachhochschule

Warzburg-Schweinfurt, March 1991.

[RK82a] A. Rosenfeld and A. C. Kak. Digital Picture Processing Volume 1. Aca-

demic Press, Inc., second edition, 1982.

[RK82b] A. Rosenfeld and A. C. Kak. Digital Picture Processing Volume ..).. Aca-

demic Press, Inc., second edition, 1982.

[SK80] H. Nakatani; S. Kimura; 0. Saito and T. Kitahashi. Extraction of vanish-

ing point and its application to scene analysis based on image sequence.

In Proceedings of the 5th international conference on pattern recognition,

pages 370-372. Department of Information Science, Shizuoka University,

IEEE, New York, USA, 1980.

[S588] A. Singh and M. Shneier. A linear feature extraction scheme for the PIPE.

Technical report, Robotics and Flexible Automation Department, Philips

Laboratories, March 1988.

78

[WH88] G. Wei and Z. He. Determining vanishing point and camera parameter:

New approaches. In 9th International Conference on Pattern Recognition

(IEEE Cat. No.88CH26.14-6), pages 450-452. Int. Assoc. Pattern Recog-

ition, IEEE Comput. Soc. Press, Washington, DC, USA, 1988. CH2614-

6/88/0000-045001.00; ISBN 0 8186 0878 1.

[WR84] H. Nakatani; R. S. Weiss and E. M. Riseman. Application of vanishing

points to 3-d measurement. In Proc. SPIE Int. Soc. Opt. Eng. (USA),

pages Vol.507, 164-169, 1984.

79

	Analysis and implementation of a navigation system using vanishing points in a generalized environment
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Vita
	Dedication
	Acknowledgement
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1 : Introduction
	Chapter 2 : Edge Detection
	Chapter 3 : Detection of Vanishing Points
	Chapter 4 : Navigation
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)

