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Abstract 

AN EFFICIENT ANNEALING ALGORITHM FOR GLOBAL 
OPTIMIZATION IN BOLTZMANN MACHINES 

Rajendra Sarasakrishna, MSEE, New Jersey Institute of Technology 
Thesis Advisor: Prof. Nirwan Ansari 

This thesis proposes a new annealing algorithm for Boltzmann Machines. This 

algorithm uses an Exponential Formula for temperature scheduling that produces 

remarkably better solutions for global optimization. The superiority of the new 

algorithm is shown by computer simulations of several examples on Boltzmann Ma-

chine and it s variants. This is also shown to have better properties than algorithms 

like Generalized Simulated Annealing which possess somewhat similar dynamics. 
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Chapter 1 

Introduction 

The Boltzmann Machine and it s variants offer a generalized computational ap-

proach that can be applied to the basic research issues of search, representation 

and learning and have rigorous mathematical proofs [611. They can also be con-

sidered a model for parallel implementation of simulated annealing. The problems 

solved by these systems can be considered as combinatorial optimization prob-

lems. These systems are made up of a network of units which try to reach a 

maximal consensus about their individual states, subject to the constraints set 

by the connection strengths, the connections having been learned for a particular 

problem. The units adjust their states to the states of the units to which they 

are directly connected. The final objective of the state transitions is to reach a 

global optimum of a cost-function for the given problem. This cost-function is 

called Energy in Boltzmann Machines, Harmony in Harmony Machines and can 

be considered as a measure of goodness-of-fit or the self-consistency of the system. 

To achieve this optimization of the cost-function, the state transitions of 

the individual units are done iteratively using a probabilistic decision rule. The 

randomness of the decision depends on a parameter T, called temperature. Ran-

domness is necessary to avoid local optima. A weakness of Boltzmann Machine is 

1The numbers in the square brackets indicate the corresponding references in the bibliography. 
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that a proper method of varying the temperature has been difficult to determine. 

Many attempts have been forwarded both theoretical and empirical. However, 

no finite length path has been determined that can guarantee a global optimum. 

The path of the temperature, as it is varied, is called the Annealing Schedule. 

The efficiency of an annealing schedule is determined by the probability of 

achieving the global optimum given equivalent computations. The most common 

annealing schedule is a linear one, where the temperature is started at a high 

value and decreased slowly as a function of iterations at a predetermined rate 

called coolrate. However, this schedule and it's many versions have the inherent 

drawback that after a certain number of iterations the temperature eventually 

reaches a very low value where the probabilistic decision rule becomes practically 

a deterministic decision rule. At this stage, it would be very difficult for the 

system to escape from a local optimum if it is stuck in one. 

A proposal has been made in this thesis for an exponential schedule, partly 

empirical and partly theoretical, that does not encounter the above mentioned 

drawback of premature freezing. Hence the system never gets stuck in a local 

optimum. This also means that it would be difficult to determine when to stop 

iterating as the system never practically freezes. However, this problem can be 

overcome with a minor and general improvement of storing in memory the most 

optimum value obtained at any iteration for the cost-function and corresponding 

state of the system. This technique (of storing the optimum value in memory) can 

be termed a general improvement as it can be shown that this improves Simulated 

Annealing even with traditional cooling schedules[4]. 

A brief discussion has been given in chapter 2 about the the Boltzmann 

Machine and it's variants, the general technique of Simulated Annealing, and the 

linear cooling schedule. Chapter 3 deals with the new algorithm and it is shown 
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that this possesses better properties than algorithms like Generalized Simulated 

Annealing. In Chapter 4, a discussion of the results of applying the new algorithm 

on a few examples is given and a comparison is made with the results of applying 

the traditional linear temperature schedule. Conclusions are given in Chapter 5. 
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Chapter 2 

Boltzmann. Machine and 
Simulated Annealing 

The Boltzmann machine, introduced by Hinton and Sejnowski [5], can be viewed 

as a generalization of Hopfield's content-addressable memory[9]. The units have 

binary-valued states and the connections are bidirectional. The Boltzmann ma-

chine uses a probabilistic state transition mechanism and can have hidden units 

to capture higher-order regularities during learning. There is no limitation on 

the number of units, number of layers, or the connection topology except that 

the connections are symmetric and units may not connect to themselves. For a 

complete reference on Boltzmann Machines, readers are referred to Reference[5]. 

The Harmony Machine developed by Paul Smolensky [7] can be considered 

a version of Boltzmann Machine and is explained at a later paragraph below, 

Both the above machines can be used for combinatorial optimization and 

can be considered as constraint satisfaction systems. Constraint satisfaction in-

volves many factors. For example, the solution to a problem may involve the 

simultaneous satisfaction of a very large number of constraints. To make the 

problem more difficult, there may be no perfect solution in which all the con-

straints are completely satisfied. In addition, some constraints may be more 

important than others. In general, this is a very difficult problem. It is what 
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Minsky and Papert have called the best match problem[8]. 

Connectionist systems like Boltzmann Machine and Harmony Machine 

solve this problem in a very natural way. Such problems can be translated into 

connectionist language by assuming that each unit represents a hypothesis and 

each connection a constraint among hypotheses. Thus, for example, if whenever 

hypothesis A is true, hypothesis B is usually true, we would have a positive con-

nection from unit A to unit B. If on the other hand, hypothesis A provides 

evidence against hypothesis B, we would have a negative connection from unit A 

to B. If the constraint is very important, the weights are large. Less important 

constraints involve smaller weights. Thus the strength of a connection in these 

systems can be considered as a quantitative measure of the desirability that the 

units joined by the connection are both con'. 

The constraint satisfaction problem can now be cast in the following way. 

Let goodness-of-fit or goodness for short be the measure of the degree to which 

the desired constraints are satisfied. First, this measure depends on the extent to 

which each unit satisfies the constraints imposed upon it by other units. Thus, 

if a connection between two units is positive, then the constraint is satisfied to 

the degree that both units are turned on. If the connection is negative, then the 

constraint is violated to the degree that both units are turned on. Thus, for units 

i and j, the product wijaiaj  represents the degree to which the pairwise constraint 

between the two hypotheses is satisfied. (wij  represents the weight between the 

units i and j, ai  represents the activation of unit i, and aj  represents the activation 

of unit j), Secondly, the a priori strength of the hypothesis is captured by adding 

the bias to the goodness measure. Finally, the goodness of fit for a hypothesis 

when external direct evidence is available is given by the product of the external 

input value times the activation value of the unit. The bigger this product, the 
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Figure 2.1: An example of the Boltzmann Machine network 

better the system is satisfying this external constraint. Thus, the goodness of fit 

of unit i can be defined as[2] 

This is the goodness of just one unit. In other words, this is just the sum of all 

of the individual constraints in which the corresponding hypothesis participates. 

We can define the overall goodness of fit as the sum of the individual goodnesses. 

In this case we get[2] 

Now, the constraint satisfaction problem can be solved if we can find a set of 

activation values that maximizes this function. It can be noted that the goodness 

of a particular unit, goodnessi , can be written as the product of its current net 
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Thus, the net input into a unit provides the unit with information as to it's 

contribution to the goodness of the entire solution. Consider any particular unit 

in the network. That unit can always behave as to increase its contribution to 

the overall goodness of fit if, whenever its net input is positive, the unit moves its 

activation towards its maximum value; and whenever its net input is negative, it 

moves its activation towards its minimum value. 

In summary, the constraint satisfaction problem can be stated as finding 

the global optimum of the cost function, i.e., goodness. (In this thesis, 'optimum' 

and 'maximum' mean the same, as the Boltzmann Machine reaches the optimum 

solution when the goodness is maximum.) However, this process cannot be com-

pleted in one step, as the activations of the units are mutually constraining. That 

is, if the units A and B are connected, the activation of unit A depends on the ac-

tivation of unit B, and in turn the activation of unit B depends on the activation 

of unit A. Hence, the optimum values of activations of these units must be decided 

iteratively. An iteration can be defined as the process of updating the activations 

of all the units in the system once, based on some update rule. (In Boltzmann 

Machine, the units may be picked up randomly as all the units are of same type.) 

However, carrying on the updation through many iterations may still yield only 

a local goodness optimum and may not end in a global goodness optimum. It 

is easy to see why. The goodness space may contain many local optima and up-

dating the units in such a way that the goodness is monotonously increased will 
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very likely lead to a local optimum depending on the problem and the starting 

point. State transitions that decrease the goodness must be allowed with a fixed 

probability to escape local optimum. The process of simulated annealing is used 

for this purpose. 

The essential state transition rule employed in simulated annealing models 

is probabilistic and is given by the logistic function[2]: 

where T is the computational temperature. The updation of the activations of 

the units is carried out. iteratively using the above probabilistic decision rule. 

The temperature is a scaling factor that is varied in such a way as to control 

the randomness of the decisions. Several observations can be made about the 

temperature from the above equation. First, if the net input is 0, the unit takes 

on its maximum and minimum values with equal probability. Second, if the net 

input is large enough, the unit will always take its maximum value no matter 

what value the temperature is; and if the net input is sufficiently negative, the 

unit will take on its minimum value no matter what the temperature. Third, as 

the temperature approaches 0, the function becomes deterministic and takes on 

its maximum value if the net input is positive and minimum value if the net input 

is negative. 

If none of the above is true, the unit will take on a maximum value de-

pending on the probability given by the Equation 2.5. However, this is a tricky 

situation as much depends on the proper value of the temperature at the corre-

sponding iteration. Hence, the ability of the system to escape from local optimum 

depends much on the path chosen for the temperature, called annealing schedule. 

In other words, it can be stated that the success of simulated annealing depends 

on the proper choice of the annealing schedule. 
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2.1 Harmony Machine 

The basic mathematics and state transition mechanisms of Harmony Machine are 

rather similar to the Boltzmann Machine, though it's structure is a bit different. 

Whereas the Boltzmann Machine is an arbitrarily interconnected set of homoge-

nous units, harmony machine presupposes two distinct layers of units. It consists 

of a lower layer of representational feature units and an upper layer of knowl-

edge atoms. The feature units take on activation values —1 and +1, whereas the 

knowledge atoms take on values 0 and 1. For a complete reference on Harmony 

Machine see readers are referred to reference[7}. Due to the different structure 

of the Harmony Machine compared to the Boltzmann Machine, the equations 
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governing goodness and net input are slightly different and are given below[2]. 

Here, a, is the activation of the knowledge atom i, h, is the measure of the degree 

to which the current set of feature values is consistent with knowledge atom i. 

The variable a, is a strength or importance value associated with unit i. The 

variable It, is given by 

In Equation 2.7, c is a constant which can be explained as follows: If IC is 0, 

turning on atom i will contribute a positive amount to the overall goodness of 

the system whenever the number of ccnsistent features exceed the number of 

inconsistent features. If tc is near 1, then it will contribute to the overall goodness 

only when nearly all of its features match the template for the atom. 

The net input to a knowledge atom is given bv171 

The net input for a representational feature unit is given by[7] 

The formulae for I, and I, are both derived from the fact that the input to a 

node is precisely the harmony the system would have if the given node were to 

choose the value 1 minus the harmony resulting from not choosing 1. The factor 
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of 2 in the input to a feature node is in fact the difference (+1) - (-1) between 

its possible values. The term K in the input to an atom comes from the rz in the 

harmony function; it is a threshold that must be exceeded if activating the atom 

is to increase harmony. 

The net inputs for knowledge atoms and representational features as given 

above respectively are used in the probabilistic state transition equation. An 

iteration consists of updating each unit of one layer first and then updating each 

unit of the other layer. It may be noted that Goodness is termed as Harmony 

in Harmony Machines. It is also equal to the negative of Energy in Boltzmann 

Machines, and it follows that Harmony is equivalent to the negative of Energy[7]. 

2.2 The linear annealing schedule 

In this schedule (Reference [2] discusses simulation software using linear anneal-

ing schedule), in general, the temperature T of the probabilistic state transition 

equation is decreased linearly as the number of iterations increases. First the 

coolrate is determined. 

Required change in temperature 
C oolrate =  (2.10) 

number of iterations over which the change is required 

Then Temperature at an iteration n is given by 

It is also possible to specify different coolrates between different iteration ranges, 

and calculate the temperature accordingly. 

The major drawback of the above cooling schedule is, that irrespective of 

the system state, the temperature reaches a low enough value at a predetermined 

number of iterations. At a low temperature the probabilistic update rule becomes 

a deterministic decision rule and it would be very difficult for the system to escape 
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a local minimum if it is stuck in one. Many altered versions of this schedule also 

face similar drawbacks. 

In the next chapter, a proposal is made for a new exponential cooling 

schedule that does not suffer from she above drawback. Simulation results of 

chapter 4 demonstrate that the exponential cooling schedule is much superior to 

the above linear schedule. 
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Chapter 3 

The new Exponential Formula for 
Temperature Scheduling 

We have discussed in the previous chapter how a linear cooling schedule may lead 

to an irreversible low value for the temperature factor where it would be difficult 

for the system to escape a local optimum. To avoid this, we need an annealing 

schedule where the temperature never gets stuck at a particular value, but varies 

dynamically in such a way as to increase the system optimality. 

In general, the following properties are desirable: 

1. The temperature must be very low to remove the randomness in the 

state transition decisions, and encourage the trend whenever the system is making 

state transitions as to increase the goodness. 

2. However, when the increase in goodness approaches 0, or the system 

is stuck in a local goodness maximum, the temperature must increase and allow 

a series of random state transitions to make the system escape from the local 

goodness maximum. 

3. After the system makes a series of random state transitions and escapes 

from local goodness maximum as explained in above, the temperature must again 

decrease as to begin a new search path for a goodness maximum that is greater 

than the previous goodness maximum. 
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4. It is also desirable to fix a maximum value for the temperature beyond 

which the temperature will not increase as long as the change in goodness is 

positive (goodness increases). 

3.1 The Exponential Formula and the SA algo- 
rithm 

We describe below how these properties can be achieved through an exponential 

formula for temperature scheduling. The basic idea of this formula is to keep 

the temperature small while the system is going uphill in the goodness space to 

encourage the trend, and keep the temperature high when the system is stuck 

in a local goodness maximum. Controlling the temperature this way binds the 

probabilities of accepting good and detrimental state transitions(The original idea 

of binding the probabilities is from Bohachevsky et. al. [1],[3] ). It may be noted 

that the sufficient condition for finding global optimum in Boltzmann Machines 

is given by the formula of Geman et.al. [11] (Tn  = To/ log(1 + n)). Similarly, 

for Cauchy Machines, sufficient condition for finding global optimum is given 

by the formula of Szu[12], called Fast Simulated Annealing, (T,., = T0/(1 + n)). 

However, the sufficient conditions are too slow to be useful as the temperature 

attains a value of 0 only after an infinite number of iterations. Hence, to speed 

up the process, in practice, empirical schedules are used. In view of the above 

discussion, we may consider the Exponential formula for temperature given below 

as empirical. 

The Exponential Formula for temperature scheduling: 



goodness). The letters in bold-face give the names of the variables as used in 

the Simulated Annealing Algorithm that uses the above formula for temperature 

schedule. This algorithm, given below, is in Pseudo-C and is self-explanatory. 

(Details of the actual C language code used for simulation studies are given in 

Appendix A and the code is listed at the end of the Thesis.) 

main() 



It may be noted that some minor variations have to be applied in the 

function update-system-state() when this is used for Harmony Machine as 

discussed in chapter 2. First, each unit of one layer must be updated first before 
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The rnd() function simply returns a uniformly distributed random num-

ber between 0 and 1. 

The function calculate-current-goodness() can be computed using the equa-

tions given in Chapter 2 keeping in view the minor variations between Boltzmann 

Machine and Harmony Machine. 

3.2 The dynamics of the Exponential Formula 

We can now make the following observations about our new Exponential formula 

for Temperature Scheduling. 

1. As goodness is equivalent to Harmony of Harmony Machines and nega-

tive of Energy of Boltzmann Machines, the objective of simulated annealing is to 
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maximize this goodness. 

2. As the target-goodness is defined as maximum-goodness-so-far 

+ a positive constant C, target-goodness is always greater than the current-

goodness in the denominator of the power of the exponent in Equation 3.1. 

Hence, the denominator is always negative. The significance of the constant C 

will be explained later. 

3. Whenever the numerator of the exponent, i.e. change-in-goodness, is 

0, the temperature is equal to alpha. 

Now, it is easy to see why the exponential formula satisfies all the desired 

properties discussed at the beginning of this chapter. 

1. From Equation 3.1 it can be seen that whenever change-in-goodness 

is positive, the power of the exponent will be a large value with a negative sign if 

the change-in-goodness is large OR current-goodness is approaching target-

goodness, (i.e. current-goodness - target-goodness is very near 0). Hence, 

the temperature will be very small. This is very desirable because by keeping the 

temperature small, we are reducing the randomness in state transition decisions 

and encouraging the system to continue the trend of going up-hill in the goodness 

space. 

2. However, after certain number of iterations during which the system 

makes uphill moves in the goodness space, the system may get stuck in a local 

goodness maximum where the (positive) change-in-goodness is very small or 

zero. It can be seen from the equation that whenever change-in-goodness is 

small or approaching 0, the temperature tends to be large. Hence, the system 

will make a random state transition, and will escape from the local goodness 

maximum. It can also be seen that after the first state transition from the local 

goodness maximum, the change-in-goodness will be negative. The temperature 
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will continue to be high as long as the magnitude of current-goodness - target-

goodness is small compared to the magnitude of change-in-goodness. This 

is desirable as this will generate a series of random state transitions making the 

system come out of the local goodness maximum. 

3. When the change-in-goodness is negative, the power of the exponent 

will be large initially, as long as the magnitude of current-goodness - target-

goodness is small compared to the magnitude of the change-in-goodness. 

However, after a certain number of state transitions downhill the goodness space, 

the magnitude of current-goodness - target-goodness will be much larger 

than magnitude of the change-in-goodness and at this stage the temperature 

will tend to become small. This will generate a series of state transitions that 

will tend to make the system go uphill again. 

4. It can also be seen that whenever the change-in-goodness is positive, 

the temperature is below a, and whenever the change-in-goodness is negative, 

the temperature is above a. In general, the temperature oscillates about the value 

a as a function of iterations. 

The significance of target-goodness is as follows. It is defined as target-

goodness = maximum-goodness-so-far -I- C, where C is an arbitrary positive 

constant greater than 0. If the magnitude of the denominator in the power of the 

exponent (Equation 3.1) is small, the temperature will be small if the change-

in-goodness is positive, and the temperature will be high if the change-in-

goodness is negative. This is desirable as discussed above, and can be achieved 

by continuously evaluating the value of target-goodness from the maximum-

goodness-so-far rather than setting it a rough estimate of the final achievable 

goodness. (Contrast this approach with many proposals[1],[3],[10] on annealing 

schedules where a rough estimate of optimum value of the cost-function is made.) 
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This also eliminates the need for making an estimate of the achievable goodness. 

The constant, C is required to keep the difference current-goodness - target-

goodness a negative non-zero number; otherwise, when current-goodness is 

also the maximum-goodness-so-far, the denominator in the power of the ex-

ponent will be 0, in which case the temperature will be unpredictable. 

The Experimental results discussed in Chapter 4 amply demonstrate the 

validity of the above discussion. It is shown that the temperature oscillates as a 

function of iterations, and, as a result, the goodness also oscillates. This can be 

given the interpretation that the system always attempts to reach a new goodness 

peak from a new random starting point whenever it is stuck in a local goodness 

peak. The experimental results also show that this chasing after a new goodness 

peak makes the system visit the global maximum extremely quickly as compared 

to the linear cooling schedule. This also removes in one stroke, the possibility 

of the system getting stuck in a local maximum. But, by the same token, the 

system will not freeze when it reaches the global maximum but will continue to 

oscillate. However, this drawback can be easily overcome by storing in memory 

the maximum value of the goodness obtained during the iterative process and the 

corresponding system state. This can be trivially implemented as given in the 

algorithm above. 

3..3 A discussion of other relevant schedules 

The idea of dynamically varying the temperature as a function of the quali ty(good 

or detrimental) of state transitions is based on an earlier idea by Bohachevsky et. 

al. called Generalized Simulated Annealing (GSA) [1]. In this original paper on 

GSA [1], it has been described how GSA can be used for function optimization 

(not specific to connectionist systems). The state transition rule in GSA, when 
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where, C, equals the goodness at the end of the previous update (not the previous 

iteration), E equals estimated maximum goodness, equals a positive constant 

to be determined empirically based on the problem, net, is the net input to 

the unit i and, a, is the activation of unit i. As, E is the estimated maximum 

goodness, the value of E is always negative (expecting that the estimate is 

reasonable). It could be seen from this equation, that if net, is positive, the value 

of the exponential is very small if net, is large or as Cy approaches E. Hence, the 

value of logistic function approaches 1, which implies that activation of unit i will 

very likely be 1. On the other hand, if net, is negative, the activation of the unit 

tends to be 0, as Cu  approaches E. Hence, the system tends to be deterministic 

as the goodness:, approaches the estimated maximum. At other times, the system 

behaves probabilistically, and can escape from local maximum. The factor ,3 acts 

as an accelerator as it amplifies the effect of neti. Thus, in general, the dynamics 

of the system using exponential formula of this chapter are somewhat similar to 

that of GSA. 

However, there are three main drawbacks of GSA: 

1. It would be very impractical to apply the above rule to a Boltzmann 

Machine as it would require calculating the goodness after the update of every 

unit in a system (Contrast this with the algorithm using exponential formula for 

temperature where it is required to calculate goodness only at the end of every 

iteration). This would result in much greater computational time if the system 

has a large network of units. 

2. The success of the GSA depends on a good estimate of the maximum 
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Chapter 4 

Experimental Results 

The new temperature scheduling algorithm has been applied to three different 

examples, and the results are compared with the results obtained with the tra-

ditional linear cooling schedule explained in Chapter 2. All the three examples 

were so chosen that they were sufficiently well studied with traditional methods 

and are representative of the problems in the domain. This is done in order to 

make the comparison of the results significant and meaningful. 

The three examples are: 1. The Electricity Problem[2] of Harmony Ma-

chine, 2. The Graph Partitioning Problem[21 of the Boltzmann Machine, and 3. 

The Necker Cube Problem[2] of Boltzmann Machine. All the three problems are 

well studied with traditional cooling methods and well discussed in literature. Of 

all the three problems, the Electricity problem is the most versatile as it has many 

combinations of input-output states, and also its goodness space has many local 

maxima. This example is described first below. 

4,1 The Electricity Problem 

This problem was first developed by Riley and Smolensky[7] to illustrate how 

harmony Machine can be employed to imitate on a macro level the human in-

tuitive problem solving. The problem is to determine how different variables in 
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Figure 4.1: The Electricity Problem of Harmony Theory 

an electrical circuit change when other variables are altered. For example, in a 

series resistive circuit consisting of two resistors R1  and R2 and a Voltage source 

V, what happens to the current and voltage drops across the two resistors if the 

resistance of R2 is increased? The Harmony Machine network for this problem 

consists of 14 representational feature units, 65 knowledge atoms and connections 

between them encoding the qualitative knowledge about the electrical circuits. 

The strengths of all the knowledge atoms are 1. As each knowledge-atom is for 

a right consistent combination of representational features, the goodness will be 

maximum when all the knowledge atoms that are consistent with the given input 

constraints are on. (For more details on this problem readers may refer Appendix 

B) 

For the Electricity Problem of Harmony theory and the two subsequent 

problems given below, simulated annealing was applied 100 times each with the 

exponential cooling schedule and with the linear cooling schedule. Each trial (or 
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each run of the simulated annealing) is started with a different random seed. The 

simulation results for each problem are given in a separate table containing all 

the relevant. data. The results of the simulation of the Electricity problem are 

given in Table 4.1. 

The results indicate that the Exponential Schedule is more than five times 

faster than the Linear Schedule in terms of the system visiting the global max-

imum (for this problem). Moreover, in 100 trials, the system never got stuck 

in local maximum with the Exponential Schedule. This greatly strengthens the 

argument, forwarded in Chapter 3, that, with Exponential Schedule, the system 

can always escape from local maximum as the temperature varies dynamically 

as a function of goodness. This can be compared with the system's performance 

with the linear schedule where the system was stuck in local maximum 13 times. 

The other interesting observation was that with the Exponential Schedule, during 

certain trials, the system could visit global maximum in as early as 10 iterations; 

with the Linear schedule the fastest convergence in 100 trials was with 180 itera-

tions. 

4.2 The Necker Cube Problem 

To understand this problem, let us consider a line diagram of a cube drawn on 

a paper. A viewer can perceive this cube in exactly two different ways. That 

means each vertex can be interpreted in exactly two different ways. For example, 

a vertex that can be perceived as being at the Front Lower Right corner of the 

cube can also be perceived as being at the Back Lower Right corner of the cube. 

Since there are 8 vertices and each vertex can be interpreted in two different ways, 

there are 16 units in the Boltzmann Machine Network. However, there must be 

negative connection between the two units that give different interpretations of 
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Simulation Results 

The Electricity 
Problem of Harmony Machine 

, 

r Scheduling 
Method 

Number of 
Trials 

Number of 
times stuck 

in Local Maxima 

Average Number of 
Iterations to reach 

Global Maximum ( • 1 25) 

Linear 

coolrate..00475 
Initial temp • 1 

100 13 251 

Exponential 
Formula 

alpha • .2 
C-.1 

100 0 49.33 

Table 4.1: Simulation results of Electricity Problem 

same vertex as a viewer cannot perceive in both ways at the same time. In 

other words, there are positive connections between a unit and it's consistent 

neighbours. (For more details on this problem readers may refer Appendix B) 

Hence, when simulated annealing is performed, the system will achieve maximum 

goodness when all units representing one consistent interpretation of the Necker 

Cube are turned on. The results are given in Table 4.2. 

As in the case of The Electricity Problem, the Exponential Formula proved 

to be much faster than the Linear Schedule. In 100 trials, the system was never 

stuck in local maximum with the Exponential Schedule, whereas with the linear 

schedule, the system was stuck in local maximum 14 times. The fastest conver-

gence with the Exponential Schedule was in 3 iterations, whereas with the Linear 

Schedule it was for 17 iterations. 
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Figure 4.2: The Necker cube of Boltzmann Machine 

Simulation Results 
The Necker Cube 

Problem of Boltzmann Machine 

Scheduling 
Method 

Number of 
Trials 

Number of 
times stuck 

In Local Maxima 

Average Number of 
Iterations to reach 

Global Maximum f • 8.40/ 

Linear 

coolrale• 0975 
MIllal Temp • 2 

100 14 18.8 

Exponential 
Formula 

alpha • 2 
C • 1 

100 0 11 

Table 4.2: Simulation results of Necker Cube 
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Figure 4.3: The Graph Partitioning Problem of Boltzmann Machine 

4.3 The Graph Partitioning Problem. 

This problem can be stated as this: Given a connected graph of n nodes, each of 

which is connected to one or more other nodes in the network, divide the graph 

into two parts with half of the nodes in each while minimizing the number of links 

that connect nodes from the two different classes. Simulations are performed on 

an 8 node graph. (For more details on this problem readers may refer Appendix 

B) Simulation results are given in Table 4.3. The results demonstrate the superior 

performance of the Exponential Schedule compared to the Linear Schedule. The 

average number of iterations to reach the global maximum was only 10 with the 

exponential formula; it was 144 with the linear schedule. The system was never 

stuck in local maximum with the exponential formula. The fastest convergence 

was in 2 iterations with the exponential formula, whereas, it was in 112 iterations 

with the linear schedule. 
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Simulation Results 
The Graph Partitioning 

Problem of Boltzmann Machine 

r Scheduling 
Method 

Number of 
Trials 

l Number of 
times stuck 

in Local Maxima 

Average Number of 
iterations to reach 

Global Maximum ( • 3 20) 

Linear 

coolrate- 00975 
Initial temp • 2 

100 7 144 

Exponential 
Formula 

alpha • .2 
C • .1 

100 0 13 

Table 4.3: Simulation results of Graph Partitioning Problem 

4.4 The oscillatory behaviour of temperature and 
goodness 

We have discussed in Chapter 3, that temperature and goodness have an oscil-

latory variability as a function of iterations. This is demonstrated by means of 

graphs from the data of a sample run of the Electricity Problem of the Harmony 

Machine. 

Figure 4.4 gives the graph of temperature versus iterations. Figure 4.5 

gives the graph of current-goodness versus iterations. Figure 4.6 gives the 

temperature and goodness superposed versus iterations. Figure 4.6 shows that 

when temperature is low goodness tends to be high and vice versa. 

These graphs coupled with simulation results clearly demonstrate that the 

exponential temperature schedule is greatly effective and superior compared to 

the linear schedule. 
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Chapter 5 

Conclusions 

The contributions of this thesis can be listed as follows: 

1. A exponential temperature schedule that dynamically varies depending 

on the system state has been applied for the first time on Boltzmann Machines 

2. The shortcoming of the Generalized Simulated Annealing(GSA)[1],and 

other annealing schedules (as given in [3], [6]) which require an estimate of the 

maximum goodness is not present in the new schedule. 

3. The new temperature schedule can profitably be applied to any op-

timization problem (not necessarily Boltzmann Machines) as it overcomes the 

drawbacks of annealing methods like GSA which possess somewhat similar dy-

namics. (Refer to Chapter 3). 

5.1 Further course of research 

The following points are relevant to this topic and need further study. 

1. As the system never freezes with the exponential temperature schedul-

ing, it is required to keep in memory the maximum value obtained for goodness. 

Though the system never gets stuck in a local maximum, there is no way of judg-

ing if the maximum goodness obtained at any iteration is the global maximum. 

Hence, we can say that we do not have a stopping criterion that stops the itera- 
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tion process at, global maximum (unless we know the global maximum a p71071, 

as is the case in certain problems). This drawback can be partially overcome by 

empirically fixing a certain number of iterations during which time if there is no 

increase in the maximum value of goodness, we may stop iterating. 

2. While the exponential temperature schedule is definitely superior to the 

linear schedule, a comparison with other cooling schedules is yet to be made. 

3. The temperature equals the constant a when the change-in-goodness 

is zero. While a value of .2 was very satisfactory for the examples discussed, it 

may be possible to dynamically alter the value of a. For example, it may be 

desirable to increase the value of a by some means when previous goodness peak 

and the current goodness peak are the same. This deserves further study. 

4. It has been discussed that the value of the positive constant C if chosen 

to be small gives better results. However, the precise effects of the value of C on 

the system performance may he more thoroughly studied. 
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Appendix A 

Details of the Simulator Code 

The code used for simulations in this thesis is in C language and can be divided 

into two parts. For simulating the Linear Cooling Schedule, we have used the 

software (the Constraint Satisfaction part) that is provided with Reference[2], 

called PDP software, without any modifications. For simulating the Exponential 

Temperature Scheduling, extensive modifications have been made to the basic al-

gorithm of Constraint Satisfaction, i.e. CS.C, while retaining the basic structure 

and the display utilities of the PDP software. A listing of the modified version of 

CS.0 along with comments is reproduced at the end of this Thesis, which may 

be referred for a general idea about the flow and structure of the main algorithm. 

The other utility and command interfacing programs are not modified and, hence, 

not reproduced here. For greater details about activating the program and com-

mand level interface, readers may refer to Reference[2]. As per the Licensing 

agreement of the PDP software, the Copyright notice of the PDP group has been 

retained in the modified version also. 
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Appendix B 

Details of the Examples 
simulated 

All the examples discussed in this thesis have been so chosen, that they have 

already been well studied with linear cooling schedule, and the results well docu-

mented. This is done in order to make the comparison of results meaningful and 

significant. As we are not dealing with learning, the network connectivity and 

the weights are fixed, and for all the three examples of this thesis, we have used 

the network configuration as discussed in the PDP software that comes with Ref-

erence[21. For all the three examples, the network connectivity files, the weights 

files, the startup files and the display template files are included in the Constraint 

Satisfaction part of the PDP software. For example, for the Electricity Problem 

of Harmony Machine, all the files start with the name vir and have the exten-

sions .str (for startup file), .tem (for template file), .net (for network file) and 

so on. Similarly, for the Necker Cube Problem, all the files start with the name 

cube and have corresponding extensions. For the Graph Partitioning Problem, 

all the files start with the name boltz and have the corresponding extensions. It 

may be noted that, while we have used the .net and .wts files unaltered, suitable 

modifications have been made in the .tem files to display and monitor the new 

parameters introduced by the Exponential formula. 
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Discussion of the problem statement and required connectivity for realising 

the network, and a thorough explanation of interpreting the conventions followed 

in each of the files above are given in Reference [2]. However, for the sake of 

reader's convenience, a brief discussion of the Electricity Problem of Harmony 

Machine is given here. 

In the Electricity Problem, the objective is to determine how different 

variables in the electrical circuit change when other variables are altered. For 

example, what happens to the total resistance in the circuit (Figure 4.1) when 

the resistance of one of the resistors is increased? Assuming total voltage stays 

constant, what happens to the voltage drop across each resistor, and what happens 

to the current? The first step is to develop a set of representational features. In 

this case, we must represent seven quantities: the total current, I; the resistances, 

R j  and R2; the total resistance, Rtot,d ; the voltage drops across the two resistors, 

V1  and V2; and the total voltage, E. ..otal • For each of these quantities, we must 

represent whether it goes up, goes down, or stays same. This is done by assigning 

two units to each quantity: one to indicate whether or not a change occurs in 

that variable (+1 indicating change and -1 indicating no change) and one to 

indicate the direction of change. +1 has been used to indicate an increase and -1 

to indicate a decrease. (If no change occurred, the value of the second feature is 

irrelevant.) Figure B.1 shows the display screen layout for the electricity problem. 

There are columns for each of the seven variables. Below each column is 

a set of pairs of features, one indicating whether or not that quantity changed 

(indicated by a c) and one indicating whether that quantity went up or down 

(indicated by a u). Note that the row labeled Inputs is a representation of the 

problem. The Os indicate unclamped inputs - inputs to be filled in through pro- 
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Figure B.1: Screen layout for the electricity problem 
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cessing. The ±1 values indicate the clamped inputs, which constitute the problem 

specification. In the example case, we have R2  increasing (both the change feature 

and the up feature are clamped +1), and we have Vtotai  and R1  unchanged (the 

change feature is clamped 4). All other features are left free. 

The next problem in specifying a harmony network is to encode the knowl-

edge constraints. In this case, the knowledge is of the facts of electrical circuits. 

We want to represent knowledge about electricity qualitatively. We can do this 

by taking the laws of electricity (Ohm's law and Kirchoff's law), determining the 

legitimate relationships among the variables involved, and building knowledge 

atoms for each such relationship. An example should clarify this. Consider first 

the law that the total voltage drop is the sum of the voltage drops over each resis-

tor, Vi + 172  = ITtotai. This equation allows for 13 qualitative relationships among 

the variables. could increase and 1 could increase, in which case Vtotai  must 

increase; V, could increase and V2 could stay same, in which case Vtota, must in-

crease; V, could increase and V2 decrease, in which case Vt,ta, could increase, stay 

the same, or decrease; and so on. There are five such equations and 13 qualitative 

relationships for each equation. This leads to 65 knowledge atoms encoding these 

relationships. The relationships and knowledge atoms are shown in Figure B.1. 

All of these relationships must be encoded in the network by specifying a positive, 

negative, or zero weight from each input feature to each knowledge atom. This is 

contained in the network specification file, i.e. vir.net  which is reproduced at the 

end of this Thesis. In this file, p represents +1 and the m represents -1. Since 

the weights are symmetric, we only require that the connections from the feature 

units to the knowledge atoms be specified. The file vir.str and the modified ver-

sion of the file vir.tem are also reproduced at the end of this Thesis. For a detailed 

discussion of the conventions and the terminology used, readers may refer [2]. 
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A schematic diagram of the feature nodes and two knowledge atoms of the 
model or circuit analysis. u, d, and s denote up, down, and same. The box labeled / 
denotes.  the pair of binary feature nodes representing I, and similarly for the other six cir-
cuit variables. Each connection labeled d denotes a pair of connections labeled with the 
binary encoding (+,—) representing down, and similarly for connections labeled u and s. 

Figure B.2: Harmony network for the Electricity Problem 
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