
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

8-30-1991

Efficient multiprocessor scheduling based on genetic algorithms Efficient multiprocessor scheduling based on genetic algorithms

Hong Ren
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Ren, Hong, "Efficient multiprocessor scheduling based on genetic algorithms" (1991). Theses. 2605.
https://digitalcommons.njit.edu/theses/2605

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2605?utm_source=digitalcommons.njit.edu%2Ftheses%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Efficient Multiprocessor Sheduling
Based on Genetic Algorithms

Hong Ren, Master of Science in Electrical Engineering, 1991
Department of Electrical and Computer Engineering

Thesis directed by: Dr. Edwin S. H. Hou
Assistant Professor
Department of Electrical and Computer Engineering

The problem of multiprocessor scheduling can be stated as finding a

schedule for a general task graph to be executed on a multiprocessor system

so that the schedule length can be minimized. This scheduling problem in

known to be NP-hard and methods based on heuristic search have been pro-

posed to obtain optimal and sub-optimal solutions to the problem. Genetic

algorithms have recently received much attention as robust stochastic search-

ing algorithms for various optimization problems. In this thesis, we propose

an efficient method based on genetic algorithms to solve the multiprocessor

scheduling problem. The representation of the search node will be based on

the schedule of the tasks in each individual processor. The genetic operator

proposed is based on the precedence relations between the tasks in the task

graph. The proposed genetic algorithms will be applied to the problem of

scheduling the robot inverse dynamics computations and randomly generated

task graphs.

EFFICIENT MULTIPROCESSOR
SCHEDULING

BASED ON GENETIC ALGORITHMS

by

1.
' ' Hong Ren

,e,

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

August 1991

At•PtiOVAI sfriEtt

Title of Thesis: Efficient Multiprocessor Scheduling
Based on Genetic Algorithms

Candidate: Hong Ren
Master of Science in Electrical Engineering, 1991

Thesis and Abstract Approved by the Examining Committee:

-I
Dr. Edwin S. H. Hou, Ad4isor Date

Assistant Professor
Department of Electrical and Computer Engineerig

I.C. Ifiirw'-ajn Ansari "1' Date

Assistant Professor
Department of Electrical and Computer Engineerig

Dr. S. Ziavras i' Date

Assistant Professor
Department of Electrical and Computer Engineerig

New Jersey Institute of Technology, Newark, New Jersey

VITA

Hong Ren

Date of Birth

Place of Birth

Education

1990-1991 New Jersey Institute of Technology MSEE

1979-1984 Shanghai Tongji University BSEE

ACKNOWLEDGMENT

I am very grateful to my graduate advisor Dr. Edwin S. H. Hou for his

valuable guidance, support. inspiration and encouragement during the entire

course of this thesis.

I would also like to thank other committee members. Dr. Nirwan Ansari

and Dr. S. Ziavras for serving on the examining committee and for evaluating

this research.

This research was supported by a grant from the New Jersey Department

of Higher Education through NJIT Separately Budget Research.

Contents

1 INTRODUCTION 1

1.1 Problem Overview 1

1.2 Literature Review 3

1.3 Thesis Organization 4

2 MODEL AND DEFINITIONS 6

3 GENETIC ALGORITHMS AND APPLICATION IN MUL-

TIPROCESSOR SCHEDULING 13

3.1 Overview of Genetic Algorithms 13

3.2 String Representation 15

3.3 Initialization 17

3.4 Fitness Function 18

3.5 Genetic Operator 20

3.5.1 Reproduction 21

3.5.2 Crossover 22

3.5.3 Mutation 26

3.6 Complete Algorithm 27

4 SIMULATION RESULTS 29

i

5 CONCLUSION 46

ii

List of Figures

2.1 A task graph TG 11

2.2 Schedule for two processors 12

3.1 String representation of the schedule in Fig. 2.2 16

3.2 Two different strings before crossover 24

3.3 Two new strings after crossover 24

4.1 Finishing time vs number of generations for Case 8 with three

processors 36

4.2 Finishing time vs number of generations for Case 3 with four

processors 36

4.3 Finishing time vs number of generations for Case 3 with five

processors 37

4.4 Plots illustrating the relationship between finishing time and

the number of processors in cases 1-4 38

4.5 Schedule of two processors for Sanford manipulator 42

4.6 Finishing time vs generations for the Newton-Euler method

with two processors 43

4.7 Finishing time vs generaions for the Newton-Euler method with

three processors 43

iii

4.8 Finishing time vs generaions for the Newton-Euler method with

four processors 44

4.9 Finishing time vs generaions for the Newton-Euler method with

five processors 44

4.10 Finishing time vs generaions for the Newton-Euler method with

six processors 45

iv

List of Tables

4.1 Randomly generated tasks for Case 1 30

4.2 Randomly generated tasks for Case 2 31

4.3 Randomly generated tasks for Case 3 32

4.4 Randomly generated tasks for Case 4 33

4.5 Simulation results for randomly generated tasks for Case 1-. 34

4.6 List of tasks for the Newton-Euler method for Stanford manip-

ulator 39

4.7 List of tasks for the elbow manipulator 40

4.8 Simulation results for the Newton-Euler method for Stanford

manipulator 41

4.9 Simulation results for elbow manipulator 41

Chapter 1

INTRODUCTION

1.1 Problem Overview

Parallel processing systems or multiprocessor systems have been recently em-

ployed in a wide variety of computer applications such as the control of robots

and real-time high-speed simulation of dynamical systems etc. However, ex-

ploiting the full potential of multiprocessor systems requires scheduling the

computational tasks onto the multiprocessor system.

The problem of multiprocessor scheduling can be stated as finding a

schedule for a general task graph to be executed on a multiprocessor system

so that the schedule length can be minimized. This problem is known to be

NP-hard [11. The difficulty of the problem depends heavily on the topology of

the task graph representing the precedence relations among the computation

tasks, the topology of the multiprocessor system, the number of parallel pro-

cessors, the uniformity of the task processing time, and the objective function

chosen. Due to this computational complexity issue, heuristic algorithms have

been proposed to obtain optimal and sub-optimal solution to various schedul-

ing problems.

1

In this thesis we propose an efficient method based on genetic algorithms

to solve the multiprocessor scheduling problem. Genetic algorithms are differ-

ent from other optimization and search techniques in the following ways:

1. Genetic algorithms work with a coding of the parameter set.

2. Genetic algorithms search from a population of points.

3. Genetic algorithms use objective function information, instead of deriva-

tives or other auxiliary knowledge.

4. Genetic algorithms use probabilistic transition rules, instead of deter-

ministic rules.

The representation of the search node will be based on the schedule of

the tasks in each individual processor. The genetic operator proposed is based

on the precedence relations between the tasks in the task graph.

The system considered in this thesis is assumed to consist of a multi-

processor, a set of identical processors capable of independent operation on

independent tasks. A job or a compound task submitted to the system consists

of a set of tasks and a partial ordering of these tasks. This partial ordering

may be represented by a precedence graph in which each vertex represents

a task and precedence relationships between tasks are represented by edges.

The dependency graph clearly gives the precedence relationship indicated by

the partial ordering. Given a computation graph and a multiprocessor system,

the problem is to determine a schedule for executing the tasks. The sched-

ule must not violate any of the precedence relationships or the requirement

2

that no more than one processor can be assigned to a task at any time. It

is assumed that the number of processors available to the program is always

constant.

The proposed genetic algorithm will be applied to the problems of schedul-

ing the robot, inverse dynamics computations for the Stanford manipulator and

Elbow Manipulator. We also test it on randomly generated task graphs.

1.2 Literature Review

The problem of multiprocessor scheduling has been widely studied [2]-[4].

Various approaches to the general multiprocessor scheduling problem

have been proposed 2.--[5]. We will review some of them.

Tomas L. Adam, K. M. Chandy and J. R. Dickson [3] have proposed

a dynamic programming solution for the case in which execution times are

random variables.

Kashara and Narita [4] proposed an heuristic algorithm (critical path/most

immediate successors first) and an optimization/approximation algorithm (depth

first/implicit heuristic search). The critical path/most immediate successors

first) method is one of the efficient heuristic method to solve the scheduling

problem. The CP /MISF method consists of the following steps. Step 1: De-

termine the level 1, for each task. Step 2: Construct the priority list in the

descending order of 1,. Step 3: Execute list scheduling on the basis of the

3

priority list.

Chen et al. [5] developed a state-space search algorithm (A*) coupled

with an heuristic derived from the Fernandez and Bussell bound to solve the

multiprocessor scheduling problem [5].

List schedules are a class of implementable schedules in which tasks are

assigned priorities and placed in a list ordered in decreasing magnitude of pri-

ority. Wherever executable tasks contend for processors, the selection of task

to be immediately processed is done on the basis of priority with the higher

priority tasks executable being assigned processors first [6].

1.3 Thesis Organization

The contents of this thesis are organized as following:

In Chapter 2, we present the model and some related definitions of the

task graph.

In Chapter 3, we introduce the basic theory of genetic algorithms, and

the application of genetic algorithms in scheduling problems.

In Chapter 4, we present the experimental results based on the problem

of scheduling the robot inverse dynamics computations, and four randomly

generated task graphs.

4

- In Chapter 5, we conclud this thesis.

5

Chapter 2

MODEL AND DEFINITIONS

The level function incorporate both execution time of a task and the

precedence relation with the other tasks. It indicates the earliest, time the

task can be completed.

Definition 9:

The path with the longest execution time in task graph is defined as the

critical path. Its value is equal to

Note that the critical path is the minimum execution time required to

complete the task graph.

Definition 10:

The finishing time of a schedule is defined as the time required to complete

all the tasks according to their order in the schedule.

We can randomly generate a task graph with the following algorithm.

The input parameters for this algorithm are:

• task/V — number of tasks in TG.

• max-et — maximum execution time for each task.

8

Figure 2.1 illustrate a task graph with 15 tasks. The number inside the

node denotes the the task number: The number associated with each node

denotes respectively the execution time, height, and level.

The problem of multiprocessor scheduling considered in this thesis is

based on the deterministic model, that is, the execution time and the prece-

dence relations between the computational tasks are known. We assume that

the multiprocessors system is uniform and non preemption, that is the pro-

cessors are identical and that a processor completes the current task before

executing a new one. Further more, the communication time between proces-

sors is assumed to be negligible.

The problem of optimal scheduling a task graph onto multiprocessor sys-

tem is to assign the computational tasks to the processors so that the prece-

dence relations are maintained and that, all the tasks are completed in the

shortest possible time. Figure 2.2 illustrates a schedule displayed as a Gantt

chart for the example task graph TG using two processors. The finishing time

for the schedule is 240ms. Notice that this schedule is not very efficient on

processor P2. P2 is idle for the first 76ms. The idle periods in the schedule

are also referred to as holes.

10

Figure 2.2: Schedule for two processors

12

Chapter 3

GENETIC ALGORITHMS
AND APPLICATION IN
MULTIPROCESSOR
SCHEDULING

3.1 Overview of Genetic Algorithms

In this chapter, we will introduce genetic algorithms and their application in

multiprocessor scheduling.

Genetic algorithms, developed by John Holland at the University of

Michigan, are search algorithms based on the mechanics of natural selection

-and natural genetics. They combine the notion of survival of the fittest with a

structured but, randomized information exchange to form a search algorithm.

In every generation, a new set of artificial creatures (strings) is created using

bits and pieces of the fittest of the old; an occasional new part is tried for

good measure. While randomized, genetic algorithms are not simple random

walk. They efficiently exploit historical information to speculate on new search

points with expected improved performance.

13

A genetic algorithm consists of a string representation of the nodes in

the search space, a set of genetic operators for generating new search nodes, a

fitness function to evaluate the search nodes, and a stochastic assignment to

control the genetic operators.

Typically, a genetic algorithm consists of the following steps:

1. Initialization— an initial population of the search nodes are randomly

generated.

2. Evaluation of fitness function—the fitness value of each node is calculated

according to the fitness function (objective function).

3. Genetic operations—new search nodes are generated randomly by ex-

amining the fitness value of the search nodes and applying the genetic

operators to the search nodes.

4. Repeat step 2 and 3 until convergent.

From the above description, we can see that genetic algorithms utilize

the notion of survival of the fittest; passing "good" genes to the next genera-

tion of strings, and combining different strings to explore new search points.

The construction of a genetic algorithm for any problem can be separated into

four distinct and yet related tasks:

(1) the choice of the representation of the strings,

(2) the design of the genetic operators,

(3) the determination of the fitness function, and

14

(4) the determination of the probabilities controlling the genetic opera-

tors.

Each of the above components will greatly affect the solution obtained

and the performance of the genetic algorithm.

In the following sections, we will examine each of the above components

for the problem of multiprocessor scheduling.

3.2 String Representation

One of the main criteria in selecting the string representation for the search

nodes is that the new string generated from the application of the genetic op-

erators must represents a legal search node. For the multiprocessor scheduling

problem, a legal search node should satisfy the same rule as the scheduling

which is (1) the precedence relations among the tasks and (2) every task is

present and appears only once in the schedule. The string representation used

in this thesis is based on the schedule of the tasks in each individual processor.

This representation eliminates the need to consider the precedence relations

between the tasks scheduled to different processors. However, the precedence

relations within the processor must still be maintained.

The representation of the schedule for a genetic algorithm must accom-

modate the precedence relations between the computational tasks. This is

resolved by representing the schedule as several lists of computation tasks.

Each list represents the computational tasks executed on a processor and the

15

order of the tasks in the list indicates the order execution (see Fig. 3.1). This

ordering allows us to maintain the precedence relations for the tasks executed

in a processor (intraprocessor precedence relation) and ignore the precedence

relations between tasks executed in different processors (interprocessor prece-

dence relation). This is due to the fact that the interprocessor precedence

relation does not come into play until we actually calculate the finishing time

of the schedule.

Figure 3.1: String representation of the schedule in Fig. 2.2

The height function in a way conveys the precedence relations between

the tasks. In order to simplify the construction of the genetic operator, we

will impose the following ordering condition on the schedules we generate.

The list of tasks within each processor of the schedule is ordered in as-

cending order of their height.

16

3.3 Initialization

One of the merits of genetic algorithms is that it search many nodes in the

search space in parallel. This requires us to randomly generate an initial popu-

lation of the search nodes. The population size is typically problem dependent

and has to be determined experimentally The Initial Population Algorithm are

following:

Initial Population Algorithm:

This algorithm randomly generates a schedule of the task graph TG for a

multiprocessor system with procN processors.

17

The quality of the schedules generated in the initial population will affect

the performance and result obtained by the genetic algorithm.

3.4 Fitness Function

The fitness function is essentially the objective function for the problem. It

provides a mean to evaluate the search nodes and also controls the repro-

duction process. For the multiprocessor scheduling problem, we can consider

factors such as throughput, finishing time, and processor utilization for the

fitness function. The fitness function used for our algorithm is based on the

finishing time of the schedule. To compute the finishing time of a schedule

using our representation, we need to calculate two sets of values, ftt and ftp,

defined as

18

Intuitively, we can think of the fitness function as some measure of profit,

utility, or goodness that we want to maximize. Copying string according to

their fitness values means that strings with a higher value will have a higher

19

probability of contributing one or more offspring in the next generation. This

operator. of course, is an artificial version of natural selection. a Darwinian

survival of the fittest among the strings. In natural population fitness is deter-

mined by a creature's ability to survive predators. In our unabashedly artificial

setting, the objective function is the final arbiter of the string-creature's life

or death.

3.5 Genetic Operator

The function of the genetic operator is to create new search nodes based on

the current population of search nodes. New search nodes are typically con-

structed by combining or rearranging parts of the old search nodes. The idea

(as in genetics) is that, with a proper chosen string representation of the search

nodes, certain structures in the representation would represent the "goodness"

of that search node. Thus, by combining the good structures of two search

nodes, we may result in an even better one. Relating this idea to multipro-

cessing scheduling, certain portions of a schedule may belong to the optimal

scheduling. By combining several of the "optimal" parts, we can find the op-

timal schedule efficiently.

One important criterion in constructing the genetic operator is that the

number of illegal strings (strings that do not represent any nodes in the search

space) generated must be relatively small compared to the legal ones. If this

in not the case, then computation time will be wasted in generating the illegal

strings and determining the legality of the new strings. For the multiprocessor

scheduling problem, the genetic operators used must enforce the intraproces-

sor precedence relations. This would ensure that the new strings generated

20

will always represent legal search nodes. We will develop a genetic operator

for the scheduling problem based on reproduction. crossover and mutation.

3.5.1 Reproduction

The reproduction process is typically based on the fitness value of the strings.

The principle is that the strings with higher fitness value will have a higher

chance of surviving into the next generation. The reproduction operator may

be implemented in algorithmic form in a number of ways. The easiest way is

to implement it as a biased roulette wheel where each string in the popula-

tion has a slot sized proportional to its fitness value. Suppose the size of the

population of strings is popN.

By summing the value over all strings in the population, we obtain a to-

tal fitness value, NSUM. We then construct a roulette wheel which is divided

into popN slots. Each slot corresponds to a string. The length of each slot is

LiATSUM. To obtain the new population, we generate a random number and

use it as an index into the roulette wheel to select the string into the roulette

wheel to select a string. Once a string has been selected for reproduction, an

exact replica of the string is made. This string is then entered into a mating

pool, a tentative new population, for further genetic operation.

We can make a slight modification to the basic reproduction operation

to increase the performance of the genetic algorithm. This is done always

passing the best string in the current generation to the next generation. The

reproduction operation is summarized in the following algorithm.

21

3.5.2 Crossover

The mechanics of reproduction and crossover are simple. It involves random

number generation, string copies, and some partial string exchanges. Nonethe-

less, the combined emphasis of reproduction and the structured, though ran-

domized, information exchange of crossover give genetic algorithms much of

their power.

22

For example, consider the two strings(schedules) shown in Fig. 3.2. We

can create new strings by exchanging portions of the two strings using the

following method.

Figure 3.3: Two new strings after crossover

24

1. Select sites (crossover sites) where we can cut the lists into two halves(see

Fig. 3.2).

2. Exchange the bottom halves of P1 in string A and string B.

3. Exchange the bottom halves of P2 in string A and string B.

The new strings created are shown in Fig. 3.3. Notice that one of the

new strings has a smaller finishing time than the previous two strings. The

operation described above can be easily extended to m processors and appears

to be quite effective. However, we still have to find a method to select the

crossover sites and show that the new strings generated are legal.

Notice that the crossover sites used in the above example always lie

between tasks with two different heights. and the result is two legal strings. It

appears that the selection of the crossover sites is strong related to the legality

of the strings generated. It can be easily shown that if the crossover sites are

chosen in such a way that (1) the height of the tasks next to the crossover

site are different in heights and (2) the heights of the all the tasks in front

of the crossover site are the same or smaller then the new strings generated

will always be legal schedules. The crossover operation is summarized in the

following algorithm.

Crossover Algorithm:

This algorithm performs the crossover operation on two schedules and

generate two new schedules, A and B.

1 [Select crossover site.] Randomly generate a number, c, between 0 and

heightN(maximum height value of TG).

25

2 [Loop for every processor.] For each processor in both strings, do step

3.

3 [Find the crossover sites.] Find consecutive tasks 7'.; and Tk in processor

P, such that height(T.;) < c < height(T):), Ile?: ght(Ti:) are the same for

all i .

4 [Loop for every processor.] For each processor P, in string A and string

B do step 5.

5 [Crossover] Exchange the bottom halves of the tasks in string A and B

for each processor PT .

Although the crossover operation is powerful, it may not be desirable

to perform it all the time. This is because the crossover operation is random

in nature and may possibly eliminate the optimal solution. Typically ,its

operation is controlled by a crossover probability. The value of this crossover

probability is usually determined experimentally.

3.5.3 Mutation

The mutation operator plays a secondary role in the operation of genetic algo-

rithm. Mutation is needed because, even though reproduction and crossover

effectively search and recombine extent notions, occasionally they may become

overzealous and lose some potentially useful genetic material. In artificial ge-

netic systems, the mutation operator protects against such an irrecoverable

loss, and avoid local minimum.

Mutation Algorithm:

This algorithm performs the mutation operator

26

1 [Find mutation position.] Find the height, h. of the task in processor P,

which will mutated.

2 [Find the new position.] In processor P9+1 find the consecutive tasks T3

and Ti, such that heaght(T.,) < h < hezght(Tic).

3 [Mutation.] Move the mutation task from P, to Pt.,1, and insert between

T., and Tk.

After mutation, the resultant strings will also satisfy the ordering condition.

3.6 Complete Algorithm

We can now combined all the algorithms discussed above to form the genetic

algorithm for multiprocessor scheduling.

Find-Schedule:

This algorithm attempts to solve the multiprocessor scheduling problem.

1 [Initialize.] Call Generate-Schedule J times and store the strings created

in POP.

2 [Repeat until convergent.] Do steps 3-7 until convergent.

3 [Compute fitness values.] Compute the fitness value of each string in

POP.

4 [Perform Reproduction.] Call Reproduction.

5 [Perform Crossover.] Do step 6 NPOP/2 —1 times.

27

6 [Crossover.] Pick two strings from 1\7 Elk 'POP and call Crossover with a

probability Pa.. If Crossover is performed, put, the new strings in TMP;

otherwise put the two strings picked in TMP.

7 [Perform Mutation.] For each task of string in TMP, call Mutation

with a probability of P. If mutation is performed, put the new string

in POP; otherwise put the string picked in POP.

28

Chapter 4

SIMULATION RESULTS

The proposed genetic algorithm was tested on randomly generated task graphs

and the task graph for Newton-Euler inverse dynamic equation for the Stan-

ford manipulator and the Elbow Manipulator [12]. The simulation program

was tested in a DEC system 5500.

Four random task graphs are used and they are listed in Table 4.1-4.4

29

Case 1:

The total number of tasks are 40. The maximum execution time is 50 ms. The

maximum number of predecessors is 4. The maximum number of successors

is 4. The crossover probability is 0.5. The mutation probability is 0.01. The

Population size 20.

Table 4.1: Randomly generated tasks for Case 1

Task et predecessor successor Task et predecessor successor
Number (ms) Number (ms)
1 41 - 2 3 4 5 21 42 10 11 26 36
2 35 1 3 4 5 6 22 18 19 15 7 25 34 37
3 50 2 1 4 5 6 7 23 31 19 14 32
4 48 3 2 1 8 9 12 13 24 49 16 17 27 37 38
5 23 1 2 3 6 8 11 15 25 1 13 22 9 40
6 16 2 3 5 7 10 11 12 26 48 21 10 18 35
7 5 3 6 8 14 18 22 27 14 24 28 29 35 37
8 25 7 5 4 15 28 49 16 10 27 -
9 13 4 25 36 29 5 27
10 29 6 21 26 28 30 14 15 31
11 34 6,5 17 21 32 31 49 30 34
12 6 4 6 14 40 32 41 11 23 33 34
13 10 4 14 16 18 25 33 8 32
14 47 7,1342 18 23 34 11 31 32 22 -
15 20 8 5 19 22 30 35 43 27 26 17 39
16 48 13 19 24 28 36 14 9 20 21
17 6 11 24 35 38 37 19 27 24 22 -
18 36 14 13 7 26 38 38 1 24 17 18 -
19 17 15 16 20 22 23 39 42 35 -
20 47 19 36 40 26 25 12 -

30

Case ,:

The total number of tasks are 50. The maximum execution time is 150 ms. The

Maximum number of predecessors is 5. The Maximum number of successors

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The

population size 20.

Table 4.2: Randomly generated tasks for Case 2

Task et predecessor successor Task et predecessor successor

Number (ms) Number (ms)

1 91 2 4 5 6 16 26 4 16 18 23 48

2 35 1 3 4 5 6 23 27 69 11 22 9 20 50

3 100 2 4 5 7 10 11 28 37 22 9 29

4 87 3 2 1 5 12 20 36 42 29 49 19 28 42

5 73 1 2 3 4 8 13 14 15 37 30 105 14 9 31 38 47

6 15 21 7 8 18 23 35 31 134 22 30 21 37

7 3 3 6 9 10 11 17 20 32 56 23 13 24 34 38 42 43 45

8 91 6 5 9 11 13 15 17 33 46 22 44

9 5 7 8 22 25 27 28 30 34 7 32 22 18 17

10 75 7 3 13 16 21 23 24 35 38 6 24 19 39 44

11 66 8 3 7 13 14 24 27 36 116 4 44

12 28 4 15 16 ,-- 37 93 13 31 24 5

13 63 5 10 11 8 19 32 37 38 12 32 30 19 46

14 17 5 11 16 19 30 40 41 39 26 35 49

15 62 8 5 12 44 45 47 40 106 14 49

16 19 10 14 1 12 21 26 42 47 41 28 14

17 89 7 8 18 20 21 22 34 42 79 16 29 4 32 46

18 47 6 17 19 22 26 34 43 140 32 48

19 136 18 13 14 20 29 35 38 44 73 33 35 15 36

20 99 17 4 7 19 22 25 27 45 85 15 32

21 56 16 17 10 31 46 85 42 38

22 33 17 20 18 9 27 28 31 33 34 47 88 30 15 16

23 16 10 6 2 26 32 48 37 43 26

24 51 11 10 32 35 37 50 49 149 39 40

25 111 20 9 50 91 27 24

31

Case 3:

The total number of tasks are 60. The maximum execution time is 50 ms. The

maximum number of predecessors is 5. The maximum number of successors

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The

population size 20.

Table 4.3: Randomly generated tasks for Case 3

Task et pred. succ. Task et pred. succ.

Ni. (ms) Nr. (ms)

1 41 - 2 4 5 6 16 31 34 22 30 21 37 52

2 35 1 3 4 5 6 23 32 6 23 13 24 34 38 42 43 45

3 50 2 4 5 7 10 11 33 46 22 44 53

4 37 3 2 1 5 12 20 36 42 34 7 32 22 18 17 57 58

5 23 1 2 3 4 8 13 14 15 37 35 38 6 24 19 39 44

6 15 2 1 7 8 18 23 35 36 16 4 44

7 3 3 6 9 10 11 17 20 37 43 13 31 24 5 52

8 41 6 5 9 11 13 15 17 38 12 32 30 19 46

9 5 7 8 22 25 27 28 30 39 26 35 49 53 56

10 25 7 3 13 16 21 23 24 40 6 14 49 60

11 16 8 3 7 13 14 24 27 41 28 14 55

12 28 4 15 16 58 42 29 16 29 4 32 46

13 13 5 10 11 8 19 32 37 43 40 32 48

14 17 5 11 16 19 30 40 41 44 23 33 35 15 36 -

15 12 8 5 12 44 45 47 53 45 35 15 32 -
16 19 10 14 1 12 21 26 42 47 57 46 35 42 38 -
17 39 78 18 20 21 22 34 47 38 30 15 16 -

18 47 6 17 19 22 26 34 48 37 43 26 -

19 36 18 13 14 20 29 35 38 49 49 39 40 53 57

20 49 17 4 7 19 22 25 27 50 41 27 24 -

21 6 16 17 10 31 51 4 30 27 26 -

22 33 17 20 18 9 27 28 31 33 34 52 39 37 26 31 28 -
23 16 10 6 2 26 32 54 53 25 49 15 33 39 57 60

24 1 11 10 32 35 37 50 54 28 23 59

25 11 20 9 - 55 39 27 28 30 41 56

26 4 16 18 23 48 51 52 58 56 42 39 55 27 -

27 19 11 22 9 20 50 51 55 56 59 57 35 49 34 16 53 -

28 37 22 9 29 52 55 58 6 12 26 34 -

29 49 19 28 42 59 25 27 54 -
30 5 14 9 31 38 47 51 55 60 15 53 40 -

0,9. 4.)

Case

The total number of tasks are 60. The maximum execution time is 500 ms. The

maximum number of predecessors is 5. The Maximum number of successors

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The

population size 20.

Table 4.4: Randomly generated tasks for Case 4

Task et pred. succ. Task et pred. succ.

Nr. (ms) i Nr. (ms)

1 91 - 2 4 5 6 16 31 434 22 30 21 37 52

2 85 1 3 4 5 6 23 32 6 23 13 24 34 38 42 43 45

3 400 2 4 5 7 10 11 33 96 22 44 53

4 387 3 2 1 5 12 20 36 42 34 307 32 22 18 17 57 58

5 223 1 2 3 4 8 13 14 15 37 35 38 6 24 19 39 44

6 465 2 1 7 8 18 23 35 36 316 4 44

7 153 3 6 9 10 11 17 20 37 243 13 31 24 5 52

8 241 6 5 9 11 13 15 17 38 462 32 30 19 46

9 105 7 8 22 25 27 28 30 39 276 35 49 53 56

10 25 73 13 16 21 23 24 40 156 14 49 60

11 66 8 3 7 13 14 24 27 41 428 14 55

12 328 4 15 16 58 42 179 16 29 4 32 46

13 263 5 10 11 8 19 32 37 43 440 32 48

14 317 5 11 16 19 30 40 41 44 323 33 35 15 36 -

15 462 8 5 12 44 45 47 53 j 45 485 15 32 -

16 19 10 14 1 12 21 26 42 47 57 46 485 42 38 -

17 189 7 8 18 20 21 22 34 47 38 30 15 16 -

18 297 6 17 19 22 26 34 48 237 43 26 -

19 486 18 13 14 20 29 35 38 49 449 39 40 53 57

20 99 17 4 7 19 22 25 27 50 341 27 24 -

21 306 16 17 10 31 51 254 30 27 26 -

22 183 17 20 18 9 27 28 31 33 34 52 39/39 37 26 31 28 -

23 466 10 6 2 26 32 54 53 275 49 15 33 39 57 60

24 401 11 10 32 35 37 50 54 228 23 59

25 61 20 9 - 55 139 27 28 30 41 56

26 54 16 18 23 48 51 52 58 i 56 142 39 55 27 -

27 119 11 22 9 20 50 51 55 56 59 57 435 49 34 16 53 -

28 337 22 9 29 52 55 58 306 12 26 34 -

29 349 19 28 42 59 25 27 54 -

30 105 14 9 31 38 47 51 55 60 165 53 40 -

09 00

Table 4.5: Simulation results for randomly generated tasks for Case lq

Proc. Case 1 I Case 2 I Case 3 Case 4
N r. I mut. no mut. mut. no mut. mut. no mut. mut. no mut.

et(p.$) I et(p,$) et(p..$) et(µ,$) et(p..$) et(p,$) et(ics) et(//s)
1 1081 3221 1579 - i 14829
2 604 645 1806 1840 870 904 7657 7990
3 476 481 1368 1402 690 714 5652 5758
4 429 439 1233 1293 632 634 4738 4970
5 400 400 1197 1209 586 588 4403 4510
6 400 400 1131 1131 581 581 4031 4031
7 400 400 1131 1131 581 581 4031 4031

CR-path 400 1 400 1131 1131 581 581 4031 4031

The simulation results for the four cases with mutation and without mu-

tation are listed in Table 4.5.

Figures 4.1-4.3 respectively plots the finishing time versus the number

of generations for Case 3 with 3, 4 and 5 processors. In all cases, a better

schedule is found with the mutation operator enabled. Further more, with

increase number of processors. the genetic algorithm found a optimal schedule

with finishing time equal to the critical path length.

Figure 4.4 illustrated the relationship between the finishing time and the

number of processors used for four cases.

34

Genetic algorithm was also tested with the problem of scheduling the

robot inverse dynamics computation for the Stanford manipulator and the el-

bow manipulator. The tasks for the Stanford manipulator and elbow manip-

ulator are respectively listed in Table 4.6 and Table 4.7. Table 4.8 comparers

the simulation results with the optimal solution for the Stanford manipulator

[10]. It can be seen that there is a maximum error between the solution found

by genetic algorithms and the optimal sulotion is 17%. Figure 4.5 shows the

best schedule obtained by genetic algorithm for the stanford manipulator with

2 processors. Figures 4.6-4.10 plot the finishing time obtained by the genetic

algorithms versus the number of generations. Table 4.9 compares the simu-

lation results with the optimal solution for the elbow manipulator [12]. The

maximum error between the solution found by genetic algorithm and optimal

sulotion is 14%.

•Ir ok)

Table 4.6: List of tasks for the Newton-Euler method for Stanford manipulator

Task et pred succ. Task et pred succ.

Nr (iis) Nr. (As)

1 1 - 3 5 4 6 7 8 45 32 35 53 54 55

2 1 - 16 17 46 66 35 56

3 5 1 88 47 15 41 52

4 5 1 6 48 24 41 56

5 10 1 9 10 11 12 49 39 32 37 70

6 28 1 4 9 13 14 15 50 28 40 56 57

7 5 1 16 51 40 41 43 58 59 60

8 10 1 16 52 12 47 44 69

9 1 5 6 18 20 21 22 23 24 25 26 27 53 111 45 62

10 57 5 28 54 84 45 63

11 66 5 28 55 38 45 61

12 38 5 19 56 39 48 46 50 67 68

13 15 6 29 57 28 50 61

14 24 6 29 58 69 51 62

15 10 6 19 59 42 51 63

16 15 2 7 8 81 87 60 10 51 61

17 10 2 19 61 24 60 55 57 63

18 10 9 20 62 12 58 53 65

19 24 12 15 17 29 30 63 39 59 54 61 64

20 40 9 18 32 33 41 64 42 63 65

21 32 9 34 35 36 37 65 12 62 64 66

22 57 9 38 66 28 65 69

23 15 9 38 67 24 56 69

24 10 9 39 68 40 56 72

25 38 9 39 69 24 52 66 67 71

26 53 9 31 70 24 49 75

27 10 9 31 7] 28 69 75

28 12 10 11 84 72 40 68 73 74

29 39 13 14 19 82 73 40 39 72 79 80

30 4 19 31 74 38 72 76

31 24 26 27 30 39 40 75 24 42 71 70 76

32 24 20 49 76 37 74 75 78

33 15 20 42 77 10 39 78

34 10 21 41 78 24 38 76 77 83

35 32 21 43 44 45 46 79 10 73 83

36 57 21 42 80 12 73 8] 85

37 66 21 49 81 40 16 80

38 12 22 23 78 82 24 29 84

39 39 24 25 31 73 77 83 8 78 79 84

40 28 31 50 84 24 28 82 83 86

41 40 20 34 47 48 51 85 24 80 86

42 12 33 36 75 86 36 84 85 88

43 10 35 51 87 24 16 88

44 57 35 52 88 24 3 86 87 -

39

Table 4.7: List of tasks for the elbow manipulator

Task
Nr

et
(ms)

pred succ. Task
Nr.

et
(ms)

pred. succ.

1 10 - 2 7 36 60 53 350 35 41 47 77 91

2 100 1 3 8 24 31 37 61 54 100 12 66

3 320 2 4 9 25 32 38 62 55 150 13 67

4 320 3 5 10 26 33 39 63 56 150 14 68

5 320 4 6 11 40 64 57 150 15 69

6 320 5 41 65 58 150 16 70

7 100 1 13 59 150 17 71

8 100 2 14 60 240 1 66

9 100 3 15 61 570 2 67

10 100 4 16 62 570 3 68

11 100 5 17 63 570 4 69

12 10 13 42 54 64 570 5 70

13 360 7 12 14 27 43 55 65 570 6 71

14 400 8 13 15 28 44 56 66 JO 54 60 92

15 400 9 14 16 29 45 57 67 120 55 61 93

16 400 10 15 17 46 58 68 120 56 62 94

17 400 11 16 47 59 69 120 57 63 95

18 10 - 30 70 120 58 64 96

19 280 30 3] 71 120 59 65 97

20 280 31 32 72 400 48 73

21 280 32 33 73 400 49 74 72

22 280 33 34 74 400 50 75 73 78

23 280 34 3F, 75 400 51 76 74 79

24 100 2 31 76 400 52 77 75 80

25 100 3 32 77 10 53 76

26 100 4 33 78 240 74 82

27 100 13 31 79 420 75 83

28 100 14 32 80 420 76 84

29 100 15 33 81 280 93 92

30 .1 (1 18 19 48 82 400 78 94 93

31 400 2 19 24 27 20 49 83 400 79 95 94

32 440 3 20 25 28 21 50 84 400 80 96 95

33 440 4 21 26 29 22 51 85 280 97 96

34 10 22 23 52 86 100 48 92

35 10 23 53 87 140 49 93

36 150 1 48 88 140 50 94

37 340 2 49 89 140 51 95

38 340 3 50 90 100 52 96

39 340 4 51 91 100 53 97

40 340 5 52 92 200 66 81 86 98

41 340 6 53 93 200 67 82 87 81 99

42 50 12 48 94 200 68 83 88 82 100

43 100 13 49 95 200 69 84 89 83 101

44 100 14 50 96 200 70 85 90 84 102

45 100 15 51 97 80 71 91 85 103

46 100 16 52 98 180 92 -

47 100 17 53 99 40 93 -

48 230 30 36 42 72 86 100 40 94

49 350 31 37 43 73 87 101 180 95 -

50 350 32 38 44 74 88 102 180 96 -

51 350 33 39 45 75 89 103 40 97 -

52 350 34 40 46 76 90 - - - -

40

Table 4.8:
nipulator

Simulation results for the Newton-Euler method for Stanford ma-

Number of ' Exec. time(p.$) of Exec. Time(i.zs) of Error
Processors GA solution Optimal solution %

1 2480 2480 0
2 1310 1242 5
3 937 843 11
4 774 659 17
5 679 586 15
6 627 573 9
7 609 569 7

Table 4.9: Simulation results for elbow manipulator
Number of ' Exec. Time(ms) of Exec. Time(ms) of Error
Processors GA solution Optimal solution ,_ %

1 23.42 23.42 0
2 12.34 11.71 5
3 ,) 8.94 7.81 14
4 7.26 6.63 9
5 6.83 6.63 3
6 6.63 6.63 0

41

Figure 4.5: Schedule of two processors for Sanford manipulator

42

Figure 4.6: Finishing time vs generations for the Newton-Euler method with
two processors

Figure 4.7: Finishing time vs generaions for the Newton-Euler method with
three processors

43

Figure 4.8: Finishing time vs generaions for the Newton-Euler method with
four processors

Figure 4.9: Finishing time vs generaions for the Newton-Euler method with
five processors

44

Figure 4.10: Finishing time vs generaions for the Newton-Euler method with
six processors

45

Chapter 5

CONCLUSION

In this thesis, we considered the problem of scheduling a task graph onto a

microprocessor system so that the schedule length is minimized. A stochastic

search method based on the genetic algorithms is proposed. The representa-

tion of the search nodes (schedules) used are in the form of lists of computation

tasks. This eliminates the need to consider the precedence relations between

tasks in different processors and allow us to construct an efficient crossover

genetic operator. The genetic operator developed takes into account the prece-

dence relations of the tasks and guarantee that the new strings generated are

legal.

The proposed genetic algorithm was tested on a task graph for the

Newton-Euler inverse dynamic equations for the Stanford manipulator and

elbow manipulator. This algorithm was also tested on randomly generated

task graphs.

46

References

[1] M. R. Carey and D. S. Johnson, Computer and intractability. A Guide to

the Theory of NP- Completeness, W. H. Freeman and Company. 1979.

[2] C. V. Ramamoorthy et al., " Optimal scheduling strategies in a multipro-

cessor system, " IEEE Trans. Computers, Feb. 1972. vol. C-21, pp.

137-146.

[3] T. L. Adams et al., " A Comparison of list schedules for parallel processing

systems, " Comm. Assoc. Computing Machinery, Dec. 1974. vol. 17,

pp. 685-690.

[4] H. Hasahara and S. Narita, " Practical multiprocessing scheduling algo-

rithms for efficient parallel processing, " IEEE Transactions on Com-

pute', s, November 1984. vol. C-33, no. 11, pp. 1023-1029.

[5] C. L. Chen, C. S. G. Lee, and E. S. H. Hou, " Efficient scheduling algo-

rithms for robot inverse dynamics on a multiprocessor system, " IEEE

Transactions on Systems, Man, and Cybernetics, December 1988. vol.

18, no. 5 pp. 729-743.

[6] M. J. Gonzalez, " Deterministic Processor Scheduling, " Computing Sur-

veys, September 1977. vol. 9, no. 3, pp. 173-204.

47

[7] Proc. of the First Int. Conf. on Genetic Algorithms and Their Applica-

tions (Carnegie-Mellon University, Pittsburgh, PA), July 24-26, 1985.

[8] Proc. of the Second Int. Conf. on Genetic Algorithms and their Applica-

tions (MIT. Cambridge, MA), July 28-31, 1987.

[9] D. E. Goldberg, Genetic algorithms and their applications, Addison Wes-

ley, 1989.

[10] L. Davis, "Job shop scheduling with genetic algorithms, " Proc. of the

First Int. Conf. on Genetic and their Applications (Carnegie-Mellon

University, Pittsburgh, PA), July 24-26, 1985, pp. 136-140.

[11] E. Hou. H. Ren, and N. Ansari, " Multiprocessor scheduling based on

genetic algorithms. " Proc. 16th Annual Conf. IEEE Industrial Elec-

tronics Society (Pacific Grove, CA Nov. 27-30, 1990). Vol. II, pp.

131-1238.

[12] H. Kasahara and S. Narita, " Parallel processing of robot-arm control

computation on a multiprocessor system, "IEEE Journal of Robotics

and Automation, June 1985. vol. RA-1, no. 2, pp. 104-113.

48

	Efficient multiprocessor scheduling based on genetic algorithms
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Acknowledgment
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1 : Introduction
	Chapter 2 : Model and Definitions
	Chapter 3 : Genetic Algorithms and Application in Multiprocessor Scheduling
	Chapter 4 : Simulation Results
	Chapter 5 : Conclusion
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

