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ABSTRACT 

Title of Thesis: Efficient Multiprocessor Sheduling 
Based on Genetic Algorithms 

Hong Ren, Master of Science in Electrical Engineering, 1991 
Department of Electrical and Computer Engineering 

Thesis directed by: Dr. Edwin S. H. Hou 
Assistant Professor 
Department of Electrical and Computer Engineering 

The problem of multiprocessor scheduling can be stated as finding a 

schedule for a general task graph to be executed on a multiprocessor system 

so that the schedule length can be minimized. This scheduling problem in 

known to be NP-hard and methods based on heuristic search have been pro-

posed to obtain optimal and sub-optimal solutions to the problem. Genetic 

algorithms have recently received much attention as robust stochastic search-

ing algorithms for various optimization problems. In this thesis, we propose 

an efficient method based on genetic algorithms to solve the multiprocessor 

scheduling problem. The representation of the search node will be based on 

the schedule of the tasks in each individual processor. The genetic operator 

proposed is based on the precedence relations between the tasks in the task 

graph. The proposed genetic algorithms will be applied to the problem of 

scheduling the robot inverse dynamics computations and randomly generated 

task graphs. 
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Chapter 1 

INTRODUCTION 

1.1 Problem Overview 

Parallel processing systems or multiprocessor systems have been recently em-

ployed in a wide variety of computer applications such as the control of robots 

and real-time high-speed simulation of dynamical systems etc. However, ex-

ploiting the full potential of multiprocessor systems requires scheduling the 

computational tasks onto the multiprocessor system. 

The problem of multiprocessor scheduling can be stated as finding a 

schedule for a general task graph to be executed on a multiprocessor system 

so that the schedule length can be minimized. This problem is known to be 

NP-hard [11. The difficulty of the problem depends heavily on the topology of 

the task graph representing the precedence relations among the computation 

tasks, the topology of the multiprocessor system, the number of parallel pro-

cessors, the uniformity of the task processing time, and the objective function 

chosen. Due to this computational complexity issue, heuristic algorithms have 

been proposed to obtain optimal and sub-optimal solution to various schedul-

ing problems. 
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In this thesis we propose an efficient method based on genetic algorithms 

to solve the multiprocessor scheduling problem. Genetic algorithms are differ-

ent from other optimization and search techniques in the following ways: 

1. Genetic algorithms work with a coding of the parameter set. 

2. Genetic algorithms search from a population of points. 

3. Genetic algorithms use objective function information, instead of deriva-

tives or other auxiliary knowledge. 

4. Genetic algorithms use probabilistic transition rules, instead of deter-

ministic rules. 

The representation of the search node will be based on the schedule of 

the tasks in each individual processor. The genetic operator proposed is based 

on the precedence relations between the tasks in the task graph. 

The system considered in this thesis is assumed to consist of a multi-

processor, a set of identical processors capable of independent operation on 

independent tasks. A job or a compound task submitted to the system consists 

of a set of tasks and a partial ordering of these tasks. This partial ordering 

may be represented by a precedence graph in which each vertex represents 

a task and precedence relationships between tasks are represented by edges. 

The dependency graph clearly gives the precedence relationship indicated by 

the partial ordering. Given a computation graph and a multiprocessor system, 

the problem is to determine a schedule for executing the tasks. The sched-

ule must not violate any of the precedence relationships or the requirement 
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that no more than one processor can be assigned to a task at any time. It 

is assumed that the number of processors available to the program is always 

constant. 

The proposed genetic algorithm will be applied to the problems of schedul-

ing the robot, inverse dynamics computations for the Stanford manipulator and 

Elbow Manipulator. We also test it on randomly generated task graphs. 

1.2 Literature Review 

The problem of multiprocessor scheduling has been widely studied [2]-[4]. 

Various approaches to the general multiprocessor scheduling problem 

have been proposed 2.--[5]. We will review some of them. 

Tomas L. Adam, K. M. Chandy and J. R. Dickson [3] have proposed 

a dynamic programming solution for the case in which execution times are 

random variables. 

Kashara and Narita [4] proposed an heuristic algorithm ( critical path/most 

immediate successors first) and an optimization/approximation algorithm (depth 

first/implicit heuristic search). The critical path/most immediate successors 

first) method is one of the efficient heuristic method to solve the scheduling 

problem. The CP /MISF method consists of the following steps. Step 1: De-

termine the level 1, for each task. Step 2: Construct the priority list in the 

descending order of 1,. Step 3: Execute list scheduling on the basis of the 
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priority list. 

Chen et al. [5] developed a state-space search algorithm (A*) coupled 

with an heuristic derived from the Fernandez and Bussell bound to solve the 

multiprocessor scheduling problem [5]. 

List schedules are a class of implementable schedules in which tasks are 

assigned priorities and placed in a list ordered in decreasing magnitude of pri-

ority. Wherever executable tasks contend for processors, the selection of task 

to be immediately processed is done on the basis of priority with the higher 

priority tasks executable being assigned processors first [6]. 

1.3 Thesis Organization 

The contents of this thesis are organized as following: 

In Chapter 2, we present the model and some related definitions of the 

task graph. 

In Chapter 3, we introduce the basic theory of genetic algorithms, and 

the application of genetic algorithms in scheduling problems. 

In Chapter 4, we present the experimental results based on the problem 

of scheduling the robot inverse dynamics computations, and four randomly 

generated task graphs. 
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- In Chapter 5, we conclud this thesis. 
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Chapter 2 

MODEL AND DEFINITIONS 





The level function incorporate both execution time of a task and the 

precedence relation with the other tasks. It indicates the earliest, time the 

task can be completed. 

Definition 9: 

The path with the longest execution time in task graph is defined as the 

critical path. Its value is equal to 

Note that the critical path is the minimum execution time required to 

complete the task graph. 

Definition 10: 

The finishing time of a schedule is defined as the time required to complete 

all the tasks according to their order in the schedule. 

We can randomly generate a task graph with the following algorithm. 

The input parameters for this algorithm are: 

• task/V — number of tasks in TG. 

• max-et — maximum execution time for each task. 
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Figure 2.1 illustrate a task graph with 15 tasks. The number inside the 

node denotes the the task number: The number associated with each node 

denotes respectively the execution time, height, and level. 

The problem of multiprocessor scheduling considered in this thesis is 

based on the deterministic model, that is, the execution time and the prece-

dence relations between the computational tasks are known. We assume that 

the multiprocessors system is uniform and non preemption, that is the pro-

cessors are identical and that a processor completes the current task before 

executing a new one. Further more, the communication time between proces-

sors is assumed to be negligible. 

The problem of optimal scheduling a task graph onto multiprocessor sys-

tem is to assign the computational tasks to the processors so that the prece-

dence relations are maintained and that, all the tasks are completed in the 

shortest possible time. Figure 2.2 illustrates a schedule displayed as a Gantt 

chart for the example task graph TG using two processors. The finishing time 

for the schedule is 240ms. Notice that this schedule is not very efficient on 

processor P2. P2 is idle for the first 76ms. The idle periods in the schedule 

are also referred to as holes. 

10 





Figure 2.2: Schedule for two processors 
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Chapter 3 

GENETIC ALGORITHMS 
AND APPLICATION IN 
MULTIPROCESSOR 
SCHEDULING 

3.1 Overview of Genetic Algorithms 

In this chapter, we will introduce genetic algorithms and their application in 

multiprocessor scheduling. 

Genetic algorithms, developed by John Holland at the University of 

Michigan, are search algorithms based on the mechanics of natural selection 

-and natural genetics. They combine the notion of survival of the fittest with a 

structured but, randomized information exchange to form a search algorithm. 

In every generation, a new set of artificial creatures (strings) is created using 

bits and pieces of the fittest of the old; an occasional new part is tried for 

good measure. While randomized, genetic algorithms are not simple random 

walk. They efficiently exploit historical information to speculate on new search 

points with expected improved performance. 
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A genetic algorithm consists of a string representation of the nodes in 

the search space, a set of genetic operators for generating new search nodes, a 

fitness function to evaluate the search nodes, and a stochastic assignment to 

control the genetic operators. 

Typically, a genetic algorithm consists of the following steps: 

1. Initialization— an initial population of the search nodes are randomly 

generated. 

2. Evaluation of fitness function—the fitness value of each node is calculated 

according to the fitness function (objective function). 

3. Genetic operations—new search nodes are generated randomly by ex-

amining the fitness value of the search nodes and applying the genetic 

operators to the search nodes. 

4. Repeat step 2 and 3 until convergent. 

From the above description, we can see that genetic algorithms utilize 

the notion of survival of the fittest; passing "good" genes to the next genera-

tion of strings, and combining different strings to explore new search points. 

The construction of a genetic algorithm for any problem can be separated into 

four distinct and yet related tasks: 

(1) the choice of the representation of the strings, 

(2) the design of the genetic operators, 

(3) the determination of the fitness function, and 
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(4) the determination of the probabilities controlling the genetic opera-

tors. 

Each of the above components will greatly affect the solution obtained 

and the performance of the genetic algorithm. 

In the following sections, we will examine each of the above components 

for the problem of multiprocessor scheduling. 

3.2 String Representation 

One of the main criteria in selecting the string representation for the search 

nodes is that the new string generated from the application of the genetic op-

erators must represents a legal search node. For the multiprocessor scheduling 

problem, a legal search node should satisfy the same rule as the scheduling 

which is (1) the precedence relations among the tasks and (2) every task is 

present and appears only once in the schedule. The string representation used 

in this thesis is based on the schedule of the tasks in each individual processor. 

This representation eliminates the need to consider the precedence relations 

between the tasks scheduled to different processors. However, the precedence 

relations within the processor must still be maintained. 

The representation of the schedule for a genetic algorithm must accom-

modate the precedence relations between the computational tasks. This is 

resolved by representing the schedule as several lists of computation tasks. 

Each list represents the computational tasks executed on a processor and the 
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order of the tasks in the list indicates the order execution (see Fig. 3.1). This 

ordering allows us to maintain the precedence relations for the tasks executed 

in a processor (intraprocessor precedence relation) and ignore the precedence 

relations between tasks executed in different processors (interprocessor prece-

dence relation). This is due to the fact that the interprocessor precedence 

relation does not come into play until we actually calculate the finishing time 

of the schedule. 

Figure 3.1: String representation of the schedule in Fig. 2.2 

The height function in a way conveys the precedence relations between 

the tasks. In order to simplify the construction of the genetic operator, we 

will impose the following ordering condition on the schedules we generate. 

The list of tasks within each processor of the schedule is ordered in as-

cending order of their height. 
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3.3 Initialization 

One of the merits of genetic algorithms is that it search many nodes in the 

search space in parallel. This requires us to randomly generate an initial popu-

lation of the search nodes. The population size is typically problem dependent 

and has to be determined experimentally The Initial Population Algorithm are 

following: 

Initial Population Algorithm: 

This algorithm randomly generates a schedule of the task graph TG for a 

multiprocessor system with procN processors. 
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The quality of the schedules generated in the initial population will affect 

the performance and result obtained by the genetic algorithm. 

3.4 Fitness Function 

The fitness function is essentially the objective function for the problem. It 

provides a mean to evaluate the search nodes and also controls the repro-

duction process. For the multiprocessor scheduling problem, we can consider 

factors such as throughput, finishing time, and processor utilization for the 

fitness function. The fitness function used for our algorithm is based on the 

finishing time of the schedule. To compute the finishing time of a schedule 

using our representation, we need to calculate two sets of values, ftt and ftp, 

defined as 
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Intuitively, we can think of the fitness function as some measure of profit, 

utility, or goodness that we want to maximize. Copying string according to 

their fitness values means that strings with a higher value will have a higher 
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probability of contributing one or more offspring in the next generation. This 

operator. of course, is an artificial version of natural selection. a Darwinian 

survival of the fittest among the strings. In natural population fitness is deter-

mined by a creature's ability to survive predators. In our unabashedly artificial 

setting, the objective function is the final arbiter of the string-creature's life 

or death. 

3.5 Genetic Operator 

The function of the genetic operator is to create new search nodes based on 

the current population of search nodes. New search nodes are typically con-

structed by combining or rearranging parts of the old search nodes. The idea 

(as in genetics) is that, with a proper chosen string representation of the search 

nodes, certain structures in the representation would represent the "goodness" 

of that search node. Thus, by combining the good structures of two search 

nodes, we may result in an even better one. Relating this idea to multipro-

cessing scheduling, certain portions of a schedule may belong to the optimal 

scheduling. By combining several of the "optimal" parts, we can find the op-

timal schedule efficiently. 

One important criterion in constructing the genetic operator is that the 

number of illegal strings (strings that do not represent any nodes in the search 

space) generated must be relatively small compared to the legal ones. If this 

in not the case, then computation time will be wasted in generating the illegal 

strings and determining the legality of the new strings. For the multiprocessor 

scheduling problem, the genetic operators used must enforce the intraproces-

sor precedence relations. This would ensure that the new strings generated 
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will always represent legal search nodes. We will develop a genetic operator 

for the scheduling problem based on reproduction. crossover and mutation. 

3.5.1 Reproduction 

The reproduction process is typically based on the fitness value of the strings. 

The principle is that the strings with higher fitness value will have a higher 

chance of surviving into the next generation. The reproduction operator may 

be implemented in algorithmic form in a number of ways. The easiest way is 

to implement it as a biased roulette wheel where each string in the popula-

tion has a slot sized proportional to its fitness value. Suppose the size of the 

population of strings is popN. 

By summing the value over all strings in the population, we obtain a to-

tal fitness value, NSUM. We then construct a roulette wheel which is divided 

into popN slots. Each slot corresponds to a string. The length of each slot is 

LiATSUM. To obtain the new population, we generate a random number and 

use it as an index into the roulette wheel to select the string into the roulette 

wheel to select a string. Once a string has been selected for reproduction, an 

exact replica of the string is made. This string is then entered into a mating 

pool, a tentative new population, for further genetic operation. 

We can make a slight modification to the basic reproduction operation 

to increase the performance of the genetic algorithm. This is done always 

passing the best string in the current generation to the next generation. The 

reproduction operation is summarized in the following algorithm. 
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3.5.2 Crossover 

The mechanics of reproduction and crossover are simple. It involves random 

number generation, string copies, and some partial string exchanges. Nonethe-

less, the combined emphasis of reproduction and the structured, though ran-

domized, information exchange of crossover give genetic algorithms much of 

their power. 
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For example, consider the two strings(schedules) shown in Fig. 3.2. We 

can create new strings by exchanging portions of the two strings using the 

following method. 



Figure 3.3: Two new strings after crossover 
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1. Select sites (crossover sites) where we can cut the lists into two halves(see 

Fig. 3.2). 

2. Exchange the bottom halves of P1 in string A and string B. 

3. Exchange the bottom halves of P2 in string A and string B. 

The new strings created are shown in Fig. 3.3. Notice that one of the 

new strings has a smaller finishing time than the previous two strings. The 

operation described above can be easily extended to m processors and appears 

to be quite effective. However, we still have to find a method to select the 

crossover sites and show that the new strings generated are legal. 

Notice that the crossover sites used in the above example always lie 

between tasks with two different heights. and the result is two legal strings. It 

appears that the selection of the crossover sites is strong related to the legality 

of the strings generated. It can be easily shown that if the crossover sites are 

chosen in such a way that (1) the height of the tasks next to the crossover 

site are different in heights and (2) the heights of the all the tasks in front 

of the crossover site are the same or smaller then the new strings generated 

will always be legal schedules. The crossover operation is summarized in the 

following algorithm. 

Crossover Algorithm: 

This algorithm performs the crossover operation on two schedules and 

generate two new schedules, A and B. 

1 [Select crossover site.] Randomly generate a number, c, between 0 and 

heightN(maximum height value of TG). 
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2 [Loop for every processor.] For each processor in both strings, do step 

3. 

3 [Find the crossover sites.] Find consecutive tasks 7'.; and Tk in processor 

P, such that height(T.;) < c < height(T):), Ile?: ght(Ti:) are the same for 

all i . 

4 [Loop for every processor.] For each processor P, in string A and string 

B do step 5. 

5 [Crossover] Exchange the bottom halves of the tasks in string A and B 

for each processor PT  . 

Although the crossover operation is powerful, it may not be desirable 

to perform it all the time. This is because the crossover operation is random 

in nature and may possibly eliminate the optimal solution. Typically ,its 

operation is controlled by a crossover probability. The value of this crossover 

probability is usually determined experimentally. 

3.5.3 Mutation 

The mutation operator plays a secondary role in the operation of genetic algo-

rithm. Mutation is needed because, even though reproduction and crossover 

effectively search and recombine extent notions, occasionally they may become 

overzealous and lose some potentially useful genetic material. In artificial ge-

netic systems, the mutation operator protects against such an irrecoverable 

loss, and avoid local minimum. 

Mutation Algorithm: 

This algorithm performs the mutation operator 
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1 [Find mutation position.] Find the height, h. of the task in processor P, 

which will mutated. 

2 [Find the new position.] In processor P9+1 find the consecutive tasks T3 

and Ti, such that heaght(T.,) < h < hezght(Tic ). 

3 [Mutation.] Move the mutation task from P, to Pt.,1, and insert between 

T., and Tk. 

After mutation, the resultant strings will also satisfy the ordering condition. 

3.6 Complete Algorithm 

We can now combined all the algorithms discussed above to form the genetic 

algorithm for multiprocessor scheduling. 

Find-Schedule: 

This algorithm attempts to solve the multiprocessor scheduling problem. 

1 [Initialize.] Call Generate-Schedule J times and store the strings created 

in POP. 

2 [Repeat until convergent.] Do steps 3-7 until convergent. 

3 [Compute fitness values.] Compute the fitness value of each string in 

POP. 

4 [Perform Reproduction.] Call Reproduction. 

5 [Perform Crossover.] Do step 6 NPOP/2 —1 times. 
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6 [Crossover.] Pick two strings from 1\7  Elk 'POP and call Crossover with a 

probability Pa.. If Crossover is performed, put, the new strings in TMP; 

otherwise put the two strings picked in TMP. 

7 [Perform Mutation.] For each task of string in TMP, call Mutation 

with a probability of P. If mutation is performed, put the new string 

in POP; otherwise put the string picked in POP. 
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Chapter 4 

SIMULATION RESULTS 

The proposed genetic algorithm was tested on randomly generated task graphs 

and the task graph for Newton-Euler inverse dynamic equation for the Stan-

ford manipulator and the Elbow Manipulator [12]. The simulation program 

was tested in a DEC system 5500. 

Four random task graphs are used and they are listed in Table 4.1-4.4 
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Case 1: 

The total number of tasks are 40. The maximum execution time is 50 ms. The 

maximum number of predecessors is 4. The maximum number of successors 

is 4. The crossover probability is 0.5. The mutation probability is 0.01. The 

Population size 20. 

Table 4.1: Randomly generated tasks for Case 1 

Task et predecessor successor Task et predecessor successor 
Number (ms) Number (ms) 
1 41 - 2 3 4 5 21 42 10 11 26 36 
2 35 1 3 4 5 6 22 18 19 15 7 25 34 37 
3 50 2 1 4 5 6 7 23 31 19 14 32 
4 48 3 2 1 8 9 12 13 24 49 16 17 27 37 38 
5 23 1 2 3 6 8 11 15 25 1 13 22 9 40 
6 16 2 3 5 7 10 11 12 26 48 21 10 18 35 
7 5 3 6 8 14 18 22 27 14 24 28 29 35 37 
8 25 7 5 4 15 28 49 16 10 27 - 
9 13 4 25 36 29 5 27 
10 29 6 21 26 28 30 14 15 31 
11 34 6,5 17 21 32 31 49 30 34 
12 6 4 6 14 40 32 41 11 23 33 34 
13 10 4 14 16 18 25 33 8 32 
14 47 7,1342 18 23 34 11 31 32 22 - 
15 20 8 5 19 22 30 35 43 27 26 17 39 
16 48 13 19 24 28 36 14 9 20 21 
17 6 11 24 35 38 37 19 27 24 22 - 
18 36 14 13 7 26 38 38 1 24 17 18 - 
19 17 15 16 20 22 23 39 42 35 - 
20 47 19 36 40 26 25 12 - 
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Case ,: 

The total number of tasks are 50. The maximum execution time is 150 ms. The 

Maximum number of predecessors is 5. The Maximum number of successors 

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The 

population size 20. 

Table 4.2: Randomly generated tasks for Case 2 

Task et predecessor successor Task et predecessor successor 

Number (ms) Number (ms) 

1 91 2 4 5 6 16 26 4 16 18 23 48 

2 35 1 3 4 5 6 23 27 69 11 22 9 20 50 

3 100 2 4 5 7 10 11 28 37 22 9 29 

4 87 3 2 1 5 12 20 36 42 29 49 19 28 42 

5 73 1 2 3 4 8 13 14 15 37 30 105 14 9 31 38 47 

6 15 21 7 8 18 23 35 31 134 22 30 21 37 

7 3 3 6 9 10 11 17 20 32 56 23 13 24 34 38 42 43 45 

8 91 6 5 9 11 13 15 17 33 46 22 44 

9 5 7 8 22 25 27 28 30 34 7 32 22 18 17 

10 75 7 3 13 16 21 23 24 35 38 6 24 19 39 44 

11 66 8 3 7 13 14 24 27 36 116 4 44 

12 28 4 15 16 ,-- 37 93 13 31 24 5 

13 63 5 10 11 8 19 32 37 38 12 32 30 19 46 

14 17 5 11 16 19 30 40 41 39 26 35 49 

15 62 8 5 12 44 45 47 40 106 14 49 

16 19 10 14 1 12 21 26 42 47 41 28 14 

17 89 7 8 18 20 21 22 34 42 79 16 29 4 32 46 

18 47 6 17 19 22 26 34 43 140 32 48 

19 136 18 13 14 20 29 35 38 44 73 33 35 15 36 

20 99 17 4 7 19 22 25 27 45 85 15 32 

21 56 16 17 10 31 46 85 42 38 

22 33 17 20 18 9 27 28 31 33 34 47 88 30 15 16 

23 16 10 6 2 26 32 48 37 43 26 

24 51 11 10 32 35 37 50 49 149 39 40 

25 111 20 9 50 91 27 24 
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Case 3: 

The total number of tasks are 60. The maximum execution time is 50 ms. The 

maximum number of predecessors is 5. The maximum number of successors 

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The 

population size 20. 

Table 4.3: Randomly generated tasks for Case 3 

Task et pred. succ. Task et pred. succ. 

Ni. (ms) Nr. (ms) 

1 41 - 2 4 5 6 16 31 34 22 30 21 37 52 

2 35 1 3 4 5 6 23 32 6 23 13 24 34 38 42 43 45 

3 50 2 4 5 7 10 11 33 46 22 44 53 

4 37 3 2 1 5 12 20 36 42 34 7 32 22 18 17 57 58 

5 23 1 2 3 4 8 13 14 15 37 35 38 6 24 19 39 44 

6 15 2 1 7 8 18 23 35 36 16 4 44 

7 3 3 6 9 10 11 17 20 37 43 13 31 24 5 52 

8 41 6 5 9 11 13 15 17 38 12 32 30 19 46 

9 5 7 8 22 25 27 28 30 39 26 35 49 53 56 

10 25 7 3 13 16 21 23 24 40 6 14 49 60 

11 16 8 3 7 13 14 24 27 41 28 14 55 

12 28 4 15 16 58 42 29 16 29 4 32 46 

13 13 5 10 11 8 19 32 37 43 40 32 48 

14 17 5 11 16 19 30 40 41 44 23 33 35 15 36 - 

15 12 8 5 12 44 45 47 53 45 35 15 32 - 
16 19 10 14 1 12 21 26 42 47 57 46 35 42 38 - 
17 39 78 18 20 21 22 34 47 38 30 15 16 - 

18 47 6 17 19 22 26 34 48 37 43 26 - 

19 36 18 13 14 20 29 35 38 49 49 39 40 53 57 

20 49 17 4 7 19 22 25 27 50 41 27 24 - 

21 6 16 17 10 31 51 4 30 27 26 - 

22 33 17 20 18 9 27 28 31 33 34 52 39 37 26 31 28 - 
23 16 10 6 2 26 32 54 53 25 49 15 33 39 57 60 

24 1 11 10 32 35 37 50 54 28 23 59 

25 11 20 9 - 55 39 27 28 30 41 56 

26 4 16 18 23 48 51 52 58 56 42 39 55 27 - 

27 19 11 22 9 20 50 51 55 56 59 57 35 49 34 16 53 - 

28 37 22 9 29 52 55 58 6 12 26 34 - 

29 49 19 28 42 59 25 27 54 - 
30 5 14 9 31 38 47 51 55 60 15 53 40 - 
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Case 

The total number of tasks are 60. The maximum execution time is 500 ms. The 

maximum number of predecessors is 5. The Maximum number of successors 

is 5. The crossover probability is 0.5. The mutation probability is 0.01. The 

population size 20. 

Table 4.4: Randomly generated tasks for Case 4 

Task et pred. succ. Task et pred. succ. 

Nr. (ms) i Nr. (ms) 

1 91 - 2 4 5 6 16 31 434 22 30 21 37 52 

2 85 1 3 4 5 6 23 32 6 23 13 24 34 38 42 43 45 

3 400 2 4 5 7 10 11 33 96 22 44 53 

4 387 3 2 1 5 12 20 36 42 34 307 32 22 18 17 57 58 

5 223 1 2 3 4 8 13 14 15 37 35 38 6 24 19 39 44 

6 465 2 1 7 8 18 23 35 36 316 4 44 

7 153 3 6 9 10 11 17 20 37 243 13 31 24 5 52 

8 241 6 5 9 11 13 15 17 38 462 32 30 19 46 

9 105 7 8 22 25 27 28 30 39 276 35 49 53 56 

10 25 73 13 16 21 23 24 40 156 14 49 60 

11 66 8 3 7 13 14 24 27 41 428 14 55 

12 328 4 15 16 58 42 179 16 29 4 32 46 

13 263 5 10 11 8 19 32 37 43 440 32 48 

14 317 5 11 16 19 30 40 41 44 323 33 35 15 36 - 

15 462 8 5 12 44 45 47 53 j 45 485 15 32 - 

16 19 10 14 1 12 21 26 42 47 57 46 485 42 38 - 

17 189 7 8 18 20 21 22 34 47 38 30 15 16 - 

18 297 6 17 19 22 26 34 48 237 43 26 - 

19 486 18 13 14 20 29 35 38 49 449 39 40 53 57 

20 99 17 4 7 19 22 25 27 50 341 27 24 - 

21 306 16 17 10 31 51 254 30 27 26 - 

22 183 17 20 18 9 27 28 31 33 34 52 39/39 37 26 31 28 - 

23 466 10 6 2 26 32 54 53 275 49 15 33 39 57 60 

24 401 11 10 32 35 37 50 54 228 23 59 

25 61 20 9 - 55 139 27 28 30 41 56 

26 54 16 18 23 48 51 52 58 i 56 142 39 55 27 - 

27 119 11 22 9 20 50 51 55 56 59 57 435 49 34 16 53 - 

28 337 22 9 29 52 55 58 306 12 26 34 - 

29 349 19 28 42 59 25 27 54 - 

30 105 14 9 31 38 47 51 55 60 165 53 40 - 
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Table 4.5: Simulation results for randomly generated tasks for Case lq 

Proc. Case 1 I Case 2 I Case 3 Case 4 
N r. I mut. no mut. mut. no mut. mut. no mut. mut. no mut. 

et(p.$) I et(p,$) et(p..$) et(µ,$) et(p..$) et(p,$) et(ics) et(//s) 
1 1081 3221 1579 - i 14829 
2 604 645 1806 1840 870 904 7657 7990 
3 476 481 1368 1402 690 714 5652 5758 
4 429 439 1233 1293 632 634 4738 4970 
5 400 400 1197 1209 586 588 4403 4510 
6 400 400 1131 1131 581 581 4031 4031 
7 400 400 1131 1131 581 581 4031 4031 

CR-path 400 1 400 1131 1131 581 581 4031 4031 

The simulation results for the four cases with mutation and without mu-

tation are listed in Table 4.5. 

Figures 4.1-4.3 respectively plots the finishing time versus the number 

of generations for Case 3 with 3, 4 and 5 processors. In all cases, a better 

schedule is found with the mutation operator enabled. Further more, with 

increase number of processors. the genetic algorithm found a optimal schedule 

with finishing time equal to the critical path length. 

Figure 4.4 illustrated the relationship between the finishing time and the 

number of processors used for four cases. 

34 



Genetic algorithm was also tested with the problem of scheduling the 

robot inverse dynamics computation for the Stanford manipulator and the el-

bow manipulator. The tasks for the Stanford manipulator and elbow manip-

ulator are respectively listed in Table 4.6 and Table 4.7. Table 4.8 comparers 

the simulation results with the optimal solution for the Stanford manipulator 

[10]. It can be seen that there is a maximum error between the solution found 

by genetic algorithms and the optimal sulotion is 17%. Figure 4.5 shows the 

best schedule obtained by genetic algorithm for the stanford manipulator with 

2 processors. Figures 4.6-4.10 plot the finishing time obtained by the genetic 

algorithms versus the number of generations. Table 4.9 compares the simu-

lation results with the optimal solution for the elbow manipulator [12]. The 

maximum error between the solution found by genetic algorithm and optimal 

sulotion is 14%. 
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Table 4.6: List of tasks for the Newton-Euler method for Stanford manipulator 

Task et pred succ. Task et pred succ. 

Nr (iis) Nr. (As) 

1 1 - 3 5 4 6 7 8 45 32 35 53 54 55 

2 1 - 16 17 46 66 35 56 

3 5 1 88 47 15 41 52 

4 5 1 6 48 24 41 56 

5 10 1 9 10 11 12 49 39 32 37 70 

6 28 1 4 9 13 14 15 50 28 40 56 57 

7 5 1 16 51 40 41 43 58 59 60 

8 10 1 16 52 12 47 44 69 

9 1 5 6 18 20 21 22 23 24 25 26 27 53 111 45 62 

10 57 5 28 54 84 45 63 

11 66 5 28 55 38 45 61 

12 38 5 19 56 39 48 46 50 67 68 

13 15 6 29 57 28 50 61 

14 24 6 29 58 69 51 62 

15 10 6 19 59 42 51 63 

16 15 2 7 8 81 87 60 10 51 61 

17 10 2 19 61 24 60 55 57 63 

18 10 9 20 62 12 58 53 65 

19 24 12 15 17 29 30 63 39 59 54 61 64 

20 40 9 18 32 33 41 64 42 63 65 

21 32 9 34 35 36 37 65 12 62 64 66 

22 57 9 38 66 28 65 69 

23 15 9 38 67 24 56 69 

24 10 9 39 68 40 56 72 

25 38 9 39 69 24 52 66 67 71 

26 53 9 31 70 24 49 75 

27 10 9 31 7] 28 69 75 

28 12 10 11 84 72 40 68 73 74 

29 39 13 14 19 82 73 40 39 72 79 80 

30 4 19 31 74 38 72 76 

31 24 26 27 30 39 40 75 24 42 71 70 76 

32 24 20 49 76 37 74 75 78 

33 15 20 42 77 10 39 78 

34 10 21 41 78 24 38 76 77 83 

35 32 21 43 44 45 46 79 10 73 83 

36 57 21 42 80 12 73 8] 85 

37 66 21 49 81 40 16 80 

38 12 22 23 78 82 24 29 84 

39 39 24 25 31 73 77 83 8 78 79 84 

40 28 31 50 84 24 28 82 83 86 

41 40 20 34 47 48 51 85 24 80 86 

42 12 33 36 75 86 36 84 85 88 

43 10 35 51 87 24 16 88 

44 57 35 52 88 24 3 86 87 - 
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Table 4.7: List of tasks for the elbow manipulator 

Task 
Nr 

et 
(ms) 

pred succ. Task 
Nr. 

et 
(ms) 

pred. succ. 

1 10 - 2 7 36 60 53 350 35 41 47 77 91 

2 100 1 3 8 24 31 37 61 54 100 12 66 

3 320 2 4 9 25 32 38 62 55 150 13 67 

4 320 3 5 10 26 33 39 63 56 150 14 68 

5 320 4 6 11 40 64 57 150 15 69 

6 320 5 41 65 58 150 16 70 

7 100 1 13 59 150 17 71 

8 100 2 14 60 240 1 66 

9 100 3 15 61 570 2 67 

10 100 4 16 62 570 3 68 

11 100 5 17 63 570 4 69 

12 10 13 42 54 64 570 5 70 

13 360 7 12 14 27 43 55 65 570 6 71 

14 400 8 13 15 28 44 56 66 JO 54 60 92 

15 400 9 14 16 29 45 57 67 120 55 61 93 

16 400 10 15 17 46 58 68 120 56 62 94 

17 400 11 16 47 59 69 120 57 63 95 

18 10 - 30 70 120 58 64 96 

19 280 30 3] 71 120 59 65 97 

20 280 31 32 72 400 48 73 

21 280 32 33 73 400 49 74 72 

22 280 33 34 74 400 50 75 73 78 

23 280 34 3F,  75 400 51 76 74 79 

24 100 2 31 76 400 52 77 75 80 

25 100 3 32 77 10 53 76 

26 100 4 33 78 240 74 82 

27 100 13 31 79 420 75 83 

28 100 14 32 80 420 76 84 

29 100 15 33 81 280 93 92 

30 .1 (1  18 19 48 82 400 78 94 93 

31 400 2 19 24 27 20 49 83 400 79 95 94 

32 440 3 20 25 28 21 50 84 400 80 96 95 

33 440 4 21 26 29 22 51 85 280 97 96 

34 10 22 23 52 86 100 48 92 

35 10 23 53 87 140 49 93 

36 150 1 48 88 140 50 94 

37 340 2 49 89 140 51 95 

38 340 3 50 90 100 52 96 

39 340 4 51 91 100 53 97 

40 340 5 52 92 200 66 81 86 98 

41 340 6 53 93 200 67 82 87 81 99 

42 50 12 48 94 200 68 83 88 82 100 

43 100 13 49 95 200 69 84 89 83 101 

44 100 14 50 96 200 70 85 90 84 102 

45 100 15 51 97 80 71 91 85 103 

46 100 16 52 98 180 92 - 

47 100 17 53 99 40 93 - 

48 230 30 36 42 72 86 100 40 94 

49 350 31 37 43 73 87 101 180 95 - 

50 350 32 38 44 74 88 102 180 96 - 

51 350 33 39 45 75 89 103 40 97 - 

52 350 34 40 46 76 90 - - - - 
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Table 4.8: 
nipulator 

Simulation results for the Newton-Euler method for Stanford ma- 

Number of ' Exec. time(p.$) of Exec. Time(i.zs) of Error 
Processors GA solution Optimal solution % 

1 2480 2480 0 
2 1310 1242 5 
3 937 843 11 
4 774 659 17 
5 679 586 15 
6 627 573 9 
7 609 569 7 

Table 4.9: Simulation results for elbow manipulator 
Number of ' Exec. Time(ms) of Exec. Time(ms) of Error 
Processors GA solution Optimal solution ,_ % 

1 23.42 23.42 0 
2 12.34 11.71 5 
3 ,) 8.94 7.81 14 
4 7.26 6.63 9 
5 6.83 6.63 3 
6 6.63 6.63 0 
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Figure 4.5: Schedule of two processors for Sanford manipulator 
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Figure 4.6: Finishing time vs generations for the Newton-Euler method with 
two processors 

Figure 4.7: Finishing time vs generaions for the Newton-Euler method with 
three processors 
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Figure 4.8: Finishing time vs generaions for the Newton-Euler method with 
four processors 

Figure 4.9: Finishing time vs generaions for the Newton-Euler method with 
five processors 

44 



Figure 4.10: Finishing time vs generaions for the Newton-Euler method with 
six processors 
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Chapter 5 

CONCLUSION 

In this thesis, we considered the problem of scheduling a task graph onto a 

microprocessor system so that the schedule length is minimized. A stochastic 

search method based on the genetic algorithms is proposed. The representa-

tion of the search nodes (schedules) used are in the form of lists of computation 

tasks. This eliminates the need to consider the precedence relations between 

tasks in different processors and allow us to construct an efficient crossover 

genetic operator. The genetic operator developed takes into account the prece-

dence relations of the tasks and guarantee that the new strings generated are 

legal. 

The proposed genetic algorithm was tested on a task graph for the 

Newton-Euler inverse dynamic equations for the Stanford manipulator and 

elbow manipulator. This algorithm was also tested on randomly generated 

task graphs. 
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