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ABSTRACT 

Title of Thesis: Cascading space efficient variation of the LZW Algorithm and 
the Arithmetic Coding. 

Shobha Raj 

Master of Science in Computer and Information Science 
October 1991 

Thesis Directed By: Dr. Yehoshua Perl 
Professor of Computer and Information Science. 

Two known compression algorithms appropriate for communication are LZW and 

the Arithmetic Coding method. Both are adaptive and require no extra 

communication from the encoder to the decoder. Here we have considered a space 

efficient variation of the LZW algorithm which achieves better compression. 

We present a scheme to cascade the space efficient variation of the LZW algorithm 

with Arithmetic Coding into a space efficient data compression algorithm which 

achieves a higher compression ratio and is appropriate for communication. 
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I Introduction 

Two of the most known compression algorithms are the LZW algorithm and 

Arithmetic Coding [R1,R2]. Both the algorithms are adaptive hence appropriate for 

communication. They do not require a prior knowledge on the text to be 

compressed. Furthermore, during the compression process they do not require any 

extra information to be transferred from the encoder to the decoder apart from the 

compressed text. The LZW algorithm is adaptive in nature. The space efficient LZW 

algorithm is a variation of the LZW algorithm that uses post order traversal of the 

tree when scanning the leaves to delete. 

The two algorithms differ in principle they use to achieve compression. The space 

efficient variation of the LZW algorithm like the LZW algorithm constructs a 

dictionary of variable length strings from the text and replaces each occurrence of a 

string by the (usually shorter) index to the appropriate entry of the dictionary. The 

Arithmetic Coding encodes each character separately. It accumulates the frequency 

of the characters in the text and uses a variable number of bits to transfer each 

character according to its frequency. 

The problem of constructing a compression dictionary of variable length character 

strings from the text has received considerable attention in the literature. Heuristic 

experiments are reported by Lynch [L]. The problem of finding such an optimum 

dictionary maximizing the compression is considered in Storer and Szymanski[SS1] 

and [SS2]. They model the dictionary as one long string, where each substring 

constitutes an entry in the dictionary, and show that finding an optimum dictionary is 

a NP-Hard, i.e., probably not solvable in polynomial time. A dynamic version of this 
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model called the Sliding dictionary is used in Smith and Storer [SS3] for parallel data 

compression. 

Choueka, Fraenkel and Perl [CFP] show that if the dictionary is limited to contain 

only prefixes or suffixes of words in the text, then it is possible to construct an 

optimum dictionary in polynomial time by dynamic programming algorithm. On the 

other hand if both suffixes and prefixes are permitted in the dictionary then the 

problem is shown by Fraenkal, Mor and Perl to be NP-Hard. They describe 

experiments with hueristics for constructing dictionaries with only prefixes and both 

prefix and suffixes. The LZW algorithm differs from all these algorithms except the 

Sliding Dictionary of [SS3] in that it is adaptive, while all others are based on 

preprocessing of text. 

The fact that the two algorithms differ in the principle raises the question as to 

whether there is a way to combine the two algorithms to yield a higher compression 

and still be appropriate for the communication process. We now present an 

algorithm for compression obtained by cascading the space efficient variation of the 

LZW algorithm and the arithmetic coding. The technique involves the accumulation 

of the frequencies of the entries of the space efficient LZW algorithm and utilizing 

these frequencies by the Arithmetic coding which will relate to the entries of the 

spaces efficient variation of the LZW dictionary as an alphabet. Since these entries 

differ in their frequencies an extra secondary compression is achieved, in addition 

to the primary compression due to LZW algorithm. Different variation of refining 

the cascading are tested to optimize the secondary compression. For communication 

purposes the compression time does not matter as the communication speed is 

much slower than the computation process. 
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In the next two sections the space efficient variation algorithm and the 

arithmetic coding techniques are described. Their cascading is discussed in section 4 

and the experiments are reported in Section 5. The secondary compression 

achieved is higher for smaller dictionary sizes. The experiments show that fine tuning 

of the cascading process yields a significant increase in the compression ratio. 
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II. The Space Efficient Variation of the LZW Algorithm 

One of the known compression algorithms is the algorithm of Lempel and 

Ziv [ZLI][ZL2]. Welch [W] described the implementation of this algorithm known as 

the LZW algorithm. This algorithm has the advantage of being adaptive. That is, the 

algorithm does not assume any advance knowledge of the properties of the input and 

builds the dictionary used for the compression only on the basis of the input itself, as 

the input is read. This property is especially important in compression for 

communication. This method is in contrast to compression algorithms which are 

based on advance knowledge of the properties of the input, e.g Huffman Algorithm. 

The LZW algorithm starts with a dictionary containing entries for each 

character in the alphabet. The algorithm scans the input matching it with entries in 

the dictionary. When the matching is finished, i.e, we read from the input a string Y, 

not in the dictionary, such that Y = X.a, where X is a string already in the dictionary, 

"a" is a character and "." is the concatenation operator. The encoder then sends the 

code for X (index in the dictionary table) and inserts Y into the dictionary. The 

string Y is called as character extension of X. The encoding of the input continues 

from the character "a" that follows X. The decoder builds an identical dictionary to 

the one built by the encoder. The process works as follows. When the decoder 

accepts the code for X it already has code in its dictionary, so it identifies X and 

sends it to the output. The next code accepted by the decoder will also lie in its 

dictionary so it knows the corresponding string starts with a character "a". Thus the 

decoder concludes the encoder has inserted the string Y = X.a into its 
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dictionary. The decoder then includes Y as the next entry in his dictionary. This way 

both the encoder and the decoder construct the same dictionary without transmitting 

the dictionary. Detailed description appears in [W] and [PCM]. 

We present an example of an application of the LZW algorithm for the 

Binary text 0100101011110101101. 

The dictionary obtained is as follows 

1 2 3 4 5 6 7 8 9 10 11 12 

0 1 01 10 00 010 0101 11 111 101 1010 100 

and the coded output is : 1, 2, 1, 3, 6, 2, 8, 4, 10, 4, 3. 

The entries for the LZW dictionary satisfy the property that "If a string X is in 

the dictionary then every prefix of X is also in the dictionary. Another property is that 

for every code sent by the encoder a new entry is added to the dictionary. Since the 

dictionary is finite and may be limited for practical reasons, the dictionary fills up 

fast. The LZW algorithm then continues encoding according to the existing 

dictionary without adding new entries. After a while a significant decline in the 

compression ratio is observed. This decline is typically due to change in the 

properties of the text , so the dictionary is no longer appropriate. 

Totally ignoring the old dictionary and building a new one from scratch is 

wasteful. Even though the decline in the compression ratio is no longer adequate, 

there are probably parts of it that will appear in the new dictionary. The various 

methods of incorporating updates into the LZW algorithm resulting in continuously 

adaptive versions are reported by Perl, Chatterjee and Mahapatra [PCM]. 
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It is helpful to view the dictionary as an ordered labeled rooted tree. Each 

edge emanating from a vertex is labeled by a character of the alphabet. A vertex 

represents the string obtained by the concatenation of all the characters along the 

path from the root to the vertex. Thus all vertices on the path from the root to a 

vertex representing a string X of the dictionary represent all the prefixes of X. Using 

this tree representation if the string of a vertex is deleted then all its descendents are 

deleted. The approach used for deleting keys in the dictionary are reported in 

[PCM]. 

Since the encoder and decoder have identical dictionaries, they get full at the 

same time. Also the update process is identical for the encoder and the decoder. 

Therefore after deletions encoder and the decoder will still have identical 

dictionaries. At this point we consider adding identical new strings to both the 

dictionaries. Hence at each point of the process the encoder and the decoder work 

with identical dictionaries. 

Continuous adaptive approach of the LZW algorithm is based on deleting 

from the the dictionary the keys of low frequency which are likely to appear in the 

future text and use their space to add new entries to the dictionary. For this purpose 

computation of frequency of each entry in the dictionary along with pointers to the 

parent ,child and sibling is added to the LZW algorithm [PCM]. The space efficient 

variation of the LZW algorithm is a variation of the adaptive version designed to 

reduce storage requirements by not having a parent pointer. The order in which the 

leaves are deleted are arbitrary with respect to their position in the tree, but we 

traverse the tree in post-order traversal and delete the leaves in left to right order. 

The implementation of this has been reported in [PCM] 
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III The Arithmetic Coding Method 

In the Arithmetic Coding method (e.g.,[CNW]) strings of characters are represented 

by a numeric interval of real numbers between 0 and 1. As the string becomes longer, the 

interval needed to represent it becomes smaller and the number of bits needed to specify 

that interval grows. Successive symbols of the strings reduce the size of the interval in 

accordance with their symbol probabilities in the input. The more likely symbols reduce the 

range by less than the unlikely symbols and hence add fewer bits to the interval 

representation of the encoded message. This method is adaptable and does not need the 

probabilities of symbols in the input in advance. These probabilities could be dynamically 

updated as the input is read, and mapped into the interval. 

The first references to the Arithmetic Coding method appear in [A]. Practical 

techniques were first introduced by Rissanen [R1][R2]. Detailed implementation is 

presented in [CNW]. A broader class of Arithmetic Codes are presented in [RL]. In [PG] 

Perl and Gabriel used the Arithmetic Coding Method to modify Interpolation search for 

Alphabetic tables. 

The Arithmetic Coding method has advantages over the Huffman Coding Method 

[H]. In addition to the requirement of symbol probabilities in advance , in the Huffaman 

coding method each symbol has to be translated into integral number of bits in the encoding. 

Huffman coding indeed achieves minimum redundancy, in other words, it performs 

optimally, according to these assumptions. But the requirement of the integral number of 

bits of Huffman coding can take upto one extra bit per symbol. The worst case is realized by 
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a source in which one has probability approaching unity. The Arithmetic Coding method 

dispenses with the restriction that each symbol must translate into an integral number of 

bits, thereby coding more efficiently since there is a better relationship between the symbol 

probability in the input and the corresponding number of bits it contributes to the interval. 

The Arithmetic Coding actually achieves theoretical bound to compression efficiency for 

any source [CNW]. In the implementation of Arithmetic Coding method it is required to 

maintain and update the cumulative frequencies of the symbols in the input. The cumulative 

frequency of a symbol is the sum of the frequencies of all the symbols preceding and 

including this symbol in the frequency table. We use the frequencies in calculating the new 

interval to represent the occurrence of the symbol whenever a symbol is being accepted by 

the encoder while encoding and recognized by the decoder while decoding. 

Initially we assume a frequency of 1 for every symbol and initialize the cumulative 

frequency table accordingly. Low and High represent the interval at any instance of the 

compression process. Before anything is transmitted Low and High are initialized with 0 and 

Top value respectively. Integer arithmetic is adapted to overcome the overflow and 

underflow problems of the floating point arithmetic. Incremental transmission and 

incremental reception [CNW] are used to get around the restriction on the length of the 

message by the narrowing interval. The values of High and Low are compared for the same 

higher order bits and equal bits in both High and Low are buffered for transmitting to the 

decoder, as these bits are not affected by future narrowing. Packets made of 8 such bits are 

sent to the decoder. The interval is readjusted and the next symbol is accepted and 

processed in the same way. This process is continued until a special symbol (EOF) is 

encountered. This procedure takes care of very long strings. The decoder receives these 

packets incrementally using a variable value. In the beginning the value consists of bits 

received. the initial values of Low and High and the initialization and updating of the 

dictionary follows that of the encoder. As the symbols are identified, the processed bits flow 
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out at the high significance end and the newly received fresh ones flow in at the low 

significant end. this process is continued until the special symbol (EOF) is recognized. 

The cumulative frequency table is sorted in the frequency order to minimize the 

number of updates to it after every symbol is processed. Translation tables of character to 

index (char_ to _ index) and Index to char (ind _ to _char) are used to simplify the process of 

sorting the cumulative frequency table is updated. To overcome the overflow and 

underflow problems of the integer arithmetic, the frequencies are scaled down by a 

normalization factor at regular steps. 

Consider an alphabet of symbols {a,e,i,o,u,!}. Initially let us assume a frequency of 1 

for every symbol. For the simplicity of presentation we use real arithmetic. As each symbol is 

processed, the range is narrowed to that portion of it is allocated to the symbol. Consider 

transmitting the message eaii!. Initially, both encoder and decoder know that the interval is 

[0,1] and the probability table is: 
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Symbol Cum. Freq Probability Range 

a 1 0.167 [0.000 0.167] 

e 2 0.167 [0.167 0.333] 

i 3 0.167 [0.333 0.500] 

o 4 0.167 [0.500 0.667] 

u 5 0.167 [0.667 0.833] 

! 6 0.167 [0.833 1.000] 

After seeing the first symbol, "e", the encoder narrows the range to [0.167,0.333] as 

"e" was allocated the range [0.167, 0.333] in the initial range distribution. The probability 

table is updated as follows: 

Symbol Cum. Freq Probability Range 

a 1 0.143 [0.000 0.143] 

e 3 0.286 [0.143 0.429] 

i 4 0.143 [0.429 0.572] 

o 5 0.143 [0.572 0.715] 

u 6 0.143 [0.715 0.858] 

! 7 0.143 [0.858 1.000] 
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The second symbol "a" narrows the interval to [0.167,0.191] which is the 1/7 of the 

previous interval [0.167, 0.333], since "a" was of the range [0.000, 0.167] or [0.0, 1/7] in the 

previous probability table. The probability table after seeing "a" is: 

Symbol Cum. Freq Probability Range 

a 2 0.250 [0.000 0.250] 

e 4 0.250 [0.250 0.500] 

i 5 0.125 [0.500 0.625] 

o 6 0.125 [0.625 0.750] 

u 7 0.125 [0.750 0.875] 

! 8 0.125 [0.875 1.000] 

Similarly after seeing the third symbol "i" the interval is narrowed to [0.179, 0.182] and the 

probability table is updated to: 

Symbol Cum. Freq Probability Range 

a 2 0.222 [0.000 0.222] 

e 4 0.222 [0.222 0.444] 

i 6 0.222 [0.444 0.666] 

o 7 0.111 [0.666 0.777] 

u 8 0.111 [0.777 0.888] 

! 9 0.111 [0.888 1.000] 

11 



Similarly after seeing the fourth symbol "i", the interval is narrowed to [0.1803, 

0.1810) and the probability table is changed to: 

Symbol Cum. Freq Probability Range 

a 2 0.200 [0.000 0.200] 

e 4 0.200 [0.200 0.400] 

i 7 0.300 [0.400 0.700] 

o 8 0.100 [0.700 0.800] 

u 9 0.100 [0.800 0.900] 

! 10 0.100 [0.900 1.000] 

Similarly after seeing the message terminating symbol "i", the final interval is [0.1809, 

0.1810). This range is transmitted to the decoder. 

When the decoder receives the final range [0.1809, 0.1810) it follows the same 

procedure of the encoder and successfully decodes the message eaii! 
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IV. Cascading 

The space efficient variation of the LZW algorithm builds up a dictionary of i' 

entries from the text. In the encoding of the input text, we match a maximum length prefix 

which appears in the dictionary and replace it by the index of k bits of the appropriate entry 

in the dictionary. The encoding then continues with the rest of the input, similarly. This way 

each string in the input text is replaced by an index of the dictionary. 

We can count the frequencies of the entries of the space efficient variation of the 

LZW dictionary, i.e., the number of times each entry of the dictionary is sent in the 

compression process. We then notice that not all entries of the dictionary have the same 

frequency, some may be used more often than the others and some may never be used. This 

skewed distribution of the frequencies of the space efficient variation of the LZW dictionary 

could be well utilized in the Arithmetic coding. We apply the Arithmetic Coding method 

algorithm by treating the entries of space efficient variation of the LZW dictionary as 

alphabet to obtain further compression. We call the compression obtained by applying the 

LZW algorithm to the input text, "primary compression" and the extra compression 

achieved by applying the Arithmetic Coding method to the compressed data from LZW 

encoder, "Secondary compression". 

In this cascading process, the alphabet for Arithmetic coding method is the set of 

indices of the space efficient variation of the LZW dictionary, i.e., integers from 0 to 1 . We 

maintain a cumulative frequency table, Low and High values to represent the interval at 

any instance of compression process. The initial upper and lower bounds of the range are 

Top_value and 0 respectively. To start with, we assign High = Top_value and Low = 0. We 

assume a frequency of 1 for every entry of the frequency table representing the fact that 

such an entry was inserted into the dictionary although it was not sent at the first occurrence. 
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A corresponding cumulative frequency table is constructed. The output from the encoder of 

the LZW algorithm is directed to the encoder of the Arithmetic coding method. As the 

encoder of Arithmetic coding method receives the indices of the LZW dictionary, it updates 

the cumulative frequencies of all the symbols from that index to the end of the table. We use 

different methods in updating the cumulative frequency table during the compression 

process using different weights added to the frequencies. The algorithm then modifies low 

and high values to represent the occurrence of the symbol just received. 

Initially we assume a frequency of 1 for every symbol. We have adopted different 

strategies in updating the cumulative frequency table. Instead of incrementing the 

cumulative frequencies of the symbol occurred ( both at the decoder and encoder end) by a 

value of 1, we have used different weights for different phases of the compression process. 

To describe the weights for updates in the different phases, we used a triple weight method 

(X, Y, Z) where X is the initial weight for an entry, when it is inserted into the dictionary, Y 

is the weight of the update frequency for each occurrence of the existing entry until the 

dictionary gets full. 

We now explain the reason for having different weights for these three phases of the 

compression process. The initial weight X is assigned as the frequency of an entry which was 

inserted into the dictionary but was never sent. A large portion of these entries are never 

sent. Thus we want to assign this initial occurrence a lower weight than further occurrences. 

in cascading the space efficient variation of the LZW algorithm with the Huffman coding 

[PM] found experimentally that assigning these occurrences half the weight of the other 

occurrences optimizes the secondary compression. 

We also distinguish between the occurrences before and after the dictionary gets full. 

In the description we refer to the tree representation of the dictionary described in section 
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2. Consider an entry with "d" children which are leaves in the tree representation of the 

dictionary, when it got full. This means that this entry was sent each time one of its children 

was inserted into the dictionary. However once the dictionary gets full no entries are added 

to the dictionary, we expect the children of this entry to be sent rather than the entry itself 

due to the maximum length matching rule used by the space efficient variation of the LZW 

algorithm. To reflect this expectation we choose a weight Z ( higher than Y) for 

occurrences after the dictionary gets full. 

Cascading the space efficient variation of LZW Algorithm with Arithmetic coding 

eases many of the problems encountered in cascading LZW algorithm with the Huffman 

coding method [PM]. The Huffman coding method requires actual frequencies of the 

symbols in the input text known at the beginning of the compression process. The 

Arithmetic Coding method is not constrained by this requirement as we adopt a dynamic 

update of the cumulative frequency table. Cascading of the space efficient variation of LZW 

algorithm with Arithmetic Coding achieves better results than the results obtained by 

cascading LZW algorithm with Arithmetic Coding [PMK][PMMK]. These results are 

comparable with the results obtained by cascading the ever adaptive variation of the LZW 

compression algorithm and the Arithmetic coding method [PT]. 

In the experiments reported in the next section we test for appropriate values 

for X, Y and Z. 
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V. Experimental Results 

The Experiments were conducted using different data files. The files used were a 

UNIX manual of 202792 bytes, a text book of Engineering, a binary data file of 77824 bytes 

and a file of 58284 bytes made up of the first three chapters of the text book of Engineering. 

Different dictionary sizes were used for all of these files. Different strategies were used to 

update the cumulative frequency table. The results are presented in tables 1 through 8. 

From the tables 1 through 8 we observe that the secondary compression is higher in 

the case of smaller dictionary sizes and larger data sets. The reason for higher compression 

for smaller dictionary is that for those LZW is less effective and there is more room for 

further improvements. The reason for higher compression for larger texts is that they enable 

better approximation. 

To test independently the effect of the two reasons mentioned above for varying 

weights we perform two sets of experiments. One version, described by the triple (1,W,W) 

for W = 1, 2, 3 checks the effect of higher weight for each occurrence of an entry versus the 

initial occurrence when the entry was inserted into the dictionary but not sent. The results 

for W = 2 is marginally better than for W = 1. For W = 3 there is only a slight 

improvement over W = 2 which does not justify the extra computation time involved ( The 

extra time taken is by the Arithmetic Coding process and is not explained here). 

The second version described by the triple (1, 1, W) for W= 1,2, 3 checks the effect 

of higher weight for each occurrence after the dictionary gets full. The results for W = 2 is 

higher than W = 1 and marginally lower than W = 3. These results are slightly higher than 

the version (1, W, W) except for the largest dictionary sizes for which it is slightly lower. 
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Checking a combined effect of both the versions is a version described by the triple 

(1, 2, 3) shows only a slight improvement over the previous version. Thus our conclusion is 

that either of the versions (1,2,2) or ( 1, 1, 2,) should be used where the difference is 

negligible. 

In general our conclusion is that cascading the space efficient variation of the LZW 

algorithm with Arithmetic Coding yields a significant increase in the compression ratio. This 

increase is specially high for small dictionary sizes and binary files. However as we show the 

cascading should not be done directly, but a fine tuning is required. 
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Table 1 

File ch123 
Updating method: (1,W,W) 
Compression ratio using Arithmetic Coding = 36.11 

size 58284 bytes 

Dictionary Comp Comp Comp Comp 
size ratio Ratio Ratio Ratio 
# of bits Traversal Cascade Cascade Cascade 

W=1 W=2 W=3 

9 49.25 49.52 50.41 50.8 

10 56.93 55.5 55.95 56.22 

11 60.71 59.26 59.26 59.43 

12 62.42 61.64 61.48 61.47 

13 62.48 61.32 61.29 61.28 

Table 2 

File Allbin 
Updating method: (1,W,W) 
Compression ratio using Arithmetic Coding = 23.61 

size 77824 bytes 

Dictionary Comp Comp Comp Comp 
size Ratio Ratio Ratio Ratio 
# of bits Traversal Cascade Cascade Cascade 

W=1 W=2 W=3 

9 40.43 40.3 40.77 40.88 

10 39.90 40.97 41.18 41.32 

11 39.45 41.98 42.19 42.31 

12 40.81 44.33 44.65 44.55 

13 45.19 46.75 46.81 46.77 
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Table 3 

File Allch size 151305 bytes 
Updating method: (1,W,W) 
Compression ratio using Arithmeic Coding = 38.26 

Dictionary Comp Comp Comp Comp 
size Ratio Ratio Ratio Ratio 
# of bits Traversal Cascade Cascade Cascade 

W=1 W=2 W=3 

9 47.53 50.09 50.49 50.63 

10 55.61 55.97 56.09 56.14 

11 59.87 59.88 59.85 59.84 

12 62.45 62.62 62.6 62.55 

13 63.62 63.27 63.25 63.16 

Table 4 

File Allman size 202792 bytes 
Updating method: (1,W,W) 
Compression ratio using Arithmetic Coding = 37.242 

Dictionary Comp Comp Comp Comp 
size Ratio Ratio Ratio Ratio 
# of bits Traversal Cascade Cascade Cascade 

W=1 W=2 W=3 

9 47.44 50.21 50.49 50.62 

10 54.33 55.00 55.09 55.09 

11 58.74 59.03 59.02 58.98 

12 61.34 61.81 61.83 61.74 

13 62.85 62.87 62.82 62.68 
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Table 5 

File ch123 size 58284 bytes 
Updating method (1,w1,w2) 
Compression ratio using only Arithmetic Coding = 36.11 

# of LZW (1,1,1) (1,1,2) (1,1,3) (1,2,3) (1,3,2) 
bits Tray 

9 49.25 49.52 50.97 51.33 51.33 50.99 

10 56.93 55.50 56.14 56.31 56.32 56.25 

11 60.71 59.26 59.33 59.59 59.57 59.55 

12 62.42 61.64 61.54 61.51 61.25 61.30 

13 62.48 61.32 61.30 61.26 61.41 61.57 

Table 6 

File allbin Size 77824 bytes 
Updating method (1,w1,w2) 
Compression ratio using only Arithmetic Coding = 23.61 

# of LZW (1,1,1) (1,1,2) (1,1,3) (1,2,3) (1,3,2) 
bits Tray 

9 40.43 40.39 40.85 40.95 41.02 40.90 

10 39.39 40.97 41.22 41.31 41.38 41.32 

11 39.45 41.98 42.25 42.29 42.35 42.38 

12 40.81 44.33 44.56 44.51 44.59 44.68 

13 45.19 46.75 46.79 46.65 46.69 46.63 
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Table 7 

File allch Size 151305 bytes 
Updating method (1,w1,w2) 
Compression ratio using only Arithmetic Coding = 38.26 

# of LZW (1,1,1) (1,1,2) (1,1,3) (1,2,3) (1,3,2) 
bits Tray 

9 47.53 50.09 50.70 50.84 50.84 50.71 

10 55.61 55.97 56.17 56.18 56.18 56.21 

11 59.87 59.88 59.96 59.90 59.91 59.98 

12 62.45 62.62 62.61 62.55 62.52 62.66 

13 63.72 63.27 63.26 63.13 63.13 56.67 

Table 8 

File aliman Size 202792 bytes 
Updating method (1,w1,w2) 
Compression ratio using only Arithmetic Coding =37.242 

# of LZW (1,1,1) (1,1,2) (1,1,3) (1,2,3) (1,3,2) 
bits Tray 

9 47.44 50.21 50.59 50.70 50.71 50.63 

10 54.33 55.00 55.17 55.13 55.15 55.18 

11 58.74 59.03 59.07 58.98 59.01 59.11 

12 61.34 61.81 61.87 60.02 60.05 61.86 

13 62.85 62.87 62.80 62.65 62.66 62.84 
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