
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1991

Parallel implementation of spatial domain image processing Parallel implementation of spatial domain image processing

algorithms on the mesh connected computer simulator algorithms on the mesh connected computer simulator

Adury Devi Prasad
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Prasad, Adury Devi, "Parallel implementation of spatial domain image processing algorithms on the mesh
connected computer simulator" (1991). Theses. 2599.
https://digitalcommons.njit.edu/theses/2599

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2599?utm_source=digitalcommons.njit.edu%2Ftheses%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

,)
Z'' Para le! Implementation of Spatial Domain Image

Processing Algoritnms on tne Mean Connectec

Computer Simu ator

by

)

) Acury Devi . rasac

Thesis suornitted to me faculty of the Graduate School of

the Nem/ Jersey Institute of Technology in partial

fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

1991

Approval Sheet

Title: Parallel Implementation of Spatial Domain
Image Processing Algorithms on the Mesh
Connected Computer Simulator

Name of Candidate: Adury Devi Prasad
Master of Science in Electrical Engineering, 1991

Thesis & Abstract Approved
by the Examining Committee:

r. John Carpingli, Advisor Date
Assistant Professor
Department of Electrical and Computer Engineering

Dr. Sotirios Ziaras Date
Assistant Professor
Department of Elect,cal and Computer Engineering

Dr. Anthony bbi Date
Associate Professor
Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey.

VITA

Name: Adury Devi Prasad

Permanent Address:

Degree and Date Master of Science in
to be Conferred: Electrical Engineering, 1991.

Date of Birth:

Place of Birth:

Secondary Education: Nrupatunga High School, 1981.
Hyderabad, NM, 1981.

Collegiate Institutions Attended Dates Degree Year

Nrupatunga Junior College 06/81-06/83. Intermediate 1983.

K.S.R.M. College of Engineering 07/83-06/87. 8.Tech 1987.

New Jersey Institute of Technology 01/89-05/91. M.3 E.E. 1991

Major: Electrical Engineering

ii

ABSTRACT

Title: Parallel Implementation of Spatial Domain Image Processing

Algorithms on the Mesh Connected Computer Simulator

By: Adury Devi Prasad

Thesis Directed by: Dr. John Carpinelli, Department of Electrical and

Computer Engineering.

The performance of conventional computers in image processing applica-

tions is known to be inadequate due to the enormous computational re-

quirements. Almost all image processing applications can be implemented

in parallel. This thesis is the parallel implementation of neighborhood av-

eraging and edge detection by the Sobel and Laplacian operators on the

Mesh Connected Computer Computer Simulator (MCCS), a package de-

veloped at NJIT to study the behavior of SIMD machines. Expressions for

speedup, utilization and efficiency have been derived. Suggestions for fur-

ther improvements that can be incorporated in MCCS and its instruction

set have been made.

iii

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my advisor Dr. John Carpinelli,

Department of Electrical and Computer Engineering, for his expert guid-

ance and valuable advice. I would like to express my sincere thanks to Mr.

Norman J. Van Houten, Director, Department of Health and Environmen-

tal Safety, NJIT, for his cooperation in letting me use the office premises

during all times. Finally I would like to express my sincere gratitude to my

parents for their constant moral support and encouragement.

iv

Contents

1 INTRODUCTION 1

1.1 Background 1

L2 The Relevance of Parallel Processing in DIP 2

1.3 Motivation and Objectives 4

1.4 Outline 5

2 ESSENTIAL FEATURES OF MCCS AND THE ARCHI-

TECTURE 6

2.1 Introduction 6

2.1.1 Basic Operations and Structure of MCCS 6

2.1.2 Simple Array Processor Language 13

2.1.3 Instruction Set and Control Symbols 13

2.1.4 The Control Symbol Set 15

2.2 SIMD Array Processors 17

3 ALGORITHMS 22

3.1 Introduction 22

3.1.1 Spatial Domain Methods 23

3.2 Image Smoothing and Neighborhood Averaging 23

3.2.1 Neighborhood Averaging 24

v

3.2.2 Algorithm for Neighborhood Averaging 25

3.3 Edge Detection by Sobel Operators and Laplacian 29

3.3.1 Edge Detection 31

3.3.2 Algorithm 35

4 PERFORMANCE EVALUATION OF THE MESH 43

4.1 Common Measures of Performance Evaluation 43

4.2 Common Parameters 44

4.3 Calculations for Neighborhood Averaging Algorithm . . . 46

4.3.1 SPEEDUP 46

4.3.2 UTILIZATION 47

4.3.3 EFFICIENCY 48

4.4 Calculations for the Edge Detection Algorithm 48

4.4.1 SPEEDUP 48

4.4.2 UTILIZATION 49

4.4.3 EFFICIENCY 49

4.5 Discussion 49

5 CONCLUSIONS AND FUTURE DEVELOPMENTS 51

5.1 Conclusions 51

5.2 Discussion 51

A SAL Program for Neighborhood Averaging 53

B Neighborhood Averaging on One Pixel Using a Single Pro-

cessor 59

C SAL Program for Edge Detection 62

vi

D Edge Detection on One Pixel Using A Single Processor 65

Bibliography 66

vii

List of Figures

2.1 Main menu of MCCS 8

2.2 The help menu of MCCS 9

2.3 The configuration menu of MCCS 9

2.4 The execution menu of MCCS 10

2.5 The exit menu of MCCS 10

2.6 Block diagram I of MCCS 11

2.7 Block diagram II of MCCS 12

2.8 A typical SIMD mesh 20

2.9 A typical processing element 21

3.1 A square subimage centered at x5 24

3.2 Mask for neighborhood averaging 25

3.3 A 6x6 mesh as specified in *.cfg file in MCCS 26

3.4 Original image for neighborhood averaging 29

3.5 Processed image after neighborhood averaging 30

3.6 Mask for computing G 33

. 3.7 Mask for computing Cy 33

3.8 Mask for computing Laplacian (L) 34

3.9 Original image for edge detection 40

3.10 Gradient image in x-direction Gx 40

viii

3.11 Gradient image in y-direction Gy 41

3.12 Gradient image G 41

3.13 Laplacian image L 42

ix

Chapter 1

INTRODUCTION

1.1 Background

The advent of VLSI technology has greatly influenced the field of computer

architecture. It contributed to increased device speed and reliability, re-

ductions in hardware size and cost and better performance. The task of

achieving high performance is not only dependent upon using faster and

more reliable hardware devices but also on major improvements in com-

puter architecture and processing techniques.

The main principle on which all advanced computer architectures are cen-

tered is the concept of parallel processing. Hwang and Briggs[1] define

parallel processing as an efficient form of information processing which em-

phasizes the exploitation of concurrent events in the computing process.

One of the main requirements for achieving parallel processing is the de-

velopment of more capable and cost-effective computer systems.

One of the fields in which the concept of parallel processing has a wide

range of applications is Digital Image Processing (DIP). As a result ex-
,

1

tensive research is being done to achieve increased speed from both the

hardware and software. DIP is required for improvement of the pictorial

information for human interpretation and for better machine perception.

1.2 The Relevance of Parallel Processing in
DIP

A digital image is a two-dimensional light intensity function fix, y) where

x and y denote the spatial coordinates and the value f at any given point

(x, y) denotes the intensity or the brightness level at that point. Every

element of the array is called the pixel or pel.

Let us assume that a continuous image f(x,y) is arranged in the form of

an N x N array where each element is a discrete quantity obtained from

equally spaced samples over the entire image as in equation 1.1.

display points and 256 grey levels (8 bits), 262,144 bytes are required to

store the image. This fact is of enormous significance since television im-

ages are generated at the rate of 30 interlaced frames per second; it implies

the need for systems that can tackle nearly 60 million operations per second.

Under these circumstances, researchers in this field are striving to achieve

high performance from their systems. Fortunately it has been found that

almost all low level and intermediate level image processing tasks can be

decomposed into a set of sub-tasks distributed over the entire image. Such

decompositions permit simultaneous processing of different regions of the

image, i.e., parallel processing, where each sub-image is served by a simple

processor.

All image processing problems can be broadly categorized into the follow-

ing three classes: low level vision, intermediate level vision and high level

vision. Low level image processing operations are identical over all pixels

in the image. Each processor basically has to execute the same sequence of

instructions over the subimages that are assigned to it. Single Instruction

Multiple Data (SIMD) machines are suitable for such tasks as such ma-

chines are optimized for parallel neighborhood operations. The data access

for each processor is usually restricted to its nearest neighbors.

Intermediate level vision is subsequent processing done on the image after

low level vision. Once the manipulation on the pixels is done in low level

vision other information like the area of the image and the connectivity of

the edges are determined in this step. In most cases SIMD architectures

3

are suitable for intermediate level vision problems. Hypercubes and other

such architectures are also being extensively used for these problems.

High level vision operations involve regions of the image rather than a small

neighborhood and require the application of different operations over dif-

ferent regions. Multiple Instruction Multiple Data (MIMD) machines are

better suited for such operations.

This thesis is the simulation of an SIMD machine for low level vision for

image processing applications using the Mesh Connected Computer Sim-

ulator (MCCS), a package for simulating mesh connected multiprocessor

systems.

1.3 Motivation and Objectives

The motivation for this thesis is the SIMD machine for low level vision that

is being designed by the department of Electrical and Computer Engineer-

ing, Indian Institute of Science, Bangalore, India. It is a special purpose

architecture to implement relaxation labelling algorithms for image pro-

cessing. Digital image processing is a challenging field because in the final

analysis, one is often trying to "understand" and "improve" a digital image

which is just an array of numbers.

The objectives of this thesis are to implement spatial domain image pro-

cessing algorithms in parallel on MCCS and to suggest improvements that

can be incorporated into the package thereby enhancing its utility to the

users.

4

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 highlights the

essential features of the architecture being simulated and that of MCCS, the

package being used. The algorithms for various operations performed on the

machine and sections of the code written are discussed in Chapter 3. The

performance evaluation of the architecture based upon the results obtained

is discussed in Chapter 4. Significant results and further improvements that

can be incorporated are highlighted in Chapter 5.

5

Chapter 2

ESSENTIAL FEATURES OF
MCCS AND THE
ARCHITECTURE

2.1 Introduction

The Mesh Connected Computer Simulator, MCCS, is a PC based software

package coded in TURBO C. MCCS is compiled to a command file, which

can be run directly from a floppy or hard disk in the DOS environment. The

user constructs the mesh by specifying the number of rows and columns and

the size of local memory for each processing element. The programs, coded

in Simple Array-Processor Language (SAL), can be executed in one of the

following three modes: continuous, single step or continuous with break

points. The package allows the user to examine the contents of registers

and local memory during or after program execution [3].

2.1.1 Basic Operations and Structure of MCCS

The simulator is a menu driven system and is divided into six substructures

as follows:

6

• The cover page which gives information about the authors on the

screen.

• The main diagram, which displays the four basic function entries, Fl,

F2, F3 and F4, which select the help menu, configuration menu, exe-

cution menu and exit to DOS, as shown in figure 2.1.

• The Help screen can be accessed by pressing Fl in the main menu.

All the pages can be accessed by pressing the PgUp and PgDn keys.

The Help screen is shown in figure 2.2.

• The Configuration screen can be accessed by pressing the F2 key

in the main menu. This screen is used to specify the configuration

of the mesh, which is user defined. This screen is shown in Figure 2.3.

• The Execution screen can be accessed by pressing the F3 key in the

main menu. This menu helps the user to execute programs in one of

the three modes specified previously. The screen is shown in figure 2.4.

• The Exit screen can be accessed by pressing the F4 key in the main

menu. This allows the user to quit MCCS and return to DOS. This

screen is shown in figure 2.5.

7

The block diagram of MCCS is shown in figures 2.6 and 2.7 which display

all the modules [3'.

The maximum size of the mesh that can be simulated using MCCS is 8x8.

The maximum size of the local memory for each processing element is 4

Kbytes.

8

Version: 1.00 Mesh Connected Computer Simulator

Background:

The Mesh,Connected Computer Simulator is a simulator that

can run Simple Array processor Language coded programs and

at the same time show the array processor operation and

data flow to the user.

Operation:

The sequence to run MCCS is to first define the array processor

configuration. That means use F2 to define the PE array, assign

local memory to each processor element (PE) and save them.

Fl-Help menu F2-Configuration F3-Execution F4-Exit to DOS

Figure 2.3: The configuration menu of MCCS

9

2.1.2 Simple Array Processor Language

The programs executed on MCCS are coded using Simple Array Processor

Language.

2.1.3 Instruction Set and Control Symbols

The instructions which deal with PE operation are as follows:

• Rotate Down (rtd), Rotate Up (rtu), Rotate Left (rtl) and Rotate

Right (rtr). These instructions are useful in routing data from regis-

ter R (RGR) of one PE to another.

• The Load (lod xxx) and Store (sto xxx) instructions are used to load

and store data between register A (RGA) of each PE and location

xxx, which ranges from 0 to 127.

• The Add (add), Subtract (sub), Multiply (mul) and Divide (div) in-

structions are used to carry out basic arithmetic operations. For all

these instructions the two operands must be loaded into RGA and

register B (RGB) before execution. The result is always stored in

RGA.

• Exclusive or (xor), Or (orb) and And (and) instructions are logical

operations where the operands are in RGA and RGB and the result

13

is stored in RGB.

• Move to register B (mbi), move from register B (mbo), move to regis-

ter R (mri), move from register R (mri), move to register X (mxi) and

move from register X (mxo) instructions are used to move between

the respective registers and register A.

• Jump zero to entry xx (jpz xx) and jump no zero to entry xx (jnz

xx) instructions are used for branching operations where register C is

used as a counter. The value xx ranges from 0 to 31.

• Increment (inc) and decrement (dec) instructions are used to manip-

ulate the counter register C.

• The Mask (msk) instruction is used to make a PE active or inactive as

required in the program. A 0 denotes a masked PE while a 1 denotes

an active PE.

The control unit (CU) instruction set dealing with branch control, data

broadcasting and masking is described as follows:

• Set xxx (set xxx) instruction is used to set the content of RGC to the

value xxx, which ranges from 0 to 127.

14

• The jump (jmp) instruction is used to branch to location xx, which

ranges from 0 to 31.

• The broadcast instruction (bcd xxx) is used to broadcast the value

xxx to the register B of all active PEs.

• The broadcast instruction (cbcd) sends the value in register RGCA

to register B of all active PEs.

• The control load (clod ij xxx) and control store (csto ij xxx) instruc-

tions are used to load and store the contents of RGCA from and to

location xxx of the ijth local memory (PEM) where i and j are the

numbers of the row and column and xxx ranges from 0 to 127.

• The (ent xx) is not an instruction but is used to indicate the entry

point xx which ranges from 0 to 31 during jnz, jpz and jmp instruc-

tions to transfer control under the conditions designated by the user.

2.1.4 The Control Symbol Set

Every SAL program consists of the following control symbols. They must

be appropriately placed, otherwise programs will be aborted. They are:

15

• # : To denote the start and end of the program.

• $: To denote start and end of memory allocation algorithms.

s & xxx: Used for loop control where xxx denotes the number of the

loop. It is used in $ and !, the memory allocation and display algo-

rithms, respectively.

• % : To denote start and end of function algorithms.

• !xxx: ! is the display control symbol and xxx is the number of dis-

plays. This command is optional. !O is used to skip this command.

Any SAL program is structured as follows:

• # : start of program

• $: Start of the memory allocation algorithms (MAA)

• MAA body

• $: End of the memory allocation algorithms

16

• % : Start of function computation algorithms (FCA)

• FCA body

• % : End of function computation algorithms

• !xx : Start of display function algorithms (DFA)

• DFA body

• # : denotes the end of program.

2.2 SIMD Array Processors

A synchronous array of parallel processors is called an array processor,

which consists of multiple processing elements (PEs) supervised by a single

CU. These machines are best suited for single instruction multiple data

streams. The typical applications are:

• matrix algebra

• matrix eigenvalue calculations

• linear programming

• general circulation and weather modeling

17

• beam forming and convolution

• image processing and pattern recognition

• real time scene analysis

A typical mesh is shown in figure 2.8. Each PE (2, j) is connected to four

of its neighbors denoted by (i, j — 1), (i,j + 1), (i — 1,j) and (i + 1, j). The

PEs are connected in an end around fashion wherein the PEs on the left-

most column are connected to PEs in the previous rows in the rightmost

column and the PEs in the topmost row are connected to the PEs in the

bottom row. Each PE has its own local memory whose maximum size is

4 Kbytes and can be accessed by sequential or indexed addressing. In the

case of indexed addressing the register X is set to the value of the offset. A

typical processing element is shown in figure 2.9. Each processing element

consists of an arithmetic and logic unit (ALU) to perform arithmetic and

logic operations. Each PE also has four registers as follows:

• Register A, called the accumulator for mathematical and logical op-

erations with register B. The results of mathematical operations are

integer type for MCCS version 1.00. Another function of RGA is to

load data from and store data to local memory (PEM).

• Register R, called the routing register, is used to route data from RGR

of one PE to RGR of another PE. Masked PEs can not transmit data

18

stored in their RGR to other PEs, but can receive data from another

PE.

The control unit (CU) consists of the following registers:

• The CU counter register (RG CC) is an unsigned register for counting

data from 0 to 65534. It will automatically start from 0 when over

65534.

• The CU mask register (RGCM), which contains M by N bits where

M and N are defined by the number of rows and columns in the array

processor. A 0 represents that the corresponding PE is masked and

a 1 implies that the PE is active.

All the registers except RGCM are 16 bit registers.

19

Chapter 3

ALGORITHMS

3.1 Introduction

The first problem that has been parallelized using MCCS is 'Neighbor-

hood Averaging'. It is a popular image enhancement technique under the

category of image smoothing. The principal objective of any image en-

hancement technique is to process a given image to remove noise so that

the result is more suitable than the original image for a specific application.

The word 'specific' is significant as most of the techniques in this category

are problem dependent. These enhancement techniques can be categorized

into two categories. They are:

1. Frequency Domain Techniques

2. Spatial Domain Techniques

The frequency domain techniques involve the manipulation of the Fourier

Transform of the image whereas the spatial domain techniques involve the

22

image plane itself, i.e., direct manipulation of the pixels of an image.

3.1.1 Spatial Domain Methods

The term 'spatial domain' is defined as the aggregate of the pixels that con-

stitute an image. The methods in this domain are procedures that operate

directly on these pixels. The general representation of image processing

functions in this domain is:

where g(x, y) is the processed image and f(x, y) is the original image. T is

the operator on f, defined over some neighborhood of the pixel (x, y). The

basic approach in these methods is to define a neighborhood about (x, y),

for example a square or a rectangular subimage area centered at (x, y) as

shown in figure 3.1. Then the center is moved from pixel to pixel over

the entire image and the operator T is applied at each pixel. Though the

subimage area can be of any geometrical shape the square is chosen because

of the ease of implementation.

3.2 Image Smoothing and Neighborhood Av-
eraging

The primary aim of smoothing operations is to "reduce/eliminate spurious

effects present in a digital image due to a poor sampling system or trans-

mission channel" [2].

23

Figure 3.1: A square subimage centered at x5

3.2.1 Neighborhood Averaging

This problem is a straightforward spatial domain technique for smoothing.

Given an N x N digital image denoted by f(x, y), the aim is to generate

a processed image g(x, y) whose grey level intensity at every point (x,y)

is obtained by averaging the intensities of the pixels contained in a user

defined neighborhood of (x, y), given by the equation:

The mask to implement this is shown in figure 3.2.

24

3.2.2 Algorithm for Neighborhood Averaging

The assumptions made are that the subimage size is 4x4 and the image size

is 16x16. Hence 16 iterations are required to process the entire image. The

mesh size is chosen to be 6x6, -IN -t- 2 x VA' -4- 2, to eliminate interpro-

cessor communication during the processing of a subimage, while accessing

the pixels in the window. Here the window implemented is a square of size

3x3. The mesh is shown in figure 3.3.

Algorithm

1. Load the subimages, i.e., the 4x4 subimages along with the neighbor-

ing rows and columns of that subimage starting from location 10 of

each PE.

25

Figure 3.3: A 6x6 mesh as specified in *.cfg file in MCCS

26

NOTE: Since the pixels on the edge, i.e., rowl, columnl, rowl6 and

columnl6 are to be left unchanged, the subimages involving pixels

will be of size 5x5 and will be padded with 'O's to make them of size

6x6 suitable to be loaded into the mesh. Subimagel is at location 10

of each PE, subimage2 is at location 11 and so on up to subimagel6

at location 25 of each PE.

2. Load register A with subimagel at location 10 of each PE and store

it at location 0 of each PE.

3. If the subimage involves pixels on the edge then using the Rotate

Right (rtr), Rotate Left (rtl), Rotate Down (rtd) and Rotate Up

(rtu) reposition the subimage so that it is stored in location 0 of PEs

2,1 to 2,5, 3,1 to 3,5, 4,1 to 4,5 and 5,1 to 5,5 of the mesh shown in

figure 3.3. This step can be avoided if the padding with Os is done

carefully while the subimages are loaded into the mesh. The Os must

be added to either the leftmost or the rightmost column and either

at the top row or the bottom row, depending on the subimage.

4. Using the Rotate Right and Rotate Left instructions, access the neigh-

bor values from PEs (i, j —1) and (i, j -I-1) for all the PEs (i, j). Store

them at locations 1 and 2 respectively. If the subimage contains pix-

els from the edge of the original image then the PEs containing them

will be masked and will be active only when passing the pixel value

it holds to the neighboring PEs.

27

5. Using the Rotate Up and Rotate Down instructions three times each,

the six other neighbor values of the pixel (x, y) are accessed from PEs

(i — 1, j) and (i + 1, j) for each PE (i, j) and are stored in locations 3

to 8. In this step PEs containing the pixels from the edge are masked.

6. If the subimage being processed contains pixels from the edge then

set all the PEs containing those pixels to the active state and all the

others to the inactive state (mask). Store location 0 of the active

PEs to the corresponding location where the processed subimages are

being stored (26 to 41).

7. Mask all the PEs active in step 6; unmask all the others. Add the

contents of locations 0 to 8 for all the active PEs.

8. Broadcast 9 to all the active PEs in step 7.

9. Divide the sum in register A by 9 which is in register B for all the

active PEs in step 8.

10. Store the result in the corresponding location for all the active PEs

in step 9.

28

Figure 3.4: Original image for neighborhood averaging

11. Activate all PEs.

12. Repeat steps 1 to 11 for the remaining 15 subimages.

The code for this algorithm is written in Simple Array Processor Language

(SAL) and is included in Appendix A. The original image and the processed

image are shown in figures 3.4 and 3.5. The performance evaluation of the

mesh is discussed in chapter 4.

3.3 Edge Detection by Sobel Operators and
Laplacian

Gradient and Laplacian operators are part of image segmentation. Image

segmentation is the process that subdivides an image into its constituent

29

Figure 3.5: Processed image after neighborhood averaging

parts or objects. Segmentation is of enormous interest because it helps in

the extraction of entities from the image for subsequent processing, such as

description and recognition. Algorithms in this class are usually based on

one of the following two properties of grey levels: discontinuity and simi-

larity. In the first category, we partition an image based on abrupt changes

in grey level. This helps in the detection of isolated points, lines and edges

in an image. In the second category the approach is usually based upon

thresholding, region splitting, region growing and merging. The methods

used to identify these properties are dependent on spatial masks which dif-

fer from one application to another.

30

3.3.1 Edge Detection

Edge detection is the most commonly used method to detect discontinu-

ities in grey level. This is so because isolated points and thin lines are not

frequent occurrences in most real life images.

An edge is defined as the boundary between two regions with relatively

distinct grey level values. In order to identify edges based on discontinu-

ities in grey level it is assumed that the regions in question are sufficiently

homogeneous so that transition between two regions can be determined. If

this is not the case then other methods are used to determine edges [2]. Ba-

sically, most edge detection algorithms are dependent on the computation

of a local derivative operator. The first derivative at any point in an im-

age can be obtained by using the magnitude of the gradient at that point,

while the second derivative can be obtained from the Laplacian at that

point. Expressed mathematically, the gradient G of an image f(x,y) at lo-

cation (x, y) is defined by the two dimensional vector given by the equation:

The gradient vector G can be decomposed into two components Gz andG Y •

G, is the component of the gradient vector in the x direction and Gy is

the component of the gradient vector in the y direction. For edge detection

we need the magnitude (ABS) of this vector, which is given by the equation:

It can be approximated by the following equation:

because it is easier to implement when dedicated hardware is being used.

If we choose a 3x3 window as the neighborhood size, the masks to compute

G and Gy are shown in figures 3.6 and 3.7, respectively. The neighbors

closest to the center pixel of the mask are given a weight of two because

this results in additional smoothing [2]. Referring to figure 3.1 the compo-

nents Gx and Gy of the gradient vector are given by the following equations:

Larger windows can be implemented along the same lines, but 3x3 windows

are preferred because of their modest hardware requirements and increased

computational speed [2]. The two masks shown in figures 3.6 and 3.7 are

commonly referred to as Sobel Operators.

The Laplacian is commonly referred to as the second derivative operator

given by the equation:

Figure 3.8: Mask for computing Laplacian (L)

The digital Laplacian at a point (x, y) with grey level x5 as shown in figure

3.1 is given by the equation:

This can be implemented by the mask shown figure 3.8.

The Laplacian is sensitive to noise and hence is seldom used by itself to

detect an edge. It is merely used to determine whether the pixel is on the

light or dark side of the edge.

34

3.3.2 Algorithm

1. Load the 4x4 subimage and the neighboring rows and columns of that

subimage, starting from location 10 of each PE.

Note: Since pixels on the edge i.e. rowl, rowl6, columnl and col-

unin16 are to be left unchanged, the subimages involving these rows

and columns will be 5x5 and so are padded with Os to make the subim-

age of size 6x6 suitable to be loaded into the mesh.

2. Load subimagel at location 10 and store it at location 0.

3. If the subimage involves pixels from rowl, columnl, rowl6 and col-

umnl6 then using the Rotate Right (rtr), Rotate Left (rtl), Rotate

Down (rtd) and rotate Up (rtu) instructions reposition the subimage

such that the area of interest is stored in location 0 of PEs 2,1 to

2,5, 3,1 to 3,5, 4,1 to 4,5, and 5,1 to 5,5. This step can be avoided if

the padding with Os in step 1 is done carefully depending upon the

subimage as explained in the previous algorithm.

4. Using the Rotate Right instruction first and the Rotate Left instruc-

tion next access the neighbors on the right and left of each pixel

(x, y) in the subimage and store them at locations 1 and 2 of each

PE, respectively. If the subimages involve the pixels on the edge of

the image then the PEs containing those pixels are masked.

35

Note: The order in which the neighbors are accessed is important

in this algorithm because, for the calculation of gradient, some pixel

intensities have to be added and some pixel intensities subtracted. If

we follow the same order for all subimages then we can write the code

in the form of a loop provided the instruction set is powerful enough

to permit it.

5. Using the Rotate Down instruction three times first and the Ro-

tate Up instruction three times next access neighbors from locations

for every location (i, j) and store them in locations 3 to 8 of each PE,

respectively. They are accessed in the same order as mentioned above.

6. If the subimage involves pixels on the edge of the image store them

at the corresponding location for the processed subimage and mask

those PEs.

7. Load the contents of location 3 and broadcast 2 to all active PEs.

Multiply the contents of register A by 2 and move the product to

register B.

8. Add the contents of locations 4 and 5 to the product in register B

and store the result in the corresponding location.

36

9. Repeat steps 6, 7 and 8 on the contents of locations 6, 7 and 8 of

active PEs in step 8 and move the result to register B.

10. Load the partial result earlier stored and subtract it from the contents

of register B for the same set of active PEs in step 9 and store the

result at the corresponding location. The result is the gradient image

in the x direction.

11. Load the contents of location 1 for the same set of active PEs in step

10. Broadcast 2 to all active PEs. Multiply the contents of register

A by 2 and move the result to register B.

12. Add the contents of locations 4 and 7 to the product and store the

partial result at the corresponding location for Gy, the gradient image

in the y direction.

13. Repeat steps 11 and 12 for locations 2, 5 and 8 in the same order for

the same set of active PEs and move the result to register B.

14. Repeat step 10 and store the result in the corresponding location for

Gy.

15. Mask all the PEs for which Gy is positive. Load from the location

containing Gz for the remaining PEs. Broadcast -1 to all active PEs

37

and multiply it with the contents of register A. Store the result in the

same location from where it was loaded.

16. Repeat step 15 for Gy with the appropriate mask settings.

17. Unmask all the PEs inactive in step 15. Load Gx and move it to

register B. Load Gy and add it to the contents of register B. Store

the result in the corresponding location for the gradient image.

18. Load the contents of location 1 for all the active PEs in step 17. Add

the contents of locations 2, 3 and 6, moving the partial sum to register

B before the contents from each location is loaded.

19. Store the result in the corresponding location for the Laplacian.

20. Load the contents of location 0 for the active PEs in step 19. Broad-

cast -4 to all active PEs and multiply it with the contents of register

A. Store the product in register B.

21. Load the result earlier stored from the location of the Laplacian and

subtract it from the contents of register B.

38

22. Store the result in the corresponding location for the Laplacian.

23. Activate all the PEs. Load the next subimage.

24. Repeat steps 1 to 22 until the whole image is processed.

The code for this algorithm is written in Simple Array Processor Language

(SAL) and is included in appendix C. The original and processed images

are shown figures 3.9, 3.10, 3.11, 3.12 and 3.13.

39

Chapter 4

PERFORMANCE
EVALUATION OF THE
MESH

4.1 Common Measures of Performance Eval-
uation

SPEEDUP: Speedup (S,) is the ratio of the time taken by a single proces-

sor to that taken by n processors given by the equation:

where Sri is the speedup, T1 is the time taken by a single processor to ex-

ecute a program, and Tr, is the time taken by n, processors to execute the

same program.

UTILIZATION: Utilization (U) is the ratio of the total number of busy

processor cycles to the total number of available processor cycles. If a pro-

gram takes K instruction cycles to execute using N processors, then the

total number of processor cycles available is the product of K and N. Not

all processors will be active during the execution of the entire program. If

43

4.2 Common Parameters

The mesh size for both algorithms is 6 x 6 since the subimage size is 4 x 4.

The original image size is 16 x 16. To calculate speedup in both the cases,

the time taken by a single processor to execute the same algorithm should

be determined. If the image size is N x N then there are N2 pixels in

the image. Since it has been assumed that the pixels on the edge are left

unchanged only two instructions are required to process them, i.e. one to

load them into their respective PEs and the other to store them at the cor-

responding location in the local memory of each PE. For any given N x N

image there are (4N — 4) such pixels. Then the remaining pixels are given

by the equation:

Therefore the time taken for a single processor to execute any algorithm is

given by the equation:

where L is the number of instructions required to implement the algorithm

on a single pixel using one processor on MCCS.

The second step in determining the speedup is to calculate the number

of instructions required by n processors to implement the same algorithm.

One need not write the whole program to determine this. Irrespective of

the image size there will be three distinct types of subimages on which the

algorithm is implemented. They are: subimages with one row and one col-

umn of pixels from the edge of the original image, subimages with one row

or one column of pixels from the edge and subimages with no pixels from

the edge. Therefore, given an N x N image, one can determine the number

of subimages in each of the three categories mentioned above. The code is

written for each type of subimage and the number of instructions required

to process them is determined. For the total number of instructions re-

quired to process the entire image, we obtain the sum of the products of

the number of instructions required to process each distinct subimage with

the number of such subimages over the entire N x N image. Therefore, if

A, B and C are the number of subimages of each type and P, Q and R are

the number of instructions required, respectively, to process each type of

subimage, the total number of instructions required by n processors (Tn) is

given by the equation:

45

The actual values of the three parameters discussed above are determined

for the two algorithms and general formulae for the three parameters for

any given N x N image are derived.

4.3 Calculations for Neighborhood Averag-
ing Algorithm

4.3.1 SPEEDUP

It has been determined that 28 instructions are required to implement the

algorithm on a single pixel on MCCS. Refer to appendix B. Therefore equa-

46

4.3.2 UTILIZATION

1120 instructions are required to implement the neighborhood averaging al-

gorithm on a 6x6 mesh. Therefore the number of available processor cycles

is equal to the product 1120 and 36, i.e., the total number of processors

in the mesh. The number of busy processor cycles as determined from ap-

pendix A is equal to 19640 cycles. Therefore the utilization in the case

of neighborhood averaging algorithm is the ratio of the available processor

cycles and busy processor cycles and is equal to:

4.3.3 EFFICIENCY

Efficiency is the ratio of the speedup and the number of processors in the

mesh. The speedup in the case of neighborhood averaging algorithm is 5.00

and the number of processors is 36. Therefore efficiency is:

4.4 Calculations for the Edge Detection Al-
gorithm

4.4.1 SPEEDUP

It has been determined that 69 instructions are required (refer to appendix

D) to determine the gradient of a pixel in the x direction (Gm), the gradient

in the y direction (Gy), the gradient (sum of the absolute values of G x and

G y) and the Laplacian (L) of that pixel. Therefore the time taken by

one processor to implement the edge detection algorithm is given by the

equation:

Therefore a total of 13644 instructions are required to implement the edge

detection algorithm using a single processor on MCCS. It has been deter-

mined that 122, 120 and 122 instructions are required to implement the

edge detection algorithm on a 6x6 mesh. Therefore the total number of

instructions required to implement the edge detection algorithm using 36

processors is equal to:

48

Therefore speedup achieved using 36 processors in the case of the edge de-

tection algorithm is equal to:

4.4.2 UTILIZATION

1936 instructions are required to implement the edge detection algorithm

using 36 processors. Therefore the number of available processor cycles is

the product of 1936 and 36 which is equal to 69696. The number of busy

processor cycles as determined from appendix C is equal to 28464. There-

fore the utilization in the case of the edge detection algorithm is equal to:

4.4.3 EFFICIENCY

Efficiency is the ratio of the speedup and the number of processors in the

mesh. Therefore efficiency in the case of the edge detection algorithm is

equal to:

4.5
. Discussion

The common aspect of both the algorithms is the accessing of eight neigh-

boring pixels in a 3x3 window around each individual pixel except those on

49

the edge of the image.

In the case of the neighborhood averaging algorithm the deviation in the

intensity of the pixel as compared to its neighbors in a 3x3 window around

it is compensated by its neighbors. If the intensity of the pixel is greater

than its neighbors then its value gets reduced by averaging and the opposite

takes place if the intensity of the pixel is lower than that of its neighbors.

This has a smoothing effect on the image.

The edge detection algorithm belongs to the category of image segmenta-

tion. The main objective is to identify the sections of the image with grey

level discontinuities. This is accomplished by the gradient operators. Once

these discontinuities are determined one has to decide whether the pixel be-

longs to the brighter or darker portion of the image. This is accomplished

by the Laplacian operator. Points where L is positive belong to the darker

portion of the image and points where L is negative belong to the brighter

portion of the image.

50

Chapter 5

CONCLUSIONS AND
FUTURE DEVELOPMENTS

5.1 Conclusions

Two different classes of spatial domain algorithms have been implemented

on MCCS. The first algorithm, which was implemented in parallel, was the

neighborhood averaging algorithm, a popular image enhancement technique

under the category of image smoothing. The speedup achieved was 5.00,

the utilization achieved was 48% and the efficiency of the mesh was 13.8%.

The second algorithm implemented was the edge detection algorithm using

Sobel operators and Laplacian. This algorithm falls in the category of image

segmentation. The speedup achieved was 7.04, the utilization achieved was

40.8% and the efficiency of the mesh was 19.5%.

5.2 Discussion

The reasons for such low values of speedup and efficiency can partially

be attributed to the inadequate instruction set of the MCCS. In addition

to that, twenty of the thirty six processors in the mesh are required for

communication purposes only. Hence they are inactive for most of the pro-

51

gram. Each access of a neighbor pixel takes five instructions since all load

and store operations are to be done through register A in MCCS. Rough

calculations show that if the neighbor pixel access can be accomplished in

two instructions the speedup almost doubles. One way to access data from

neighbor PEs faster is by modification of the load and store instructions of

MCCS. Instead of a default register A the user specifies the register. One

other important instruction required which not only helps in speeding up

these algorithms but also facilitates the implementation of new algorithms

in this class is the COMPARE instruction. With this instruction, condi-

tional statements can be implemented and conditional mask settings can

be accomplished.

One other shortcoming of MCCS is that it operates only on integer data.

If suitable modifications can be made and operations on real data can also

be performed on MCCS, the algorithms such as histogram modification

and histogram specification can also be implemented on MCCS. The real

challenge is the implementation of frequency domain algorithms in parallel.

In order to accomplish this major modifications have to be made to the

instruction set of MCCS to facilitate manipulations on floating point data.

Work is being done at NJIT on another package called Euclid which accepts

only floating point data. Hence it may be more suitable for frequency

domain algorithms. Since both the packages are complementary, efforts

can be made to integrate them into one powerful package.

52

Appendix A

SAL Program for
Neighborhood Averaging

This program is written in SAL to implement a neighborhood averaging

algorithm. Each of the sixteen 6x6 subimages are loaded into the local

memory of each PE staring from location 10 through 25. The correspond-

ing processed subimages are stored from location 26 through 41. The code

and comments are written for one subimage. The number of busy processor

cycles are determined as follows:

For each new masking scheme in the program the number of active proces-

sors and the number of instructions in that scheme are multiplied to get

utilized processor cycles.

Appendix C

SAL Program for Edge
Detection

Appendix D

Edge Detection on One Pixel
Using A Single Processor

This program segment is the same as appendix C as far as the computation

of G,, Gy and L is concerned. The only difference is that we do not have

to access the neighboring pixels since the entire image is in the processor's

local memory. From appendix C we can determine that this takes 69 in-

structions.

65

Bibliography

[1] Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel

Processing, Mc-Graw Hill, 1989.

[2] Azriel Rosen Field and Avinash C. Kak, Digital Picture Processing,

Academic Press, London, 1976.

[3] David C. Chen and John D. Carpinelli, MCCS User's Guide, NJIT,

February, 1989.

[4] Rafael C. Gonzalez and Paul Wintz, Digital Image Processing,

Addison-Wesley Press, 1987.

[5] Joseph Kittler and Michael J. B. Duff, Image Processing System Ar-

chitectures, Research Studies Press, 1985.

66

	Parallel implementation of spatial domain image processing algorithms on the mesh connected computer simulator
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Acknowledgements
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Essential Features of MCCS and the Architecture
	Chapter 3: Algorithms
	Chapter 4: Performance Evaluation of the MESH
	Chapter 5: Conclusions and Future Developments
	Appendix A: SAL Program for Neighborhood Averaging
	Appendix B: Neighborhood Averaging on One Pixel Using a Single Processor
	Appendix C: SAL Program for Edge Detection
	Appendix D: Edge Detection on One Pixel Using a Single Processor
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)

