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ABSTRACT 

Title: Parallel Implementation of Spatial Domain Image Processing 

Algorithms on the Mesh Connected Computer Simulator 

By: Adury Devi Prasad 

Thesis Directed by: Dr. John Carpinelli, Department of Electrical and 

Computer Engineering. 

The performance of conventional computers in image processing applica-

tions is known to be inadequate due to the enormous computational re-

quirements. Almost all image processing applications can be implemented 

in parallel. This thesis is the parallel implementation of neighborhood av-

eraging and edge detection by the Sobel and Laplacian operators on the 

Mesh Connected Computer Computer Simulator (MCCS), a package de-

veloped at NJIT to study the behavior of SIMD machines. Expressions for 

speedup, utilization and efficiency have been derived. Suggestions for fur-

ther improvements that can be incorporated in MCCS and its instruction 

set have been made. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

The advent of VLSI technology has greatly influenced the field of computer 

architecture. It contributed to increased device speed and reliability, re-

ductions in hardware size and cost and better performance. The task of 

achieving high performance is not only dependent upon using faster and 

more reliable hardware devices but also on major improvements in com-

puter architecture and processing techniques. 

The main principle on which all advanced computer architectures are cen-

tered is the concept of parallel processing. Hwang and Briggs[1] define 

parallel processing as an efficient form of information processing which em-

phasizes the exploitation of concurrent events in the computing process. 

One of the main requirements for achieving parallel processing is the de-

velopment of more capable and cost-effective computer systems. 

One of the fields in which the concept of parallel processing has a wide 

range of applications is Digital Image Processing (DIP). As a result ex- 
, 
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tensive research is being done to achieve increased speed from both the 

hardware and software. DIP is required for improvement of the pictorial 

information for human interpretation and for better machine perception. 

1.2 The Relevance of Parallel Processing in 
DIP 

A digital image is a two-dimensional light intensity function fix, y) where 

x and y denote the spatial coordinates and the value f at any given point 

(x, y) denotes the intensity or the brightness level at that point. Every 

element of the array is called the pixel or pel. 

Let us assume that a continuous image f(x,y) is arranged in the form of 

an N x N array where each element is a discrete quantity obtained from 

equally spaced samples over the entire image as in equation 1.1. 



display points and 256 grey levels (8 bits), 262,144 bytes are required to 

store the image. This fact is of enormous significance since television im-

ages are generated at the rate of 30 interlaced frames per second; it implies 

the need for systems that can tackle nearly 60 million operations per second. 

Under these circumstances, researchers in this field are striving to achieve 

high performance from their systems. Fortunately it has been found that 

almost all low level and intermediate level image processing tasks can be 

decomposed into a set of sub-tasks distributed over the entire image. Such 

decompositions permit simultaneous processing of different regions of the 

image, i.e., parallel processing, where each sub-image is served by a simple 

processor. 

All image processing problems can be broadly categorized into the follow-

ing three classes: low level vision, intermediate level vision and high level 

vision. Low level image processing operations are identical over all pixels 

in the image. Each processor basically has to execute the same sequence of 

instructions over the subimages that are assigned to it. Single Instruction 

Multiple Data (SIMD) machines are suitable for such tasks as such ma-

chines are optimized for parallel neighborhood operations. The data access 

for each processor is usually restricted to its nearest neighbors. 

Intermediate level vision is subsequent processing done on the image after 

low level vision. Once the manipulation on the pixels is done in low level 

vision other information like the area of the image and the connectivity of 

the edges are determined in this step. In most cases SIMD architectures 
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are suitable for intermediate level vision problems. Hypercubes and other 

such architectures are also being extensively used for these problems. 

High level vision operations involve regions of the image rather than a small 

neighborhood and require the application of different operations over dif-

ferent regions. Multiple Instruction Multiple Data (MIMD) machines are 

better suited for such operations. 

This thesis is the simulation of an SIMD machine for low level vision for 

image processing applications using the Mesh Connected Computer Sim-

ulator (MCCS), a package for simulating mesh connected multiprocessor 

systems. 

1.3 Motivation and Objectives 

The motivation for this thesis is the SIMD machine for low level vision that 

is being designed by the department of Electrical and Computer Engineer-

ing, Indian Institute of Science, Bangalore, India. It is a special purpose 

architecture to implement relaxation labelling algorithms for image pro-

cessing. Digital image processing is a challenging field because in the final 

analysis, one is often trying to "understand" and "improve" a digital image 

which is just an array of numbers. 

The objectives of this thesis are to implement spatial domain image pro-

cessing algorithms in parallel on MCCS and to suggest improvements that 

can be incorporated into the package thereby enhancing its utility to the 

users. 
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1.4 Outline 

The rest of the thesis is organized as follows. Chapter 2 highlights the 

essential features of the architecture being simulated and that of MCCS, the 

package being used. The algorithms for various operations performed on the 

machine and sections of the code written are discussed in Chapter 3. The 

performance evaluation of the architecture based upon the results obtained 

is discussed in Chapter 4. Significant results and further improvements that 

can be incorporated are highlighted in Chapter 5. 
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Chapter 2 

ESSENTIAL FEATURES OF 
MCCS AND THE 
ARCHITECTURE 

2.1 Introduction 

The Mesh Connected Computer Simulator, MCCS, is a PC based software 

package coded in TURBO C. MCCS is compiled to a command file, which 

can be run directly from a floppy or hard disk in the DOS environment. The 

user constructs the mesh by specifying the number of rows and columns and 

the size of local memory for each processing element. The programs, coded 

in Simple Array-Processor Language (SAL), can be executed in one of the 

following three modes: continuous, single step or continuous with break 

points. The package allows the user to examine the contents of registers 

and local memory during or after program execution [3]. 

2.1.1 Basic Operations and Structure of MCCS 

The simulator is a menu driven system and is divided into six substructures 

as follows: 
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• The cover page which gives information about the authors on the 

screen. 

• The main diagram, which displays the four basic function entries, Fl, 

F2, F3 and F4, which select the help menu, configuration menu, exe-

cution menu and exit to DOS, as shown in figure 2.1. 

• The Help screen can be accessed by pressing Fl in the main menu. 

All the pages can be accessed by pressing the PgUp and PgDn keys. 

The Help screen is shown in figure 2.2. 

• The Configuration screen can be accessed by pressing the F2 key 

in the main menu. This screen is used to specify the configuration 

of the mesh, which is user defined. This screen is shown in Figure 2.3. 

• The Execution screen can be accessed by pressing the F3 key in the 

main menu. This menu helps the user to execute programs in one of 

the three modes specified previously. The screen is shown in figure 2.4. 

• The Exit screen can be accessed by pressing the F4 key in the main 

menu. This allows the user to quit MCCS and return to DOS. This 

screen is shown in figure 2.5. 
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The block diagram of MCCS is shown in figures 2.6 and 2.7 which display 

all the modules [3'. 

The maximum size of the mesh that can be simulated using MCCS is 8x8. 

The maximum size of the local memory for each processing element is 4 

Kbytes. 
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Version: 1.00 Mesh Connected Computer Simulator 

Background: 

The Mesh,Connected Computer Simulator is a simulator that 

can run Simple Array processor Language coded programs and 

at the same time show the array processor operation and 

data flow to the user. 

Operation: 

The sequence to run MCCS is to first define the array processor 

configuration. That means use F2 to define the PE array, assign 

local memory to each processor element (PE) and save them. 

Fl-Help menu F2-Configuration F3-Execution F4-Exit to DOS 

Figure 2.3: The configuration menu of MCCS 
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2.1.2 Simple Array Processor Language 

The programs executed on MCCS are coded using Simple Array Processor 

Language. 

2.1.3 Instruction Set and Control Symbols 

The instructions which deal with PE operation are as follows: 

• Rotate Down (rtd), Rotate Up (rtu), Rotate Left (rtl) and Rotate 

Right (rtr). These instructions are useful in routing data from regis-

ter R (RGR) of one PE to another. 

• The Load (lod xxx) and Store (sto xxx) instructions are used to load 

and store data between register A (RGA) of each PE and location 

xxx, which ranges from 0 to 127. 

• The Add (add), Subtract (sub), Multiply (mul) and Divide (div) in-

structions are used to carry out basic arithmetic operations. For all 

these instructions the two operands must be loaded into RGA and 

register B (RGB) before execution. The result is always stored in 

RGA. 

• Exclusive or (xor), Or (orb) and And (and) instructions are logical 

operations where the operands are in RGA and RGB and the result 
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is stored in RGB. 

• Move to register B (mbi), move from register B (mbo), move to regis-

ter R (mri), move from register R (mri), move to register X (mxi) and 

move from register X (mxo) instructions are used to move between 

the respective registers and register A. 

• Jump zero to entry xx (jpz xx) and jump no zero to entry xx (jnz 

xx) instructions are used for branching operations where register C is 

used as a counter. The value xx ranges from 0 to 31. 

• Increment (inc) and decrement (dec) instructions are used to manip-

ulate the counter register C. 

• The Mask (msk) instruction is used to make a PE active or inactive as 

required in the program. A 0 denotes a masked PE while a 1 denotes 

an active PE. 

The control unit (CU) instruction set dealing with branch control, data 

broadcasting and masking is described as follows: 

• Set xxx (set xxx) instruction is used to set the content of RGC to the 

value xxx, which ranges from 0 to 127. 
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• The jump (jmp) instruction is used to branch to location xx, which 

ranges from 0 to 31. 

• The broadcast instruction (bcd xxx) is used to broadcast the value 

xxx to the register B of all active PEs. 

• The broadcast instruction (cbcd) sends the value in register RGCA 

to register B of all active PEs. 

• The control load (clod ij xxx) and control store (csto ij xxx) instruc-

tions are used to load and store the contents of RGCA from and to 

location xxx of the ijth local memory (PEM) where i and j are the 

numbers of the row and column and xxx ranges from 0 to 127. 

• The (ent xx) is not an instruction but is used to indicate the entry 

point xx which ranges from 0 to 31 during jnz, jpz and jmp instruc-

tions to transfer control under the conditions designated by the user. 

2.1.4 The Control Symbol Set 

Every SAL program consists of the following control symbols. They must 

be appropriately placed, otherwise programs will be aborted. They are: 
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• # : To denote the start and end of the program. 

• $ : To denote start and end of memory allocation algorithms. 

s & xxx: Used for loop control where xxx denotes the number of the 

loop. It is used in $ and !, the memory allocation and display algo-

rithms, respectively. 

• % : To denote start and end of function algorithms. 

• !xxx: ! is the display control symbol and xxx is the number of dis-

plays. This command is optional. !O is used to skip this command. 

Any SAL program is structured as follows: 

• # : start of program 

• $ : Start of the memory allocation algorithms (MAA) 

• MAA body 

• $ : End of the memory allocation algorithms 
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• % : Start of function computation algorithms (FCA) 

• FCA body 

• % : End of function computation algorithms 

• !xx : Start of display function algorithms (DFA) 

• DFA body 

• # : denotes the end of program. 

2.2 SIMD Array Processors 

A synchronous array of parallel processors is called an array processor, 

which consists of multiple processing elements (PEs) supervised by a single 

CU. These machines are best suited for single instruction multiple data 

streams. The typical applications are: 

• matrix algebra 

• matrix eigenvalue calculations 

• linear programming 

• general circulation and weather modeling 

17 



• beam forming and convolution 

• image processing and pattern recognition 

• real time scene analysis 

A typical mesh is shown in figure 2.8. Each PE (2, j) is connected to four 

of its neighbors denoted by (i, j — 1), (i,j + 1), (i — 1,j) and (i + 1, j). The 

PEs are connected in an end around fashion wherein the PEs on the left-

most column are connected to PEs in the previous rows in the rightmost 

column and the PEs in the topmost row are connected to the PEs in the 

bottom row. Each PE has its own local memory whose maximum size is 

4 Kbytes and can be accessed by sequential or indexed addressing. In the 

case of indexed addressing the register X is set to the value of the offset. A 

typical processing element is shown in figure 2.9. Each processing element 

consists of an arithmetic and logic unit (ALU) to perform arithmetic and 

logic operations. Each PE also has four registers as follows: 

• Register A, called the accumulator for mathematical and logical op-

erations with register B. The results of mathematical operations are 

integer type for MCCS version 1.00. Another function of RGA is to 

load data from and store data to local memory (PEM). 

• Register R, called the routing register, is used to route data from RGR 

of one PE to RGR of another PE. Masked PEs can not transmit data 
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stored in their RGR to other PEs, but can receive data from another 

PE. 

The control unit (CU) consists of the following registers: 

• The CU counter register (RG CC) is an unsigned register for counting 

data from 0 to 65534. It will automatically start from 0 when over 

65534. 

• The CU mask register (RGCM), which contains M by N bits where 

M and N are defined by the number of rows and columns in the array 

processor. A 0 represents that the corresponding PE is masked and 

a 1 implies that the PE is active. 

All the registers except RGCM are 16 bit registers. 
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Chapter 3 

ALGORITHMS 

3.1 Introduction 

The first problem that has been parallelized using MCCS is 'Neighbor-

hood Averaging'. It is a popular image enhancement technique under the 

category of image smoothing. The principal objective of any image en-

hancement technique is to process a given image to remove noise so that 

the result is more suitable than the original image for a specific application. 

The word 'specific' is significant as most of the techniques in this category 

are problem dependent. These enhancement techniques can be categorized 

into two categories. They are: 

1. Frequency Domain Techniques 

2. Spatial Domain Techniques 

The frequency domain techniques involve the manipulation of the Fourier 

Transform of the image whereas the spatial domain techniques involve the 
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image plane itself, i.e., direct manipulation of the pixels of an image. 

3.1.1 Spatial Domain Methods 

The term 'spatial domain' is defined as the aggregate of the pixels that con-

stitute an image. The methods in this domain are procedures that operate 

directly on these pixels. The general representation of image processing 

functions in this domain is: 

where g(x, y) is the processed image and f(x, y) is the original image. T is 

the operator on f, defined over some neighborhood of the pixel (x, y). The 

basic approach in these methods is to define a neighborhood about (x, y), 

for example a square or a rectangular subimage area centered at (x, y) as 

shown in figure 3.1. Then the center is moved from pixel to pixel over 

the entire image and the operator T is applied at each pixel. Though the 

subimage area can be of any geometrical shape the square is chosen because 

of the ease of implementation. 

3.2 Image Smoothing and Neighborhood Av- 
eraging 

The primary aim of smoothing operations is to "reduce/eliminate spurious 

effects present in a digital image due to a poor sampling system or trans-

mission channel" [2]. 
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Figure 3.1: A square subimage centered at x5  

3.2.1 Neighborhood Averaging 

This problem is a straightforward spatial domain technique for smoothing. 

Given an N x N digital image denoted by f(x, y), the aim is to generate 

a processed image g(x, y) whose grey level intensity at every point (x,y) 

is obtained by averaging the intensities of the pixels contained in a user 

defined neighborhood of (x, y), given by the equation: 

The mask to implement this is shown in figure 3.2. 
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3.2.2 Algorithm for Neighborhood Averaging 

The assumptions made are that the subimage size is 4x4 and the image size 

is 16x16. Hence 16 iterations are required to process the entire image. The 

mesh size is chosen to be 6x6, -IN -t- 2 x VA' -4- 2, to eliminate interpro-

cessor communication during the processing of a subimage, while accessing 

the pixels in the window. Here the window implemented is a square of size 

3x3. The mesh is shown in figure 3.3. 

Algorithm 

1. Load the subimages, i.e., the 4x4 subimages along with the neighbor-

ing rows and columns of that subimage starting from location 10 of 

each PE. 
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Figure 3.3: A 6x6 mesh as specified in *.cfg file in MCCS 
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NOTE: Since the pixels on the edge, i.e., rowl, columnl, rowl6 and 

columnl6 are to be left unchanged, the subimages involving pixels 

will be of size 5x5 and will be padded with 'O's to make them of size 

6x6 suitable to be loaded into the mesh. Subimagel is at location 10 

of each PE, subimage2 is at location 11 and so on up to subimagel6 

at location 25 of each PE. 

2. Load register A with subimagel at location 10 of each PE and store 

it at location 0 of each PE. 

3. If the subimage involves pixels on the edge then using the Rotate 

Right (rtr), Rotate Left (rtl), Rotate Down (rtd) and Rotate Up 

(rtu) reposition the subimage so that it is stored in location 0 of PEs 

2,1 to 2,5, 3,1 to 3,5, 4,1 to 4,5 and 5,1 to 5,5 of the mesh shown in 

figure 3.3. This step can be avoided if the padding with Os is done 

carefully while the subimages are loaded into the mesh. The Os must 

be added to either the leftmost or the rightmost column and either 

at the top row or the bottom row, depending on the subimage. 

4. Using the Rotate Right and Rotate Left instructions, access the neigh-

bor values from PEs (i, j —1) and (i, j -I-1) for all the PEs (i, j). Store 

them at locations 1 and 2 respectively. If the subimage contains pix-

els from the edge of the original image then the PEs containing them 

will be masked and will be active only when passing the pixel value 

it holds to the neighboring PEs. 
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5. Using the Rotate Up and Rotate Down instructions three times each, 

the six other neighbor values of the pixel (x, y) are accessed from PEs 

(i — 1, j) and (i + 1, j) for each PE (i, j) and are stored in locations 3 

to 8. In this step PEs containing the pixels from the edge are masked. 

6. If the subimage being processed contains pixels from the edge then 

set all the PEs containing those pixels to the active state and all the 

others to the inactive state (mask). Store location 0 of the active 

PEs to the corresponding location where the processed subimages are 

being stored (26 to 41). 

7. Mask all the PEs active in step 6; unmask all the others. Add the 

contents of locations 0 to 8 for all the active PEs. 

8. Broadcast 9 to all the active PEs in step 7. 

9. Divide the sum in register A by 9 which is in register B for all  the 

active PEs in step 8. 

10. Store the result in the corresponding location for all the active PEs 

in step 9. 
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Figure 3.4: Original image for neighborhood averaging 

11. Activate all PEs. 

12. Repeat steps 1 to 11 for the remaining 15 subimages. 

The code for this algorithm is written in Simple Array Processor Language 

(SAL) and is included in Appendix A. The original image and the processed 

image are shown in figures 3.4 and 3.5. The performance evaluation of the 

mesh is discussed in chapter 4. 

3.3 Edge Detection by Sobel Operators and 
Laplacian 

Gradient and Laplacian operators are part of image segmentation. Image 

segmentation is the process that subdivides an image into its constituent 
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Figure 3.5: Processed image after neighborhood averaging 

parts or objects. Segmentation is of enormous interest because it helps in 

the extraction of entities from the image for subsequent processing, such as 

description and recognition. Algorithms in this class are usually based on 

one of the following two properties of grey levels: discontinuity and simi-

larity. In the first category, we partition an image based on abrupt changes 

in grey level. This helps in the detection of isolated points, lines and edges 

in an image. In the second category the approach is usually based upon 

thresholding, region splitting, region growing and merging. The methods 

used to identify these properties are dependent on spatial masks which dif-

fer from one application to another. 
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3.3.1 Edge Detection 

Edge detection is the most commonly used method to detect discontinu-

ities in grey level. This is so because isolated points and thin lines are not 

frequent occurrences in most real life images. 

An edge is defined as the boundary between two regions with relatively 

distinct grey level values. In order to identify edges based on discontinu-

ities in grey level it is assumed that the regions in question are sufficiently 

homogeneous so that transition between two regions can be determined. If 

this is not the case then other methods are used to determine edges [2]. Ba-

sically, most edge detection algorithms are dependent on the computation 

of a local derivative operator. The first derivative at any point in an im-

age can be obtained by using the magnitude of the gradient at that point, 

while the second derivative can be obtained from the Laplacian at that 

point. Expressed mathematically, the gradient G of an image f(x,y) at lo-

cation (x, y) is defined by the two dimensional vector given by the equation: 

The gradient vector G can be decomposed into two components Gz  andG Y • 

G, is the component of the gradient vector in the x direction and Gy  is 

the component of the gradient vector in the y direction. For edge detection 

we need the magnitude (ABS) of this vector, which is given by the equation: 



It can be approximated by the following equation: 

because it is easier to implement when dedicated hardware is being used. 

If we choose a 3x3 window as the neighborhood size, the masks to compute 

G and Gy  are shown in figures 3.6 and 3.7, respectively. The neighbors 

closest to the center pixel of the mask are given a weight of two because 

this results in additional smoothing [2]. Referring to figure 3.1 the compo-

nents Gx  and Gy  of the gradient vector are given by the following equations: 

Larger windows can be implemented along the same lines, but 3x3 windows 

are preferred because of their modest hardware requirements and increased 

computational speed [2]. The two masks shown in figures 3.6 and 3.7 are 

commonly referred to as Sobel Operators. 

The Laplacian is commonly referred to as the second derivative operator 

given by the equation: 





Figure 3.8: Mask for computing Laplacian (L) 

The digital Laplacian at a point (x, y) with grey level x5  as shown in figure 

3.1 is given by the equation: 

This can be implemented by the mask shown figure 3.8. 

The Laplacian is sensitive to noise and hence is seldom used by itself to 

detect an edge. It is merely used to determine whether the pixel is on the 

light or dark side of the edge. 
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3.3.2 Algorithm 

1. Load the 4x4 subimage and the neighboring rows and columns of that 

subimage, starting from location 10 of each PE. 

Note: Since pixels on the edge i.e. rowl, rowl6, columnl and col-

unin16 are to be left unchanged, the subimages involving these rows 

and columns will be 5x5 and so are padded with Os to make the subim-

age of size 6x6 suitable to be loaded into the mesh. 

2. Load subimagel at location 10 and store it at location 0. 

3. If the subimage involves pixels from rowl, columnl, rowl6 and col-

umnl6 then using the Rotate Right (rtr), Rotate Left (rtl), Rotate 

Down (rtd) and rotate Up (rtu) instructions reposition the subimage 

such that the area of interest is stored in location 0 of PEs 2,1 to 

2,5, 3,1 to 3,5, 4,1 to 4,5, and 5,1 to 5,5. This step can be avoided if 

the padding with Os in step 1 is done carefully depending upon the 

subimage as explained in the previous algorithm. 

4. Using the Rotate Right instruction first and the Rotate Left instruc-

tion next access the neighbors on the right and left of each pixel 

(x, y) in the subimage and store them at locations 1 and 2 of each 

PE, respectively. If the subimages involve the pixels on the edge of 

the image then the PEs containing those pixels are masked. 
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Note: The order in which the neighbors are accessed is important 

in this algorithm because, for the calculation of gradient, some pixel 

intensities have to be added and some pixel intensities subtracted. If 

we follow the same order for all subimages then we can write the code 

in the form of a loop provided the instruction set is powerful enough 

to permit it. 

5. Using the Rotate Down instruction three times first and the Ro-

tate Up instruction three times next access neighbors from locations 

for every location (i, j) and store them in locations 3 to 8 of each PE, 

respectively. They are accessed in the same order as mentioned above. 

6. If the subimage involves pixels on the edge of the image store them 

at the corresponding location for the processed subimage and mask 

those PEs. 

7. Load the contents of location 3 and broadcast 2 to all active PEs. 

Multiply the contents of register A by 2 and move the product to 

register B. 

8. Add the contents of locations 4 and 5 to the product in register B 

and store the result in the corresponding location. 
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9. Repeat steps 6, 7 and 8 on the contents of locations 6, 7 and 8 of 

active PEs in step 8 and move the result to register B. 

10. Load the partial result earlier stored and subtract it from the contents 

of register B for the same set of active PEs in step 9 and store the 

result at the corresponding location. The result is the gradient image 

in the x direction. 

11. Load the contents of location 1 for the same set of active PEs in step 

10. Broadcast 2 to all active PEs. Multiply the contents of register 

A by 2 and move the result to register B. 

12. Add the contents of locations 4 and 7 to the product and store the 

partial result at the corresponding location for Gy, the gradient image 

in the y direction. 

13. Repeat steps 11 and 12 for locations 2, 5 and 8 in the same order for 

the same set of active PEs and move the result to register B. 

14. Repeat step 10 and store the result in the corresponding location for 

Gy. 

15. Mask all the PEs for which Gy is positive. Load from the location 

containing Gz  for the remaining PEs. Broadcast -1 to all active PEs 
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and multiply it with the contents of register A. Store the result in the 

same location from where it was loaded. 

16. Repeat step 15 for Gy  with the appropriate mask settings. 

17. Unmask all the PEs inactive in step 15. Load Gx  and move it to 

register B. Load Gy  and add it to the contents of register B. Store 

the result in the corresponding location for the gradient image. 

18. Load the contents of location 1 for all the active PEs in step 17. Add 

the contents of locations 2, 3 and 6, moving the partial sum to register 

B before the contents from each location is loaded. 

19. Store the result in the corresponding location for the Laplacian. 

20. Load the contents of location 0 for the active PEs in step 19. Broad-

cast -4 to all active PEs and multiply it with the contents of register 

A. Store the product in register B. 

21. Load the result earlier stored from the location of the Laplacian and 

subtract it from the contents of register B. 
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22. Store the result in the corresponding location for the Laplacian. 

23. Activate all the PEs. Load the next subimage. 

24. Repeat steps 1 to 22 until the whole image is processed. 

The code for this algorithm is written in Simple Array Processor Language 

(SAL) and is included in appendix C. The original and processed images 

are shown figures 3.9, 3.10, 3.11, 3.12 and 3.13. 
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Chapter 4 

PERFORMANCE 
EVALUATION OF THE 
MESH 

4.1 Common Measures of Performance Eval- 
uation 

SPEEDUP: Speedup (S, ) is the ratio of the time taken by a single proces-

sor to that taken by n processors given by the equation: 

where Sri  is the speedup, T1  is the time taken by a single processor to ex-

ecute a program, and Tr, is the time taken by n, processors to execute the 

same program. 

UTILIZATION: Utilization (U) is the ratio of the total number of busy 

processor cycles to the total number of available processor cycles. If a pro-

gram takes K instruction cycles to execute using N processors, then the 

total number of processor cycles available is the product of K and N. Not 

all processors will be active during the execution of the entire program. If 

43 



4.2 Common Parameters 

The mesh size for both algorithms is 6 x 6 since the subimage size is 4 x 4. 

The original image size is 16 x 16. To calculate speedup in both the cases, 

the time taken by a single processor to execute the same algorithm should 

be determined. If the image size is N x N then there are N2  pixels in 

the image. Since it has been assumed that the pixels on the edge are left 

unchanged only two instructions are required to process them, i.e. one to 

load them into their respective PEs and the other to store them at the cor-

responding location in the local memory of each PE. For any given N x N 

image there are (4N — 4) such pixels. Then the remaining pixels are given 

by the equation: 



Therefore the time taken for a single processor to execute any algorithm is 

given by the equation: 

where L is the number of instructions required to implement the algorithm 

on a single pixel using one processor on MCCS. 

The second step in determining the speedup is to calculate the number 

of instructions required by n processors to implement the same algorithm. 

One need not write the whole program to determine this. Irrespective of 

the image size there will be three distinct types of subimages on which the 

algorithm is implemented. They are: subimages with one row and one col-

umn of pixels from the edge of the original image, subimages with one row 

or one column of pixels from the edge and subimages with no pixels from 

the edge. Therefore, given an N x N image, one can determine the number 

of subimages in each of the three categories mentioned above. The code is 

written for each type of subimage and the number of instructions required 

to process them is determined. For the total number of instructions re-

quired to process the entire image, we obtain the sum of the products of 

the number of instructions required to process each distinct subimage with 

the number of such subimages over the entire N x N image. Therefore, if 

A, B and C are the number of subimages of each type and P, Q and R are 

the number of instructions required, respectively, to process each type of 

subimage, the total number of instructions required by n processors (Tn) is 

given by the equation: 
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The actual values of the three parameters discussed above are determined 

for the two algorithms and general formulae for the three parameters for 

any given N x N image are derived. 

4.3 Calculations for Neighborhood Averag-
ing Algorithm 

4.3.1 SPEEDUP 

It has been determined that 28 instructions are required to implement the 

algorithm on a single pixel on MCCS. Refer to appendix B. Therefore equa- 
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4.3.2 UTILIZATION 

1120 instructions are required to implement the neighborhood averaging al-

gorithm on a 6x6 mesh. Therefore the number of available processor cycles 

is equal to the product 1120 and 36, i.e., the total number of processors 

in the mesh. The number of busy processor cycles as determined from ap-

pendix A is equal to 19640 cycles. Therefore the utilization in the case 

of neighborhood averaging algorithm is the ratio of the available processor 

cycles and busy processor cycles and is equal to: 



4.3.3 EFFICIENCY 

Efficiency is the ratio of the speedup and the number of processors in the 

mesh. The speedup in the case of neighborhood averaging algorithm is 5.00 

and the number of processors is 36. Therefore efficiency is: 

4.4 Calculations for the Edge Detection Al- 
gorithm 

4.4.1 SPEEDUP 

It has been determined that 69 instructions are required (refer to appendix 

D) to determine the gradient of a pixel in the x direction (Gm ), the gradient 

in the y direction (Gy), the gradient (sum of the absolute values of G x  and 

G y  ) and the Laplacian (L) of that pixel. Therefore the time taken by 

one processor to implement the edge detection algorithm is given by the 

equation: 

Therefore a total of 13644 instructions are required to implement the edge 

detection algorithm using a single processor on MCCS. It has been deter-

mined that 122, 120 and 122 instructions are required to implement the 

edge detection algorithm on a 6x6 mesh. Therefore the total number of 

instructions required to implement the edge detection algorithm using 36 

processors is equal to: 
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Therefore speedup achieved using 36 processors in the case of the edge de-

tection algorithm is equal to: 

4.4.2 UTILIZATION 

1936 instructions are required to implement the edge detection algorithm 

using 36 processors. Therefore the number of available processor cycles is 

the product of 1936 and 36 which is equal to 69696. The number of busy 

processor cycles as determined from appendix C is equal to 28464. There-

fore the utilization in the case of the edge detection algorithm is equal to: 

4.4.3 EFFICIENCY 

Efficiency is the ratio of the speedup and the number of processors in the 

mesh. Therefore efficiency in the case of the edge detection algorithm is 

equal to: 

4.5 
. Discussion 

The common aspect of both the algorithms is the accessing of eight neigh-

boring pixels in a 3x3 window around each individual pixel except those on 
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the edge of the image. 

In the case of the neighborhood averaging algorithm the deviation in the 

intensity of the pixel as compared to its neighbors in a 3x3 window around 

it is compensated by its neighbors. If the intensity of the pixel is greater 

than its neighbors then its value gets reduced by averaging and the opposite 

takes place if the intensity of the pixel is lower than that of its neighbors. 

This has a smoothing effect on the image. 

The edge detection algorithm belongs to the category of image segmenta-

tion. The main objective is to identify the sections of the image with grey 

level discontinuities. This is accomplished by the gradient operators. Once 

these discontinuities are determined one has to decide whether the pixel be-

longs to the brighter or darker portion of the image. This is accomplished 

by the Laplacian operator. Points where L is positive belong to the darker 

portion of the image and points where L is negative belong to the brighter 

portion of the image. 
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Chapter 5 

CONCLUSIONS AND 
FUTURE DEVELOPMENTS 

5.1 Conclusions 

Two different classes of spatial domain algorithms have been implemented 

on MCCS. The first algorithm, which was implemented in parallel, was the 

neighborhood averaging algorithm, a popular image enhancement technique 

under the category of image smoothing. The speedup achieved was 5.00, 

the utilization achieved was 48% and the efficiency of the mesh was 13.8%. 

The second algorithm implemented was the edge detection algorithm using 

Sobel operators and Laplacian. This algorithm falls in the category of image 

segmentation. The speedup achieved was 7.04, the utilization achieved was 

40.8% and the efficiency of the mesh was 19.5%. 

5.2 Discussion 

The reasons for such low values of speedup and efficiency can partially 

be attributed to the inadequate instruction set of the MCCS. In addition 

to that, twenty of the thirty six processors in the mesh are required for 

communication purposes only. Hence they are inactive for most of the pro- 
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gram. Each access of a neighbor pixel takes five instructions since all load 

and store operations are to be done through register A in MCCS. Rough 

calculations show that if the neighbor pixel access can be accomplished in 

two instructions the speedup almost doubles. One way to access data from 

neighbor PEs faster is by modification of the load and store instructions of 

MCCS. Instead of a default register A the user specifies the register. One 

other important instruction required which not only helps in speeding up 

these algorithms but also facilitates the implementation of new algorithms 

in this class is the COMPARE instruction. With this instruction, condi-

tional statements can be implemented and conditional mask settings can 

be accomplished. 

One other shortcoming of MCCS is that it operates only on integer data. 

If suitable modifications can be made and operations on real data can also 

be performed on MCCS, the algorithms such as histogram modification 

and histogram specification can also be implemented on MCCS. The real 

challenge is the implementation of frequency domain algorithms in parallel. 

In order to accomplish this major modifications have to be made to the 

instruction set of MCCS to facilitate manipulations on floating point data. 

Work is being done at NJIT on another package called Euclid which accepts 

only floating point data. Hence it may be more suitable for frequency 

domain algorithms. Since both the packages are complementary, efforts 

can be made to integrate them into one powerful package. 
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Appendix A 

SAL Program for 
Neighborhood Averaging 

This program is written in SAL to implement a neighborhood averaging 

algorithm. Each of the sixteen 6x6 subimages are loaded into the local 

memory of each PE staring from location 10 through 25. The correspond-

ing processed subimages are stored from location 26 through 41. The code 

and comments are written for one subimage. The number of busy processor 

cycles are determined as follows: 

For each new masking scheme in the program the number of active proces-

sors and the number of instructions in that scheme are multiplied to get 

utilized processor cycles. 



















Appendix C 

SAL Program for Edge 
Detection 







Appendix D 

Edge Detection on One Pixel 
Using A Single Processor 

This program segment is the same as appendix C as far as the computation 

of G,, Gy  and L is concerned. The only difference is that we do not have 

to access the neighboring pixels since the entire image is in the processor's 

local memory. From appendix C we can determine that this takes 69 in-

structions. 
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