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ABSTRACT

MARKING ESTIMATION IN PETRI NETS USING DYNAMIC
MODE DECOMPOSITION

by
Aditya Kale

Petri Nets (PNs) are a well-established framework for modeling and analyzing

complex systems with interacting, concurrent processes. This thesis extends

traditional Petri Net methodologies by integrating Dynamic Mode Decomposition

(DMD), a technique originally developed for fluid dynamics, to analyze Continuous

Petri Nets (CPNs). By applying DMD to CPN marking evolution, this research

constructs a reduced-order model that captures its dynamics through dynamic modes

and eigenvalues, enabling prediction of future markings without detailed knowledge

of transition firings or underlying deterministic models. The principal contribution

of this research is extending the kit of tools available for analysis of CPN dynamics,

providing insights into CPN stability and boundedness through the eigenvalues of the

DMD operator. Through a series of case studies on established CPN models from PN

literature, this work showcases the effectiveness of the DMD operator in forecasting

and reconstructing marking evolutions. This work advances the theoretical framework

of Petri Nets and opens avenues for future research in integrating data-driven analysis

techniques with traditional modeling tools. This thesis is structured to first lay

down the theoretical underpinnings of Petri Nets and Dynamic Mode Decomposition,

followed by a discussion on the methodology and application of DMD to CPNs,

culminating in a presentation of results and conclusions that highlight the potential

of this integrated approach.
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CHAPTER 1

INTRODUCTION

Petri Nets, conceptualized by Carl Adam Petri in his 1962 dissertation [1], serve

as a robust framework for modeling discrete event systems across a wide array

of disciplines. PNs excel in modeling complex systems that involve concurrency,

synchronization and distributed operation. Since their inception, PNs have been

widely used to model a variety of systems, from manufacturing processes to computer

networks and traffic control systems.

1.1 Petri Nets

At its core, a Petri Net is a directed graph which consists of two types of nodes:

places and transitions. Arcs, with associated weights, connect places to transitions

and transitions to places. The state of a Petri Net is defined by its marking,

which indicates the distribution of tokens across its places. These tokens are moved

according to the net’s transition enabling and firing rules, simulating the dynamic

behavior of the system.

p1 p2t1

Figure 1.1 A Petri Net model with two places and a transition joining them. The
marking of this PN is a vector m = [2, 0]T .

A transition is considered enabled when each of its upstream places contains

at least as many tokens as the weight of the connecting arc. For instance, in Figure

(1.1), the transition t1 is enabled because its input place p1 holds 2 tokens, exceeding

the required minimum of 1 token specified by the arc’s weight. Upon firing, t1 will
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transfer one token from p1 to p2, altering the net’s marking to represent the system’s

new state.

1.2 Continuous Petri Nets

Continuous Petri Nets (CPNs) are a relaxation on classical PNs (discrete PNs). CPNs

extend the Petri Net concept to allow continuous token flow through its transitions.

Its tokens are positive real-numbered quantities that change smoothly over time.

CPNs are particularly useful in applications where discrete models become unwieldy

due to large state spaces or where transitions occur with a continuous frequency.

8.5

p1 p2t1

Figure 1.2 A CPN model similar to the discrete one. The marking of this PN is a
vector m = [8.5, 0]T .

Figure 1.2 shows a basic CPN where two places are connected by a continuous

transition. Unlike their discrete counterparts, continuous transitions manipulate

token levels at a defined rate, effectively consuming and generating tokens propor-

tionally to their defined firing rates and arc weights. This allows for a more granular

control and analysis of system dynamics.

1.3 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a numerical algorithm that identifies

patterns in complex systems by decomposing the state evolution into a set of modes,

each associated with a specific frequency and growth/decay rate [2]. Originally

developed in the context of fluid flows, DMD can extract dynamic features from

any time series data without requiring a prior model.
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1.4 Application of DMD to CPN Marking Evolution

This thesis explores the application of DMD to the marking evolution of CPNs. By

treating the evolution of CPN markings over time as a time series, DMD can be

used to derive a reduced-order model that captures the dominant dynamics of the

system. This approach provides interesting insights into the CPN model and aids in

forecasting future markings based on the past ones.

1.5 Research Objectives

This thesis aims to:

• Demonstrate the utility of DMD in simplifying the analysis of CPN dynamics.

• Provide a methodology for applying DMD to Petri Nets, enhancing the

traditional analysis techniques.

• Explore some of the avenues that DMD opens in CPN analysis such as marking

prediction and stability analysis.

1.6 Thesis Structure

The remainder of this thesis is structured into different chapter focusing on specific

topics of research:

Chapter 2: Petri Nets explores the modeling tools of Petri Nets and Continuous

Petri Nets. It delves into the formal definition, the rules governing their dynamics,

and the fundamental equations that evolve the states of these models.

Chapter 3: Dynamic Mode Decomposition gives a foundational basis for

DMD. It presents the concepts and equations by which DMD operates and presents

the Streaming DMD variant that is used during implementation.
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Chapter 4: Petri Nets and DMD combines the separate ideas of CPNs and

DMD to construct a framework to implement and analyze a CPN marking evolution

using DMD.

Chapter 5: Implementation and Results utilizes the framework built in

Chapter 4 to test on the marking evolutions of CPN models from literature. It

presents the algorithm for using this framework and shows its results on the said

CPN models.

Chapter 6: Conclusion concludes the thesis with a statement of objectives,

summary of findings and limitations of this approach. Future directions for research

in this area are also discussed.
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CHAPTER 2

PETRI NETS

Carl Adam Petri introduced Petri Nets in his doctoral dissertation in 1962 as a

graphical and mathematical tool for concurrent and synchronous systems [1].

2.1 Discrete Petri Nets

2.1.1 Definition

A discrete PN is formally defined as a 5-tuple N = ⟨P, T, I, O, m0⟩ such that:

P ∈ {p1, p2, . . . , pn} is a finite, non-empty, set of places;

T ∈ {t1, t2, . . . , tl} is a finite, non-empty, set of transitions;

P ∩ T = ∅;

I ∈ N|P |×|T | is the input incidence matrix;

O ∈ N|P |×|T | is the output incidence matrix;

m0 : P → N is the initial marking.

The set of all input (output) places to a transition t ∈ T is denoted as •t (t•)

and the set of all input (output) transitions to a place p ∈ P is denoted as •p (p•).

2.1.2 Dynamics

The dynamics of a discrete PN are governed by the enabling and firing of transitions:

A transition tj ∈ T is enabled at a marking m if and only if for each pi ∈

•t, m(pi) ≥ Iij.
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When an enabled transition tj fires, it consumes tokens from its input places

and produces tokens at its output places according to the input and output

incidence matrices. Specifically, the firing of tj results in a new marking m′

where, for each pi ∈ •t,

m′(pi) = m(pi)− Iij +Oij (2.1)

This firing relation is denoted as m
tj−→ m′.

2.1.3 Fundamental Equation

The changes in markings of places due to transition firings can be mathematically

captured using the fundamental state equation, which computes the reachable

markings from an initial marking:

m′ = m0 + C · σ (2.2)

where:

C = O − I is the incidence matrix:

σ ∈ N|T | is the firing count vector indicating the number of times each transition

has fired.

2.2 Continuous Petri Nets

Continuous Petri Nets (CPNs) extend the discrete Petri Net framework to accom-

modate continuous changes in the marking of places, thereby making them highly

suitable for systems with a large number of states. CPN models provide a good

approximation of such systems as telecommunication systems, traffic systems etc.

that do have a large number of states [3].

6



2.2.1 Definition

CPNs adapt the structure of discrete Petri Nets to handle real-numbered token counts,

modifying the definitions of the incidence mappings and the initial marking:

I ∈ R|P |×|T |
+ ;

O ∈ R|P |×|T |
+ ;

m0 : P → R+.

These changes allow CPNs to model systems where changes to the state happen

continuously and quantities are not necessarily integer-valued.

2.2.2 Dynamics

In CPNs, transitions consume and produce resources at continuous rates, which

requires a modification of the enabling condition from the discrete case:

A transition tj ∈ T is enabled at a marking m if for each pi ∈ •tj, m(pi) > 0.

The concept of enabling is extended to include a degree of enabling:

q(t,m) = min
pi∈•t

(
m(pi)

Iij

)
, (2.3)

where q(t,m) represents the maximum possible extent to which transition t can

fire given the current marking.

If q(t,m) > 0, the transition is considered q-enabled and can proceed to fire.

This continuous firing mechanism allows CPNs to dynamically adjust their

behavior based on the fluctuating availability of resources.

2.2.3 Fundamental Equation

An enabled transition can fire from a marking m at a rate 0 ≤ α ≤ q(t,m) leading

to a new marking m′ governed by the equation:

m′ = m+ αC (2.4)

7



A reachable markingm′ fromm0 can thus be estimated directly from the fundamental

state equation (2.2) [4][5].

In the continuous case, the firing count vector, σ ∈ R|T |
+ , is updated over time by

summing the rates at which each transition fires, reflecting the continuous throughput

of the system.

σj =
k∑

h=1

αj,h (2.5)

where σj is the firing count of a transition tj, αj,h is the firing rate of the transition

tj at the hth firing event, and k is the number of firing events considered during the

simulation.

2.2.4 Infinite Server Semantics

In the modeling of CPNs, the concept of server semantics significantly influences the

behavior of transitions. The two predominant types are finite server semantics and

infinite server semantics [3]. Under finite server semantics, the firing rate αj of a

transition tj is determined solely by its enabling degree q(tj,m). Contrastingly, in

infinite server semantics, each transition is associated with an intrinsic speed η(tj),

enhancing its throughput capacity. Consequently, the firing rate under infinite server

semantics is the product of the transition speed and the enabling degree [6]:

αj = η(tj) · q(tj,m) (2.6)

This mechanism allows for more nuanced modeling in scenarios where transition

activity is influenced by the its inherent properties of the physical process it represents

well as the system’s state.

8



2.2.5 Boundedness

Boundedness of a traditional Petri Net is a property that defines a marking m′ such

that every marking m′′ reachable from m0 does not exceed m′ in any of its places [7].

If a PN is not bounded, the number of tokens in its places continue to grow infinitely.

Determining Boundedness For continuous Petri Nets, boundedness is often

analyzed by examining the reachability space of the net [5]. Given a CPN, N , and

an initial marking, m0, the reachability space of N , RS(N , m0), is a convex set [8]

of all markings reachable from m0 through a finite set of transition firings at rates

encapsulated in σ. N is considered bounded if and only if, for all bi ∈ R+and pi ∈

P, there exists m ∈ RS(N, m0), such that m(pi) ≤ bi.

This formalism implies that for a CPN to be considered bounded, the markings

within RS must be constrained by maximum values for each place in the net. If any

place within the net can exceed its bound through some finite sequence of firings,

then the net is considered unbounded.

2.3 Survey on PN Analysis Literature

In the exploration of PN analysis techniques, [9] introduces critical methodologies for

performance analysis in manufacturing systems by leveraging the relationship between

transition firings and the fluctuation of buffer contents in PNs. This work provides

essential insights into production processes, offering both theoretical and practical

solutions to deduce transition firing frequencies.

On the topic of system observability, [10] delves into the observability challenges

in CPNs governed by infinite server semantics. The study establishes a novel

approach to transforming the inherently nonlinear observability problem into a

manageable linear format under specific conditions. This transformation facilitates

the development of algorithms capable of estimating unobservable markings from

observable data.

9



Further extending the analysis of CPNs, [11] explores challenges and strategies

in managing CPNs using Model Predictive Control (MPC). This study primarily

focuses on the control problem of transitioning from an initial state to a desired steady

state by minimizing a cost function. The authors present a sampled, discrete-time

model of a CPN, maintaining essential characteristics of the continuous model, for

the application of MPC. Through a discussion on feasibility and asymptotic stability,

it is proved that, for CPNs controlled via MPC, the former is guaranteed while the

latter is not.

Lastly, [5] contributes to the formal analysis of CPNs by proposing an

automated framework that ensures the safety and compliance of CPN operations with

predefined Linear Temporal Logic conditions. This framework focuses on verifying

the unreachability of undesirable states from specific initial conditions and validating

the adherence of system trajectories to safety and operational standards under infinite

server semantics.
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CHAPTER 3

DYNAMIC MODE DECOMPOSITION

Dynamic Mode Decomposition (DMD) is a pivotal numerical method in the field of

fluid dynamics, and its application has rapidly expanded across various domains of

science and engineering. Originally conceptualized as a method to dissect complex

flow datasets, DMD facilitates the decomposition of high-dimensional data into a

series of dynamically significant modes without the necessity for a priori knowledge

of the underlying dynamics. This capability makes DMD an invaluable tool for both

theoretical research and practical applications, where understanding the fundamental

temporal and spatial behavior of complex systems is crucial. By leveraging singular

value decomposition (SVD), DMD isolates patterns and frequencies that describe

the evolution of dynamic systems, providing insights that are both profound and

actionable. This chapter delves into the mathematical foundations of DMD and

explores its algorithmic implementation.

3.1 Mathematical Foundation

3.1.1 Data Matrix and Linear Operator

Given a sequential set of state vectors {x1, x2, . . . , xl}, where each xk ∈ Rn represents

the system state at the kth time step, DMD operates by arranging this dataset into

two matrices:

• Data matrix X = [x1, x2, . . . , xl−1] which includes all except the last vector,

and

• Shifted data matrix X ′ = [x2, x3, . . . , xl] which includes all except the first

vector.
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The objective of DMD, then, is to find a linear operator A ∈ Rn×n that best describes

the evolution of the system from each state in X to the subsequent state in X ′.

X ′ = AX. (3.1)

This equation models the dynamics of the system by approximating the transfor-

mation A, which, when applied to X, results in X ′. In essence, A acts as a propagator

of the system’s state from one time step to the next.

The DMD operator A computed here minimizes the cost function [12]

J =
l∑

k=1

||x′
k − Axk||2 = ||X ′ − AX||2F (3.2)

where, || · || is the vector ℓ2-norm and || · ||F is the matrix Frobenius norm.

3.1.2 Singular Value Decomposition

In systems characterized by a large number of states n in their state vectors, directly

computing the dynamic modes and the operator A can become computationally

intensive. This problem is addressed by SVD which provides an optimal low-rank

approximation to X. The SVD-based DMD algorithm is more numerically stable

and generally accepted as the defining standard DMD algorithm [13].

Upon constructing the matrix X, the next step in DMD involves computing its

reduced SVD:

X = UΣV ∗ (3.3)

where,

U ∈ Rn×r is a matrix whose columns are the left singular vectors of X,

representing the orthonormal basis for the range of X,

Σ ∈ Rr×r is a diagonal matrix containing the singular values of X, which

quantify the information content along each corresponding singular vector,
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V ∈ Rm×r contains the right singular vectors ofX, representing the orthonormal

basis for its co-range; V ∗ denotes the complex-conjugate transpose of V and,

r is the rank of X (r < n), indicating the non-zero singular values.

SVD simplifies the computation of A by projecting it onto a lower-dimensional

subspace defined by the significant singular vectors:

Ã = U∗X ′V Σ−1 (3.4)

where,

U∗X ′V represents the core interactions between the modes captured in X and

their advancements in X ′ and,

Σ−1 scales these interactions inversely by the singular values, normalizing the

influence of each mode based on its information content.

3.1.3 Eigendecomposition and Reconstruction

The eigendecomposition of Ã reveals the dominant dynamics of the system:

ÃW = ΛW. (3.5)

Here, W contains the eigenvectors and Λ is a diagonal matrix consisting of the

corresponding eigenvalues of Ã. These metrics allow us to recover the full state

system dynamics in a computationally efficient manner [14].

Each eigenvalue λi and its corresponding eigenvector wi define a dynamic

mode, which characterizes the behavior of the system over time. These modes

can be computed for the full system by projecting the eigenvectors back into its

higher-dimensional space:

ϕ̂i = Uwi (3.6)
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With the dynamic modes Φ = [ϕ1, ϕ2, . . . , ϕr], we can reconstruct an

approximation of the system’s behavior at any time step k:

xk = ΦeΩkb (3.7)

where,

b = [b1, b2, . . . , br]
T is the initial amplitude vector of each dynamic mode,

which weigh the contribution of each mode at the initial time,

Ω = diag( 1
∆k

[ln (λ1), ln (λ2), . . . , ln (λr)]) scales the logarithm of each eigenvalue

by the time step ∆k, converting the growth rates to a format that applies over

the discrete time steps used in data collection.

3.2 Survey on DMD Areas of Application

DMD has been extensively applied across various fields since its initial development,

which primarily addressed challenges in fluid dynamics. [2] demonstrated DMD’s

efficacy in capturing dominant flow structures in fluid dynamics, beginning with the

simulation of flow over a square cavity where the said flow exhibits self-sustained

oscillations.

The versatility of DMD extends to experimental data analysis, as seen in further

usages in [2] where DMD is applied to fluid dynamics experiments involving complex

setups such as a U -shaped thin steel frame supporting a flexible latex membrane, and

the dynamics of a jet flowing between two cylinders.

The adaptation of DMD to real-time systems led to the development of Online

DMD [12]. This variant updates the DMD operator on the fly, allowing for continuous

refinement of the model as new data becomes available. It is employed to effectively

analyze pressure fluctuations in a wind tunnel experiment, providing insights into the

flow dynamics over a flat plate, illustrating the method’s applicability to aerodynamic

studies.

14



DMD has also been adapted for control systems through the introduction of

dynamic mode decomposition with control (DMDc) [15]. This extension incorporates

external control inputs into the DMD framework, enhancing its predictive capabilities

for controlled systems. Demonstrations on various systems, from unstable linear

models with controllers to large-scale stable systems, underscore DMDc’s potential

in control theory and engineering applications.

The development of multi-resolution DMD (mrDMD) [16] represents an

evolution of the technique that enables the separation of modes into different

spatio-temporal scales. This method has proven effective in decomposing video data

into spatial and temporal features, facilitating the analysis of complex, multi-scale

phenomena.

3.3 Streaming DMD

Streaming dynamic mode decomposition (sDMD) is an advanced variant of the

standard DMD technique, designed to efficiently process and analyze data streams

in real-time [17]. This approach is especially valuable in scenarios where data is

continually generated or updated, such as during ongoing experimental measurements

or in continuous simulation environments. It adapts the standard DMD methodology

to accommodate continuously updating datasets without the need to recompute the

entire DMD analysis from scratch.

In the sDMD framework, the DMD operator and the associated dynamic modes

and eigenvalues are updated incrementally at each time step as new data becomes

available. This process allows for the real-time prediction of future states of the

system based on the most current system information. The predictive model at any

time step k is given as:

xk+1 = Φk · Λk · bk (3.8)
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where, Φk is the matrix of dynamic modes at step k and Λk is the diagonal matrix of

eigenvalues at k. The vector bk is given as

bk = Φ†
k · xk (3.9)

where Φ†
k is the Moore-Penrose pseudoinverse of Φk. bk encapsulates the current state

vector’s influence on future dynamics.

3.3.1 Application Example: Predicting Lorenz System Dynamics

This subsection demonstrates the application of streaming DMD, as outlined in

Algorithm 2, to predict the evolution of the Lorenz system– a set of three interlinked

ordinary differential equations known for their chaotic behavior [18]. The Lorenz

system serves as an ideal testbed for this methodology due to its complex, non-linear

dynamics that are sensitive to initial conditions.

The model of the Lorenz system is defined by the following differential equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

The choice of the Lorenz system also illustrates a theoretical framework where

any system of ODEs can be transformed into equivalent Continuous Petri Nets,

maintaining the same dynamical properties [19]. Although this transformation is not

performed here, the implication is significant: it suggests the potential for applying

the same DMD analysis to any CPN representation of ODEs as one would to the

ODE system itself.

For this demonstration, the initial state of the Lorenz system is set to x0 =

[1, 1, 1], with parameters ρ = 28, σ = 10, and β = 10
3
.
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Figure 3.1 Comparison of actual and sDMD-reconstructed states of the Lorenz
System over time.

Figure 3.1 shows the Lorenz system simulated for 500 time steps with the time

difference between two consecutive steps being 0.6. The state reconstruction by sDMD

for all states closely follows the actual states over time.

This example not only validates the capabilities of streaming DMD in capturing

complex system dynamics but also sets a precedent for its application in converting

and analyzing ODE-based systems as CPNs.
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CHAPTER 4

PETRI NETS AND DMD

This chapter explores an innovative approach to understanding the dynamic behavior

of Petri Nets, specifically focusing on continuous PNs, through the framework of

Dynamic Mode Decomposition, a method originally developed for fluid dynamics

and recently applied to a broader range of systems exhibiting complex, time-varying

behaviors.

4.1 Markings

The state of a Petri Net is captured by its marking, representing the distribution of

tokens across its places. The evolution of these markings through transitions leads to

the formation of a directed graph called a reachability graph [20], a key concept for

understanding the potential behaviors of the system.

For continuous Petri Nets, reachability involves macro-markings [3], which group

states with identical sets of marked places. This concept simplifies the complexity

inherent in continuous systems, where the exact number of tokens may vary smoothly.

4.1.1 Markings as Time Series

One novel aspect of this approach is conceptualizing the sequence of markings as time

series data:

M = [m0, m1, . . . , ml]

where, each mi ∈ R⋉
+ denotes the state of markings at discrete time intervals,

encompassing l total steps. This representation allows us to apply time series analysis

techniques, such as DMD, to extract dynamic features and predict future states of

the Petri Net.
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Discrete Time Series For the effective analysis of markings that change contin-

uously over time, they need to be discretized into a sequence of time-stamped samples:

• Sampled Computation: Markings are computed at fixed intervals to form a

discrete time series, where mk specifically denotes the marking at the kth time

step. This contrasts with traditional Petri Net notation, where markings are

typically identified in relation to their sequence from the initial marking. Each

marking is derived from the previous marking, allowing the firing count vector

to be computed as the firing rate at each step:

σj = αj,k (4.1)

• Initial Marking Representation: The initial marking, m0, corresponds to

the state of the CPN at the start of the simulation period.

• Time Interval ∆k: The selection of the time interval ∆k between successive

markings is crucial. The resolution of the time series—and consequently, the

detail and sensitivity of the dynamic analysis—depends heavily on the choice

of ∆k. Shorter intervals capture more granular changes, while longer intervals

tend toward making the model into a discrete PN.

This approach of sampling continuous markings into discrete intervals effectively

adapts the continuous characteristics of CPN markings for analysis by DMD.

Marking Arrangement In Dynamic Mode Decomposition, the matrix M ∈ Rn×l
+

representing the markings over time steps is arranged into two matrices: the data

matrix X and the shifted data matrix X ′. When inputted to DMD, these matrices

facilitate the computation of a transformation operator D ∈ Rr×r, capturing the

essential dynamics of the marking evolution. The eigendecomposition of D gives us

the matrix Φ ∈ Cn×r whose columns represent the dynamic modes, and the diagonal

matrix of eigenvalues Λ ∈ Cr×r, indicating the growth or decay rates of these modes.
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4.2 CPN Dynamics

The dynamic modes derived from DMD provide a succinct representation of the

dominant dynamics influencing the marking evolution in a CPN. These modes, when

analyzed, reveal the system’s behavior over time, including stability and boundedness.

4.2.1 Boundedness

Through the DMD analysis of marking evolution, the eigenvalues obtained can serve a

purpose in determining if the CPN is bounded or not. Let λi = Λi,i be the eigenvalue

associated with the ith dynamic mode ϕi = Φ·,i:

Re(λi) > 0, suggests that the corresponding dynamic mode grows exponentially,

indicating that the system may be potentially unbounded. If any place

associated with this mode increases without bounds, it implies that the CPN

allows an infinite accumulation of tokens.

Re(λi) ≤ 0, indicates a mode that decays, suggesting that the markings stabilize

or diminish over time, implying that the CPN is bounded.

4.2.2 Forecasting

Forecasting in Continuous Petri Nets (CPNs) typically requires detailed knowledge

of the sequence and magnitude of transition firings to predict future markings based

on the fundamental state equation, i.e., (2.2). This traditional approach, although

effective, can become difficult to compute in systems with a very large number of

places.

Dynamic Mode Decomposition offers a powerful alternative by enabling direct

prediction of future markings from the initial one. With the DMD operator D, we can

compute future states mk directly from the initial marking m0 via (3.7), effectively

bypassing the need to track each transition firing explicitly. This method leverages
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the dynamics encoded within the DMD modes and eigenvalues to encapsulate the

entire system’s behavior over time.

Streaming DMD for Real-Time Updates Streaming DMD extends this

functionality by continuously updating the DMD operator with new markings

during the system’s operation. This adaptive approach allows the model to

incorporate the latest markings and improve the accuracy of future marking

predictions. By updating the operator based on the most recent marking mk,

Streaming DMD can predict the next marking mk+1 in real-time using (3.8), thus

maintaining high predictive fidelity.
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CHAPTER 5

IMPLEMENTATION AND RESULTS

This chapter presents the implementation details of the Streaming Dynamic Mode

Decomposition applied to Continuous Petri Nets and discusses the results obtained

from various test cases. The algorithm’s efficacy in predicting future markings and its

dynamic adaptability in real-time data processing are evaluated through hypothetical

and practical scenarios.

5.1 Implementation

This section describes the technical realization of the proposed approach, which is

primarily conducted using Python. The implementation leverages widely used open-

source libraries: NumPy for numerical data handling and Matplotlib for visualization

purposes. The process is bifurcated into two major components:

• Construction and Simulation of the CPN: This part involves programming

a Continuous Petri Net (CPN) using incidence matrices to build the marking

evolution matrix M .

• Application of Streaming Dynamic Mode Decomposition: This involves

applying the Streaming DMD algorithm to matrix M for real-time predictions

and computation of the DMD operator, which elucidates the CPN model’s

dynamics.

5.1.1 CPN Program

The CPN program generates the time-series data required for subsequent analysis

with DMD. Algorithm 1 outlines the procedure to compute the marking evolution

matrix M , encapsulating the dynamics of a CPN:
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Algorithm 1 Algorithm to compute the matrix M

Require: Set of places P , Set of transitions T , Pre-incidence matrix I, Post-incidence

matrix O, initial marking at the first time step m0, transition speed vector η.

Ensure: Marking evolution matrix M , where m0 ∈ RP
+, η ∈ RT

+.

1: procedure SimulateCPN(l, ∆k)

2: Initialize M ← [mT
0 ]

3: Compute C ← O − I

4: for k = 2 to l − 1 do

5: σ ← GetEnablingDegree(M [:, k], η)

6: m← ∆k(C · σ)

7: m← Maximum(0, m)

8: AppendColumnToMatrix(M , mT )

9: end for

10: return M

11: end procedure

12: function GetEnablingDegree(m, η)

13: σ ← [∞]|T |×1

14: for t = 1 to |T | do

15: ratios ← SubstituteWhere(I[:, t] > 0, m/I[:, t])

16: σ[t]← Min(ratios) ·η[t]

17: end for

18: return σ

19: end function

Algorithm 1 details the simulation steps required to compute matrix M , from

initializing the first marking to calculating the enabling degrees and updating the

matrix for each time step. The enabling degrees are determined by the function

GetEnablingDegree, which computes the transition firing rates based on the current
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marking and predefined transition speeds. This implies that the program inherently

models infinite server semantics. To model finite server semantics for any transition,

tj, simply set η(tj) = 1. ∆k determines the simulation step size, which affects the

granularity of the simulation.

5.1.2 sDMD Program

The implementation of the sDMD algorithm for Petri Net markings is designed to

dynamically predict future states of the system based on its initial conditions and

subsequent evolution. It makes use of the streaming algorithm developed in [21].

Operational Mechanics of sDMD At each time step k, sDMD performs the

following operations for a CPN:

1. Data Assimilation: Integrate the new marking data into the existing DMD

model.

2. Model Update: Recalculate the dynamic modes and eigenvalues to reflect the

new state of the system.

3. Prediction: Use the updated model to forecast the next marking mk+1.

Algorithm 2 outlines the step-by-step procedure.
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Algorithm 2 Streaming DMD for Continuous Petri Net Markings

Require: Marking evolution matrix M ∈ Rn×l
+ .

Ensure: Prediction of future markings Xp updated dynamically.

1: procedure StreamingRun(l)

2: Initialize X ←M [:, 1 : l − 1] and X ′ ←M [:, 2 : l]

3: Initialize Xp ← [M [:, 1]]

4: Initialize ϱ← [ ]n×0 ▷ Matrix of residuals over time

5: Compute D ← UpdateDMDModel(X[:, 1], X ′[:, 1])

6: for k = 2 to l do

7: Φ, Λ← ComputeModes(D)

8: b← ComputeAmplitudeVector(X[:, k − 1], Φ)

9: mp ← PredictMarking(Φ, Λ, b)

10: r ← X ′[:, k]−mT
p

11: AppendColumnToMatrix(Xp, mT
p )

12: AppendColumnToMatrix(ϱ, r)

13: D ← UpdateDMDModel(X[:, k], X ′[:, k])

14: end for

15: return Xp, E[ϱ]

16: end procedure

17: function ComputeAmplitudeVector(m, Φ)

18: b← Φ† ·m

19: return b

20: end function

Functions ComputeModes and UpdateDMDModel, implemented in [21], are

integral to the sDMD process, facilitating the dynamic adaptation of the model to

new data. Algorithm 2 not only predicts future markings but also updates the DMD

operator in real-time to refine predictions continuously. During the streaming run,
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the residual vector, r, is computed at each time step to gauge how well the sDMD

algorithm is estimating the next marking. At the end of the streaming run, the mean

of the residuals over time, E[ϱ], provides a metric to evaluate the accuracy of the

predictions. The final DMD operator, computed at the last iteration, captures the

comprehensive dynamics of CPN marking evolution, essential for reconstructing the

entire sequence to evaluate the model’s accuracy.

Algorithm 3 Reconstruction of CPN Marking Evolution

Require: Initial CPN marking at the first time step m0, DMD operator D.

1: procedure ReconstructMarkingEvolution(l)

2: Initialize Mr ← [mT
0 ]

3: Compute Φ, Λ← ComputeModes(D)

4: Compute b, Ω← Projection(m0, Λ)

5: for k = 2 to l do

6: bk ← beΩk

7: mr ← Φ · bk

8: AppendColumnToMatrix(Mr, mr)

9: end for

10: return Mr

11: end procedure

12: function Projection(m0, Φ, Λ)

13: b← Φ† ·m0

14: Ω← ln (Λ)

15: return b, Ω

16: end function
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5.2 Testing Results

The efficacy of the proposed approach is evaluated through simulations conducted on

four distinct Continuous Petri Net (CPN) models, each exhibiting unique dynamic

behaviors. These models are implemented and simulated using the specialized Python

framework developed for this thesis. Streaming DMD is applied to the temporal

matrices representing the marking evolutions across these models.

The results are systematically presented in three separate subplots for each

model:

• Marking Evolution: This plot displays the actual progression of markings

within the CPN across all places.

• Prediction and Reconstruction: This includes marking evolution plots of

all places

1. predicted during the Streaming run (depicted as a solid blue line) and

2. reconstructed after the end of the Streaming run from the final DMD

operator (shown as a dashed red line).

• Eigenvalue Analysis: The third subplot visualizes the eigenvalues derived

from the DMD operator obtained in the final step of the Streaming algorithm.

These eigenvalues are plotted on the complex plane to illustrate both their real

and imaginary components.

The temporal resolution, ∆k, and the total number of simulation steps, l,

are carefully selected through an iterative process of experimental adjustments.

This ensures that the chosen parameters effectively capture the nuanced changes

in markings and encompass all critical dynamics within the simulation period.
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5.2.1 Traffic Flow in Road Sections

This case study utilizes a Continuous Petri Net (CPN) model of a three-section traffic

system, as described in [22]. This model simulates the flow of vehicular traffic across

a stretch of road, delineating each road section into distinct CPN components. The

model comprises three interconnected sections, each represented by a trio of places

within the network. For example, Section 1 consists of places p1, p2, and p3, alongside

transitions t1 and t2 as illustrated in Figure 5.1. t1 represents the inflow of vehicles

into the section, and t2 the outflow from the section. The marking of p1 quantifies the

number of vehicles currently within the section. p2 functions as a capacity limiter,

restricting the maximum number of vehicles that can be accommodated in the section

at any given time. p3 regulates the traffic flow rate.

t1

p1

t2

p4

t3

p7

t4

p2 p5 p8

p3 p6 p9

Figure 5.1 Three sections.

The transitions of this CPN model operate under infinite server semantics. In

this example, η(t1) = η(t2) = η(t3) = η(t4) = 5. The arc weights are as given by the
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input- and output-incidence matrices:

I =



0 q1 0 0

r1 0 0 0

0 1 0 0

0 0 q2 0

0 r2 0 0

0 0 1 0

0 0 0 q3

0 0 r3 0

0 0 0 1



, O =



1 q1− 1 0 0

r1− 1 1 0 0

0 1 0 0

0 1 q2− 1 0

0 r2− 1 1 0

0 0 1 0

0 0 1 q3− 1

0 0 r3− 1 1

0 0 0 1


where, q1 = q2 = q3 = 100 and r1 = r2 = r3 = 80. Table 5.1 lists down all the nodes

of this CPN and what they represent in the road sections being modeled.
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Table 5.1 Elements of the Road Sections CPN

CPN element Meaning

p1 Vehicles in road section 1

p2 Capacity limiter for section 1

p3 Traffic rate regulator for outflow from section 1 and into section 2

p4 Vehicles in road section 2

p5 Capacity limiter for section 2

p6 Traffic rate regulator for outflow from section 2 and into section 3

p7 Vehicles in road section 3

p8 Capacity limiter for section 3

p9 Traffic rate regulator for outflow from section 3

t1 Inflow into section 1

t2 Outflow from section 1 into section 2

t3 Outflow from section 2 into section 3

t4 Outflow from section 3
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(a) Marking Evolution of the traffic sections CPN model.

(b) Streaming prediction and DMD reconstruction of the marking
evolution.

(c) Eigenvalues of the DMD operator.

Figure 5.2 DMD analysis of the road sections CPN model.
m0 = [15, 45, 0.4, 20, 40, 0.4, 35, 25, 0.4]T , l = 100, ∆k = 1.5.
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The actual marking evolution of the CPN model displays straightforward and

stable dynamics (Figure 5.8a). This simplicity in behavior facilitates the sDMD

algorithm’s capacity to quickly synchronize with the system’s dynamics. After an

initial adaptation phase, it delivers consistently accurate predictions throughout the

simulation period. The reconstructed marking evolution precisely mirrors the actual

trajectory of the system.

The analysis of the eigenvalues highlights the system’s bounded and stable

nature. From Figure 5.8c, the eigenvalues are λ1 = −1.23e − 1, λ2 = −2.88e − 15,

and λ3 = λ4 = −5.197e−2. All the eigenvalues in this instance are real and less than

0, indicating that each dynamic mode of the system is stable, without any oscillatory

dynamics and the CPN is bounded. In this example, the marking evolution exhibits

5 eigenvalues, suggesting that the DMD operator D is a 5× 5 matrix. With the rank

of M being 4, the sDMD algorithm effectively captures all dominant dynamics with

just one additional dimension than the inherent rank of M .

For this example, the mean residual vector is E[ϱ] = [0.1575, −0.1501, 4.9e−

5, 0.144, −0.1367, 4.9e−5, −0.0031, 0.01, 4.9e−5]T . This shows that the streaming

predictions follow the actual evolution very closely.

This example serves to demonstrate the efficacy of sDMD in handling CPN

models characterized by non-complex dynamical patterns. This is significant because

despite the original purpose of it being to model the extremely complex dynamics of

fluid flow, DMD still works well with systems that exhibit very little in the way to

dynamical patterns over time.

5.2.2 CPN Examples from Literature

The following two example are derived from [23].

Example 1 This CPN model, illustrated in Figure 5.3, employs infinite server

semantics to govern transition firings. It is designed in a way to never reach a steady
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state in places p1 through p4. p5 and p6 act as firing speed regulators. In this setup,

η(t1) = η(t5) = 1, η(t2) = η(t3) = 10 and η(t4) = 20.

t1

14

p1 t2

14

p3

t3

6

p2

t4
14

p4

t5

1

p5

1

p6

20

20

Figure 5.3 CPN example.

33



(a) Marking Evolution of the CPN model.

(b) Streaming prediction and DMD reconstruction of the marking
evolution.

(c) Eigenvalues of the DMD operator.

Figure 5.4 DMD analysis of the CPN model. m0 = [14, 6, 14, 14, 1, 1]T , l = 300,
∆k = 0.05.
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This CPN model is characterized by oscillatory dynamics within places p1

through p4, which are the focal places of interest. The mean residual vector from the

streaming predictions, E[ϱ] = [−0.039, 0.016, −0.011, −0.027, 3.7e− 5, 3.7e− 5]T ,

indicates a close match between the streaming DMD predictions and the actual system

behavior, as evident from the comparison between Figure 5.4a and Figure 5.4b. Both

the reconstructed and actual marking evolutions demonstrate more complex dynamics

compared to the previous example, making them suitable candidates for analysis

using cross-correlation techniques. The Spearman correlation coefficients for places p1

through p4 are exceptionally high, at 1, 1, 0.985, and 0.995 respectively. These values

underscore the precision with which the DMD operator D captures the underlying

dynamics of the CPN.

Further analysis of the eigenvalues of D provides insights into the stability and

bounded nature of the CPN. From Figure 5.4c, λ1 = 2.5e− 2+ j0.99, λ2 = 2.5e− 2−

j0.99, and λ3 = 7.9e−14, and λ4 = −1.4e−1. λ1 and λ2 are complex conjugate pairs

with a near 0 positive real part: this suggests the presence of oscillatory modes with

slowly growing, sustained oscillations. This behavior arises due to the p1 − t4 loop

and the t1 − p2 loop in the CPN (Figure 5.3). The real parts of λ1, λ2, and λ3 are

greater than 0, suggesting that the system is unbounded. This examination highlights

the effectiveness of streaming DMD in capturing and predicting the oscillatory and

unbounded behavior inherent in this CPN example.

Example 2 Similar to the previous scenario, this CPN, depicted in Figure 5.5,

operates under infinite server semantics. However, it differs notably in its dynamics; it

does not display the sinusoidal marking evolutions observed in the earlier example and

exhibits a markedly more stable behavior. In this instance, η(t1) = η(t3) = η(t4) = 1,

η(t2) = 2, and η(t5) = 0.5.
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t1

p2

t21

p1

p3

t3

1

p6 p5

t4

t5

1

p4

Figure 5.5 CPN example 2.
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(a) Marking Evolution of the CPN model.

(b) Streaming prediction and DMD reconstruction of the marking
evolution.

(c) Eigenvalues of the DMD operator.

Figure 5.6 DMD analysis of the CPN model. m0 = [1, 0, 0, 1, 0, 1]T , l = 50,
∆k = 0.1.
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The sDMD algorithm, as demonstrated in Figure 5.6b, initially takes a

few time steps to adapt but eventually aligns closely with the actual marking

evolution of all places within the network. The mean residual vector, E[ϱ] =

[−0.008, 0.0003, 0.01, −0.004, 0.006, −0.015]T , underscores the precision of sDMD

in tracking this system’s dynamics.

The Spearman correlation coefficients for the correlation between actual and

reconstructed markings across places p1 through p6 are, respectively, 0.844, 0.735,

0.679, 0.998, 0.998, and 0.959. These coefficients indicate that the operator is attuned

to evolution dynamics by the end of the simulation duration.

Regarding the eigenvalues (Figure 5.6c), λ1 = −3.1e−14, λ2 = −2.109+j1.2422,

λ3 = −2.109−j1.2422, and λ4 = −1.5. The complex conjugate pairs, λ2 and λ3, with

their negative real components, indicate decaying oscillations. This characteristic

suggests that while these modes exhibit oscillatory behavior, they diminish over time,

leading to a stabilization of markings over time. The absence of eigenvalues with

positive real parts further confirms that unbounded growth in any of the places is not

anticipated. The dimensionality of D is 4× 4, which matches the rank of M .

5.2.3 SIRS Epidemiological Model

Epidemiological models provide vital frameworks for understanding and predicting

the dynamics of disease spread within populations. These models not only explain

the mechanisms that influence disease transmission but also assist in evaluating the

impact of health policies, such as vaccination strategies [24].

Among these, the SIRS (Susceptible-Infectious-Recovered-Susceptible) model

divides the population into three epidemiological classes: Susceptible (S), Infectious

(I), and Recovered (R) [25]. Individuals in the Susceptible category can contract the

disease, moving to the Infectious category at a rate β (η(t3)), which is the transmission

rate. Those in the Infectious category recover and move to the Recovered category
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at a rate γ (η(t2)), the recovery rate. Recovered individuals lose immunity over time,

returning to the Susceptible category at a rate f (η(t1)), which reflects the waning

immunity or loss of protection [26].

This CPN model, of the SIRS dynamics, illustrated in Figure 5.7, utilizes the

flexible PNet framework developed by Chay et al. [26][27]. The components of the

model and what they represent is outlined in Table 5.2.

p1

t1 t3
p2 p3t2

Figure 5.7 CPN representing the SIRS model.

Table 5.2 Elements of the SIRS CPN Model

CPN element Meaning

p1 susceptible class

p2 recovered class

p3 infected class

t1 recovered population becoming resusceptible (rate f)

t2 infected population recovering (rate γ)

t3 susceptible population getting infected (rate β)
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(a) Marking Evolution of the SIRS CPN model.

(b) Streaming prediction and DMD reconstruction of the marking
evolution.

(c) Eigenvalues of the DMD operator.

Figure 5.8 DMD analysis of the SIRS CPN model. m0 = [100, 0, 0]T , l = 200,
∆k = 1. γ = 0.005, β = 0.01, f = 0.01.
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The marking evolution within the SIRS CPN model is accurately captured

by the sDMD algorithm, as evidenced by both the predictions and subsequent

reconstruction (Figures 5.8a, 5.8b). The mean residuals for all places are impressively

low: E[ϱ] = [−9.85e − 10, 0.009, 0.0002]; indicating minimal deviation from

actual dynamics. Additionally, the Spearman correlation coefficients between the

reconstructed and actual marking evolutions are consistently at 1 for all places,

underscoring the high fidelity of the reconstructions.

In this example, the analysis of D, which is a 3×3 matrix, reveals full utilization

of the available dimensions, as evidenced by the three eigenvalues suggesting that

M is of full rank. From Figure 5.8c, all eigenvalues have real parts less than 0:

λ1 = −1.5e − 14, λ2 = −1.25e − 2 + j0.006, λ3 = −1.25e − 2 − j0.006; confirming

the bounded nature of the CPN’s dynamics. λ2 and λ3 are complex conjugate pairs

with negative real parts, reflecting the presence of oscillatory modes with decaying

oscillations within the system.

5.3 Limitations and Future Scope

While the current approach focuses primarily on CPNs due to their continuous nature

and potential for complex dynamics, there is significant potential to extend this

methodology to other types of Petri Nets, such as Stochastic and Hybrid Petri Nets.

These systems, characterized by inherent uncertainty and discrete events, present an

exciting frontier for DMD. Adapting DMD to accommodate the discrete dynamics

of these systems could enhance our understanding of both, DMD and methods to

analyze discrete dynamics.

The DMD operator excels in capturing the dynamics of a trajectory from

a specific initial marking, its application to a broader set of initial markings

remains a challenge. To address this, future research could explore multi-trajectory

DMD, which involves applying the DMD algorithm to an ensemble of marking
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trajectories to capture a more extensive portion of the system’s reachability space [28].

Additionally, techniques like time delay embedding could be investigated to enhance

the dimensional space of the dataset, potentially leading to a more generalized model

that better encapsulates the diverse dynamics of CPNs [29].
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CHAPTER 6

CONCLUSION

This thesis has explored the integration of Dynamic Mode Decomposition (DMD)

with Continuous Petri Nets (CPNs) to develop a novel analytical approach for

modeling the dynamics of CPNs. The primary contribution of this research has been

to demonstrate that DMD can effectively capture the dynamic behavior of CPNs,

enabling the prediction of future markings and offering insights into system stability

and boundedness without detailed knowledge of transition firings or the underlying

Petri Net model.

The findings from this thesis confirm that DMD is a robust tool for capturing

the dominant dynamics of CPNs, as evidenced by the precision with which the DMD

operator predicted future markings across various CPN models. The application of

the Streaming DMD algorithm has showcased the potential of real-time data-driven

analysis in capturing and predicting the evolution of system markings effectively.

Furthermore, the analysis of eigenvalues derived from the DMD operator can provide

valuable insights into the system’s dynamics, revealing aspects of stability and

boundedness.

The practical implementation of the Dynamic Mode Decomposition with

Continuous Petri Nets has been carried out using Python, leveraging libraries such as

NumPy and Matplotlib for numerical operations and data visualization, respectively.

This implementation facilitates the simulation of CPN models and the application

of the sDMD algorithm. Future implementations could explore optimizations and

enhancements, such as parallel computing techniques or integration with other

software tools, to handle larger PNs and more complex network configurations.
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Despite the successes of this research, there are several areas where further work

could enhance and extend the current work:

• Extending the application of DMD to other types of Petri Nets, such as

Stochastic and Hybrid Petri Nets, to handle discrete events and inherent

uncertainties.

• Investigating the integration of multi-trajectory DMD and time delay

embedding techniques to improve the generalizability of the DMD operator

across different initial markings and system configurations.

In conclusion, this thesis presents a novel application of Dynamic Mode

Decomposition to Continuous Petri Nets. It extends the theoretical framework

of CPN analysis and offers a new direction for the development of sophisticated,

data-driven tools in the analysis of Petri Nets.
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