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ABSTRACT

NEURAL OPERATOR FOR ACCELERATING CORONAL
MAGNETIC FIELD COMPUTATIONS IN BIFROST MHD MODEL

by
Yutao Du

The application of the Tensorized Fourier Neural Operator (TFNO) to significantly

enhance the computational efficiency of coronal magnetic field calculations within

the Bifrost Magnetohydrodynamics (MHD) model is introduced in this study.

Leveraging simulated data from the European Sunrise Science Data Center, the

TFNO— an extension of the Fourier Neural Operator (FNO) that incorporates

tensor decomposition for improved handling of high-dimensional data—is employed

to solve time-varying partial differential equations (PDEs) over a 3D domain. The

performance of the TFNO is compared with traditional machine learning methods,

including Vision Transformer and CNN-RNN (encoder-decoder) architectures, to

demonstrate its accuracy, computational efficiency, and scalability. A physics-analysis

of the TFNO predictions is also performed to demonstrate the reliability of the

method. This advancement not only accelerates the simulation of solar atmospheric

phenomena but also provides more reliable prediction capabilities, thus greatly

contributing to the understanding of space weather dynamics and its impact on Earth.



NEURAL OPERATOR FOR ACCELERATING CORONAL
MAGNETIC FIELD COMPUTATIONS IN BIFROST MHD MODEL

by
Yutao Du

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Fulfillment of the Requirements for the Degree of

Master of Science in Engineering Management

Department of Mechanical and Industrial Engineering

May 2024





APPROVAL PAGE

NEURAL OPERATOR FOR ACCELERATING CORONAL
MAGNETIC FIELD COMPUTATIONS IN BIFROST MHD MODEL

Yutao Du

Bo Shen, Thesis Advisor Date
Assistant Professor of Mechanical and Industrial Engineering

Sanchoy Das, Committee Member Date
Professor of Mechanical and Industrial Engineering, NJIT

SangWoo Park, Committee Member Date
Assistant Professor of Mechanical and Industrial Engineering, NJIT

Haimin Wang, Committee Member Date
Distinguished Professor of Physics, NJIT



BIOGRAPHICAL SKETCH

Author: Yutao Du

Degree: Master of Science

Date: May 2024

Undergraduate and Graduate Education:

• Master of Science in Engineering Management,

New Jersey Institute of Technology, Newark, NJ, 2024

• Bachelor of Science in Electrical, Electronics and Communications Engineering,
Chongqing University of Post and Telecommunications, Chongqing, China, 2022

• Bachelor of Science in Electrical, Electronics and Communications Engineering,
Brunel University London, Chongqing, China, 2022

Major: Engineering Management

Presentations and Publications:

Yutao Du, “A research on the architectures of large capacity optical access networks,”
2021 2nd International Conference on Computing and Data Science (CDS),
pp 460-465, 2021.

iv



In the vast universe of deep learning networks, we are like
explorers navigating uncharted waters, where every algorithm
update and parameter adjustment is a brave attempt to probe
the unknown. This field, filled with complex theories and
endless possibilities, seems daunting at first glance. Yet,
it is these very challenges that ignite scientists’ relentless
pursuit and deep contemplation. On this journey, we need
not only the precision of algorithms and the vastness of data
but also a curiosity for the unknown world and a deep desire
for knowledge. Just as deep learning networks demonstrate
incredible ability in processing data, extracting patterns, and
knowledge from chaos, I too hope to discover new realms
untouched by science and technology during this process. I
am grateful for all the mentors and peers on this path; it is
your wisdom and persistence that illuminate this challenging
and miraculous journey of exploration.
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CHAPTER 1

INTRODUCTION

Studying the solar outer atmosphere has been a longstanding challenge in astro-

physics, with its complex magnetic structures playing a crucial role in various solar

phenomena [1]. In the convection zone, the gas pressure surpasses the magnetic

pressure in all magnetic flux concentrations except for the most intense ones, causing

the plasma to move the field. These movements initiate the generation of energetic

flows and mass transfer from the chromosphere to the corona. Most of the energy

conveyed to the outer solar atmosphere, as a result of exertion on the magnetic

fields, is emitted in the chromosphere. In addition, it is in the chromosphere that

the dynamics transition from being dominated by gas pressure to being dominated

by magnetic force. Due to the complicated nature of chromospheric physics and the

many transitions involved, the chromosphere is the least understood region of the Sun

[2]. Consequently, understanding and precisely simulating these intricate interactions

are imperative for the progression of our understanding of space weather and its

ramifications on the planet Earth.

Coronal magnetic field modeling is mainly divided into magnetohydrody-

namics (MHD) models [3], magnetohydrostatics (MHS) models [4], force-free models

[5], and potential-field models [6]. These models solve specific partial differ-

ential equations (PDEs), ranging from complex magnetohydrodynamics processes

to simplified assumptions of current-free conditions, to simulate and understand

the structure and dynamics of the coronal magnetic field. These equations are

discretized and solved on a grid, but the wide range of spatial and temporal

scales and the complex nonlinear interactions between these scales require fine

grids and high resolution, making these computations extremely expensive. In
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recent years, there have been many attempts by researchers to simulate the solar

atmosphere by computing codes for MHD. Leenaarts et al. (2007) simulated the

solar atmosphere from the convection zone to the corona. The study demonstrates

the effects of nonequilibrium hydrogen ionization on the dynamical structure of

the solar atmosphere and the formation of hydrogen lines, specifically Hα lines,

and quantifies these effects [7]. Den et al. (2015) present a three-dimensional

magnetohydrodynamic (MHD) simulation code designed to simulate space plasma

phenomena with applications in modeling the solar surface and global solar wind

structure [8]. The goal of [9] is to provide the community with a realistic simulated

magnetic field of the Sun’s outer atmosphere. This will allow a detailed comparison

of existing and upcoming observations with simulated synthetic observations, to

elucidate the complex interactions between the magnetic field and the plasma. Their

study uses the radiative MHD code Bifrost to simulate a computational volume with a

magnetic field topology similar to the extended net region on the Sun. These models

are often based on physics-driven models such as Bifrost, which provide valuable

insights but have significant computational cost and time requirements.

To reduce the computational cost and time of MHD simulations, researchers

have attempted to solve the MHD equations using machine learning methods to

simulate the solar exosphere. The machine learning (ML) approach solves the PDE

equations several orders of magnitude faster compared to the traditional approach

by providing a fast solver that approximates or augments the traditional approach

[10] [11] [12] [13]. More and more researchers have been trying to use ML methods

to solve MHD equations. For instance, Yang and Shen (2019) devised a method

for globally mapping solar wind parameters at the source surface using an Artificial

Neural Network (ANN) approach. This model presents an efficient way to tackle

the MHD equations, employing ANN to adeptly forecast solar wind conditions.

However, a notable limitation of ANN models, as highlighted in their research,
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is their inherent challenge in fully capturing the complex and nonlinear dynamics

of solar wind acceleration and interactions within the corona [14]. Jarolim et al.

(2023) established a method to extrapolate the solar coronal magnetic field using

Physics-Informed Neural Networks (PINNs), integrating observational data with

force-free magnetic field theory. This approach, demonstrated through the simulation

of active region NOAA 11158, enables real-time magnetic field extrapolations.

Validated against EUV observations, their method offers a significant advancement

in solar magnetic field modeling, promising enhanced accuracy in solar research and

space weather forecasting [15]. Similarly, Baty et al. (2024) present a groundbreaking

method to simulate solar coronal magnetic fields using PINNs. This technique

integrates the core partial differential equations of solar physics directly into the

neural network, facilitating accurate modeling of MHD equilibria in the solar corona.

This progress highlights the powerful application of machine learning techniques

to improve the modeling and predictive analysis of magnetic fields in the solar

coronal environment [16]. However, one major drawback of these methods is the

difficulty of transferring knowledge between different configurations. For example,

when solving the high-dimensional Navier-Stokes equation, PINNs might require a

dedicated model for each desired resolution, increasing the computational effort and

potentially limiting its effectiveness in capturing multi-scale phenomena.

Fourier neural operator (FNO) has been introduced to solve this issue and

improve the scalability of deep learning methods [17]. The FNO represents a

significant advancement over traditional methods, as it is mesh-independent, can

transfer solutions between different grid geometries, and is significantly faster than

conventional PDE solvers. Moreover, FNO exhibits superior accuracy compared

to previous learning-based methods under fixed resolution and is the first machine

learning-based method to successfully model turbulent flows with zero-shot super-

resolution [17]. Consequently, aside from its mesh-independence, FNO demonstrates
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computational efficiency surpassing standard visual transformers (with quadratic

time complexity), and it effectively captures global dependencies compared to

convolutional neural networks, graphical neural networks, and other local models

(Falk et al., 2019) [18]. Despite the numerous advantages associated with FNOs,

there is no documented application of FNOs to the calculation of the solar coronal

magnetic field.

In this study, I use FNO to accelerate coronal magnetic field calculations in the

Bifrost MHD model. I use an extended FNO architecture called Tensorized Fourier

Neural Operator (TFNO, [19]), which introduces tensor decomposition to model the

kernel operator and thus enhances its ability to efficiently handle high-dimensional

data. I employed simulated data from Carlsson et al. (2015) [9] to solve a time-varying

PDE over a 3D domain using the TFNO. after which I used traditional machine

algorithms such as Vision Transformer, and CNN-RNN (encoder-decoder) to compare

with the TFNO. In addition, I verify the scalability of FNO and analyze the predicted

data physically to verify the reliability of its predictions.
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CHAPTER 2

NEURAL OPERATOR ARCHITECTURE

2.1 Problem Formulation

Bifrost, drawing from a lineage of numerical codes spanning several generations,

incorporates the Oslo Stagger Code as its latest iteration. These codes, rooted in

the method developed by Nordlund and Galsgaard in 1995 [20] and further refined

by Galsgaard and Nordlund in 1996 [21], share a common foundation. At the core of

the code, a staggered mesh explicit code that solves the standard MHD PDEs on a

Cartesian grid:

∂ρ

∂t
= −∇ · (ρu) (2.1)

∂(ρu)

∂t
= −∇ · (ρuu− τ)−∇P + J×B+ ρg (2.2)

µJ = ∇×B (2.3)

E = ηJ− u×B (2.4)

∂B

∂t
= −∇× E (2.5)

∂e

∂t
= −∇ · (eu)− P∇ · u+Q (2.6)

where ρ, u, e, B are the density, the velocity vector, the internal energy per unit

volume, and the magnetic flux density vector respectively. τ , P , J, g, µ, E and

η are the stress tensor, the gas pressure, the electric current density vector, the

gravitational acceleration, the vacuum permeability, the electric field vector and the

magnetic diffusivity respectively. The quantity Q can contain a number of terms,

depending on the individual experiment. It could for instance contain a term from

the chosen Equation Of State (EOS), a term containing the effect of the Spitzer

thermal conductivity, a term from radiative transfer, etc. The EOS needed to close
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this set of equations can be anything from a simple ideal gas EOS to a complex EOS

including detailed microphysics [22].

2.2 Fourier Neural Operator

The idea of the Fourier Neural Operator (FNO) is derived from the Green’s function

[23]. To solve a differential equation Lu = f(x) with an inhomogeneous term f(x)

and a linear operator L, one would express the solution u(x) as an integral over the

domain D where the problem is defined:

u(x) =

∫
D

G(x, y)f(y) dy (2.7)

where x, y ∈ D ⊆ Rd. If there exists a function g such that G(x, y) = g(x − y),

Equation (2.7) reduces to a convolution operation, and G serves as the convolution

kernel. For a parametric PDE, Green’s function also depends on the parameter. For

example, the magnetic flux density vector B is a parameter in the MHD equation. In

this framework, the parameter is assumed to be a function of x. According to [17],

the kernel integral operator is defined by

(Kθ(B)hi)(x) =

∫
D

Kθ(x, y, B(x), B(y))hi(y) dy (2.8)

where B is the PDE parameter, and the kernel integral operator Kθ is parameterized

by a neural architecture with learnable parameters θ. On the right-hand side,

K approximates the (convolution) kernel G. In particular, hi denotes the latent

representation generated by a Fourier layer in a sequence of Fourier layers indexed

by i.

For a better understanding of the structure of a Fourier layer, we visualize it in

Figure 2.1. The flow of hi(x) bifurcates into two paths. The upper path input hi(x)

first applies the Fourier transform F , then linearly transforms R for the low-level

Fourier modes and filters out the high-level modes, and finally applies the inverse

6



Figure 2.1 (a) The architecture of the neural operators; (b) Fourier layer.

Fourier transform F−1. Unlike [24] in which message passing is used as in a graph

neural network, FNO leverages the convolution theorem which states convolution is

equivalent to point-wise multiplication in the Fourier space. Hereby, FNO initializes

complex-valued learnable parameters directly in the Fourier space. Following the

notations in [17], Fourier integral operator is defined by

Kθ(B)hi = F−1(F(Kθ) · F(hi)) = F−1(RϕF(hi)) (2.9)

where Rϕ is the Fourier transform of K, i.e., Rϕ = F(Kθ),and output is real-valued

in the latent space. In the implementation, the fast Fourier transform (FFT) and its

inverse are used to preserve computational efficiency. The bottom path input hi(x)

applies a local linear transform W , wherein the discretized W is a matrix of learnable

parameters. The results of the two paths are then added together, followed by a

nonlinear activation function σ.

With the Fourier layer defined, Figure 2.1 also shows the architecture of FNO.

FNO incorporates a lifting layer P which lifts the input tensor into high-dimensional

7



space. A sequence of Fourier layers follows to update the latent representations by

hi+1 = σ(Wi+1hi(x) +Kθi+1
(B)hi)(x) (2.10)

with i = 1, 2, ..., N . Since Rϕ, W differ in each layer, they are indexed by i as well.

Finally, layer Q projects hn to the solution function space. In our case, the output is

multi-channel images.

As FNO maps the parameter B to the solution u, it succeeds in solving PDEs

with variable parameters. For comparison, frameworks such as [25] only solve one

instance of the PDE after fixing the parameter.

FNO extends the concept of neural operators by incorporating the Fourier

transform to streamline the learning process. It operates by first transforming

the input function into the frequency domain, where a neural network learns the

interactions between different frequencies. Subsequently, the output is transformed

back into the spatial domain. Leveraging the Fourier space to represent continuous

functions inherent in PDEs often results in increased computational efficiency [17].

Another advantage of FNO compared with [26] is the mesh-independence. FNO

is designed to be independent of the mesh size, allowing it to be trained using coarser,

low-resolution data and then applied to finer, high-resolution data for evaluation.

This can be done without the neural operator ever being exposed to high-resolution

data during training, enabling it to enhance resolution in a manner that requires no

additional high-resolution examples (known as zero-shot super-resolution) [17].

2.3 Tensorized Fourier Neural Operators

Section 2.2 introduces the structure of a basic FNO. TFNO extends FNO by

introducing a unified parameterization where the entire operator is represented by

a single parameter tensor T . By expressing T in a factorized form (e.g., Tucker

or Canonical Polyadic decomposition), TFNO imposes a low-rank constraint on

8



the Fourier domain representation of the convolutional weights within the FNO.

This factorization leads to a significant reduction in the number of parameters

required to represent the operator, enhancing the model’s efficiency and generalization

capabilities [19].

In practice, we express T in a low-rank factorized form, e.g. Tucker or CP.

In the case of a Tucker factorization with rank (R1, ...,Rd,RL,RI ,RO), where RL

controls the rank across layers,RI = RO) control the rank across the input and output

co-dimension, respectively, and R1, ...,Rd control the rank across the dimensions of

the operator

T =

R1∑
r1=1

. . .

Rd∑
rd=1

RI∑
ri=1

RO∑
ro=1

RL∑
rl=1

G(r1, . . . , rd, ri, ro, rl)· (2.11)

· U (1)(:, r1) . . . U
(d)(:, rd) · U (I)(:, ri) · U (O)(:, ro) · U (L)(:, rl).

Here, G is the core of sizeRL×RI×RO×R1×...×Rd and U (L), U (I), U (O), U (1), ..., U (d)

are factor matrices of size (RL × L), (RI × I), (RO × O), (R1 × α), ..., (Rd × α),

respectively.

Figure 2.2 Illustration of a Tucker decomposition.

A visualization of the Tucker decomposition of a third-order tensor can be seen

in Figure 2.2. Note that we can rewrite the entire weight parameter for this Tucker

case, equivalently, using the more compact n−mode product as:

T = G×1 U
(1) · · · ×d U

(d) ×d+1 U
(I) ×d+2 U

(O) ×d+3 U
(L) (2.12)

9



This joint factorization along the entire operator allows us to leverage redundancies

both locally and across the entire operator. This leads to a large reduction in the

memory footprint, with only a fraction of the parameter. It also acts as a low-rank

regularize on the operator, facilitating training.

2.4 Model Used in this Work

The code we use is from (https://github.com/neuraloperator/neuraloperator), which

is publicly available. To increase the complexity of the neural network, and thus

its expressive power, we set the number of modes retained in each dimension in the

Fourier layer to (64, 64) and set the hidden channel to 64, thus enabling the model to

efficiently address the complex spatial structure inherent in the data. The model uses

the Tucker decomposition with a rank of 0.42, which balances expressiveness with

computational and storage efficiency. It captures the most important interactions

between input data elements while discarding less important ones to create a more

compact model. In addition to the basic Lifting Layer, FNO Blocks, and Projection

Layer mentioned above, I added a layer of Multi-Layer Perceptrons (MLPs) after the

FNO Blocks. It signifies an additional non-linear processing stage within the network,

reinforcing its capability to model complex functions and enhancing its ability to learn

a diverse array of PDE solutions.
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CHAPTER 3

NUMERICAL EXPERIMENTS

3.1 Data

3.1.1 Data Access

All data used in the experiments are available from the European Sunrise Science

Data Center (https://sdc.uio.no/search/simulations). In our study, we predominantly

utilized the magnetic field intensity data along the x, y, and z axes—denoted as Bx,

By, and Bz, respectively—from the ‘en024048 hion’ dataset. ‘en024048 hion’ dataset

is a simulation cube generated using the Bifrost code to simulate a computational

volume with a magnetic field topology similar to an enhanced network area on the

Sun. The simulation extends from the upper convection zone to the corona and is

aimed at aiding the study of the solar chromosphere, a region that is challenging to

model due to its complex dynamics and physics [9]. The simulation volume measures

24 Mm × 24 Mm horizontally, with a depth of 2.4 Mm below the solar surface,

and extends 14.4 Mm above, covering the upper part of the convection zone, the

photosphere, chromosphere, transition region, and corona. The simulation saved

cubes in a configuration of 504×504×496 voxels. The first snapshot was captured at

t = 3850 seconds, and the simulation run concluded at t = 5410 seconds. Snapshots

were recorded at 10-second intervals, cumulating in a total of 157 cubes.

3.1.2 Data Prepossessing

Initially, the dataset underwent down-sampling. We selected the bottom-most slice

as the input for our model. Subsequently, one slice was chosen at every 5 interval,

culminating in a total of 99 slices designated as the output. Given the constraints

of the experimental environment, utilizing the entire cube as training data was not

feasible. Consequently, the largest feasible subset of data was selected for training
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within the parameters permissible by the experimental environment. This approach

was adopted to evaluate the model’s capacity to predict the entire cube under these

constraints. During the down-sampling process, we computed the mean and standard

deviation for each slice and proceeded to normalize them. Our experiments revealed

that normalization of the data significantly enhances the model’s performance and

markedly improves accuracy. Following the down-sampling, we obtained 157 data

pairs. We then randomly divided these data into training and testing groups in

approximately a 9 : 1 ratio. Finally, for post-physics analysis of the prediction results,

we will unnormalize the data.

3.2 Experiment Set-up

In our experiments, we employed three different model architectures to compare with

TFNO. This section will introduce the model structures, optimizers, and learning

rate schedulers we used.

3.2.1 Visual Transformer (ViT)

The ViT model [27] used in our paper is a modification of the transformer architecture

traditionally used for NLP. It processes the input image in the form of patches,

which are embedded with markers and then passed through the transformer encoder.

The model processes 504 × 504 images using 8 × 8 patches. With 128-dimensional

embedding and a multi-head attention mechanism spanning 2 layers of 8 heads,

the model captures complex spatial relationships in image data. In the network,

a learnable class marker is added to the patch embedding sequence, and positional

embeddings are added to the spatial information lost during the patch embedding

process. After converter processing, the output is summarized and decoded to the

desired number of output channels for high-resolution prediction.
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3.2.2 Encoder-Decoder

In the paper, we use two different encoder-decoder structures: The CNN-RNN

[28] and CNN-LSTM models [29]. We use Convolutional Neural Networks (CNN)

for feature extraction and Recurrent Neural Networks (RNN) or Long Short-Term

Memory Networks (LSTM) for sequence modeling to process sequential image data.

The CNN component consists of three convolutional layers that progressively

increase the number of feature channels from 1 to 256 while down-sampling the image

dimensions by a factor of 2 after each layer. This is done via convolution with a

stride of 2, effectively reducing the spatial dimensions and extracting higher-level

features. In the CNN-RNN model, the main component of the recurrent network

is a series of GRU units, which are chosen for their ability to efficiently model

time series. The hidden state size of the GRU units in this model is 256, which

reflects a balance between model complexity and computational efficiency, allowing

the network to capture a large amount of temporal information without being too

computationally demanding. Meanwhile, the CNN-LSTM model uses LSTM cells

with a hidden state size of 256, which is consistent with the output dimension of

the CNN. Adding additional cell states of the same size enhances the ability of the

LSTM to regulate the flow of information through the network. The input, output,

and forgetting gates of the LSTM play an important role in this process by allowing

the model to selectively memorize and forget information.

3.2.3 Optimizer and Scheduler

All models are trained using the Adam optimizer [30] and the ReduceLROnPlateau

scheduler. Adam stands for “Adaptive Moment Estimation” and combines the

advantages of two other extensions of stochastic gradient descent, namely AdaGrad

and RMSProp. ReduceLROnPlateau scheduler adjusts the learning rate based on
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the validation loss. If no improvement is seen for a “patience” number of epochs, the

learning rate is reduced.

3.3 Experiment & Result

3.3.1 Prediction Analysis

In the following experiments, we used four different models for training. Each

model was trained with 300 epochs and a batch size of 10. An Adam optimizer

was used with an initial learning rate of 0.001 and a weight decay of 0.0001. The

ReduceLROnPlateau scheduler was used to adjust the learning rate according to the

performance of the model, with a learning rate reduction factor of 0.8 and a patience

of 2. The training error is measured by Huber Loss (H1 Loss), and the testing error

by Mean Squared Error (MSE).

In the context of training FNO for the approximation of PDE solutions, the

utilization of Huber Loss serves as a judicious choice [31]. This hybrid loss function,

known for blending the properties of mean squared error and mean absolute error,

demonstrates enhanced robustness against outliers—a quintessential feature when

dealing with the intrinsic discontinuities and sharp gradients characteristic of PDEs.

Huber Loss facilitates the maintenance of numerical stability during training by

moderating the impact of large errors, thereby enabling the model to effectively

capture the smooth underlying structure of PDE solutions while concurrently

accommodating the potential for abrupt transitions. Furthermore, the quadratic

behavior of Huber Loss in regions of low error expedites convergence, offering a

computationally efficient pathway to optimize the FNO parameters, ensuring a

smooth yet flexible learning process that is well-suited for the complex landscape

of PDE problem spaces.

Figure 3.1 delineates the training and testing error trajectories over 300 epochs

for the TFNO, ViT, CNN-RNN, and CNN-LSTM models. The training error is
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Figure 3.1 Evolution of the training loss and the validation loss as a function of
epochs for TFNO, ViT, CNN-RNN, CNN-LSTM.

denoted by H1 Loss and the testing error is denoted by MSE, both errors are closer

to 0 indicating better model performance. The TFNO architecture consistently

demonstrates superior performance with the lowest error rates in both the training

and testing phases, indicating its robustness and efficiency in learning from image

data. In addition, we observe a divergence in the generalization capabilities between

the ViT and the TFNO models. The ViT model demonstrates an admirable reduction

in error rates on the training dataset during the advanced stages of learning. However,

this improvement does not translate equivalently to the test dataset, where ViT

incurs a higher error rate than TFNO. Such a discrepancy is indicative of overfitting

within the ViT model, a condition where a model’s excessive complexity captures

not only the underlying data distribution but also the idiosyncratic noise within

the training set. This results in a degradation of performance on previously unseen

data. Conversely, TFNO’s consistent test performance, despite higher training errors,

suggests a more robust generalization capacity. This pattern highlights the potential

advantages of TFNO’s architectural or training strategies that may inherently provide

regularization, thus mitigating overfitting. While CNN-RNN and CNN-LSTM show
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comparable learning patterns, CNN-RNN slightly outperforms CNN-LSTM in test

error rates. But both models have much lower performance levels than TFNO and

ViT.

Table 3.1 Comparative Performance Metrics of Neural Network Models

Model
Number
of model
parameters

Average
training
time for
one epoch

MSE R2 RE MAE

TFNO 103,989,400 31.96s 0.0502 0.9498 0.2205 0.0831

ViT 811,791,152 39.25s 0.1240 0.8759 0.3498 0.1417

CNN-
RNN

66,046,528 32.93s 0.2514 0.7485 0.4995 0.2230

CNN-
LSTM

66,178,112 37.10s 0.3257 0.6743 0.5686 0.2940

Table 3.1 consolidates additional experimental details. The TFNO exhibits an

excellent balance between training efficiency and predictive accuracy. Despite having

fewer parameters than ViT, TFNO achieves superior test accuracy, as indicated by the

lowest MSE among the models, while maintaining competitive training times. While

the ViT demonstrating the lowest training error reveals a suboptimal generalization

capability, marked by a higher test MSE. This disparity between training and test

performance is indicative of an overfitting tendency, exacerbated potentially by its

parameter-rich architecture that encompasses the largest number of model parameters

among the evaluated models. CNN-based recurrent architectures, the CNN-RNN and

CNN-LSTM, show intermediate behavior. These models possess a lower parameter

count relative to TFNO but exhibit longer training times, their test errors suggest a

moderate capacity for generalization. However, these architectures do not reach the

predictive performance of TFNO, nor do they offer computational advantages over

ViT, as reflected in their middle-range test MSE, R-square (R2), Relative Error (RE),

and Mean Absolute Error (MAE) scores.
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Figure 3.2 Comparative visualization of the Bz predictive performance of various
neural network models.

Figure 3.2 provides a comparative visualization of the Bz predictive performance

of various neural network models. The figure shows selected slices, captured at

different heights of the cube. The first column is the input data of the model. The

second through fifth columns correspond to heights of approximately 0 Mm, 2 Mm,

4 Mm, 6 Mm, and 10 Mm, respectively. These slices were chosen to demonstrate the

diversity of magnetic field strengths at different heights. The first row then represents

the “ground truth”, which serves as a benchmark for evaluating the subsequent rows

- TFNO, ViT, CNN-RNN, and CNN-LSTM.

Figure 3.3 shows the error map corresponding to Figure 3.2, which is obtained by

subtracting the predicted results from the ground truth and then taking the absolute

value. The blue hues represent areas of lower error, indicating that the predicted
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Figure 3.3 Bz Error map for four models.

values are closer to the actual values. These regions can be interpreted as areas where

the model has reached a high level of accuracy, successfully capturing the underlying

patterns and dynamics of the data. Conversely, the red hues represent areas of higher

error, indicating a deviation between the model output and the ground truth. The

intensity of the red color is proportional to the severity of the error, with brighter

hues indicating more pronounced discrepancies. The presence of red indicates a flaw

or potential over-fitting of the model, in which case the model may not be able to

generalize the essential features of the data or may have learned noise and anomalies

that affect its prediction performance for unknown data.

Cross-referencing Figures 3.2 and 3.3 reveals that around slice 80, a marked

concentration of red in the error maps is evident, signifying that all models exhibit
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certain predictive inaccuracies around a height of approximately 0 Mm. In this case,

TFNO and ViT still perform well among these four methods. This observation can

be attributed to several potential factors, including the inherent complexity of the

data and the presence of noise. Examination of the data slice at 0 Mm in Figure

3.2 reveals that the features are not distinctly apparent and the data presents a

considerable degree of complexity, interspersed with significant areas of blank space.

Such complexity necessitates a heightened level of abstraction and feature extraction

capability from the models.

At other heights, models develop a more refined representation of the data, and

a corresponding reduction in prediction errors is observed, as reflected in the error

maps of subsequent slices. The reduction in error rates in later slices, marked by

the proliferation of blue areas, indicates an enhancement in learning and adaptive

capabilities. The TFNO model, in particular, demonstrates a more uniform pattern

with diminished errors, suggesting more effective learning strategies or inherent

robustness within the model’s architecture.

While it may be challenging to discern differences between TFNO and ViT in

Figure 3.2, Figure 3.3 allows us to observe that in later slices, ViT exhibits serpentine,

thin-line errors, indicating a deficiency in capturing fine details as compared

to TFNO. The CNN-RNN and CNN-LSTM, although they too exhibit learning

capabilities, present significantly larger errors than TFNO and ViT, which are not

only quantitatively substantial but also lack meaningful physical interpretation.

Figures 3.4 and 3.6 present a comparative visualization of various neural network

models’ performance on the x and y-axis data, which exhibit a higher complexity

with a more abundant presence of features within the images. The CNN-RNN and

CNN-LSTM models struggle to effectively manage this type of data. In the realm

of convolutional neural networks, filters are predominantly localized and adept at

capturing local patterns such as edges and shapes. However, when considering the
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Figure 3.4 Comparative visualization of the By predictive performance of various
neural network models.

MHD equations, a significant degree of global correlation is present. Events occurring

within one region have the potential to impact distant areas, contributing to the

notion that CNN-RNN and CNN-LSTM models falter in adapting to the x and y-axis

data due to their limited capacity to address these global dependencies. The localized

nature of convolutional filters, while beneficial for identifying immediate, discernible

patterns, falls short in capturing the extensive, interconnected dynamics characteristic

of MHD phenomena. This shortfall underscores the challenge posed by the inherent

global correlations within the data, where the actions within one sector resonate

across the broader field, necessitating an analytical approach that encompasses both

local and distant interactions.
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Figure 3.5 By Error map for four models.

Contrastingly, the TFNO and ViT demonstrate a pronounced advantage in

processing global data. The TFNO, through its innovative architecture, bridges the

gap between local and global data analysis by efficiently encoding the comprehensive

scope of interactions within its operational framework. Similarly, ViT, leveraging

the self-attention mechanism inherent to Transformers, excels in identifying and

integrating distant relational data, facilitating a holistic understanding of the image

content. The capacity of TFNO and ViT to adeptly manage complex datasets,

especially those imbued with significant global interrelations as seen in the MHD

equations, positions these models as superior alternatives for tasks requiring an

extensive synthesis of both local and widespread data characteristics. This distinction
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highlights the limitations of traditional CNN-based approaches in tackling tasks with

inherent global complexities.

Figure 3.6 Comparative visualization of the Bx predictive performance of various
neural network models.

Similarly, by comparing the error maps in Figures 3.4 and 3.6, one can discern

that the prediction results of TFNO are nearly indistinguishable from the ground

truth, whereas ViT reveals remarkable discrepancies in finer details when juxtaposed

with the ground truth. In the context of accelerating coronal magnetic field

computations, achieving heightened precision is invariably the paramount priority.

For objectives centered around the acceleration of coronal magnetic field

computations, where higher accuracy not only enhances the reliability of simulations

but also contributes to more effective predictive models of space weather phenomena,

the choice of computational tools becomes critical. The comparison between TFNO
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Figure 3.7 Bx Error map for four models.

and ViT, as evident from their respective error maps, distinctly highlights the superior

performance of TFNO in meeting the rigorous demands of precision. This observation

advocates for a nuanced approach in selecting neural network models tailored to

the specific requirements of accuracy and detail-oriented tasks within the domain of

computational physics and beyond.

In conclusion, the TFNO stands out for its robustness and ability to capture

detailed features with lower errors, indicating its potential suitability for complex

tasks requiring high precision. In contrast, while ViT shows promise in certain

aspects, its performance is shadowed by its shortcomings in detail-specific predictions.

The recurrent architectures, CNN-RNN and CNN-LSTM, demonstrate a moderate
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performance that might benefit from further optimization to reach the efficacy of

TFNO and ViT.

3.3.2 Physics Analysis

When assessing the performance of various ML models in reproducing the Reynolds-

averaged Magnetohydrodynamics (RMHD) outputs, it is vital to check whether

the models can successfully replicate the comprehensive physical quantities found

in the synthetic data, similar to the ground truth. We examine key physical

quantities–specifically, the magnetic field strength and current density as a function

of height, to see models’ capabilities in reflecting the magnetic field intensity at

different heights. In addition, by analyzing the magnetic field orientation through

the inclination and azimuthal angles as a function of height, we can assess the

models’ proficiency in capturing the geometric properties of the field. These metrics

collectively demonstrate the models’ competencies not only in emulating the RMHD

model outputs but also in accurately rendering the comprehensive physics quantities

and magnetic field orientation at various atmospheric levels, including the surface

and coronal height.

Figure 3.8 shows the 2D histograms that compare predictions from different ML

models (TFNO, ViT, CNN-LSTM, and CNN-RNN) to the ground truth across various

height = 2.0 Mm, 7.0 Mm, and 11.0 Mm. Each model demonstrates a scattered

distribution of points along the diagonal, indicating a linear correlation between

predicted and true magnetic field strengths. At a height of 2.0, closer to the surface,

the TFNO and ViT models show a denser clustering of points around the diagonal,

a pattern less concentrated in the CNN-LSTM and CNN-RNN. At greater heights of

7.0 and 11.0, TFNO and ViT consistently keep points near the diagonal, showcasing

sustained prediction accuracy. On the contrary, CNN-LSTM and CNN-RNN models

exhibit a wider spread of points, hinting at a decline in predictive precision.
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Figure 3.8 2D histogram of TFNO, ViT, CNN-LSTM, and CNN-RNN to the
ground truth, at height = 2.0 Mm, 7.0 Mm, and 11.0 Mm. Color gradient denotes
the number of data points.

Moreover, we have evaluated physics-based measurements varying with height

to assess each model’s ability to reproduce the RMHD model outputs. Figure 3.9
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Figure 3.9 Comparison of physics quantities derived from TFNO, ViT,
CNN-LSTM, and CNN-RNN models. Upper panel: Variation of magnetic field
strength as a function of height. Lower panel: Variation of current density as a
function of height.

displays magnetic field strength (B0) and current density (|J |) reveals that, above

a height of 2 Mm, all models produce patterns that resemble the ground truth,

indicative of a stable environment with low magnetic field strength. Below this height,

only the TFNO model’s predictions align closely with the actual measurements.

Similarly, with current density, TFNO maintains a near-ground truth trend below a

height of 1.5 Mm. At a height above 1.5 Mm, characterized by low current, all models

follow a similar trajectory. Overall, TFNO delivers more consistent and accurate

predictions of these physical quantities, particularly close to the surface where the

magnetic settings are complex.

Figure 3.10 illustrates the variation of the horizontally averaged inclination angle

θ and azimuthal angle ϕ as a function of height, derived from different ML models
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Figure 3.10 Comparison of field orientation derived from TFNO, ViT,
CNN-LSTM, and CNN-RNN models. Upper panel: Variation of inclination angle as
a function of height. Lower panel: Variation of azimuthal angle as a function of
height.

compared to the ground truth. Please note that a binary map has been applied

to focus solely on magnetic field strengths that exceed 2.5 times the background

level. This approach helps to disregard weaker fields, which tend to be noisier

and less significant, while still taking into account their potential influence on the

calculations of field orientation metrics. All models can reproduce the inclination

angles well after height> 1Mm. At a lower height below 1 Mm, ViT outperforms other

models regarding the inclination angles. The azimuthal angle variation, however,

demonstrates a significant divergence between the models and the ground truth at the

lower height (below height = 2 Mm). TFNO and ViT appear to align with the ground

truth, but TFNO converges sooner than ViT. Although CNN-LSTM and CNN-RNN

models follow the general trend, they do not closely align with the ground truth.
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At the higher layer (height > 12 Mm), TFNO continues to track the ground truth,

whereas ViT starts to diverge. The inclination and azimuthal angles are important for

understanding the orientation of the magnetic field. The consistency of the TFNO

model with the ground truth suggests it may provide a more physically accurate

magnetic field orientation with height.
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CHAPTER 4

CONCLUSION

The exploration of neural operator architectures, particularly the TFNO, represents a

significant advancement in the computational modeling of the solar coronal magnetic

field. The TFNO model, with its tensorized approach, has demonstrated the

capability to simulate the complex magnetic solar outer atmosphere with reduced

computational demands compared to traditional physics-driven models like Bifrost.

By leveraging the advantages of the Fourier Neural Operator, the TFNO exhibits the

potential to capture periodic phenomena, crucial for the accurate representation of

space weather dynamics.

The findings from the comparative study reveal that the TFNO model not only

achieves superior prediction accuracy but also maintains computational efficiency, as

evidenced by the lowest MSE among the models evaluated and competitive training

times. This balance is particularly outstanding given the fewer parameters within

the TFNO architecture. In contrast, models like the ViT, despite showing promise

in training error minimization, indicate a tendency toward overfitting, which is

manifested in a higher test MSE. This discrepancy underscores the need to carefully

consider model complexity and its impact on generalization capabilities.

In the post physics analysis, the TFNO stands out for its precision in predicting

magnetic field strength and current density, crucially maintaining this accuracy across

varying atmospheric heights. The TFNO model exhibits a remarkable adherence

to ground truth data, particularly below a height of 2Mm, a region characterized

by complex magnetic interactions. Its performance is consistently superior to that

of other machine learning models, such as the ViT, CNN-LSTM, and CNN-RNN,

especially in critical lower atmospheric layers where precise modeling is most needed.
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Additionally, TFNO’s alignment with ground truth in the calculation of field

orientation metrics further solidifies its capability to capture the nuanced dynamics

of solar phenomena.

Looking forward, we do not have high-resolution ground truth data so we can

not validate TFNO’s super-resolution capabilities, which will be a future challenge.

These limitations present opportunities for future research, to enhance the predictive

accuracy of such neural operators and extend their applications to higher-resolution

datasets. This will require innovations in data preprocessing and neural network

modeling, potentially leading to more nuanced simulations that can contribute more

substantially to our understanding of solar phenomena and their effects on Earth.

For future work, it is essential to address the current limitations and explore the

entire data cube in training processes. Additionally, validating the TFNO’s super-

resolution capabilities will be a crucial step. Furthermore, we will try to apply TFNO

to other datasets such as 3D solar magnetic field datasets of active regions built by

using the nonlinear force-free magnetic field (NLFFF) extrapolation [32].
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