
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1990

Multichannel input moniter Multichannel input moniter

Geng Lin Chen
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Chen, Geng Lin, "Multichannel input moniter" (1990). Theses. 2566.
https://digitalcommons.njit.edu/theses/2566

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2566?utm_source=digitalcommons.njit.edu%2Ftheses%2F2566&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Multichannel input monitor

Geng Lin Chen, Master of Science, 1990

Thesis directed by:
Dale T. Teaney Ph.D.
Associate Professor

Department of Electrical Engineering

In order to communicate ,with each other, people must use

the same kind of language. MIDI, the Musical Instrument Digital

Interface, was established as a hardware and software

specification which makes the communication between musical

instruments become possible.

What this thesis does is interfacing a musical instrument

with other devices using MIDI protocol. The hardware is a

multichannel priority interrupt system which has already been

done and was included in the discussion of this thesis. The

focus of this thesis is concentrated on the software

development of multichannel input monitor.

MULTICHANNEL INPUT MONITOR

4

by
Geng Lin Chen

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of
Master of Science

1990

APPROVAL SHEET

Title of Thesis: Multichannel input monitor

Name of Candidate: Geng Lin Chen
Master of Science, 1990

Thesis and Abstract Approved:
Dale Teaney Ph.D. Date
Associate Professor
Department of Electrical Engineering

Date

Signatures of other members
of the thesis committee.

Date

VITA

Name: Geng Lin Chen

Permanent address:

Degree and date to be conferred: Master of Science, 1990

Date of birth:

Place of birth:

Secondary education: Provincial Hsin-Chu Senior High School, 1979

Collegiate institutions attended Dates Degree Date of Degree

Chinese Culture University
Yang-Ming-Shan, Taiwan, R.O.C.

Sep. 1979
to

July 1980

Tamkang University
Tamsui, Taiwan 25137, R.O.C.

Sep. 1980
to

July 1983

Bachelor
of

Science
June 1983

New Jersey Institute of Technology
Newark, New Jersey 07102

Sep. 1988
to

May 1990

Master
of

Science
May 1990

Major: Electrical Engineering

TABLE OF CONTENTS

Chapter Page

INTRODUCTION 1

I. HARDWARE DESCRIPTION 2

A. Principle of Hardware 2

B. I/O Configuration 9

C. Set Up MIDIVIBS 10

II. SOFTWARE DESCRIPTION 12

A. System Flow 16

B. Handling of Argument Arrays 17

C. Programs Detail 20

D. Function of Programs 28

E. Memory Map of Programs 30
4.

F. Flowcharts 34

III. TEST 40

A. Testing Program 40

B. Flowcharts of Testing Program 42

C. Hardware Setup for Test 44

D. Analysis of Test Result 46

1. Example 1 46

2. Example 2 48

3. Example 3 50

APPENDIX A INTRODUCTION TO MIDI 55

APPENDIX B PROGRAMS LIST 60

APPENDIX C ARCHITECTURE OF SBC 90

REFERENCES 99

LIST OF FIGURES

Figure Page

1.1 Simplified system block diagram of MIDIVIBS 4

1.2 Cards connection of MIDIVIBS 5

1.3 Diagram to set up MIDIVIBS 11

2.1 The cylinder mechanism 14

2.2 Note status transition diagram for

INT1 interrupt routine 26

2.3 Note status transition diagram for main program . . 26

2.4 The 8052 Program Memory 32

2.5 The 8052 Data Memory. . . . 32

2.6 External 64K bytes memory map of program MIDIVIBS . 33

3.1 Diagram of test system setup 44

3.2 The circuit of MIDI Data Collection Interface . . . 45

3.3 A simple example MIDI file 46

3.4 Time diagram of MIDI file in Fig 3 3 46

3.5 MIDI file for example2 48

3.6 Time diagram of MIDI file in Fig 3 5 49

3.7 MIDI file for example 3 50

3.8 Time diagram of MIDI file in Fig 3 7 54

4.1 The different MIDI messages 58

4.2 The different controllers under

MIDI Control Change message 59

LIST OF TABLES

Table Page

2.1 5 possible Note statuses are represented

by high nibble of Status byte 23

2.2 Transition of Note status in INT1 interrupt routine 25

2.3 Transition of Note status in main program 27

LIST OF FLOWCHARTS

Flowchart Page

1 Arrays Handling Algorithm Part I (main program). . . 18

2 Arrays Handling Algorithm Part II (INT1 service routine) 19

3 Main Program 34

4 Renew Note Array Subroutine 35

5 Processing Note Array One Cycle Subroutine 36

6 INT1 Interrupt Routine 37

7 INT1 Note Array Handling Subroutine 38

8 TIMERO Interrupt Routine

(1 MS Timer For MIDIVIBS program) 39

9 MIDI Data Collection Program 42

10 TIMERO Interrupt Routine

(1 MS Timer For MIDI Data Collection program). . . . 43

INTRODUCTION

The purpose of this thesis is to build an interface

between vibraphone and other musical instrument using MIDI

protocol. The input of this interface device is the analog

signal produced by sensors in the vibraphone. The output of

this interface device is MIDI protocol digital signal. For

convenience we call this interface device MIDIVIBS.

The hardware of MIDIVIBS which has been done by Claudio

Bernal and Chen-Tung Mo includes 4 different 'cards. They are

Analog I/O card, Key Card, Interface card and SBC card. Chapter

one describes the principle of hardware and functions of these

cards [1,2].

Chapter two is the software algorithm and detail software

description. This chapter introduces a cylinder mechanism from

which the main algorithm of software comes out. It is the

research result of Dr. Teaney and Binghong Gui.

Chapter three discusses the test of MIDIVIBS. This chapter

includes the hardware diagram and software algorithm for

MIDIVIBS test. It also includes the result of test.

Appendix A is an Introduction to MIDI protocol [3].

The programs which are used by this thesis are included in

Appendix B.

Appendix C is the Architecture of SBC. This SBC is

designed by Dr. Teaney.

1

CHAPTER ONE

HARDWARE DESCRIPTION

A. Principle of Hardware

Fig 1.1 is the simplified system block diagram of the

MIDIVIBS. Following are the description of how the system

works.

The input analog signals are picked up by vibration

sensors. The typical wave form of input signal is shown on the

block diagram in Fig 1.1. This analog signal is fed to a

positive active filter circuit which rectifies it to be a

positive envelope as shown ,in Fig 1.1, then this positive

signal is fed to low pass filter circuit. The output of this
4

low pass filter is also shown in Fig 1.1. The next block

circuit is Peak Hold which can detect and hold the peak of the

input signal. When the input signal arrives its maximum this

circuit will output a peak velocity to the Multiplexer circuit.

At the same time this Peak Hold circuit will send an INT signal

to Cascaded priority encoder circuit which can make SBC

responses to the interrupt events according to the priority of

channels.

When the program in SBC receives INT 1 signal it will read

the output of Cascaded priority encoder (at location 1111 Oxxx

2

xxxx x000 B) which tells the highest priority channel currently

requests the interrupt service. Then the program sends out the

ID of this channel to the Multiplexer circuit, so the velocity

of this channel can pass through to the Analog multiplier and

A/D converter circuits. Then the program reads the velocity

from A/D converter and does proper processing of this channel.

In order to enable interrupt signal from other channels this

channel must be reset. To reset this channel, first, the

program sends out this channel's ID to Cascaded demultiplexer

which enables the reset pass from SBC to this channel. Then the

program sends out a reset signal. This reset signal will remove

the INT signal of this channel away, so the INT signal of lower

priority channel can be processed.

3

Fig 1.1-Simplified system block diagram of MIDIVIBS

Fig 1.2 is the cards connection of MIDIVIBS. There are 4

different cards. The source signals are connected to the Analog

I/O Card. The output of Analog I/O Card , is connected to 5 Key

Cards. Then these 5 Key Cards are connected to Interface Card.

The Interface Card then connected to SBC card from which the

MIDI signal comes out. Following paragraphs are functions of

these cards.

Fig 1.2 Cards connection of MIDIVIBS

5

Analog I/O Card

The source signals of MIDIVIBS are picked up by 37

vibration transducers which are stuck on every keys on the

vibraphone. These vibration signals are connected to Analog

I/O Card by two 25 lines parallel cables. This Analog I/O

card provides 37 channels driving current to next boards (5

Key Cards). Also there is an Audio Output in this card from

which we can get analog audio signal of the vibraphone [2].

Key Card

There are 5 Key Cards connect to Analog I/O Card. The

circuit of these 5 Key Cards are all the same. Each Key Card

handles 8 signal channels. Because there are only 37 channels

input signal two channels of the first Key card and one

channel of the fifth Key card are not been used.

The 8 channels in Key card are controlled by Analog

Multiplexer (MC14051). This decoder decides whether one of

the 8 channels is enabled or all channels are disabled. For

each channel there is Peak Hold circuit which will detect and

hold maximum amplitude of input analog signal in this

channel. This maximum amplitude is called the velocity of the

KEY. The velocity will be held until program reset this

channel. This Peak Hold also creates a signal which is

6

connected to priority encoder (MC14532). The priority encoder

of 5 Key cards are chained, so the higher priority encoder

can disable the lower priority encoder [2].

Interface Card

The 5 Key Cards are connected to Interface Card. This

card provides level shifter to transfer data from CMOS

voltage level to TTL voltage level and from TTL voltage level

to CMOS voltage level. In this card there is a second

priority decoder. The inputs of this priority decoder are

connected to the GS pin of priority encoder of 5 Key Cards.

From the GS pin of this second cascaded priority encoder the

SBC's interrupt pin is connected (INT1) . These priority

encoders decide the priority of channels [1].

The Interface Card also provide analog to digit

converter. The input signal of ADC is provided by following

formula:

/ 10 * Velocity
Va =

2

Where Va is the analog input of ADC and Velocity is

the velocity output connected to 5 Key Cards. The square

root function is achieved by Analog multiplier (ICL 8013).

7

The address decoder is also in this card which provides

the memory map I/O.

SBC Card

The SBC Card which includes one 8052AH-BASIC

microprocessor is an independent computer board. It includes

ROM and RAM which are basic elements for a program to be

executed. The program is burned in an 8K EPROM. The serial

output of microprocessor is connected to MIDI OUT where the

MIDI message is sent out. Appendix C is the architecture of

SBC.

8

B. I/O Configuration

Except using Port 1 as a direct I/O , the hardware also

uses memory mapped I/O. This memory mapped I/O uses partial

decoding technique. Following is the binary address of memory

mapped I/O and their function. Where x means don't care.

Memory Mapped I/O

BINARY ADDRESS R/W FUNCTION DATA

1111 0xxx xxxx x000 R Read GSPE (Group
Selected Priority
Encoder) which tells
the highest priority
,channel currently
active.

GSPE
(explained

bellow)

1111 0xxx xxxx x001 W Reset A/D converter
(Start to convert)

Don't
Care

1111 0xxx xxxx x001 R Read A/D converter 0-127

1111 0xxx xxxx x010 W Reset the channel
which is currently
selected by the data
at Port 1.

Don't
Care

GSPE: bit 7 and bit 3 are always zero.

bit 4 to bit 6 represent the Key Card ID.
Bit
6 5 4

Key Card 1 0 1 1
Key Card 2 1 0 0
Key Card 3 1 0 1
Key Card 4 1 1 0
Key Card 5 1 1 1

9

bit 0 to bit 2 represent the Key Channel ID.
Bit
2 1 0

Key Channel 1 0 0 0
Key Channel 2 0 0 1
Key Channel 3 0 1 0
Key Channel 4 0 1 1
Key Channel 5 1 0 0
Key Channel 6 1 0 1
Key Channel 7 1 1 0
Key Channel 8 1 1 1

Direct I/O

Port 1: all 8 bits of Port 1 are used as output.

bit 7 Disable/Enable Key Card.

When this bit is high the 5 Key Cards are disabled.

When it is low the 5 Key Cards are Enabled.

bit 3 In order to execute program this bit must be set

to high always.

bit 0 to bit 2 and bit 4 to bit 6 are the same

definitions as in the GSPE. These 6 bits decide

which Key Channel at which Key Card is enabled.

Bit 7 of Port 1 must be low in order to enable

the specified Key Card.

10

C. Set Up MIDIVIBS

To set up MIDIVIBS, it is simply by connecting vibraphone

to the MIDIVIBS and then connecting the MIDI Output to other

MIDI devices. For example, we can connect the MIDI output with

a computer which has the MIDI facility to record the song

playing on the vibraphone, or connect the MIDI output with any

musical instruments using MIDI protocol. Fig 1.3 is an example

of set up MIDIVIBS.

Fig 1.3 Diagram to set up MIDIVIBS

11

CHAPTER TWO

SOFTWARE DESCRIPTION

Before start to describe the software algorithm and

programs detail, one important mechanism from which the main

algorithm of the software comes out must be described first.

This mechanism is worked out by Dr. Teaney and is shown in Fig

2.1.

Fig 2.1(a) is an empty cylinder which represents the

situation before any element is active. There are 37 element

sources. When any element is active, it will be pushed into the

cylinder. Following are the functions of the cylinder

components.

The Input Gate on the top of the cylinder has two

positions, open and close. When there are new elements above

the Input Gate and the Test & Eject part is not executing its

testing cycle, the new elements can be pushed into the

cylinder. When the Test & Eject part is executing its testing

cycle, this Input Gate is locked at close position. The Input

Gate in Fig 2.1(a) is at its close position. Fig 2.1(b) shows

how 3 elements are pushed into the cylinder. the Input Gate at

the left cylinder of Fig 2.1(b) is at its open position.

The Test & Eject part on the right side of the cylinder

can detect the activity of the element. It will compare the

12

activity, Va of this element with the threshold, Vth. If Va is

less then Vth it will eject this element from the left side of

the cylinder. This Test & Eject part will examine every

elements in the cylinder from level 1 to level N where N is

the number of elements current in the cylinder. Fig 2.1(c)

shows 4 elements in the cylinder while the Test & Eject part is

executing its testing cycle. The Test & Eject part always

starts a new testing cycle from level 1. Before it starts a new

testing cycle it will unlock the Input Gate so that the new

elements above the Input Gate can be pushed into the cylinder.

After all new elements above Input Gate have been pushed into

the cylinder, it locks the Input Gate at its close position and

begins testing cycle. So, before the end of testing cycle, no

new element can be pushed into the cylinder. Each time when

Test & Eject part ejects one element instead of move to next

level as the condition Va > Vth, the Test & Eject part will

stay at the same level and test next element. When there is no

more element below the level where the Test & Eject part is

located, the Test & Eject part will return to level 1 and end

this testing cycle.

On the left side of the cylinder, there are eight doors.

When the Test & Eject part is not at its testing cycle these 8

doors are closed. When it is at its testing cycle only one of

these eight doors is opened which is the one at the same level

as the Test & Eject part. For example, during the testing cycle

13

Fig 2.1 The cylinder mechanism

14

the Test & Eject part is at level 3 then the door at level 3 is

opened. So, when the activity of this element is less then

threshold the Test & Eject part can eject it.

The spring at level 9 on the right side of the cylinder

will eject automatically the element which is pushed onto level

9. That means when there are 9 elements under the Input Gate

the element at level 9 will be ejected automatically. This

keeps the maximum number of elements inside the cylinder to be

eight.

The spring under the cylinder makes sure that there is no

empty place inside the cylinder. Each time when the Test &

Eject part ejects one element out, the spring will push the

elements under the element which was ejected one level up.

The reason to implement this mechanism into software

algorithm is to improve the efficiency of software. The array

handling algorithm which is described on next two sections is

the implementation of this mechanism. The 37 Keys on the

vibraphone represent the elements of this mechanism. The arrays

described on next two sections represent the cylinder. The

velocity of note represents the activity of the element.

(b) 3 elements are pushed into the cylinder

(c) Test & Eject part at its testing cycle

Fig 2.1 The cylinder mechanism

15

A. System Flow

The algorithm of software can be described roughly as

following. This algorithm and next section "Handling of

Argument Arrays" are research results Dr. Teaney and Binghong

Gui.

a) arguments used

M(8) -- note array of maximum size 8.

M(1) is the newest data.

I0() -- new data array of maximum size 8.

IO(I) is the newest data, "I" is the pointer

to the newest data.

b) The main program keeps checking the note array M(). If

the velocity of one note is lower than the

threshold, then the note will be turned off.

c) If an interrupt from vibraphone is coming, the computer

will go to serve the INT routine. The INT routine

collects the new data in the array 10(8), with IO(I)

is the newest data. The I0() only keeps the newest 8

data.

d) After coming back from INT routine, the note array M()

need to be reorganized with new data I0(). Then the

control goes to the main note checking routine (step

b).

16

B. Handling of Argument Arrays

The argument arrays discussed here are M(8) and 10(8). As

describes previously M(8) is note array of maximum size 8 and

M(1) is the newest data. 10(8) is new data array of maximum

size 8 where IO(I) is the newest data.

Flowchart 1 and 2 on page 18 and 19 are array handling

algorithm that shows the algorithm of handling these two

arrays. Note that when the main program checks the note array

M() it uses stack as a storage place for valid notes. This

simplifies the arrangement of the order of elements in M() and

makes the program more efficient.

17

Flowchart 1 Arrays Handling Algorithm Part I (Main program)

18

Flowchart 2 Arrays Handling Algorithm Part II

(INT 1 service routine)

19

C. Programs Detail

In the beginning the program is written by BASIC. Because

the speed of BASIC is too slow, it is necessary to transfer the

BASIC into assembly which is the first program in the Appendix

B. This first program called MIDIVIBS will be discussed in this

chapter. The second program in the Appendix B which is written

by BASIC and assembly is a program that can monitor the MIDI

DATA output. It will be discussed in next chapter.

The flowcharts of MIDIVIBS are from page 34 to 39. The

argument array handling algorithm is the same as shown on

Flowchart 1 and Flowchart 2. The line number beside each block

in the flowchart is the corresponding program line number which

executes the function described in that block. The address on

the left down corner of I/O block is the location where this

I/O action is took place.

The MIDI message used by this thesis is only the Note On

command. The Note OFF command is replaced by a Note ON command

with zero attack velocity. Also the program use the running

status technique to speed up the processing. When the program

is sending turn note on MIDI message it sends status byte 90H.

When it is sending turn note off message no status byte will be

sent out. For more information about MIDI protocol see Appendix

A, Introduction to MIDI [3].

20

The software basically includes 6 programs. In order to

make this program more efficient it uses 2 bytes space for each

Note on the vibraphone. Because of these two extra bytes the

program doesn't need to waste its time in delay loop. One of

these two extra bytes is STATUS byte. The other is TM byte. The

TM byte is used to store time at which this note changes its

status. The STATUS byte is to store Note status. The status

byte is explained bellow.

Bit 7 of status byte which is not used is always zero. Bit

0 to Bit 3 of status byte are status time count value. If this

low nibble is not zero then its value will be decreased by one

every 10 ms. Not until the low nibble of status byte is zero

this note can not change its status which is represented by

high nibble of status byte.

Bit 4 to Bit 6 of status byte represent 5 situations.

Following are the meaning of these three bits.

Bit 4 of status byte: If this note has just been turned ON

no more than 50 ms or has just been turned OFF no

more than 30 ms then this bit will be set.

Otherwise it will be cleared.

Bit 5 of status byte: If this bit is set that means this

note is ON right now. If this bit is cleared that

means this note is OFF right now.

21

Bit 6 of status byte: If this bit is set then this note

will be turned ON 30 ms later with the velocity

read at that time. The-reason to use this status

bit is because it is not proper to turn this note

ON when this note has just been turned OFF no

more than 30 ms.

For example, this note has just been turned ON no more

than 50 ms if you turn it OFF immediately your output MIDI

message will be a note ON message with a duration less than 50

ms. This is a too short duration for you to hear this note.

On the other hand if this note has just been turned OFF no

more than 30 ms and you turn it ON immediately you will get a

MIDI note OFF message with a duration less than 30 ms.

So actually bit 6 of status byte is used to make sure

there is enough Note OFF and Note ON time.

For example, if status byte is 35H. The high nibble of

this status byte is 3 and the low nibble of status byte is 5.

That means this note is in status 4 (this note has just been

turned ON) and not until 50 ms later the program will not

check the velocity of this note.

Although there are 8 different combinations for bit 4 to

bit 6. There are only 5 possible statuses which are used in

this program. These 5 statuses are shown in Table 2.1.

22

Note
Status Status byte

bit 6
Status byte

bit 5
Status byte

bit 4

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

Table 2.1: 5 possible Note statuses are represented by

high nibble of Status byte

Note: bit 7 : always zero

bit 6: 30 ms later read velocity flag

bit 5: note ON flag

bit 4: If this bit is set that means right

now it is 50 ms time period after

note ON or 30 ms time period after

note OFF.

Table 2.2 is the statuses transition table and Fig 2.2

is the statuses transition diagram for INT1 interrupt routine.

Table 2.3 is the statuses transition table and Fig 2.3 is the

statuses transition diagram for main program.

23

Following are the explanation of 5 possible Note statuses.

Status 1: (status byte high nibble = 0) This note has

been turned OFF for more than 30 ms.

Status 2: (status byte high nibble = 1) This note has

just been turned OFF no longer than 30 ms ago.

Status 3: (status byte high nibble = 2) This note has

been turned ON more than 50 ms and it is ON

right now.

Status 4: (status byte high nibble = 3) This note has

just been turned ON no longer than 50 ms ago.

Status 5: (status byte high nibble = 4) This note will

be turned ON no more than 30 ms later.

24

Note Status
before
processing

1

Transition of Note status

 Check velocity

IF velocity >= threshold THEN

BEGIN

turn note ON;

Note status 1 -> Note status 4;

store current time into TM byte;

END

ELSE

BEGIN

Note status 1 -> Note status 5;

store current time into TM byte;

END;

2

Note status 2 -> Note status 5;

store current time into TM byte;

3
Note status 3 -> Note status 5;

turn note OFF;

store current time into TM byte;

4 or 5 no change of status byte;

Table 2.2 Transition of Note status in INT1

interrupt routine.

25

Fig 2.2 Note status transition diagram for INT1 interrupt
routine.

note: *1 velocity >= threshold

*2 velocity < threshold

Fig 2.3 Note status transition diagram for main program.

note: *1 velocity >= threshold

*2 velocity < threshold

26

Note Status
before

processing

1

Transition of Note status

no processing of Note status

2
Note status 2 -> Note status 1;

store current time into TM byte;

3 or 4

Check velocity

IF velocity < threshold THEN

BEGIN

turn note OFF;

Note status 3 or 4 -> Note status

store current time into TM byte;

END

ELSE

BEGIN

Note status 3 or 4 -> Note status

store current time into TM byte;

END;

2;

3;

Table 2.3 Transition of Note status in main program.

(This table is continued on next page)

27

Note Status
before

processing

5

Transition of Note status

Check velocity

IF velocity < threshold THEN
BEGIN

Note status 5 -> Note status 1

store current time into TM byte;

END

ELSE

BEGIN

Note status 5 -> Note status 4

turn note ON with velocity gets
from A/D converter;

store current time into TM byte;

END;

Table 2.3 Transition of Note status in main program.

(Continued from previous page)

D. FUNCTION OF PROGRAMS

Following are functions of 6 assembly programs of MIDIVIBS:

Program one "Main Program" (flowchart 3) : Main routine

includes initialization and control of the main

flow.

28

Program two "Renew Note Array Subroutine" (flowchart 4) :

This program is called by the main program. It will

add new notes which are currently gotten by INT 1

interrupt routine and are currently in the

Interrupt Note Array IO(). If the total Note number

includes in the Current Note Array M() and

Interrupt Note Array IO() are more than 8 then this

program will keep the newest 8 notes and turn

others off.

Program three "Processing Current Note Array One Cycle

Subroutine" (flowchart 5) • This program is

called by the main program. It will check current

velocity for those notes in Current Note Array M().

If the velocity of one note is less than threshold

then it will turn this note OFF and move it out

from Current Note Array. Notice that if the note

has just been checked no more than 10 ms ago then

this program will not check this note in this

processing cycle. Not only 10 ms has to be passed

from last time checking of this Note, but also the

low nibble of status byte of this note has to be

zero, otherwise the program will not check the

velocity of this note. It will only decrease the

low nibble of the status byte of this note by 1.

29

That means the value of 10 ms count of status byte

of this Note is decreased by one. The meaning of

status byte is explained in section C, Programs

Detail, in this chapter.

Program four "INT 1 Interrupt Routine" (flowchart 6) : This

program will be executed when there is a note on

vibraphone be hit. It will assign different status

to this note according to current status of this

Note. The transition of status byte is explained in

Table 2.2 and Fig 2.2.

Program five "INT1 Interrupt Note Array Handling Subroutine"

(flowchart 7) : This program is called by INT 1

interrupt routine. It will put current Note into

Interrupt Note Array, This routine also keeps no

more than 8 newest motes.

Program six "TIMER0 Interrupt Routine" (flowchart 8) : What

this interrupt routine does is just increasing the

1 ms counter by one and load timer0 registers with

proper value in order to create 1 ms timer (For

the crystal of system clock equals 11 MHz, the

value is FC6CH).

E. MEMORY MAP OF PROGRAM

Fig 2.4 and Fig 2.5 are the memory maps of MCS8052-BASIC [5].

30

In the BASIC system there must be at least 1K external RAM

located at the bottom (low address) of external 64K bytes

memory. Also MCS8052-BASIC mirrors -the interrupt vectors to

external memory location 4000H. So if the program includes

interrupt service routines under BASIC system, there must be

memory device (ROM or RAM) at location 4000H to put the

interrupt vector.

In order to use the auto boot feature of MCS8052-BASIC

under BASIC system, there must be ROM begins at location 8000H.

The minimum size of this ROM area depends on the size of the

BASIC program to be executed. For example, the BASIC program is

100H bytes than the minimum size of this ROM will be 100H plus

11H which is used to store system informations. That comes to

111H bytes.

So if the program is executed under system of BASIC the

minimum number of memory ICs will be 3 for SBC board. One

begins at 0. The other begins at 4000H. Another begins at

8000H.

31

Fig 2.4 The 8052 Program Memory

Fig 2.5 The 8052 Data Memory

32

The program in this thesis has already been transferred

into assembly. It is not necessary to run this program under

BASIC system. Because the program. in this thesis uses the

external reset feature of MCS8052-BASIC, so it only needs 2

memory ICs. One is for the code area starts at 2000H. The

other is for the data area starts at 4000H. Fig 2.6 is the

memory map of the program MIDIVIBS.

0H - 1FFFH NOT USED

2000H - 25FFH CODE AREA (ROM)

2600H - 3FFFH

NOTE USED

4000H - 43FFH DATA AREA (RAM)

4400H - DFFFH NOT USED

E000H - FFFFH I/O AREA

Fig 2.6 External 64K bytes memory map of program MIDIVIBS.

33

D. FLOWCHARTS

FLOWCHART 3 : MAIN PROGRAM

34

FLOWCHART 4 : RENEW NOTE ARRAY SUBROUTINE

35

FLOWCHART 5 : PROCESSING NOTE ARRAY ONE CYCLE SUBROUTINE

36

FLOWCHART 6 : INT1 INTERRUPT ROUTINE

37

FLOWCHART 7 : INT1 NOTE ARRAY HANDLING SUBROUTINE

38

FLOWCHART 8 : TIMERO INTERRUPT ROUTINE

(1 MS TIMER FOR MIDIUIBS PROGRAM)

39

CHAPTER FOUR

TEST

A. TEST Program

The second program in Appendix B which is called MIDI DATA

COLLECTION is a program that can record MIDI messages. It also

can send out MIDI messages in the way just the same as the

messages were recorded.

In the output file created by this program, there are two

informations for each MIDI code. One is the MIDI code itself.

The other is the time at which that code was recorded. This

file starts at memory location 5000H.

Using this program we can know exactly MIDI code output

sequence. By taking a look at MIDI file that was created by

this program, we can know which MIDI code is sent, at what

time.(The resolution is 1 ms.)

The flowcharts of this program, flowchart 9 and 10 are on

page 42 and 43.

Before we use this test program to collect MIDI data, we

need to clear MIDI data file area. The MIDI data file area is

located from 5000H to 5FFFH. We can use Micromint command "FILL

5000H,5FFFH,0" to clear this area. After we have finished MIDI

data collection, we push the push-button (S.W.1) in MIDI Data

Collection Interface (Fig 3.2) to stop the collection program.

To send the MIDI messages which were recorded, it is

40

simply by executing this MIDI Data Collection program. When the

data area is not empty the program sends out the MIDI messages

which were recorded automatically.

Each MIDI code in data file is represented by 4 bytes. The

first byte is the MIDI code itself. The other 3 bytes are 1 ms

time at which this MIDI code is recorded. When both MIDI code

and 3 bytes of 1 ms time are zero this means the end of MIDI

data file.

Following is the I/O configuration of the MIDI Data

Collection Interface:

Port 1 bit 0 (Output) Disable/Enable the MIDI out.

This bit is used as an output. When

it is high the MIDI out transmission

is disabled. When it is low the MIDI

out transmission is enabled.

Port 1 bit 7 (Input) When SW 1 is pushed, this bit

is low. When it is released, this bit

is high.

The MIDI IN is connected to serial in of SBC. The MIDI OUT

is controlled by port 1 bit 0. When port 1 bit 0 is low the

MIDI OUT is connected to serial out of SBC. When port 1 bit 0

is high the MIDI OUT is disabled.

41

B. FLOWCHARTS

FLOWCHART 9 : MIDI DATA COLLECTION PROGRAM

42

FLOWCHART 10 : TIMERO INTERRUPT ROUTINE

(1 MS TIMER FOR MIDI DATA COLLECTION PROGRAM)

43

C. Hardware Setup for Test Program

The hardware is set up by connect vibraphone to the

MIDIVIBS and then connect the MIDI output to the MIDI Data

Collection Interface then the SBC board then the terminal. Fig

3.1 shows the system diagram of these connection. The circuit

of MIDI Data Collection Interface is shown in Fig 3.2.

Fig 3.1 Diagram of test system setup

44

4
5

Fig 3.2 The circuit of MIDI Data Collection Interface

D. Analysis of Test Result
1. Example 1

The data of this example is collected by playing one note

on the vibraphone. Fig 3.3 is the data of MIDI file produced by

the MIDI DATA COLLECTION program and Fig 3.4 is the time

diagram analysis of this MIDI file.

DIS 5000H,501FH

5000H 90H 00H 18H FAH 4BH 00H 18H FBH K . . .

5008H 40H 00H 18H FBH 4BH 00H 22H 97H @ . . . K . " .

5010H 00H 00H 22H 97H 00H 00H 00H 00H . . "

5018H 00H 00H 00H 00H 00H 00H 00H 00H

READY

Fig 3.3 A simple example MIDI file

ON Velocity = 40H
Note 4BH

Off
> Time (sec)

0 6.394 8.855
sec sec sec

 program begins here

Fig 3.4 Time diagram of MIDI file in Fig 3.3

46

There are four bytes information in each MIDI data. The

first byte is MIDI code itself as 90H in this example. The

second, third and fourth bytes are the time at which this MIDI

code is recorded. For the first MIDI code 90H, the time is

0018FAH ms which means the MIDI code 90H is recorded at time

6.394 sec counted from the time at which this program was

executed.

For the second MIDI data the MIDI code is 4BH. The time is

0018FBH ms. Which means MIDI code 4BH is recorded at time 6.395

sec. Notice that the time resolution of this program is only 1

ms. The MIDI data is sent at 31,250 BPS. In 1 ms it is possible

to have 3 bytes data been transmitted.

The first MIDI message is completed by the first 3 MIDI

codes which are 90H, 4BH and 40H. This message means turn note

4BH on with velocity 40H. The codes of second MIDI message is

4BH and 00H Which means turn note 4BH off. Because the MIDIVIBS

program uses the running status of MIDI protocol, so it doesn't

send the status byte 90H when the MIDI message is turn Note

off.

When both MIDI code and all 3 bytes of 1 ms time are zero

that means the end of MIDI file.

47

2. Example 2

The data of this example is collected by trying to hit

three Notes on the vibraphone almost at the same time. Fig 3.5

is the MIDI file produced by this MIDI DATA COLLECTION program

and Fig 3.6 is the time diagram analysis of this MIDI file.

DIS 5000H,5080H

5000H 90H 00H 2CH 61H 4EH 00H 2CH 61H . . ,aN. , a

5008H 42H 00H 2CH 62H 90H 00H 2CH 6CH B . , b . . , 1

5010H 52H 00H 2CH 6CH 47H 00H 2CH 6CH R . , 1 G . , 1

5018H 90H 00H 2CH 6EH 50H 00H 2CH 6FH . . ,nP. , o

5020H 40H 00H 2CH 6FH 4EH 00H 20H 1FH @ . , o N . - .

5028H 00H 00H 2DH 1FH 50H 00H 2DH E5H . . - . P . - .

5030H 00H 00H 2DH E5H 52H 00H 2DH EDH . . - . R . - .

5038H 00H 00H 2DH EEH 00H 00H 00H 00H . . -

5040H 00H 00H 00H 00H 00H 00H 00H 00H

READY

>

Fig 3.5 MIDI file for example 2

48

Fig 3.6 Time diagram of MIDI file in Fig 3.5

In this example there are three Notes 4EH, 50H and 52H be

turned ON at time 11.361 sec, 11.374 sec and 11.372 sec

respectively. They are turned OFF at time 11.551 sec, 11.749

and 11.757 respectively. This means that the interrupt system

responses properly.

49

3. Example 3

In this example data is collected by playing a song on the

vibraphone. Fig 3.7 is the MIDI file produced by this MIDI DATA

COLLECTION program and Fig 3.8 is the time diagram analysis of

this MIDI file.

DIS 5000H,5280H

5000H 90H 00H 08H EDH 4EH 00H 08H EEH N . . .

5008H 2BH 00H 08H EEH 4EH 00H 09H E7H + . . . N . .

5010H 00H 00H 09H E7H 90H 00H 0AH 1AH

5018H 4EH 00H 0AH 1AH 25H 00H 40AH 1AH N . . . % . .

5020H 4EH 00H 0AH EBH 00H 00H 0AH EBH N

5028H 90H 00H 0BH 14H 4EH 00H 0BH 15H N . . .

5030H 28H 00H 0BH 15H 4EH 00H 0BH FAH (. . . N . . .

5038H 00H 00H 0BH FAH 90H 00H 0DH 55H U

5040H 4BH 00H 0DH 55H 30H 00H 0DH 55H K . . U 0 . U

5048H 4BH 00H 0EH 6EH 00H 00H 0EH 6EH K . . n . . n

5050H 90H 00H 0FH 83H 50H 00H 0FH 84H P . .

5058H 34H 00H 0FH 84H 50H 00H 10H D0H 4 . . . P . .

5060H 00H 00H 10H D1H 90H 00H 10H FCH

Fig 3.7 MIDI file for example 3 (Continued on next page)

50

5068H 50H 00H 10H FCH 30H 00H 10H FDH P . . . 0 . .

5070H 50H 00H 11H B9H 00H 00H 11H BAH P

5078H 90H 00H 11H E3H 50H 00H 11H E3H P . .

5080H 33H 00H 11H E4H 50H 00H 13H 26H 3 . . . P . . &

5088H 00H 00H 13H 26H 90H 00H 13H F3H . . . &

5090H 4EH 00H 13H F3H 35H 00H 13H F3H N . . . 5 . .

5098H 4EH 00H 15H 16H 00H 00H 15H 16H N

50A0H 90H 00H 16H 28H 4EH 00H 16H 28H . . . (N . . (

50A8H 31H 00H 16H 28H 4EH 00H 17H 4BH 1 . . (N . . K

50B0H 00H 00H 17H 4BH 90H 00H 17H 97H . . . K

50B8H 50H 00H 17H 98H 31H 00H 17H 98H P . . . 1 . . .

5000H 90H 00H 18H 6FH 52H 00H 18H 6FH . . .oR. . o

5008H 39H 00H 18H 6FH 50H 00} 18H DAH 9 . . o P . . .

50D0H 00H 00H 18H DBH 52H 00H 19H BCH R . .
a

50D8H 00H 00H 19H BCH 90H 00H 1AH 9AH

50E0H 52H 00H 1AH 9AH 3AH 00H 1AH 9BH R

50E8H 52H 00H 1BH F1H 00H 00H 1BH F2H R

50F0H 90H 00H 1CH CCH 51H 00H 1CH CCH Q . .

50F8H 43H 00H 1CH CCH 51H 00H 1EH 38H C . . . Q . . 8

5100H 00H 00H 1EH 38H 90H 00H 1EH 3BH . . . 8 . . . ;

5108H 50H 00H 1EH 3CH 38H 00H 1EH 3CH P . . < 8 . . <

5110H 90H 00H 1FH 2BH 4FH 00H 1FH 2BH . . . + O . . +

Fig 3.7 MIDI file for example 3 (Continued on next page)

51

5118H 3CH 00H 1FH 2CH 50H 00H 1FH A8H < . . , P . . .

5120H 00H 00H 1FH A9H 4FH 00H 20H 8EH O . .

5128H 00H 00H 20H 8EH 90H 00H 23H AFH # .

5130H 4FH 00H 23H B0H 3CH 00H 23H B0H O . # . < . # .

5138H 90H 00H 25H 06H 50H 00H 25H 06H . . % . P . % .

5140H 34H 00H 25H 06H 4FH 00H 25H 07H 4 . % . O . % .

5148H 00H 00H 25H 08H 90H 00H 25H F5H . . % . . . % .

5150H 51H 00H 25H F5H 38H 00H 25H F6H Q . % . 8 . % .

5158H 50H 00H 26H 68H 00H 00H 26H 68H P . & h . . & h

5160H 51H 00H 27H 43H 00H 00H 27H 43H Q . ' C . . ' C

5168H 90H 00H 28H 3DH 51H 00H 28H 3DH . . (= Q . (=

5170H 39H 00H 28H 3EH 51H 00H 29H 8AH 9 . (> Q .) .

5178H 00H 00H 29H 8AH 90H 00H 24piH 7EH . .) . . . *

5180H 50H 00H 2AH 7FH 37H 00H 2AH 7FH P . * 7 . *

5188H 50H 00H 2BH D6H 00H 00H 2BH D6H P . + . . . + .

5190H 90H 00H 2CH 05H 4FH 00H 2CH 06H - . , . O . , .

5198H 31H 00H 2CH 06H 90H 00H 2CH F9H 1 . , . . . , .

51A0H 50H 00H 2CH F9H 3AH 00H 2CH FAH P . , . : . , .

51A8H 4FH 00H 2DH 3EH 00H 00H 2DH 3EH O . - > . - >

51B0H 50H 00H 2EH 65H 00H 00H 2EH 65H P . . e . . . e

Fig 3.7 MIDI file for example 3 (Continued on next page)

52

51B8H 90H 00H 2FH 42H 4EH 00H 2FH 42H . . /BN. / B

51C0H 30H 00H 2FH 42H 4EH 00H 30H 50H 0 . /BN.0P

51C8H 00H 00H 30H 51H 90H 00H 31H 9AH . . 0 Q . . 1 .

51D0H 4EH 00H 31H 9BH 35H 00H 31H 9BH N . 1 . 5 . 1 .

51D8H 4EH 00H 32H BEH 00H 00H 32H BEH N . 2 . . . 2 .

51E0H 90H 00H 32H E2H 50H 00H 32H E2H . . 2 . P . 2 .

51E8H 36H 00H 32H E3H 90H 00H 33H E8H 6 . 2 . . . 3 .

51F0H 4FH 00H 33H E8H 3BH 00H 33H E9H O . 3 . ; . 3 .

51F8H 50H 00H 34H 4EH 00H 00H 34H 4FH P . 4 N . . 4 O

5200H 4FH 00H 35H 3FH 00H 00H 35H 40H O . 5 ? . . 5 @

5208H 90H 00H 36H 14H 4BH 00H 36H 14H . . 6 . K . 6 .

5210H 31H 00H 36H 14H 4BH 00H 37H 37H 1 . 6 . K . 7 7

5218H 00H 00H 37H 37H 90H 00H 38H 6DH . . 7 7 . . 8 m

5220H 4DH 00H 38H 6DH 37H 00H 38H 6DH M . 8 m 7 . 8 m

5228H 90H 00H 39H CBH 4FH 00H 39H CCH . . 9 . O . 9 .

5230H 3DH 00H 39H CCH 4DH 00H 39H CFH = . 9 . M . 9 .

5238H 00H 00H 39H CFH 4FH 00H 3BH 23H . . 9 . O . ; #

5240H 00H 00H 3BH 23H 90H 00H 3BH 29H . . ; # ;)

5248H 4EH 00H 3BH 29H 38H 00H 3BH 29H N . ;) 8 . ;)

5250H 4EH 00H 3CH 80H 00H 00H 3CH 80H N . < . . . <

5258H 00H 00H 00H 00H 00H 00H 00H 00H

READY

Fig 3.7 MIDI file for example 3

53

5
4

Fig 3.8 Time diagram of MIDI file in Fig 3.7

APPENDIX A

INTRODUCTION TO MIDI

55

INTRODUCTION TO MIDI

The MIDI is an abbreviation of Musical Instrument Digital

Interface. By using MIDI protocol musical performance and

other information can be transmitted and received by

instruments using the common serial interface. The Baud Rate of

this serial interface is 31.25K BAUD.

MIDI messages which transmit information between MIDI

devices determine what kinds of musical events can be passed

from device to device. It usually takes two or three bytes to

send a MIDI message.

The first byte of any MIDI message is called the status

byte. It tells what kind of message it is. The status byte

might identify the message as a Note On message (one that tells

about a note that just started),Note Off message (one that

tells the end of a note), or any number of other possible

types.

The bytes that follow the status byte are called data

bytes. Each data byte elaborates on the information given by

the status byte. For example, the first data byte in a Note On

message tells the pitch of the note, and the second data byte

tells the attack velocity of the note so that a MIDI device can

tell how loud to play it.

56

To distinguish data byte from status byte, MIDI uses bytes

that MSB is 0 as data bytes and bytes that MSB is 1 as status

bytes. Many types of MIDI messages use two data bytes to carry

additional information; some need only one data byte; still

others use no data bytes at all.

There are many different kinds of MIDI messages as shown

in FIG 4.1 and Fig 4.2.

One important feature about MIDI is that MIDI devices can

use a technique called running status to make data transmission

even faster. Running status allows a device to send a stream of

messages of the same kind without repeating the status byte for
a

each message. When the sending device wants to send another

kind of message, it simply stops sending data and send another

message as it would normally. By eliminating repeated status

bytes, running status reduces the number of message bytes and

speeds up note transmission.

The MIDI message used by this thesis is only the Note On

command. The Note OFF command is replaced by a Note ON command

with zero attack velocity. Also the program use the running

status technique to speed up the processing.

57

<1 Note Off
Note On

Ployphonic key Pressure
Voice Control Change (see Fig 4.2)

Program Change
Channel pressure
Pitch Bend Change

/ Channel

Reset All Controllers
Local Control
All Notes Off

Mode Omni Mode Off
Omni Mode On
Mono Mode On
Poly Mode On

MIDI
Messages

/ System exclusive messages

< Tune

MIDI Time Code Quarter Frame
Song Position Pointer

\--System < Common Song Select
Tune Request

EOX

Timing Clock
Start

\-Real-time Continue
Stop
Active Sensing
System Reset

Fig 4.1 The different MIDI messages,

arranged by message type.

58

/ Modulation Wheel or Level
Breath Controller
Foot Controller
Portamento Time
Data entry MSB
Main volume
Balance

• Pan
Expression Controller
General Purpose Controllers
LSB for above Controllers in this figure
Damper Pedal (sustain)

Control Portamento
Change < Sostenuto

Soft Pedal
Hold 2
External Effects Depth
Tremolo Depth
Chorus Depth,
Celeste (Detune) Depth
Phaser Depth
Data increment
Data decrement

r LSB
Non-Registered Parameter Number MSB

Pitch Bend Sensitivity
Registered Parameter Fine Tuning

Number LSB Coarse Tuning

Pitch Bend Sensitivity
\--Registered Parameter Fine Tuning

Number MSB Coarse Tuning

Fig 4.2 The different controllers under

MIDI Control Change message.

59

APPENDIX B

Programs List

Program Page

MIDIVIBS Program 61

MIDI Data Collection Program 84

60

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 1

1 ;CODE AREA BEGINS AT 2000H (LENGTH 700H)
2 ; PROGRAM BEGINS AT 2090H
3 ;
4 CODE AREA EQU 2000H ;START ADDRESS OF CODE AREA
5 ;
6 ;
7 ;
8 ; DATA_AREA MEMORY MAP (At least 1K memory begins at 4000H)
9 ; C : 4100H NEW DATA COUNTER
10 ; I : 4101H INTERRUPT NOTE ARRAY POINTER
11 ; T : 4102H - TEMPORARY ARRAY SIZE
12 ; V : 4103H - CURRENT ARRAY SIZE (DATA NUMBER IN M(8) ARRAY) ;
13 ; M(8): 4110H - 4117H CURRENT NOTE ARRAY
14 ; 1O(8): 4120H - 4127H INTERRUPT NOTE ARRAY
15 ;
16 ; 41XXH GSPE-NOTE TRANSFER TABLE
17 ; 42XXH Notes TM area
18 ; 43XXH Notes status area
19 ; (XX IS A NUMBER FROM 32H TO 77H)
20 ;
21 ;
22 ;
23 ;
24 THREVEL1 EQU 04H ;Noise recover threshold
25 THREVEL2 EQU 01H ;Turn note, off threshold
26 ;
27 BAUD COUNTER EQU 0FFFSH ;COUNTER FOR 31,250 BPS (AT 11 MHZ CRYSTAL)
28 TIM0 C L EQU 6CH ;1 MS TIMER COUNT LOW BYTE (AT 11 MHZ CRYSTAL)
29 TIM0 C H EQU 0FCH ;1 MS TIMER COUNT HIGH BYTE (AT 11 MHZ CRYSTAL)
30 ;
31 S_2 EQU 13H ;TURN OFF AT LEAST 30 MS
32 S_4 EQU 35H ;TURN ON AT LEAST 50 MS
33 S_5 EQU 43H ;TURN ON 30 MS LATER
34 ;
35 ; ;
36 ; GSPE --> KEY NO. TRANSFER TABLE
37 ; THIS TABLE IS SET UP BY INITIALIZATION SOFTWARE ;
38 ;
39 ; ORG 4132H ;KEY CARD #5
40 ; DB 35H ;F 4
41 ; DB 36H ;F#4
42 ; DB 37H ;G 4
43 ; DB 38H ;G#4
44 ; DB 39H ;A 4
45 ; DB 3AH ;A#4

61

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 2

46 ; ORG 4140H ;KEY CARD #4
47 ; DB 3BH ;B 4
48 ; DB 3CH ;C 5
49 ; DB 3DH ;C#5
50 ; DB 3EH ;D 5
51 ; DB 3FH ;D#5
52 ; DB 40H ;E 5
53 ; DB 41H ;F 5
54 ; DB 42H ;F#5
55 ; ORG 4150H ;KEY CARD #3
56 ; DB 43H ;G 5
57 ; DB 44H ;G#5
58 ; DB 45H ;A 5
59 ; DB 46H ;A#5
60 ; DB 47H ;B 5
61 ; DB 48H ;C 6
62 ; DB 49H ;C#6
63 ; DB 4AH ;D 6
64 ; ORG 4160H ;KEY CARD #2
65 ; DB 4BH ;D#6
66 ; DB 4CH ;E 6
67 ; DB 4DH ;F 6
68 ; DB 4EH ;F#6
69 ; DB 4FH ;G 6
70 ; DB 50H * ;G#6
71 ; DB 51H ;A 6
72 ; DB 52H ;A#6
73 ; ORG 4170H ;KEY CARD #1
74 ; DB 53H ;B 6
75 ; DB 54H ;C 7
76 ; DB 55H ;C#7
77 ; DB 56H ;D 7
78 ; DB 57H ;D#7
79 ; DB 58H ;E 7
80 ; DB 59H ;F 7
81 ;
82 ;
83 ; INITIALIZATION BEFORE MAIN PROGRAM
84 ;
85 ORG CODE AREA
86 BB 0H
87 DB 0AAH ;TELL BASIC THAT RESET IS EXTERNAL
88 INITIAL EQU CODE_AREA+90H
89 ORG INITIAL
90

62

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 3

91 ;
92 COLD RESET
93
94 ;First clear the internal memory
95 MOV R0,#0FFH ;Load R0 with the top of internal memory
96 CLR A ;Set accumulator = 0
97
98 RESET1:
99 MOV @R0,A ;Loop until all the internal RAM
100 DJNZ R0,resetl ; RAM is cleared
101
102 ;Now set up the stack pointer and the
103 ; stack pointer holding register
104 MOV SP,#4DH ;4DH is the initialized value of the stack
105 MOV 3EH,#4DH ;This is the SP holding register
106
107 MOV DPTR,#4000H ;Clear DATA_AREA
108 LAB203: MOV A,#0
109 MOVX @DPTR,A
110 INC DPTR
111 MOV A,83H
112 CJNE A,#44H,LAB203'
113
114
115 SET UP INTERRUPT VECTOR
116
117
118 ;Now set up interrupt vectors
119 MOV DPTR,#400BH
120 MOV A,#02H ;LJMP machine code
121 MOVX @DPTR,A
122 INC DPTR
123 MOV A,#HIGH TMINT ;Time 0 interrupt routine high byte
124 MOVX @DPTR,A ; address
125 INC DPTR
126 MOV A,#LOW TMINT ;Time 0 interrupt routine low byte
127 MOVX @DPTR,A ; address
128
129 MOV DPTR,#4013H
130 MOV A,#02H ;LJMP machine code
131 MOVX @DPTR,A
132 INC DPTR
133 MOV A,#HIGH INT_1 ;INT 1 interrupt routine high byte
134 MOVX @DPTR,A ; address
135 INC DPTR

63

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 4

136 MOV A,#LOW INT_1 ;INT 1 interrupt routine low byte
137 MOVX @DPTR,A ; address
138
139
140 CHECK IF RAM OK
141
142
143 MOV DPTR,#400BH
144 MOVX A,@DPTR
145 CJNE A,#02H,RAM_ERROR ;Check LJMP machine code
146 INC DPTR
147 MOVX A,@DPTR
148 CJNE A,#HIGH TMINT,RAM_ERROR ;Check TIMER interrupt vector
149 INC DPTR
150 MOVX A,@DPTR
151 CJNE A,#LOW TMINT,RAM_ERROR ;Check TIMER interrupt vector
152
153 MOV DPTR,#4013H
154 MOVX A,@DPTR
155 CJNE A,#02H,RAM_ERROR ;Check LJMP machine code
156 INC DPTR
157 MOVX A,@DPTR
158 CJNE A,#HIGH INT_1,RAM_ERROR ;Check INT interrupt vector
159 INC DPTR
160 MOVX A,@DPTR
161 CJNE A,#LOW INT_1,RAM_ERROR ;Check INT interrupt vector
162 SJMP SETTABLE
163 RAM ERROR: ;If RAM error loop here
164 SJMP RAM ERROR ; forever
165
166 •
167 SET UP GSPE-NOTE TRANSFER TABLE
168
169 •
170 SETTABLE:
171 MOV DPTR,#4132H ;Start from #4132H
172 MOV 18H,#34H ;FIRST NOTE
173 LAB410:
174 INC 18H
175 MOV A,18H
176 MOVX @DPTR,A
177 INC 82H ;Point to next channel
178 MOV A,82H
179 ANL A,#0FH
180 XRL A,#08H

64

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 5

181 JNZ LAB410
182 MOV A,82H
183 ADD A,#8H ;Point to next key card
184 MOV 82H,A
185 CJNE A,#80H,LAB410
186 ;
187
188 SET BAUD RATE
189
190
191 MOV RCAP2H,#HIGH BAUD_COUNTER
192 MOV RCAP2L,#LOW BAUD_COUNTER
193
194
195 SET INT1 TO LEVEL TRIGGER
196
197
198 MOV 88H,#050H ;REM SET INT1 TO LEVEL TRIGGER
199
200 ;
201 SET TIMER0 TO 1 MS TIMER
202
203
204 MOV 18H,#0H ;Reset timer (1 ms/count)
205 ANL 88H,#0CFH ;Disable timer()
206 MOV 8AH,#06CH ;Set 1 ms timer() low byte FOR XTAL = 11 MHZ
207 MOV 8CH,#0FCH ;Set 1 ms timer() high byte
208 ANL 89H,#0F0H ;Set timer() to 16 bit timer
209 ORL 89H,#01H ; i.e. MODE 1
210 ORL 88H,#30H ;Enable timer()
211 ORL 0A8H,#82H ;Enable timer() interrupt
212
213 RESET ALL CHANNELS
214
215 MOV DPTR,#0F002H ;Reset address 0F002H
216 MOV 1BH,#38H ;Start from #38H
217 LAB202: MOV 90H,1BH ;Out to port 1
218 MOV 1CH,#0FEH ;Loop 2 counter (count 2 times)
219 LAB201: MOV A,#0 ;Loop 1 counter (count 256 times)
220 LAB204: MOVX @DPTR,A ;Reset
221 INC A
222 JNZ LAB204 ;Loop 1
223 INC 1CH
224 MOV A,1CH
225 JNZ LAB201 ;Loop 2

65

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 6

226 INC 1BH ;Point to next channel
227 MOV A,1BH
228 ANL A,#0FH
229 JNZ LAB202
230 MOV A,1BH
231 ADD A,#8H ;Point to next key card
232 MOV 1BH,A
233 CJNE A,#88H,LAB202
234
235 MAKE SURE ALL CHANNELS
236 ARE RESET
237
238 LAB208: MOV DPTR,#0F000H
239 MOVX A,@DPTR
240 MOV 1BH,A ;Read GSPE
241 ANL A,#0F0H
242 JZ LAB207 ;If GSPE = 0F0H that means all channels
243 MOV A,1BH ; have been reset JMP to LAB207
244 ADD A,#8H
245 MOV 90H,A ;Output Channel to port 1
246 MOV DPTR,#0F002H ;Send out reset signal
247 MOV A,#0
248 LAB209: MOVX @DPTR,A ;Reset this particular channel 256 times
249 INC A
250 JNZ LAB209
251 SJMP LAB208
252 ;
253 LAB207:
254 ;
255 MOV A,#0
256 MOV DPTR,#0F001H
257 MOVX @DPTR,A ;Reset A/D converter
258 MOV DPTR,#0F001H ;Read A/D converter to turn
259 MOVX A,@DPTR ; the overflow LED off
260 ;
261 ;
262 ; MAIN PROGRAM
263 ;
264 ;
265 MAIN PROGRAM:
266
267 ORL 0A8H,#84H ;Enable INT1 interrupt
268 LAB301: MOV DPTR,#4100H
269 MOVX A,@DPTR ;Check C -> new data counter
270 JZ LAB300 ;If C = 0 jmp to LAB300

66

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 7

271 LJMP LAB302 ;C <> 0 jmp to LAB302
272 LABS20:
273 MOV 83H,#43H
274 MOV 82H,1DH
275 MOVX A,@DPTR ;Get this Note status byte
276 DEC A ;Status time count decreases 1
277 MOVX @DPTR,A
278 MOV 83H,#42H
279 MOV 82H,1DH ;Store current time -> 42xxH
280 MOV A,18H ; where xx is channel ID (GSPE)
281 MOVX @DPTR,A
282
283 LAB306: PUSH 1DH ;Push GSPE
284 LJMP LAB309
285
286 ;
287 LAB300: MOV 82H,#03H ;
288 MOVX A,@DPTR ;Check V if V <> 0 then jmp to LAB305
289 JNZ LAB305 ;
290 LCALL C_STATUS
291 SJMP LAB301
292 ;

293 ; V <> 0
294 ;
295 LAB305: t,
296 DEC 82H
297 MOVX @DPTR,A ;STORE V TO T
298 MOV 20H,A ;INITIAL LOOP COUNTER L
299 LAB307: MOV A,20H
300 ADD A,#0FH
301 MOV 83H,#41H
302 MOV 82H,A
303 MOVX A,@DPTR ;Get M(L)
304 MOV 1DH,A ;GSPE (key no.)
305 MOV 83H,#42H
306 MOV 82H,1DH
307 MOVX A,@DPTR ;Get last check time
308 LCALL CHKTM ;Check if 10 ms passed
309 JC LAB306 ;If not yet jmp to LAB306
310 ANL 0A8H,#0FBH ;Disable INT1
311 MOV 83H,#43H
312 MOV 82H,1DH
313 MOVX A,@DPTR ;Get this Note status byte
314 ANL A,#0FH ;GET STATUS TIME COUNT NIBBLE
315 JNZ LABS20 ;Not yet -> status time count - 1

67

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 8

316 MOV 83H,#43H
317 MOV 82H,1DH
318 MOVX A,@DPTR
319 CJNE A,#10H,LABS15
320 LABS155:
321 MOV 83H,#43H
322 MOV 82H,1DH
323 MOV A,#0
324 MOVX @DPTR,A ;Status S 2 -> S 1
325 MOV DPTR,#4103H •
326 MOVX A,@DPTR ; V = V - 1
327 DEC A
328 MOVX @DPTR,A
329 SJMP LAB309
330 LABS15:
331 CJNE A,#40H,LABS134
332 LCALL READVEL
333 MOV A,1EH
334 CJNE A,#THREVEL1,LABS151
335 LABS152:
336 MOV A,#090H ; Turn key ON command
337 LCALL TX
338 MOV 83H,#41H
339 MOV 82H,1DH
340 MOVX A,@DPTR ;Key No.
341 LCALL TX
342 NOP
343 NOP
344 NOP
345 NOP
346 NOP
347 MOV A,1EH ; Velocity for KEY ON
348 LCALL TX
349 ;
350 MOV 83H,#43H
351 MOV 82H,1DH
352 MOV A,#S 4 ;Status S 5 -> S 4
353 MOVX @DPTR,A ;Turn Key ON (At least 50 ms)
354 MOV 83H,#42H
355 MOV 82H,1DH
356 MOV A,18H
357 MOVX @DPTR,A ;Current time -> 42xxH
358 LJMP LAB306
359 LABS151:
360 JNC LABS152

68

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 9

361 SJMP LABS155
362
363 LABS134:
364 LCALL READVEL
365 MOV A,1EH
366 CJNE A,#THREVEL2,LABS3
367 TUOFF:
368 MOV 83H,#41H
369 MOV 82H,1DH
370 MOVX A,@DPTR ; Key no.
371 LCALL TX ;Sent out key no.
372 MOV A,#0H
373 LCALL TX ;Send out 0 velocity
374 ;
375 MOV 83H,#43H
376 MOV 82H,1DH
377 MOV A,#S 2 ;Status S 3 or S 4 -> S 2
378 MOVX @DPTR,A ;Turn Key OFF (At least 30 ms)
379 LABS6:
380 MOV 83H,#42H
381 MOV 82H,1DH
382 MOV A,18H
383 MOVX @DPTR,A ;Current time -> 42xxH
384 LJMP LAB306
385 LABS3:
386 JC TUOFF ;Velocity < threshold jmp to TUOFF
387 MOV 83H,#43H
388 MOV 82H,1DH
389 MOV A,#20H ;Status S 3 or S 4 -> S 3
390 MOVX @DPTR,A
391 SJMP LABS6
392 LAB304:
393 LJMP LAB307
394 ;
395 ;
396 LAB309:
397 ORL 0A8H,#84H ;Enable INT1
398 DEC 20H ;L = L - 1
399 MOV A,20H
400 JNZ LAB304 ;If L <> 0 jmp to LAB307
401 MOV DPTR,#4103H
402 MOVX A,@DPTR
403 JZ LAB320 ;If V = 0 jmp to LAB320
404 ;
405 MOV 1FH,A

69

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 10

406 MOV DPTR,#4102H
407 MOV A,#0H ; 10 T = 0
408 MOVX @DPTR,A ; 20 POP GSPE
409 LAB308: POP 1DH ; 30 M(T) = GSPE
410 ADD A,#010H ; 40 T = T + 1
411 MOV 82H,A ; 50 IF T <> V THEN GOTO 20
412 MOV A,1DH ;
413 MOVX @DPTR,A ;
414 MOV DPTR,#4102H
415 MOVX A,@DPTR
416 INC A
417 MOVX @DPTR,A
418 CJNE A,1FH,LAB308
419 ;
420 LAB320: LJMP LAB301
421 ;
422 LAB310: JC LAB311
423 LJMP LAB312
424 LAB331:JNC LAB322
425 LJMP LAB321
426 ;
427 ; C <> 0
428 ;
429 LAB302: ANL 0A8H,#0FBH ;Disable INT1
430 MOV DPTR,#4103H
431 MOVX A,@DPTR
432 MOV 1FH,A ;Get V
433 MOV DPTR,#4100H
434 MOVX A,@DPTR
435 MOV 1DH,A
436 CJNE A,#08,LAB310 C > 8 jmp to LAB312
437 ;
438 ; C <= 8
439 ;
440 LAB311: MOV DPTR,#4103H
441 MOVX A,@DPTR
442 ADD A,1DH ; C + V -> Accumulator
443 CJNE A,#9H,LAB331 ;If C + V < 9 then jmp to LAB321
444 ;
445 ; C + V >= 9 --> Turn off key M(8 - C) M(V - 1)
446 ;
447 LAB322: MOV A,#8H
448 CLR C
449 SUBB A,1DH
450 MOV 1EH,A

70

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 11

451 MOV 1FH,A ;V = 8 - C
452 LAB323: MOV A,1EH
453 ADD A,#10H
454 MOV 83H,#41H
455 MOV 82H,A
456 MOVX A,@DPTR
457 MOV 1BH,A
458 MOV 83H,#41H
459 MOV 82H,1BH ; Key no.
460 MOVX A,@DPTR
461 LCALL TX ;Send key NO.
462 MOV A,#0H ;Send 0 velocity
463 LCALL TX
464 MOV 82H,1BH
465 MOV 83H,#43H
466 MOV A,#S 2
467 MOVX @DPTR,A ;Status -> S 1 (Turn OFF at least 50 ms)
468 MOV 83H,#42H
469 MOV 82H,1BH
470 MOV A,18H
471 MOVX @DPTR,A ;Current time -> 42xxH
472 INC 1EH
473 MOV DPTR,#4103H
474 MOVX A,@DPTR
475 CJNE A,1EH,LAB323
476 LAB321: MOV DPTR,#4103H
477 MOV A,1FH
478 MOVX @DPTR,A ;Store V
479 JZ LAB332
480 ;
481 ;
482 ; MO shift by C place
483 ;
484 MOV DPTR,#4117H
485 LAB313: MOVX A,@DPTR
486 MOV 1EH,A
487 MOV A,82H
488 MOV 1FH,A
489 ADD A,1DH •
490 MOV 82H,A ;M(0)...M(7) --> M(C)...M(7+C)
491 MOV A,1EH
492 MOVX @DPTR,A
493 MOV A,1FH
494 DEC A
495 MOV 82H,A

71

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 12

496 CJNE A,#0FH,LAB313
497 ;
498 LAB332: MOV 1EH,1DH
499 DEC 1EH
500 LAB314: MOV A,#1FH
501 ADD A,1DH
502 CLR C
503 SUBB A,1EH ; 10 FOR J = 0 TO C-1
504 MOV 82H,A ; 20 M(J) = IO(C-J-1)
505 MOVX A,@DPTR ; 30 NEXT J
506 MOV 1FH,A ;
507 MOV A,#10H
508 ADD A,1EH
509 MOV 82H,A
510 MOV A,1FH
511 MOVX @DPTR,A ;
512 DEC 1EH
513 MOV A,1EH
514 CJNE A,#0FFH,LAB314
515 ;
516 MOV DPTR,#4103H
517 MOVX A,@DPTR a ;

518 ADD A,1DH ;V=C+ V
519 CJNE A,#9H,LAB325
520 LAB326: MOV A,#8H 4

521 LAB327: MOVX @DPTR,A
522 ;
523 LJMP LAB315
524 LAB325:JNC LAB326
525 SJMP LAB327
526 ;
527 ;
528 ; C > 8 --> Turn off all keys in M() (from M(0)...M(V-1))
529 ;
530 LAB312: MOV 1EH,#0H
531 LAB328: MOV A,1EH
532 ADD A,#10H
533 MOV 83H,#41H
534 MOV 82H,A
535 MOVX A,@DPTR
536 MOV 1BH,A
537 MOV 83H,#41H
538 MOV 82H,1BH ; Key no.
539 MOVX A,@DPTR
540 LCALL TX ;Send key NO.

72

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 13

541 MOV A,#0H ;Send 0 velocity
542 LCALL TX
543 MOV 82H,1BH
544 MOV 83H,#43H
545 MOV A,#S 2
546 MOVX. @DPTR,A ;Status -> S 1 (Turn OFF at least 50 ms)
547 MOV 83H,#42H
548 MOV 82H,1BH
549 MOV A,18H
550 MOVX @DPTR,A ;Current time -> 42xxH
551 INC 1EH
552 MOV DPTR,#4103H
553 MOVX A,@DPTR
554 CJNE A,1EH,LAB328
555 ;
556 ;
557 ; MOV --> M(0...(I-l))
558 ;
559 LAB330: MOV DPTR,#4101H
560 MOVX A,@DPTR
561 MOV 1DH,A
562 MOV 1EH,A
563 LAB316: MOV A,#1FH
564 ADD A,1EH
565 MOV 82H,A
566 MOVX A,@DPTR
567 MOV 1FH,A
568 MOV A,#11H
569 ADD A,1DH
570 CLR C
571 SUBB A,1EH
572 MOV 82H,A
573 MOV A,1FH
574 MOVX @DPTR,A
575 DEC 1EH
576 MOV A,1EH
577 JNZ LAB316
578 ;
579 MOV A,1DH
580 CJNE A,#8H,LAB317 ;If I <> 8 jmp to LAB317
581 ;
582 LAB319: MOV A,#8
583 MOV DPTR,#4103H
584 MOVX @DPTR,A ; V = 8
585 ;

73

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 14

586 LAB315:MOV DPTR,#4101H
587 MOV A,#0H
588 MOVX @DPTR,A ; I = 0
589 DEC 82H
590 MOVX @DPTR,A ; C = 0
591 ORL 0A8H,#84H ;Enable INT1
592 LJMP LAB300
593 ;
594 ;
595 ; MOVE IO(7...I) TO M(I...7)
596 ;
597 LAB317:MOV DPTR,#4101H
598 MOVX A,@DPTR ;Get I
599 MOV 1DH,A
600 MOV 1EH,A
601 LAB318: MOV A,#20H
602 ADD A,1EH
603 MOV 82H,A
604 MOVX A,@DPTR
605 MOV 1FH,A
606 MOV A,#17H
607 ADD A,1DH

608 CLR C
609 SUBB A,1EH
610 MOV 82H,A 0.
611 MOV A,1FH
612 MOVX @DPTR,A
613 INC 1EH
614 MOV A,1EH
615 CJNE A,#8H,LAB318
616 SJMP LAB319
617
618 ;
619
620 ; ;
621 • . READ VELOCITY SUBROUTINE ;
622 ; ;
623
624 READVEL:
625 MOV A,1DH
626 ADD A,#8H
627 MOV 90H,A ;Out GSPE+8 to port 1
628 MOV A,#80H
629 LAB342: INC A
630 JNZ LAB342 ;Delay 200 us

74

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 15

631 MOV A,#0
632 MOV DPTR,#0F001H
633 MOVX @DPTR,A ;Reset A/D converter
634 NOP
635 NOP
636 NOP
637 NOP
638 MOV DPTR,#0F001H
639 MOVX A,@DPTR ;Read A/D converter
640 ANL A,#07FH ;MASK MSB
641 MOV 1EH,A ;VELOCITY
642 RET
643 ;
644 ; ;
645 CLEAR NOTE STATUS AREA (CLEAR STATUS 1) ; ;
646 ;
647 ;
648 C _STATUS:
649 MOV 1DH,#30H ;Start from #38H
650 LAB400:
651 MOV 83H,#43H
652 MOV 82H,1DH
653 MOVX A,@DPTR ;GET STATUS BYTE
654 ANL A,#0F0H
655 CJNE A,#10H,LAB401 4

656 MOV 83H,#42H
657 MOV 82H,1DH
658 MOVX A,@DPTR ;GET SET TIME
659 LCALL CHKTM ;CHECK IF 10 MS OUT
660 JC LAB401 ;IF CARRY SET -> NOT YET
661 MOV 83H,#43H
662 MOV 82H,1DH
663 MOVX A,@DPTR ;GET STATUS BYTE
664 ANL A,#0FH
665 JZ LAB402
666 MOVX A,@DPTR ;GET STATUS BYTE
667 DEC A
668 MOVX @DPTR,A
669 MOV 83H,#42H
670 MOV 82H,1DH
671 MOV A,18H
672 MOVX @DPTR,A ;Current time -> 42xxH
673 SJMP LAB401
674 LAB402:
675 MOV 83H,#43H

75

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 16

676 MOV 82H,1DH
677 MOV A,#0 ;STATUS S 2 -> S 1
678 MOVX @DPTR,A
679 LAB401:
680 INC 1DH ;Point to next channel
681 MOV A,1DH
682 ANL A,#0FH
683 XRL A,#08H
684 JNZ LAB400
685 MOV A,1DH
686 ADD A,#8H ;Point to next key card
687 MOV 1DH,A
688 CJNE A,#80H,LAB400
689 RET
690 ;
691 ; ;
692 ; TIMER0 INTERRUPT ROUTINE (1 MS/INT) ;
693 ; ;
694 TMINT:
695 INC 18H ;Increase 1 ms timer
696 MOV 8AH,#06CH ;Set 1 ms timer() low byte FOR XTAL = 11 MHZ
697 MOV 8CH,#0FCH . ;Set 1 ms timer() high byte
698 POP 0D0H ;Pop PSW
699 RETI ;Return from TM0 INT
700 ; -* ;
701 ; TX SUBROUTINE : TRANSMIT (A) TO SERIAL PORT ;
702 ; ;
703 TX: ANL 98H,#0FDH ;Clear tx flag
704 MOV 99H,A
705 LAB3: MOV A,98H ;If data hasn't been tx
706 ANL A,#02H ; loop here
707 JZ LAB3
708 RET
709 ;
710 ; • ,
711 ; TIMER CHECK SUBROUTINE : CHECK IF 10 MS OUT ;
712 ; (BEFORE ENTER A CONTAINS THE TIME TO BE CHECKED) ;
713 ; IF NOT YET ;
714 ; THEN SET CARRY FLAG ;
715 ; ELSE CLEAR CARRY FLAG ;
716 ; • ,
717 CHKTM: CLR C
718 SUBB A,018H ;current 1 ms timer
719 XRL A,#0FFH
720 INC A

76

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 17

721 CJNE A,#0AH,LAB9 ;10*1 MS
722 LAB9: RET
723 ;
724 ;
725 ;
726 ;
727 ; INT1 INTERRUPT ROUTINE
728 ;
729 INT_1:
730 PUSH 0E0H ;Push A
731 PUSH 82H ;Push DPTR-L
732 PUSH 83H ;Push DPTR-H
733 ;
734 LAB001: MOV DPTR,#0F000H
735 MOVX A,@DPTR
736 MOV 1BH,A ;Read GSPE (group selected priority encoder)
737 PUSH 1BH ;PUSH GSPE
738 ADD A,#08
739 MOV 90H,A ;Out to port 1
740 ;
741 MOV 83H,#43H
742 MOV 82H,1BH
743 MOVX A,@DPTR ;Get this Note status byte
744 JNZ LABI2 ;If ACTIVE jmp to LABI2
745
746
747 This Note is OFF right now
748
749 LABI1:
750 LCALL REVEL ;READ VELOCITY
751 LCALL K ARRAY
752 SJMP LABA1
753
754 LABI2: ANL A,#0F0H ;MASK STATUS TIME COUNT NIBBLE
755 CJNE A,#l0H,LABI3
756 MOV 83H,#43H
757 MOV 82H,1BH
758 ANL A,#0FH ;MASK STATUS NIBBLE
759 ORL A,#40H ;Check Velocity 50 ms later
760 LABI3A:
761 MOVX @DPTR,A ;Status -> S 5
762 MOV 83H,#42H
763 MOV 82H,1BH
764 MOV A,18H
765 MOVX @DPTR,A ;Current time -> 42xxH

77

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 18

766 SJMP LABA1
767
768 LABI3: CJNE A,#20H,LABA1
769 MOV 83H,#41H
770 MOV 82H,1BH ; Key no.
771 MOVX A,@DPTR
772 LCALL TX ;Send key NO.
773 MOV A,#0H ;Send 0 velocity TURN NOTE OFF
774 LCALL TX
775 MOV 83H,#43H
776 MOV 82H,1BH
777 MOV A,#S 5 ;Check Velocity 30 ms later
778 SJMP LABY3A
779 ;
780 LABA1:
781 POP 1BH ;POP GSPE
782 LABA11:
783 MOV DPTR,#0F002H ;Point to reset address
784 MOV A,#0FFH
785 LAB021: MOVX @DPTR,A ;RESET
786 INC A
787 JNZ LAB021
788 MOV DPTR,#0F000H
789 MOVX A,@DPTR
790 CJNE A,1BH,LABIOUT *
791 SJMP LABA11
792 LABIOUT:
793 POP 83H ;Pop DPTR-H
794 POP 82H ;Pop DPTR-L
795 POP 0E0H ;Pop A
796 POP 0D0H ;Pop PSW
797 RETI ;Return from INT1
798
799
800
801 READ VELOCITY
802 IF VELOCITY > THRESHOLD1
803 THEN •
804 • TURN KEY "ON" RIGHT NOW
805 ELSE
806 • CHECK VELOCITY 20MS LATER
807
808 REVEL:
809 MOV DPTR,#0F001H
810 MOVX @DPTR,A ;Reset A/D converter

78

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 19

811 NOP
812 NOP
813 NOP
814 NOP
815 MOV DPTR,#0F001H
816 MOVX A,@DPTR ;Read A/D converter
817 ANL A,#07FH ;Mask MSB
818 MOV 1CH,A ;VELOCITY
819 CJNE A,#THREVEL1,LABR2
820 LABR1:
821 MOV 83H,#43H
822 MOV 82H,1BH
823 MOV A,#42H ;Check Velocity 20 ms later
824 MOVX @DPTR,A ;Status -> S 5
825 LABR3:
826 MOV A,#0
827 MOV DPTR,#0F002H
828 MOVX @DPTR,A ;Reset this channel
829 MOV 83H,#42H
830 MOV 82H,1BH
831 MOV A,18H
832 MOVX @DPTR,A ' ;Current time -> 42xxH
833 RET
834 LABR2:
835 JC LABR1 f,
836 MOV 83H,#43H
837 MOV 82H,1BH ;Change status byte
838 MOV A,#5_4 ; Turn On at least 50 ms
839 MOVX @DPTR,A ; Status -> S 4
840
841 MOV A,#090H ; Turn key ON command
842 LCALL TX
843 MOV 83H,#41H
844 MOV 82H,1BH
845 MOVX A,@DPTR ;Key No.
846 LCALL TX
847 NOP
848 NOP
849 NOP
850 NOP
851 NOP
852 MOV A,1CH ; Velocity
853 LCALL TX
854
855 SJMP LABR3

79

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 20

856 ;
857 ; ;
858 ; NOTE ARRAY HANDLE ROUTINE ;
859 ; ALLOW ONLY 8 NOTES "ON" AT THE SAME TIME ;
860 ; ;
861 ;
862 ;
863 K_ARRAY:
864 MOV DPTR,#4100H
865 MOVX A,@DPTR ;Get C -> new data counter
866 INC A
867 MOVX @DPTR,A ; C = C + 1
868
869 CJNE A,#9H,LAB012 ;Check if C > 8
870 ;
871 ; C >= 8 -> turn the oldest key OFF IO(I)
872 ;
873 LAB013: PUSH 1BH ;PUSH current channel no.
874 MOV 82H,#01H
875 MOVX A,@DPTR
876 ADD A,#20H
877 MOV 82H,A
878 MOVX A,@DPTR ;Get IO(I)
879 MOV 1BH,A
880 MOV 83H,#41H •
881 MOV 82H,1BH ; Key no.
882 MOVX A,@DPTR
883 LCALL TX ;Send key NO.
884 MOV A,#0H ;Send 0 velocity
885 LCALL TX
886 MOV 82H,1BH
887 MOV 83H,#43H
888 MOV A,#8_2
889 MOVX @DPTR,A ;Status -> S 2 (Turn OFF at least 30ms)
890 MOV 83H,#42H
891 MOV 82H,1BH
892 MOV A,18H
893 MOVX @DPTR,A ;Current time -> 42xxH
894 POP 1BH ;POP current channel no.
895 LAB015:
896 MOV DPTR,#4101H
897 MOVX A,@DPTR ;Get I -> IO() array pointer
898 ADD A,#20H
899 MOV 82H,A
900 MOV A,1BH ;Get channel NO.

80

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 21

901 MOVX @DPTR,A ;Store to IO()
902 MOV 82H,#01H
903 MOVX A,@DPTR
904 INC A
905 ANL A,#07H
906 MOVX @DPTR,A ; I = I + 1
907 RET
908 ;
909 LAB012: JC LAB015 ;C <=8
910 SJMP LAB013 ;C > 8
911 ;
912 END

81

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 22

baud_counter = FFF5 27 191 192
c _status = 2403 648 290

chktm = 246B 717 308 '659
code area = 2000 4 85

initial = 2090 88 89
int_1 = 2475 729 133 136 158 161

k array = 253E 863 751
Tab001 = 247B 734
lab012 = 258B 909 869
lab013 = 2547 873 910
lab015 = 2577 895 909
1ab021 = 24D6 785 787
1ab201 = 2135 219 225
1ab202 = 212F 217 229 233
1ab203 = 209F 108 112
1ab204 = 2137 220 222
1ab207 = 216D 253 242
1ab208 = 2152 238 251
1ab209 = 2167 248 250
lab3 = 2464 705 707

1ab300 = 219A 287 270 592
1ab301 = 217A 268 291 420
1ab302 = 229A 429' 271
1ab304 = 2261 392 400
1ab305 = 21A5 295 289
1ab306 = 2195 283 4'309 358 384
1ab307 = 21AA 299 393
1ab308 = 227B 409 418
1ab309 = 2264 396 284 329
1ab310 = 2290 422 436
lab311 = 22AC 440 422
1ab312 = 2349 530 423
1ab313 = 22FF 485 496
1ab314 = 231A 500 514
1ab315 = 23B0 586 523
1ab316 = 238A 563 577
1ab317 = 23BF 597 580
1ab318 = 23C7 601 615
1ab319 = 23AA 582 616
1ab320 = 228D 420 403
1ab321 = 22F4 476 425
1ab322 = 22B5 447 424
1ab323 = 22BE 452 475
1ab325 = 2345 524 519
1ab326 = 233F 520 524
1ab327 = 2341 521 525

82

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDIVIBS.ASM Page 23

lab328 = 234C 531 554
lab330 = 2382 559
1ab331 = 2295 424 443
1ab332 = 2315 498 479
1ab342 = 23ED 629 630
1ab400 = 2406 650 684 688
lab401 = 2440 679 655 660 673
1ab402 = 2437 674 665
lab410 = 20F0 173 181 185
lab9 = 2474 722 721

labal = 24CF 780 752 766 768
laball = 24D1 782 791
labil = 2490 749
labi2 = 2498 754 744
labi3 = 24B3 768 755

labi3a = 24A7 760 778
labiout = 24E3 792 790

labrl = 24FF 820 835
labr2 = 2518 834 819
labr3 = 2508 825 855

labs134 = 2228 363 331
labsl5 = 21EB 330 319

labs151 = 2224 359 334
labs152 = 21F6 335 360
labs155 = 2lDA 320 361
labs20 = 2183 272 4 315
labs3 = 2254 385 366
labs6 = 2248 379 391

main_program = 2177 265
ram_error = 20E8 163 145 148 151 155 158 161 164
readvel = 23E5 624 332 364
resetl = 2093 98 100
revel = 24EC 808 750

s_2 = 0013 31 377 466 545 888
s_4 = 0035 32 352 838
s_5 = 0043 33 777

settable = 20EA 170 162
threvell = 0004 24 334 819
threvel2 = 0001 25 366
tim0_c_h = 00FC 29
tim0_c_l = 006C 28

tmint = 2454 694 123 126 148 151
tuoff = 2230 367 386

tx = 245F 703 337 341 348 371 373 461
463 540 542 772 774 842 846
853 883 885

83

PROGRAM : MIDI DATA COLLECTION BASIC PROGRAM

10 XTAL=4000000
20 IF XBY(5000H) <> 0 THEN 100
30 CALL 4100H : REM INITIALIZATION
40 RCAP2=65532 : REM FOR 31250 BAUD
50 CALL 4200H : REM COLLECT MIDI DATA
100 CALL 4100H : REM INITIALIZATION
110 RCAP2=65532 : REM FOR 312500 BAUD
120 PORT1=PORT1.AND.0FEH : REM ENABLE MIDI OUT
130 CALL 4300H : REM OUTPUT MIDI DATA
140 PORT1=PORT1.OR.001H : REM DISABLE MIDI OUT
150 RCAP2=65523 : REM FOR 9600 BAUD
160 IE=0 : REM DISABLE ALL INTERRUPT
170 STOP

NOTE: FOLLOWING PAGES ARE ASSEMBLY PROGRAM
CALLED BY THIS BASIC PROGRAM.

84

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDICOLL.ASM Page 1

1 ;
2 ;
3 ;
4 ;
5 ; TIMER0 INTERRUPT VECTOR
6 ;
7 ORG 400BH
8 LJMP TMINT
9 ;
10 ; INITIALIZATION CALLED BY MAIN PROGRAM
11 ;
12 ORG 4100H
13 ANL 88H,#0CFH ;Disable timer0
14 MOV 18H,#0H ;Reset timer MSB (65536 ms/count)
15 MOV 19H,#0H ;Reset timer (256 ms/count)
16 MOV 1AH,#0H ;Reset timer LSB (1 ms/count)
17 MOV 8AH,#02FH ;Set timer() low byte(1 MS TIMER)
18 MOV 8CH,#0F6H ;Set timer() high byte(1 MS TIMER)
19 ANL 89H,#0F1H ;Set timer() to 16 bit timer
20 ORL 88H,#30H ;Enable timer°
21 ORL 0ASH,#82H ;Enable timer() interrupt
22 RET
23 ;
24 ; TIMER0 INTERRUPT ROUTINE (1 MS/INT)
25 ;
26 ;
27 TMINT:
28 PUSH 0E0H ;PUSH A
29 INC 1AH ;Increase 1 ms timer low byte
30 MOV A,1AH
31 JNZ TMLAB1
32 INC 19H ;Increase 1 ms timer middle byte
33 MOV A,19H
34 JNZ TMLAB1
35 INC 18H ;Increase 1 ms timer high byte
36 TMLAB1:
37 MOV 8AH,#02FH ;Set timer() low byte(1 ms at XTAL = 4MH
38 MOV 8CH,#0F6H ;Set timer() high byte(1 ms at XTAL = 4MH
39 POP 0E0H ;POP A
40 POP 0D0H ;POP PSW
41 RETI
42 ;
43 ;
44 ; CATCH DATA PROGRAM
45 ;

85

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDICOLL.ASM Page 2

46 ORG 4200H
47 PUSH 0E0H ;Push -A
48 PUSH 82H ;Push DPTR-L
49 PUSH 83H ;Push DPTR-H
50 ANL 98H,#0FEH ;Clear SCON.0 (receives data flag)
51 MOV DPTR,#5000H ;Reset data pointer
52 LAB2: JBC SCON.0,LAB1 ;If received data jmp to LAB1
53 JB P1.7,LAB2 ;If SW1 is not pushed jmp to LAB2
54 LAB3: PUSH 82H
55 MOV A,83H ;
56 MOV DPTR,#4280H ;
57 MOVX @DPTR,A ;Store DPTR-H to #4280H
58 INC DPTR
59 POP 0E0H
60 MOVX @DPTR,A ;Store DPTR-L to #4281H
61 POP 83H ;POP DPTR-H
62 POP 82H ;POP DPTR-L
63 POP 0E0H ;POP A
64 RET
65 ;
66 LAB1:
67 MOV A,SBUF a ;Get data from serial buffer
68 MOVX @DPTR,A ;Store it to data area
69 INC DPTR ;Data pointer increases 1
70 ANL 0A8H,#07FH ,;Disable timer0 INT
71 MOV A,18H ;Get 1 ms timer low byte
72 MOVX @DPTR,A ;Store it
73 INC DPTR ;Data pointer increases 1
74 MOV A,19H ;Get 1 ms timer middle byte
75 MOVX @DPTR,A ;Store it
76 INC DPTR ;Data pointer increases 1
77 MOV A,1AH ;Get 1 ms timer high byte
78 MOVX @DPTR,A ;Store it
79 INC DPTR ;Data pointer increases 1
80 ORL 0A8H,#82H ;Enable timer0 interrupt
81 MOV A,83H ;Get DPTR-H
82 CJNE A,#60H,LAB2 ;If DPTR-H = #60H -> Data file full
83 LJMP LAB3
84 ;
85 ; SEND DATA PROGRAM
86 ;
87 ORG 4300H
88 PUSH 0E0H ;Push A
89 PUSH 82H ;Push DPTR-L
90 PUSH 83H ;Push DPTR-H

86

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDICOLL.ASM Page 3

91 MOV DPTR,#5000H ;Reset data pointer
92 LAB4:
93 MOVX A,@DPTR ;Get MIDI data
94 CJNE A,#0F8H,LAB5 ;If not system clock F8H jmp to LA]
95 INC DPTR
96 INC DPTR
97 INC DPTR ; data pointer increases 4
98 INC DPTR
99 SJMP LAB4
100 LABS:
101 MOV 1BH,A ;MIDI DATA(EXCEPT 0FSH)
102 INC DPTR
103 MOVX A,@DPTR
104 MOV 1CH,A ;HIGH BYTE OF 1 MS COUNT
105 INC DPTR
106 MOVX A,@DPTR
107 MOV 1DH,A ;MIDDLE BYTE OF 1 MS COUNT
108 INC DPTR
109 MOVX A,@DPTR
110 MOV 1EH,A ;LOW BYTE OF 1 MS COUNT
111 INC DPTR
112 MOV A,1BH
113 JNZ LAB6 ;If both MIDI data & 3 bytes
114 MOV A,1CH ; 1 ms timer of this data
115 JNZ LAB6 6; all equal 0 then this is
116 MOV A,1DH ; the end of data area
117 JNZ LAB6 ; JMP to LAB13.
118 MOV A,1EH ;Otherwise goto LAB6.
119 JZ LAB13
120 LAB6:
121 NOP
122 ANL 0A8H,#07FH ;Disable timer() INT
123 MOV A,18H
124 CJNE A,1CH,LAB8 ;Compare 1 ms timer of this
125 MOV A,19H ; MIDI data with current 1 ms
126 CJNE A,1DH,LAB8 ; timer. If time has not passed
127 MOV A,1AH ; jmp to LAB6.
128 CJNE A,1EH,LAB8
129 LAB12:
130 ORL 0A8H,#82H ;Enable timer() interrupt
131 ANL 98H,#0FCH
132 MOV 99H,1BH ;TX MIDI DATA
133 LAB11: MOV A,98H
134 ANL A,#02H ;Check if DATA has been sent out
135 JZ LAB11 ;If not wait here

87

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDICOLL.ASM Page 4

136 MOV A,1BH ;
137 CJNE A,#0FCH,LAB4 ;If the DATA is #0FCH
138 LAB13: ; then return to main program
139 POP 83H ;POP DPTR-H
140 POP 82H ;POP DPTR-L
141 POP 0E0H ;POP A
142 RET
143 LAB8:
144 JNC LAB12 ;IF NC THEN CURRENT TIME > SET TIME
145 ORL 0A8H,#82H ;Enable timer() interrupt
146 SJMP LAB6
147 ;;
148 END

88

8051 Cross-Assembler (1.2) (C) 1987 Binary Technology
MIDICOLL.ASM Page 5

lab1 = 4225 66 52
lab11 = 434E 133 135
lab12 = 4345 129 144
lab13 = 4359 138 119
lab2 = 420C 52 53 82
lab3 = 4212 54 83
lab4 = 4309 92 99 137
lab5 = 4313 100 94
lab6 = 4332 120 113 115 117 146
lab8 = 4360 143 124 126 128

tmint = 411C 27 8
tmlabl = 412C 36 31 34

APPENDIX C

ARCHITECTURE OF SBC

ARCHITECTURE OF SBC

Canonical SBC Bus (low profile 40 pin header, .1X.1)

* Beware DO NOT let the +12V rails CONTACT ANY of the
other bus pins!

All the functions of the 8052 itself appear on the bus,
which is pinned out to match the chip, except:

(1) B.31 is used for +12V. The corresponding pin on
the microC has no use externally.

(2) B.18 is the buffered output of the Xtal, and
B.19 is used for -12V.

(3) B.26 to B.29 carry four chip selects: Recall
A13-15 is decoded, and PSEN is anded with RD
above 04000H, so no chip functions are excluded
from the bus by these assignments, and the chip
selects are enormously useful in peripheral
design.

91

Memory Map

The 16 bit memory address space is decoded on 8K

boundaries. The architecture is Harvard up to 03FFFH and Von

Neuman above. Sockets are provided as follows:

U7 (02000H-03FFFH) Code CS1\ - esp microMint

U8 (00000H-01FFFH) Data CS0\ - BASIC, obligatory.
01FFFH is MTOP.

U9 (04000H-05FFFH) D/C CS2\ - Battery backed INT vectors,
general purpose.

U10 (08000H-09FFFH) D/C CS4\ - BASIC stores BASIC programs
bottom up - top down
is general purpose.
Battery backed.

Other blocks are presented to the bus as follows:

CS7\ - B.29 (0E000H-0FFFFH)
CS6\ - B.28 (0G000H-0DFFFH)
CS5\ - B.27 (0A000H-0BFFFH)
CS4\ - B.26 (06000H-07FFFH)

Programming multiplexer on Port 1.3-.5

The signal, CS1\+WR\, sets up the program store mode. A RD

there will exit, as will completion of programming task.

XBY(9999) is an easily typed way to generate CS1\. DATA CS1\ is

used only for this purpose.

Other detail

Battery backing is permanent, the potential being

maintained by a Ni-Cad, trickle charged when the SBC is plug in.

U9 and U10 are backed.

92

Serial connections (D-9F) are buffered by RS-232 inverting

drivers/receivers. The RS-232 chip uses only 5V.

Power: 5V at 175ma,±12 Volt rails are passed through to the

bus for convenience, (+12 B.31;-12 B.19); they are not used by

SBC itself.

A 4 MHz Xtal is used as a laboratory convenience. (11.0592

MHz is handy). You must alert Basic of this fact by running

XTAL = 4000000

Program Storage Mode

The SBC uses a battery backed RAM in U10 (08000H-09FFFH) in

place of an EPROM. At the outset you must "erase" the memory

block -- set all bits to ones-- by RUNning, for example,

10 FOR I = 08000H TO 09FFFH

20 XBY(I) = 0FFH

30 NEXT

To use any or all of MCS52 Basic EPROM file commands you

must first enter the SBC program storage mode by the following

action:

XBY(9999) = 0 <CR>

The LED (next to reset button) will light.

Exit is automatic at the end of a programming cycle, or the

command

X = XBY(9999) <CR>

will get you out if you change your mind.

93

In the program storage mode, port 1 pins on the Bus, B.4,

ridiebcIdalyB.6 are floating. Regard for this fact may be

in a peripheral design that employs P1.3-.5.

N.B.: Just before and during a program storage operation,

P1.3 and .4 MUST BE HIGH, the reset condition. Be careful not to

RUN a program which might take these pins low: Remember, once

they are made low, they stay low even after program has run. For

security you might wish to execute

PORT1=PORT1.OR.018H <CR>

before entering the program store mode, and thereby set

P1.3 and .4 high for sure. If P1.3 (or possibly P1.4) is low

when you enter program store mode. The AD bus demultiplexer,

ALE, is disabled and the only cure is RESET, which will, of

course, clear away the RAM program you may have been fond of.

94

95 Fig.INT.2

Fig.INT.3

96

Single Board Computer F
i
g
.
I
N
T
.
4

9
7

98

REFERENCES

1. INTERFACE TO 8052AH-BASIC MICROCONTROLLER FOR A

MULTICHANNEL PRIORITY INTERRUPT SYSTEM,

by Chen-Tung Mo, NJIT EE department master thesis 1988.

2. MULTICHANNEL PRIORITY INTERRUPT SYSTEM,

by Claudio Bernal, NJIT EE department master thesis 1988.

3. MIDI 1.0 DETAILED SPECIFICATION, The International MIDI

Association, 1988.

4. MCS BASIC-52 User manual, Intel Corporation, 1986.

5. Microcontroller Handbobk, Intel Corporation, 1986.

6. BASIC-52 Extensions Manual ROM A+B, Micromint Inc., 1986.

99

	Multichannel input moniter
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Table of Contents
	Chapter One: Introduction
	Chapter Two: Software Description
	Chapter Four: Test
	Appendix A: Introduction to MIDI
	Appendix B: Programs List
	Appendix C: Architecture of SBC
	References

	List of Figures
	List of Tables
	List of Flowcharts

