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Abstract 

Title of Thesis: A Comparative Study of Image Coding Techniques: Filter Banks 

vs. Discrete Cosine Transform. 

Hosam Mutlag, Master of Science, 1991 

Thesis directed by: Dr. Ali N. Akansu 

Subband coding of still image frames using Binomial PR-QMF has been presented 

in this thesis. Simulation results have shown that the performance of subband coding 

using a low complexity coder is practically the same as the performance of the industry 

standard (8 x 8) DCT based image coder. 

A low bit rate adaptive video coding technique is also introduced in this thesis. 

The redundancy within adjacent video frames is exploited by motion compensated 

interframe prediction. The Motion Compensated Frame Difference (MCFD) signals 

are filtered by employing Binomial PR-QMF structure into four subbands. Then, the 

subbands are quantized using an efficient Motion Based Adaptive Vector Quantization 

(MBAVQ) algorithm. Here, the adaptation scheme is based on block motion vectors 

rather than local signal energy which was used in earlier works of several researchers. 

The new technique results in a reduction in bit rate by nearly (40%) due to the drop 

of the extra bits used for local variances. Moreover, for the video test sequances 

considered, MBAVQ method gives superior SNR results over local Variance Based 

Adaptive Vector Quantiztion (VBAVQ) scheme especially for high motion frames. 
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Chapter 1 

Introduction 

Typical video has spatial resolution of approximately 512 x 512 pixels per frame. At 

8 bits per pixel per color channel and 30 frames per second, this translates into a rate 

of nearly 180 x 106  bits/s. The large channel capacity and memory requirements for 

digital image transmission and storage makes it desirable to consider data compression 

techniques. Image data compression is concerned with minimizing the number of bits 

required to represent an image with an acceptable visual quality. Compression can 

be achieved by transforming the signal, projecting it on a basis of functions, and then 

encoding the transform coefficients. These transforms vary from the conventional 

block transforms to ideal subband filter banks. The principle of subband coding has 

recently been successfully applied to data compression of both still images and video. 

In subband coding, the signal to be coded is decomposed into narrow band pass 

signals (subbands). Each subband is then accordingly subsampled and encoded with 

a bit rate matched to the signal statistics in that subband. 

Subband coding was first introduced by Crochiere, et. al.[1] in speech coding and 

then extended to multidimensional signals by Vetterli[2]. Then, this concept was 

applied to the coding of images [3] [4]. Perfect Reconstruction Quadrature Mirror 

Filters (PR-QMF) have been proposed as structures suitable for subband coding [5] [6]. 

These filters employing a tree decomposition structure provide a basis for a multi-

resolution signal representation [7] [8]. Recently, discrete wavelet transforms have 
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been proposed as a new approach for multi-resolution signal decomposition. More 

recently, Binomial QMF-Wavelet Transform has been proposed for multiresolution 

signal decomposition [10] [11]. 

In this thesis, we have studied the performance of Binomial QMF in subband 

coding with comparison to the Discrete Cosine Transform (DCT). Simulation pro-

grams were developed for a complete subband coding system (codec) consisting of 

the following four distinct parts: 

• An analysis filter bank splitting the input signal into subbands. 

• An encoder which consists of: 

1. Bit allocation algorithm. 

2. Quantizers. 

3. Huffman encoder. 

• A decoder whose purpose is to produce an approximation to the original sub-

band signals. 

• The synthesis filter bank that combines the decoded subband signals, to recon-

struct the received signal. 

A similar DCT based codec is also developed for comparison purposes. 

We also propose a new Motion Based Adaptive Vector Quantization (MBAVQ) 

approach for subband video coding. In video signals, interframe images have signifi-

cant frame to frame redundancy. For that reason, in video coding techniques, video 

frames are motion compensated using an efficient search algorithm to remove tempo-

ral redundancies. The resulting prediction error signals, Motion Compensated Frame 

Difference (MCFD), are coded using an efficient coding scheme. In our video cod-

ing scheme, the MCFD signals are divided into four subbands. Least significant band 

(highest frequency), is neglected and the other bands are vector quantized adaptively. 
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This thesis is organized as follows. Chapter 2 describes the Binomial-QMF which 

have been used. In the following chapter, Discrete Cosine Transform is discussed. 

In chapter 4, optimum bit allocation and gain of transform coding over PCM is ex-

plained. Quantization is reviewed in chapter 5. The next chapter discusses source 

entropy and Huffman coding. In chapter 7, Motion Based Adaptive Vector Quanti-

zation (MBA-VQ) video coding scheme is introduced. Also, a comprehensive set of 

simulation results is presented in this chapter. Finally, we conclude the thesis with a 

discussion of the results and future research. 
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Chapter 2 

PR_QMF 

2.1 Theoretical Derivations 

The QMF bank is a multirate digital filter bank. There are decimators in the system 

which down-sample a signal sequence, and there are interpolators which perform up-

sampling. The input-output relation for a two-fold decimator can be written in the 

transform domain as 

where Y(e3w) has a period of 27r. The effect of compression in time domain is an 

expansion (or stretching) in frequency domain. The transform domain relation for a 

two-fold interpolator is 

The interpolator causes compression in the frequency domain. 

Let us consider Figure (2.1) in which a two-channel QMF system is shown. Based 

on relations (2.1) and (2.2), it is possible to express X(z) in Figure 1 as 

The reconstructed signal can in general be subject to three types of distortions: 
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• Aliasing distortion. 

• Phase distortion. 

• Amplitude distortion. 

The second term in (2.3) represents the effects of aliasing and imaging. This term 

can be made to drop simply by choosing the synthesis filters to be 

The QMF bank becomes a linear and time-invariant system with transfer function 

If I T(e3w)i = constant for all w, then there is no amplitude distortion. Also, if T(z) is 

a linear-phase FIR function, then arg[T(ejw)] = kw, and there is no phase distortion. 

This means T(z) is a delay, i.e., T(z) = Cz-n°, so that the reconstructed signal (n) 

is a delayed version of x(n). 

Smith and Barnwell [6] have shown that one can simultaneously eliminate both 

amplitude and phase distortions by choosing (2N — 1) odd and 

Therefore, 

The perfect reconstruction requirement of a two-band QMF reduces to[5] 

where H(z) is a low-pass filter of length 2N. 
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The PR requirement, Eq.(2.9), can be readily recast in an alternate, time domain 

form [10]. First, one notes that R(z) is a spectral density function and hence is 

representable by a finite series of the form 

Then 

Therefore Q(z) consists only of even powers of z. To force Q(z) = C which is 

a constant, it suffices to make all even indexed coefficients in R(z) equal to zero, 

except for n=0. However, the -yn  coefficients in R(z) are simply the samples of the 

autocorrelation p(n) given by 

where 0 indicates a correlation operation. This follows from the z-transform rela-

tionships 

where p(n) is the convolution of h(n) with h(—n), or equivalently, the time au- 

tocorrelation, Eq.(2.12). Hence, we need to set p(n) = 0 for n even, and n 0. 

Therefore. 

If the normalization is imposed, 

one obtains the PR requirement in time 



2.2 The Binomial Family 

The binomial family of orthogonal sequences [13] [14] is generated by successive dif- 

ferencing of the binomial seauence, which is defined on the finite interval [0, Ni by 

this is the backward difference operator. Taking successive differences yields Bonomial 

function family of length (N+1) 

where IcH is the forward factorial function, a polynomial in k of degree v 

This family of binomially-weighted polynomials has a number of properties. Taking 

z transform, we obtain 

where x r  (k) is the entry in the rth row and kth column. The salient property of 

this matrix is that the rows are orthogonal to the columns, 



Additionally, the Bionomial filters are linear phase quadrature mirror filters. From 

eq. (2.21), we see that 

which implies 

Also, 

implies 

Equations (2.25) and (2.27) demonstrate the symmetry and asymmetry of the rows 

and columns of the Bionomial matrix X. From equation (2.25), we can infer that the 

complementary filters Xr  and XN,(z) have magnitude responses which are mirror 

images about w = 7r/2 

Moreover, the cross-correlation of the sequence x , (n) , and x s(n) is defined as 

and 

Now for any real crosscorrelation, 



Also. the auadrature mirror property of Ea.(2.251 implies that 

These properties are subsequently used in driving the perfect reconstruction Biono-

mial QMF in the next section. 

2.3 The Binomial QMF 

Now, it is a straight forward matter to impose PR condition of Eq.(2.16) on the 

binomial family [10]. First, the half-band filter is 

or in the z transform 

where F(z) is FIR filter of order (N — 1)/2. For convenience, take 00  = 1, and later 

impose the normalization of Eq.(2.15). Substituting (2.33) into (2.12) gives 

Eq.(2.32) implies that the second summation in Eq.(2.34) has only terms where the 

indices differ by an even integer. Therefore the autocorrelation for the binomial half-

band low-pass filter is 



Finally, the PR requirement is 

This condition gives a set of N2-1  nonlinear algebraic equations, in the ./v-  unknowns 

01, 02  ... , 0N-1. From these, we can obtain the corresponding Binomial PR-QMFs. 
2 

These filters can be implemented using either the purely FIR structure, or the 

pole-zero cancellation configuration. The latter is shown in Fig.2 for N = 5. Wherein 

both low-pass and high-pass filters are simultaneously realized. Coefficient 00  can 

be taken equal to unity, leaving only 01  and 02  as tap weights. These are the only 

multiplications needed when using the Binomial network as the half-band QMF rather 

than the six h(n) weights in a transversal structure. 

2.4 M-Band Tree Decomposition 

After a given signal x(t) is sampled at fs  to give a signal X(n), and split it into 

two signals X L(n) and X H(n), with the reduction of the sampling rate to L/2, the 

decomposition can be extended to more than two subbands by processing these signals 

in the same manner as the initial signal X(n). Four signals are thus obtained with 

a reduction of the sampling rate to fs /4. The decomposition/reconstruction can be 

generalized by repeating n times the previously described splitting using n-stage tree 

decomposition. In figure (2.3), a four subband decomposition is shown. The signal 

X (n) is split into four signals XLL, XLH, XHL,  and XHH• 

2.5 Two Dimensional Separable Case 

The extention of the QMF decomposition/reconstruction concept to two dimentional 

case is relatively straight forward in separable filter case. The conditions required 

for splitting two dimensional signals into more than two bands, with alias-free recon- 

1 0 



Figure 2.1: Two Channel QMF Bank. 

Figure 2.2: Low-pass and high-pass QMF filters from Binomial Network. 
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Figure 2.3: Four-band tree decomposition for one dimensional signal X (n) 



struction of the original signal, is the separability feature of the filters, that is 

These separability characteristics of the filter provide an alternative method of im-

plementation for 2D-QMF banks. The analysis and synthesis are done as shown in 

figure (2.4) and figure (2.5) where the structure consists of one-dimensional filters. 

The computation is performed first along one axis (rows) and then along the other 

axis (columns). It can be shown that application of this filter structure will permit 

an alias-free reconstruction of the input signal at the receiver. The detailed analy-

sis/synthesis and perfect reconstruction are given in [3]. Figure (2.4) shows four-band 

tree decomposition of a two-dimensional signal X(n, in) while figure (2.5) shows the 

construction tree. 
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Figure 2.4: Four-band tree decomposition of a two-dimensional signal X (n, m) 

Figure 2.5: Four-band reconstruction of a two-dimensional signal X (n, m) 
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Chapter 3 

Discrete Cosine Transform 

The term image transform usually refers to a class of unitary matrices used for repre-

senting images. Just as one-dimensional signal can be represented by an orthogonal 

series of basis functions, an image can also be expanded in terms of a discrete set 

of basis arrays called basis images. These basis images can be generated by unitary 

matrices. To make transform coding practical, a given image is divided into small 

rectangular blocks, and each block is transform coded independently. For an N x M 

image divided into NM/pq blocks, each of size p x q, the main storage requirements 

for implementing the transform are reduced by afactor of MN/pq. The computational 

load is reduced by a factor of log2  MN/ log2  pq for fast transform requiring a N log2  

operations to transform an N x 1 vector. For 256 x 256 images divided into 8 x 8 

blocks, these factors are 1024 and 2.66, respectively. Although the operation count 

is not greatly reduced, the complexity of the hardware for implementing small size 

transform is reduced significantly. However, smaller block sizes yield lower compres-

sion. The N x N discrete cosine transform (DCT) matrix C = {c(k, n)}, is defined 

as [16] 

The two-dimensional discrete cosine transform of a two-dimensional sequence 

15 



The inverse transformation is given by 

or in vector notation 

and 

The cosine transform is real and orthogonal, that is, 

To implement one-dimensional DCT of size N using fast transform algorithms, it 

requires 0(N log N) operations, where one operation is a real multiplication and a real 

addition. For two-dimensional DCT of size N x N, the transformation is equivalent 

to 2N one-dimensional DCT. Hence, the total number of operation is 0(N2  log2  N) . 

16 



Chapter 4 

Optimum Bit Allocation and Gain 
of Transform Coding 

4.1 Bit Allocation 

Bit allocation is a major concern in any coding scheme where a given quota of bits 

must be efficiently distributed among a number of different quantizers. Encoding in 

subbands offers several advantages. By appropriately allocating the bits in different 

bands, the number of quantizer levels and hence reconstruction error variance can be 

separateley controlled in each band and the shape of the overall reconstruction error 

spectrum can be controlled as a function of frequency. Using this approach, the noise 

spectrum can be shaped according to the subjective noise perception of the human 

eye. Moreover, the error in coding a subband is confined to that subband. 

The overall MSE incurred in an orthonormal, equal bandwidth, subband coding 

scheme with K subbands is given by 

where Da (r2 ) is the distortion rate performance of the encoder operating on the ith 

subband at ri  bits/sample. The average bit rate is given by 

In equation (4.2) we have assumed that all subbands have the same number of pixels. 

17 



If this is not the case, the re 's should be multiplied by appropriate weighting coeffi-

cients to account for the variability in the number of pixels in any subband. The bit 

allocation we have used is based on the Lagrange multiplier technique in which it is 

assumed that all bands have the same pdf type and the distortion rate performance 

of the quantizers are given by 

where, o is the variance of the ith subband and f= is the quantization correction 

factor for that band. If we assume equal band distortions D, = DJ , the following bit 

allocation is obtained 1161 

where rave  is the average bit rate. 

{re} are not restricted to be non-negative here. In practice, they are truncated 

to zero if they become negative. A negative bit allocation result implies that if that 

band is completely discarded its reconstruction error contribution is still less than the 

corresponding distortion for the given rate. Equation (4.4) holds only for regular tree 

structures of subband coding. For irregular tree structure, with Ni. bands in the first 

level of the tree and only band p is decomposed further into N2  bands in the second 

level of the tree, the corresponding optimum bit allocation expressions are found as 



4.2 Gain of Transform Coding 

An N band orthonormal transform imnlies the varia.nre nreservation condition7 

where cf! is the input signal variance with zero mean and al are the band variances. 

All orthonormal, variance preserving, signal decomposition techniques can be eval-

uated by employing the energy compaction criterion, namely the gain of transform 

coding over pulse code modulation GTC  [16]. If we assume that all the bands and 

the input signal have the same pdf type, the distortion ratio of PCM over transform 

coding at the same bit rate can be easily obtained as 

This equation holds for regular binary tree structures of subband technique. For 

irregular tree case equation (4.8) can be modified properly. Assuming an N1  band in 

the first level of the tree, and only band p is decomposed further into N2 bands in 

the second level of the tree, the corresponding gain is [18] 



Chapter 5 

Quantization 

5.1 Introduction 

The subsequent step is quantization. Quantization is the most common form of data 

compression and is fundamental to any digitization scheme or data compression sys-

tem. Quantization causes entropy reduction and hence it is an irreversible operation. 

A quantizer maps a continuous variable u into a discrete U, which takes values from 

a finite set {r1, • • • , rL} of numbers. This mapping is generally a stair case function 

and the quantization rule is as follows: 

• Define {tk, k = 1, .. • • • , L + 1} as a set of increasing transition or decision levels 

with t1  and ti,+1  as the minimum and maximum values, respectively, of u. 

• If u lies in interval [tk,tk+i), then it is mapped to rk, the kth reconstruction 

level. 

We will consider only zero memory quantizers, which operate on one input sample 

at a time, and the output value depends only on that input. Each quantizer is 

operating at a different rate by using different quantization tables. The rate is usually 

measured by 

where Rk and Nk are the rate and the size of the table for the kth quantizer respec-

tively. In zero memory quantizer (scalar quantization), the quantization is performed 
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such that quantization noise is minimized, with a given number of quantization levels. 

5.2 The Optimum Mean Square or Lloyd-Max 
Quantizer 

This quantizer minimizes the mean square error for a given number of quantization 

levels. Let u be a real scalar random variable with a continuous probability density 

function pu(u). It is desired to find the decision level tk  and the reconstruction levels 

rk  for an L level quantizer such that the mean square error [171 

is minimized. Rewriting this as 

By differentiating with respect to tk  and rk  and equating the result to zero, we get 

Using the fact that tk_i  < tk, this gives 

where jk is the kth interval [tk , tk + 1). These results state that the optimum tran-

sition levels lie halfway between the optimum reconstruction levels, which, in turn, 

lie at the center of mass of the probability density in between the transition levels. 

Both (5.6) and (5.7) are nonlinear equations that have to be solved simultaneously. 

In practice, these equations can be solved by an iterative scheme such as the Newton 

method. 
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A commonly used probability densities for quantization of image-related data is 

the Laplacian densities, which is defined as, 

where µ denotes the mean of u. The variance is given by 

5.2.1 Properties of the Optimum Mean Square Quantizer 

This quantizer has several interesting properties. 

• The quantizer output is an unbiased estimate of the input, that is, 

• The quantization error is orthogonal to the quantizer output, that is, 

• The variance of the quantizer output is reduced by the factor 1 — f (B), where 

f(B) denotes the mean square distortion of the B-bit quantizer for unity vari-

ance inputs, that is, 

• It is sufficient to design mean square quantizers for zero mean unity variance 

distributions. 

5.3 Vector Quantization 

When Shannon [20] proved that signals from an information source could be coded 

at a bit rate no greater than the entropy of the source, he showed that this would be 
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achieved, not by coding individual samples but by collecting samples into groups and 

encoding the groups. This is the basis of vector quantization. 

A vector quantization scheme involves an encoder, a decoder and a codebook. The 

codebook is a lookup table with a k-bit address and 2k entries. Each entry in the table 

is a vector of samples. Both the encoder and the decoder have copies of the codebook. 

The encoder looks at each incoming vector of samples -- and selects the code-word 

y = OW which is the best match to -±'. Formally, let d(x,y) be the distortion measure. 

The Euclidean distance — y)T ( — y) is frequently used as the measure but any 

positive definite quadratic form in (' — y) will serve. The encoder transmits that 

vector index i for which d( x, C(i)) is minimum. The decoder receives i and presents 

C(i) as its output. Clearly the success of this technique depends on having a well 

chosen codebook. This codebook is, in general, not complete: i.e., the number of 

vectors in the codebook is finite while the number of possible vectors is usually, for 

all practical purposes, infinite. The distortion we must live with is that which arises 

from assigning an incoming vector to a codebook entry that does not quite match. 

The quantization process is reduced to a simple search and comparison procedure. 

The major difficulty in implementing vector quantizers is the time required to search 

a very large codebook. There are several algorithms for designing a codebook. We 

employed LBG algorithm which is summarized in the next subsection. 

Lloyd's Algorithm 

A procedure for designing codebooks was developed by Lloyd [21]. This algorithm 

was designed as a clustering technique for use in pattern recognition and related fields. 

It was extended to vector quantization by Linde, Buzo, and Gray [22] and therefore 

called LBG algorithm. The algorithm consists of an iterative technique for refining 

an initial codebook. The algorithm is as follows: 
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1. Encode a selection of test data with the current codebook and measure the 

average distortion. If the distortion is small enough the algorithm terminates. 

2. For each address i in the codebook, find the centroid of all the input vectors 

which were mapped into i and make this centriod the new CM. Go to step 1. 

The test data used in this process are refered to as the training set. Each word in the 

codebook is used to represent a cluster of possible input vectors from this set. 
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Chapter 6 

Source Entropy and Huffman 
Coding 

6.1 Entropy 

The entropy of a source with L symbols is defined as the average information generated 

by the source, i.e., Entropy 

where pk  is the probability of having kth symbol. For a digital image considered as 

a source of independent pixels, its entropy can be estimated from its histogram. For 

the given L levels, the entropy of a source is maximized for uniform distributions, i.e., 

pk  =11L,k = 1,• • • ,L. In that case 

The entropy of a source gives the lower bound on the number of bits required to 

encode its output. Obviously, this definition assumes a stationary source. 

6.2 Entropy Coding: The Huffman Coding Algo-
rithm 

The quantizer output is generally coded by a fixed-length binary code word having B 

bits. If the quantized pixels are not uniformaly distributed, then their entropy will be 
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less than B, and there exists a code that uses less than B bits per pixel. In entropy, 

the goal is to encode a block of M pixels containing MB bits with probabilities 

pi,i = 0,1, • • • , L — 1, L = 2', by (— log2  pi) bits, so that the average bit rate is 

This gives a variabe-length code for each block, where highly probable blocks (or 

symbols) are represented by small length codes, and vice versa. If (— log2  pi) is not an 

integer, the achieved rate exceeds H but approaches it asymtotically with increasing 

block size. For a given block size, a technique called Huffman coding is the most 

commonly used fixed to variable length encoding method [17]. 

6.2.1 The Huffman Coding Algorithm 

1. Arrange the symbol probabilities pi  in a decreasing order and consider them as 

leaf nodes of a tree. 

2. While there is more than one node: 

• Merge the two nodes with smallest probability to form a new node whose 

probability is the sum of the two merged nodes. 

• Arbitrarily assign 1 and 0 to each pair of branches merging into a node. 

3. Read sequentially from the root node to the leaf node where the symbol is 

located. 

The preceding algorithm gives the Huffman code book for any given set of proba-

bilities. Coding and decoding is done simply by looking up values in a table. 
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Chapter 7 

Experimental Studies 

Since we are emphasizing the low complexity of the Binomial filter banks introduced 

in[10], it would be attractive to apply these filters in complete coder structures char-

acterized by low overall complexity. Both still image coders and video coders are 

implemented and tested. 

7.1 Subband Coding of Still Images 

In a still image coder, the original image constitutes the input to the analysis filter 

bank. The subband signals are represented in a bit efficient manner using optimum 

bit allocation expressions given in equations (4.5) and (4.6). A problem with these 

two equations is that they may give negative values. Moreover, the rk3  may not match 

any of the existing quantizers bit rate. Actually, we need 2rk3 to be an integer equales 

to the number of levels in one of the used quantizers. 

To solve these problems, subbands with negative rk3  are truncated to zero and 

dropped from our future calculations. Then the average bit rate ray, is recalculated 

for the remaining bands. After that, a quickly converging iterative algorithm has been 

developed to find the integer number of levels corresponding to each of the remaining 

bands. 

• First, we start with the band which has the highest frequency. The bit rate 

corresponding to this band is calculted using (4.5), (4.6) and the new average 
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bit rate rate  recalculated previously. 

• Then, choose the quantizer with the number of levels equals or less than 2rk3 . 

• Excessive bit rate resulting from this integer truncation is used to reevaluate 

average bit rate rave  for the remaining bands and this band is dropped from our 

next calculations. 

• This new average bit rate rave  is used in equations (4.5) and (4.6) to calculate 

the number of levels for the next lower band by repeating the same preceding 

procedure. 

We should notice that by assigning the excessive bits, resulting from truncation, to 

lower bands, we are putting more emphasis on low frequencies. This feature enhances 

the image quality because of the mechanism of the human visual system which is 

more sensitive to low frequencies. For different average bit rates and the "Lady" test 

image, this adaptive bit allocation results are shown in Table (7.1). These numbers 

reflect the iterative adjustment to remove negative and noninteger values. 

Next step is to quantize each band using the corresponding number of levels found 

using the Bit Allocation Algorithm. The bands are quantized using normalized Lapla-

cian quantizers [17] with the following numbers of levels: 3, 5, 7, • • • , 29, 31, 33, 35, 64, 128. 

In this thesis, we have considered two methods of encoding the lowest frequency band; 

differential quantization such as DPCM and PCM quantization. In our experiments, 

we observed that the pixel to pixel correlation of upper band signals is very low. 

Consequently for these bands, PCM quantizer schemes are preferred to differential 

coding methods. We have therefore applied differential coding to the lowest band 

of the input signal in our experiments. In the DPCM encoder used here, a linear 

predictor constructs its predicted pixel as the weighted summation of previous pixels. 

Thus: 



The prediction error is then quantized by a symmetric non-uniform quantizer. 

After quantization, the bands are entropy coded using Huffman coding scheme. 

To reduce complexity, only first order Huffman coding is used to code each quantized 

band. 

Now, we can transmit the coded image over the channel. Here, we assume error 

free channel. It is suitable to use progressive transmission scheme for subband coding. 

The main objective of progressive transmission is to allow the receiver to recognize 

a picture as quickly as possible at minimum cost, by sending a low resolution level 

picture first. Further details of the picture are obtained by sequentially receiving the 

remaining encoded bands. At the receiver, the bands are decoded and reconstructed 

using the synthesizing filter bank. 

A similar 8 x 8 two-dimensional DCT based coder is also developed for comparison 

purposes. 

The peak-to-peak signal to noise ratio is used as the objective performance crite-

rion and defined as 

where mse is the mean square coding error. 

7.2 Subband Video Coding with Motion Based 
Adaptive Vector Quantization 

In our low complexity video coder, we employ block matching for motion compen-

sation using Brute-force method. The block size is set to 8 x 8 and the maximum 

displacement, both horizontally and vertically, is set to ±6 pixels. The motion com-

pensated frame difference (MCFD) signal is encoded with subband coding. The 

MCFD signal is split into four subbands, namely LL - HL - LH - HIT bands, us-

ing 4-tap separable Binomial PR-QMF filters. The subbands are vector quantized 

adaptively after discarding the highest frequency band HIT. 
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Each 4 x 4 block in the subbands corresponds to a motion vector of a block 

with size 8 x 8 in the original resolution. From experiments, we have found that 

there is a relation between motion vector magnitude and prediction error variance 

of the corresponding block. In general, large magnitude motion vectors represent 

high variance blocks in MCFD while blocks with no motion have small variances. 

Using this relation, vector quantizers (codebook) were classified depending on the 

magnitude of block motion. The magnitude of block motion iii is defined as follow: 

where i and j are the horizontal and vertical motion respectively. We classified motion 

into three groups as follow: 

• Group 1: rn = 1 or 2. 

• Group 2: in = 3 or 4. 

• Group 3: 7n = 5 or 6. 

Using blocks corresponding to these groups for each of the three bands, codebooks 

were generated using LBG algorithm. As a result of this, we got 9 codebooks each of 

512 length. This technique were compared to the work done by Kadur in his thesis 

[23][19]. Kadur used local variances of each block in subbands to classify them. This 

means that we need to transmit extra bits for local variances for each 4 x 4 block. 

The total bit rate for this technique can be written as 



• BG  = average bits/pixel for the transmission of local variances. 

Using our MBAVQ scheme, BG  is not needed. This means a significant reduction in 

bit rate (40%) in general. 
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Figure 7.1: SNR versus entropy for 7 subband decomposition using Laplacian quan-
tizers for all the subbands 
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Figure 7.2: SNR versus entropy for 10 subband decomposition using Laplacian quan-
tizers for all the subbands 
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Figure 7.3: SNR versus entropy for 7 subband decomposition using DPCM for the 
low frequency band and Laplacian quantizers for the remaining subbands 
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Figure 7.4: SNR versus entropy for 7 subband decomposition using different quanti-
zation schemes for the lowest frequency subband 
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Figure 7.5: SNR versus entropy for DCT, 7 and 10 subband decomposition using 
Laplacian quantization scheme for the lowest frequency subband 
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Figure 7.6: SNR versus entropy for DCT and 10 subband decomposition using DPCM 
quantization scheme for the lowest frequency subband 
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Figure 7.7: Variance vs Motion for MCFD frames 10, 24 and 30 of CINDY 
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Figure 7.8: SNR vs frame index of MBAVQ and VBAVQ for CINDY 
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Figure 7.9: Entropy vs frame index of MBAVQ and VBAVQ for CINDY 
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Figure 7.10: Energy Compaction Gain, GTC  vs frame index for (8 x 8) DCT and 
4-tap Binomial QMF subband structure for MCFD of CINDY 

41 



Figure 7.11: SNR vs frame index of MBAVQ and VBAVQ for MONO 
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Figure 7.12: Entropy vs frame index of MBAVQ and VBAVQ for MONO 

43 



Figure 7.13: Motion vs frame index of MBAVQ and VBAVQ for MONO 
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Figure 7.14: SNR vs frame index of MBAVQ and VBAVQ for DUO 
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Figure 7.15: Entropy vs frame index of MBAVQ and VBAVQ for DUO 

46 



Figure 7.16: Motion vs frame index of MBAVQ and VBAVQ for DUO 
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number of levels in the quantizer 
bit rate band 1 band 2 band 3 band 4 band 5 band 6 band 7 
0.5 
0.75 
1.0 

35 
64 
64 

3 
5 
7 

7 
11 
15 

0 
3 
5 

0 
0 
0 

0 
0 
3 

0 
0 
0 

Table 7.1: Results from bit allocation algorithm 
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Chapter 8 

Discussions and Future Research 

Subband coding of digital images using Binomial PR-QMF has been presented for still 

images. Simulation results has shown that the performance of subband coding using 

a low complexity coder is practically the same as the performance of the industry 

standard (8 x 8) DCT based codecs. 

For video signals an efficient Motion Based Adaptive Vector Quantization (MBAVQ) 

subband coding method has been introduced. This new approach is compared with 

the Variance Based Adaptive Vector Quantization of subband video [19]. The new 

technique resulted in a reduction in bit rate by nearly (40%) due to the drop of the 

extra bits used for local variances. Moreover, this method gave superior SNR results 

especially for high motion frames. This clearly demonstrates that subband coding 

with MBAVQ should be considered as an atractive and powerful method for video 

coding. The modelling of MCFD signal and its relation with motion compensation 

techniques are open problems for future research. 
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