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Abstract 

Thesis title: Implementation of Parallel Sorting Algorithms on a 
Transputer Network 

 

Venkatraman U. Calidas, Master of Science in Electrical Engineering, 1990 

Thesis Directed by: Dr. John Carpinelli, Assistant Professor 
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Many sorting algorithms, such as the bubble sort and the binary tree 

selection sort, are n-squared algorithms and take 0(n2) time to sort n values. 

These can be easily parallelized; the resulting sorts are called the odd-even 

transposition sort and the parallel tree selection sort, respectively. These have 

O(nlogn) time complexity. The quicksort is an O(nlogn) algorithm and it can be 
 

parallelized to make it an O(logn) algorithm. 

A transputer is a microprocessor which has serial links to transmit and 

receive data from other transputers. The above algorithms are implemented  

on a network of transputers and the link connections for the topology for 

each algorithm is suggested. The hardware and software tools available for 

this thesis enabled us to implement the above parallel sorting algorithms. 
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Chapter 1 

Introduction 

Sorting is a very fundamental problem while dealing with computers 

and computer programs. The process of sorting or ordering a list of objects 

according to some linear order is done very frequently. These routines are 

used in almost all database programs as well as in compilers and operating 

systems. 
 

Due to the fundamental nature of the sorting problem it has been 

extensively studied. A very detailed treatment is given by Knuth [9]. As most 

computers were of the Von-Neuman type, the sorting algorithms were 

originally serial in nature. However with the design of SIMD and MIMD 

computers, parallel algorithms too were investigated. 

With the advent of VLSI technology it became possible to build 

complex processors on a single chip. One such chip is the powerful 

microprocessor T800 by INMOS. The T800 is different from other 

conventional processors such as the MC68020 from Motorola. The T800 has 

been designed with parallel processing in mind. The interprocess 

communication is done by the 4 links available on the T800. Thus it is possible 

to connect the T800 in a variety of topologies such as linear, mesh, ring and 

tree connections. 

Transputer boards with typically four T800s are available 

commercially. These boards fit in the bus of any PC/AT compatible computer, 



and with the help of software we can create a parallel processing 

environment. One such board from the company Computer Systems 

Architects, which has 4 T-800s is used in this work. 

In this thesis parallel sorting algorithms have been implemented on a 

network of transputers. Many fast parallel sorting algorithms require 0(n2) 

processing elements to sort n elements in 0(log n) time [10]. For large values 

of n the number of processors needed would be prohibitively high. In some 

cases sorting networks have been suggested. Not all computers can afford to 

have such a sorting network or a large number of processors. Thus an attempt 

has been made to perform parallel sorting with the number of processors 

much less than the number of elements to be sorted. 

The bubble sort algorithm is a simple serial sort algorithm. This 

algorithm may be parallelized; this is called the odd-even transposition sort 

[12]. Another serial algorithm which can be parallelized is the parallel tree 

algorithm [5]. The method to adapt this algorithm to run on a transputer tree 

network is shown. The quicksort algorithm which is by far one of the most 

popular sort algorithms, can also be parallelized. One method of the parallel 

quicksort algorithm is discussed and implemented. 

This thesis dissertation is organized according to the following 

chapters. 

Chapter 1: This is the introduction to this thesis work. 

Chapter 2: This chapter gives the basic overview of the transputer 

architecture. 

Chapter 3: This chapter describes the software tools to compile, load 

and run programs on a transputer network. 



Chapter 4: This chapter discusses the various sorting methods in 

general use and their algorithms. Some of these algorithms can be 

parallelized, and these algorithms are also discussed. 

Chapter 5: This chapter deals with the implementation of parallel 

algorithms, dealt with in the previous chapter, to run on a transputer 

network. 

Chapter 6: This is the final chapter with results of this work and 

conclusions. 



Chapter 2 

Transputer Basics 

2.1 Overview 

The Transputer is designed to exploit the potential of VLSI technology. 

This technology allows a large number of identical devices to be 

manufactured cheaply. For this reason it is attractive to implement a 

concurrent system using a number of identical components, each customized 

by an appropriate program. The transputer is a VLSI device with a processor, 

memory to store the program executed by the processor, and communication 

links for direct connection to other transputers. 

2.2 Transputer is a programmable device 

Transputer systems can be designed and programmed using the OCCAM 

language. Occam allows an application to be described as a collection of 

processes operating concurrently and communicating through channels. The 

transputer can be used as a building block for concurrent processing systems, 

and Occam as the associated design formalism. 

Occam was developed to program concurrent, distributed systems. 

Emphasis is placed on the word distributed because many previous languages 

were unsuitable for this area. Occam enables a system to be described as a 

collection of concurrent processes which communicate with each other and 



with peripheral devices through channels. Concurrent processes do not 

communicate via shared variables, and thus Occam is a suitable language for 

programming systems where there is no memory shared between processors in 

the systems. 

2.3 Generic architecture of the Transputer family 

Speedup of an array processor may be roughly defined as the ratio of 

the time taken by a uniprocessor to complete a given job to the time taken by 

an array processor for the same job. The speedup that can be achieved by a 

parallel computer with n identical processors working concurrently on a 

single problem is at most n times faster than a single processor. In practice the 

speedup is much less, since some processors are idle at a given time because of 

conflicts over memory access or communication paths. Figure 2.1 shows the 

various estimates of the actual speedup, ranging from a lower-bound log2n 

(Minsky's conjecture) to an upper-bound n/ln(n) [7]. Attempts to build 

multiprocessor systems from conventional microprocessors have always been 

fraught with problems, not the least of which have been those with inter-

process communication. Bandwidth problems are usually encountered when 

more than four processors are linked via a shared bus. Typical commercial 

multi-processor systems consist of only two to four processors. 

Transputers have their own built-in serial links, each capable of 

concurrently inputting and outputting at up to 10 Mbit/sec. A typical 

transputer has four such links, giving it a communications capacity of 40 

Mbit/sec into the device and 40 Mbit/sec out. As these links are an integral 

part of each individual transputer, the greater the number of transputers in a 

network the greater the total bandwidth of the system. Due to the serial links 

available on every transputer, they can easily be designed to form array 



structured SIMD computers. The array may take different shapes such as 

hypercube, binary tree, mesh and so on. Analysis by Hwang and Briggs [7] of 

SIMD array processors shows that speedup increases monotonically with 

respect to the number of available processors. Figure 2.2 shows the speedup 

versus the number of processors available. Thus we can expect increase in 

speedup while using five transputers available for this work. 

Figure 2.1 Plot of speedup versus number of processors 

in a multi-processor system 

Figure 2.2 Plot of speedup versus number of processors 

in a array processors 



Figure 2.3 shows the generic architecture of the transputer family. For 

example, the T424 32-bit transputer, with 4 serial links and 4 Kbytes of on-

chip static RAM, is usually taken as being the standard general purpose 

transputer, but various combinations of on-chip facilities are possible. 

Transputers always include a processor, system services and one or more serial 

links, but they may have 4 Kbytes of on-chip RAM, 2 Kbyte or no on-chip 

memory. A more powerful transputer is the T800, which has an on-chip 

floating point computation unit. 

Figure 2.3 Transputer generic architecture 



All transputers have a timer which runs off a 5MHz external clock. 

Both the processor clock frequency and the link clock (which controls the 

transfer rate of the serial links) are derived from the external clock 

frequency by internal scaling. All transputers support the 10 Mbit/sec 

standard. The link protocol, like the link speed, is standard across the whole 

range of transputers. Data is transmitted one byte at a time in packets, with 

each packet being acknowledged by the receiving transputer. The 

acknowledgement packet is sent as soon as the data packet is identified and, 

since each link is bi-directional, data packets and acknowledgement packets 

can be communicated concurrently. 

2.4 IMS T800 Architecture 

The T800 is a microprocessor which has an on-chip floating point 

computation unit. The small size and high performance comes from a design 

which takes careful note of silicon economics. Many contemporary 

microprocessors come with a co-processor which occupies more area than the 

microprocessor itself. The block diagrams of the interconnection between the 

major blocks of the IMS T800 is given in Figure 2.4 [14]. The T800 CPU 

contains three registers (A, B and C) used for integer and address arithmetic, 

which form a hardware stack. Loading a value onto the stack pushes B into C, 

and A into B before loading A. Storing a value from A pops B into A, and C 

into B. There are three registers in the FPU which are called AF, BF and CF, 

and they push and pop the same way as the A, B and C registers. 

All transputers share the same basic instruction set. It contains a small 

number of instructions, each with the same format, chosen to give a compact 

representation of the operations most frequently occurring in programs. In 

this respect the transputer family follows principles of Reduced Instruction 



Set Computers (RISC). The four most significant bits are function code, and 

the four least significant bits are a data value. The 16 functions include loads, 

stores, jumps, and calls, and enable the most common instructions to be 

represented in a single byte. 

Figure 2.4 T800 architecture 

2.5 Floating point instructions 

The core of floating instructions includes simple load, store and 

arithmetic instructions. The transputer designers ran several FORTRAN 

programs whose results suggested that the addition of some more complex 

instructions would improve performance and code density. The resulting 

instruction set reflects this philosophy. 

2.6 Concurrent operation of FPU and CPU 

In the IMS T800 the FPU operates concurrently with the CPU. It is 

therefore possible to perform an address calculation while the FPU performs 

a floating point calculation. 



2.7 Communication Links 

Two transputers are linked by connecting their respective link 

interfaces with two one-directional signal wires, along which data is 

transmitted serially. The two wires provide two Occam channels, one in each 

direction. Each Occam channel requires data to be transmitted in one 

direction and control information in the other. A simple protocol is used to 

multiplex date for one channel and control information for the other channel 

onto the wires. Messages are transmitted as a sequence of bytes. Each byte 

must be acknowledged before the next is transmitted. A byte of data is 

transmitted as a start bit, followed by a one bit, followed by eight bits of data, 

followed by a stop bit. An acknowledgement is transmitted as a start bit 

followed by a stop bit. Figure 25 shows the elements of the communication 

protocol used and Figure 2.6 shows the signals when the acknowledged packet 

overlaps the data. Thus the IMS T800 floating point transputer provides a 

very high performance building block for concurrent systems. 

Figure 25 Elements of communication protocol 

Figure 2.6 Signal when acknowledged packet overlaps 



2.8 A brief theory of operation of the transputer hardware used with a PC as 

host 

There are two boards available for this research. They are the Link 

Adapter Board and the multiple transputer board with four Transputers. 

These are known as the PART.2 and PART.6 boards, respectively. A brief 

description of the two boards follows. 

The PART.2 board from CSA is one of a series of flexible tools 

designed for development projects using the Inmos transputer. At the same 

time it is a formidable application accelerator providing an aggregate 10 

MIPS and 1.5 MFLOPS of computing power and 256 Kbytes of memory. 

2.8.1 The Part.2 board 

The block diagram of the Link Adaptor cell is shown in Figure 2.7. The 

PART.2 board is an Inmos compatible implementation of the Transputer 

environment. Each board consists of two cells, the transputer cell and the link 

adaptor cell. The transputer cell contains the transputer microprocessor, 256 

Kbytes of 10Ons DRAM, differential link buffers, and a small amount of 

control logic. The link adaptor cell contains the an Inmos C012 link adaptor, 

differential link buffers and PC bus interface logic. The transputer and link 

adaptor cells may work independently of each other but are normally 

configured for connection via one link. 

Communication between the PC and the transputer is performed 

through a Link Adaptor. This device, similar in concept to a high speed 

DART, converts 8 bit parallel information from the PC into a bit stream for 

transmission over a transputer link. The function of the Link adaptor is just 

to communicate between the PC and the transputer. Two methods of 

communication can be established at any time between this board and the PC. 



Information may be transmitted to or from the link adaptor by programmed 

(or Channel I/O) or by direct memory access (DMA) using the PC DMA 

controller. The link adaptor is auxiliary to the transputer on this board. 

Figure 2.7 Block diagram of link adaptor cell 



The transputer on a PART.2 has no connection between the PC or any 

other transputer than that provided  across transputer links. This 

communication occurs transparent to the computation engine of the 

transputer as a type of direct memory access. Link information is placed 

directly into the transputer memory as it is received. In the same manner, 

information may be transmitted from memory across the link to a link 

adaptor or another transputer without burdening the computation engine. In 

some configurations, links are chained from transputer to transputer. When 

results of computations are returned to the host transputer, the information 

passes through the link structure of each transputer between the transmitting 

transputer and the receiver. 

 
2.8.1.1 Theory of Operation 

The PART.2 is designed as t simple transputer evaluation cell with a 

single transputer, 256 Kbytes of external memory and a PC interface. For 

convenience during the initial use of the PART.2 board, standard connections 

between the transputer and Link adaptor cells have been pre-wired on the 

etched circuit card. PC link adaptor connection, link speeds and interrupt 

selections have also been pre-selected and wired via the circuit board. 

The transputer is a separate computer running independent from the 

PC. It is attached to the PC through a PC Link adaptor. The link adaptor is a 

device from Inmos that converts 8 bits parallel from the PC bus, to serial data 

for receipt by transputer links. On a standard PART.2, link 0 of the 

transputer is hard wired on the transputer to the link adaptor. The link 

speeds for both the link adaptor and transputer are set at 10 MBits/sec. The 

interface used between the PC and link adaptor is Direct memory access. The 

information is then directly placed from PC memory into the transputer 



memory. Several PART.2 transputers may be connected together by 

connecting links 1-3. Enhancements possible with the PART.2 include: Switch 

selectable link speeds 10/20 MBits/sec, switch selectable connection between 

link adaptor and PC, and selectable link adaptor to PC DMA and PC 

interrupt addresses. 

Figure 2.8 Transputer cell in a PART.6 board having four transputer cells 



2.8.2 The Part.6 board 

The block diagram of the PART.6 board is shown in Figure 2.8. The 

PART.6 board from CSA is a flexible tool designed for development projects 

on the forefront of processor technology. At the same time, PART.6 is a 

formidable application accelerator providing an aggregate 40 MIPS / 8 

MFLOPS of computing power and 1MByte of memory. The PART.6 is a 

straightforward implementation of the transputer parallel processing 

environment. Each transputer cell consists of the transputer microprocessor, 

256 Kbyte of 100 ns DRAM, differential link buffers, and a small amount of 

miscellaneous logic. The four transputer cells are completely independent of 

each other except for the single clock oscillator. The board available for the 

work carried out in this dissertation is the PART.6 which has 4 transputers 

and 1 Megabyte of memory per board. 

The PART.6 board allows for great flexibility in arranging arbitrary 

systems of Transputers. No predefined interconnection topology has been 

assumed. The user may have any combination of systems and subsystems that 

cross large numbers of PART.6 boards, or may opt for a simple, one level 

system of just one board. 

Figure 2.9 shows the connections for a network configured as a 

Transputer Chain. 



Figure 2.9 A transputer chain 



2.8.2.1 System Services 

In defining system services, the Inmos philosophy and terminology has 

been adopted. The system services network consists of three signal lines; 

RESET, ANALYZE and ERROR. Reset and Analyze always travel in the 

same direction, while Error travels in the opposite direction. There are three 

distinct type of Systems services connections; UP, DOWN and SUBSYSTEM. 

Table 2.1 [17] describes the relationship between the system services signals 

and types of connections. 

UP DOWN 
SUB-

SYSTEM 

RESET INPUT OUTPUT OUTPUT 

ANALYZE    INPUT OUTPUT OUTPUT 

ERROR 
4 

OUTPUT INPUT INPUT 

Table 2.1 Relationship between system services signals 

It is intended that the UP and DN connections provide a chain of 

buffered control signals. In a chain of Transputer cells, the first cell (usually 

the PART.2 board) is considered the master and assumes the uppermost 

position. Reset and Analyze signals propagate down the chain to cells 

positioned lower in the chain, while the error signal propagates up the chain 

to the master position. The UP.Reset provides the master reset input for any 

Transputer cell. The signal is buffered and passed on directly to the DN.Reset 

output. The same is true for the UP.Analyze and DN.Analyze. The error 

signal is received as an input from other Transputer cells at DN.Error. This 

signal is ORed with the local error flag and sent out on UP.Error. The SS 



connection provides for the beginning of a new chain of control. These signals 

originate under software control, in the Transputer cell itself. 

The combination of UP, DN, and SS connections allow for the 

hierarchical control structures, such as trees, to be constructed. Figure 2.10 

illustrates a binary tree. Table 2.2 [17] summarizes the allowable connections. 

A 4-pin connector is used to interconnect the system services signals. 

UP DN SS 

UP -- OK OH 

DN OK -- -- 

SS OK -- -- 

DN: DOWN 

SS: SUBSYSTEM 

--: MEANS CONNECTION NOT ALLOWED 

OH: MEANS CONNECTION IS ALLOWED 
4 

Table 2.2 Allowable systems services connections 

2.8.2.2 Links 

A 4-pin connector is used to provide link interconnection. The 

interconnection cables for system services are completely interchangeable 

with those for the links. The link signals are differentially buffered to 

provide a higher reliability interconnect. 

2.8.23 Selections of Link speeds and Processor speeds 

DIP switches are provided on the PART.6 boards to enable a change in 

Link speeds. The links speeds can be selected to operate at 5 MBits/sec, 10 

MBits/sec or 20 MBits/sec. Jumpers are provided to change the processor 

speed. 



Figure 2.10 A binary tree connection 

19 



Chapter 3 

Software development tools. 

3.1 Introduction: 

The transputer toolset functions as a cross development environment 

with the supplied tools executed on a host system and run on the attached 

Transputer array. Tools are provide for both program development and 

loading the executable files. The development tools are as follows. 

PP The "C preprocessor 

TCX The "C" compiler 

TASM The assembler 

TLNK The linker/locater 

TLIB The relocatable file librarian 

MAKE The program maintenance utility 

The loading and execution tools are 

LD-ONE The single transputer loader 

LD-NET The 'network' loader for arrays of transputers. 

CIO The host I/O driver for "C" I/O on the transputer 



3.2 Compiling and running a C program 

First, PP is run on the source code to handle "C" preprocessing 

functions. Then TCX is run to convert the code to transputer assembly 

language. 

Next, TASM is run to assemble the code. At this point the code may be 

optionally included in a library using TLIB or linked into a executable file 

using TLNK (or both). 

Finally the code is executed using the LD-ONE loader (for the case of a 

single transputer), or the LD-NET loader (if more than one transputer is to be 

loaded). In either case, since the program probably does runtime I/O, the CIO 

"C" host I/O driver will be used with the selected loader. 

We shall now describe briefly how each of these tools works and give 

their special features.  

3.2.1 PP The "C" preprocessor. 

PP is a preprocessor for the "C' programming language. It conforms to 

the ANSI Draft Proposed "C" standard and contains options for backward 

compatibility with programs written for non-ANSI preprocessors. 

The basic function of the preprocessor is reading "C" source code files 

and handling the file inclusion, conditional compilation, macros and other 

lexical manipulations which are requested by the programmer. When finished 

the preprocessor writes out a simplified version of the input source code file 

for later compilation by the "C" compiler proper. 



3.2.2 TCX "C" compiler 

The TCX is a "C" compiler for the INMOS 32-bit Transputers. TCX 

does not include preprocessing facilities and is intended to run as a post pass 

to the preprocessor. The general form of the TCX command line is: 

tcx <input_filename> [-options] 

The input_filename field must contain the name of the program being 

compiled. The option facility allows us to control the operation of TCX to 

match our needs. 

By default the TCX generates code for the T414 Transputer. To have 

the TCX compile code for the T800 we must specify the "-p8" option. 

The "-c" option compresses the output file by removing source 

debugging information. Unless the debugging information is required this 

option will substantially reduce the size of the output file and will also 

improve the code optimization since source statement boundaries are no 

longer important to preserve in the generalized code. 

3.2.3 TASM Transputer Assembler 

TASM is a relocatable assembler for the INMOS 32-bit Transputers. It 

supports standard INMOS mnemonics and allows splitting a program into 

separate pieces which are combined at linkage time. TASM is designed to be 

used in two ways: 

1) As a post-pass to the TCX "C" compiler. The compiler generates an 

assembly language output file and TASM is used to turn it into relocatable 

format. 

2) As a stand-alone tool for programming in the Transputer assembly 

language. 



The architecture of the transputer requires that some of the code 

generation be delayed until the linker/locater stage to insure minimum length 

prefix strings are generated for all instructions. 

The general form of the TASM command line is: 

tasm <input_filename> [<temp_directory>.] [- [options]] 

3.2.4 TLNK Transputer Linker 

TLNK is a linker designed for use with the INMOS 32-bit. Transputers. 

It supports and allows complete control of load addresses for each program, 

library or code fragment. TLNK is designed for use with the TASM assembler 

and the TLIB librarian. It is also the linker used with the TCX compiler. 

TLNK may be run either as an interactive program or in a batch mode with a 

user specified command file. 

The architecture of the transputer requires that some of the code 

generation be delayed until the linker/locater stage to insure minimum length 

prefix strings are generated for all instructions. TLNK supports this by 

processing information which TASM puts in the relocatable files to 

determine which instructions have been completed at assembly time and 

which TLNK has to use during the linkage operation. The general form of 

the TLNK command is: 

tlnk [command_file] 

If a command file is provided TLNK assumes default values and 

proceeds to link the program. Otherwise TLNK runs interactively and asks 

for input values of such parameters as temporary file path, names of the 

input files, library files to be linked and the name of the output file. 



3.2.5 TLIB Transputer Librarian. 

TLIB is a librarian for use with the TLNK Transputer linker. It allows 

the creation, modification and examination of libraries of relocatable files. 

TLIB operates in a fashion similar to a line oriented text editor with 

commands to append, insert, delete and manipulate libraries. The general 

form of the TLIB command line is: 

tlib <library_filaname> [-options] [option_specific] 

The library_filename field must contain the name of the library with the 

extension "All". 

In general, one type of operation may be done to the library for each 

invocation of TLIB. We may append multiple files at a time for example, but 

if we wish to delete a file we must do it in a separate operation. The libraries 

must be structured such that the TLNK linker only gets one defining instance 

of each external symbol. The TLIB can be instructed to read a series of files 

to be placed in a library and automatically determine a correct ordering. 

3.2.6 LD-NET The Transputer Network Loader 

LD-NET is used to load a collection of executable files onto a network 

of Transputers. Executable files are created as a result of linking relocatable 

modules using TLNK and have default file name extensions of ".tld". 

Transputers networks to be used with LD-NET must conform to the 

standard INMOS system/subsystem reset/analyze topology and must have a 

subset of communications links in the network which mimics the 

system/subsystem connections (the remaining links may be connected in any 

arbitrary fashion). 

The system/subsystem topology organizes a Transputer network into a 

binary tree with each node having one reset/analyze input and two 



reset/analyze outputs (system and subsystem). Each node also has two error 

inputs and one error output associated with the reset/analyze connections but 

reversed in direction. Many configurations may be mapped into this 

configuration including linear and two dimensional arrays. Since links not 

involved in the reset process may be connected in an arbitrary fashion, they 

may be used to construct forms which wouldn't map easily, such as rings and 

hypercubes. 

The basic LD-NET process is as follows: 

1. LD-NET reads the specified "network information file" (`nif' file) to 

determine the Transputer network topology, and the programs to be 

loaded, and computes an optimum bootstrapping and load order. 

2. The Transputer connected to the host system link adapter is RESET 
 

(the "root" node). This also causes the "system" reset output of the root 

node to be activated since the "system" output is a daisy chained version 

of the root node reset input. 

3. A primary bootstrap is loaded onto the node and executed. 

4. A secondary bootstrap is loaded onto the node and executed. 

5. The root node performs a RESET operation on the software controlled 

(subsystem) output. At this point both system and subsystem reset 

outputs have been activated. 

6. A primary and secondary bootstrap is sent to the root node for use 

with one of its children. 

7. Steps 3 through 6 are repeated for each node down the tree until all 

nodes have been bootstrapped. This phase of the network load process 

is point to point since each bootstrap has node specific information, 

such as the children to be loaded, the desired program to keep during 

loading phase and the user assigned node number. 



8. After all nodes are bootstrapped one copy of each different program to 

be loaded onto the network is sent to the root node. 

9. The root node sends a copy of each program to each of its children who 

do the same thing in turn. Each node keeps the copy of the program it 

will eventually be running as it goes by. The part of the bootstrap 

process is sometimes called the program "flooding" phase since the 

entire network is parallel loaded with all the programs to be run on 

any node. 

10. When all programs have been loaded the host sends the root node (and 

all other nodes) an EXECUTE command which starts all the programs 

on the network running. The actual execution of the user programs 

starts with the leaf nodes and works back to the root as the command is  

acknowledged up the tree. 

11. At this point the Transputer network is loaded and running. LD-NET 

then does an "EXEC" to allow the specified host system driver program 

to run and handle I/O requests from the Transputer. The general form 

of the LD-NET command line is: 

ld-net <networkinformation_file> <command line arguments> 

The "network_information_file" (nif file) specifies the file to read to 

determine the network topology and the list of programs to be loaded. Any 

remaining parameters on the command line are passed to host driver 

program, which in our case is the host program running on the PC. In this 

project we use the CIO program which functions as an I/O server for "C" 

programs running on the root node. 



The following information must be provided in the network 

information file:  

1. Buff er_size 

2. Host_server 

3. decode_timeout 

4. level_timeout 

5. Node descriptions 

The node description is the most important information as it describes 

the network topology. Here the line begins with a node number which 

describes four things about the node: 

1. The user supplied node number to address it by. 

2. The program to download to it.  

3. Which node provides the reset signal for it and whether that signal 

originates from the "system" ("R") or the "subsystem" ("S"), reset output of the 

parent node. 

4. What other nodes the links from this node talk to. Although only the 

links involved in the network loading process must be described, it is a good 

practice to completely describe the connections for use by other programs 

which might wish to read the network information ("nif") file. 

The above information is contained in seven comma separated fields 

within the line, the last field on a line is terminated with a semicolon. 

Field #1: Node Number 

Contains the node number of the users choice. This number must be a 

positive non-zero integer in either "C" style decimal, hexadecimal or octal 

format. This number may range from 1 to 1000 and non-consecutive numbers 

may be used. The node number "0" is reserved to represent the host interface 



and may not be used in any other fashion. By convention the node number "1" 

should be the root transputer in the network. The node number provided in 

the ".nif" file is available to user "C" programs during the execution as the 

contents of the "_node_number" external integer variable which is quite 

useful for runtime configuration chores. 

Field #2: Program to Download 

This field contains the name of the program to download to that 

particular node. By default, a file name extension of "tld" is assumed if none 

is specified. 

Field #3: Parent node 

This field contains both the number of the parent node ( the node 

which resets this node), and an indication about whether the "system" or "sub-

system" output of the parent controls the reset for this node. This is indicated 

by a "R" (connected to a "system" output), or "S" (connected to sub-system 

output), letter followed by the parent node number. As usual, node number 

may be in "C" style decimal, hexadecimal or octal format. For example S1 

would indicate that the current node has its reset input connected to the 

"subsystem" output of parent node 1. 

No more than one node may be connected to the "system" or subsystem" 

output of any given node in a network. 

Field #4: Link 0 connection 

Field #5: Link 1 connection 

Field #6: Link 2 connection 

Field #7: Link 3 connection 

The last four fields are used to specify which node each link is 

connected to (by node number). If a link is unconnected its entry may be left 



blank. Since each node must have a direct link with the node which boots it, 

one link entry must have the same node number as the parent field. 

Examples illustrating the above rules incorporated in the ".nif" files are 

given below. 

1, test, R0, 1, 0, 2, ; 

This line in a ".nif" file indicates that the current node is node 1, the 

program to load is "test.tld", this node is reset by the host interface (which is 

connected by link 1), and it has a link connection to itself (link 0) and link 2 is 

connected to node 2. As Link 3 is not connected to any other node it is not 

mentioned. The connection is shown in figure 3.1. 
 

When two nodes have more than one link connection, a different 

approach is taken to fill in the fields. 

For example 

1, test, R0, 1, 0, 2[1], 2[3]; 

In this case two links exist between node 1 and node 2. Link 2 of node 1 

is connected to link 1 of node 2, and link 3 of node 2 is connected to link 3 of 

node 2. When we use the "0" notation to describe a network we need list only 

one end of a connection as it fully defines the linkage. This is illustrated in 

figure 3.2. 

The input channel addresses from which a node was bootstrapped by its 

parent are available during "C" program execution as the contents of the 

"_boot_chan_in" and the "_boot_chan_out" external variables. The variables 



are of type "Channel" and are declared in "conc.h". More about the channels 

and how channels interact with processes will be discussed in chapter 5. 

Figure 3.1 Transputer network configuration for 'nif' file containing the 

line: 1, test, R0, 1, 2, ; 



Figure 3.2 Transputer network configuration for 'rid' file containing the 

line: 1, test, R0, 0, 2[1], 2[3]; 



Chapter 4 

Sorting and Parallel Sorting 

In the world of computer science, perhaps no other tasks are more 

fundamental or as extensively analyzed as sorting and searching. These 

routines are used in almost all database programs as well as in compilers, 

interpreters and operating systems. There are two types of sorting: internal 

sorting and external sorting. When the data is available in the random access 

memory of the computer the sorting is called internal sorting and when it is 

available in sequential access disks or  tapes it is called external sorting. 

In this research we are only concerned about the internal sorting 

mechanisms. The first part of this chapter discusses some of the basic serial 

sorts available. In the second part of this chapter we discuss how some of 

these sorts can be parallelized. In the next chapter we discuss how these 

parallel sorts are implemented on the Transputer network. 

4.1 Introduction 

Sorting is the process of arranging a set of similar information into an 

increasing or decreasing order. Specifically, given a sorted list i of n elements, 

then 

ii >-= i2 >= i3 >= ......>= in or i/ <= i2 <= i3 <= .......<= in 



Most C compilers supply the function qsort() which is included as part 

of the standard library. The study and understanding of sorting is important 

for three reasons. First, a generalized function like qsort() cannot be applied 

to all situations. Second, as the qsort() function is generalized to run on a wide 

variety of data, it runs more slowly than a similar sort that operates on only 

one type of data. This is because the generalization process inherently 

increases run time because of the extra processing time needed to handle 

various data types. Third, although the qsort() program is very effective in the 

general case, it may not be the best sort for specialized applications. 

There are two general categories of sorting algorithms: algorithms that 

sort arrays (both in memory and in random access disk files) and algorithms 

that sort sequential disk or tape files. In this research, we are concerned only 

with the former, the arrays in random access memory. 

Generally when the information is sorted, only a portion of that 

information is used as the sort "key". This key is used in comparisons, but 

when an exchange is made the entire data structure is swapped. For example, 

in an address database the zip code field may be used as the key, but the 

entire address is sorted. 

There are three general methods that can be used to sort arrays: 

1.) Exchange 

2) Selection 

3) Insertion 

All other methods are usually a combination of the above three methods. 



4.1.1 Judging Sorting Algorithms 

There are many different algorithms for each classification of sorting 

method. They all have some merits, but the general criteria for a sorting 

algorithm are 

1) How fast can it sort information in an average case? 

2) How fast are its best and worst cases? 

3) Does it exhibit natural or unnatural behavior? 

4) How much memory will be needed for its working? 

Clearly, how fast a particular algorithm sorts is of great concern. It can 

be shown that the speed with which an array is sorted is directly related to 

the number of comparisons and the number of exchanges with the number of 

exchanges taking more time. A comparison occurs when one element is 

compared to another; an exchange occurs when two elements are swapped in 

an array. A move occurs when one element is moved from one location in 

memory to another which may or may not be a temporary memory location. 

Exchange of two elements during sorting requires three moves. 

A sort is said to exhibit natural behavior if it works least when the list 

is already in order, works harder as the list becomes less ordered, and the 

hardest when the list is in inverse order. How hard a sort works is based on 

the number of comparisons and exchanges that are executed. Memory 

requirements for sorting varies with each algorithm. Some algorithms need a 

lot of internal memory to sort efficiently. 

4.1.2 Example of exchange sort 

The most well known sort is the bubble sort. The bubble sort is in the 

exchange category of sorting. The general concept is the repeated comparison 

and, if necessary, exchange of adjacent elements. It is slowest among sorts but 



has the advantage of very low memory requirements. The algorithm of the 

bubble sort is given in figure 4.1. 

for i 1 to n-1 do 
for j = n downto i+1 do 

if a( j] < a[j-1] then 
swap (a[j],a17-11); 

end; 
end; 

end; 

n = number of values to be sorted. 
i,j = counters. 
swap = A function that interchanges the position 

of the two parameters. 

Figure 4.1 Algorithm for bubble sort. 

The bubble sort is said to be an n-squared algorithm. In analyzing any 

sort it is important to determine how many comparisons will be performed 

for the best and the worst case. In the bubble sort the number of comparisons 

is always the same because the two 'for' loops (see figure 4.1) in the algorithm 

repeat the specified number of times whether the list is initially ordered or 

not. Hence the bubble sort always performs 

(//2)*(n2-n) comparisons 

where n is the number of elements to be sorted. This formula is derived from 

the fact that the outer loop executes (n-1) times and the inner loop executes 

(n/2) times. 

The number of exchanges is zero for the best case for an already sorted 

list. The number of moves for the worst and average case exchanges are [13] 

worst: (312)*(n2-n) 

average: (314)*(n2-n) 



4.13 Example of sorting by selection 

A selection sort selects the element with a lowest value and exchanges 

it with that of the first element. Then from the remaining (n-1) elements the 

element with the least key is found and exchanged with the second element, 

and so forth. The exchanges continue to the last two elements. The basic 

algorithm is shown in figure 4.2. 

var 
lowkey : keytype; { currently smallest key found 
on a pass through a[i],..,a[n]} 
lowindex : integer; {the position of lowkey} 

begin 
for i :=1 to n-1 do begin 

{select the lowest among a[i],..a[n] & swap 
it with a[i]} 
lowindex := i; 
lowkey := a[i]; 
for j := i+1 to n do 

{compa re each key with current lowkey} 
if a[j] < lowkey then begin 

lowkey := a[j]; 
lowindex := j 

end; 
swap (a[j],a[lowindex]) 

end 
end; 

Figure 4.2 Algorithm for selection sort 

The outer loop executes (n-1) times and the inner loop ((112)n) times. The 

result is that the selection sort has ((112)*(n2-n)) as the number of comparisons. 

The best and worst cases for moves are [13] 

best: 3(n-1) 

worst: ((n2)/4) + 3(n-1) 

For the best case, if the list is ordered, then only (n-1) elements need to 

be moved, and each exchange requires three moves. The average case is 

average: n(ln(n) + y) 

where y is the Euler's constant, about 0.577216. 



4.1.4 Example of insertion sort 

The insertion sort is the third and last of the simple sorting algorithms. 

The insertion sort initially sorts the first two members of the array. Next, the 

algorithm inserts the third member into the sorted position. Then the fourth 

element is inserted into the list of three elements. The process continues until 

all the elements are sorted. The algorithm of the insertion is given in figure 

4.3. 

a[0] := -oo ; 
for i =2 to n do begin 

i =i; 
while a[j] < a[j-1] do begin 

swap (a[j],a[j-1]); 
j := j-1; 

end 
end 

Figure 4.3 Algorithm for insertion sort 

 
In the selection sort, the number of comparisons that occur while using 

the insertion sort depends upon how the list is initially ordered. If the list is in 

order then the number of comparisons is (n-1). If it is totally out of order (or 

sorted in the reverse direction), then it is 

((1/2)(n2+n))-1 

For the average case the number of comparisons is 

average: ((1/4Xn2 + n - 2) 

The number of exchanges are [9] 

best: 0 

worst: 1/2(n2 + 3n - 4) 

Therefore, for worst cases the insertion sort is as bad as the bubble sort 

and the selection sort. The advantage of the insertion is that it works the least 



when the array is initially sorted and the hardest when the array is sorted in 

inverse order. This means that it behaves naturally. 

4.2 Improved Sorts 

All the algorithms discussed so far have an execution time of order n-

squared. This means that for large amounts of data the sorts are very slow. 

Fortunately there are sorts which are faster than those discussed so far. We 

shall describe two of them in detail. The first one is the Shellsort and the 

other is the quicksort. 

4.2.1 Shell sort 

The Shell sort is named after its inventor, D. L. Shell. The general 

method is derived from the insertion sort based on diminishing increments. 

First, all the elements that are three positions apart are sorted. Then all 

elements that are two positions apart are sorted. Finally, all those adjacent to 

each other are sorted. For example consider the array In the first 

step the elements (x1,x4,x7,....), (x2,x5,x8,....) and (x3,x6,x9,....) are sorted. In the 

second step elements (x1,x3,x5,x7,....) and elements (x2,x4,x6,x8„) are sorted. 

Finally the elements adjacent to each other are sorted. The exact sequence for 

the increments can be changed. The only rule is that the last increment must 

be one. For example the sequence 

9, 5, 3, 2, 1 

is widely used. The execution time for the Shell sort is of the order of (n 1.5) 

[3]. The algorithm of the Shell sort is given in figure 4.4. 



procedure shellsort(var a:array[Ln] of integer); 
var 

i,j,incr: integer; 
begin 

incr := n div 2; 
while incr > 0 do begin 

for i:= incr + 1 to n do begin 
j := i - incr; 
while j > 0 do 

if a[j] > a[j+incr] then begin 
swap(a[j],a[j+incr]); 
j := j - incr; 

end 
else 

j := 0 {break} 
end 
incr := incr div 2 

end 

end; {shellsort} 

Figure 4.4 Algorithm for shell sort 

 

4.2.2 The Quicksort 

The quicksort, invented by C. A. R. Hoare, is a superior sort algorithm. 

It is generally considered the best sorting algorithm currently available. 

The quick sort is built on the idea of partitions. The general procedure 

is to select a value called the comparand and then to partition the array into 

two sections. All the elements equal to or greater than the comparand are on 

one side and those less than the value on the other. This process is repeated 

for each remaining section until the array is sorted. 

The process of selecting a comparand is essentially -recursive and 

therefore quicksort algorithms are recursive algorithms. The selection of the 

middle comparand value can be accomplished in two ways. It can either be 

chosen at random or it ca be by averaging a small set of values taken from 

the array. For optimal sorting it is desirable to select a value in the middle of 

a range of values. In the worst case the value is chosen at one extreme. The 

operation of quicksort is shown figure 4.5 [3]. It can be derived that the 



average number of comparisons is n log(n) [13] and the number of exchanges is 

approximately (n/6) log(n) [13]. This is better than all the other sorting 

algorithms discused so far. Thus the quicksort is an O(nlogn) algorithm in its 

average case and an 0(n2) algorithm in its worst case. 

Figure 4.5 Operation of quicksort 



4.3 Parallel sorting algorithms. 

As seen from the examples in the previous section the algorithms were 

serial. However with the advent of parallel processing, parallel sorting 

algorithms were also investigated. 

In order to state the problem of parallel sorting clearly, we must define 

what is meant by a sorted sequence in a parallel processor. When processors 

share a common memory the idea of contiguous memory location is similar to 

that in a serial processor. Thus, as in the serial case, the time complexity of a 

sorting algorithm can be expressed in terms of a number of comparisons 

(performed in parallel by some or all the processors) and the number of 

exchanges. Whereas in some architectures the processors do not share memory 

and communicate along the lines of an interconnection network, the 

definition of the sorting problem requires a convention to order the 
 

processors and thus the union of their memory locations. When parallel 

processors are used, the time complexity of a sorting algorithm is expressed in 

terms of parallel comparisons and exchanges between processors that are 

adjacent in the interconnection network [4]. 

In the previous section we discussed several sorting algorithms that 

were essentially serial in nature. In the discussion to follow we shall see how 

some of these algorithms can be parallelized to give us a faster sort. The 

speedup of a parallel sorting algorithm can be defined as the ratio between 

the number of comparison-moves required by a serial sorter and the number 

of comparison-exchanges required by the parallel algorithm [4]. 

As parallel processing enables us to perform more than a single 

comparison, many models had several comparisons being done at the same 

time. In one model a key is compared to (n-1) other keys in a single time unit 

using (n-1) processors [10]. However the concurrency that is achieved this way 



is limited by the number of processors or by the interconnection scheme 

between the processors. 

There are mainly two types of serial algorithms, those which take 

0(nlogn) comparisons and those that take 0(n2). It would appear that by using 

n processors, n elements can be sorted in 0(logn) parallel comparisons. 

However these algorithms have serial constraints. 

On the other hand parallelizing algorithms of the order 0(n2) 

comparisons can be easily done. This approach produces 0(n)-time sorting 

when n processors are used to sort n elements. This is illustrated by 

parallelizing the bubble sort. This sort is also called the odd-even 

transposition sort and is discussed shortly. Another serial algorithm which can 

be easily parallelized is the sort busing tree selection. The result is a parallel 

tree sort which will be shortly described. Finally, one implementation of the 

parallel quicksort algorithm is suggested. The algorithms are described in the 

following sections and their implementations are discussed in the next 

chapter. 

4.3.1 The odd-even transposition sort 

The serial "bubble sort" algorithm has been explained in the previous 

section. The serial odd-even transposition is a variation of the bubble sort, 

with a total of n phases, each requiring n/2 comparisons. Odd and even phases 

alternate. During the odd phase, odd elements are compared with their right 

adjacent neighbors, thus the pairs (x1,x2), (x3,x4),.... are compared. During an 

even phase, even elements are compared with their right adjacent neighbors; 

that is, the pairs (x2,x3), (x4,x5),.... are compared. To completely sort the 

sequence, n phases (alternately odd and even) are required [9]. 



This algorithm can be easily parallelized. Let us take the case to sort n  

elements. Consider n linearly connected processors and label them P1, P2,...Pn. 

Assume that the links are bidirectional so that Pi can communicate with both 

Pi-1 and Pi+1.  Also assume that initially xi resides in Pi for i = 1,2,....n. To sort 

(x1, x2,...xn) in parallel, let P1, P3, P5... be active during the odd time steps and 

execute the odd phases of the serial odd-even transpositions. Similarly let P2, 

P4,.... be active during the even time steps, and perform the even phases in 

parallel. A single comparison-exchange requires two transfers. For example, 

during the first step x2 is transferred to P1 and compared with x1. If x1 > x2, 

x1 is transferred to P2; otherwise x2 is transferred back to P2. Thus the 

parallel odd-even transposition algorithms sorts n numbers with n processors 

in n comparisons and 2n transfers. 

A method to implement this algorithm with five Transputers is 

discussed in the next chapter. The Transputers are connected in a linear 

fashion to form a network. 

4.3.2 Parallel Tree sort Algorithm 

In a serial tree selection sort, a binary tree data structure with (2n-1) 

nodes is used to sort n numbers. The tree has n leaves and initially one 

number is stored in each leaf. We then map all the elements on a binary tree 

data structure. Sorting is performed by selecting the minimum of the n  

numbers, the minimum of the remaining (n-1) remaining numbers and so on. 

Figure 4.6 shows a part of the binary tree structure. The binary tree 

structure is used to find the minimum by iteratively comparing the numbers 

in two sibling nodes and moving the smaller number to the parent node. By 

simultaneously performing all the comparisons at the same level of the binary 

tree, a parallel tree sort is obtained [Ref 5]. 



Consider a set of (2n-1) processors interconnected to form a binary tree 

with one processor at each of n leaf nodes and at each interior node of the 

tree. By starting with one number at each leaf processor, the minimum can be 

transferred to the root processor in log2n parallel comparison and transfer 

steps [Ref 51 At each step, a parent receives an element from each of its two 

children, performs a comparison, retains the smaller element, and returns the 

larger one. After the minimum has reached the root it is written out. From 

then on empty processors are instructed to accept data from non empty 

children and select the minimum if they receive two elements. At every other 

step, the next element in increasing order reaches the root. Thus sorting is 

completed in time 0(n). 

The implementation of the above algorithm is discussed in the next 

chapter. As we do not have n processors available it would not be a 

straightforward implementation. The load has to be evenly distributed among 

all the processors. 

Figure 4.6 Binary tree structure 



4.3.3 Parallel Quicksort algorithm 

The Quicksort algorithm discussed in section 4.2.2 is an O(nlogn) 

algorithm and probably the most efficient for internal sorting. We have used 

a straightforward implementation of parallel quicksort. A binary tree 

structure of figure 4.6 is used for our implementation. 

The root node or parent node goes through a list of numbers to be 

sorted. We assume that the data set is evenly distributed for a predetermined 

range. The root node sends the data points to its child processors depending 

on where the points lie within the predetermined range. For example, if we 

assume that the numbers are evenly distributed from 0 to N we can divide the 

data set into three parts. One part containing values below N/3, the second 

part containing values between N/3 and 2N/3, and the third part containing 

values between 2N/3 and N. The root node starts scanning the numbers in the 

array to be sorted. It send the elements to its respective children depending on 

where they lie in the range. The elements in the range 0 to N/3 are kept in 

the root node itself. All elements between the values N/3 and 2N/3 are sent to 

say the right child. The rest of the elements are sent to the left child. Once 

the root has finished sending out data to its children all three nodes do a 

quicksort on the data available within each node. The results are sent back to 

the root node. The efficiency of this algorithm like in all other quicksort 

algorithms depends on the selection of good pivot points. The many ways a 

pivot can be chosen has been discussed in section 4.2.2. In this case the 

computation of pivots can take place simultaneously.  in the children as they 

receive data from their parent. 



Chapter 5 

Implementation 

In this chapter we shall see how the parallel sort algorithms discussed 

in the previous chapters are implemented on a network of transputers. The 

transputer assembly language has many features which help compiler writers 

take full advantage of concurrent nature of a parallel algorithm. Occam is the 

language which was specifically designed with the transputer in mind [8]. It is 

intended by its devisers as the "assembly code" of the transputer. Hence it is 

with a Occam program that one wilt realize the full potential transputers. But 

Occam has its drawbacks. It is a very specialized language and not a very 

popular language. The most popular language in academic circles is the "C" 

language. The compiler for Occam was not available for this research. 

However the TCX "C" discussed in chapter 3 has many features to implement 

concurrency. Hence we choose "C" to code the algorithms to be implemented. 

This chapter is divided into two parts. In the first part, an interface to 

the concurrency features of the transputers is described. The interface is a 

library of C functions that allow the user to implement multiple processes, 

interprocess communication through message passing or shared data, and 

semaphores. Once a user understands the working of these concurrent 

mechanisms, it is then a matter of simple programming in C and running the 

program on the network. A description of how to compile, load and run the C 

programs has been given in chapter 3. In the second part we discuss the 



implementations of parallel sorting algorithms which have been the subject of 

this research.  

5.1 Introduction to Processes, Channels and Semaphores. 

The transputer has a large set of instructions for implementing 

concurrent systems. This set includes instructions to start, stop, and pass 

messages between processes. The hardware includes features to block and 

restart processes waiting on communication and to select a new process after 

a predetermined timeslice has elapsed, placing the timesliced process at the 

end of an active queue. 

5.1.1 Concurrency  

Before a new process can be executed, a stack frame must be allocated 

for it. The transputer contains a single 32 bit linear address space that all 

processes execute within. Stack space for a process is allocated using the 

malloc() command in the C language. This is a function which allocates a 

region of heap memory large enough to hold an object of a specified number 

of bytes. After allocating the space, the stack frame is initialized to a valid 

state for the process to begin executing. A new process is allocated as follows: 

# include <conc.h> 
Process *ProcAlloc(func, sp, nparam, p1, p2, ... , pn) 

int (*func)(); 
int sp; 
int nparam; 

ProcAlloc() takes a pointer to a function that contains the code for the 

process. The parameter 'sp' indicates the amount of stack space required for 

that process. nparam specifies the number of words of space off the stack 

initially for parameters p1, p2, p3,... to the function. 



On successful completion, ProcAlloc() returns a pointer to the structure 

that constitutes the process. ProcAlloc() uses malloc() to allocate the space for 

the Process structure and the stack space for the process. Once a process is 

initiated or allocated the parameters can be altered. There are several 

routines for executing processes. They are listed below: 

# include <conc.h> 

ProcRun(p) 
Process *p; 

ProcRunHigh(p) 
Process *p; 

ProcRunLow(p) 
Process *p; 

ProcPar(pl, p2, p3, pn, 0) 
Process *p1, *p2, *p3, *pn; 

ProcParList(plist) 
Process **plist; 

ProcPriPar(phigh, plow) 
Process *phigh, *plow; 

We shall briefly explain the working of the above commands. 

ProcRun(), ProcRunHigh(), and ProcRunLow() execute unsynchronized 

processes. The process begins execution and is out of control of the initiating 

process. The initiating process has no means for determining or altering the 

state of the created process except through a communication means the user 

explicitly establishes. ProcRun() executes the process at the priority of the 

current process, ProcRunHigh() executes the process at high priority and 

ProcRunLow() executes the process at low priority. 

ProcPar(), ProcParList(), and ProcPriPar() start a group of processes. 

Control is returned to the initiating process when all of the initiated processes 

terminate. ProcPar() takes an explicit null terminated list of processes; all of 



the processes are executed at priority of the current process. ProcPriPar() 

takes two parameters. The first process is executed at high priority and the 

second is executed at low priority. ProcPriPar() returns when both processes 

complete. 

5.1.2 Interprocess communication 

The transputer supports a message passing protocol for interprocess 

communication. A channel is a unidirectional message stream between two 

processes. When a process performs input or output to a channel, the process 

is blocked until the corresponding process performs its respective output or 

input. This way the channels can be used as a synchronization mechanism. 

The only caveat is that the two channels must perform operations of the same 

data size. If one process attempts to output 50 bytes while the corresponding 

process tries to input 49 bytes, an unpredictable operation will result. There 

are six routines for performing communication along channels: 

# include <conc.h> 
ChanOut (c, cp, cnt) 

Channel *c; 
char *cp; 
int cnt; 

ChanOutChar(c, ch) 
Channel *c; 
char ch; 

ChanOutInt(c,n) 
Channel *c; 
int n; 

Chanln(c, cp, cnt) 
Channel *c; 
char *cp; 
int cnt; 

int 
ChanInInt (c) 

Channel *c; 



char 
ChanInChar(c) 

Channel *c; 

We shall briefly describe the working of the above commands. The 

ChanIn() function reads n bytes of data, from the "channel" pointed to by c, to 

the buffer pointer cp. The ChanlnChar and ChanInInt functions may be used 

to read, and return the value of a byte or word, respectively, read from the 

"channel" pointed to by c. The function ChanOut() is used to write n bytes of 

data to the "channel" pointed to by c, from the buffer pointed to by cp. 

ChanOutChar and ChanOutlnt functions may be used to write the value of a 

byte or word of type character or integer, respectively, to the "channel" 

pointed to by c. 

As channels require initialization before they can be used for 

communication, there are two more routines provided for channel allocation 

and initialization. ChanReset() resets a channel, returning information 

already contained in the channel, ChanAlloc() returns a pointer to an 

initialized channel. 

The concept of channels extends beyond the bounds of a single 

transputer. The four serial links of a T800 correspond to eight channels (four 

input and four output) with specific hardware addresses. These addresses are 

contained in the 'conc.h' file that must be included in the "C" program if the 

above routines are to be used. The physical addresses of these links are given 

below: 

/* Addresses for physical links on T800 */ 
#define LINK0OUT ((Channel *) 0x80000000) 
#define LINKOIN ((Channel *) 0x80000004) 
#define LINK1OUT ((Channel *) 0x80000008) 
#define LINK1IN ((Channel *) 0x8000000c) 
#define LINK2OUT ((Channel *) 0x80000010) 
#define LINK2IN ((Channel *) 0x80000014) 
#define LINK3OUT ((Channel *) 0x80000018) 
#define LINK3IN ((Channel *) 0x8000001c) 



5.13 Alternation 

A series of calls are available to determine the status of channels and 

possibly wait until a channel is ready for input. There are six alternation 

routines: 

int 
ProcAlt(cl, c2, cn, 0) 

Channel *c1, *c2, *cn; 

int 
ProcAltList(clist) 

Channel **clist; 

int 
ProcSkipAlt(cl, c2, cn, 0) 

Channel *cl, *c2, *cn; 
int 
ProcSkipAltList(clist) 

Channel **clist; 

int 
ProcTimerAlt(time, c1, c2, 0) 

Channel *c1, *c2, *cn; 

int 
ProcTimerAltList(time, clist) 

Channel **clist; 

ProcAlt() and ProcAltList() cause the current process to block until one 

of its channels in its argument list is ready for input. On completion the 

routine returns an index into the parameter list for the channel ready for 

input. 

ProcSkipAlt() and ProcSkipAltList() check specified channels. If one of 

the channels is ready for input, an index into parameter list is returned, 

otherwise a -1 is returned. These routines do not block waiting for one of the 

channels, they return immediately. 

ProcTimerAlt() and ProcTimerAltList() block the current process until 

one of the channels is ready for input or until the timer times out the value 



specified. If the timer times out, a 4 is returned, otherwise an index into the 

parameter list is returned. 

5.1.4 Semaphores 

The library provides a semaphore facility. This has been implemented 

by the "C" compiler although a semaphore facility is not explicitly supported 

by the transputers. A semaphore can be initialized in two ways: 

#include <conc.h> 
Semaphore sem = SEMAPHOREINIT; 

/* or */ 

Semaphore *newsem; 
newsem = SemAlloc() 

A semaphore is acquired With the following command 

# include <conc.h> 
SemP ( sem) 

Semaphore sem; 

A semaphore can be released with the following command 

# include <conc.h> 
SemV (sem) 

Semaphore sem; 

SemP() and SemV() take the semaphore as a parameter rather than a 

pointer to the semaphore. SemP() blocks the current process and places it on a 

queue if the semaphore is in use, otherwise it sets the semaphore acquired and 

execution continues. This routine will not return until the process acquires 

the semaphore. SemV() releases the semaphore and runs the first process on 

the queue if any processes are waiting. 



5.15 Reliable communication 

On occasion it may be necessary to attempt communication along a 

channel that may be inoperative. The standard routines such as Chanln() and 

ChanOut() are inadequate for this task. The standard routines causes the 

initiating processes to stall until the communication completes. If the 

communication never completes due to a faulty connection, the processes will 

never continue. Four routines are provided to ensure that reliable 

communication is achieved. 

ChanOutTimeFail(chan, cp, cnt, time) 
Channel *chan; 
char *cp; 
int cnt; 
int time; 

int 
ChanOutChanFail(chan, cp, cnt, failchan) 

Channel *chan, *failchan; 
char *cp; 
int cnt; 

ChanlnTimeFail(chan, cp, cnt, time) 
Channel *chan; 
char *cp; 
int cnt; 
int time; 

int 
ChanInChanFail(chan, cp, cnt, failchan) 

Channel *chan, *failchan; 
char *cp; 
int cnt; 

These routines are similar to the Chanln() and ChanOut() functions 

discussed above. They have an additional "time" parameter that allows the 

process to reschedule based on a terminating condition. In the case of 

ChanlnTimeFail() and ChanOutTimeFail(), communication is attempted until 

the clock reaches the value of the "time" parameter. If communication 

completes before the timeout, the routines return a status of 0. If the 



communication has not completed when the timeout occurs, the offending 

channel is reset and a status of 1 is returned from the function. 

The above routines should be used to establish the integrity of the link 

between two unfamiliar processes and not as a standard method of 

communicating between two processors. 

#include <stdlib.h> 
#include <conc.h> 
#define WS SIZE 512 

 main(} 

if (_node_number==1) 

int i,j; 

j = Chanlnlnt(LINK1IN); 

printf("received from node 2: j= %d\n",j+100); 

printf("All Done\n"}; 
}  
if (_node_number == 2} 

int i; 
i = Chanlnlnt(LINK1IN}; 
i = i + 100; 
ChanOutInt(LINKOOUT, i}; 
} 
if (_node_number == 3} 

int i; 
i=ChanInInt(LINK1IN}; 
i = i + 100; 
ChanOutlnt(LINKOOUT, i); 
} 
if (_node_number == 4} 

int i; 
i= Chanlnlnt(LINK1IN}; 
i = i + 100; 

ChanOutInt(LINK0OUT, i}; 
} 
if {_node_number == 5} 
{ int i; 
i = 100; 
ChanOutInt(LINK0OUT, i}; 

} 

 
RESULT: 
C:\> ld -net [Inif' file] 

received from node 2: j=500 

Figure 5.1 Example program and results 



5.2 An example program 

An example program is shown in figure 5.1. This program illustrates 

how data can be passed from one transputer to another by means of link 

connections. The variables "_node_number" is declared in the concurrency 

library file "conc.h". Hence this file is included in the program header. This 

variable holds the network address for this node. There are two other 

variables which are of interest to us. They are "_boot_chan_in" and 

"_boot_chan_out". These variables are pointers to the "hard" input and output 

channels which were used to bootstrap the transputer node. 

The transputer network configuration used for this program is the 

chain shown in figure 2.9. The program is compiled and loaded using the 

commands described in chapter 3. These are the compiler, assembler, linker 

and the network loader. The network information file ('nif' file) used while 

loading the program is shown in figure 5.2. The network is bootstrapped and 

each transputer node has the executable program it is supposed to run. In this 

case the executable program is the same for every transputer. Now the 

programs begin to run in each node. In this case there are five and so five 

processes start running simultaneously. 

1, testrun, R0, 0, 2, 
2, testrun, R1, 1, 3, 
3, testrun, R2, 2, 4, 
4, testrun, R3, 3, 5, , ; 
5, testrun, R4, 4, 

Figure 5.2 'nif'file used for the example program 



The 'if' statement in the program decides which part of the code 

segment is to be executed by which transputer. The node five sends a data out 

on its link 0 known to the program as LINK0OUT. This link is connected to 

the link 1 known to the program as LINK1IN of the node four transputer. 

The node four executes its program segment which directs it to read the data 

form the output LINK0OUT of node five. Thus node 4 is able to get the data 

from node five. Now node four send the modified data to node three on its 

output link which is connected to the input link of node 3. Node 3 reads this 

data and modifies it. 

This way the data is transmitted from one transputer node to another. 

Finally node one gets the data and prints it on the screen of the host 

computer. Thus this example illustrates how processes can be run 

simultaneously on a transputer network. 

53 Implementation of odd-even transposition sort 

This algorithm has already been discussed in section 4.3.1. The 

transputer network configuration for this program is shown Figure 5.3. The 

modules used for this program are shown in figure 5.4. In the ideal case we 

would be dealing with n processors where n is the number of items to be 

sorted. Let us first discuss the implementation for the ideal case and then let 

us see how it is applied to our case of five transputer nodes available. 

Figure 53 Network topology used for the odd-even transposition sort 



As the same copy of the executable program is loaded onto each node 

of the transputer network all the nodes have a copy of the data to be sorted, 

There are two modules in the program. Each module is executed 

consecutively in a loop n times. The two modules are named 'odd' and 'even'. 

ODD MODULE : Each odd numbered node gets a data value from the node on its right. This value and the value 

resident in each node is compared. The smaller value is retained and larger value sent back. 

EVEN MODULE: Each even numbered node gets a data value from the node on its right. This value and the value 

resident in each node is compared. The smaller value is retained and larger value sent back. 

Figure 5.4 Odd-even transposition sort 



The 'odd' module initiates processes on the transputer nodes to get the 

data item from the processor to its right. For example, node one will get its 

data from node two, and so on. The data sent out is compared to the data each 

processor has. The comparisons are done only by the odd numbered nodes. 

Hence the name odd cycle. If the data sent out is greater than the data 

resident in each processor the data is sent back on the same link. If the 

comparison shows the data received to be smaller than the data resident in 

node two, the greater value is sent out on the output link and the lower value 

now resides in each active processor. 

During the execution of the 'even' module all the even numbered 

processors are 'active' in the sense that they do the comparisons. The data is 

sent out by the odd numbered processors are compared with the data present 

in the even numbered processors. The value which is greater is sent back to 

the node that sent the data and the 'lower value is resident in the node which 

receives data. 

The 'odd' modules and 'even' modules alternately perform their tasks n 

times. At the end of this cycle the data is sorted and printed. As we only have 

5 nodes the above scheme has to be modified to be able to run successfully. 

This modification is discussed below. 

The basic idea to do the sort now is the same in that 'odd' and 'even' 

modules are alternately executed until the data is sorted. The operation of the 

modules are changed slightly. Let the numbers to be sorted be stored in the 

array x[0], x[1], x[2], x[n]. We start by making the assumption that n=49. We 

have implemented the algorithm for a five transputer chain. The values x[0] 

to x[9] are present in node 1 and the values x[10] to x[19] are present in node 2 

and so on. The description of odd and even phases follow. 



During the 'odd' phase each node performs the 'odd' cycle of the 

general case to the set of ten numbers it contains. For example node 1 

compares and exchanges x[0] and x[1] in such a way that the smaller value is 

stored in x[0]. Then it compares and exchanges x[2] and x[3] in such a way that 

the smaller value is stored in x[2]. The last comparison for node one would be 

that of x[8] and x[9]. All the other nodes do similar operations simultaneously. 

Thus at the end of the 'odd' phase each node has performed an 'odd' cycle on 

its set of ten numbers. 

During the 'even' phase each node once again performs an 'even' cycle 

on the ten numbers it contains. For example the node one compares and 

exchanges x[1] and x[2] in such a way that x[1] contains the smaller value. It 

then does the same operation for, x[3] and x[4]. The last comparison would be 

of the elements x[7] and x[8]. The other nodes do the same operations with the 

set of ten numbers resident in each node. However, the number x[9] is present 

in node 1 and x[10] is present in node 2. Similarly the numbers x[19] and x[20] 

are resident in node 2 and node 3 respectively. The 'even' phase must be 

performed in these numbers too, to sort the elements correctly. This is 

accomplished by sending these values to the node on left of every node. The 

nodes compare the elements received with the elements in the top of its array 

and sends back the larger value on to the node on its right. Node 1 does not 

send the value x[0] and node 5 does not receive a value to be compared with 

x[49]. Thus the 'even' phase is accomplished. 

The 'odd' and 'even' phases are executed in a loop n/2 times. In this 

example we have 50 numbers to sort, so this looping is performed 25 times and 

the data is sorted. This program can be easily modified to sort any set of 

numbers greater than that considered in its implementation. The program 

implementing this algorithm is given in the appendix. 



5.4 Implementation of the parallel tree-sort algorithm 

The parallel tree algorithm is  discussed in section 43.2. The 

implementation is fairly straightforward. The fact that the transputer has 

four links helps in the implementation. The network topology is a binary tree 

structure as shown in figure 2.10. The tree structure with the link connections 

is shown in figure 5.5. Every node except the nodes in the last row and the 

root node use 3 links. Every parent uses two links to connect to two of its 

children. Each child has two links to connect to its children. 

Figure 5.5 Transputer link connections in binary tree structure 



Consider a set of (2n-1) nodes as shown in the figure 5.6. At each step, a 

parent receives an element from each of its two children. Consider a parent 

node. It receives an element from each of its two children, performs a 

comparison retains the smaller element and returns the larger element. In 

this topology each transputer has its link 1 connected to its parent and each 

parent has link 2 connected to its left child and link 3 connected to its right 

child. This way the minimum can be transferred to the root node in log2(n) 

parallel comparison and transfer steps. After the minimum has reached the 

root it is written out. From then on, empty nodes are instructed to accept data 

from non-empty children and select the minimum if they receive two 

elements. The program is given in the appendix. This way every next step will 

bring the minimum in increasing order. Thus sorting is achieved using the 

binary tree structure. The network information file for such a network is 

shown in figure 5.6.  

1, program, R0, 0, 2, 3, 
2, program, R1, 1, 4, 5; 
3, program, Si, 1, 6, 8; 
4, program, R2, 2, 9, 10; 
5, program, S2, 2, 11, 12; 
6, program, R3, 1, 13, 14; 

Figure 5.6 'nif' file for the binary tree topology 



5.5 Implementation of the parallel quicksort algorithm 

The network topology used for the implementation of the quicksort is 

similar to the topology used for the parallel tree selection sort given in figure 

5.5. Node 1 is connected to its children, node 2 and node 3 with link 1 and link 

2 respectively. 

While running a sort on a set of numbers one usually knows the range 

of values one is dealing with. For example, a meteorologist may know the 

range of values of temperatures collected over a period of time. This 

knowledge of the data one is dealing with greatly helps the programmer who 

codes sorting algorithms. We have assumed that the data set to be sorted is 

evenly distributed in a given range. This assumption is necessary so that the 

processors may share an equal or almost equal load. If the data set is not 

evenly distributed then the program still works, but not at its best case 

performance. In other words, the quicksort degenerates into a serial quicksort 

which might take 0(n2) time. But usually this is not the case and the average 

time taken will be of the order of O(nlogn). 

As we use three processors, the algorithm we use would be of the order 

of O( (n/3) logn) [5]. There are many ways of finding a pivot to partition the 

data points in the quicksort algorithm. The pivot is the element around which 

we rearrange the elements in the array in a recursive fashion. In some cases 

the median is computed so that it is preceded by about half the keys and 

followed by about half [3]. In some cases it is chosen at random [13]. In our 

case as we have assumed an even distribution; we have taken specific values 

as pivot points. 

In our implementation, we sorted a set of numbers in the range 0 to 100. 

The numbers were divided by the root node in such a way that all numbers in 

the range 30 to 60 were sent to node two and all numbers in the range 60 to 



100 were sent to node three. The numbers in the range 0 to 30 were retained 

by the root node. Quicksort is performed by the three nodes independently 

and the results are sent back to node 1 for display. This program is given in 

the appendix. Thus parallel quicksort was implemented using three nodes. 



Chapter 6 

Conclusion 

Sorting is a candidate for parallel solution because many algorithms 

have an element of divide-and-conquer. That means the task is carried out by 

dividing it into some number of smaller, simpler tasks each of which is 

repeatedly divided until only trivial tasks remain. Such a strategy identifies 

independent parts of the original problem, which can be tackled concurrently. 

In this thesis parallel sorting algorithms have been implemented on a 

network of transputers. By using transputers and a "C" language compiler 

which exploits the concurreny features of transputers, one can code 

algorithms which perform parallel processing. The way to realize the full 

performance potential of any multiprocessor system lies in the even 

distribution of the workload. It has been seen that the transputer offers a 

good programming environment to work with parallel algorithms. Any 

application which runs at present on an array processor can be implemented 

on an array of transputers. 

It has been reported that a lot of time has been spent by system 

designers trying to devise mechanisms for interprocess communications, task 

scheduling and process synchronization [11]. By providing a software 

environment such as the one used for this research the system designer can 

concentrate on aspects of concurrency and architecture of large systems. 



Many parallel algorithms such as for sorting can be developed and 

implemented.  

In this thesis the parallel implementation of serial sort algorithms such 

as the bubble sort and the binary tree selection sort have been implemented. 

An algorithm for running parallel quicksort has also been implemented. The 

connections of the links of each transputer has also been discussed. The 

concurrency features of the TCX "C" compiler were used while programming 

the algorithms. These included features to start parallel processes and the use 

of channels to achieve synchronization between processes and process 

allocation routines. 

The advantage of implementing algorithms with transputers is that the 

code can be easily modified to run whenever more processors are added to the 

network. There are many applications such as sorting that can be run faster 

using parallel processing. The study of such algorithms and techniques is 

suggested for future work in this area. 
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Appendix 



/************ 
ODD EVEN TRANSPOSITION SORT 

This program sorts 50 numbers. It uses a 5 node 
transputer chain. The 'nif' file used while loading the 
executable program is shown in figure 5.2. 

*************/ 

#include <stdio.h> 
#include <conc.h> 

main() 

int x[50],i; 

x[0]=10; x[1]=50; x[2]=36; x[3]=16; x[4]= 19; x[5] = 11; 
x[6]=30; x[7]=50; x[8]=48; x[9]=25; x[10]=99; x[11]= 31; 
x[12]=100; x[13]=500; x[14]=360; x[15]=160; x[16]= 190; 
x[17]=110; x[18]=300; x[19]=500; x[20]=34; x[21]=85; 
x[22]=90; x[23]=40; x[24]=70; x[25]=3; x[26]=5; x[27]=340; 
x[28]=850; x[29]=900;x[30]=109;x[31]=508; x[32]=365; 
x[33]=163; x[34]= 189;x[35] =211; x[36]=303; x[37]=506; 
x[38]=487; x[39]=250; x[40]=103; x[41]=504; x[42]=367; 
x[43]=167; x[44]= 191; x[45] = 111; x[46]=304; x[47]=501; 
x[48]=482; x[49]=252; 

4 

if(_node_number==1) 
{ 

int stop,a,tmp; 
stop=25; 
while(stop > 0) 
{ 

for(i=0;i<10;i=i+2) 

if( x[i] > x[i+1] ) 
{ 

tmp = x[i]; 
x[i]= x[i+1]; 
x[i+1]=tmp; 

for(i=0; i<8; i=i+2) 
{ 

if( x[i+1] > x[i+2]) 
{ 

tmp=x[i+1]; 
x[i+1]=x[i+2]; 
x[i+2]=tmp; 



} 

a=ChanInInt(LINK1IN}; 
if(x[9]<a) 
{ 

ChanOutInt(LINK1OUT,a); 

else 
{ 

tmp=a; 
a=x[9]; 
x[9]=tmp; 
ChanOutInt(LINK1OUT,a); 

printf("stop%d ",stop); 
stop-- ; 

printf("\n"); 

for(i=10;i<50;i++) 
{ 

x[i]=ChanInInt(LINK1IN); 
} 

for(i=0;i<50;i14) 
{ 

printf(" %d ",x[i]); 
6 

printf("\n"); 

if(_node_number==2) 
{ 

int stop,tmp,i,a; 
stop=25; 
while(stop>0) 
{ 

for(i=10; i < 20; i=i+2) 
{ 

if(x[i] > x[i+1]) 
{ 

tmp=x[i]; 
x[i]=x[i+l]; 
x[i+l]=tmp; 

} 

for(i=10; i < 18; i=i+2) 
{ 

if(x[i+l] > x[i+2]) 
{ 

tmp=x[i+1]; 
x[i+1]=x[i+2]; 



x[i+2]=tmp; 
} 

} 

ChanOutInt(LINK0OUT,x[10]); 
a= Chanlnlnt(LINK1IN); 
if(x[19]<a) 
{ 

ChanOutInt(LINK1OUT,a); 
} 

else 
{ 

tmp=a; 
a=x[19]; 
x[19]=tmp; 
ChanOutInt(LINK1OUT,a); 

} 
x[10]=ChanInInt(LINK0IN); 
stop--; 

} 

for(i=20;i<50;i++) 
x[i]=ChanInInt(LINK1IN); 

for(i=10;i<50;i++) 
ChanOutInt(LINK0OUT,x[i]); 

} 4 

if(_node_number==3) 
{ 

int stop,tmp,i,a; 
stop=25; 
while(stop>0) 
{ 

for(i=20; i < 30; i=i+2) 
{ 

if(x[i] > x[i+l]) 
{ 

tmp=x[i]; 
x[i]=x[i+1]; 
x[i+1]=tmp; 

} 
} 

for(i=20; i < 28; i=i+2) 
{ 

if(x[i+1] > x[i+2]) 
{ 

tmp=x[i+1]; 
x[i+1]=x[i+2]; 
x[i+2]=tmp; 

} 



} 

ChanOutInt(LINK0OUT,x[20]); 
a= Chanlnlnt(LINK1IN); 
if(x[29]<a)  
{ 

ChanOutInt(LINK1OUT,a); 
} 

else 
{ 

tmp=a; 
a=x[29]; 
x[29]=tmp; 
ChanOutInt(LINK1OUT,a); 

} 
x[20]=Chanlnlnt(LINK0IN); 
stop--; 

} 

for(i=30;i<50;i++) 
x[i]=ChanInInt(LINK1IN); 

for(i=20;i<50;i++) 
ChanOutlnt(LINK0OUT,x[i]); 

. } 

if(_node_pumber==4) 
{ . 

int stop,tmp,i,a; 
stop=25; 
while(stop>0) 
{ 

for(i=30; i < 40; i=i+2) 
{ 

if(x[i] > x[i+l]) 
{ 

tmp=x[i]; 
x[i]=x[i+l]; 
x[i+l]=tmp; 

} 
} 

for(i=30; i < 38; i=i+2) 
{ 

if(x[i+l] > x[i+2]) 
{ 

tmp=x[i+1]; 
x[i+1]=x[i+2]; 
x[i+2]=tmp; 

} 
} 

ChanOutInt(LINK0OUT,x[30]); 



a= Chanlnlnt(LINK1IN); 
if(x[39]<a) 
{ 

ChanOutInt(LINK1OUT,a); 
} 

else 

tmp=a; 
a=x[39]; 
x[39]=tmp; 
ChanOutInt(LINK1OUT,a); 

} 
x[30]=Chanlnlnt(LINK0IN); 
stop--; 

for(i=40;i<50;i++) 
x[i]=ChanInInt(LINK1IN); 

for(i=30;i<50;i++) 
ChanOutlnt(LINK0OUT,x[i]}; 

} 

if(_node_number==5) 

int stop,tmp,i; 
stop=25; 
while(stop>0) 

for(i=40; i < 50; i=i+2) 
{ 

if(x[i] > x[i+1]) 
{ 

tmp=x[i]; 
x[i]=x[i+1]; 
x[i+1]=tmp; 

} 

} 

for(i=40; i < 48; i=i+2) 
{ 

if(x[i+l] > x[i+2]) 
{ 

tmp=x[i+1]; 
x[i+l]=x[i+2]; 
x[i+2]=tmp; 

} 
} 

ChanOutInt(LINK0OUT,x[40]}; 



x[40]=ChanInInt(LINK0IN); 
stop--; 

} 

for(i=40;i<50;i++)  
ChanOutlnt(LINK0OUT,x[i]); 

} 

} 



/********* 

This program uses 3 nodes to implement a parallel 
tree sort algorithm. The `nil' file used to load 
the executable program is given in figure 5.6 

**********/ 

# include <stdio.h> 
# include <conc.h> 

main() 
{ 

int a[2]; 
a[0]=20; 
a[1]=10; 

if(_node_number==1) 
{ 

int compl,comp2,i,b[2]; 

comp1=ChanInInt(L3NK1IN); 
comp2=ChanInInt(LINK2IN}; 
i=0; 
if(comp1 < comp2) 
{ 

b[i]=compl; 
ChanOutInt(LINK1OUT,1); 
ChanOutInt(LINK2OUT,0); 

else 
{ 

b[i]=comp2; 
ChanOutInt(LINK1OUT,0); 
ChanOutInt(LINK2OUT,1}; 

i++; 
if(comp1 < comp2) 

b[i]=ChanInInt(LINK2IN); 
} 

else 
{ 

b[i]=ChanInInt(LINK1IN); 



printf("sorted values are b[0]= %d, b[1]= 
%d\n",b[0],b[1]); 

} 

if(_node_pumber==2) 
{ 

int empty; 

ChanOutInt(LINK0OUT,a[0]); 
empty=ChanInInt(LINK0IN); 
if (empty==1) 
{ 

; /* Get data values from children if any */ 
} 
else 
{ 

ChanOutInt(LINK0OUT,a[0]); 
} 

} 
if(_node_number==3) 
{ 

int empty; 

ChanOutInt(LINK0OUT,a[1]}; 
empty=ChanInInt(LINK0IN); 
if(empty==1) 
{ 

; /* Get data values from children if any */ 
} 
else 
{ 

ChanOutInt(LINK0OUT,a[1]); 
} 

} 
} 



/******** 

This program does a parallel quicksort on 30 
numbers using 3 nodes of transputers arranged in a 
binary tree. The Inif' file used while loading the 
network is given in figure 5.6. 

*********/ 

#include <stdio.h> 
#include <conc.h> 

quick(item, count) 
int *item; 
int count; 
{ 

qs(item, 0, count-1); 
} 
qs(item,left,right) 
int *item; 
int left, right; 
{ 

register int i,j; 
char x,y; 

i=left; j=right; 
x=item[(left+right)/2]; f, 

do 
{ 

while(item[i]<x && i<right) i++; 
while(x<item[j] && j>left) j--; 

if(i<=j) 
{ 

y=item[i]; 
item[i]=item[j]; 
item[j]=y; 
i++;j--; 

} 
}while (i<=j); 

if(left<j) qs(item,left,j); 
if(j<right) qs(item,i,right); 

} 



main() 
{ 

int x[30],i,j,k,l; 
int a[30],b[30],c[30]; 

if(_node_number==1) 
{ 

for(i=0;i<30;i++) 
{ 

scanf("%d",&x[i]); 

/*for(i=0;i<30;i++) 
{ 

printf(" %d ",x[i]); 
} */ 
printf("\n"); 

j=0;k=0;1=0; 
for(i=0;i<30;i++) 
{ 

if(x[i] <= 30) 
{ 

a[j]=x[i]; 
j++; 

else if(x[i] > 30 && x[i] <= 60) 

b[k]=x[i]; 
k++; 

else 

c[1]=x[i]; 
1++; 

} 

/*** data sent to node two ****/ 
ChanOutInt(LINK1OUT,k); 
for(i=0;i<k;i++) 
{ 

ChanOutInt(LINK1OUT,b[i]); 
} 

/*** data sent to node three ****/ 
ChanOutInt(LINK2OUT,1); 
for(i=0;i<l;i++) 
{ 

ChanOutlnt(LINK2OUT,c[i]); 

printf("\n\nQuicksorting by node #l\n\n"); 



quick(a,j); 
printf("\n"); 
for(i=0:i<j;++i) 
printf(" %d ",a[i]); 

/*** data back from node two ***/ 
for(i=0;i<k;i++) 
{ 

b[i]=ChanInInt(LINK1IN); 
} 
printf("\n\nQuicksorting by node #2\n\n"); 
for(i=0;i<k;++i) 
printf(" %d ",b[i]); 

/*** data back from node three ***/ 
for(i=0;i<1;i++) 
{ 

c[i]=ChanInInt(LINK2IN); 
} 
printf("\n\nQuicksorting by node #3\n\n"}; 
for(i=0;i<1;++i) 
printf(" %d ",c[i]); 

} 

if(_node_number==2} 
{ 

int kl,il; 
int z1[20]; 4  

k1=ChanInInt(LINK0IN); 
for(i1=0;i1<k1;i1++) 
{ 

z1[i1]=ChanInInt(LINK0IN); 
} 

quick(zl,kl); 

for(i1=0;i1<k1;i1++) 
{ 

ChanOutInt(LINK0OUT,z1[i1]); 
} 

} 

ifl_node_number==3) 
{ 

int k1,i1; 
int z1[20]; 

k1=ChanInInt(LINK0IN); 
for(i1=0;i1<k1;i1++) 
{ 

z1[i1]=ChanInInt(LINK0IN); 
} 



quick(z1,k1); 

for(i1=0;i1<kla1++) 
{ 

ChanOutInt(LINK0OUT,zl[il]); 
} 

} 

} 
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