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ABSTRACT

Title of Thesis : Computer Graphic Simulation of Sweeping of Solid Objects.

Name of Candidate : Ji-Jyun Jang
Master of Science in Mechanical Engineering, 1991.

Thesis Directed by: Dr. Ming C. Leu,
Professor of Mechanical Engineering,
Sponsored Chair in Manufacturing Productivity.
N.J.LT.

This thesis is on the computer graphic simulation of the swept volume
of a solid object undergoing Euclidean motions (including translation and
rotation). The study helps visualize different types of Euclidean motions and
supports the previously developed swept volume theories by providing
graphic realism.

Included in the thesis presentation are the following :

1) Description of Euclidean motions of polyhedral objects, using ruled
surfaces to represent swept volumes.

2) Representation of sweeping of solid objects, -using parametric cubic
equation and sweep differential equation.

3) Simulation of motions of PUMA and IBM robots.

4) Wire-frame and shaded image displays of swept volumes.
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Chapter 1

INTRODUCTION

1.1 Motion Planning

In robot motion planning there are two main features usually being
discussed: first, robot trajectory planning which depends on robot dynamics,
and second, the modeling of robot swept volume. The accuracy of off-line
robot simulation depends on two factors: the accuracy of robot sweep
equations and the resolution of representing swept volumes.

Using swept volumes to perform collision detection and motion
planning requires accurate geometry representations. With inaccurate
representation, collision may be undetected or a false collision generated. This
may lead to inability to determine paths which are not collision-free or false
collision-free paths.

A prime idea in [30] is the use of parametric cubic curves to approximate
the robot trajectory which can roughly describe the robot motion. In [8]{91{18],
by using parametric spline one can "fit" a set of points to approximate the
trajectory which the robot arm has passed through. It is obvious that by taking
more points one can get better approximation of the robot motion, but the
trade-off is more computation time.

The main topics in this thesis include the accuracy and the computation
efficiency of swept volume. Different methods of swept volume
representation are implemented in the computer, with the results shown
using computer graphics (both in wire-frame and shaded image
representations).



1.2 Parametric Equation and Differential Equation

Parametric equation and differential equation are the two different
approaches used in this thesis for representation of swept volume.

Parametric equation is basically a numerical interpolation method (see
[1][7][11]) to approximate sweep motion. In [11] parametric cubic equation was
used to describe sweep motion. By taking infinitesimal intervals there would
always be a fairly good approximate result toward the sweep motion.
Parametric cubic equation is a fairly good method of simulating 3-D Euclidean
motion. If the 3-D Euclidean motion is a "cubic equation describable” curve
implying constant acceleration motion, then the parametric cubic equation
will be the most efficient method.

The identification of a smooth sweep can be done with a system of first-
order, linear, ordinary differential equations called the sweep differential
equation. It follows from the theory of differential equations that the form of
the sweep differential equation and the initial position of an object
completely determine the swept volume of the object. [37] classified sweeps
according to the properties of their sweep differential equations, as certain
types of differential equations are likely to produce swept volumes with
particularly simple features.

From the sweep equations one can get different types of swept volumes.
In order to analyze the various swept volume types, it is beneficial to study
the boundary surface of a swept volume.

1.3 Objective of Research

Motion planning and verification have become increasingly important
in manufacturing automation. The use of swept volumes has shown great
promise in efficient implementation of automation systems. For example, an
verification systems requires an efficient implementation of intersection
operations between the swept volumes of moving tools and potential
obstacles.



The major objective of this thesis is to develop computer codes for
graphic representation of swept volumes, which is useful for visualizing
complex motions various types of objects such as NC tools, robots, etc.
Through graphic displays this study also helps understand the various
theories on swept volume geometries recently developed by Blackmore and
Leu [37].

We apply two types of sweep equations to simulate motions of robots
and other mechanisms. The first one is parametric cubic equation, and the
second one is sweep differential equation. We develop a computer graphic
simulation package capable of displaying sweeping of objects in wire-frame ad
shaded images, for each given object geometry and sweep equation.

[or'S)



Chapter 2

LITERATURE REVIEW

2.1 Past Research
2.1.1 Simulation and Verification of NC Machine Motion

Collision is one of the serious problems in using automatic devices. An
NC simulator enables NC programmers and machine operators to detect
potential collisions visually and gross programming errors. A machining
verifier seeks to determine automatically whether an NC program will
produce a specified part without undesirable collisions, or cutter breakage, etc.
Both simulator and verifier require solid modelling [3].

Solid modelling can be used for NC verification. In principal the
machining operation is the process by which the unwanted portion of the
volume is taken away from a given workpiece by " sweeping " the revolving
cutter according to the programmed tool path [2].

Verification of part programs for NC machining using swept volumes
has been presented and implemented in [2][3]{23].

2.1.2 Robot Collision Detection

The most common robot motions are transfer movements for which
the ability to plan motions that avoid obstacles is essential to the robot task
planner. In [26][27][28] the motion planning schemes which include this swept
volume have been presented.

Methods from computational geometry reduce motion planning to a
geometric issue. A geometric representation of the volume swept by a
moving object is generated. Intersection between this geometric model of
swept volumes and geometric models of obstacles in the environment are
determined.



[1] states that a solid can be represented by closed bounded surfaces. By
analyzing the swept volume, we have two kinds of surfaces which can fully
represent the swept volume of a polyhedral object. Dealing with the collision
detection problem in this case is the same as doing intersection checking of
surfaces. As in [4][5][6][7] there are different kinds of algorithms to implement
interference checking. The constraints of "bounded" closed surfaces increase
the complexity of interference checking.

Analytically, the swept volume of a polyhedral object can be
decomposed into ruled surfaces and developable surfaces ( which is basically
the line swept surface or plane swept surface ). The properties of these two
surfaces are discussed in [15][16][18][30][7][8].

2.2 Robot Kinematics

Robot arm kinematics deals with the analytical study of geometry of
motion of robot arm with respect to a fixed reference coordinate system
without regard to the forces/moments that cause the motion.

There are two fundamental problems in robot arm kinematics. The first
problem is usually referred to as the direct (or forward) kinematics problem.
The second one is the inverse kinematics (or arm solution) problem.

Forward kinematics : (direct kinematics)

Denavit and Hartinberg [10]{34] (here, it is simplified as D-H table)
proposed a systematic and generalized approach for utilizing matrix algebra to
describe and represent the spatial geometry of the links of robot arm with
respect to a fixed reference frame. This method uses a 4X4 homogeneous
transformation matrix to describe the spatial relationship between two
adjacent rigid mechanical links and reduces the direct kinematics problem to
finding an equivalent 4X4 homogeneous transformation matrix that relates
the spatial displacement of the hand coordinate frame to the reference
coordinate frame.



Inverse kinematics : (arm solution)

In general the inverse kinematics problem can be solved by several
techniques. The most commonly used methods are the matrix algebraic
iterations and the geometric approach.

Rotation matrix about an arbitrary axis
The rotating coordinate system O,,, may rotate an angle & about an

arbitrary axis r which is a unit vector having components Ix Ty, Iz and passing

through the origin O. We can first make some rotation about the principal
axis of the O, , frame to align the axis r with the O, axis. Then a rotation

about the r axis with ¢ angle and a rotation about the principal axis of the
O, frame return the r axis to its original location.

Re.¢) = Rax—oR i, R o) Ry, -pRx,) (2.3-2)

Rotation matrix with Euler angle representation
Three types of Euler angle systems are :

Euler 1. Euler 2. R.P.Y.
Sequence OZ axis OZ axis OX axis
of OU axis OV axis OY axis
Rotation OW axis OW axis OZ axis

note : XYZ --> UVW

2.3 Parametric Formulation

An intrinsic property is one that depends on only the figure in question,
not the figure's relation to a frame of reference. The theory of curves proceeds
from the intrinsic equations. It is interesting to make a distinction between
intrinsic equations, as just defined, and natural equations,defined in the
following way: A natural equation of a curve is any equation connecting the
curvature 1/p, the torsion 1, and the arc length s of the curve. We have

f(;l)-,‘c,s)=0

A natural equation of a curve imposes a condition on the curve.



From a slightly different approach, we can describe a curve
parametrically in terms of the arc length, by getting the equations x = x(s) and
y = y(s). In fact the functions x,y must be related by the equations

dx _ dy

ds = Cos 0 and ds = sin O (2.3-1)

Differentiating these equations with respect to s, we can get a pair of second-
order differential equations for any given curvature function k(s).

We cannot express shapes required for geometric modeling with
ordinary, single-valued functions. The dominant means of representing
shapes in geometric modeling is with parametric equations. If we fit a curve
or surface through a set of points, the relationship between the points
themselves determines the resulting shape, not the relationship between
these points and some arbitrary coordinate system. Besides, the curves and
surfaces of geometric modeling are often nonlinear and bounded in some
sense and can never be represented by an ordinary nonparametric function.
Listed in [1] several advantages of using parametric equation.

2.4 Definition of Swept Volume

In general terms, the swept volume of an object moving in a given space
from some initial location at t = 0 to some final location at t= 1 is defined as
the 'volume' through which the object has passed. Let A be an object that is
swept and let A represent an instance of A during the sweep for some

te I=[0,1]. Then the swept volume of A, SV(A), is the union over I of all
instances At,

sV = |J A
[

The generality of this derinition can be removed while including a
description of the motion of the sweeping object by redefining the swept



volume in terms of trajectories of its point set. The motion of any point or set
of points of the object can be determined during the sweep [22,25].

Definition 2.4-1
Let h: X --> Y be a bijection with X and Y two topological spaces. Then

the function h is a homeomorphism if both h and the inverse function h-1:
Y —> X are continuous.

Definition 2.4-2
An n-ball in IR, is the set

B" = { (x1,,,, X e IR" | x12+ ceces +x:57 1}

An open n-ball is the interior of B" . A half n-ball is an open n-ball
minus the open half-space determined by a hyperplane through its center.

2.4.1 Swept Volumes of Polyhedral Objects

Here we apply the swept volume theorem to the generation of swept
volumes for a special class of compact 3-manifolds in IR3 — planar polyhedral
3-manifolds.

The polyhedral n-manifolds under consideration in this paper are those
with planar faces and will be referred to as polyhedral objects. Here we discuss
the geometric representation of the swept volumes for polygons undergoing
general motions in IR3. As we describe the polyhedral objects by using
boundary representation, the boundary surfaces of polyhedral objects consist
of a finite number of planar polygonal faces which meet along edges and
vertices. For any polyhedral object, its boundary can represented as the union
of all its polygonal faces.

Swept Volumes of Polyhedral Objects Reduced to Swept Volumes of
Polygonal Faces



For any polyhedral object, its boundary can be represented as the union
of all its polygonal faces. As shown in Fig. 4.3-1 The swept volume of the

union of two objects equals the union of their swept volumes.
Let A be a polyhedral object in IR3 and let f A be the ith face of A. Then the

boundary of A is

#faces

aa= |J £A
i=0

sV(A) = Ag U SV(0A)

#faces
=AUsV| |J £iA
i=1
#faces
=AU U SV(f; A)
i=1

#faces
sviay = |J SV(iA)

i=1

If it is determined that during the sweep Ag intersect A;is empty set, Then
the swept volume of a polyhedral object is reduced to the swept volume of its
planar polygons. See Fig. 4.3-2. The geometric representation of the swept
volumes discussed here are for continuous general motions of polygons.

Boundary Surfaces of Swept Volumes of Polygons

The boundary surfaces of the swept volumes of polygons consist of ruled
surface segments, segments of developable surfaces, and the surface of the
polygon at its initial and final location. For a general motion of a polygon
sweeping, there are 6 degrees of freedom.

For the simplest case, where the polygon is undergoing a shifting
movement, the envelope can be considered as generated by the sweeping of

9



its edges. By connecting these swept edges -— which are ruled surfaces, one
forms the ruled surface segments.

" In complicated motion, the ruled surface cannot fully describe the swept
volume of a polyhedral object, see Fig. 3.2-2(b), and part of the swept volume
is formed by the sweeping polygon itself. In the other words, the interior
points of the polygon become the boundary points of the swept volume.
These surfaces are developable surfaces.

10



Chapter 3

ROBOT KINEMATICS AND PARAMETRIC FORMULATION

3.1 Parametric Cubic Curves

Parametric cubic curve is a reasonable curve to simulate the solid object
motion. The word 'reasonable’ implies, that cubic equation is the lowest
order continuous equation which can describe accelerated (and decelerated)
motion.

The algebraic form of a parametric cubic curve segment is given by the
following three polynomials:

X() = agxi;3 + a2xt2 + alxt1 + a0xt° (3.1-1a)
— 1 0

Y() =a, £ +a, P +a tl+agt (3.1-1b)

Z) = aaz'c3 + azz‘c2 + alzt1 + a02t° (3.1-1¢)

The coordinates (X(t), Y(t), Z(t)) can be treated as the trajectory of a
particle (or 'body-attached coordinate frame’) movement in the Cartesian
space. The coefficients are the 'record' of this trajectory, which fully describes
the position of the particle with respect to time t. The parameter t is restricted
from 0 to 1. This restriction makes the curve segment bounded.

The twelve coefficients (in Eq. 3.1) are algebraic constants to be
determined. This implies that four points located on the curve have to be
known for determining the parametric cubic curve. Described in [1] are other
ways of defining the curve.

Figure 3.1-1 gives an example of parametric cubic curve and the
associated time histories of x,y, and z coordinates. In 4-point form we get

PO =AL+AL+AL +AL (3.1-2)

11
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>t

OI\/ 1 t

Fig. 3.1-1 The Euclidean value maps onto t domain.

3.2 Surfaces

In section 2.2.1 the swept volume of a polyhedral object can be bounded
by the swept surfaces which is generated by the sweeping edges of the
polyhedral object. In differential geometry [1][8][9][11], a sweeping line can
produce a "ruled surface". Here we also use polyhedral objects to present solid
objects. The connection between two vertices is a line segment called
generator of the ruled surface.

3.2.1 Sixteen points form cubic surface

3

Equation 3.1-1 Z al)t‘. is a one parametric equation. Which maps the t-
i=0

domain into Cartesian space. Now take one more parameter into



consideration, i.e. map u,w (two independent variable) into Cartesian space.
The parameters u and w can define a continuous cubic surface.

16 Points Form Cubic Surface

3 3
T
— i =
Puw)= 3 ) au'w P = UAW
1=Oj=0
U=[d’, v, 1], W=[w,w,w,1]

A is a matrix of 4X4X3 -—~ u,w, x-y-z

The following figure shows a cubic surface, It needs 16 points to define a
cubic surface.

Fig 3.2-1 Sixteen points form of a bicubic surface.

13



3.2.2 Ruled Surfaces

A ruled surface is generated by a straight line segment undergoing a six-
degree-of-freedom motion.

Definition 3.2-1
A surface such that through every point of the surface passes at least one
straight line entirely in the surface is known as a ruled surface.

P(t,v) = d(t) + vg(t) (3.2-1)

d(t) : is a curve in the surface,
g(t) : is a family of unit vectors along d(t) in the direction of sweeping line.
v :determines the distance of the point P(t,v) from d(t) along g(t).

From the above definition, the lengths of solid object edges are bounded
by two end vertexes. The same ruled surface can also be defined by two curves
di(t) and da(t) joined by straight line segments. The curves d;(t) and dj(t) are
part of the boundary of ruled surface.

P(t,v) = di(®) + v( da(b) - d1(B) ) (3.2-2)

Figure 3.2-2 shows two different types of swept volumes. One can see from
Fig. 3.2-2(b) that if the planar facet intersects itself, the ruled surface cannot
fully describe the boundary of swept volume.

3.2.3 Developable Surfaces

A developable surface is formed by successive planes which intersect
each other such that all the intersection lines lie inside the sweeping planes
(see Fig 3.2-2(b))

Definition 3.2-2

A surface such that through every point of the surface passes at least one
straight line entirely in the surface and the normal to the surface is constant
along these straight lines.

14



General concepts :
A plane is decided by two intersecting lines L1 & L2 on point q

P(u,v,t) = q(t) + ur ()+ vr.(t)

q.rxr, r'.r xr,
Ptv)=q-r—D————+V|r, -1 o=
1I'l.l‘lxl'2 2 1I'l.il'lxl'2
q isacurveandr 1(t) , rz(t) are families of unit vectors passing through the
curve q. The tangent direction to the curve q at each value of t is q'. Since r (t)
, T,(t) are unit vectors, they have perpendicular tangent directions r’ , r,
respectively. A developable surface can be regarded as ruled surface in which
the normal direction is constant along the straight lines in the surface.

=<
_—

~J

Fig. 3.2-2(a) Swept volume described by ruled surfaces.
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W

Fig. 3.2-2(b) Swept volume described by ruled surfaces and developable
surfaces.

3.3 Robot Kinematics and Cubic Parametric Formulation

Rotational Matrix

A rotation matrix geometrically represents the principal axes of the
rotated coordinate system with respect to the reference coordinate system.

Since the inverse of a rotation matrix is equivalent to its transpose, the
row vectors of the rotation matrix represent the principal axes of the reference
system OXYZ with respect to the rotated coordinate system OUVW. Actually
the rotation matrix is orthonormal.

D-H Table
A mechanical manipulator consists of a sequence of rigid bodies, called
links, connected by either revolute or prismatic joints. Each joint-link pair

constitutes 1 degree of freedom. Fig 3.3-1 shows the relation between links
and joints on PUMA robot.
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Fig. 3.3.1 Puma Robot and the 'body aitached coordinate frame'

To describe the translational and rotation relationships between adjacent
links, Denavit and Hartenberg proposed a matrix method of systematically
establishing a coordinate system (body attached coordinate frame) to each link
of an articulated chain.

Every coordinate frame is determined and established on the basis of
three rules:
1) The z_ axis lies along the axis of motion of the ith joint.

2) The x, axis is normal to the z_, axis, and pointing away from it.
3) The y, axis completes the right-handed coordinate system as required.

The D-H representation of a rigid link depends on four geometric
parameters associated with each link.

Robot Kinematics and Parametric Cubic Equation
By using D-H table, we plug in four joint variable values, after the
computation we can get four different robot arm configurations. If we plug
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the values at time t=0, t=1/3, t=2/3, and t=1 (from t=0 to t=1), the four robot
configurations become the four boundary condition of the parametric cubic
equations.

3.4 Algorithm

The solid object is composed of polyhedral facets (or piecewise flat
surfaces). The solid object has the shape of polyhedron. The simple polyhedra
are the most important, since they are historically the source of topology's
contribution to geometric modeling. The term simple polyhedra refers to all
polyhedra that can be continuously deformed into spheres. Regular polyhedra
are an example and subset of the simple polyhedra. In other words, regular
polyhedra have no reentrance edges; thus they are convex.

The word convex can be applied to every polyhedron that lies entirely on
one side of each of its polygonal face. So every convex polyhedron is a simple
polyhedron, but a toroidal polyhedron is not.

Among vertices, edges, and faces of a simple polyhedron, called Euler
formula for polyhedra: vertices no. - edges no. = 2 - facets no. The above
simple formula provides a direct and simple proof that there are only five
regular polyhedra.

Take the example of a more general case,i.e. a surface formed by taking a
collection of planar surfaces. Any surface formed in this way will obviously be
flat everywhere except the edge where flat surfaces are jointed together. The
polygon has only straight edges, then the joint surface has curvature only on
the edges.

Because of the above properties, the following points have to be
characterized in order to describe how the surfaces are jointed together. This
kind of representation is named atlas, which is a collection of separate maps
of the flat facets of the solid object. As the meaning of atlas, there should be a
route and orientation from each location to any other locations. The same
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thing here, atlas must keep a record of all the relations (including orientation,
edges, and parent facets and grandparent solid) between vertices.

Now, starts from the construction of a flat facet :

|00
N

Fig. 3.4-1 Atlas of a solid object.

In order to explain the above solid object better, every vertex, edge and
facet should have a name called 1st, 2nd, 3rd,... , 8th vertex, and 1st, 2nd, 3rd,...
, 12th edge, 1st, 2nd, 3rd,... , 6th facet. The above figure shows the atlas of a
solid object which contains 6 flat facets, each of which composed of 4 oriented
edges and every edge has 2 vertexes (a forward vertex -— marked by an arrow,
and a backward vertex) on both ends.

vertex[1..8][x,y,z] = vertex corrdinate.

Edgel1..12][to=0,fro=1] = 1st .. 8th (vertex ID)

Face[1..6][1..4] = 1st.. 12th (edge ID)

Orientation[1..6][1..4] = 0,1 (edge orientation ID of each face)
0 means the loop of a facet follows the edge direction,
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1 means the loop of a facet reverses the edge direction.
Number_of_facets = 6
Number_of_edges = 12
Number_of_edges_of_each_facets(facets] = 4

For example, on facet 1:

3 —> Qg

sl

5 o . ®

Vertex [Edge[Face[1][All[Orientation{1][Alll[xyz] =1,26,5
where A = 1,2,3,4.



Chapter 4

SWEEP DIFFERENTIAL EQUATION

Parametric formulation is a numerical approach to sweep motion. This
chapter is going to describe some simple Euclidean motions by using
differential equation (see [37}[35]).

The precise definition of swept and swept volume are given in section 2.4.
This chapter defines the sweep differential equation, and introduces the
mathematical and geometrical meaning of autonomous sweep motion and
relatively autonomous sweep motion.

4.1 Sweep Differential Equations

The swept volume of an object in Euclidean n-space R" is generated by a
1-parameter family of Euclidean motions of the form § + Ax (translation +
rotation), where x is a generic and § a fixed vector in R", and A is a matrix in
the special orthogonal group

SO(n) = { A: A is a real, orthogonal, nXn matrix with det A =1}

SO(n) is a real analytic Lie group of dimension (n/2)(n-1). See [19] for details.
Let Euc(n) be the Lie group of Euclidean motions in R". It is clear from the
form of Euclidean motions that the Euclidean group Euc(n) can be identified
with R" X SO(n); hence it is a real analytic Lie group of dimension (n/2)(n+1).

Definition 4.1-1

A sweep is a continuous mapping o : [0;1] -> Euc(n) such that 6(0) = the
identity. We say that the sweep is smooth if it has continuous derivatives of
all orders. Every sweep can be written in the form

O't(x) =E&(t) + A(t) x 4.1-1)
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where £(0) = 0, A(0) =1, the identity matrix, &(t) e R", A(t) € SO(n), and Oy is

the value of o at t forevery 02t 2 1.

We shall confine our attention, for the most part, to smooth sweeps.
This is certainly not unreasonable, since most sweeps encountered in practice
are apt to be at least piecewise smooth.

Definition 4.1-2
Let R" 2 M and c be a sweep in R". The swept volume of M under ¢ is
the subset of R defined by

SoM) =U (6,0 : 0221} @1

each of the sets Gt(M) = { ct(x) : x € M} is a t-section of S;(M).

Given a smooth sweep o, let us find a differential equation having
solutions x = x(t) which generate the sweep. On setting x = x(t,xo) = cst(xo) =

E()+A(®X and differentiating, we obtain
x = E(t) + A@t) x° (=d/dd (41-3)

Solving x = & + Ax for x_ using the fact that AAT = ATA =1, where denotes the
transpose, and substituting the above equation yields

x = EB) + A®D) AT (D(x - £OD) (4.1-4)

It follows from this derivation that x(t) = ct(xo) is the unique solution of this

differential equation satisfying the initial condition x(0) = x. This suggests the
following concept.

Definition 4.1-3
Let 6,(x) = £(t)+A(t)x be smooth in R". The smooth vector field

Xg 0,0 =& (1) + B(O) (x - £() (4.1-5)

where B(t) = A(t)AT(t) , is called the sweep vector field (SVF) of o and
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x = Xg (x,) (4.1-6)

is called the sweep differential equation (SDE) of o.

As (4.1-4) is linear, a solution such that x(0) = x" exists on the whole
interval [0,1] (see [5]). This shows that there is a one-to-one correspondence
between smooth sweeps and SDE's. Given this correspondence and the fact
that the evolution of an object in a vector field is completely determined by
the initial position of the object, it is quite logical to classify sweeps which
generate swept volumes exhibiting a variety of particularized geometric and
topological features. We shall identify one such class in the next section.

4.2 Autonomous S.D.E.

This section will subdivide the sweep differential equations into
different categories. We will starts from the differential equations whose
vector field does not explicit depend on t, called autonomous swept
differential equation.

Definition.4.2-1

A smooth sweep is said to be autonomous if its SDE is autonomous; i.e.;
X, in (2) does not depend on t.

We take the partial derivative of X  with respect to t and set it equal to

Zero, whence
39X, =(E-BE-BE) +Bx=0 4.2-1)

The independence of x and t implies that this equation holds for all x
and t if and only if B =0 and £ - BE =d/dt[ e "] =0 . This, in turn, is
equivalent to A:BA, with B constant, and e-‘Bi‘, = Db, Wiﬂ:l b constant. Here e
is the usual matrix exponential (cf. [3L[5], and [19]). But A = BA, A(0) =1 has
unique solution A(t) = e®. Moreover, since AAT = I we infer that etB(e[B)T =

T
¢ ®* %) _1 which implies B + B' =0, 50 B & o(n), where

23



o(n) = { B : B is a real, nXn skew-symmetric matrix}

We have now essentially proved the following result:

Theorem 4.2-2
Let oy(x) = &(t) + A(t)x be a smooth sweep. Then the following are
equivalent :
(1) The sweep is autonomous.
(2) AA” = B is constant and A" £ = b is constant
(3) A®t) =e®,Be o(n) and € =e® b withb e R*
(4) The SDE of 6is x = Bx +b where Be of(n) and be R"

From the definition above, the autonomous sweep differential equation
can be put down in the following form.

. . 0 -a -by/x x:c
Xo=AX, +X, =2 0 ||y ]|y, (4.2-2)
bc 0)\z .

where a,b,c, (x ¢, y ¢, z )T are independent of t.

The sweep o is type 1 with respect to Q, if 61 Q -> S5 (Q) maps interior

points into interior points and boundary points to boundary points, for all 0 <
t <1. ( see Fig. 4.2-1).
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4.3 Relatively Autonomous S.D.E.

Definition 4.3-1
A smooth sweep is said to be relatively autonomous if its relative SDE is
autonomous.

Observe that by defining { = x - £, the differential equation of a sweep can
be written in this form

¢ = AWAT(D 4.3-1)
as £(0) = 0, and x(0) = X" correspond to solutions of Eq. 4.3-1 éubject to {(0) =x.

Theorem 4.3-1
Let 0y(x) = &(1) + A(t)x be a smooth sweep. Then the following are

equivalent :

(1) The sweep is relatively autonomous.

(2) There exist C € o(n) such that A(t) =e™ forall 0<t< 1.

3) *A() = A@WA” (1) = C e o(n) for all te [0,1].

(4) The SDE o has the form x = }:;(t) +C(x - &(t)), where C € o(n)
and &: [0,1] -> R" is a smooth function with £(0) = 0.

From the definition, AA” = B is constant; in the other words, the
relatively autonomous sweep motion is autonomous sweep with respect to

the relative coordinate frame.
#

_ . 0 -a -b X X:c(t)
X= A#X + Xc =(a 0 -c j #y }’.c(’f) (4.3-2)
bc¢c 0 z Z D

where ( x'c(t) , y.c(t) , z.c(t) )T is a function of t, but A*X is not.

26



Chapter 5

IMPLEMENTATION AND ALGORITHM

This chapter discusses implementation of the parametric cubic equation
and sweep differential equations. The simulation programs are written in C
language and HOOPS computer graphic utilities on the SUN3/60 workstation
at NJIT.

The solid objects are defined according to Mobius principle [1][4][30]. All
the solid objects are convex polyhedral objects. The computer programs are
included in Appendixes I, II, and IIL

The first section of this chapter discusses parametric cubic equation
implementation on IBM and PUMA robots. The second section discusses the
implementation of sweep differential equation on polyhedral objects and IBM
robot. With detailed description and computer simulation, one can visualize
the difference between autonomous sweep and nonautonomous sweep in
Cartesian space. We also include the wireframe representation and shaded
image representation of the swept volumes. The third section discusses the
methods of showing the shaded images from the swept data by transforming
three dimensional coordinates to two dimensional computer screen pixels,
and remove the hidden surfaces using z-buffer.

The basic requirements for comprehending these simulation programs
are the C programming language, a knowledge of UNIX system, HOOPS 2.02
graphic library, and SUN workstation. The following flow chart (Fig 5-1)
illustrates the flow of programs execution. The later sections will discuss
these individual blocks in detail.
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Show Menu Driven Screen
on Computer Graphic Base

y
( Define Solid Objects)

A 4
Geﬁne 'Body Attached Coordinate Frame)

A 4
( Sweep the 'Body attached Coordinate Frame')

h 4

Transform the vertex
w.r.t the Body attached Coordinate Frame

Show the object sweeping
in Snap Shot and
in Swept Volume

(‘Wire Frame display ) ('Shaded Image Display )

Linear Interpolation method
of Scaling Image Picture

Fig. 5-1 Flow chart of the simulation Programs.
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5.1 Parametric Cubic Equation Implementation

As mentioned in section 3.2, parametric cubic equation is used to
describe a a point trajectory. Now, take this point as the origin of a 'body
attached coordinate frame'. In Euclidean motion there are six degrees of
freedom, namely x,y,z,roll,pitch,yaw. When a solid object sweeps, the 'body
attached frame' has a smooth motion in Euclidean space. i.e. the
x,y,z,roll,pitch,and yaw values change smoothly.

There is a critical issue which needs to be clarified, i.e. the existence of
angle ¢(t), 6(t), y(t). Before getting into any explanation, first take a look at Fig
5.1-1 and preview the fixed relationship between the 'body attached
coordinate frame' and the vertex of a polygon.

xt=1/3 t=1

X y z

Fig 5.1-1 The body attached frame undergoing Euclidean motion.

One can decide 4 values while at t=0, t=1/3,t=2/3, and t=1, using the Eq. 3.1-1
and [1][11]{14].

P(t) is the trajectory of the 'body attached coordinate frame'. The 4 data
points Py, Py, P3, P4 should be known values. In robot application these 4
sets of known values are calculated using the D-H table [see 10]. For example,
one has to define the variable at the ‘time’ t;, t2, t3, t4 shown in Fig. 5.1-2
which includes a D-H table on the upper portion of the picture.
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( Xn(t) \

Val® 45 90 55 1 £
Zu(t) 13.0 225 9 0 £
Pa® =| ¢.(9) G=| 135 -18.0 45 0 T=lg
0,(t) 45 45 1 0 {0
\Wn(t) )
/ x(t) \
yég 45 90 -55 1 ttz
z 130 25 9 0
Hp®) =| o) [= PouGT =(P1,P2,P3,Pa) 135 180 45 0 | ¢
o) 45 45 1 0 )| o

\ v(® /

In [10], there are three types of Euler angle representation toward
rotational matrix. In this section, Eq 4.3-4 to Eq 4.3-6 are roll - pitch - yaw
representation of rotational matrix.

Rooy = RyRoRy,
cos -sin¢ 0\ cos® 0sin@)/1l O 0
= sinq) COS¢ 0 0 1 0 OCOSW'SinW
0 0 1)\-sin® 0 cos® J{ 0 siny coswy
CoCO CdSSy - SpCy  CpS6Cy + SeSy
=1 S0CO SpSOSY + CoCy  S¢S6Cy - CHSwy (4.3-7)
-50 CoSy CoCy

For roll - pitch - yaw representation, the rotational sequence is roll -> pitch ->
yaw which rotate with respect to X, Y, Z axis of world coordinate frame.

Based on the above concepts and the solid modelling method in section
3.4, the parametric cubic equation is used to keep the record of the sweep
motion of the solid object. The data set Py(t) =
(xn(t),yn(t),Za(1),0n(t),0n(t) Wn(b)T is required to describe position and
orientation of the "body attached coordinate frame” for transfer of the solid
object vertices.
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Before we start introducing the algorithm used in the simulation
programs, first let us show the table of the symbolic arrays (or variables)
which is used to represent the arrays (or variables) in the source programs.
These symbols will be used in section 5.1, 5.2,

#N; : The number of the facets of a solid object.

#N,: The number of edges of a facet.
#T, =13 : The number of instants when t changes from 0 to 1.

X x(t) ¢ o(®)
p= I: y] p(t) =l: }’(t):| o=| 0 o(t) =| 6(t)

SOlface ; edge ; p] : Polyhedral object vertices, defined by user.

t
FR[E&;] : Sweeping curve of the 'body attached coordinate frame'.

SVl face ; edge ; p(t)] : Swept volume boundary points.

31



Algorithm 1

The polyhedral object and 'body-attached coordinate frame' has been
defined before starting the simulation. The first step is to find the trajectory of
the 'body-attached coordinate frame’ by the four sets of given data which can
be calculated by an existing preprocessing program.

/* P1,P2,P3,P4 are known values which should be given. */
fort=1to #Tk

45 90 55 1 g
p(t)] 130 225 9 0
FR[o(t) = (PLP2P3,Pa) 135 180 45 0 || ¢
45 45 1 0 )| p
end of t.
Algorithm 2

After the FR array is loaded with the information of the 'body-attached
coordinate frame', one can transform the body-vertex according to the data in
FR array.

/* transform the solid object along the 'body attached coordinate frame'. *./
for f =1 to #N;

for e=1 to #N,
fort=1to #T,

CoCH CHSESY - S6Cy CHSBCY + SoSy
SVIfe;p(H)]=| SPCO S¢pSOSY + CHpCy SpSOCy - CdpSy |« SO[f;e;p]+FRIp(t)]
-59 CoSy CoCy

end of t.
end of e.
end of f{.

32



var

Bk 0, o, a, d .
1st link % 0 0 0
ondlink | 9, 0 24 0
3rd link 0 180 1.5 d,
var t t t t t
0 0 20 40 60
0, 0 30 60 80
d 2.4 22 2.0 2.4
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Fig. 5.1-2(a) D-H table of IBM robot, and varibles data table of simulation.










var

link ! L

1st link 0 0 0

2nd link 90 0 0

3rd link 0 4.32 0

4th link -90 0 0

var t t t t
6, 20 40 60
0, 0 0 0
0, 0 0 0
0 0 0 0
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Fig. 5.1-2(a) D-H table of IBM robot, and varibles data table of simulation.










5.2 Sweep Differential Equation Implementation

This section describes an implementation of chapter 4. We categorize the
pure translational motion and pure rotational motion as autonomous sweep
motions, and the autonomous motion in reference translating coordinates as
relatively autonomous sweep motion.

The simulation algorithm is similar to the one in section 5.1; however
instead of using parametric cubic equation to calculate the motion of the
'body attached coordinate frame', we use sweep differential equations.

Algorithm 1

We first sweep the 'body attached coordinate frame' by using sweep
differential equation, then transform the solid vertex according to the
differential equation.

fort=1to #’I‘k

t
FR [ 58 :l = sweep motion. (see next section).

end of t.

Algorithm 2
The same as the algorithm 2 in section 5.1.

5.2.1. Rolling, Pitching, and Yawing

In section 2.2 and 3.2, Euler angle representation of a rotation matrix was
explained in detail. We choose rolling, pitching and yawing angle to represent
Euclidean motion. The following provides the equations for rolling, pitching
and yawing motion.

YR |=] sin wrt cos wgt 0 || YrO) (5.2-1)

xRr(t) cos wrt - sin wrt ' 0/ xr(0)
(ZR@ ] 0 0 1 (ZR@) ]



xp(t)\ [ coswpt 0 sin wpt \/ xp(0)

(ypw J= 0 1 0 (yp<0)) 52
zp(t) ) | -sin wpt 0 cos wpt J\ Zp(0)
xy(®y (1 O 0 \/xy(0)

[yy(t) J: 0 cos wyt -sin wyt (yy(O) ) (5.2-3)
zy() ) {0 sinwyt coswyt )\ Zv(0)

Now, there is an interesting question: how can one use the sweep
differential equation to explain the RPY motion in the Euclidean space ?
From the question above, the above rotation matrix will be back traced to the
sweep differential equations model, in order to categorize RPY motion as
autonomous sweeping motion. Let's take Eq. 5.2-1 which is the rotation
matrices of rolling. By using Laplace transform, one can get the swept
differential equation form of Eq.5.2-1.

(5w )
@g + 55 Og +Sg
xRr(S) xr(0)
(YR(S)]= WR S [}’R(O)) (5.2-4)
zr(S) 2 7 2 2 0 zr(0)
o +S o +S
\_ 0 0 1)/
SXR - xr(0) 0 -or 0Y/Xr
( SYR - yr(0) ) =lwor 0 0 [ YR ) (5.2-5)
SZg - zr(0) 0 0 0/\Zr
Xg = A Xg + Co (4.2-2)
. 0 -wr 0Y)/xr(® 0
Xg=AXg+c={wg 0 0 [YR(t)j+(0} (5.2-6)
0o o oj\z)) \0

Similarly pitching and yawing have the same property, then we can
prove that Roll, pitch, and yaw are autonomous sweep motion.
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0 -wg 0 0 0 -wp 0 0 O
1)AR= WR 0 O Z)Ap= 0 0 0 3)AY= 0 0 -0y
0 O 0 -oy O

0 0 O

5.2.2. IBM 7540 Robot and Two-Link Mechanism

Two-Link Mechanism

This section starts with the equations of two links and analyzes the two
links using the sweep differential equation representation. We classify
different types of motion in order to choose the proper equations to generate
swept volume efficiently.

x1(t) cos it -sin ot 0/ x1(0)
(Yl(t) J= sin 0t coswit O (YI(O) J (5.2-1)
z1(t) 0 0 1 J\ z1(0)

(x1(0) , y1(0) , z1(0) ) = (0, 0, 0) is at the origin of upperarm coordinate frame.
By laplace transform, we get the linear system equation:

(s o )

2 2 2 .2
W, +ST 0, +S
x1(S) P x1(0)
(yl(S)]= o1 S (yl(O) ) (5.27)
z1(S) 2 2 2 2 0 z1(0)
0 + S1 o, + S1
\_ 0 0 1)
SXi1- 1Y) =x1(0) (5.2-8a)
SY) - 01X; = y;(0) (5.2-8b)
SZ; = z1(0) (5.2-8¢)
SX1 - x1(0) 0 -w; 0Y/Xg
(SYl -y1(0) J: w; 0 0 (Yl J (5.2-8)
SZy - z1(0) 0 0 0)\Z4
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(xl, yl)
r
1
91= ,7
—
(0,0) X

Fig. 5.2-1 Rotation of single link.

The final goal of this derivation is to derive an equation of the format of
autonomous equation, which was shown in section 4.2.

X;=AX; +c (4.2-2)
) 0 - 0Y),/x;(D 0
X;=AX;+c={w; 0 0 (Yl(t)J+(0) (5.2-6)
o 0 o0 /\zi® 0

This is a typical example of autonomous sweep equation. The
homogeneous term of the first-order linear system (Eq 4.2-5) is not a function
of t. In autonomous sweeping motion, the sweep vector field does not
explicitly depend on t. [38] has similar discussion about this pure rotational
motion of a two revolute joint mechanism.

The equation of the second link is:

cos mat - sin wat 0 ) x2(0) cos w1t -sin @it 0 x1(0)
X, =| sin wat cos wyt 0 | y2(0) )+ sin o1t cos Wit 0 YI(O)J (5.2-9)

0 0 1 \2200) 0 0 1 A\ 21(0)
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(X2 ’ Y2)

(0,0) X
Fig. 5.2-2 Two links motion.

From linear differential equation point of view, the autonomous sweep
. . : : 1
differential equation consists of two parts, namely X,, X;

X,(8) = "X,(8) + X,(b) (5.2-10)
Now, this format looks similar to the solution of the first-order linear system,

cos wit -sin w;t 0/ x1(0)
Xit) = | sin o;t cos it 0 (Yl(o)] (5.2-11)

0 0 1

XM =| 'y |= 'y2(0) (5.2-12)
"za(0) '2(0)

sin wat cos wat 0

1
xa(t) cos Wat - sin wat 0 x2(0)
0 0 1

x2(t) , y2(t) , za(t) is the distal point on the second link. x;(t), y1(t) , z1(t) is the
distal joint point on first link.

N
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Similar to the derivation before, by taking the Laplace transform of Eq.
5.2-8 and Eq. 5.2-9, one can get the following differential equation, with initial
condition (x1(0), y1(0), 1(0)) = (11, 0,0), ('x2(0), 'y2(0), '22(0)) = (12,0, 0),
where r; is a point on the second link.

x.1(t)
Xy = Y:l(t) (5.2-13)
z 1(t)

L 0 -wp O "xa(t)
Xy() = [ wy 0 O 1yz(t) . (5.2-14)
6 0 O 1zz(t)

. 0 -wp 0V 'xal® x:1(t) :
Xy = [0)2 0 0 1}'2(1:) + y_1(t) (5.2-15)
0 0 0A 'z 2 1(9

From equation 4.1-3 we have the sweep differential equation:

x = E() + A®R) x° (=d/dd (41-3)

From the definition of 4.3, we have AAT =B as constant; here we have
A Eq.52-12

cos mt - sin ot 0
A=| sin wyt coswyt 0
0 0 1
SO

- sin wat - cos wat 0 J{ cos wat sin wyt O ]

AAT = W21 cosmyt -sinwat 0 || -sin wat cos wyt O
0 0 1 0 0 1

0 -0 O
=l w; 0 0 |=Constant (5.2-16)
0 0 O

The above equation shows that the second link motion is relatively
autonomous motion.
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Now let's refer to Fig. 5.2-2, If w; equals to wy, from the definition in
section 4.2, the two links should undergo autonomous motion. Because
AA” = Bis constant and A" & = b is constant.

cos w1t -sin wit 0
E=| sin w;t cosw;t O (5.2-11)
0 0 1

T % .
A E=| -sin wyt cos wat 0 cos it -sin it 0

cos ampt sinwot O -sin w1t - cos wit O
W1
0 0 1 0 0 1)

- sin (01 - @Yt - cos (W - w)t 0
=Wy} cos (W) -w)t -sin(w;-w)t 0 (5.2-17)
0 0 1
if w; =w, then
. 0 -wy O
A"t=|w, 0 0 |=Constant (5.2-18)
0 0 O

The above derivation shows that if ®; equals to w2 the relatively
autonomous sweep motion become autonomous motion; in the other words,
Eq. 5.2-17 and Eq. 5.2-18 show that autonomous sweep motion is only a special
case of relatively autonomous motion. Eq. 5.2-17 also shows that the
relatively autonomous motion has a translational term which is a function of
t.

A similar engineering application to the two-link case is IBM 7540 robot,
which is a three-degree-of-freedom robot (two rotational joints and one
prismatic joint). The first two degrees of freedom are manipulated by the
upperarm and forearm, and the third degree of freedom is manipulated by an
prismatic joint which is the end-effector.
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IBM 7540 Robot
The following is the model of IBM 7540 robot links. This model includes
three parts :

I) The upper-arm.

From the kinematics analysis, the upper arm motion can be categorized
as autonomous motion. The whole upper robot arm undergoes rotational
motion.

II) The fore-arm.
The fore-arm motion can be categorized as partial autonomous motion.
The forearm undergoes rotational and translational motion.

Now take a look at two different forearm movement simulations from
Fig. 5.2-3 to Fig. 5.2-6. By comparing the different sweep simulation results,
from Fig.5.2-5 and Fig.5.2-6 one can see exactly the sweep vector field (the
sweep field lines) which intersect itself. Fig. 5.2-6 shows that the swept
surfaces are not generated only by its polygon edges, but also by polygon facets
in the form of developable surfaces.

IIT) The end-effector.

For the end-effector, the model of forearm still holds but is under
different initial conditions ( x3(0) , y1(0), z1(0)) = (r1,0,0), ('x2(® , 'y2(®),
'z(®)) =(r2,0,0). For this prismatic joint there exists a velocity in the Z axis
direction.

) 0 -y 0Y xat) X:l(t)
Xs=|aw; 0 0] 'y200 [+] y:1(® (5.2-19)
0 0 0A 'z z 3(t)

The translational term z.3(t), describes the up and down translational
motion of the end-effector.
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Fig. 5.2-3 The simulation of IBM robot using SDE.
This is a special case of relatively autonomous sweep motion, for o; = ;.












5.3 Shaded Image Representation

Shaded image representation needs complicated programming
algorithms, including reflectance calculation, hidden surfaces removal, and
color rendering techniques. This section discusses reflectance calculation and
hidden surface removal of ruled surface. There is no discussion on color
rendering, which is one of HOOPS bulid-in functions.

We use scan-line algorithm to detect the intersections between
polyhedral facet edges and scan lines, and use z-buffer to remove hidden
surfaces. For calculating reflectance intensity we use linear. interpolation
method to get the smooth surface normal change. There are other algorithms;
see [1][4](8][9][10].

The interfacing data between shaded image representation and wire-
frame representation in our simulation software is the array SV[facet; edge;
xyz(t)]. In other words, shading programs transfer the wire-frame data (3-D
Cartesian space) to shaded pictures (2-D computer screen). Some initial
conditions have to be determined before stating the shading calculations.
They are 1) eyesight direction (the default eye position is the origin, looking
in the negative Z direction), 2) light source direction, 3) surface reflection
constant (experience value).

As the eye location has been determined, only the "top facets" can be
seen. Shading programs calculate the normals of all facets. Z-buffer algorithm
compares the z depth of each facet, and save the data which are close to the
eye position. An illumination subroutine is used to calculate the reflectance.

Fig 5.3-1 shows the flow of program execution. All blocks are named in
computer program files in a SUN 3/60 workstation system at NJIT.
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encloseobj.c

enclose_object()

shaded.c scnplynmlc
lshaded_display_two() gengrate_scan_line_intergections()
sengntsld.c —P

scap_line_generate_solid]data()

scngnh'nt.c P scnplyint.c
polygonalize_surface(

scan_ling_polygon_intersection

illumodil.c

illumod2.c
illumination_mode_one
iljumination_mode_two()

Fig 5.3-1 The block diagram of shading programs.
The following symbols are used in the program subroutines:

#N; : The number of the facets of a solid object.

#N,: The number of edges of a facet.
#T, = 13 : The number of instants when t changes from 0 to 1.

i X
SV| face; edge;y]=SV[ face; edge; p(t)] : Swept volume boundary points.
z

[ x=512
IM_ ;___410} : Shaded image reflectance values.
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X
] : Maximum coordinate of each ruled surface.

Max[face ; edge; y

X
] : Minimum coordinate of each ruled surface.

Min[face ;edge; y

X x(t)
PL_Vtx[#Tk*#N (;edge; Z] : Polygonalized S‘/[face ; edge ; Yég]
z

X X
PL_le[#Tk*#Nf ; Y} : Normal of PL__V\xI:#Tk*#Nf ; edge; Y].
z . z

X

Vtx_le[20 ; Y} : Vertex normal of each polygonal facet.
z
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shaded.c

Shaded.c gets the sweep data (SV[face; edge; xyz; t]) from the simulation
programs. Then it calls SCAN_LINE_GENERATE_SOLID_DATA() to
process the wire-frame sweep data, After the processing the results are stored

in array IM[x;y]. Here the shaded picture size is 512 by 410 pixels, each value in
IMIx;y] represents a pixel intensity value (form 0 to 20). ('pixel’ is the size of a
computer screen spot unit). In the end, SHADED_DISPLAY_TWO() calls the
HOOPS computer graphic routines to render the intensity values in IM[x; y]

on computer screen.
In summary, this subroutine does the following;:

SHADED_DISPLAY_TWO()

{ call SCAN_LINE_GENERATE_SOLID_DATA(

call HOOP subroutines to display the image data.

shaded.c

SVIf;e;xyz;t]— shaded_display_two()

—>IM[x;y]

SV([f;e;xyz;t] v l‘IM[x;y]

light source direction — sengntsld.c

eyesight direction -—— scan_line_generate_solid_data()

Fig. 5.3-2 Block diagram of shaded.c and scngntsld.c.
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scngntsld.c

This subroutine defines light source direction and eyesight direction,
then calls ENCLOSE_OBJECT() to find the enclosing rectangle boundaries for
each ruled surface.

The second step is to call POLYGONALIZE_SURFACES() to polygonalize
the ruled surface segments and calculate their unit normals (include the
initial and final polygons).

The third step is to call GENERATE_SCANLINE_INTERSECTION(),
which renders the normal value to the ruled surfaces and the initial and final
polygons. The subroutine uses scan line/Z-buffer algorithm to record the
visible surface/ray intersections and maps the surface reflectance to proper
pixels.

The last step is to call either ILLUMINATION_MODE_ONE() or
ILLUMINATION_MODE_TWOX() to calculate the reflectance of the ruled
surfaces.

scnplynml.c scngntint.c .
SVI[f;e;xyz;t] Pty PL_le[g;xyz] IMIx,y]
polygonalize_surface() g¢nerate_scan_line_intersection()

Vtx _Nml[v;xyz] l TIM[x;y]

scnplyint.c

sdan_line_polygon_intersectior()

normal vector w.r.t pixel location l Treflectance intens

illumodel.c

illumode2.c
illumination_mode_one()
illumination_mode_two()

Fig. 5.3-3 Block diagram of scnplynml.c, scngntint.c, scnplyint.c & illumode.c
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enclosebj.c

This subroutine finds the maximum and minimum value of every
ruled surface. The pixels which do not map inside to the bounding rectangle

are treated as background (the reflectance intensity is 0).

SV[f;e;xyz;t]—

encloseobj.c

enclose_object()

.Max[f;e;xy]
Min([f;e;xy]

Fig. 5.3-4 Block diagram of encloseobj.c.
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senplynml.c

This subroutine is to polygonalize the SVlface; edge; xyz ;t] to
PL_Vtx[face*#T +t; xyz; edge] and to generate the normal of each polygon, in

similar structure PL_Nml[ face*#N+t; xyz; edge].

for face = 1 to #N;
for edge = 1 to #N,
fort=1to #T_

X x(t)
PL_Vtxl:face*#TkH ; edge; y] = S‘/{ face ; edge; y(t)}
z z(t)

number_polys = number_polys + 1

end of t.
end of edge.
end of face.

for i= 1 to number_polys

X X X
A( y J = PL__Vtx[face*#Tk +t;1; y} - PL__Vb([face*#Tk +t;0; y]
z Z z

j=0

while ( lines_not_parallel )

X X X
{ By =PL_Vtxiii;j;Y:|-PL_Vtx[i;0;y]
V4 z z

j=j+1

A[
PL le i; Y

\/

N\<><

/_Q\\
N'*<1><

end of i.
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scngntint.c

This subroutine uses geometrical simplification to subdivide the total
number of scan lines needed to process the object movement into 10
increments. The scan-line algorithm decides what polygons are visible in a
scan-line window, and these decisions are made by comparing line segments
in the x-z plane.

If one uses only the polygon normal of the ruled surface to calculate the
reflectance, the shaded picture can show a sculpture like surface. So we need
to get the normal of every vertex, then use linear interpolation algorithm to
smooth out the ruled surface. The following figure show the concepts of
getting the vertex normal form the surrounding polygonal facets the vertex 1
is surrounded by polygon A,B, and C.

Fig. 5.3-5 shows the ideas of getting the vertex normal. But in the
program each swept surface generated by polyhedral edge sweeping will be in
rectangular shape, but three points will decide a plane. We have to sub-divide
the polygon into triangular facets. Because the default number of sweeping
instant is thirteen, there should be twelve segments for each swept curve. In
the other word, there should be twelve rectangular polygon which can
determine twenty-four triangular facets on each ruled surface.

!
|

'

3 4
Fig. 5.3-5 Three polygons determine a vertex and its vertex normal.
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Refer to Fig. 5.3-3 which shows the data flow between scnplynml.c,
scngntint.c, senplyint.c & illumode.c.

for p = 1 to number_polys
for v = 1 to number_of_each_polygonal_facet[p]

X X X X
Vtx_le|:v ; }’] = PL_le[A; Y} + PL_le[B ; Y] + PL‘Nm1|:C ;Y}
z z z Z

X
x} Vtx_leI:v ; Yj‘
z

Vtx_leI:v ;Y=

Z X X
VtX_lel:V; Y} . Vtx_lel:v; Y}
z z

end of v.

call SCAN_LINE_POLYGON_INTERSECTION()
end of p.
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senplyint.c

A polygon is input to this subroutine, i.e. the coordinates of the vertices
of the polygon, the polygon normal, and the vertex normals determined as
the average of the polygon normals for all polygons sharing the vertices of
the input polygon. These vertex normals are used to determine shading using
the linear interpolated normals across the polygon. The polygon is displayed
using scan-line z-buffer algorithm. For all the edges in a polygon determine
the x-coordinate of intersection with the scan line.

Polygon is a convex object. Each pair of the x coordinate intersection are
interior to the polygon.

This is the scan line parametric form :
x(t) =a,+b, t

y() =a,+b,t
This is the current polyhedral edges :
x(s) =c. +d,s
y(s) =¢, +dys
_ bx*(Cy'aJ) -by*(cx-ax) _ Cx'ax+5*dx
=7 (d,-bxd) =TT,

After the scan line intersects with the edges, (in point E,F), the next step
is to linearly interpolate the scan points normal value between points E,F (see
Fig. 5.3-6), for example, the point D. The following equations show how we
get the linear interpolation value for the point D of the plane a.

Yimun _point ~ Ye W= Ymax_point =~ YF
Ymax _point ~ Ynext max _pont

u=
Ymun _pomnt ~ Ynext_mun _point

X X
Nmlg = u*Vtx_le[min_point; YJ + (1-u)*Vtx_le[next_min_point; }’}
V4 z
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X X
Nml; = w*Vtx__le[max_point ; y} + (1-w)*Vtx_le[next_max_point; Y}
z z

leE - leF
Number_of_Pixels

ANml =

leD = leE + j* ANmIl

(XS »Ys )
= max_point
2 0.4
= m in_point
F
yA scan_line E\] |P i

3
(X3 ,y3 )

. . (X4 7y4 )
= nﬁXt_mln__pOlnt

= next_max_point

——p x
(0,0,0)

Fig.5.3-6 Linear interpolation of scan line normal values.

In the end of this subroutine compare the Z-buffer value with the
previous value, and keep the top most set of normal value for illumination
calculation.
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tllumodl.c or illumode2.c

The following reflectance formula was used as the illumination model,
where all the parameters are constant except n* which represents the surface
normal at a pixel.

Reflectance Formula:

I
d+K

I=I," Ky + [Kg" (e L) + K" (R SN

I: reflected intensity.

I, = incident ambient light intensity.

I} = incident point source light intensity.

K, = ambient diffuse reflection constant usually 0 <K, <1.
K4 = diffuse reflection constant 0 < K3 < 1.

Ks = experimental constant representing reflectance curve w(i,A).
d = distance from the closest object to the viewpoint.

K = arbitrary constant.

n = approximates spatial distribution of reflected light.

n” = unit surface normal vector at current pixel.

L” = unit light source direction vector.

R” = unit reflected ray direction vector.
S” = unit line-of-sight direction vector.
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Chapter 6

CONCLUSION

This thesis presents computer graphic implementation of methods for
generating geometric representations of swept volumes for polyhedral
objects. The geometrical applications of our methods include autonomous
swept volumes, relatively autonomous swept volumes, and parametric cubic
equation.

Parametric cubic equation is used to approximate genéral Euclidean
motions. Autonomous sweep differential equation is applied to simple
translational and rotational motions in Euclidean space. Relatively
autonomous sweep differential equation is used to describe the autonomous
motion in relative coordinate system. These equations can be used to describe
various kinds of machines or robots motions. The computer graphic
simulation has been implemented on polyhedral objects, IBM robot, and
PUMA robot. The results of computer simulation are helpful in visualizing
motions of objects by showing their swept volumes in wire-frame and shaded
images and helpful in visualizing some of the theories previously developed
on swept volumes.

Although there are several types of motions being presented in the
representation of swept volumes, these equations cover only very limited
types of Euclidean motions. Moreover, the surface characteristics of swept
volumes have not been much studied from the above formulations. Further
research is needed to achieve these goals.
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APPENDIX I

Programs for Graphic Representation of Swept Volumes
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.......

.......

#include “sweepparm2.inc®

show_point_object_in_swept(links,segml,segm2,colorl, color2)
int links;

char *segml,*segm2,*colort,*color2;

4

int i,j,k,jojo,face,pc_curve, joke, increments;

FILE *getin;

if(*segml = tnt)

{

HC_Open_Segment(segml);

HC_Set_Color(colort);

for (face = 0;face<number_polygons{links];facet+)
for (pc_curve = 0;pc_curve<number_edges [Llinks) [face];pc_curvet++)
{
for(i=0, jojo=1;i<Divisiont1, jojo<Divisiont1;i++, jojo++)
<
HC_Insert_Line(
point_object [i1[x] [pc_curvel [facel,
point_object[il [yl [pc_curvel [facel,
point_object[il{z] [pc_curvel {facel,
point_object{jojol {x] [pc_curve] [facel,
point_objectljojol [yl [pc_curvel [facel,
point_object{jojol {z] [pc_curvel [facel);

for (face = 0;face<number_polygons[links];facet++)
for (pc_curve = 0;pc_curve<number_edges [links] [face] ;pc_curve++)
¢
if(pc_curve == number_edges[links] [facel -1) j=0;
else j = pc_curve+i;
HC_Insert_Line(
point_object [01 {x] {pc_curvel [facel,
point_object {0] [y] [pc_curvel [facel,
point_object [0] {2] [pc_curvel [facel,
point_object[0]1 [x] [j][face],
point_object {01 [yl [j1[face],
point_object [0} [z][jl[facel);

for (face = 0; face<number_polygons[linksl;face++)
for (pc_curve = 0;pc_curve<number_edges [links] [facel;pc_curve++)
{
if(pc_curve == number_edges[links] {facel -1) ]=0;
else j = pc_curvetl;
HC_Insert_Line(
point_object Divisionl [x1 [pc_curvel [facel,
point_object[Division] [yl {pc_curvel [face],
point_object[Division] {z] [pc_curvel [face],
point_object[Division] [x]1[)] [facel,
point_object[Divisionl [yl [jl(facel,
point_object[Divisionl [z [j]l([facel);
b
HC_Close_Segment();
>

1f(*segm2 1= 'n?)
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64
65
66
67

69
70
7
72

74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126

f

f

f

sho
int
{

int
FIL

if
{

HC_Open_Segment(segm2);
HC_Set_Color(color2);

or (face = 0;face<number_polygons[links];face++)

for (pc_curve = 0;pc_curve<number_edges [links] [facel ;pc_curve++)

¢
for(i=0, jojo=1;i<Division+1, jojo<Division+1;i++, jojo++)
(4
HC_Insert_Line(
point_object [i] [x] [pc_curvel {facel,
point_object[il [yl {pc_curvel [facel,
point_objecti] [z] [pc_curve] [facel,
point_object[jojo] [x] [pc_curve] [facel,
point_object{jojol [yl Ipc_curve) [facel,
point_object[jojol [zl [pc_curve] [facel);

or (face = 0; face<number_polygons (links]; face++)
for (pc_curve = 0;pc_curve<number_edges [l inks] [facel;pc_curve++)
<
if{pc_curve == number_edges[linksl [face] -1) j=0;
else | = pc_curve+l;
HC_Insert_Line(
point_object [0] [x]) [pc_curvel [face],
point_object [0] [y] {pc_curvel [face],
point_object (0] [2] [pc_curvel [facel,
point_object{0] [x] [j1[facel,
point_object (0] Lyl [j] [face],
point_object[01[z]j]l[facel);

or (face = 0;face<number_polygons[links];face++)
for (pc_curve = 0;pc_curve<number_edges [links] [face];pc_curve++)
(
if(pc_curve == number_edges[linksl[face] -1) j=0;
else j = pc_curve+l;
HC_Insert_Ltine(
point_objectDivision] [x] {pc_curvel [face],
point_object[Division] [y] [pc_curvel (facel,
point_object{Division) [z] [pc_curvel [facel,
point_object[Division] [x1[]j] [face],
point_object[Division] [yl [j] [face],
point_object{Division] [2] [j] {facel);
)
HC_Close_Segment();

W_point_object_in_snap(links,segm3,segr4,color3,coloré)
links; char *segm3,*segm4,*color3,*color4;

i,i,k,jojo,face,pc_curve, joke, increments;
E *getin;

(*segm3 1= 'n')

HC_Open_Segment(segm3);
HC_Set_Color(color3);

getin = fopen("infoc™,"r");
fscanf(getin,"%d, ", &increments);
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145
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147
148
149
150
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160
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fclose(getin);

for( joke=0; joke<Division+1; joke+=increments)
{
for (face = 0; face<number_polygons[links];face++)
for (pc_curve = 0;pc_curve<number_edges[links] [facel;pc_curve++)
¢
if(pc_curve == number_edges[links] [face] -1) j=0;
else j = pc_curvetl;
HC_Insert_Line(
point_object[jokel [x] [pc_curve] [facel,
point_objectjokel [yl [pc_curve] [facel,
point_object [jokel {z] [pc_curve] [facel,
point_object [jokel [x]} [j] [facel],
point_object[jokel [yl {j] [facel,
point_object{jokel [z) [j] [facel);

)
HC_Close_Segment();
)

if(*segmé != 'n')

¢
HC_Open_Segment(segmé);
HC_Set_Color(color4);
for(joke=0; joke<Divisiont1; joke+=increments)
{
for (face = 0;face<number_polygons [l inks];face++)
for (pc_curve = 0;pc_curve<number_edges[links] [face];pc_curvet+)
{
if(pc_curve == number_edges{links] {facel -1) j=0;
else j = pc_curve+l;
HC_Insert_Line(
point_object[jokel [x] [pc_curve] [face],
point_object{jokel [y] [pc_curvel [facel,
point_object[jokel [2] [pc_curve] [facel,
point_object{joke] [x][j] [facel,
point_object[joke] [yl [j] [facel,
point_object[jokel [2]1[j] [facel);
>
)
HC_Close_Segment();



1 /*

2 |o -a b |

3 A=]a -c |

4 jb 0|

5 */

6

7 #include "sweepparm2.inc®

8

9

10 1BM_First_link(links)

11 int links;

12 (

13 FILE *getin,*gin;

14 float XX,YY,2Z;

15 float at,bt,ct,t,difference, Xt,Yt,2t,a,b,c,Cx,Cy,Cz,X0=0,Y0=0,Z0=0;

16 char tempol20],*tmp;

17 int i,las,j,k,jojo,pc_curve,face;

18 char wierd(3};

19
20 getin = fopen("IBM_1c¥, ''r¥);

21 fscanf(getin,“if, %f 4f 4f, %f %f %f, %f, %f ", &a,8&b,&c,&Cx,&Cy,&Cz,8X0,&Y0,820);
22 fclose(getin);
23

24 difference = 1.0/Division;

25 for (face = 0;face<number_polygons{links];face++)
26 for (pc_curve = 0;pc_curve<number_edges [links] [facel;pc_curve++)
27 L4
28 Xo = vertex[links] [edge{links] [polygonilinks] [facel [pc_curvell [cyclellinks] (facel [pc_curvelll [x1;
29 Yo = vertex[links] [edge{links] [polygon(links] [facel [pc_curvell [cyclellinks] [face]l [pc_curvelll[yl;
30 2o = vertexilinks] [edge(links] [polygon(links] [facel [pc_curvell [cyclellinks] [face] [pc_curvell] (z];
3
32 las = 0;
33 for(t=0;t<1.01; t=t+difference)
34 {
35 if(1>1.0) t = 1.0;
36 at = a*t;
37 point_object[las] [x] [pc_curve] [face] = Xt = cos(at)*Xo+sin(at)*Yo;
38 point_object{lasl [yl [pc_curvel {face]l = Yt = -sin(at)*Xo+cos(at)*Yo;
39 point_object{las] [2] [pc_curve] ifacel = Zo;
40 las++;
41 )
42 }
43 )
44
45 1BM_Second_link(links)
46 int links;
47 (
48 char *file_name;
49 FILE *getin,*gin;
50 float XX,YY,2Z;
51 float R,alt,a2t,bt,ct,t,difference,Xt,Yt,2t,al,a2,b,c,Cx,Cy,Cz,X0=0,Y0=0,20=0;
52 char tempol20],*tmp;
53 int i,las,j,k,jojo,pc_curve,face;
54 char wierd[3];

55

56
57 getin = fopen("IBM_1c","r");
58 fscanf(getin, "if, %f, %f, %f, %f, %f %f, %f, %f, ", 8a1,8b,&c,8Cx,&Cy,4Cz,8&X0, &Y0,&20);
59 fclose(getin);
60

61 getin = fopen(“IBM_2c","r");



62 fscanf(getin,"%f, %f %f, %f %f, %f, %f,%f,%f ", &a2,8b,4c,4Cx,8Cy,&C2,8X0,4Y0,820);
63 fclose(getin);

64

65 gin = fopen(“shift_IBM2c","r");

66 fscanf(gin, "%f, 4f, %f ", &XX,&YY , &22);

67 fclose(gin);

68

69 difference = 1.0/Division;

70 las = 0;

71 for(t=0;t<1.01;t=t+difference)

72 {

73 if(t>1.0) t = 1.0;

74 a2t = a2*t; alt = al*t; R = 0.0;

75 trajectory_point[links] {las]l [x] = Xt = (YY)*sin(alt)+(XX)*cos(alt);
76 trajectory_point[linksl[lasllyl = Yt = -(XX)*sin(alt)+(YY¥)*cos(alt);
77 trajectory_point[links] [las] [z} = 0.0;

78 trajectory_point(tinksl[laslIroll]l = -a2t;

79 trajectory_point{links] [las] [pitch]l = 0.0;

80 trajectory_point[linksl[las][yawl = 0.0;

81

82 las++;

83 )

84 transform_vertices(links); /* transli.c */

85 3>



#include “sweepparm2.inc®
#include “"transform.c"

float length, radius, theta, thetal, tan, x_angle,y_angle,z_angle;
int i, j, k, face, polyhedron, item;

9 char exit,string,mouse[10];

10 double atof();

1 float scale = 2.0;

1
2
3
4
5 short IBM_links()
6
7
8

12

13

14 1BM_base(); /* "1BM_base link.c* */

15 IBM_Arms(1,*IBM_upper_data.c"); /* "IBM_ARMS.c" */

16 IBM_Arms(2,"1BM_fore_data.c"); /* "IBM_ARMS.c" */

17 IBM_hand(); /* "IBM_end_effector.c" */

18

19 { int r,s,t;

20 float dummy_points[61({100] [3];

21 for(r=0;r<6;r++)

22 for(s=0;s<100;s++)

23 for(t=0;t<3; t++)

24 dummy_points([rl [s} [tl=vertex[rl [s](t];

25 transfer(-2.4*scale,0.0,0.0,0.0,0.0,0.0,2,dummy_points);

26 transfer(-4.0*scale,0.0,-2.4*scale,0.0,0.0,-pi,3,dummy_points);
27

28 insert_dummy_lines(0,3,dummy_points,"?picture/geometry/links/A/dummy");
29 insert_dummy_lines(0,3,dummy_points,"?picture/geometry/links/B/dummy");
30 }

31 return polyhedron;

32 )

33

34

35

36

37 /* The same as the subroutine transform() */

38

39 transfer(XX,YY,zZ,rollZ,pitchY,yawX, link,dy_points)
40 float XX,YY,2Z,rollZ, pitchY,yawX;

41 int link;

42 float dy_points{6] [1001(3]1;

43 {

b4 float t[31(3]1;

45 float pseudoX,pseudoY,pseudoZ;

46 int 1,j,pc_curve, face;

47 t{01[01 = cos(rollZ)*cos(pitchY);

48 t[11 (01 = sin(rotlZ)*cos(pitchY);

49 t[21[01 = -sin(pitchY);

50 t{01 {11 = cos(roliZ)*sin(pitchY)*sin(yawX)-sin(rollZ)*cos(yauX);
51 t[11[1] = sin(rollZ)*sin(pitchY)*sin(yawX)+cos(rollZ)*cos(yawX);
52 t[21[1] = cos(pitchY)*sin(yawX);

53 t{01 (2] = cos(rollZ)*sin(pitchY)*cos(yawX)+sin(roll2)*sin(yawX);
54 t(1112) = sin(roll2)*sin(pitchY)*cos(yawX)-cos(rollZ)*sin(yawX);
55 t[21[2] = cos(pitchY)*cos(yauX);

56

57 for(i=0;i<s2;i++)

58 for(j=0; j<=2; j++)

59 if(fabs(t[i11j1)<0.00001) t([i1(j1=0.0;

60

61 for (pc_curve=0;pc_curve<no_of_vertix[linkl;pc_curve++)



62
63
64
65
66
67
68
69
70
71
72

74
75
76
77
78
79
80
81
82
83
84
85

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
m
112
13
114
115
116
17
118
119
120
121

pseudoX dy_points[link] {pc_curve] [x] ;
pseudoY dy_points[link]l [pc_curvelliyl ;
pseudoZ = dy_pointsl[linkl [pc_curvel[z] ;

dy_points[link] [pc_curve) [x1=t [0] {01*pseudoX+t [0] [1]*pseudoY+t {0] [2] *pseudoZ+XX;
dy_points[link] {pc_curvel [yl=t (1] [0)*pseudoX+t [1] [1]*pseudoY+t [1] [2] *pseudoZ+YY;
dy_points{link] [pc_curvel [z]=t[2] [0]*pseudoX+t [2] [1]*pseudoY+t (2] [2) *pseudoZ+2Z;

insert_dummy_lines(header,!imiter,dum_points,seg_name)

i
f
c

nt header, limiter;

loat dum_points([6] {1001 [3];

har *seg_name;

{
int ucla,face,i,j;
HC_Open_Segment(seg_name); /*“?picture/geometry/links/dummy");*/
HC_Set_Color("line=red");

for(ucla= header;ucla<=limiter;ucla++)
8
printf(" \n\n tink no. is %d",ucla);

for(face=0; face<number_polygons [uclal;face++)
for(i=0; i<number_edges [uclal [facel;i++)
{
if(i==number_edges (uclal [facel-1)
i=0;
else
=i+
HC_Insert_Line(
dum_points [ucla] [edge [uclal [polygonluctal [facel [1]1]1 [cycle[ucial [facel [i11]1(x],
dum_points{uclal [edgeluclal [polygonluclial [facel [i1] [cyclefucia] {facel[i1111y]l,
dum_points [ucla] [edgefuclal [polygonluclal [facel [i1] [cyclelucla] [face] [i111([2],
dum_points [uclal [edge{uctal [polygonluclal [facel [j1] [cyclelucla) [facel [j111[x],
dum_points [ucla] {edge {ucla] [polygon{uclal [face) {j11{cyclefucla) [facel [j11]1Lyl,
dum_points [ucla] {edge [uclal [polygon{uclal [face] [j1] fcyclelucta] [facel [j111[2]);

edge_length[uclal [facel [i] = sqrt(

>

(dum_points {ucla] [edge [ucla) [polygon{ucla] [face} [i]11 {111 x]
- dum_points [ucla) [edge[uclal [polygon{uclal {facel [i1][01] [x])*
(dum_points [ucial [edge{uclal [polygon(luclal [facel [111[1]11 [x]
- dum_points [ucla]l [edge [ucla] [polygonfuclal [facel [i11[01][x])
+ (dum_points[ucla] [edge[ucla] [polygon[uclal [face] [11] [1]] [yl
- dum_points[uclal [edge[ucla]l [polygon(lucla] (facel [111[01] [y))*
(dum_points(uclal [edge[uclal {polygon[uclal [face] [i11{11] [y}
- dum_points{ucla]l [edgelucla] [polygonluclal [facel [13110]] [yl)
+ (dum_points [ucla] fedge [ucla] [polygon[uctal [face} {111 {111 {z}
- dum_points{uclal [edge [ucla] [polygonluclal [facel [i111{031([z})*
( dum_points[uclal [edge[ucla] [polygon{uclal [facel [1111[11][z]
- dum_points{ucla] (edge{uclal [polygon{uclal {facel[i1]11[03][z1));
>

2

HC_Close_Segment();



-------

message_window(upper, Lower, third)

char *upper,*lower,*third;

{
HC_Open_Segment("?picture/message/mes1");
HC_Flush_Segment(*.");
HC_Insert_Text(0.0,0.5,0.0,upper);
HC_Insert_Text(0.0,-0.5,0.0,lower);
HC_Close_Segment();
HC_Open_Segment("?picture/message/mes2/ma");
HC_Flush_Segment(".");
HC_Insert_Text(0.0,0.0,0.0,third);
HC_Close_Segment();

char *answer_window()

14

int answers;

char gogol[20];
HC_Open_Segment("?picture/message/mes2/mb");
HC_Get_String("junk", gogo);
HC_Flush_Segment(".");
HC_Close_Segment();
HC_Ftush_Segment("“?picture/message");
return (8gogol(01);

char *Hardcopy_window()

{

HC_Open_Segment("?picture/copy");
HC_Qset_Visibility("?hardcopy","on");
HC_Update_Display();
HC_QSet_Visibility("?hardcopy®,"off");
HC_Flush_Segment("?picture/copy");
HC_Insert_Text(0.0,0.0,0.0,"HARDCOPY");

HC_Close_Segment();

}

char *Quit_window()
&
char mouse(101;
HC_Open_Segment("?picture/quit™);
HC_Insert_Text(0.0,0.0,0.0,"QUIT");
HC_Get_Selection(mouse);

if (strcmp(mouse,"quit*)==0) exit();
HC_Flush_Segment(*.");
HC_Close_Segment();
}



#include "sweepparml.inc"
#include “Message.c®

Formulee(links)

int links;

<

int polygon_increment, i, j;

short sweep_defined,sweep_display, vertices_distance_error;
short IBM_links(), sweep_polyhedron();

char gogo(5], teeem;

message_windoWw("What kind of curve you tike to get/" ,"R_P_Y /AUTO/1/2/3/f/s®,“r/a/1/2/3/%/s");
teeem = *answer_window();

printf(*%c\n", teeem);

switch(teeem)
(

case 'r' : initial_formula(links,"rpudatac"); break; /* auto_formula.c */
case 'a’' : Fast_transform_vertices(links); break; /* fast_transi.c */
case '1' : links = 1; number_segments([links] = 1;

PUMA_first_Link(links); break; /* PUMA_Formula.c */
case 12' : links = 2; number_segments([links] = 1;

PUMA_second_link(links); break; /* PUMA_Formula.c */
case '3' : links = 3; number_segments{links] = 1;

PUMA_third_tink(links); break; /* PUMA_Formula.c */
case 'f' : links = 1; number_segments[links] = 1;

IBM_First_link(links); break; /* 1BM_new_form.c */
case 's' : links = 2; number_segments[links] = 1;

1BM_Second_link(links); break; /* 1BM_new_form.c */

message_window("Sweep 7%, 11, 1)
if(*answer_window() == 'y')
show_point_object_in_swept(links,"?picture/geometry/links/A", "no", "l ine=black","no");

message_window("animation 7%, nh ni),
if(*answer_window() == ‘y*)
show_point_object_in_snap( L inks, "?picture/geomet ry/( inks/B“, “not, Uiine = red", nghy;

message_window("Overlap?", " M"y/n');
if(*answer_window() == ‘'y!)
4
show_point_object_in_swept(links,"?picture/geometry/links/C", "“no", "line = blue","no");
HC_QSet_Line_Meight("?picture/geometry/links/C",3.0);

3
message_window("shaded it 2% nn nuy,
if(*answer_window() == 'y')
{
/* Before appling shading technique, first user can rotate the swept volume to
a better view, and then shade it. Conceptially, the viewer never change location,
but swept volume do. */
transform_object(NQ_image, links); /*transobjtl.c*/
shaded_display_two(NQ_image, l1nks);
>



.......
.......

/*
jo -a b |
A=|a 0 -c |
| b c 0|

*/

#include “sweepparm2.inc"

PUMA_first_link(links)

int links;

{

FILE *getin, *gin;

float XX,YY,2Z;

float at,bt,ct,t,difference, Xt,Yt,2t,a,b,c,Cx,Cy,Cz,X0=0,Y0=0,20=0;
char tempo(2Q],*tmp;

int i,las,j,k,jojo,pc_curve,face;

char wierd(3};

printf("this is link Zd\n", links);

getin = fopen('PUMA_1c*, “rt);

fscanf(getin,"%f,%f %f %f, %f %f, %f ,%f ,%f, “, &a,8b,&c,&Cx,&Cy,&Cz,8&X0, Y0,820);
fclose(getin);

difference = 1.0/Division;
for (face = 0; face<number_polygons [links];face++)
for (pc_curve = 0;pc_curve<number_edges [l inks] [face] ;pc_curve++)

{
Xo = vertex{linksl [edge(links] [polygon(links] [facel [pc_curvell [cyclellinks] [face] [pc_curvelll [x];
Yo = vertex[links] [edge[links]) [polygon{links] [facel [pc_curvell [cyclellinks] [facel [pc_curvellllyl;
2o = vertex[links] [edge[links] [polygon[links] {facel [pc_curvell [cyclellinks] [facel [pc_curvellllz];
las = 0;
for(t=0;1<1.01; t=t+difference)
{
if(t>1.0) t = 1.0;
at = a*t;
point_object[las) [x] [pc_curvel [facel = Xt = cos(-at)*Xotsin(-at)*Yo;
point_object[las] [y] [pc_curvel [facel = Yt = -sin(-at)*Xo+cos(-at)*Yo;
point_object[las] (2] [pc_curvel [facel = Zo;
las++;
>
)

/* This part of the porgram is implemented but the sweep differential has not been found yet. */

PUMA_second_Llink(links)

int links;

{

char *file_name;

FILE *getin,*gin;

float XX,YY,2Z;

float R,alt,a2t,bt,ct,t,difference, Xt,¥t,2t,al,a2,b,c,Cx,Cy,Cz,X0=0,Y0=0,20=0;
char tempo{201,*tmp;

int i,las,j, k,jojo,pc_curve, face;

char wierd(3];
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63
64
65

67
68
69
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75
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84
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87
88
89
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95
96
97
98

100
101
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103
104
105
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107
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17
118
19
120
121
122
123
124
125
126

getin = fopen(“PUMA_1c", 'r*);
fscanf(getin, "&%f,%f , %f,%f,%f %f %f %f, %f,",&a1,&b, &c,&Cx,8Cy,&Cz,8X0,&Y0,820);
fclose(getin);

getin = fopen("PUMA_2c","r");
fscanf(getin,“%f,%f &f Xf %f, 4f, %, %f, %f, ", &a2,8b,&c,&Cx,&Cy,&Cz,8X0,8Y0,4&20);
fclose(getin);

gin = fopen("“shift_PUMA2c"®,¥r¥);
fscanf(gin,“4f %f %f, ", &XX, 8&YY K 822);
fclose(gin);

R = sqrt(XX*XX+YY*YY*22*ZZ);

difference = 1.0/Division;
las = 0;
for(t=0;t<1.01; t=t+difference)
{
if(t>1.0) t = 1.0;
a2t = a2*t; alt = at*t;
trajectory_point{linksl{las) [x] = Xt = (YY)*sin(alt)+(XX)*cos(alt);
trajectory_point[linksl {las] [yl =Yt = -(XX)*sin(ait)+(YY)*cos(alt);
trajectory_point[tinks] [las] {z] = 0.0;
/*
| o ° -a2tCos(ait) |
A=1| o ] -a2tsin(alt) |
| 2tcos(alt) 2tsin(alt) ] |
*/
trajectory_point[links] [{as] [rotl] = alt;
trajectory_point[links) [las] [pitchl = a2t;
trajectory_point[links] [las] [yaw] = 0.0;

las++;
>
transform_vertices(links); /* transl.c */

/* This part of the porgram is implemented but the sweep differential has not been found yet. */

PUMA_third_link(links)

int links;

14

char *file_name;

FILE *getin,*gin;

float XX,YY,2Z;

float R,alt,a2t,a3t,bt,ct,t,difference, Xt,¥Yt,2t, al,a2,a3,b,c,Cx,Cy,Cz,X0=0,Y0=0,20=0;
float b1,b2,c1,c2,b3,c3;

char tempo(20],*tmp;

int i,las,j,k, jojo,pc_curve, face;
char wierd(3];

getin = fopen("PUMA_1ch,"r");
fscanf(getin, wif %f,%f %f, %, %f %f, %f, %f,", &a1,8&b1,&c1,4Cx, 8Ly, &Cz,8X0,&Y0,820);
fclose(getin);

getin = fopen("PUMA_2c", "r?);
fscanf(getin, W%f %f, %f, %f, %, %f, %f, %f, %€, ", &a2,8&b2,8¢c2,84Cx,&Cy,8Cz,8X0,8Y0,8Z0);
fclose(getin);

getin = fopen("PUMA_3c","r");
fscanf(getin,"xf, %f, %, %f, %f, %f, %f %f,%f, ", &a3,8b3,&c3,4Cx, &Cy, &Cz,8X0, &Y0,820);
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fclo

gi
fscal
fclo

las
for(
4

3

se(getin);

n = fopen("shift_PUMA3cH,"r");
nf(gin, "%, %F,%f,", 6XX,&YY,&22);
se(gin);

difference = 1.0/Division;
=0;
t=0;t<1.01; t=t+difference)

if(t>1.0) t = 1.0;
a3t = a3d*t; a2t = a2*t; alt = al*t;
R = 4.32*cos(a2t);
trajectory_point [links] [las] {x]
trajectory_point [links] [las] [y]
trajectory_point[links] [las] [z]

Xt
Yt

R*cos(alt);
R*sin(alt);

"
[}

trajectory_point(links] [lasl[roll] = alt;
trajectory_point{links] [las] [pitch] = a3t;
trajectory_point{links] [las] [yaw]l = 0.0;

las++;

transform_vertices(links);

(4.32)*sin(-a2t);

/* transl.c */



1 #include “sweepparm2.inc"

3 short PUMA_links()

4 (

5 float length, radius, theta, thetal, tan, x_angle,y_angle,z_angle;
) int i, j, k, face, polyhedron, item;

7 char exit,string,mouse{10];

8 double atof();

9

10 /* The following subroutine define the solid model of PUMA robot. */

1 PUMA_base(); /* YPUMA_base_link.c" */

12 PUMA_motor(); /* “PUMA_motor_link.ch*/

13 PUMA_forearm(); /* “PUMA_fore_arm.c" */

14 PUMA_upperarm(); /* V“PUMA_upper_arm.c" */

15 PUMA_hand(); /* "PUMA_end_effector.c" */

16

17 /* This subroutine shows the PUMA robot initial condition, in red line. */

18 dummy_PUMA(); i

19

20 /* The subroutine transfrom" is to transform the solid vertex to proper initial
21 position. While defining the PUMA links, it is easier to define it corelated
22 to the world coordinate then transfer the object vertex to proper location.
23 The format of this subroutine is transform(x,y,z,roll,pitch,yaw, link_number); */
24

25 transform(0.0,0.0,0.0,0.0,0.0,-1.57080,1); /* link 1 --- motor */

26 transform¢0.0,-0.75,0.0,0.0,0.0,0.0,1);

27

28 transform(¢0.0,0.0,0.0,0.0,0.0,1.57080,2); /* link 2 --- upper-arm */

29

30 transform(0.0,0.0,0.0,0.0,0.0,1.57080,3); /* link 3 --- fore-arm */

31

32

33 transform(0.19,0.0,0.0,0.0,0.0,0.0,4); /* Link 4 --- end-effector */
34 transform¢0.0,-1.25,0.0,0.0,0.0,0.0,4);

35

36 return polyhedron;

37 >

38

39

40 .

41 dummy_PUMA()

42 (

43 int r,s,t;

44 float dummy_points[6] {100] {3];

45 for(r=0;r<6;r++)

46 for(s=0;s<100;s++)

47 for(t=0; t<3; t++)

48 dummy_points({rl [s] [t]1=vertex[rl[s](t];

49 transfer(0.0,0.0,0.2,0.0,0.0,0.0,0,dummy_points);

50 transfer(0.0,0.0,0.0,0.0,0.0,-1.57080,1,dummy_points);

51 transfer(0.0,-0.75,0.0,0.0,0.0,0.0,1,dummy_points);

52 transfer(¢0.0,0.0,0.0,0.0,0.0,1.57080, 2, dummy_points);

53 transfer¢0.0,0.0,0.0,0.0,0.0,1.57080,3,dunmy_points);

54 transfer(4.32,0.0,0.0,0.0,0.0,0.0,3,dummy_points);

55 transfer(4.51,0.0,0.0,0.0,0.0,0.0,4,dunny_points);

56 transfer(0.0,-1.25,0.0,0.0,0.0,0.0,4,dumy_points);

57 insert_dummy_lines(0,4,dummy_points,"?picture/geometry/links/dummy");

58 >
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static float x_angle,y_angle,z_angle;
rotate_segments(seg_nam)
char seg_nam[25];

{

float length, radius, theta, thetal, tan;
int 1, j, k, face, polyhedron, item;
char exit,string(10},mouse([10];

FILE *getin;

char takein[90];

double atof();

for(;;
(

HC_Open_Segment("?picture/menus");

HC_Flush_Segment(".");

HC_Open_Segment(“?picture/menus/reset");
HC_Insert_Text(0.0,0.0,0.0,"RESET");
HC_Close_Segment();

HC_Open_Segment("?picture/menus/rotate_x");
HC_Insert_Text(¢0.0,0.0,0.0,"Rotate X");
HC_Close_Segment();

HC_Open_Segment("?picture/menus/rotate_y");
HC_Insert_Text(0.0,0.0,0.0,"Rotate Y* );
HC_Close_Segment();

HC_Open_Segment("?picture/menus/rotate_z");
HC_Insert_Text(0.0,0.0,0.0,"Rotate 2%);
HC_Close_Segment();

HC_Open_Segment ("?picture/menus/m5");

HC_Insert_Text(0.0,0.0,0.0,"ROTATE");
HC_Close_Segment();

HC_Open_Segment("?picture/menus/mé*);
HC_Insert_Text(0.0,0.0,0.0,"1st link");
HC_Close_Segment();

HC_Open_Segment("?picture/menus/m7");
HC_Insert_Text(0.0,0.0,0.0,"2nd link");
HC_Close_Segment();

HC_Open_Segment("*?picture/menus/m8");
HC_Insert_Text(0.0,0.0,0.0,"3rd link");
HC_Close_Segment();

HC_Open_Segment("“7picture/menus/m9");
HC_Insert_Text(0.0,0.0,0.0,"4th Link");
HC_Close_Segment();

HC_Open_Segment("?picture/menus/m10");
HC_Insert_Text(0.0,0.0,0.0,"Animation");
HC_Close_Segment();

HC_Close_Segment();
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HC_Get_Selection(mouse);

if (strcmp(mouse,"mé")==0) {
/*if(buffer ==*i')1BM_First_Llink(link_no_buffer = 1);*/
break;)
else if(strcmp(mouse, 'm7")==0)(
/*if(buffer =='i')IBM_Second_link(link_no_buffer=2);*/
break;?>
else if (strcmp(mouse,"m8")==0) {Formulee(link_no_buffer = 3);break;?}
else if (strcmp(mouse,"m9")==0) (Formulee(link_no_buffer = 4);break;}
else if (Istrcmp(mouse,"m10") && Formulee(link_no_buffer)) break;
else if (stremp(mouse,okokokokok")==0) { HC_UnSet_Modelling_Matrix();
x_angle=0.0;
y_angle=0.0;
z_angle=0.0;
b
else if (strcmp(mouse,"m5")==0) HC_QRotate Object(seg_nam,x_angle,y_angle,z_angle);
else if (strcmp(mouse,“reset*)==0) /** Quit_window()*/
{getin = fopen(“autodatac",'r");
fscanf(getin,"4s\n", takein);
fclose(getin);
message_window(takein," a, b, ¢, Cx, Cy, Cz4,4");)
else if (stremp(mouse,”sweep")==0) Formulee(link_no_buffer);
else if (strcmp(mouse,“rotate_x")==0 || stremp(mouse,*rotate_y")==
|| stremp(mouse,"rotate_z*)==0)

{

char temmp;
message_window(*ENTER HOW MANY DEGREES™,"YOU WANT TO ROTATE","%);

)

HC_Open_Segment("?picture/message/mes2/mb");
HC_Flush_Segment(".");
HC_Get_String("angle", string);
HC_Close_Segment();
if(temmp == 'u') seg_nam = "?picture/geometry/links/upper";
else if(temmp == 'L') seg_nam = "?picture/geometry/links/lower";
else seg_nam = "?picture/geometry/links";

if (strcmp(mouse,rotate_x")==0)
8
x_angle=atof(string);
y_angle=0.0;
z_angle=0.0;
>
else if (strcmp(mouse,"rotate_y")==0)
<
y_angle=atof(string);
x_angle=0.0;
z_angle=0.0;
3}
else if (strcmp(mouse,"rotate_z")==0)
{
z_angle=atof(string);
x_angle=0.0;
y_angle=0.0;
)
}
HC_Update_Display();



#include "sweepparm2.inc

1

2

3 initial_formula(links, file_name)
4 int links;

5 char *file_name;
6 (

7 FILE *getin,*gin;

8 float XX,YY,2Z;

9 float at,bt,ct,t,difference,Xt,Yt,2t,a,b,c,Cx,Cy,Cz,X0=0,Y0=0,Z0=0;
10 char tempo{20],*tmp;

11 int i,las,j,k,jojo,pc_curve,face;

12 char wierd(3);

14 getin = fopen(file_name,"r");
15 fscanf(getin, "%f %f, %f %f %f 4f %f %f %f, ", &a, &b, &c,&Cx, &Cy,&Cz,8X0,8Y0,820);
16 fclose(getin);

18 /* Check the sweeping solid object belongs to PUMA or IBM robot. */
19 switch(buffer)

20 (

21 /* 1f it is PUMA link 2 then difine the coordinate at (-2.4,0,0).

22 If it is PUMA Llink 3 then difine the coordinate at (-4,0,-2.4). */
23

24 case 'p': if(links==2) (Xo0=-2.4;Y0=0.0;20=0.0;)

25 else if(links==3){X0=-4.0;Y0=0.0;20=-2.4;)

26 break;

27

28 /* 1f it is PUMA link 1 then difine the coordinate at (0,-.75,0).

29 If it is PUMA link 2 then difine the coordinate at (0,-1.25,0).

30 If it is PUMA tink 3 then difine the coordinate at (0.19,-1.25,0). */
31

32 case 'i':if(links==1){X0=-0.0;Y0=-0.75;20=0.0;3

33 else if(links==2);

34 else if(links==3);

35 else if(links==4)(X0=0.19;Y0=-1.25;>

36 break;

37 )

38

39

40 /* This is to redifine the autonomous sweep initial location, The new location should
41 be put in the file "shiftdatac" before answer the following question. */
42

43 message_window('Would you like to redifine the initial point?","» vy/nh);
44 if(*answer_window() == 'y')

45 (

46 gin = fopen("shiftdatac","r");

47 fscanf(gin, "%f, %f, %f,", &XX, &YY, &22);

48 fclose(gin);

49 shiftt(xx,YY,zz,links);

50 }

51

52 difference = 1.0/Division;
53 for (face = 0;face<number_polygonsilinks];face++)
54 for (pc_curve = 0;pc_curve<number_edges [links] [face];pc_curve++)

55

56 Xo = vertex[linksl{edgel[links] [polygon{links] [facel[pc_curvellcyclellinks] [facel [pc_curvelll[x1;
57 Yo = vertex[links]{edgellinks] [polygonilinks] [facel[pc_curvell{cycle(links] [facel [pc_curveilllyl;
58 2o = vertex[linksl[edgellinks] [polygon{links] [face] [pc_curvelllcyclellinks] [face] [pc_curvellllz];
59

60 las = 0;

61 for(t=0;t<1.01;t=t+difference)
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if(t>1.0) t = 1.0;
at = a*t;
point_objectlas] [x] [pc_curvel [face} = Xt
= 1/a*(sin(at)*Cx + (1-cos(at))*Cy)+cos(at)*Xo+sin(at)*Yo;
point_objectlas] [yl [pc_curvel [facel = Yt
= 1/a*(-(1-cos(at))*Cx + sin(at)*Cy)-sin(at)*Xo+cos(at)*Yo;
point_object[las] [z] [pc_curvel [face] = Z0;
lag++;



/* This is the subroutine, which set up the screen manu,
by using HOOPS buildin functions. */

#include <math.h>

#include <stdio.h>

#include <string.h>

#define streq(x,y) strcmp(x,y)==

environment()

{

char name(10],*message_up="\0", *message_down="\0", *menul="\0",
*menu2="\0", *menu3="\0", *menué4=""\0", *menud=""\0";

[N G I S
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16 char *menué="\0",*menu7="\0", *menu8="\0", *menu?="*\0", *menul0="\0";
17

18 float x_cord = 10.,y _cord = 10., z_cord = 10.;
19 HC_Open_Segment("?picture");

20 HC_Set_Camera_Position(0.0,0.0,5.0);

21 HC_Open_Segment("?picture/message");

22 HC_Set_Mindow(-1.0,1.0,-1.0,-0.8);

23 HC_Set_Text_Size(0.5);

24 HC_Set_Color("window=black, window contrast = white, text=white");
25 HC_Set_MWindow_Frame("on");

26

27 HC_Open_Segment("?picture/message/mesi!);
28 HC_Set Window(-1.0,0.0,-1.0,1.0);

29 HC_Set_Window_Frame("on");

30 HC_Insert_Text(0.0,0.5,0.0,message_up);

31 HC_Insert_Text(0.0,-0.5,0.0,message_down);
32 HC_Close_Segment();

33

34 HC_Open_Segment("?picture/message/mes2");
35 HC_Set_Window(0.0,1.0,-1.0,1.0);

36 HC_Set_Window_Frame("on');

37

38 HC_Open_Segment("?picture/message/mes2/ma");
39 HC_Set_Window(-1.0,1.0,0.0,1.0);

40 HC_Set_Window_Frame("on");

41 HC_Close_Segment();

42

43 HC_Open_Segment("?picture/message/mes2/mb");
44 HC_Set_Window(-1.0,1.0,-1.0,0.0);

45 HC_Set_Window_Frame("on");

46 HC_Close_Segment();

47

48 HC_Close_Segment();

49

50 HC_Close_Segment();

51

52 HC_Open_Segment("?picture/Sweep™);

53 HC_Set_Window(-1.0,-0.8,-0.8,-0.55);

54 HC_Set_Text_Size(0.3);

55 HC_Set_Color("window=blue, text=yellow");

56 HC_Set_Window_Frame(*on");

57 HC_Insert_Text(0.0,0.0,0.0,"SWEEP");

58 HC_Close_Segment();

59

60 HC_Open_Segment("?picture/quit");

61 HC_Set_Mindow(-1.0,-0.8,0.8,1.0);



62 HC_Set_Text_Size(0.3);

63 HC_Set_Color(“window=red, text=yel low");
64 HC_Set_Window_Frame("on");

65 HC_Insert_Text(0.0,0.0,0.0,"QuiT");

66 HC_Close_Segment();

67

68

69 HC_Open_Segment("?picture/menus®);

70 HC_Set_Window(-1.0,-0.8,-0.55,0.8);

71 HC_Set_Text_Size(0.3);

72 HC_Set_Color("window=yellow, text=blue*);
73 HC_Set_MWindow_Frame("on");

74

75

76 HC_Open_Segment("?picture/menus/reset");
77 HC_Set_Window(-1.0,1.0,0.8,1.0);

78 HC_Set_Window_Frame("on");

79 HC_Insert_Text(0.0,0.0,0.0,menul);

80 HC_Close_Segment();
81
82 HC_Open_Segment("?picture/menus/rotate_x");

83 HC_Set_Window(-1.0,1.0,0.6,0.8);
84 HC_Insert_Text(0.0,0.0,0.0,menu2);

85 HC_Set_MWindow_frame("on");

86 HC_Close_Segment();

87

88 HC_Open_Segment("?picture/menus/rotate_y");
89 HC_Set_Window(-1.0,1.0,0.4,0.6);

90 HC_Set_Window_Frame('on");

9N HC_Insert_Text(¢0.0,0.0,0.0,menu3);

92 HC_Close_Segment();

93

94 HC_Open_Segment(“?picture/menus/rotate_z");
95 HC_Set_Window(-1.0,1.0,0.2,0.4);

96 HC_Set_Window_Frame('on");

97 HC_Insert_Text(0.0,0.0,0.0,menu4);
98 HC_Close_Segment();

100 HC_Open_Segment("?picture/menus/m5");
101 HC_Set_Window(-1.0,1.0,0.,0.2);
102 HC_Insert_Text(¢0.0,0.0,0.0,menu5);

103 HC_Set_Window_Frame("on");

104 HC_Close_Segment();

105

106 HC_Open_Segment("“?picture/menus/mé");
107 HC_Set_Window(-1.0,1.0,-0.2,0.0);

108 HC_Set_MWindow_Frame(on");

109 HC_Insert_Text(0.0,0.0,0.0,menué);
110 HC_Close_Segment();

1M1

12 HC_Open_Segment("?picture/menus/m7");

113 HC_Set_Window(-1.0,1.0,-0.4,-0.2);
14 HC_Insert_Text(0.0,0.0,0.0,menu?);

115 HC_Set_Window_Fframe("on");

116 HC_Close_Segment();

nz

118 HC_Open_Segment("?picture/menus/m8%);
19 HC_Set_Window(-1.0,1.0,-0.6,-0.4);
120 HC_Set_Window_Frame(*on");

121 HC_Insert_Text(0.0,0.0,0.0,menu8);
122 HC_Close_Segment();

123

124 HC_Open_Segment("?picture/menus/m9");

125 HC_Set_Window(-1.0,1.0,-0.8,-0.6);
126 HC_Set_Window_Frame('on");



127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

HC_Insert_Text(0.0,0.0,0.0,menu9);
HC_Close_Segment();

HC_Open_Segment("?picture/menus/mio");
HC_Set_Window(-1.0,1.0,-1.0,-0.8);
HC_Insert_Text(0.0,0.0,0.0,menul0);
HC_Set_Window_Frame("on");
HC_Close_Segment();

HC_Close_Segment();

HC_Open_Segment(“?picture®);
HC_Open_Segment(“?picture/geometry");
HC_Set_Window(-0.8,1.0,-0.8,1.0);
HC_Set_Color("window=green yellow, line=red");
HC_Set_Window_Frame("on");

HC_Open_Segment("?picture/geometry/links");
HC_Set_Window(-1.,1.0,-1.,1.0);

HC_Open_Segment (MAXES");
HC_Set_Text_Size(0.3);
HC_Set_Line_Weight(1.0);
HC_Set_Color("LINES = red, text = gold");
HC_Insert_Line(0.0,0.0,0.0,3.0,0.0,0.0);
HC_Insert_Line(0.0,0.0,0.0,0.0,3.0,0.0);
HC_Insert_Line(¢0.0,0.0,0.0,0.0,0.0,3.0);
HC_Insert_Text(3.10,0.0,0.0,"x");
HC_Insert_Text(0.0,3.10,0.0,"y");
HC_Insert_Text(0.0,0.0,3.10,"2");
HC_Insert_Marker(0.0,0.0,0.0);

HC_Close_Segment();

HC_Close_Segment();
HC_Close_Segment();
HC_Close_Segment();

HC_Open_Segment("?picture/geometry/links/A");
HC_Close_Segment();
HC_Open_Segment("?picture/geometry/links/8");
HC_Close_Segment();
HC_Open_Segment("?picture/geometry/links/C");
HC_Close_Segment();

)



/* This fast_transform_vertices is using the property of the autonomous sweep vector
field, that the fild lines should parallel to each orher. For the reason, one can
sweep the solid vertex directly, without sweeping the “body_ attatched_coordinate_frame!.
In this way, one can save the computer computation time of transform the solid vertex
with respect to the “body_attatched_ coordinate_frame. */

#inctude “sweepparm2.inc"
#include "auto_head.inc"

Fast_transform_vertices(links)
igt links;
(

int i,j,k,pc_curve,face,las;

float XX,YY,2Z;

float at,bt,ct,t,difference,Xt,Yt,2t,a,b,c,Cx,Cy,Cz,X0=0,Y0=0,20=0;
FILE *getin,*gin;

getin = fopen(“autodatac",'r*);
fscanf(getin,"4f,%f, %f, %f %f %f, ", &a, &b, &, &Cx,&Cy,&C2);
fclose(getin);

Pre_Processing(a,b,c);
message_window("Would you like to redifine the initial point?n,un, ty/nv);
if(*answer_window() == 'y!)
{
gin = fopen(“"shiftdatac","r");
fscanf(gin, “4f ,%f %f, ", 8XX, &YY,b&22);
fclose(gin);
shiftt(XX,YY,zz,links);

difference = 1.0/Division;

for (face = 0;face<number_polygons [links]; face++)
for (pc_curve = 0;pc_curve<number_edges [l inks] [facel ;pc_curve++)

(4
Xo = vertex{links] [edge[links] [polygon(links] [face] [pc_curvell [cycle(links] [face] [pc_curvelll [x];
Yo = vertex[links] [edge[links) [polygon{links] [face] [pc_curvell [cycle[links] [facel [pc_curvelll[yl;

Zo = vertex[links] [edge(links] [polygonilinks] [facel [pc_curvell [cycle(links] [facel ipc_curvelll [z];

las = 0;
for(t=0;t<1.01;t=t+difference)
{
if(t>1.0) t = 1.0;
at = a*t; bt = b*t; ct = c*t; Kt = K*t;
COSS = cos(Kt); SINN = sin(Kt);
ISIN (1-cos{Kt))/K; 1COS = sin(Kt)/K;

point_object[las] [x] [pc_curve] [face] = autox(a,b,c,Cx,Cy,Cz,Xo0,Y0,20,t);
point_object{las] [y] [pc_curve] [face]l = autoy(a,b,c,Cx,Cy,Cz,X0,Y0,Z0,t);
point_object [las] [z] [pc_curve] [face] = autoz(a,b,c,Cx,Cy,Cz,Xo0,Y0,20,t);

n

las++;
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float autox(a,b,c,Cx,Cy,Cz, Xo,Y0,Z0,1)
float a,b,c,Cx,Cy,Cz,Xo0,Y0,20,t;

&

float Res,Rst,Rso;

Rso = (CC+(AA+BB)*COSS)*Xot+(a*c*(COSS-1)+b*K*SINN)*Yo+(-b*c*(C0SS-1)+K*a*SINN)*Z0;
(CC*t+(AA+BB)*ICOS)*Cx+(a*c*(1COS-t)+b*K*ISIN)*Cy+(-b*c*(1COS-t)+K*a*1SIN)*Cz;

Rst
Res = Rso+Rst;
return Res/KK;
3

float autoy(a,b,c,Cx,Cy,Cz,Xo,Y0,Z20,t)
float a,b,c,Cx,Cy,Cz,Xo0,Y0,20,¢;

{

float Res,Rst,Rso;

Rso
Rst
Res

RsotRst;

return Res/KK;
>

float autoz(a,b,c,Cx,Cy,Cz,Xo0,Y0,Z0,t)
float a,b,c,Cx,Cy,Cz,Xo0,Y0,20,t;

<

float Res,Rst,Rso;

Rso
Rst
Res = Rso+Rst;
return Res/KK;
>

Pre_Processing(a,b,c)
float a,b,c;

¢

AA = a*a;

BB = b*b;

CC = c*c;

JJ = a*atc*c;

J = sqrt( JJ );
KK = a*atb*b+c*c;
K = sqrt( KK );

>

shiftt(XX,YY,zZ,links)

float XX,YY,2Z;

int links;

{

int i,j;

for(i=0;i<no_of_vertix{links]; i++)

¢
vertex{links) [i]1{x] = vertex{links][i][x]
vertex[links) [i1[y] = vertex[links] [i1[y]
vertex [Links) [i]1[z] = vertex{links] (il [z]
b

(a*c*(COSS-1)-b*K*SINN)*Xo+(AA+(CC+BB)*COSS)*Yo+(a*b*(COSS-1)+K*c*SINN)*20;
(a*c*(1COS-t)-b*K*ISIN)*Cx+(AA*t+(CC+BB)*ICOS)*Cy+(a*b*(1COS-t)+K*c*ISIN)*Cz;

(-b*c*(COSS-1)-K*a*SINN)*Xo+(a*b*(COSS-1)-K*c*SINN)*Yo+(BB+JJ*COSS)*Zo;
(-b*c*(1COS-t)-K*a*ISIN)*Cx+(a*b*(ICOS-t)-K*c*ISIN)*Cy+(BB*t+JJ*IC0OS)*Cz;

+ XX;
+ YY;
+ 22;
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#define x 0
#define y 1
#define z 2
#define pi 3.1415926

char *Quit_window();
char *Hardcopy_window();
char *answer_window();
#include <math.h>
#include <stdio.h>



..............

1 #include “sweepparm2.inc"

2 #include "Table_var.inc"

3 #include "e.c®

4 #include “Rotat_Segment.c®

5

6 main()

7 <«

8 int polyhedron_defined, link_no;

9 environment(); /* e.c */

10 message_window("™ IBM ?","PUMA 2" “choose p/i");

1 buffer = *answer_window();

12 switch(buffer)

13 L4

14 case ‘p':

15 PUMA_Llinks(); /* PUMAlinks.c */

16 link_no = 5;

17 HC_QSet_Camera_Position(“?picture/geometry/links*,0.0,0.0,70.0);
18 break;

19 case ‘'i':

20 IBM_Links(); /* “IBMlinks.c" */

21 link_no = 4;

22 HC_QSet_Camera_Position("?picture/geometry/links*,0.0,0.0,50.0);
23

24 message_window("orthographic", ", "y/n");

25 1f(*answer_window() == ty')

26 HC_QSet_Camera_Projection("?picture/geometry/tinks","orthographic");
27 break;

28

29 )

30
31
32 for(;;) rotate_segments("?picture/geometry/links"); /* “Rotat_Segment.c" */
33 )



/* THE FIRST [6) MEANS THERE ARE AT MOST 6 LINK FOR A ROBOT */

#define x 0

#define y 1

#define z 2

#define rolt 3
#define pitch 4
#define yaw 5
#define pi 3.1415926
#define Division 12

char *Quit_window();

char *Hardcopy_window();

char *answer_window();

float autox(),autoy(),autoz();

float 1I_Sin_Sin(),1_Cos_Cos(),I_Sin_Cos();

#include <math.h>
#include <stdio.h>
#include <string.h>

float trajectory_configurationl[6] [41[6]1; /* the last 6 is & dof */
float trajectory_point[6] [Divisiont11(61; /* the last 6 is 6 dof */
float phi_image_object, theta_image_object;

int polygon(6] [40] [20], cyclel6][40]120]1, edge(6][100](2];

float vertex([6])([100] (3}1;

float edge_length{6] [40] [20];

/*** float N[4][4], Nu(3){4); */

float ray_position_image(3]1, ray_direction_image[3];

float scan_line_position_image(3];

float L{3]1[21, SI3];

short color(7) [40]1;

int number_segments[6];

int number_polygons (6], number_edges[6] [40], total_number_edges(6];
int number_polys[6], number_poly_vertices [6] [3000]1;

int number_links, curve_increment;

int x_minimum _pixel, x_maximum pixel;

int y_minimum_pixel, y_maximum_pixel;

int no_of _vertix(7};

tong keynumber;

char buffer;

int link_no_buffer;

float point_object[Division+1] [3]1 1201 [30], point_image(Division+1] (3] [20] [30];
float NQ[4) [4] [3][201 [301,NQ_image (4] [4] [3] {201 [30]1;



..............
..............

#include “sweepparm2.inc"
#define jokee 1.0

1

2

3

4 transform_vertices(links)
5 int links;
6

7

8

float t([31(33;
int i,j,k,pc_curve,face;

9
10 /* Transform the vertices of each polygon{links]l of the polyhedron
" according to the position and orientation of the four points
12 that define the trajectory. For some swept objects of a polygon[links],
13 the size of the polygon{links] may change considerably, i.e., +-2%,
14 so the four point form of the swept object is subdivided into
15 either 2 or 4 segments. A record of this subdivision is maintained
16 to be used for correct display. */
17
18 curve_increment = 1;
19
20
21 for( i = 0; i<Division+1; i=i+curve_increment)
22 (
23 t[0) {01 = cos(trajectory_point[links]{illroll]/jokee)
24 *cos(trajectory_point[links] [i] [pitchl/jokee);
25 t{11[0]1 = sin(trajectory_point{links] [i)[roil]/jokee)
26 *cos(trajectory_point[links] [i] [pitchl/jokee);
27 t{21 {01 = -sin(trajectory_point{links] [i] [pitchl/jokee);
28 t{01 (1) = cos(trajectory_point{linksl([il([roll]/jokee)
29 *sin(trajectory_point[links] [i} [pitch]/jokee)
30 *sin(trajectory_point[links] [i] [yawl/jokee)
31 - sin(trajectory_point[links] [i]l [roll]/jokee)
32 *cos(trajectory_point[links] [i] [yawl/jokee);
33 t[11{1) = sin(trajectory_point{tinksl[i] [rolll/jokee)
34 *sin(trajectory_point [links] [i) [pitchl/ jokee)
35 *sin(trajectory_point[links] [i] [yawl/jokee)
36 + cos(trajectory_point[links] [i]l[rolll/jokee)
37 *cos(trajectory_point{links] [i] {yawl/jokee);
38 t[21[1] = cos(trajectory_point(links][i][pitch]/jokee)
39 *sin(trajectory_point{links] [1] [yawl/jokee);
40 t[0] (2] = cos(trajectory_point[links]{il[rolll/jokee)
41 *sin(trajectory_point{links] [il [pitchl/jokee)
42 *cos(trajectory_point {links] [i] [yawl/jokee)
43 + sin(trajectory_point[links][i] [rol{)/jokee)
44 *sin(trajectory_point([links} [{] [yawl/jokee);
45 t[11[2] = sin(trajectory_point(links) [i]l{rolll/jokee)
46 *sin(trajectory_point[links] {i]l [pitchl/jokee)
47 *cos(trajectory_point [links] [i] [yaw]/jokee)
48 - cos(trajectory_pointilinksl[il[rolll/jokee)
49 *sin(trajectory_point{linksl (il [yawl/jokee);
50 t21[2] = cos(trajectory_point{links] [i]l{pitchl/jokee)
51 *cos(trajectory_point[links) [i] {yawl/jokee);
52
53
54 for (j = 0;j<3;j++)
55 for (k = 0;k<3;k++)
56 if (tIj1[k1<0.0001 && t([j11k1>-0.0001)
57 tLj1tkl = 0.0;
58
59 for (face = 0;face<number_polygons{links];face++)
60 for (pc_curve = 0;pc_curve<number_edges [links] [facel;pc_curve++)

61 {
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point_object (il [x] [pc_curvel [face] =
t[0] Ix]*vertex[links] [edge[links] [polygon[links] [facel [pc_curvel] {cyclellinks] [facel [pc_curvell] {x]
+ t[0] [y}*vertex[links] [edge(links] [poltygoniiinks] (facel [pc_curvell [cycle(links] [face] {pc_curvellll
+ t[0] [z)*vertex([links] [edge(links] [polygon{links] [face] [pc_curvell [cyclellinks] [facel [pc_curvellll
+ trajectory_point [links] [1]1([x]1;

point_object{i] [yl [pc_curvel [face]l =
t[1) IxJ*vertex{links] [edge [l inks] [polygon(links] [facel [pc_curvell [cycle(links] [facel [pc_curvell] [x]
+ t{11{yl*vertex(links] fedge[links] [polygonilinks] [facel [pc_curvell {cycle(links] [face] [pc_curvelll [
+ t{1] {z1*vertex[links] {edge[links] [polygon{links] {facel [pc_curvell [cyclellinks] [facel [pc_curvel]l](
+ trajectory_point [links] [1][y]l;

point_object[i]{z] [pc_curvel [facel =
t{2] [x)*vertex[links] [edge(links] [polygon[links]} [face] {[pc_curvel]l [cycle(links] [facel [pc_curvelll[x]
+ t[2) [yl*vertex{links] fedge[links] [polygon{links] [face] [pc_curvell [cyclellinks]l{face] [pc_curvellll
+ t12) [z1*vertex[links] [edge[links] [polygon{links] [face] [pc_curvell [cyclellinks] (face] [pc_curvelll(

+ trajectory_point[linksl[1](z];



1 #include "sweepparm2.inc®
2
3 /* This function is using the roll, pitch, and yaw angle to transform points
4 with respect to the world coordinate frame. */
5
6 transform(XX,YY,2Z,rollZ, pitchY,yauX,link)
7 float XX,YY,2Z,rollZ,pitchY,yawX;
8 int link;
9 <
10 float t{31(3};
1 float pseudoX,pseudoY,pseudoZ;
12 int i,j,pc_curve,face;
13 t{0) [0} = cos(rollZ)*cos(pitchY);
14 t{11[01 = sin(rollZ)*cos(pitchY);
15 t[21 101 = -sin(pitchY);
16 t[01[1] = cos(rollZ)*sin(pitchY)*sin(yawX)-sin(rollZ)*cos(yauX);
17 t[(11 111 = sin(rollZ)*sin(pitchY)*sin(yawX)+cos(rollZ)*cos(yawX);
18 t[21 1] = cos(pitchY)*sin(yawX);
19 tI031[2) = cos(rollZ)*sin(pitchY)*cos(yawX)+sin(rollZ)*sin(yawX);
20 t{11[2] = sin(rotl2Z)*sin(pitchY)*cos(yawX)-cos(rollZ)*sin(yawX);
21 t{2112] = cos(pitchY)*cos(yawX);
22
23 for(i=0;i<=2;i++)
24 for(j=0;j<=2;j++)
25 if(fabs(t[il{j})<0.00001) t{i1[}1=0.0;
26
27 for (pc_curve=0;pc_curve<no_of_vertixIlinkl;pc_curve++)
28 {
29 pseudoX = vertex[linkl [pc_curvel [x] ;
30 pseudoY = vertex[link] {pc_curvel Lyl ;
31 pseudoZ = vertex([link] [pc_curvel (2] ;
32
33 vertex[link] [pc_curve] [x1=t [0] [0] *pseudoX+t [0] (1] *pseudoY+t {0] [2] *pseudoZ+XX;
34 vertex[1ink] {pc_curvel [yl =t {1] [0] *pseudoX+t [1] [1] *pseudoY+t [1] [2] *pseudoZ+YY;
35 vertex[link] {pc_curve] [2]1=t [2] [0] *pseudoX+t [2] [1]*pseudoY+t [2] [2] *pseudoZ+2Z;
36 2}
37 )
Y
"NORTON™,"NORTON UTILITIES", "" 1
2
“SPEED DISK™,0,1,""
sSD

YNORTON UTILITIES",0,1,"»
NI
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enclose_object(NQ_image,surface_minimum_point,surface_maximum_point, t inks)

float NQ_image (4] {4] [3] [20] [30],surface_minimun_point [4] [2] [20] [30],
surface_maximum_point (4] [2] [20] [30];

int links;

(
float swept_object_minimum_point{2},swept_object_maximum_point{21;
float pc_point_image(2);
int accumulator, ADDs;
float u, increment;
int pc_curve,previous_pc_curve, segment, face;

/* Initialize the minimum and maximum points of the swept cbject itself and the
minimum and maximum points of all the ruled surfaces in the swept object.
These points are in the image coordinates. */

swept_object_minimum_pointix] = -10.0;
swept_object_maximum_point(x] = 10.0;
swept_object_minimum pointiy] = -10.0;
swept_object_maximum_pointlyl = 10.0;

for(face = 0;face < number_polygonsilinksl; face++)
(
for(pc_curve = 0; pc_curve < numbar_edges[links] [facel; pc_curve++)
for(segment = 0; segment < number_segments{links]; segment++)
(

surface_minimum_point [segment] [x] fpc_curve] (facel = -10.0;
surface_maximum_point [segment} [x] [pc_curve) [facel = 10.0;
surface_minimum_point {segment] Lyl {pc_curvel (facel = -10.0;
surface_maximun_point [segment] [y} [pc_curve) [face]l = 10.0;

)

/* Calculate the points along both of the parametric cubic curves for each ruled
surface given in image coordinates. Determine the minimum and maximum points of
each ruted surface and of the swept object. */

increment = 1.0*number_segments{linksl/12.0;
ADDs=0;accumnulator = 0;
ADDs = number_segments {links];

for(pc_curve = 0;pc_curve < number_edges{links] {facel; pc_curve++)
{
if (pc_curve == Q)
previous_pc_curve

number_edges [links] [facel - 1;

else
previous_pc_curve = pc_curve - 1;

for(segment = 0;segment < number_segments{links]; segment++)
¢
for(u = 0.0;u <= 1.0%1;u += increment)
<
accumulator += ADDs;
pe_point_imagelx] = point_image(accumulatorl {x1 [pc_curvel [facel;
pe_point_image(y] = point_image{accumulator] [y) {pc_curvel [face];
/* Calculate the bounding rectangle for each of the ruled surfaces. */

if (pc_point_imageix) <
surface_minimum_point {segment] [x] [pc_curve] {facel)
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/*

Calculate

surface_minimum_point {segment] [x] [pc_curve] [face]
= pc_point_imagelx];

if (pc_point_image[x] <
surface_minimum_point{segment] [x] [previous_pc_curve] [facel)
surface_minimum_point [segment] [x] [previous_pc_curvel
[facel= pc_point_imagelx];

if (pc_point_image[x] >
surface_maximum_point [segment] [x] [pc_curve] [face])
surface_maximum_point [segment] [x] [pc_curve] [face]
= pc_point_image(x];

if (pc_point_imagelx] >
surface_maximum_point [segment] [x] [previous_pc_curvel [facel)
surface_maximum_point {segment] [x] [previous_pc_curvel
[facel= pc_point_image[x] ;

if (pc_point_image(y] <
surface_minimum_point [segment] [yl [pc_curve] [facel)
surface_minimum_point [segment] [y] [pc_curvel [facel

= pc_point_imagelyl;

if (pc_point_imagelyl <
surface_minimum_point(segment] [yl {previous_pc_curvel [face])
surface_minimum_point {segment] [y] [previous_pc_curvel
[facel=pc_point_imagelyl;

if (pc_point_imagelyl >
surface_maximum_point {segment] [y} [pc_curvel [face))
surface_maximum_point {segment] [yl [pc_curve] [facel
= pc_point_imagelyl;

if (pc_point_image{y] >
surface_maximum_point [segment] [yl [previous_pc_curvel [facel)
surface_maximum_point [segment] [y] [previous_pc_curvel
[facel=pc_point_imagelyl;

the bounding rectangle for the swept object. */

if (pc_point_image(x] <
swept_object_minimum_point{x])
swept_object_minimum_point [x)
= pc_point_image({x];

if (pc_point_image(x] >
sWept_object_maximum_point{x])
swept_object_maximum_point[x]
= pc_point_imagelx};

if (pc_point_imagefyl <
sWept_object_minimum_point(yl)
swept_object_minimum_point [y}
= pc_point_imagelyl;

if (pc_point_imagelyl >
swept_object_maximum_point[yl)
swept_object_maximum_point{yl
= pc_point_imagelyl;
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Transform the minimum and maximum points of the swept object given in image
coordinates into the pixel location of the raster display. Increase the bounding
rectangle around the object by 2 pixels in each direction. */

x_minimum_pixel = (swept_object_minimum_point{x] + 10.0) *(512.0/20.0) - 2;
x_maximum_pixel = (swept_object_maximum_point[x) + 10.0) *(512.0/20.0) + 2;
+
+

y_minimum _pixel = (swept_object_minimum_point{y] + 8.0) *(410.0/16.0) - 2;
y_maximum_pixel = (swept_object_maximum_point[yl + 8.0) *(410.0/16.0) + 2;



1

2 illumination_modet_one(unit_normal,L,S, intensity)

3

4 float unit_normal [31,L[3]1151,5(31,*intensity;

5 {

6 float BI4],R[3];

7 float dot1,dot2;

8 float d,K, ka, kd,ks,n;

9 float 1Ia,lt;

10 FILE *constant_data;

1 /* The illumination model for a single light source for color
12 display is

13 Il

14 I = la*ka + ----- [kd*(n".L") + ks*(R".S™)**n]

15 d+K

16

17 where

18

19 I = reflected intensity
20 Ia = incident ambient light intensity
21 Il = incident point source light intensity
22 ka = ambient diffuse reflection constant (0 <= ka <= 1)
23 kd = diffuse reflection constant (0 <= kd <= 1)
24 ks = experimental constant representing reflectance curve w(i,lambda)
25 d = distance from the closest object to the viewpoint
26 K = arbitrary constant
27 n = approximates spatial distribution of specularly reflected light
28 n~ = unit surface normal vector at current pixel
29 L® = unit light source direction vector
30 R” = unit reflected ray direction vector
31 S” = unit line-of-sight direction vector
32 */
33 la = 0.3;
34 ka = 1.0;
35 K =1.0;
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41

42 /* The unit reflected ray vector is found by the two equations: n"xL” = R"xn~ to ensure
43 planarity and n".L" = n".R" to ensure equal angles between vectors. */

b4

45 B[0] = unit_normal (z2]*L{y]l [0] - unit_normal {y1*L[z1[03;

46 B8[11 = unit_normal [x1*L{z]1[0]1 - unit_normal {z}*L[x]1[0};

47 B{2) = unit_normal [yJ*L{x] 0] - unit_normal {x]*L[y]1{0];

48 B[3) = unit_normal {x1*L[x]1 (01 + unit_normal [yl*L{y] [0] + unit_normal [21*L[z][0];
49

50 RIx] = unit_normal [x1*B[3] - unit_normallyl*B{2] + unit_normal [2)*B[1];

51 Rlyl = unit_normal [x]*B{2] + unit_normal[yl*B{3] - unit_normal [z1*B[0];

52 Rz} = -unit_normal [xJ*B([1] + unit_normal{yl*8{0] + unit_normal [z21*B([3];

53

54 /* 1f the angle between the unit surface normal vector and the unit light source direction
55 vector is greater than 90.0 (or cos(angle) < 0.0) then the light source is behind
56 the object. */

57

58 dot1 = unit_normal {x1*L [x] {01 + unit_normal [yl*L{y) 0] + unit_normal [z1*L[2](0];
59 dot1 = dot1/(sqrt(unit_normal [x] *unit_normal [x]+

60 unit_normal [y]*unit_normal [y]+

61 unit_normal {z]1*unit_normal [2])



/*

*sqrt(L [x] [01*L [x] [01+L [y [03*L (y] [01+L (2] [01*L (2] (01));
if (dot1 < 0.0) dotl = 0.0;

1f the angle between the unit reflected ray direction vector and the unit
line-of-sight direction vector is greater than 90.0 (or cos(angle) < 0.0)
then the reflected ray cannot be seen. */

dot2
dot2

RIx1*S[x] + RIyl*SIyl + RIz1*S(z];
dot2/(sqrt(RIXI*R{x]1 + RIyl*R[yl + R[z]J*R{z1)
*sqrt(SIx1*Six] + S[yl*siy) + s{z1*S[z]1));

if (dot2 < 0.0) dot2 = 0.0;
*intensity = Ia*ka + (1l/(d + K))*(kd*dot1 +ks* pow(dot2,n));

if (*intensity > 1.0) ( printf(“%f\n",*intensity); *intensity = 1.0;)



1

2 illumination_model_two(unit_normal,L,S,intensity)

3

4 float unit_normal [31,L13]1(5]1,S13],*intensity;

5 {

6 float B[41([2]),R[3)(2];

7 float dot1{2],dot2(2};

8 float d{2]1,K, ka, kd(21,ks{2],n(2];

9 float Ia,Il[2];

10 FILE *constant_data;

1"

12 /* The illumination model for a single tight source for color display is

13

14 It

15 I = la*ka + ----- fkd*(n".L") + ks*(R".S7)**n)

16 d+ K

17

18 where

19

20 I = reflected intensity

21 la = incident ambient light intensity

22 Il = incident point source light intensity

23 ka = ambient diffuse reflection constant (0 <= ka <= 1)

24 kd = diffuse reflection constant (0 <= kd <= 1)

25 ks = experimental constant representing reflectance curve w(i,lambda)

26 d = distance from the closest object to the viewpoint

27 K = arbitrary constant

28 n = approximates spatial distribution of specularly reflected light

29 n~ = unit surface normal vector at current pixel

30 L™ = unit light source direction vector

3 R™ = unit reflected ray direction vector

32 $° = unit line-of-sight direction vector

33 */

34 fa = 0.33;
35 ka = 0.90;

36 K = 1.0;

37 IL0] = 0.72;

38 L1 = 0.72;
39 kd[0] = 0.23;

40 kd[1] = 0.23;

41 ks{01 = 0.27;

42 ks[11 = 0.27;

43 d[0] = 0.0;

b4 d[1] = 0.0;

45 nl0] = 2.0;

46 n[1l = 2.0;

47

48 /* The unit reflected ray vector is found by the two equations: n"xL™ = R"xn" to ensure
49 planarity and n".L~ = n".R" to ensure equal angles between vectors. */

50

51 B{01[0] = unit_normal {z1*L{y1[0] - unit_normal[yl*L[z][0];

52 B[11[0] = unit_normal {xJ*L[z]1[0] - unit_normal [2]*L[x][0};

53 B(21[01 = unit_normal [yl*L[x]J [0} - umit_normal [x1*L[y] [0];

54 B[31 (0] = unit_normal [x1*L{x]{0] + unit_normal [yl*L [yl [0] + unit_normal [z)1*L[z]1[0];
55

56 R[x1[0] = unit_normal [x]*B{3]1[0] - unit_normalfyl*B{21{0] + unit_normal {z1*B{1]1([0];
57 RIy}[0] = unit_normal {x}*B[2] (0] + unit_normal{yl*B{3]{0] - unit_normal (z]1*B[0](01;
58 R[z}[0] = -unit_normal [xJ*B{1][0] + unit_normal [yJ*B[0] [0] + unit_normal [z]1*B(3](0];
59

60 /* 1f the angle between the unit surface normal vector and the unit Light source direction
61 vector is greater than 90.0 (or cos(angle) < 0.0) then the light source is behind
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/*

/*

the object. */
dot110] = unit_normal [xJ*L {x]1{0] + unit_normallyl*L{yl[0] + unit_normal {z1*L{2](0];

dot1{0] = dot1101/(sqrt(unit_normal [x}*unit_normal [x]+
unit_normal [yl*unit_normat [yl+
unit_normal [z *unit_normal [2])
*sqrt(L [x] [03*L [x] (01+L [yl [03*L [y] [01+L{z] [01*L[z] [01));

if (dot1(0) < 0.0) dot1(01 = 0.0;

1f the angle between the unit reflected ray direction vector and the unit line-of-sight
direction vector is greater than 90.0 (or cos(angle) < 0.0) then the reflected ray
cannot be seen. */

dot2[0]
dot2{0]

RIX1101*SIx] + ROyl [01*5[y) + R{z)[01*S{z];
dot2{01/(sqrt(R[x]1 {01*R[x] [0] + RIyl1[01*RI[y} (0] + R[z]1[01*R[z](0])
*sqrt(Six1*sixl + Slyl*sSly] + S{z1*s(z]));

if (dot2[0] < 0.0) dot2([0] = 0.0;

BI01[1) = unit_normal {z1*L [yl (1] - unit_normal {yl*L[2}{1);
B{11I1] = unit_normal (X1*L[z]1{1) - unit_normal [zZ1*L([x][1};
B(21 [1] = unit_normal [yl1*L[x1[1] - unit_normal [xI1*L{yl[1];
B[31[1] = unit_normal [XJ*LIx]1{1] + unit_normal {yl1*L[y] [1] + unit_normal [z]*L[z)[1];

RIx1[1] = unit_normal {x1*B([31[1] - unit_normal [y1*B[2] [1] + unit_normal {z}*B{11[1];
R{y1[1] = unit_normal {xJ*B(21 {1] + unit_normal {y1*8[31(1]1 - unit_normal [(z1*B (0] [1];
RIz1[1) = -unit_normal [x]J*B{11{1] + unit_normal [y]1*B{0]{1] + unit_normal(z]1*B(3][1];

If the angle between the unit surface normal vector and the unit light source direction

vector is greater than 90.0 (or cos(angle) < 0.0) then the tight source is behind the object.

dot1[1] = unit_normal [xJ*L[x1[1] + unit_normal {yl*L(y]l (1]
+ unit_normal {z1*L{2] [1];
dot1{1] = dot1([11/(sgrt(unit_normal {xJ*unit_normal [x]+

unit_normal {yl*unit_normal {yl+
unit_normal [zZ]1*unit_normal [z])
*sqre(Lx] (13*L [x] 01140 [y] C11*L [yd [13+L 12 T11*L (21 11)));

if (dot1{1] < 0.0) doti1{11 = 0.0;
If the angle between the unit reflected ray direction vector and the unit
line-of-sight direction vector is greater than 90.0 (or cos(angte) < 0.0) then

the reflected ray cannot be seen. */

dot2{1] = RIx)I[11*S[x] + RIy1{11*Sly]l + RIz1[11*S(z);

dot2(1] = dot2[11/(sqrt(R[x1 (11*R{x1[1] + RIyI{11*RIy1 {11 + R{z1[11*R[z]1[1])

*sqrt(SIx1*SIx) + Slyl*slyl + S[z1*s(zl1));
if (dot2111 < 0.0) dot2[1]1 = 0.0;
*intensity = la*ka + (IL[01/(dI0] + K))*(kd{0]l*dot1(0]}
+ ks [01*pow(dot2[0]1,n(01))
+ (1L[13/¢d{1] + K))*(kd (11 *dot1[1]
+ ks[1)1*pow(dot2i1],ni11));

if (*intensity > 1.0) *intensity = 1.0;

*/



.......
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/* There are two types of increase the efficiency of scan-line algorithms 1) scan-line coherence
2) geomeytrical simplification Here I am using type 2) geomeytrical simplification :
the particular choice of "windows" examined by the algorithm, the windows are one scan-{ine high
and span the width of the screen. */

generate_scanline_intersections(face_color,ruled_polys,polygon_vertices,polygon_normat,
polygon_minimum_point,polygon_maximum_point,depth_array,
normal_array,color_array,plane_normal_distance, junkee)

int  face_color(90] [2],ruled_polys;
float polygon_vertices[3000] £31,polygon_normal [3000] [31,
polygon_minimum_point[2] (30001 ,polygon_maximum_point{2] [3000];
float depth_array(512] {410),normal_array[512) [410] [3];
short color_array[512] (410]);
float plane_normal_distance [3000];
int junkee;
¢
float vertex_normal [20] [3],normal_magni tude;
int scan_line_increment,scan_line_signal;
int scan_lines_processed, amount_processed;
int i,j,k,poly,face;

scan_line_position_image(x] = -10.0;

/* Subdivide the total number of scan tines needed to process the object into 10 increments.
During rendering write to the terminal the amount of the scene that has been processed
in 1/10ths of the total number of scan lines. */

scan_line_increment=(y_maximum_pixel-y_minimum_pixel+1)/10.0+0.5;
scan_line_signal = scan_line_increment;

amount_processed = 1;

scan_lines_processed = 0;

for(j=y_minimum_pixel; j<=y_maximum_pixel;j++)
{
scan_lines_processed = scan_lines_processed + 1;
if ((scan_lines_processed==scan_line_signal) ||
(scan_lines_processed==y_maximum_pixel-y_minimum _pixel+1 &&
amount_processed <= 10))
{
printf("%d", amount_processed);
printf("/10 processed\n");
scan_line_signal = scan_line_signal + scan_line_increment;
amount_processed = amount_processed + 1;

/* Calculate the new scan line position in the image coordinate system. This position
must be converted from pixels to the object size of the vector screen.
Here -10.0 < x < 10.0 corresponds to 0 < x_pixel < 512 and -8.0 <y < 8.0
corresponds to 0 < y_pixel < 410. The position vector is different for each screen pixel.*/

scan_line_position_imagelyl = ;/(410.0/16.0)-8.0;
/* Processing each scan-line */
/* The scan-line algorithm must decide what polygons are visible in a scan-line window,

and these decisions are all made by comparing line segments in the X-Z plane. */

/* For all the polygons in the swept object calculate the intersections with each scan line.
Only search for polygon/scan_tine intersections with those polygons in which the scan line
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is within the bounding rectangle. */

/*

i=0;

for(poly = 0; poly <= ruled polys; poly++)
{
if (poly < face color([il[0])
face = face_color({il[1};

else if (poly == face_color(il[01)
L4
face = face_color[il[1];
i=1+1;
)

if (polygon_normal [polyl{zl = 0.0)
if (scan_line_position_image(y] »>=
polygon_minimum_pcintly) (polyl
&& scan_line_position_imagely] <=
polygon_maximum_point [y] [polyl)
{
even" polygons numbers  */

if (poly ¥ 2 == 0)
if (poly % 24 == 0)
{
vertex_normal [0] [xX] = polygon_normal [poly] [x]
+ polygon_normal [poly+11 [x1;
vertex_normal {01 {y] = polygon_normal [poly] [yl
+ polygon_normal [poly+1] [yl;
vertex_normal [0] [z} = polygon_normal [poly] 2]
+ polygon_normal [poly+1] {2];

vertex_normal [1] [x]
vertex_normal [1] [y]
vertex_normal [1] [z}

polygon_normal [poly] [x];
polygon_normal {polyl [yl;
polygon_normal [polyl [2};

"

vertex_normal [2]1 [x] = polygon_normal [poly] {x]
+ polygon_normal {poly+1] [x]
+ polygon_normal [poly+2] [x];
vertex_normal {2] [yl = polygon_normal [polyl [yl
+ polygon_normal [poly+1] [y]
+ polygon_normal [poly+2] [yl;
vertex_normal [2]1 (2] = polygon_normal [poly] [2)]
+ polygon_normal [poly+11 [z}
+ polygon_normal [poly+2]} [z];

else if (poly % 24 == 22)
(4
vertex_normal [0]1 [x] = polygon normal [poly-1] [x]
+ polygon_normal [polyl [x]
+ polygon_normal [poly+11[x1;
vertex_normal [0] {y] = polygon_normal [poly-11 [y}
+ polygon_normal [polyl [y}
+ polygon_normal [poly+1]1 [yl;
vertex_normal [0] (2] = polygon_normal [poly-11([z]
+ polygon_normat [poly] (2]
+ polygon_normal [poly+1] (2];

vertex_normal {11 [x] = polygon_normal {poly-2] [x]
+ polygon_normal [poly-1] [x}
+ polygon_normal [poly] [x];
vertex_normal [1]1 [y] = polygon_normal [poly-2] [y]
+ polygon_normal [poly-1] [yl
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/*

+ polygon_normal [polyl {yl;
vertex_normal {11 [z] = polygon_normal {poly-2]} (2}

+ polygon_normal [poly-1] [2]

+ polygon_normal [polyl [z];

vertex_normal {2] [x] = polygon_normal [poly] [x]
+ polygon_normat [poly+1] [x1;

vertex_normal {21 [yl = polygon_normal [polyl{yl
+ polygon_normat {poly+11[yl;

vertex_normal [2] (2] = polygon_normal [poly] [z)
+ polygon_normal [poly+1} {z]1;

else
¢
vertex_normal (0] [x] = polygon_normal {poly-1] [x]
+ polygon_normal {poly] [x]
+ polygon_normal {poly+1] [x];
vertex_normal [0] [yl = polygon_normal {poly-111yl
+ polygon_normal [poly] [yl
+ polygon_normal {poly+11 [y];
vertex_normal (0] (2] = polygon_normal [poly-1]{z]
+ polygon_normal [polyl [z]
+ polygon_normal [poly+1]1{z]1;

vertex_normal {11 [xX] = polygon_normal [poly-2] [x]
+ polygon_normal [poly-1] {x]
+ polygon_normal {polyl {x];
vertex_normal [1] [yl = polygon_normal [poly-2] [y]
+ polygon_normal [poly-1] [y}
+ polygon_normal {polyl [y]l;
vertex_normal [11 {21 = polygon_normal [poly-2]{z]
+ polygon_normal [poly-1] {z]
+ polygon_normal [poly] [2];

vertex_normal [2] {x] = polygon_normal [poly] [x]
+ polygon_normal [poly+1] [x]
+ polygon_normal [poly+2] ix];
vertex_normal [2] [yl = polygon_normal [poly] {y]
+ polygon_normal [poly+1] [y]
+ polygon_normal [poly+2] [yl;
vertex_normnal [2] {z] = polygon_normal [poly] [z]
+ polygon_normal [poly+1] [z]
+ polygon_normal [poly+2] [2];

"odd" polygon numbers  */

else
if (poly % 24 == 23)
{
vertex_normal {0} [x] = polygon_normal {poly] {x]
+ polygon_normal [poly-13[x1;
vertex_normal [0] {y]l = polygon_normal [polyl [y}
+ polygon_normal [poly-11[y};
vertex_normal [0] [z] = polygon_normal [polyl [z]
+ polygon_normal {poly-11[2];

vertex_normal {11 [x] = polygon_normal [poly] {x];
vertex_normal [11{y]l = polygon_normal [poly]l [y];
vertex_normal {11 {z]} polygon_normal (poly] [2];

vertex_normal [2] [x] = polygon_normal [poly-2] {x]
+ polygon_normal [poly-111x]
+ polygon_normat [polyl [x];
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vertex_normal [2] [yl = polygon_normal {poly-2] [y]
+ polygon_normal [poly-11 [yl
+ polygon_normal [polyl {yl;
vertex_normal [2] [2] = polygon_normal [poly-2]1 {21
+ polygon_normat [poly-11(2]
+ polygon_normal [poly] [2];
}

else if (poly % 24 == 1)

{
vertex_normal [0] [x] = polygon_normal [poly-11 [x]
+ polygon_normal {poly] [x]
+ polygon_normal [poly+1][x];
vertex_normal {01 [yl = polygon_normal [poly-111ly]
+ polygon_normal [poly] [yl
+ polygon_normal [poly+111[yl;
vertex_normal [0] [2] = polygon_normal [poly-1]1[2]
+ polygon_normal [polyl [z]
+ polygon_normal (poly+1] (z];

vertex_normal [1] {x] = polygon_normat [poly] [x]
+ polygon_normal [poly+1] [x]
+ polygon_normal [poly+2] [x];
vertex_normal [11{y]l = polygon_normal [poly] [y]
+ polygon_normal {[poly+1] [yl
+ polygon_normal [poly+2] [y};
vertex_normal [1] [z] = polygon_normal [poly] [z]
+ polygon_normal [poly+1] [2]
+ polygon_normal [poly+2] (2];

vertex_normal [2] [x] = polygon_normal {poly-1] {x]
+ polygon_normal {poly]} [x];

vertex_normal [2] [yl = polygon_normal {poly-1]{yl
+ polygon_normal [poly] Iy} ;

vertex_normal [21 [z] = polygon_normal [poly-1] (2]
+ polygon_normal [polyl {21;

else

{
vertex_normal [0] [x] = polygon _normal [poly-1] {x]
+ polygon_normal [polyl [x]
+ polygon_normal [poly+1] [x];
vertex_normal [0] [yl = polygon_normal {poly-1] [y}
+ polygon_normal [polyl {yl
+ polygon_normal [poly+1] [yl;
vertex_normal [0] [z] = polygon_normal [poly-1] {z]
+ polygon_normal [poly] [z]
+ polygon_normal [poly+1] [2);

vertex_normal (1] [x] = polygon_normal [poly] [x]
+ polygon_normal [poly+1] [x]
+ polygon_normal [poly+2] [x];
vertex_normal (11 [yl = polygon_normal [poly] [y}
+ polygon_normal [poly+1] [yl
+ polygon_normal [poly+2] [yl ;
vertex_normal [1] [z] = polygon_normal {poly] [z}
+ polygon_normal [poly+1] [2]
+ polygon_normal [poly+2] [z];

vertex_normal (2] [x] = polygon_normal [(poly-21[x])
+ polygon_normal [poly-1] [x]
+ polygon_normal [poly] [x];
vertex_normal [2] [yl = polygon_normal [poly-2] 1yl
+ polygon_normal [poly-1] [y}
+ polygon_normal [polyl [yl;



257 vertex_normal [2] {z] = polygon_normal [poly-2] [z]

258 + polygon_normal [poly-1][z]

259 + polygon_normal {polyl [z};

260

261 )

262

263 /* Return the unit normal vector of each vertex. */

264 for(k=0;k<3;k++)

265 (

266 normal_magnitude = sqrt(vertex_normal [kl [x]*

267 vertex_normat [k] [x]+vertex_normal [k] [yl*

268 vertex_normal [k] [y] +vertex_normal {k} {z]*

269 vertex_normat [k] [2]1);

270 vertex_normal (k] [x}=vertex_normal (k] [x]/normal_magni tude;
271 vertex_normal (k] [yl =vertex_normal [k] [yl /normal_magnitude;
272 vertex_normal [k] [z]=vertex_normal [k] {z}/normal_magni tude;
273

274 >

275

276 scan_line_polygon_intersection(poly, j, face,vertex_normal,
277 polygon_vertices,polygon_normal,depth_array,

278 normal_array,color_array,plane_normal_distance, junkee);
279 /* scoplyint.c */

280 >

281 2

282

283 for( poly = ruled polys+1; poly <= number_polys[junkeel; poly++)
284 {

285 if (poly < face_color(il(0]1)

286 face = face_color[il[i];

287

288 else if (poly == face_color([il[0])

289 {

290 face = face_color(il[1];

291 i=i+1;

292 >

293

294 if (polygon_normal [polyl{z] t= 0.0)

295 if (scan_line_position_image[yl >=

296 polygon_minimum_point [yl [poly]l

297 && scan_line_position_imagely] <=

298 polygon_maximum_point{yl [polyl)

299 {

300 for(k = O;k<number_poly_vertices{junkee] [polyl; k++)

301 ¢

302 vertex_normal [k} [x] = potygon_normal [polyl [x]1;

303 vertex_normal [k] [yl = polygon_normal [poly] [y];

304 vertex_normal [k] [z2] = polygon_normal [polyl [2];

305 >

306

307 scan_line_polygon_intersection(poly, j, face,vertex_normal,
308 polygon_vertices,polygon_normal,depth_array,

309 normat_array,color_array,plane_normal_distance, junkee);
310 /* scoplyint.c */

in ]

312 >

313 3}

314 )



1
2
3 float polygon_vertices[3000] {31 [20],polygon_normal [3000] [3] ;

4 float polygon_vertices(3000] [3][20],polygon_normal [3000] [31,

5 plane_normal_distance[3000],depth_array(512]1 [410], normal_array{512] {410] [31;
6 float polygon minimum_point [2] [3000], polygon_maximum_point (2] {3000],

7 surface_minimum_point{4] 2] [20] (30], surface_maximum_point (4] [2] [20] [30];

8

9 scan_line_generate_solid data(NQ_image,color_array, image_array, junkee)
10 float NQ_image [4] [4] [3] [20] [30];

1 float image_array(512]{410};

12 short color_array(5121 [410];

13 int junkee;

14 (

15

16 double root2,root225,sight;

17 FILE *direction;

18 float cosine_angle,normal_array_element(3];

19 int i,j,face_color{90](2],ruled polys,illumodl;
20

21 |

22 char *string;

23 1100:

24 message_window("ONE LIGHT SOURCE 1 ?","TWO LIGHT SOURCES 2 ?","CHOOSE (1/2)");
25 string=answer_window();

26 if (*string == *1*) illumodl = 1;

27 else if(*string == *2%) iltumodl = 2;

28 else goto L100;

29 )

30

31

32 /* Find the enclosing rectangle around each ruled surface and around the entire swept object.*/
33

34 enclose_object(NQ_image,surface_minimum_point,surface_maximum_point, junkee); /*enclosobj.c */

36 /* Initialze the raster elements for the z values and normals of the polygon/scan_line

37 intersections, the image array and the color array for raster display. */
38

39 for(j=y_minimum_pixel-1; j<y maximum _pixel;j++)

40 for(i=x_minimum_pixel-1;i<x_maximum _pixel;it+)

41 (4

42 depth_array[il[j]l = -30.0;

43 normal_array[il[jl1[x] = 0.0;

44 normal_array([il{jl [yl = 0.0;

45 normal_array (i1 [jl [zl = 0.0;

46 )

47

48 /* Initialize the unit light source direction vector L and the unit line-of-sight direction
49 vector S in the image coordinate system. */

50

51

52 message_window("Do you want to define light and view direction 7%, s wny.
53 {

54 root2 = 1.414214; /*sqrt(2.0);*/

55 root225 = 1.5; /*sqre(2.25);*/

56

57 L[x1[0] = 0.0;

58 L{yl[0] = -1.0 /root2;

59 L(z) (0] = 1.0/root2;

60 LEx3 {1] = 1.0/root225;

61 LIyl (11 = -1.0/root225;
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/*

/*

c

/*

LLz1[1) = 0.5/root225;

Sixl = 0.0;
Siyl = 0.0;
stz] = 1.0;

Polygonalize the ruled surface segyments, and calculate their unit normals. Also calculate
unit normals for the initial and final locations of the polygons in the sweep.*/

polygonalize_surfaces(face_color,&ruled polys,NQ_image,polygon_vertices,polygon_normat,
plane_normal_distance,polygon_minimum_point,polygon_maximum_point, junkee); /*"“scnplynml.c* */

Begin rendering of all the ruled surfaces and the initial and final polygons using a scan
line z-buffer algorithm to record the visible surface/ray intersections. Calculate the
display attributes of each pixel and store these in an image array. */

generate_scanline_intersections(face_color,ruled_polys,polygon_vertices,polygon_normal,
polygon_minimum_point, polygon_maximum_point,depth_array,normal_array,color_array,
plane_normal_distance, junkee); /* scngntint.c */ ’

for(j = y_minimum_pixel-1; j<y_maximum_pixel; j++)
for(i = x_minimum_pixel-1;i<x_maximum_pixel;i++)
<
if (normal_array{il[j1[x] t= 0.0 || normal_arrayl[il[jlly] t= 0.0
|| normal_array[il(ji[z] != 0.0)
¢

Determine the shading of each pixel in the scene by calculating the cosine of the
angle between the unit line_of_sight direction vector and the unit normal previously
determined for this pixel. The cosine of the angle is found by taking their inner product. */

osine_angle=normal_array[il [j] [x1*S[x}+normal_array(il[j1[yl*S(yl+normal_array[i] [j1[z]1*S[z};
Determine if this location of the surface is visible or non-visible by testing the value

of the cosine of the angle between the unit line-of-sight direction vector and the unit
normal to the surface (visible when -90.0 < angle < 90.0). If the surface is visible at

this location then find the pixel intensity and store it in the image array. */

if (cosine_angle < 0.0)

(
normal_array{il [j][x] = -normal_array[il[j)[x];
normal_arrayl[il[jl{y]l = -normal_array(il{j]ly};
normal_array[11[j1{z] = -normal_array[il[j]{z1;
>

normal_array_eltement[x] = normal_array{il[j](x];
normal_array_element{y] = normal_array{il[ji(yl;
normal_array_element (2] = normal_array[il{j]{z];
if(illumodl==1)
itlumination_model_one(normal_array_element,L,S,&image_array (i) {j1); /*"illumodll.ch*/
else illumination_model_two(normal_array_element,L,S,&image_array{il [j1);/*"illumodl2.c"*/
)



.............
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scan_line_polygon_intersection(poly, j, face,vertex_normal,polygon_vertices,
polygon_normal ,depth_array,normal_array,color_array, plane_normal_distance, junkee)

1
2
3
4 int poly, j,face;

5 float vertex_normal {20] {31, polygon_vertices[3000] {3] [20],

6 polygon_normal [3000] [3],depth_array(512] {4101,

7 normal_array[512] {4101 [3],plane_normal_distance(3000];
8 short color_array[512] (410];

9 int junkee;

10 ¢

1 float s_parameter,t_parameter, tempr;

12 float scan_line_edge_intersection(20];

13 float z_depth({512],pixel_normal [512] [31,del ta_depth,delta_normal [3};

14 float u,w;

15 int scan_segment_minimum_pixel,scan_segment_maximum _pixel;

16 int edge_number[20];

17 int minimum_vertex,minimum_next_vertex;

18 int maximum_vertex,maximum_next_vertex;

19 int i,k,m,vert,next_vert,tempi;

20 int number_edge_intersections;

21

22 /* A polygon is input to this subroutine, i.e., the coordinates of the vertices of the polygon,
23 the polygon normal, and the vertex normals determined as the average of the polygon normals
24 for all polygons sharing the vertices of the input polygon. These vertex normals are used to
25 determine shading using the Phong shading technique which linearly interpolates normals
26 across the polygon.

27

28 The polygon is displayed using a scan line z-buffer algorithm. For all the edges in a
29 polygon determine the x-coordinate of intersection with the scan line. */

30

31 number_edge_intersections = -1;

32

33 for(vert = 0; vert < number_poly_vertices[junkeel [poly]l; vert++)

34 {

35 if (vert==number_poly_vertices[junkee] [poly]l-1)

36 next_vert = 0;

37

38 else

39 next_vert = vert + 1;

40

41 /* From the parametric representations of the scan line (x(t) = ax + t*bx and

42 y(t) = ay + t*by) and the current polygon edge (x(s) = cx + s*dx and y(s) = cy + s*dy)
43 solve for t and s by equating x(t) = x(s) and y(t) = y(s) to get

44 s = (bx*(cy - ay) - by*(cx - ax))/(dx*by - bx*dy) and t = (cx - ax + s*dx)/bx.

45 Note that since he scan line is horizontal, bx = 1 and by = 0 so the equations for

46 s and t are simplified. */

47

48 if (potygon_vertices{polyl [yl [vertl (=

49 polygon_vertices[poly] Iyl [next_vert})

50

51 /* Only test for intersections with those edges of the polygon that have one endpoint

52 above the scan line and one endpoint below the scan line. */

53

54 if (polygon_vertices(polyl Lyl [vert] <= scan_line_position_imagelyl &&

55 polygon_vertices[poly] [yl {next_vert] >= scan_line_position_imagely] ||

56 polygon_vertices(polyl [yl [vert] >= scan_line_position_imagely] &&

57 polygon_vertices {polyl [yl [next_vert] <= scan_line_position_imagelyl)

58 ¢

59 s_parameter = (polygon_vertices(polyl {yl [vert] - scan_line_position_imagelyl)

60 /(polygon_vertices[polyl [yl [vertl - polygon_vertices[polyl [yl [next_vertl);



62 t_parameter = polygon_verticesipoly] {x]Ivert]l - scan_line_position_image(x]

63 - s_parameter*(polygon_vertices{polyl [x] [vert] - polygon_vertices(polyl [x] [next_vertl);
64

65 number_edge_intersections = number_edge_intersections + 1;

66

67 scan_line_edge_intersection{number_edge_intersections] =

68 scan_line_position_image[x] + t_parameter;

69

70 edge_number [number_edge_intersections] = vert;

7 )

72 )

3

74 /* Sort all these scan_line/edge intersections in increasing x_coordinate values. Pairs of
75 these x_coordinate intersections form scan line segments that are interior to the polygon. */
76

77 if (number_edge_intersections > 0)

78 for(k = 0;k<=number_edge_intersections-1; k++)

79 for( m = number_edge_intersections;m >= k+1; m--)

80 if (scan_line_edge_intersection(m-11 >

81 scan_l ine_edge_intersection{m])

82 (<

83 tempr = scan_line_edge_intersectionim-1];

84 scan_line_edge_intersectionIm-11 = scan_line_edge_intersection[m];
85 scan_line_edge_intersection{m] = tempr;

86 tempi = edge_number{m-1];

87 edge_number [m-1] = edge_number {m];

88 edge_number {m] = tempi;

89 >

90

9N for(k = 0; k < number_edge_intersections; k += 2)

92 {

93 minimum_vertex = edge_number[k];

94

95 if (minimum_vertex == number_poly_vertices[junkeel [poly]-1)

96 minimum_next_vertex = 0;

97

98 else

99 minimum_next_vertex = minimum_vertex + 1;

100

101 maximum _vertex = edge_number[k+1]1;

102

103 if (maximum_vertex == number_poly_vertices[junkeel [polyl-1)

104 maximum_next_vertex = 0;

105

106 else

107 maximum_next_vertex = maximum_vertex + 1;

108

109 /* For both endpoints of a scan line segment determine their pixel values. */
110

M scan_segment_minimum pixel =

112 (scan_line_edge_intersection(kl+10.0)*(512.0/20.0)+0.5;

113 scan_segment_maximum_pixel =

114 (scan_line_edge_intersection[k+1}+10.0)*(512.0/20.0)+0.5;

115

116 i = scan_segment_minimum_pixel-1;

n7

118 /* Find the z depth and normal of the pixel at the left endpoint of each scan line segment. */
19

120 u = (polygon_vertices[polyl [yl Iminimum_vertex] - scan_line_position_imagelyl)
121 /(polygon_vertices[poly] [yl Iminimum_vertex]

122 - polygon_vertices(polyl [yl [minimum_next_vertex]);

123

124 w = (polygon_vertices[poly]l [y] [maximum_vertex] - scan_line position_imagelyl)

125 /(polygon_vertices{poly] [y] [maximun_vertex]
126 - polygon_vertices (polyl [y] [maximum_next_vertexl);



127

128 z_depth[i] = -(polygon_normal [polyl Ix] *scan_line_edge_intersection{k]
129 + polygon_normal [polyl [y) *scan_line_position_image(y]
130 + plane_normal_distance(polyl) /polygon_normal [poly] [2];
131

132 pixel_normal [i] [x] = u*vertex_normal fminimum_next_vertex] [x]
133 + (1-u)*vertex_normal [minimum_vertex] [x};
134 pixel_normal [i]1[y]l = u*vertex_normal {minimum_next_vertex] [yl
135 + (1-w*vertex_normal [minimum_vertex) [y];
136 pixel_normal [i]1[z] = u*vertex_normal [minimum_next_vertex] [z]
137 + (1-u)*vertex_normal [minimum_vertex) [2];
138

139 if (z_depth[i] > depth_arraylil[j-11)

140 {

141 depth_array[il[j-1] = z_depth(il;

142 normal_array[il[j-11Ix] = pixel_normal (i) [x1;

143 normal_array[il1(j-111y]l = pixel_normal[illy];

144 normal_array[il{j-11[z] = pixel_normal(il(z];

145 color_arraylil{j-11=color[junkee] [facel;

146 3}

147

148 delta_depth = polygon_normal [polyl [x] /(polygon_normal {polyl [21*(512.0/20.0));
149

150 if (scan_segment_maximum pixel == scan_segment_minimum_pixel)
151 <

152 delta_normal [x] = 0.0;

153 delta_normal {yl = 0.0;

154 delta_normal [z} = 0.0;

155

156 else

157

158 delta_normal [x] = (w*(vertex_normal [maximum_next_vertex] [x]
159 - vertex_normal [maximum_vertex] [x])

160 + vertex_normal [maximum_vertex] [x]

161 - u*(vertex_normal [minimum_next_vertex] [x]

162 - vertex_normal [minimum_vertex]j {x])

163 - vertex_normal [minimum_vertex] [x])

164 /(scan_segment_maximum_pixel -scan_segment_minimum _pixel);
165

166 delta_normal [y] = (w*(vertex_normal [maximum_next_vertex] [yl
167 - vertex_normal [maximum_vertex] [y])

168 + vertex_normal [maximum_vertex] [y]

169 - u*(vertex_normal [minimua_next_vertex] [yl

170 - vertex_normal Iminimum_vertex] [yl)

171 - vertex_normal [minimum_vertex] [y))

172 /(scan_segment_maximum_pirel-scan_segment_minimum_pixel);
173

174 delta_normal {z] = (w*(vertex_normal [maximum_next_vertex] [2]
175 - vertex_normal [maximum_vertex] [z])

176 + vertex_normal {maximum_vertex] [z]

177 - u*(vertex_normal [minimum_next_vertex] [z)

178 - vertex_normal [minimum_vertex] [z])

179 - vertex_normal Iminimum_vertex] [z])

180 /(scan_segment_maximum_pixel-scan_segment_minimum_pixel);
181

182 )

183

184 /* Interpolate the remaining z depths and normals for all other pixels of each
185 scan line segment. */

186

187 for(i=scan_segment_minimum_pixel;i<scan_segment_maximum_pixel;
188 i++)

189 ¢

190 z_depth[i] = z_depth{i-1] - delta_depth;

191



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

}

pixel_normal (i1 {x]
pixel_normal [i] Lyl
pixel_normal [i] (2]

pixel_normal [i-11[x] + delta_normalix];
pixel_normal [i-11[y] + delta_normal[y];
pixel_normal[i-11(z] + delta_normal{z];

if (z_depth{il > depth_array[il(j-1])
(
depth_arraylil[j-11 = z_depth(il;

normal_array{i)[j-11[x)
normal_array{il [j-1] [yl
normal_array [i1(j-1] [z]

pixel_normal {i][x];
pixel_normal {i] [y];
pixel_normat (il [2];

f

color_arrayl[il{j-11=color{junkeel [facel;
3



..............

1 #include “sweepparm2.inc®

2

3 polygonalize_surfaces(face_color, ruled_polys,NQ_image,polygon vertices,
4 polygon_normal ,plane_normal_distance,

5 polygon_minimum_point,polygon_maximum_point,links)
6

7 int face_color[90][2]1,*ruled polys;

8 float Na_image[4] [4] [3] [201 [30],polygon_vertices(3000] {31 {201,

9 polygon_normal {3000} (3], plane_normal_distance[3000]1,

10 polygon_minimum_point [2] [3000] , polygon_maximum_point[2] [3000];
1" int links;

12

13 {

14 float AI3]1,B[31,y;

15 float normal_magnitude, increment;

16 int pc_curve,next_pc_curve, segment, face;

17 int i,j,vert;

18 short tines_are_parallel,segment_start;

19 int ADDs,accumulator;
20
21 number_polys[links] = -1;
22
23 increment = 1.0*number_segments[linksl/Division;
24 ADDs=0;
25 ADDs = number_segments[links];

26 accumulator = -ADDs;

27 i=-1
28

29 /* Calculate the vertices of the polygons representing the ruled surface segments,
30 the initial and final polygons in the sweep in the image coordinate system. */
31
32 for(face=0; face<number_polygons{links];facet++)
33 (4
34 it=i+1;
35
36 for(pc_curve=0;pc_curve<number_edges [links] [facel;pc_curve++)
37 (4
38 if (pc_curve==number_edges[|inks] [facel-1)

39 next_pc_curve = 0;
40
41 else
42 next_pc_curve = pc_curve + 1;

43
44 for(segment = 0; segment<number_segments{linksl; segment++)
45 {
46 segment_start=1;
47 accunulator = -ADDs;
48 for(u = 0.0; u<1.01; ut=increment)
49 {

50 if (u<0.98)

51 ¢
52 accumulator += ADDs;

53

54 polygon_vertices [number_polys[linksl+1]1[x] [0] =

55 point_image [accumulator] [x] [pc_curve] [facel;
56 polygon_vertices [number_polys{links]+11[yl[0] =

57 point_image [accumulator] [yl [pc_curve] [facel;
58 polygon_vertices [number_polys{links]+11{z]1 (0] =

59 point_image (accumulator] [z] pc_curvel [facel;
60 polygon_vertices [number_polys[links]+1]1[xJ (1] =

61 point_image {accumutator] [x] [next_pc_curvel [face];
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polygon_vertices (number_polys{links]+1} [yl [1] =
point_image{accumulator] [y] [next_pc_curvel [face];

polygon_vertices [number_polys[links]l+11[2]1[1] =
point_image [accumilator] {z] [next_pc_curvel [facel;

if (segment_startl=1)
{
polygon_vertices[number_polys([links]][x]1[1] =
polygon_vertices [number_polys[links]+1] [x] [0];

polygon_vertices [number_polys([links1]{yl[1] =
polygon_vertices [number_polys[links]+11 [yl [0];

polygon_vertices [number_polys[linksl][z]1{1] =
polygon_vertices [number_polys{links]+11([21[0]1;

polygon_vertices [number_polys [links1] [x] [0] =
polygon_vertices [number_polys[links]1+11[x][1]1;

polygon vertices{number_polys[linksi]{yl[0] =
polygon_vertices [number_polys{links]+1] [yl [1]1;

polygon_vertices [number_polys[links]] [z][0] =
polygon_vertices inumber_polys([links1+11{z1[11;

polygon_vertices [number_polys[linksl-11(x1{2] =
polygon_vertices [number_potys [Links]+1] [x][1];

polygon_vertices [number_polys[links}-11[yl1[2] =
polygon_vertices [number_polys (Links)+1] [yl [1};

polygon_vertices {number_polys(links]-1]1[z) (2] =
polygon_vertices [number_polys{links}+1] [21[1];

polygon_vertices [number_polysilinks}+2]} [x][2] =
polygon_vertices [rumber_polys{linksl+11x] [0];

polygon_vertices[number_polys [links]+2] [yll2] =
polygon_vertices {number_polys{links1+1] [yl [0];

polygon_vertices [number_polys{links]+2] {z]1[2] =
polygon_vertices [number_polys([Llinks]+1]1[2)[01;

number_poly_vertices{links] [number_polys(links}+1] = 3;
number_poly_vertices{links] [number_polys[links]+2] = 3;

number_potys[links] = number_polys({linksl + 2;
segment_start = 0;

else
4

accumulator += ADDs;
polygon_vertices [number_polys[links}] [x1{1] =
point_imagelaccumulator] {x] [pc_curve] {facel;
polygon_vertices [number_polys{links]] [yl1[1] =
point_imagelaccumulator] [yl [pc_curvel [facel;
polygon_vertices (number_polys[links]] [21[1} =
point_image [accumulator] [z] [pc_curvel [facel;
polygon_vertices [number_polys [linksl] {x} [0] =
point_image{accunulator] {x] (next_pc_curvel [facel;
polygon_vertices [number_polys[linksl] [y1(0] =



127 point_image [accumulator] [yl [next_pc_curve] [face) ;

128 polygon_vertices [number_polysilinks]]z1([0] =

129 point_image [accumulator] [2] [next_pc_curvel (facel ;

130

131

132 polygon_vertices [number_polys[links]-11[x]{2] =

133 polygon_vertices (number_polys[linksll {x] [0];

134

135 polygon_vertices [number_polys(links]-11[yl{2] =

136 polygon_vertices (number_polys [links1] [yl [01;

137

138 polygon_vertices [number_polys(linksl-1]1[z]1(2] =

139 polygon_vertices (number_polys [linksl1] [z] [0];

140

141 )

142 >

143 )

144 )

145

146 face_color(il[0] = number_polysilinks];

147 face_coloril[1] = face;

148

149 b

150

151 *ruled polys = number_polys[links];

152

153 for(face=0; face<number_polygons [Links]; face++)

154 8

155 i=1i+1;

156

157 for(pc_curve = 0; pc_curve < number_edges(links] [facel; pc_curve++)
158 {

159 segment = 0;

160 u = 0.0;

161

162 polygon_vertices [number_polys[links]+1] [x] [pc_curvel
163 point_image[0] [x] [pc_curve] [facel;

164 polygon_vertices [number_polys[links1+11 [y] [pc_curvel
165 point_image (0] [yl [pc_curvel [facel;

166 polygon_vertices [number_polys(links]+1]{z] [pc_curvel
167 point_image (0] [z] [pc_curve] [face];

168

169

170 b

171

172 number_poly_vertices[links] [number_polys (links)+1)=number_edges [l inks] [facel;
173

174 number_polys[links] = number_polys[links] + 1;

175

176 face_color (1110}
177 face_color(il[1}
178

179 )

180

181 for(face = 0;face<number_polygons{links];face++)

182 8

183 i=1i+1;

184

185 for(pc_curve = 0;pc_curve<number_edges [links] [face] ;pc_curve++)
186 {

187 segment = number_segments {links)-1;

188 u=1.0;

189 polygon_vertices [number_polys[links]+1] [x1 {pc_curvel
190 point_image[Divisionl [x] [pc_curvel [facel;
191 polygon_vertices (number_polys[tinks]+1] [yl [pc_curvel

u

number_polys{links];
face;
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231
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point_imageiDivision] [yl [pc_curvel [facel;
polygon_vertices {number_polysilinks)+1] {z] [pc_curve] =
point_image([Division] (z] [pc_curvel [face);

number_poly_vertices [l inks] [number_polys [links]+1] = number_edges([links] [face];

number_polys [linksl = number_polys([links] + 1;

face_color{il (0] = number_polysilinksl;
face_color[il [1]1 = face;

/* Calculate the bounding rectangle for each polygon. */

for( i = 0; i <= number_polys[linksl; i++)
{

polygon_minimum_point [x][i] = 100.0;
polygon_maximum_point[x][i]l = -100.0;
polygon_minimum_point [yl (i) = 100.0;

polygon_maximum_point (y] (i) = -100.0;
)

for(i = 0; i<=number_polys{links}; i++)
for(vert = 0; vert < number_poly_vertices[linksl [i]; vert++)
¢
if (polygon_vertices(il {x] [vert]<polygon_minimum_point{x] [i))
polygon_minimum_point{xl [il=polygon vertices(i]{x] [vert]l;

if (polygon_vertices([i] [x] [vert]>polygon_maximum_point{x] [i])
polygon_maximum_point [x] [il=polygon_vertices[i] [x] [vert];

if (polygon_vertices[il [yl [vert)<polygon minimum_point [yl (i])
polygon_minimum_point [yl [iJ=polygon_vertices[illyl[vertl;

if (polygon_vertices(i] [yl [vertl>polygon_maximum_pointly][i])
polygon_maximum_point[y) [iJ=polygon_vertices(i] [yl [vert];

/* Calculate the unit normal for each of the polygons. This is done by taking the cross
product between two vectors A and B formed by the vertices of a polygon. A check is
included to see if the vectors are parallel. */

for(i = 0; i<=number_polys([linksl; i++)

(
Alx] = polygon_vertices[ilix][1] - polygon_vertices{i][x][0];
Alyl = polygon_vertices{illy]l[1] - polygon_vertices{i) [yl [0];
Afz] = polygon_vertices{il{z][1] - polygon_vertices{il{z][01;

lines_are_paratlel = 1;
i=

while(lines_are_paralliel)

{

i=i

BIx) = polygon vertices{il[x1(jl - polygon_vertices[il[x]{0]l;
Blyl = polygon vertices[illyl{jl - polygon_vertices[i][y](0];
B[zl = polygon vertices[il(z][j] - polygon_vertices{ii{z]l[0};

polygon_normati [i] [x]
polygon_normal [11 [yl
polygon_normal [i] [z]

Alyl*B[z] - Alz1*Blyl;
A{z1*B[x] - AIX1*B([z];
A[x1*Bfy]l - ALyi*BIx1;
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if ((polygon_normal[i1{x] 1= 0.0) }|
(polygon_normal [i1[yl t= 0.0) ||
(polygon_normal [i]{z] I= 0.0) |]
(j == number_poly_vertices[links]}[i1-1))
lines_are_paraltel = 0;

>

if ((polygon_normal[ilix] t= 0.0) ||
(polygon_normal [i1[y] != 0.0) ||
(polygon_normal [i] {z] t= 0.0))
(¢
/* Return the unit normal vector of each polygon. */

normal_magni tude=sqrt(polygon_normatl [i] [x]*polygon_normal [i1 [x)
+ polygon_normal [i] [y)*polygon_normal [11 [y]
+ polygon_normal [i] {z)*polygon_normal [i][z]});

polygon_normal [i] [x]
polygon_normal [i1 [y}
polygon_normal [i] {2]

polygon_normat [i] [x]/normal_magni tude;
polygen_normal [1] [yl/normal_magni tude;
polygon_normal [i] [z]/normal_magni tude;

/* Calculate the normal distance between the plane of the polygon
and the origin (calculate D from Ax + By + Cz + D = 0). */

plane_normal_distance(il =
-{polygon_normal [i] [x1*polygon_vertices (il {x] (0]
+ polygon_normal [1] [y)*polygon_vertices(i} [yl 0]
+ polygon_normal [i] [z]1*polygon_vertices(il([z][0]);



/* This shading is using the raster-scan display by generating these picture requires

techniques for removing hidden surfaces and for shading visible surface. The principle
technique is the scab-line algorithm for hidden surfaces elimination. */

#include “sweepparm.inc®
#include “scngntint.c*
#include "illumodll.c®
#include "illumodl2.c*
#include “scoplyint.c®

float image_array(512] [410];

short color_array(512][410];

float values(1001 [3];

static short pixels[245760];

float hue{l = (120.0,240.0,0.0,60.0,15.0); /* green,blue,red,,yellow,brown*/
float chromaticityl} = (1.0,1.0,1.0,1.0,1.0);

shaded_display_two(NQ_image, Links)

float NQ_imagel4] [4] [31[201([301;

int links;

{
int i,j,k,face,width, height,count;
int polyhedron,Ilike;
extern float hue(l,chromaticityll;
extern char *links_name(];
FILE *outfile,*fopen();
FILE *lala;
short pig; int xoffset,yoffset;
long offset=0;
short stin;

for(i=0;i<512;i++)
for(j=0; j<410; j++)
{ color_arrayl[il(jl=0;
image_array[i1(j1=0.0; >

for(face=0; face<number_polygons [links];face++) color[links] [facel=polyhedron;

scan_line_generate_solid_data(NG_image,color_array, image_array, links); /* “scngntsld.c" */

k=0;

{int me;
for(j=0; j<5;j++)
for(me=0;me<20;me++)
{
values (k] [0)=hue[]j];
values (k] [2]1=chromaticity(}l;
valuesime] [1]=me/20.0;
k++;

x_maximum_pixel=(x_maximum_pixel+100<512) ? x_maximum_pixel+100 : 512;
x_minimum_pixel=(x_minimum_pixel-100>1) ? x_minimum_pixel-100 : 1;
y_maximum_pixel=(y_maximum_pixel+100<410) ? y_maximum_pixel+100 : 410;
y_minimum_pixel=(y_minimum_pixet-100>1) ? y_minimum_pixel-100 : 1;
k=0;

width=x_maximum_pixel-x_minimum_pixel+1;
height=y_maximum_pixel-y_minimum_pixel+1;
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if (links == 0) lala=fopen(™10", u¥);
if (links == 1) lala=fopen(™I1", "u");
if (links == 2) lala=fopen("12", "u");
if (links == 3) tala=fopen("I3","w");
if (Links == 4) lala=fopen("I4", "uv);
if (links == 5) lala=fopen("I5%,"ut);

for(j=y_maximum_pixel-1; j>=y minimum_pixel-1;j--)
for(i=x_minimum_pixel-1; i<=x_maximun_pixel-1;i++)
<
if (image_array[il[jl1<=1.0 && image_array[il[j]> 0.001)
{
pixels(k]l = image_array(il[j1*19;/* from 0 to 19 is the criteria */
pixels(kl = pixels{k] + stin;
fprintf (lala,"Xd,%d=%d,",i,]j,pixels(kl);
b
else pixels(k]l = 0
k++;

3}
fclose(lala);

count=100;
message_window("shaded 2","", "y/n");

if(*answer_window() == 'y')

€
HC_Set_Color_Map_By Value(*'HIC",count,values);
keynumber=HC_KInsert_Pixel_Array(0.0,0.0,0.0,width, height, pixels);

>

HC_Pause();
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