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ABSTRACT 

Title of Thesis : Computer Graphic Simulation of Sweeping of Solid Objects. 

Name of Candidate : Jr-Jyun Jang 
Master of Science in Mechanical Engineering, 1991. 

Thesis Directed by : Dr. Ming C. Leu, 
Professor of Mechanical Engineering, 
Sponsored Chair in Manufacturing Productivity. 
N.J.I.T. 

This thesis is on the computer graphic simulation of the swept volume 

of a solid object undergoing Euclidean motions (including translation and 
rotation). The study helps visualize different types of Euclidean motions and 
supports the previously developed swept volume theories by providing 
graphic realism. 

Included in the thesis presentation are the following : 

1) Description of Euclidean motions of polyhedral objects, using ruled 

surfaces to represent swept volumes. 
2) Representation of sweeping of solid objects, -using parametric cubic 

equation and sweep differential equation. 
3) Simulation of motions of PUMA and IBM robots. 
4) Wire-frame and shaded image displays of swept volumes. 
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Chapter 1 

INTRODUCTION  

1.1 Motion Planning 

In robot motion planning there are two main features usually being 
discussed: first, robot trajectory planning which depends on robot dynamics, 
and second, the modeling of robot swept volume. The accuracy of off-line 
robot simulation depends on two factors: the accuracy of robot sweep 
equations and the resolution of representing swept volumes. 

Using swept volumes to perform collision detection and motion 
planning requires accurate geometry representations. With inaccurate 
representation, collision may be undetected or a false collision generated. This 
may lead to inability to determine paths which are not collision-free or false 
collision-free paths. 

A prime idea in [30] is the use of parametric cubic curves to approximate 
the robot trajectory which can roughly describe the robot motion. In [8][91[18], 
by using parametric spline one can "fit" a set of points to approximate the 
trajectory which the robot arm has passed through. It is obvious that by taking 
more points one can get better approximation of the robot motion, but the 
trade-off is more computation time. 

The main topics in this thesis include the accuracy and the computation 
efficiency of swept volume. Different methods of swept volume 
representation are implemented in the computer, with the results shown 
using computer graphics (both in wire-frame and shaded image 
representations). 

1 



1.2 Parametric Equation and Differential Equation 

Parametric equation and differential equation are the two different 
approaches used in this thesis for representation of swept volume. 

Parametric equation is basically a numerical interpolation method (see 
[1][7][11]) to approximate sweep motion. In [111 parametric cubic equation was 
used to describe sweep motion. By taking infinitesimal intervals there would 
always be a fairly good approximate result toward the sweep motion. 
Parametric cubic equation is a fairly good method of simulating 3-D Euclidean 
motion. If the 3-D Euclidean motion is a "cubic equation describable" curve 
implying constant acceleration motion, then the parametric cubic equation 
will be the most efficient method. 

The identification of a smooth sweep can be done with a system of firs t-
order, linear, ordinary differential equations called the sweep differential 
equation. It follows from the theory of differential equations that the form of 
the sweep differential equation and the initial position of an object 
completely determine the swept volume of the object. [37] classified sweeps 
according to the properties of their sweep differential equations, as certain 
types of differential equations are likely to produce swept volumes with 
particularly simple features. 

From the sweep equations one can get different types of swept volumes. 
In order to analyze the various swept volume types, it is beneficial to study 
the boundary surface of a swept volume. 

1.3 Objective of Research 

Motion planning and verification have become increasingly important 
in manufacturing automation. The use of swept volumes has shown great 
promise in efficient implementation of automation systems. For example, an 
verification systems requires an efficient implementation of intersection 
operations between the swept volumes of moving tools and potential 
obstacles. 
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The major objective of this thesis is to develop computer codes for 
graphic representation of swept volumes, which is useful for visualizing 
complex motions various types of objects such as NC tools, robots, etc. 
Through graphic displays this study also helps understand the various 
theories on swept volume geometries recently developed by Blackmore and 
Leu [37]. 

We apply two types of sweep equations to simulate motions of robots 
and other mechanisms. The first one is parametric cubic equation, and the 
second one is sweep differential equation. We develop a computer graphic 
simulation package capable of displaying sweeping of objects in wire-frame ad 
shaded images, for each given object geometry and sweep equation. 
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Chapter 2 

LITERATURE REVIEW  

2.1 Past Research 

2.1.1 Simulation and Verification of NC Machine Motion 

Collision is one of the serious problems in using automatic devices. An 
NC simulator enables NC programmers and machine operators to detect 
potential collisions visually and gross programming errors. A machining 
verifier seeks to determine automatically whether an NC program will 
produce a specified part without undesirable collisions, or cutter breakage, etc. 
Both simulator and verifier require solid modelling [3]. 

Solid modelling can be used for NC verification. In principal the 
machining operation is the process by which the unwanted portion of the 
volume is taken away from a given workpiece by " sweeping " the revolving 
cutter according to the programmed tool path [21. 

Verification of part programs for NC machining using swept volumes 
has been presented and implemented in [2][3][23]. 

2.1.2 Robot Collision Detection 

The most common robot motions are transfer movements for which 
the ability to plan motions that avoid obstacles is essential to the robot task 
planner. In [26][27][28] the motion planning schemes which include this swept 
volume have been presented. 

Methods from computational geometry reduce motion planning to a 
geometric issue. A geometric representation of the volume swept by a 
moving object is generated. Intersection between this geometric model of 
swept volumes and geometric models of obstacles in the environment are 
determined. 
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[1] states that a solid can be represented by dosed bounded surfaces. By 
analyzing the swept volume, we have two kinds of surfaces which can fully 
represent the swept volume of a polyhedral object. Dealing with the collision 
detection problem in this case is the same as doing intersection checking of 
surfaces. As in [4][5][6][7] there are different kinds of algorithms to implement 

interference checking. The constraints of "bounded" dosed surfaces increase 
the complexity of interference checking. 

Analytically, the swept volume of a polyhedral object can be 
decomposed into ruled surfaces and developable surfaces ( which is basically 
the line swept surface or plane swept surface ). The properties of these two 
surfaces are discussed in [15][16](18][301[7][8]. 

2.2 Robot Kinematics 

Robot arm kinematics deals with the analytical study of geometry of 
motion of robot arm with respect to a fixed reference coordinate system 
without regard to the forces/moments that cause the motion. 

There are two fundamental problems in robot arm kinematics. The first 

problem is usually referred to as the direct (or forward) kinematics problem. 
The second one is the inverse kinematics (or arm solution) problem. 

Forward kinematics : (direct kinematics) 

Denavit and Hartinberg [10][34] (here, it is simplified as D-H table) 

proposed a systematic and generalized approach for utilizing matrix algebra to 
describe and represent the spatial geometry of the links of robot arm with 
respect to a fixed reference frame. This method uses a 4X4 homogeneous 
transformation matrix to describe the spatial relationship between two 
adjacent rigid mechanical links and reduces the direct kinematics problem to 

finding an equivalent 4X4 homogeneous transformation matrix that relates 
the spatial displacement of the hand coordinate frame to the reference 
coordinate frame. 
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Inverse kinematics : (arm solution) 
In general the inverse kinematics problem can be solved by several 

techniques. The most commonly used methods are the matrix algebraic 
iterations and the geometric approach. 

Rotation matrix about an arbitrary axis 
The rotating coordinate system Oxyz  may rotate an angle ® about an 

arbitrary axis r which is a unit vector having components rx,ry,rz  and passing 
through the origin 0. We can first make some rotation about the principal 
axis of the 0 frame to align the axis r with the Oz  axis. Then a rotation 

about the r axis with 0 angle and a rotation about the principal axis of the 
Oxyz frame return the r axis to its original location. 

2.3 Parametric Formulation 

An intrinsic property is one that depends on only the figure in question, 
not the figure's relation to a frame of reference. The theory of curves proceeds 
from the intrinsic equations. It is interesting to make a distinction between 
intrinsic equations, as just defined, and natural equations,defined in the 
following way: A natural equation of a curve is any equation connecting the 
curvature 1/p, the torsion `C, and the arc length s of the curve. We have 

A natural equation of a curve imposes a condition on the curve. 
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From a slightly different approach, we can describe a curve 
parametrically in terms of the arc length, by getting the equations x = x(s) and 
y = y(s). In fact the functions x,y must be related by the equations 

Differentiating these equations with respect to s, we can get a pair of second-
order differential equations for any given curvature function k(s). 

We cannot express shapes required for geometric modeling with 
ordinary, single-valued functions. The dominant means of representing 
shapes in geometric modeling is with parametric equations..If we fit a curve 
or surface through a set of points, the relationship between the points 
themselves determines the resulting shape, not the relationship between 
these points and some arbitrary coordinate system. Besides, the curves and 
surfaces of geometric modeling are often nonlinear and bounded in some 
sense and can never be represented by an ordinary nonparametric function. 

Listed in [1] several advantages of using parametric equation. 

2.4 Definition of Swept Volume 

In general terms, the swept volume of an object moving in a given space 
from some initial location at t = 0 to some final location at t= 1 is defined as 

the 'volume' through which the object has passed. Let A be an object that is 
swept and let At  represent an instance of A during the sweep for some 

tE I=[0,1]. Then the swept volume of A, SV(A), is the union over I of all 
instances At, 

The generality of this definition can be removed while including a 
description of the motion of the sweeping object by redefining the swept 
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volume in terms of trajectories of its point set. The motion of any point or set 

of points of the object can be determined during the sweep [22,25]. 

Definition 2.4-1 
Let h : X —> Y be a bijection with X and Y two topological spaces. Then 

the function h is a homeomorphism if both h and the inverse function h-1 
Y —> X are continuous. 

An open n-ball is the interior of Iin  . A half n-ball is an open n-ball 
minus the open half-space determined by a hyperplane through its center. 

2.4.1 Swept Volumes of Polyhedral Objects 

Here we apply the swept volume theorem to the generation of swept 
volumes for a special class of compact 3-manifolds in IR3 — planar polyhedral 

3-manifolds. 

The polyhedral n-manifolds under consideration in this paper are those 
with planar faces and will be referred to as polyhedral objects. Here we discuss 

the geometric representation of the swept volumes for polygons undergoing 

general motions in IR3. As we describe the polyhedral objects by using 

boundary representation, the boundary surfaces of polyhedral objects consist 
of a finite number of planar polygonal faces which meet along edges and 

vertices. For any polyhedral object, its boundary can represented as the union 

of all its polygonal faces. 

Swept Volumes of Polyhedral Objects Reduced to Swept Volumes of 
Polygonal Faces 
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For any polyhedral object, its boundary can be represented as the union 
of all its polygonal faces. As shown in Fig. 4.3-1 The swept volume of the 
union of two objects equals the union of their swept volumes. 
Let A be a polyhedral object in IR3  and let fiA be the ith face of A. Then the 

boundary of A is 

If it is determined that during the sweep Ao intersect Ails empty set, Then 

the swept volume of a polyhedral object is reduced to the swept volume of its 

planar polygons. See Fig. 4.3-2. The geometric representation of the swept 

volumes discussed here are for continuous general motions of polygons. 

Boundary Surfaces of Swept Volumes of Polygons 

The boundary surfaces of the swept volumes of polygons consist of ruled 

surface segments, segments of developable surfaces, and the surface of the 

polygon at its initial and final location. For a general motion of a polygon 

sweeping, there are 6 degrees of freedom. 

For the simplest case, where the polygon is undergoing a shifting 
movement, the envelope can be considered as generated by the sweeping of 
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its edges. By connecting these swept edges — which are ruled surfaces, one 
forms the ruled surface segments. 

In complicated motion, the ruled surface cannot fully describe the swept 
volume of a polyhedral object, see Fig. 3.2-2(b), and part of the swept volume 
is formed by the sweeping polygon itself. In the other words, the interior 
points of the polygon become the boundary points of the swept volume. 
These surfaces are developable surfaces. 

10 



Chapter 3 

ROBOT KINEMATICS AND PARAMETRIC FORMULATION  

3.1 Parametric Cubic Curves 

Parametric cubic curve is a reasonable curve to simulate the solid object 
motion. The word 'reasonable' implies, that cubic equation is the lowest 
order continuous equation which can describe accelerated (and decelerated) 
motion. 

The algebraic form of a parametric cubic curve segment is given by the 
following three polynomials: 

The coordinates (X(t), Y(t), Z(t)) can be treated as the trajectory of a 
particle (or 'body-attached coordinate frame') movement in the Cartesian 
space. The coefficients are the 'record' of this trajectory, which fully describes 
the position of the particle with respect to time t. The parameter t is restricted 
from 0 to 1. This restriction makes the curve segment bounded. 

The twelve coefficients (in Eq. 3.1) are algebraic constants to be 
determined. This implies that four points located on the curve have to be 
known for determining the parametric cubic curve. Described in [1] are other 
ways of defining the curve. 

Figure 3.1-1 gives an example of parametric cubic curve and the 
associated time histories of x,y, and z coordinates. In 4-point form we get 



is a one parametric equation. Which maps the t- 

Fig. 3.1-1 The Euclidean value maps onto t domain. 

3.2 Surfaces 

In section 2.2.1 the swept volume of a polyhedral object can be bounded 

by the swept surfaces which is generated by the sweeping edges of the 
polyhedral object. In differential geometry [1][8][9][11], a sweeping line can 

produce a "ruled surface". Here we also use polyhedral objects to present solid 

objects. The connection between two vertices is a line segment called 

generator of the ruled surface. 

3.2.1 Sixteen points form cubic surface 

domain into Cartesian space. Now take one more parameter into 

12 



consideration, i.e. map u,w (two independent variable) into Cartesian space. 
The parameters u and w can define a continuous cubic surface. 

16 Points Form Cubic Surface 

The following figure shows a cubic surface, It needs 16 points to define a 
cubic surface. 

Fig 3.2-1 Sixteen points form of a bicubic surface. 

13 



3.2.2 Ruled Surfaces 

A ruled surface is generated by a straight line segment undergoing a six-
degree-of-freedom motion. 

Definition 3.2-1 
A surface such that through every point of the surface passes at least one 

straight line entirely in the surface is known as a ruled surface. 

P(t,v) = d(t) + vg(t) (3.2-1) 

d(t) : is a curve in the surface, 
g(t) : is a family of unit vectors along d(t) in the direction of sweeping line. 
v : determines the distance of the point P(t,v) from d(t) along g(t). 

From the above definition, the lengths of solid object edges are bounded 
by two end vertexes. The same ruled surface can also be defined by two curves 

di(t) and d2(t) joined by straight line segments. The curves di(t) and d2(t) are 

part of the boundary of ruled surface. 

P(t,v) = di(t) + v( d2(t) - di(t) ) (3.2-2) 

Figure 3.2-2 shows two different types of swept volumes. One can see from 
Fig. 3.2-2(b) that if the planar facet intersects itself, the ruled surface cannot 
fully describe the boundary of swept volume. 

3.2.3 Developable Surfaces 

A developable surface is formed by successive planes which intersect 

each other such that all the intersection lines lie inside the sweeping planes 
(see Fig 3.2-2(b)) 

Definition 3.2-2 

A surface such that through every point of the surface passes at least one 
straight line entirely in the surface and the normal to the surface is constant 
along these straight lines. 

14 



General concepts : 
A plane is decided by two intersecting lines LI & L2 on point q 

q is a curve and ri(t) , r2(t) are families of unit vectors passing through the 
curve q. The tangent direction to the curve q at each value of t is q'. Since ri(t) 
, r2(t) are unit vectors, they have perpendicular tangent directions r1' , r2 

respectively. A developable surface can be regarded as ruled surface in which 
the normal direction is constant along the straight lines in the surface. 

Fig. 3.2-2(a) Swept volume described by ruled surfaces. 
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Fig. 3.2-2(b) Swept volume described by ruled surfaces and developable 
surfaces. 

3.3 Robot Kinematics and Cubic Parametric Formulation 

Rotational Matrix 

A rotation matrix geometrically represents the principal axes of the 

rotated coordinate system with respect to the reference coordinate system. 

Since the inverse of a rotation matrix is equivalent to its transpose, the 
row vectors of the rotation matrix represent the principal axes of the reference 

system OXYZ with respect to the rotated coordinate system OUVW. Actually 
the rotation matrix is orthonormal. 

D-H Table 

A mechanical manipulator consists of a sequence of rigid bodies, called 

links, connected by either revolute or prismatic joints. Each joint-link pair 
constitutes 1 degree of freedom. Fig 3.3-1 shows the relation between links 
and joints on PUMA robot. 

16 



Fig. 3.3.1 Puma Robot and the 'body attached coordinate frame' 

To describe the translational and rotation relationships between adjacent 
links, Denavit and Hartenberg proposed a matrix method of systematically 
establishing a coordinate system (body attached coordinate frame) to each link 
of an articulated chain. 

Every coordinate frame is determined and established on the basis of 
three rules: 
1) The zi_i  axis lies along the axis of motion of the ith joint. 
2) The xi  axis is normal to the zi4  axis, and pointing away from it. 
3) The yi  axis completes the right-handed coordinate system as required. 

The D-H representation of a rigid link depends on four geometric 
parameters associated with each link. 

Robot Kinematics and Parametric Cubic Equation 
By using D-H table, we plug in four joint variable values, after the 

computation we can get four different robot arm configurations. If we plug 
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the values at time t=0, t=1/3, t=2/3, and t=1 (from t=0 to t=1), the four robot 
configurations become the four boundary condition of the parametric cubic 
equations. 

3.4 Algorithm 

The solid object is composed of polyhedral facets (or piecewise flat 
surfaces). The solid object has the shape of polyhedron. The simple polyhedra 
are the most important, since they are historically the source of topology's 
contribution to geometric modeling. The term simple polyhedra refers to all 
polyhedra that can be continuously deformed into spheres. Regular polyhedra 
are an example and subset of the simple polyhedra. In other words, regular 
polyhedra have no reentrance edges; thus they are convex. 

The word convex can be applied to every polyhedron that lies entirely on 
one side of each of its polygonal face. So every convex polyhedron is a simple 

polyhedron, but a toroidal polyhedron is not. 

Among vertices, edges, and faces of a simple polyhedron, called Euler 
formula for polyhedra: vertices no. - edges no. = 2 - facets no. The above 
simple formula provides a direct and simple proof that there are only five 
regular polyhedra. 

Take the example of a more general case,i.e. a surface formed by taking a 

collection of planar surfaces. Any surface formed in this way will obviously be 

flat everywhere except the edge where flat surfaces are jointed together. The 

polygon has only straight edges, then the joint surface has curvature only on 
the edges. 

Because of the above properties, the following points have to be 
characterized in order to describe how the surfaces are jointed together. This 
kind of representation is named atlas, which is a collection of separate maps 

of the flat facets of the solid object. As the meaning of atlas, there should be a 
route and orientation from each location to any other locations. The same 
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thing here, atlas must keep a record of all the relations (including orientation, 
edges, and parent facets and grandparent solid) between vertices. 

Now, starts from the construction of a flat facet : 

Fig. 3.4-1 Atlas of a solid object. 

In order to explain the above solid object better, every vertex, edge and 
facet should have a name called 1st, 2nd, 3rd,... , 8th vertex, and 1st, 2nd, 3rd,... 
, 12th edge, 1st, 2nd, 3rd,... , 6th facet. The above figure shows the atlas of a 
solid object which contains 6 flat facets, each of which composed of 4 oriented 
edges and every edge has 2 vertexes (a forward vertex — marked by an arrow, 
and a backward vertex) on both ends. 

vertex[1..8][x,y,z] = vertex corrdinate. 
Edge[1..12][to=0,fro=1] = 1st .. 8th (vertex ID) 
Face[1..6][1..4] = 1st ..12th (edge ID) 
Orientation[1_6][1..4] = 0,1 (edge orientation ID of each face) 

0 means the loop of a facet follows the edge direction, 
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1 means the loop of a facet reverses the edge direction. 
Number of facets = 6 
Number_of_edges = 12 
Number_of_edges_of_each_facets[facets] = 4 

For example, on facet 1: 

Vertex [Edge[Face[1] RE [Orientation[11R1]][xyz] = 1,2,6,5 
where A. = 1,2,3,4. 
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Chapter 4 

SWEEP DIFFERENTIAL EQUATION  

Parametric formulation is a numerical approach to sweep motion. This 
chapter is going to describe some simple Euclidean motions by using 
differential equation (see [37][35]). 

The precise definition of swept and swept volume are given in section 2.4. 
This chapter defines the sweep differential equation, and introduces the 
mathematical and geometrical meaning of autonomous sweep motion and 
relatively autonomous sweep motion. 

4.1 Sweep Differential Equations 

The swept volume of an object in Euclidean n-space Rn  is generated by a 
1-parameter family of Euclidean motions of the form 4 + Ax (translation + 
rotation), where x is a generic and a fixed vector in Rn, and A is a matrix in 
the special orthogonal group  

SO(n) is a real analytic Lie group of dimension (n/2)(n-1). See [19] for details. 
Let Euc(n) be the Lie group of Euclidean motions in le. It is clear from the 
form of Euclidean motions that the Euclidean group Euc(n) can be identified 
with Rn  X SO(n); hence it is a real analytic Lie group of dimension (n/2)(n+1). 

Definition 4.1-1 
A sweep is a continuous mapping a : [0;1] -> Euc(n) such that a(0) = the 

identity. We say that the sweep is smooth if it has continuous derivatives of 
all orders. Every sweep can be written in the form 



We shall confine our attention, for the most part, to smooth sweeps. 
This is certainly not unreasonable, since most sweeps encountered in practice 
are apt to be at least piecewise smooth. 

It follows from this derivation that x(t) = at(x°) is the unique solution of this 

differential equation satisfying the initial condition x(0) = x°. This suggests the 
following concept. 



is called the sweep differential equation (SDE) of a. 

As (4.1-4) is linear, a solution such that x(0) = x°  exists on the whole 
interval [0,1] (see [5]). This shows that there is a one-to-one correspondence 
between smooth sweeps and SDE's. Given this correspondence and the fact 
that the evolution of an object in a vector field is completely determined by 
the initial position of the object, it is quite logical to dassify sweeps which 
generate swept volumes exhibiting a variety of particularized geometric and 
topological features. We shall identify one such lass in the, next section. 

4.2 Autonomous S.D.E. 

This section will subdivide the sweep differential equations into 
different categories. We will starts from the differential equations whose 
vector field does not explicit depend on t, called autonomous swept 
differential equation. 

Definition.4.2-1 
A smooth sweep is said to be autonomous if its SDE is autonomous; i.e.; 

Xa  in (2) does not depend on t. 

We take the partial derivative of Xa  with respect to t and set it equal to 

zero, whence 



o(n) = { B : B is a real, nXn skew-symmetric matrix) 

We have now essentially proved the following result: 

From the definition above, the autonomous sweep differential equation 
can be put down in the following form. 



Fig 4.2-1 Type 1; a disk undergoing helical motion. 

Type II : All the cases other than type I, is type II. (see Fig. 4.2-2 ,Fig. 3.2-2 (b)) 

Fig 4.2-2 Type 2, also a disk undergoing helical motion but intersecting itself. 
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4.3 Relatively Autonomous S.D.E. 

Definition 4.3-1 
A smooth sweep is said to be relatively autonomous if its relative SDE is 

autonomous. 

Observe that by defining = x - 4, the differential equation of a sweep can 
be written in this form 

From the definition, AAT T  = B is constant; in the other words, the 
relatively autonomous sweep motion is autonomous sweep with respect to 
the relative coordinate frame. 



Chapter 5 

IMPLEMENTATION AND ALGORITHM  

This chapter discusses implementation of the parametric cubic equation 
and sweep differential equations. The simulation programs are written in C 
language and HOOPS computer graphic utilities on the SUN3/60 workstation 
at NJIT. 

The solid objects are defined according to Mobius principle [1][4][30]. All 
the solid objects are convex polyhedral objects. The computer programs are 
included in Appendixes I, II, and III. 

The first section of this chapter discusses parametric cubic equation 
implementation on IBM and PUMA robots. The second section discusses the 
implementation of sweep differential equation on polyhedral objects and IBM 
robot. With detailed description and computer simulation, one can visualise 
the difference between autonomous sweep and nonautonomous sweep in 
Cartesian space. We also include the wireframe representation and shaded 
image representation of the swept volumes. The third section discusses the 
methods of showing the shaded images from the swept data by transforming 
three dimensional coordinates to two dimensional computer screen pixels, 
and remove the hidden surfaces using z-buffer. 

The basic requirements for comprehending these simulation programs 
are the C programming language, a knowledge of UNIX system, HOOPS 2.02 
graphic library, and SUN workstation. The following flow chart (Fig 5-1) 
illustrates the flow of programs execution. The later sections will discuss 
these individual blocks in detail. 
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Fig. 5-1 Flow chart of the simulation Programs. 

28 



5.1 Parametric Cubic Equation Implementation 

As mentioned in section 3.2, parametric cubic equation is used to 
describe a a point trajectory. Now, take this point as the origin of a 'body 
attached coordinate frame'. In Euclidean motion there are six degrees of 
freedom, namely x,y,z,roll,pitch,yaw. When a solid object sweeps, the 'body 
attached frame' has a smooth motion in Euclidean space. i.e. the 
x,y,z,roll,pitch,and yaw values change smoothly. 

There is a critical issue which needs to be clarified, i.e. the existence of 
angle OW, 9(t), w(t). Before getting into any explanation, first take a look at Fig 
5.1-1 and preview the fixed relationship between the 'body attached 
coordinate frame' and the vertex of a polygon. 

Fig 5.1-1 The body attached frame undergoing Euclidean motion. 

P(t) is the trajectory of the 'body attached coordinate frame'. The 4 data 
points P1 , P2 , P3 , P4 should be known values. In robot application these 4 
sets of known values are calculated using the D-H table [see 10]. For example, 
one has to define the variable at the 'time' ti , t2 , t3 , t4 shown in Fig. 5.1-2 
which includes a D-H table on the upper portion of the picture. 
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In [10], there are three types of Euler angle representation toward 
rotational matrix. In this section, Eq 4.3-4 to Eq 4.3-6 are roll - pitch - yaw 

representation of rotational matrix. 

For roll - pitch - yaw representation, the rotational sequence is roll -> pitch -> 
yaw which rotate with respect to X, Y, Z axis of world coordinate frame. 



Before we start introducing the algorithm used in the simulation 
programs, first let us show the table of the symbolic arrays (or variables) 
which is used to represent the arrays (or variables) in the source programs. 
These symbols will be used in section 5.1, 5.2, 

SO[face ; edge ; p] : Polyhedral object vertices, defined by user. 

SV[ face ; edge ; p(t)] : Swept volume boundary points. 



Algorithm 1 
The polyhedral object and 'body-attached coordinate frame' has been 

defined before starting the simulation. The first step is to find the trajectory of 
the 'body-attached coordinate frame' by the four sets of given data which can 
be calculated by an existing preprocessing program. 

Algorithm 2 
After the FR array is loaded with the information of the 'body-attached 

coordinate frame', one can transform the body-vertex according to the data in 
FR array. 

end of t. 
end of e. 

end of f. 



Fig. 5.1-2(a) D-H table of IBM robot, and varibles data table of simulation. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 5.1-2(a) D-H table of IBM robot, and varibles data table of simulation. 



Fig. 5.1-4(b) The simulation of PUMA robot. 

The bottom shows four configurations of the robot during the sweep motion. 



Fig. 5.1-5 Shaded image of the swept volume of Fig. 5.1-4. 



5.2 Sweep Differential Equation Implementation 

This section describes an implementation of chapter 4. We categorize the 
pure translational motion and pure rotational motion as autonomous sweep 

motions, and the autonomous motion in reference translating coordinates as 
relatively autonomous sweep motion. 

The simulation algorithm is similar to the one in section 5.1; however 
instead of using parametric cubic equation to calculate the motion of the 
'body attached coordinate frame', we use sweep differential equations. 

Algorithm 1 
We first sweep the 'body attached coordinate frame' by using sweep 

differential equation, then transform the solid vertex according to the 
differential equation. 

end of t. 

Algorithm 2 

The same as the algorithm 2 in section 5.1. 

5.2.1. Rolling, Pitching, and Yawing 

In section 2.2 and 3.2, Euler angle representation of a rotation matrix was 
explained in detail. We choose rolling, pitching and yawing angle to represent 

Euclidean motion. The following provides the equations for rolling, pitching 
and yawing motion. 



Now, there is an interesting question: how can one use the sweep 
differential equation to explain the RPY motion in the Euclidean space ? 
From the question above, the above rotation matrix will be back traced to the 
sweep differential equations model, in order to categorize RPY motion as 
autonomous sweeping motion. Let's take Eq. 5.2-1 which is the rotation 
matrices of rolling. By using Laplace transform, one can get the swept 
differential equation form of Eq.5.2-1. 

Similarly pitching and yawing have the same property, then we can 
prove that Roll, pitch, and yaw are autonomous sweep motion. 
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5.2.2. IBM 7540 Robot and Two-Link Mechanism 

Two-Link Mechanism 
This section starts with the equations of two links and analyzes the two 

links using the sweep differential equation representation. We classify 
different types of motion in order to choose the proper equations to generate 
swept volume efficiently. - 

( xi(0), yi(0) , zi(0) ) = ( 0 , 0 , 0) is at the origin of upperarm coordinate frame. 
By laplace transform, we get the linear system equation: 



Fig. 5.2-1 Rotation of single link. • 

The final goal of this derivation is to derive an equation of the format of 
autonomous equation, which was shown in section 4.2. 

This is a typical example of autonomous sweep equation. The 
homogeneous term of the first-order linear system (Eq 4.2-5) is not a function 
of t. In autonomous sweeping motion, the sweep vector field does not 
explicitly depend on t. [38] has similar discussion about this pure rotational 
motion of a two revolute joint mechanism. 

The equation of the second link is: 



Fig. 5.2-2 Two links motion. 

From linear differential equation point of view, the autonomous sweep 

differential equation consists of two parts, namely 1X2, X1  

Now, this format looks similar to the solution of the first-order linear system, 

x2(t) , y2(t) , z2(t) is the distal point on the second link. xi (0 , yi(t) , zi(t) is the 

distal joint point on first link. 



Similar to the derivation before, by taking the Laplace transform of Eq. 
5.2-8 and Eq. 5.2-9, one can get the following differential equation, with initial 
condition ( x1(0) , y1(0) , Z1(0)) = ( ri , 0 , 0 ), ( 1x2(0) .1y2(0) , 1z2(0)) = ( r2 , 0 , 0), 
where r2 is a point on the second link. 

From equation 4.1-3 we have the sweep differential equation: 

From the definition of 4.3, we have AAT  = B as constant; here we have 
A Eq. 5.2-12 

The above equation shows that the second link motion is relatively 
autonomous motion. 
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Now let's refer to Fig. 5.2-2, If col  equals to (02, from the definition in 
section 4.2, the two links should undergo autonomous motion. Because 
AAT  = B is constant and AT  k = b is constant. 

The above derivation shows that if col equals to (02 the relatively 
autonomous sweep motion become autonomous motion; in the other words, 
Eq. 5.2-17 and Eq. 5.2-18 show that autonomous sweep motion is only a special 
case of relatively autonomous motion. Eq. 5.2-17 also shows that the 
relatively autonomous motion has a translational term which is a function of 
t. 

A similar engineering application to the two-link case is IBM 7540 robot, 
which is a three-degree-of-freedom robot (two rotational joints and one 
prismatic joint). The first two degrees of freedom are manipulated by the 
upperarm and forearm, and the third degree of freedom is manipulated by an 
prismatic joint which is the end-effector. 
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IBM 7540 Robot 
The following is the model of IBM 7540 robot links. This model includes 

three parts : 

I) The upper-arm. 
From the kinematics analysis, the upper arm motion can be categorized 

as autonomous motion. The whole upper robot arm undergoes rotational 
motion. 

II) The fore-arm. 
The fore-arm motion can be categorized as partial autonomous motion. 

The forearm undergoes rotational and translational motion. 

Now take a look at two different forearm movement simulations from 
Fig. 5.2-3 to Fig. 5.2-6. By comparing the different sweep simulation results, 
from Fig.5.2-5 and Fig.5.2-6 one can see exactly the sweep vector field (the 
sweep field lines) which intersect itself. Fig. 5.2-6 shows that the swept 
surfaces are not generated only by its polygon edges, but also by polygon facets 
in the form of developable surfaces. 

III) The end-effector. 
For the end-effector, the model of forearm still holds but is under 

different initial conditions ( xi(0) , yi(0) , z1(0)) = ( r1 , 0 , 0 ), ( lx2(t) , 1372(0 , 1 z2(t) ) = ( r2 , 0 , 0 ). For this prismatic joint there exists a velocity in the Z axis 
direction. 

The translational term z 3(t), describes the up and down translational 
motion of the end-effector. 
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Fig. 5.2-3 The simulation of IBM robot using SDE. 
This is a special case of relatively autonomous sweep motion, for wi = (02. 



Fig. 5.2-4 (a) Shaded image of the swept volume of the second link. 

Fig. 5.2-4(b) Shaded image of the swept volume of the first link. 



Fig. 5.2-5 The simulation of IBM robot using SDE. This is relatively autonomous sweep motion. 

The fore-arm swept volume should be partly bounded by developable surfaces (not shown). 



Fig. 5.2-6 (a) Shaded image of the swept volume of the second link. 

Fig. 5.2-6 (b) Shaded image of the swept volume of the first link. 



5.3 Shaded Image Representation 

Shaded image representation needs complicated programming 

algorithms, including reflectance calculation, hidden surfaces removal, and 

color rendering techniques. This section discusses reflectance calculation and 
hidden surface removal of ruled surface. There is no discussion on color 
rendering, which is one of HOOPS bulid-in functions. 

We use scan-line algorithm to detect the intersections between 
polyhedral facet edges and scan lines, and use z-buffer to remove hidden 
surfaces. For calculating reflectance intensity we use linear_ interpolation 

method to get the smooth surface normal change. There are other algorithms; 
see [1][4][8][9][10]. 

The interfacing data between shaded image representation and wire-
frame representation in our simulation software is the array SV[facet; edge; 
xyz(t)]. In other words, shading programs transfer the wire-frame data (3-D 
Cartesian space) to shaded pictures (2-D computer screen). Some initial 
conditions have to be determined before stating the shading calculations. 
They are 1) eyesight direction (the default eye position is the origin, looking 
in the negative Z direction), 2) light source direction, 3) surface reflection 

constant (experience value). 

As the eye location has been determined, only the "top facets" can be 
seen. Shading programs calculate the normals of all facets. Z-buffer algorithm 
compares the z depth of each facet, and save the data which are close to the 
eye position. An illumination subroutine is used to calculate the reflectance. 

Fig 5.3-1 shows the flow of program execution. All blocks are named in 

computer program files in a SUN 3/60 workstation system at NJIT. 
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Fig 5.3-1 The block diagram of shading programs. 

The following symbols are used in the program subroutines: 

#Nf  : The number of the facets of a solid object. 
#Ne: The number of edges of a facet. 
#Tk  = 13 : The number of instants when t changes from 0 to 1. 





shaded.c 

Shaded.c gets the sweep data (SV[face; edge; xyz; t]) from the simulation 
programs. Then it calls SCAN_LINE_GENERATE_SOLID_DATA0 to 
process the wire-frame sweep data, After the processing the results are stored 
in array IM[x;y]. Here the shaded picture size is 512 by 410 pixels, each value in 
IM[x;y] represents a pixel intensity value (form 0 to 20). ('pixel' is the size of a 
computer screen spot unit). In the end, SHADED_DISPLAY_TWOO calls the 
HOOPS computer graphic routines to render the intensity values in IM[x; y] 
on computer screen. 

In summary, this subroutine does the following: 

SHADED DISPLAY_TWOO  

{ call SCAN_LINE_GENERATE_SOLID_DATA0 
call HOOP subroutines to display the image data. } 



scngntsld.c 

This subroutine defines light source direction and eyesight direction, 

then calls ENCLOSE_OBJECTO to find the enclosing rectangle boundaries for 
each ruled surface. 

The second step is to call POLYGONALIZE_SURFACESO to polygonalize 
the ruled surface segments and calculate their unit normals (include the 
initial and final polygons). 

The third step is to call GENERATE_SCANLINE_INTERSECTIONO, 
which renders the normal value to the ruled surfaces and the initial and final 
polygons. The subroutine uses scan line/Z-buffer algorithm to record the 
visible surface/ray intersections and maps the surface reflectance to proper 
pixels. 

The last step is to call either ILLUMNATION_MODE_ONE0 or 
ILLUMINATION_MODE_TWOO to calculate the reflectance of the ruled 
surfaces. 



enclosebj.c 

This subroutine finds the maximum and minimum value of every 
ruled surface. The pixels which do not map inside to the bounding rectangle 
are treated as background (the reflectance intensity is 0). 



cnplyninl.c  

This subroutine is to polygonalize the SV[face; edge; xyz ;t] to 
PL_Vtx[face*#Tk+t; xyz; edge] and to generate the normal of each polygon, in 

similar structure PL_Nml[ face*#Nf+t; xyz; edge]. 

for face = 1 to #Nf  
for edge =1 to #Ne  

for t = 1 to #Tk  

number_polys = number_polys + 1 

end of t. 
end of edge. 

end of face. 

for i= 1 to number_polys 



scngntint.c 

This subroutine uses geometrical simplification to subdivide the total 
number of scan lines needed to process the object movement into 10 
increments. The scan-line algorithm decides what polygons are visible in a 
scan-line window, and these decisions are made by comparing line segments 
in the x-z plane. 

If one uses only the polygon normal of the ruled surface to calculate the 
reflectance, the shaded picture can show a sculpture like surface. So we need 
to get the normal of every vertex, then use linear interpolation algorithm to 
smooth out the ruled surface. The following figure show the concepts of 
getting the vertex normal form the surrounding polygonal facets, the vertex 1 
is surrounded by polygon A,B, and C. 

Fig. 5.3-5 shows the ideas of getting the vertex normal. But in the 
program each swept surface generated by polyhedral edge sweeping will be in 
rectangular shape, but three points will decide a plane. We have to sub-divide 
the polygon into triangular facets. Because the default number of sweeping 
instant is thirteen, there should be twelve segments for each swept curve. In 
the other word, there should be twelve rectangular polygon which can 
determine twenty-four triangular facets on each ruled surface. 

Fig. 5.3-5 Three polygons determine a vertex and its vertex normal. 
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Refer to Fig. 5.3-3 which shows the data flow between scnplynml.c, 
scngntint.c, scnplyint.c & illumode.c. 

for p = 1 to number_polys 
for v = 1 to number_of_each_polygonal_facet[p} 



scnplyint.c 

A polygon is input to this subroutine, i.e. the coordinates of the vertices 
of the polygon, the polygon normal, and the vertex normals determined as 
the average of the polygon normals for all polygons sharing the vertices of 
the input polygon. These vertex normals are used to determine shading using 
the linear interpolated normals across the polygon. The polygon is displayed 
using scan-line z-buffer algorithm. For all the edges in a polygon determine 
the x-coordinate of intersection with the scan line. 

Polygon is a convex object. Each pair of the x coordinate intersection are 
interior to the polygon. 

After the scan line intersects with the edges, (in point E,F), the next step 
is to linearly interpolate the scan points normal value between points E,F (see 
Fig. 5.3-6), for example, the point D. The following equations show how we 
get the linear interpolation value for the point D of the plane a. 



Fig.5.3-6 Linear interpolation of scan line normal values. 

In the end of this subroutine compare the Z-buffer value with the 

previous value, and keep the top most set of normal value for illumination 

calculation. 
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illumodl.c or illumode2x 

The following reflectance formula was used as the illumination model, 
where all the parameters are constant except n^ which represents the surface 
normal at a pixel. 

Reflectance Formula: 



Chapter 6 

CONCLUSION  

This thesis presents computer graphic implementation of methods for 
generating geometric representations of swept volumes for polyhedral 
objects. The geometrical applications of our methods include autonomous 
swept volumes, relatively autonomous swept volumes, and parametric cubic 
equation. 

Parametric cubic equation is used to approximate general Euclidean 
motions. Autonomous sweep differential equation is applied to simple 
translational and rotational motions in Euclidean space. Relatively 
autonomous sweep differential equation is used to describe the autonomous 
motion in relative coordinate system. These equations can be used to describe 
various kinds of machines or robots motions. The computer graphic 
simulation has been implemented on polyhedral objects, IBM robot, and 
PUMA robot. The results of computer simulation are helpful in visualising 
motions of objects by showing their swept volumes in wire-frame and shaded 
images and helpful in visualizing some of the theories previously developed 
on swept volumes. 

Although there are several types of motions being presented in the 
representation of swept volumes, these equations cover only very limited 
types of Euclidean motions. Moreover, the surface characteristics of swept 
volumes have not been much studied from the above formulations. Further 
research is needed to achieve these goals. 
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APPENDIX I 

Programs for Graphic Representation of Swept Volumes 
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APPENDIX II  

Shading programs 
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