
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

12-31-1991

Fast arithmetic operations on the hypercube using conditional Fast arithmetic operations on the hypercube using conditional

sum addition and modified booth's algorithm sum addition and modified booth's algorithm

Umar Bin Iftikhar
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Iftikhar, Umar Bin, "Fast arithmetic operations on the hypercube using conditional sum addition and
modified booth's algorithm" (1991). Theses. 2504.
https://digitalcommons.njit.edu/theses/2504

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2504?utm_source=digitalcommons.njit.edu%2Ftheses%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

FAST ARITHMETIC OPERATIONS ON THE
HYPERCUBE

USING CONDITIONAL SUM ADDITION AND
MODIFIED BOOTH'S ALGORITHM

By

Umar Bin Iftikhar

A Thesis

Submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology in partial

fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

1991

Acknowledgements

I would like to express my sincere appreciation and gratitude to Dr. Sotirios

G. Ziavras, chairman of the committee, for his helpful suggestions and constractive

criticism. I would also like to thank Dr. J. Carpinelli and Dr. Y. Q. Shi for serving in

my thesis defense commitee and for their valuable suggestions.

Finally, I would Like to thank my mother for her continous help

encouragement and secrifices she has made for me without which this work would

not have been possible.

ABSTRACT

Algorithms for fast arithmetic operations (i.e., addition and multiplication) on the hypercube

computer are presented. The hypercube network of dimension d interconnects N = 24/ processors

in such a way that each processor is directly connected to d neighboring processors; m order to

communicate between processors, the maximum length of the path is d. The addition algorithm

is based on the conditional sum technique. The computational time using this algorithm is 0(log2

N+q) where q is the number of the bits per processor in the hypercube of N processors.

Operands of size N*q are distributed among the hypercube processors using high-order

interleaving Only two hits ate exchanged in every cycle of communication for a total of log, N

communication cycles. A modified version of Booth's algorithm is adopted for fast

multiplication and generates Fn/2 I partial products, where the size of the multiplier is 11 bits.

These 1—n/21 partial products are half of those required by conventional multiplication. Each

processor of the hypercube generates I—n/2N1 partial products, simultaneously. These partial

products are distributed among the N processors using high-order interleaving. Each processor

contains I (n+ni)/N I bits, where n and in are the numbers of bits in the multiplier and the

multiplicand respectively. A carry-save addition (CSA) technique is used to add these multiple

partial product. These multiple partial products are reduced to two operands (i.e., carry and

sum) in (1 n/21 - 2) iterations, which are finally added using the algorithm described earlier. The

time taken by the multiplication process is O(log2 N(nq+1) + n(q+1 +1 IN) - q). These

algorithm are .imulated and comparative analysis is performed for various sizes of operands

and hypercube,, of various dimensions.

i

APPROVAL SHEET

Title of Thesis: Fast Arithmetic Operations on the Hypercube

using Conditional Sum Addition Logic and

Modified Booth's Algorithm

Candidate: Umar Bin Iftikhar

Master of Science in Electrical Engineer, 1991

Thesis and Abstract Approved by the Examining Commitee:

Dr. Sotirios G. Ziavras, Advisor Date

Assistant Professor

Department of Electrical and Computer Engineering

/Dr J. Carpinelli Date

Assistant Professor

Department of Electrical and Computer Engineering

Dr. Y. Q. Shi Date

Assistant Professor

Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey.

Vita

Name Umar Bin Iftikhar

Permanent Address

Present Address

Degree and date to be conferred Master of Science in Electrical Engineering,

December 1991

Date of Birth

Education

New Jersey Institute of Technology, Newark, NJ 07102

M.S.E.E, Dec, 1991

N.E.D University of Engineering & Technology, Karachi, PAKISTAN

B.Eng (Electrical) Dec, 1988

Adam Jee Science College, Karachi, PAKISTAN

H.Sc (Pre-Engineering) August 1982

Contents

1. Introduction 1

1.1 Introduction to computer arithmetic 1

1.1.1 Number system 2

1.1.2 Suitable Algorithm 3

1.1.3 High Speed Processors 3

1.2 Advance Computer Arithmetic 4

1.2.1 Addition and Subtraction 5

1.1.3 Multiplication 6

1.3 Motivations and Objectives 10

1.4 Outline 11

2. The Hypercube Topology 12

2.1 Interconnection Networks 12

2.1.1 Linear Array Network 15

2.1.2 Mesh-connected Illiac Network 15

2.1.3 Complete-connected Network 18

2.2 Hypercube Structure 19

iv

2.3 Topological Properties of Hypercube 19

2.3.1 Mapping Ring and Linear Array Into Hypercube 25

2.3.2 Mapping Grid into Hypercube 27

3. Addition Algorithms 28

3.1 Existing Addition Algorithms 28

3.1.1 Conditional Sum Logic 29

3.1.2 Independent-Dependent Carry Addition 32

3.1.3 Ziavras-Davis's Algorithm 33

3.1.4 Simultaneous Addition of Multiple operands 35

(Carry Save Addition)

3.2 New Addition Algorithm 37

3.3 Comparison with Existing Algorithms 45

4. Multiplication Algorithms 56

4.1 Existing Multiplication Algorithms 56

4.1.1 Sequential Add-Shift Multiplication 57

4.1.2 Booth's Algorithm 58

4.1.3 Modified Booth's Algorithm 59

4.1.4 LRCF Multiplication Algorithm 61

4.2 New Multiplication Algorithm 63

4.3 Comparison With Existing Algorithm 67

5. Conclusion 76

Bibliography 78

Appendix 80

v

List of Figures

2.1 Static interconnection network topologies 13

2.2 Linear array of N processors 14

2.3(a) A 2-D mesh network 16

2.3(b) A 2-D Torus network 17

2.4 Hypercube of different dimensions .20

2.5 A 4-cube formed from 3-cubes 21

2.6 Linear array mapped onto 3-cube 24

2.7 Two-dimensional Gray code for 8x4 grid 26

3 1 Example of conditional-sum addition 10

3.2 Computation and communication steps for new

addition algorithm for 64-bits operands 40

3.3 Gate-normalized addition time vs n 46

3.4 Comparative analysis for various addition algorithms 52

4.1 LRCF multiplication scheme 62

4.2 Comparative analysis for various

multiplication algorithms 71

vi

List of Tables

1.1 Booth recoded multipliers 8

1.2 Booth multiplier recoding table 8

3 1 Time using conditional sum addition logic 48

3.2 Comparative analysis of various addition algorithms 51

4.1 Encoding the 3 multiplier bits 60

4.2 Comparative analysis of various multiplication algorithms 69

vii

Chapter 1

INTRODUCTION

1.1 INTRODUCTION TO COMPUTER ARITHMETIC

Computational speeds have unexpectedly increased during the past three decades

due to faster and denser technologies and new concepts in computer architecture.

The speed of large-scale processors has doubled approximately every three years.

The arithmetic logic unit (ALU) is an essential part of a high speed processor and is

responsible for all arithmetic and logical operations. Research in large scale

integration (LSI) and very large scale integration (VLSI) technologies have made it

possible to design sophisticated, high performance arithmetic processors for

modem digital computers.

In order to achieve a high degree of speed-up in computation, the design of

high speed processing elements is not enough; a suitable algorithm is also

1

required. Along with a high speed processing element and a good algorithm, the

selection of a suitable number system might help to further improve the speed.

Logical, shift and arithmetic operations are considered as the basis of all

computations. The speed of these operations can be optimized by proper selection

of the following:

(1) Number system.

(2) Suitable algorithm.

(3) High speed processing element.

1.1.1 NUMBER SYSTEM

Operands are represented in digital computers by using an appropriate number

system Historically, we need a number system for counting, and the infinite

natural numbers (i.e., 1,2,3,4,...) have been used for thousands of years for this

purpose But with the development of digital technology, various number systems

have been developed according to the requirement of digital circuit and speed of

computation. The binary number system is the most conventional and easily

implemented system for the internal use of digital computers. It is a positional

number system; numbers are represented by a vector of bits in which each bit is

weighted according to its position in the vector. Along with the binary number

system, we also have other positional number systems of different radices, e.g.,

octal, hexadecimal, decimal and binary coded decimal [1]. In addition, redundant

numbers [2], residue numbers [1] and positional residue numbers [4] play

important roles in fast arithmetic operations.

2

1.1.2 SUITABLE ALGORITHM

Engineers and mathematicians have been working on the development of cost-

effective and efficient algorithms for arithmetic and logical operations. Several

such algorithms have been developed by these efforts; some of these algorithms

are discussed in Chapter 3 and 4.

1.1.3 HIGH SPEED PROCESSORS

The developments in the computer industry over the past four decades can be

divided into four generations. The computer industry went through the age of

relays and vacuum tubes (1940-1950s) to the age of diodes and transistors (1950-

1960s). In the first generation, the first electronic digital computer, namely ENIAC

(Electronic Numerical Integrator and Computer), was developed, in 1946. which

used relays and vacuum tubes for switching [3]. In the second generation, Bell

labs developed TRADIC [3]. Then small and medium-scale integrated (SSI/MSI)

circuits were introduced (1960-1970s); in this period CDC-6000 and CDC-7600

were developed. IBM 360/91, Illiac IV, TI-ASC, Cyber-175 and STAR-100 were

the major break throughs of the early seventies. From the 1970's, large-scale and

very-large-scale integrated (LSI/VLSI) technology have been playing important

roles in the computer industry. During this time, high performance super

computers were developed. To conclude, the increase in processor speed,

reliability, and reduction in the hardware cost have greatly enhanced the computers'

performance.

3

1.2 ADVANCE COMPUTER ARITHMETIC

Concurrent computers are the major breakthrough in the field of computation.

Parallel processing has made operations enormously fast during the last ten years.

Although the cost of computation has increased by the use of parallel processing,

speed, accuracy and performance of the computation have increased dramatically as

well .

In distributed processor systems, a task is distributed among the processors and

is simultaneously processed by all the processors. These processors may be

connected in various topologies, e.g., linear array, ring, tree, mesh, systolic array,

pyramid, hypercube, etc. This processing paradigm has been adopted in almost

every type of problem. Since the middle of 1980's , hypercube computers have

been widely used due to their small diameter, high degree of fault tolerance and

rich interconnection structure.

A large variety of algorithms have been developed for hypercube parallel

computers [5]. The development of fast arithmetic operations for masively-parallel

hypercube systems is also a major research topic. Addition is considered as the

back bone of computer arithmetic operations, because all other arithmetic operations

are based on addition; e.g., subtraction is the addition of one operand (minuend)

to the 2's complement of the subtrahend. The first electronic computers used ripple

carry addition, and parallelism could not be achieved in that method because

resulting bits at any position depend upon carry-out of the preceding bit position.

This thesis deals with addition and multiplication for hypercube-based systems.

4

1.2.1 ADDITION AND SUBTRACTION

Several techniques have been developed for addition and subtraction, on

uniprocessor and multiprocessor systems [1],[2],[4],[6], [7], [8],[9] and [10]. A

good addition algorithm is essential not only for the addition operation but also

for other operations (i.e., multiplication, subtraction and division).

The conventional method for addition is Ripple Carry Addition, in which a carry

may have to travel from the least significant bit to the most significant bit position.

So, the addition of each bit pair requires the carry from the previous bit pair.

Addition between the ith bit of operands A and B is performed as follows:

where C,_1 is the carry-out of the (i-1)th bit position. The carry generated at any bit

position i is

Thus, by this method two q-bit operands may take up to q-1 carry delays and one

sum delay. So, in case of high speed arithmetic this method is not normally

adopted; however, if minimum amount of hardware is required and the high speed

requirement is not critical, then Ripple Carry addition can be proven advantageous.

High speed parallel arithmetic operations can be achieved either by using carry free

addition algorithms or by algorithms in which carries at each bit position are

generated simultaneously, prior to addition. Carries should be generated in such a

way that this process does not take long time, as in the carry look ahead method in

which the carry at any bit position does not explicitly depend on the preceding one

but can be expressed as a function of the relevant augment and addend bits [2] and

all carries are calculated prior to addition. This technique increases the speed

5

considerably but the hardware required to perform this operation increases as well.

These algorithms and carry free addition algorithms can be implemented in a parallel

processing environment, because the overall task can be divided in a number of

somewhat independent subtasks, which can be processed independently to some

extent. Ziavras and Davis have used carry look-ahead addition algorithm for

hypercube systems, (they have also presented results for the Connection Machine)

[10]. The computation time of their algorithm is O(log,p(l+q)) where p is the

number of processors and q is the number of bits in each processor; this algorithm

is discussed in more detail later. Other algorithms which can be implemented in a

parallel processing environment with some limitations are Independent-Dependent

carry addition (IDA) [7], Distant-Carry addition (DCA) [7] and Conditional sum

addition [6],[7],[l]. The conditional sum addition logic is adopted in this research

to perform fast addition on hypercube computers. Some carry free addition

algorithms can also be used to get extremely fast addition on distributed processor

system. Addition in the redundant number system [1], [2], residue number system

[1] and positional residue number system [4] can provide carry free operations

which are discussed later in Chapter 3. The only limitation with these algorithms is

that the conversion process from these number systems to conventional binary

numbers can not be performed concurrently. This is a sequential operation which

takes a large amount of time; the positional residue number system can overcome

this problem to some extent [4].

1.2.2. MULTIPLICATION

Multiplication is an important arithmetic operation, performed between two

operands, namely the multiplicand and the multiplier. Arithmetic processors for

high speed multiplication use various add and shift methods.

6

Multiplication can be implemented as repeated additions and shifts; the operand

which is shifted and added is the multiplicand and the number of additions is equal

to the number of bits in the multiplier. The multiplication of two operands A and B

having p and q bits respectively will generate a product with (p+q) bits. The

speed of multiplication can be improved by designing very high speed VLSI circuit

multipliers, but the actual speed up heavily depends upon the technique adopted

for multiplication. The first thing to consider is the proper selection of the multiplier

from the two operands of the multiplication; the operand with the smaller number of

bits is chosen as the multiplier, which causes the generation of a smaller number of

partial products. Then, to achieve additional speed up, an algorithm must be

chosen to further reduce the number of partial products generated; e.g., in multiple

bit scanning and multiplier bit recoding techniques, as in the Booth's algorithm,

where strings of 0's and 1's are skipped and the number of partial products

generated is equal to the number of variations from 0's to l's or vice versa in the

multiplier. Various cases for Booth's algorithm are shown in Table 1.1. Table 1.2

shows the technique used for recoding the multiplier. Table 1.1 shows that the

number of partial products in the worst case is the same as in the conventional

sequential add and shift method. However in a modified version of Booth's

algorithm, which is based on bit pair recoding, the number of partial products

does not depend upon the bit patterns in the multiplier. This guarantees that an n-

bit multiplier will generate 1—n/21 partial products. This technique is equally valid

for positive and negative numbers [1] [2].

Another way to improve the speed of multiplication, is to adopt an addition

algorithm that adds multiple operands (i.e., partial products). Multiple operands

are required to be reduced to two operands by using any fast technique which does

not waste time in carry propagation. One of the first reduction implementations was

the Wallace tree reduction technique [1]. This technique is also adopted in this

7

Table 1.1 Booth recoded multipliers

Table 1.2 Booth multiplier Recoding table

Worst Case 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Normal 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0

Good 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1

Worst Case +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

Normal 0-1 0 +1 -1 0+1 0-1 0+1 0 0 0 -1 0

Good 0 0 0 +1 0 0 0 0 71 0 0 0 +1 0 0 -1

Multiplier
Version of multiplicand

determined by bit iBit i Bit i-1

0 0

0 1

1 0

1 1

0 x multiplicand

+1 x multiplicand

-1 x multiplicand

0 x multiplicand

8

research for the reduction. Carry save addition (CSA) is used to reduce three partial

products to two (i.e., carry and sum) without wasting time in carry propagation. In

designing the hardware for a Wallace tree, the number of stages S required to

reduce P partial products to two is given by:

This reduction gives two final operands, which can be added by various

techniques. While the Wallace tree technique uses carry look ahead addition to add

these operands, our research uses the conditional sum technique which is even

faster than the carry look ahead technique. The time required by the conventional

Wallace tree technique using CLA addition is

where 2m is the total number of bits in the operands to be added. Although the

Wallace tree technique for reduction is very fast, it is also expensive, because it

requires a lot of hardware. Anderson proposed an iteration technique to reduce the

hardware at the expense of time. He used smaller trees, where each tree performed I

iterations. The time for this algorithm is Riven by:

where

n = number of operands to be reduced,

n/I = operands reduced in one cycle.

In [1], parallel multiplication algorithms are classified in three classes:

1. Simultaneous generation of partial products and simultaneous reduction.

2. Simultaneous generation of partial products and iterative reduction.

3. Iterative arrays of cells.

Some representative algorithms are discussed in more detail in Chapter 4.

9

1.3 Motivations and Objectives

As computers have become an essential part of almost every part of our life, they

are commonly used in scientific, business, medical, engineering and defence

applications. Modern industry is fully controlled by computers. A major

component a computer is its arithmetic and logic unit (ALU). The speed of a

computer may be increased by speeding up the operations carried out by the ALU.

For example, the addition and multiplication algorithms could be improved with

respect to the required amount time for their implementation. In addition, there are

various ways to improve the speed of computation in a parallel processor system.

Arithmetic operations have been implemented on various parallel structures, but

most of them involve a large amount of communication between the processors,

due to the underlying parallel structure. Although these algorithms are relatively

fast, further improvements are still possible.

Presently, the hypercube structure is the most commonly used parallel structure m

parallel processing due to its powerful interconnection features, and the majority of

the problems can be efficiently implemented on the hypercube.

An addition algorithm which uses a hypercube topology and applies a carry look-

ahead technique was proposed by Ziavras and Davis [10]. Although it is one of

the fastest addition algorithms (its computation complexity is the lowest possible),

but improvements in constants of the computation time may be possible.

This research presents a hypercube addition algorithm which involves much less

computation with in the processors and only two bits are exchanged in every

communication cycle (the algorithm in [10] exchanges more information in every

communication cycle due to the information required for the computation of carry

generate and carry propagate terms). Our algorithm is based on the conditional sum

logic. The hardware complexity used to implement this logic is proportional to the

10

length of the operands, but this algorithm gives good results if implemented on the

hypercube.

A hypercube multiplication is also proposed. It is based on the modified Booth's

algorithm which speeds up the multiplication process by reducing the number of

partial products to half. Extra speed is obtained by using parallel processing and the

new addition algorithm.

1.4 Outline

This report is organized as follows:

Chapter 2 gives a description of the hypercube structure and discusses its important

topological properties. Some other interconnection networks are also discussed and

the mapping of the linear array and the mesh onto the hypercube using the reflected

binary Gray code are presented. Chapter 3 presents the new addition algorithm

along with some other existing algorithms for addition. The last section of this

chapter compares the proposed algorithm with some other existing algorithms.

Chapter 4 presents the new multiplication algorithm along with other existing

algorithms for multiplication. The last section provides a comparison between

proposed and conventional algorithms. Chapter 5 presents conclusions.

1 1

CHAPTER 2

THE HYPERCUBE TOPOLOGY

Fast and efficient computers are in high demand in many scientific, engineering,

energy resource, medical, military, artificial intelligence, and basic research areas.

Parallel processing computers are needed to meet these demands. This chapter

describes some parallel structures and introduces the hypercube structure whose

knowledge is required to understand the research work. Section 2.1 gives a brief

introduction to different parallel processor networks. In Section 2.2, the hypercube

topology is discussed; then, the topological properties of the hypercube are

discussed in Section 2.3.

2.1 Interconnection Networks

In this section, various network topologies are described. These network topologies

may be classified according to the number of dimensions they implement. They are

classified as one-dimensional, two-dimensional, three dimensional and multiple-

dimensional structures Figure 2.1 shows some of the static interconnection

1 2

(i) 3-cube-connected cycle

FIG - 2.1 Static interconnection network topologies.

13

Linear array of N processors

Figure - 2.2

network topologies. The linear array is categorized as a one-dimensional topology;

two dimensional topologies are the ring, star, tree, mesh and systolic array. Three-

dimensional network topologies include the completely connected chordal ring, 3-

cube and 3-cube connected cycle networks. The N-dimensional hypercube is a

good example of a multidimensional interconnection network in which 2N nodes are

available. Each node is directly connected to N different nodes in N different

dimensions. Some of the important topologies are further discussed in the

following sections.

2.1.1 The Linear Array Network

The one-dimensional network topology shown in Fig 2.1 (a) is called linear array.

In this type of interconnection, each processor, except the processors at the ends of

the string, can communicate with two adjacent processors; for example any

processor PE, can transfer its data directly to PE,+i and PE,_/. But, in the string of

N processors, as shown in Fig 2.2, when any distant processors wish to

communicate with each other, then intermediate processors work as switches.

The only difference between the linear and the ring structures is that, in the ring

structure processors at the end of the string are also connected with each other, so

that every processor is connected with two adjacent processors in the ring structure.

2.1.2 The Mesh-Connected Network

In the 2D mesh-connected network, as shown the Fig 2.3(a) (b), each processor is

connected directly with four adjacent processors. The mesh connected network

has been implemented in the Illiac-IV parallel processors systems with 64 PEs [3].

1 5

Fig - 2.3 (a). A 2-D mesh network with N = 16 PEs.

16

Fig - 2.3 (b). A 2-D Torus network with N = 16 PEs.

17

Each PE, can communicate directly with any one of PE,+/, PE,-/, PE,+d and PE,-,1,

where d = -F\I- is the number of processors in one dimension of the mesh; the

following four routing functions are described for the mesh structure.

In the torus topology, PE's at the edges of the square are connected with the

processors at the opposite edges of the square. The mesh-connection in Fig. 2.3(a)

can be "redrawn" as the torus topology Fig. 2.3(b). In order to communicate

between two processors which are not directly connected, intermediate processors

work as switches, and the maximum length of a path is equal to d in the torus and

2d in the mesh

2.1.3 The Completely-Connected Network

A completely connected network is categorized as a three dimensional network In a

completely-connected network, as shown in Fig. 2.1(g), all PE's are directly

connected with each other. This type of network is extremely complex, and

complexity increases with the increase in the number of processors. However, the

network provides good data communication features.

2.2 The Hypercube Network

Various parallel processor structures have been used in parallel systems. In recent

years, hypercube computers have become popular parallel computers for a variety

of applications because of their powerful network which is characterized by a small

diameter, regularity and high degree of fault tolerance. Most of the topologies like

the linear array, mesh, ring and pyramid can easily be mapped into the hypercube

[14 Therefore, most of the applications for these structures can be implemented on

the hypercube very efficiently. Formally an n-dimensional hypercube containing 2n

nodes. Nodes are connected directly with each other if and only if their binary

addresses differ by a single bit. Hypercubes of zero, one, two, three and four

dimensions are shown in Fig 2.4. Hypercube computers are loosely coupled

parallel processor systems based on the binary n-cube network, also known as

cosmic cube, n-cube, binary n-cube, Boolean n-cube, etc.

Various parallel computers have been developed using this structure. The

Connection machine is one of the best known and is manufactured by Thinking

Machines Corp. It may contain up to 65536 processors, operating in the SIMD

mode. The topological properties of the hypercube structure are presented in more

detail in the next section.

2.3 Topological Properties of the Hypercube

In the d dimensional hypercube Hd , each processor is directly connected with d

neighboring processors. Each processor has a d-bit binary address in the interval 0

to 2d-l. In a hypercube computer, processing elements (PEs) are placed at each

vertex of the hypercube and the edges of the hypercube represent communication

19

3-D View of the 4-cube

Fig . 2.4 Hypercubes of different dimensions

20

Fig - 2.5 A 4-cube formed from 3-cubes

links between the PEs. Each processor has its local memory, which makes every

processor an independent unit. In the SIMD mode, this memory only contains data

whereas in MIMD this memory contains instructions as well. Hypercube

processors are homogeneous because all the nodes can be equally treated; any

hypercube can be mapped onto itself by mapping on a node to any other . When a

node i is mapped onto another node j, the addresses of all nodes are changed and

the new address of a node is found by taking the XOR between its previous

address and the address of node i.

The communication time between two PEs of hypercube depends on the number of

links between them. The maximum communication time between any two PEs in

the d-dimensional hypercube is 0(d) because the maximum number of intermediate

links is d. The total number of is in the XOR between the binary addresses of two

PEs gives the minimum number of communication links between these PEs. If PE

Y is connected with X in its ith dimension, then the addresses of X and Y will

differ only in the ith bit position. Let the binary address of a node X be xd_/...xixo,

then the routing functions for the d adjacent PEs are given by

The hypercube can be partitioned into smaller dimensional cubes and a

d-dimensional hypercube can be constructed recursively from lower dimensional

cubes; for example if two (d-1) dimensional hypercubes are combined, they

produce a d-dimensional hypercube. Consider two identical (d-1)-dimensional

hypercubes with labels from 0 to 2d-1-1; by joining vertices with the same address,

a d-dimensional hypercube is obtained. Fig 2.5 shows how two 3-cubes are

combined to produce a 4-cube.

22

To summarize:

1. Any d-cube can be teared in d possible ways into two (d-1)-subcubes.

2. There are d! x 2d ways of numbering the 2d nodes of the d-cube.

3. The maximum distance between any two nodes in the d-cube is equal to d,

which is also called the diameter of the hypercube.

4. Any two processors in the d-cube can communicate with each other. In

order to communicate, data has to travel atleast a distance which is equal to the

number of is in the XOR between the addresses of these PEs (this is known as the

Hamming distance H(X,Y) between PEs X and Y).

Various topologies can efficiently be mapped into the hypercube. There are

basically two reasons for the importance of such a mapping.

i) Some algorithms may be developed for some other topology for which they

fit perfectly Then one might wish to implement the same algorithm on the

hypercube with little additional programming effort. If the original architecture can

efficiently be mapped into the hypercube then this will be achieved easily.

ii) A given problem may have a well defined structure, which requires a

particular pattern of communication. Mapping the pattern into the hypercube may

result in short communication time. Our addition algorithm is a good example of

this, because in our algorithm each of 2d processors communicate with d other

processors which is efficiently done only in the hypercube.

Some important mappings which are relevant to this work are discussed in the

following sections.

23

Linear array mapped onto 3 - Cube, using 3 - bit binary gray codes.

Figure - 2.6

2.3.1 Mapping Rings and Linear Arrays into the
Hyperc ube

Consider a ring structure containing 2d processors. Also consider a target d-

dimensional hypercube. The ring can be mapped into the hypercube in such a way

that the proximity pi opertv is preserved. (i.e., and two adjacent vertices of the ring

map on two neighboring nodes of the hypercube). Another way of visualizing this

problem is that we are seeking the string of length N=2d that crosses each node of

the hypercube once and only once In graph theory, this is called a Hamiltonian

circuit in the hypercube.

According to the definition of the hypercube network, any two adjacent nodes have

binary addresses that differ only by one bit. This means that a Hamiltonian circuit

should be represented by a sequence of d-bit binary numbers such that any two

successive numbers have only one different bit A binary sequence with such a

property is the reflected Gray code [9].
There exit various ways to generate these Gray codes; the best way to generate

these codes is described as follows One starts with the sequence of the two 1-bit

numbers 0 and 1, this is called one bit Gray code. To get the two-bit Gray codes,

take the same sequence and concatenate a zero in the highest bit position of each

number, then take the mirror image (revere order) of that sequence and insert a one

in the highest bit position of each number. The sequence of 2-bit reflected Gray

codes is

G, = [00, 01, 11, 10)

The reflected Gray codes with three or more bits can be generated in the same

manner, for example the sequence of 3-bit codes is

G3 = 1000, 001, 011, 010, 110, 111. 101, 100).

25

Fig - 2.7. Two-dimentional Gray code for an 8 x 4 grid

In gcnei al, if 1 mage[G d _ i] is the reflection or rep erne order of sequence Gd_i, then

the d-bit Gray code is given by

Gd= 10Gd_hiirnage[G d-i]).

The mapping of an 8-node ring into the 3-dimensional hypercube is shown in Fig

2 6. This figure shows the linear array with the extra connections which are present

in hypercube.

2.3.2 Mapping Grids (Mesh) into the Hypercube

One of the most important reasons that the hypercube is popular is that meshes

can easily be mapped into the hypercube. Consider an n-dimensional mesh that

has size m, in each dimension which is a power of 2 (i.e., m, =2P').

Now consider the d-dimensional hypercube on which this mesh is to be mapped.

Let d = pi-Fp,+...+pn, where 2il is the total number of processors in the

n-dimensional grid, which is also the total number of nodes in the hypercube.

In order to map, the mesh into the hypercube. neighboring points in the mesh must

be assigned to neighboring nodes in the hypercube. In the previous section, the

mapping of the one dimensional mesh (i.e., the linear array or ring) was discussed.

The mapping of higher dimensional meshes is done as follows. The nodes in each

dimension are numbered sequentially using the respective reflected Gray codes. A

node of the mesh is mapped onto that node in the hypeicube whose address is

obtained by concatenating the numbers of the particular node for all the dimensions.

For example, Fig 2.7 shows a two-dimensional 8x4 mesh, as pi = 2 and p2 = 3,

and the appropriate Gray codes.

27

CHAPTER 3

ADDITION ALGORITHMS

This chapter is devoted to addition algorithms. In section 3.1, some of the existing

addition algorithms are discussed, they are valid for both positive and negative

numbers and some of them can be implemented on parallel processor \ysteins In

section 3.2. a new algorithm is presented which is based on the conditional sum

logic and can be implemented on an SIMD hypercube system At the end of this

chapter. a comparison of the new algorithm with the existing algorithms is

presented.

3.1 EXISTING ADDITION ALGORITHMS

The operands of addition are called addend and augend, and similarly the operands

of subtraction are subtrahend and minuend. To subtract one opei and (subtrahend)

from other (minuend), the 2's complement of one operand is added to the other.

Let A and B represent the addend and augend respectively in binary number form

(vector), as follows:

Since A and B are signed binary numbers, an _j and lon _1 represent the sign of A and

B respectively.

The addition with carry can be speeded up by either high speed carry propagation

circuitry or using the algorithm in which the carry is generated prior to the addition

operation. as in the carry look-ahead addition. The conditional sum addition logic

can be used to reduce the carry propagation delay.

In the standard ripple carry addition technique. the sum of any bit position depends

on the can-v out of previous bit position. More specifically,

where

as discussed in the introduction.

The above equations show that the addition using the ripple carry technique can not

be implemented in parallel. However, the hardware used in this sequential addition

is minimum. In order to speed up the addition operation different algorithms are

discussed, which can be implemented on parallel processor computers.

3.1.1 Conditional Sum Addition Logic

This high-speed algorithm was first presented by J. Sklansky in the mid 1960's

[6]. In the conditional sum logic, a carry and a sum bit are generated at every bit

position with the assumption that the carry into this position is 0; in addition,

another carry and another sum bit are generated under the assumption that the carry-

Fig. 3.1. Example of conditional-sum addition [6]

i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 ASSUMED
TIME

13: 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 CARRY
NITIAL

INTERVAL

S 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1

C 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0
To

S 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0

C 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

S 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1

C 0 1 1 1 0 1 1 0 0
T1

S 1 1 0 1 0 1 0 1 0 0 1 0 0 1

C 0 1 1 1 1 1 1 1

S 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1

C 0 1 1 1 i i
T2S 1 1 0 1 0 1 0 0 1 0

C 0 1 1 1

S 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1

C 0 1 i',_i
T3

S 1 1 0 1 0 1 0 1
C 0 1

S 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1
C

i
1
+ 1

0 1 1 T4

in is 1 After this operation. consecutive pairs of conditional sum and carries are

combined according to whether there is a carry into that pair of h►t. or not. This

process continues until the final sum is obtained. The example given in Fig 3.1

shows the application of this logic for two operands A and B.

Si(0) and C,(0) are the sum and carry-out respectively for the ith bit position.

considering a carry-in of 0. Similarly, S1(1) and C,(1) are the sum and carry-out,

assuming 1 as the carry-in. To, T1, T2, T; and T4 are successive time intervals

during which conditional sum and carries are generated. During the first interval,

the sum and carry-out for each column are calculated assuming a carry-in of zero

into that column (i.e., S,(0) and Ci(0)). In the same time interval. Si(1) and C,(1)

are also calculated. So, in the example of Fig. 3.1, first two rows contain the

and carry -out bits generated a \suming a call-) -in of 0. while rows 3 and 4

contain the sum and carry-out under the assumption that carry-in is 1. The

Boolean relations for the sum and carry-out hit. are given as:

During the time interval T1, the conditional suiri arid carries are found for pairs of

consecutive bits, (i.e., i=0 and 1, i=2 and 3, i=4 and 5 and onward) considering a

carry in of 1 and 0. In the time interval T, the conditional sums of operand bits

i=0.1 combine with the conditional sums of i=2.3 under the assumption of carry in

of 0 and 1 . depending upon the carry out from the lowei bit pair. Similarly, the

conditional sums of i = 4,5 combine with those of i = 6,7. and onward . In the last

31

step, dining the time interval T4. the conditional sums of the bits

i=0,1,2,3,4,5,6.7 combine with the conditional sums of the bit,:

i=8.9.10,1 1 ,12,13.14,15 This step gives the final sum A+B with the final carry-

out.

3.1.2 Independent-Dependent Carry Addition

Extra speed can be achieved in this type of addition [7] in two ways:

1. Simultaneous generation of carries at all columns, where the carries air

independent of previous carries (independent carries).

2. Use of extra fast carry transmission gates, in order to copy the carries which do

not change (dependent carries).

The following example show. the basic procedure of this methodology.

Let

step 1. Independent carries

step 2. Dependent carries

let Cmd and Cd represent independent and dependent carries respectively, and C,

represents the final carry-in in hit position i. Then. in the above example:

In step 1, the existence of independent carries for any particular column is

determined by detecting the equality of the pair of operand bits of the preceding

column; each of these independent carries C md is then equal to the corresponding

opei and bits. In step 2, dependent carries Ca, are determined, by copying the

carries between any two independent carries and these Cd are equal to the right

hand side's independent carry C,nd . Final carries C, at each bit position can be

determined by taking the OR between the bits of Cind and Cd. Before taking the OR,

the space bet\\ een C,„,1 and Ca is filled by 0's.

The final sum bit is obtained in step 3 by taking the exclusive OR between the carry

and operand bits of each column independently

Gilchrist, Pomerene and Wong [7] described a circuit realization of the basic IDA.

This algorithm can be very fast if the copying of dependent carries is done

quickl% .

3.1.4 Ziavras-Davis AAlgorithmn

In this algorithm, very high speed addition is achieved by using more than one

processor in a hypercube system working simultaneously. A carry-look-ahead

technique is applied. The operands of addition are distributed throughout the

processing resources using low-order interleaving of hits. Since the addition of rwo

n-bit operands gives (n+/)-bit result . and n+/ may not be evenly divisible h.

33

the total number of processors, sign exten \ion of the operands is performed

Therefore after sign extension each operand has 1=NF(n+1)/N1 bits, where Nis

the total number of processor s.

The (2' ,2") grid is first mapped onto 2n-dimensional hypercube as discussed

earlier. Any point in that grid can be represented by Cartesian coordinates (x,y).

The bits in the addend and augend are di \trihuted among the processors using low-

order interleaving. Consider q to be the number of operand bits per processor.

Low-order interleaving means that the least significant bit (LSB) of the operand will

go to the processor whose coordinates are (0,0), the next higher bit goes to

processor (1,0), if operands are distributed horizontally, otherwise it will go to

(0.1): here we have chosen horizontal distribution. This process continues until the

last processor of that row (i.e., (2" -1.09 receives the (2n -1)th bit. Then, the

same process continues for the other rows consecutively. So, in the first cycle of

distribution, the first 4" bits are disti ibuted among the 4" processors. This

process repeats itself q times, since q bits of each operand are assigned to each

processor in the system.

To summarize, the processor (x,y) finally contains the q bits whose subscript s

satisfies the condition. s mod 4" = 2" y + N

After this distribution of operands, the computation step starts. Since this

algorithm is based on the carry-look-ahead technique [2], the carries at each bit

position are calculated prior to addition. This computation step contains

bidirectional communication and some calculation within the processors. Due to the

powerful interconnection structure of the hypercube network, the communication

operations are implemented efficiently.

More specifically. the following set of steps are carried out.

34

1) The initial carry-in at all hit positions is set to zero, except in the case where

subtraction is performed in 2's complement form where the carry-in at the LSB

position is set to 1

2) Each processor will calculate q bits of the results, so the individual

propagate term for each bit position is also set to 1 by all the processors (i.e..

f(x,Y)= 1).

3) Now every processor generates the group carry Gcaj(x,y) = GG„, = a,b, and

group propagate terms GP,i(x,y) = GP,i = a, + b„ at every bit position

4) After that, communication between the processors starts, assuming

bidirectional communication channels. In this algorithm, each processor

communicates with all its neighboring processors using all dimensions, one at a

time. Basically, carry propagate and carry generate terms are found for groups of

bits. where the group size increases linearly as 1,2,4,8,16,....22" 1101

5) Aftet the completion of these 2n cycles of communications, the processors

perform internal operations in order to calculate the carry-ins of individual bit

positions. Finally, each processor finds the individual bits of the sum as,

a, 0 b, c,.

where s, = generated sum at bit position i,

c, = calculated carry-in at bit position i.

3.1.5 Simultaneous Addition of Multiple Operands

(Carry Save Adders)

During the multiplication process, multiple operands are required to be added.

There are different ways to add multiple operands, one may use an iterative

technique applied to pairs of operands. It is also possible to add a column of

multiple bits, then propagate the carry generated from this column to the next

column. and add this carry with the bits of that column. All these processes are

35

sequential and take a large amount of time. In order to save time. an algorithm ma)

be developed where the carry and sum of each column are generated independently

at every bit position and multiple operands are reduced to two (i.e., carry and

sum); these two operands are then added by using any suitable addition

algorithm. The Wallace tree reduction technique is based on this technique. Let X,

Y and Z be three operands to be added. and X,.Y, and Z, be the ith bit of these

operands respectively. Then, the carry and sum bits for this bit position are given

by

C, and S, are the ith bit of two operands C and S respectiveh . to he added. Befoie

addmg them C must be shifted left by one position. This algorithm for addition of

multiple operands is called Carry Save Addition. CSA is considered as a three-to-

two convertor, and it is used here to add multiple operands. An example of this

algorithm is given below

3.2 A New Addition Algorithm

This section describes an algorithm for fast addition of operands with a large

number of bits, making use of the powerful interconnection features of the

hypercube as desci 'bed in the previous chapter. This algorithm is based on the

conditional sum logic <is described in the previous section and introduced by J.

Slansky in 1960.

In this algorithm, each processor is required to communicate in all of its

dimensions. If the d-dimensional hypercube is considered, each processor will

communicate with d different processors. Bidirectional communication channels

are considered which means that any processor can receive and send data on the

same channel at the same time.

In order to visualize the hypercube properly for this algorithm, a linear array of 2"

processors is fn \t mapped onto the d-dimensional hypercube as discussed m the

previous chapter The processors 0 to 234 in the linear array are labeled using

the d-bit reflected Gray code. Processors whose binary addresses differ by only

one bit are then directly connected with each other. Similarly, the number of

different bits in the binary address, which is the Hamming distance between the two

addresses, gives the minimum physical distance between the processors. For

example, two processors whose addresses differ in two bits are two communication

links away. The mapping of a linear array consisting of eight processors onto the

3-dimensional hypercube is shown in Fig 2.6. Each processor in the linear array

of 2‘i processors can he addressed in two ways, one is d-bit binary linear address i.

other is d-bit reflected binary Gray code address G[i] (i.e., i = yd_].. yo and

G[i] = -1-d-] --n-o).

A method to build the sequence of reflected binary Gray codes was discussed in the

previous chapter. hut here we will discuss the same topic in a slightly different

way Let 1 he the sequence of binary codes. such that 0 < i < 2c/-1: each number of

37

this sequence corresponds to the address of .1 particular processor in the arias or

hypercube Let G[i] be the reflected Gray code of the binary number 1.

The relation hem een the binary number i and it, Gray code is given by

The first term of the above equation represents the Tufting of the binary number

toward right by one bit.

The next step is the data distribution among the processors. Let n be the number of

bits in the signed operands to be added. The addition of these operands will

generate an n+1 bits sum, therefore the operands are sign extended to n+1 bits.

Now it Is' required to distribute the n+1 bits among the processing resources evenly,

but it is possible that n+1 is not evenly divided by 2d (i.e., (n+1) mod 2d # 0).

In order to overcome this problem, further ,I .2n-extension of the operands is

performed This does not change the actual s al ue of the operands but makes their

total number of bits to be a perfect multiple of 2d (i.e., if / is the number of bits in

the extended operands, then 1 mod 2d= 0).

Let the two sign-extended operands be

The total number of bits in each sign extended operands is equal to

and the total number of bits stored in each processor n equal to

The sign-extended operands may be distributed among the processors using high-

order or low-order interleaving with respect to the hits' subscripts. Low-order

interleaving for this algorithm is not suitable becau.e it requires a large number of

communication cycles. So, the high-order interleaving technique is chosen for data

38

disu ihation. In high-ordel interleaving, the first q successive bits of each operand

are stored in the processor with address G[0], the next set of q successiN e bits are

placed in the processor with address G[1], and so on, until the last processor

G[2"/-1] gets the q most significant bits (i.e., from the bit position 1-(q+1) to 1-1).

The pi o.essor with address G[i] contains all the bits with subscripts s such that

clvI < s < q(i + I) -1, or s = (q x i - 1) + j, where 0<i<2d and 0<i<q Both the

addend and the augend are distributed according to the method described above.

Aftei this distribution of operands, the second phase starts which implements the

Intel nal computations within the processors and communication between

processors. Assuming that the hypercube processors operate in the SIMD mode,

the following sequence of steps are applied.

1) Various local variables are initialized. The vat !able m1 of each processor

GI/ J. is updated after every communication cycle and represents the concatenation

of two conditional carries. C,(0) and C,(1) are the conditional carry-outs for the ith

gioup of q hits in processor G[i], assuming a carry-in of 0 and 1 respectively. We

will he referring to them as the ith group carries In addition. the variable 0, is

initially set to 01 and its value is updated after every communication cycle. The

pi ocessor uses the value of 0, to make a decision in the last step

2) Each processor adds its groups of q bits twice, considering a carry-in of one

and zero respectively. Although processor 0, which contains the group of least

significant bits, is not required to calculate both sums (i.e., S0(0) and S0(1)),

they ai e calculated for the sake of uniformity. However, this may become necessary

when subtraction in 2's complement form is performed. Let A, and B, be the

39

Fig - 3.2. Computation and communication steps for addition of 64
bit operands using the new addition algorithm.

40

The action in the last Step depends upon the value of 0

The addition of 64-bit operands

Fig 3.2 Computation and communication Steps for addtion of 64-bit operands on
the 4-dimensional hypercuhe.

group. of the operand bits to be added, in processor G[i]. Si(0) and S,(1) are the

conditional sums assuming carry-in of zero and one respectively. The following

set of equations represent the above operations

Similarly considering a carry-in equal to 1:

3) In this step, processors start communication Each processor of the

hypercube is required to communicate with all of its neighbors, starting from the

0th dimension Communication in the 0th dimension means that each processor

communicates with the processor whose address differ\ in the LSB position from

this processor's address. Such processors exchange their in; variable (assuming

bidirectional communication channels). Then, every processor updates the values

of m, and 0, The communication and computation steps for the 4-dimensional

hypercube are shown in Fig 3.2.

be the labels of processors which are directly connected in the jth dimension. All

possible such pairs of processors exchange their two bit variable m, in the first

cycle of communication. Then all processors update the values of m, and 0„

depending upon the values of m,, m,' (i e., incoming value) and 0,. As these are

42

two bit variables, one of four .Loons may be possible. The processor / with yo=1

performs a little bit different operation than the processor having yo=0.

All processors with yo=1 perform the following set of operations.

i) Processor G I i] checks the variable m„ which has three possible values (i.e.,

00,01 and 11) If in,=0(1 01 I 1, the processor does not change the value of m, and

goes to step (ii) For rn,=01, it checks the value of the incoming variable mi' and

updates the value of in, depending on the value of m,'.

ii) In this step, the value of the variable O, is also updated by all the

processors. depending upon the previous value of Oi and mi'.

The processors with yo = 0 will perform the following set of operations in order to

update the value of m„ because it is required that both Po and Po' have the same

value of m, before starting a new cycle of communication. This can be done in two

ways Po' can transfer its updated in, to Po , but in this way Po remains idle during

the transfer. Another way, which is adopted here, is for Po to calculate the value of

m, by itself. As bidirectional communication channels are considered and the

variable mi is exchanged before all calculations, Po has the value of m,' (i.e., the

incoming value of m, fiorn P0'), therefore it can update the value of its m, by itself

as follows.

If mi' = 00 or 11 then ni, = m,'.

otherwise. check the present value of m,

43

as it is required that after the first cycle of communication both Po and Po' have the

same value of m„ because they will work as a group in the next cycle.

iii) Now all the processors communicate with then neighbors in their 1st

dimension Therefore, all the processors whose addresses differ in the 1st bit

position exchange their data and perform the operations described in (i) and (ii).

This communication and computation sequence continues until all the processors

communicate in their (d-1)th dimension and perform the operations described in (i)

and (ii). This operation is completed in d=log2N cycles.

iv) The fourth and final step of addition, places the data in the right place in

every processor. depending on the values of O; in the processors In every cycle of

communication, data fiom two processors are compared and the value of m, from

the processor that contains the least significant group selects the correct sum in the

processor containing the group of higher significance, according to the actual carry-

in in that group This action is recorded in the variable O, and finally implemented

h\ all processors simultaneously. After executing this step, S,(0) of all processors

contains the final sum, which is generated due to a carry-in of zero m the LSB

position of the operand while S,(1) of all processors contains the sum assuming a

carry-in of 1 in the LSB position. The following set of operations operations are

performed in all the processors simultaneously

Communications between processors for this algorithm are performed in one hop.

For the d-dimensional hypercube, the total number of communication cycles is d

44

with only two bits, exchanged in any cycle: this 'a\ es a lot of Lommunication time

when compared to other algorithms described for addition on hypercubes.

All steps of communication and computation are shown in Fig 3.2 for a

4-dimensional hypercube mapped into an array containing 2-=16 processors.

This method is suitable for a large numbers of operand bits per processor. It does

not give good performance for small numbers of bus/processor.

3.3 Comparison With Existing Algorithms

The conventional way of addition is the ripple carry addition which takes at most

(n-1) can delays and one sum delay for the addition of n-bit operands. This

method is completely sequential, because addition in every bit position depends

upon the can-y from the previous bit position: m this way, the task of addition can

not be broken into independent sub-tasks. A speed up of the addition operation can

be achieved either by using advance ha, dware technology or by and suitable

algorithm that minimizes the carry delay. The fastest way of addition is

implemented by carry free addition in which a carry is not generated and addition

between two operands at any bit position is performed independently of the values

in other bit positions. However, the carry free operation is not possible in the

oi dinar) binary system; it is used only with numbeis represented in a redundant

binary system. The major drawback of these numbeis is that their conversion to the

binary system or vise versa is a sequential operation and takes a large amount of

time; therefore. the entire process of addition is very time consuming Dependent-

Independent carry addition, as described in a preceding section is also a good

algorithm foi fast addition, but the generation of dependent carries takes a lot of

45

time. Different types of fast adders were discussed in [1]. [2]. and [7] A

comparative analysis of various addition algorithms for different number of bits in

operands is shown by the graphs in Fig. 3.3 [7]. This analysis shows that the

conditional sum logic is the fastest way of addition among these algorithms.

Winograd has proved it by showing that the lowest bound on addition is achieved

using this algorithm. Carry-look-ahead addition was first described by Weinberger

and Smith and has been implemented in standard ICs. These adders are frequently

used in most of the computers. These adders give compromising speeds for the

operands when dealing with a small number of bits. However, if the operands

become very large, then these adders do not achieve high performance and their

hardware cost is also increased. Speed up can be achieved for operands containing

a large number of bits by using parallel computers. Several algorithms for addition

have been developed for parallel structures. Ziavras and Davis have developed an

algorithm for fast addition on the hypercube which is based on the carry-look-

ahead technique. This algorithm has the best possible computation complexity.

However, it may involve relatively large amounts of communication in each cycle

t i e.. q group carries and group propagates are transfered by each processor in

every cycle, where q is the number of bits from each operand assigned to a single

processor).

Our algorithm was described in the previous section. An analysis of this algorithm

is carried out below. In this section, we will calculate the time required to add

different sized operands using hypercubes of various sizes.

In this calculation, bidirectional communication channels are considered and all the

data transfers are performed in one hop, as discussed in the previous section. This

calculation can be divided into the following steps.

47

Table 3-1. Time using the conditional sum addition logic for
operands and hypercube of various sizes.

-P.

a'0
-4

CI

,ia,
.2

EL)a.

Bits = 8

q 78

Bits

11

= 20

T20

Bits

CI

= 30

13()

Bits

q

=50

T50

Bits =

Cl

100

T100

Bits =

q

500

T500

Bits =

q

1000

T1000

Bits =

q

5000

T5000

Bits =10000

q T100()0

0 1 8 25 20 61 30 91 50 151 100 301 500 1501 1000 3001 5000 15001 10000 30001

1 2 4 19 20 37 15 52 25 82 50 157 250 757 500 1507 2500 7507 5000 15007

2 4 2 19 5 28 8 37 13 52 25 88 125 388 250 763 1250 3763 2500 7513

3 8 I 22 3 28 4 31 7 40 13 58 63 208 125 394 625 1894 1250 3769

4 16 1 28 2 31 2 31 4 37 7 46 32 121 63 214 313 964 625 1900

5 32 1 34 I 34 1 32 2 37 4 43 16 79 32 127 157 502 313 970

6 64 I 40 1 40 1 3x 1 40 2 43 8 61 16 85 79 274 157 508

7 128 1 46 1 46 1 44 1 46 1 46 4 55 8 67 40 163 79 280

8 256 1 52 1 52 1 50 1 52 1 52 2 55 4 61 20 109 40 169

9 512 1 58 1 58 1 56 I 58 1 58 1 58 2 61 10 85 20 115

10 1024 1 64 1 64 1 62 1 64 1 64 1 64 1 64 5 76 10 91

1 I 2048 1 70 1 70 1 68 1 70 1 70 1 70 1 70 3 76 5 82

12 4096 1 76 I 76 1 74 1 76 I 76 1 76 1 76 2 79 3 82

13 8192 1 82 I 82 1 80 I 82 1 82 1 82 1 82 1 82 2 85

14 16384 1 88 I 88 1 86 1 88 1 88 1 88 1 88 1 88 1 88

15 32768 1 94 1 94 1 92 1 94 1 94 1 94 1 94 1 94 1 94

16 65536 1 100 1 100 1 98 1 100 1 100 1 100 1 100 1 100 1 100

co

l) The time required to calculate the conditional sums and carries S,(0),

S,(1). C,(0), and C1(1), assuming one-bit processors, is given by

whet e

q = number of bits from each operand in each processor.

2) Two cycles are consumed in com. atenanng conditional carries to produce

3) Two bits are exchanged in each cycle of communication. Assume that one

cycle is consumed for transmitting a single bit, two cycles are required for set-up

with one cycle on each side (i.e., source and destination). Also, let d be the

dimension of hypercube, so the total number of cycles required to exchange the data

between the processors is given by

as four cycles are required in each stage of communication.

4) After each communication, some calculations are performed to update the

values of m, and 0,, except in the last stage in which updating of mi is not required.

Since 0, is updated d times and m, is updated d-1 times, therefore the total time

required for this step is given by

5) The last step of this algorithm is performed m parallel using all processors.

In this step, the processor decides about the right place for S,(0) and Si(1), which

depends on the value of 0,. The time taken by the processor in this step is

To conclude, the total time it takes to perform the complete addition is given by

49

where

Therefore,

The above equation is used to analyze the performance of this algorithm. Results

are shown in Tables 3.1 and 3.2 and graphically in the Fig 3.4 for different sizes

of operands.

In order to compare our new algorithm with some other algorithms, it is required to

find out the time required b> them under the same processing "environment".

In the conventional ripple carry addition, operands can not be broken into

independent groups of bits. therefore this operation is completely sequential

Assume that q bits of each operand are distributed among the processors using

high-order interleaving and pi (A represents the total number of proce.,,ors in the d-

dimensional hypercube (i.e.. proc = 2d). The calculation of time required by this

algorithm can be divided into the following steps.

1) Processors cannot work simultaneously. As q cycles are required to add q

bits in any processor, the total time required for q x proc bits is

TI = q proc.

2) It is required to communicate a carry-out from a lower significant group to

a higher significant group. A total of three cycles are required to communicate one

bit of carry from one processor to another neighboring processor (i.e., two cycles

50

Table 3.2(
,,)
Comparative analysis of various addition

alaorithms for the number of bits in onerands = 8

51

Dimension of
Hypercube

proc. q
(bits/proc)

Tseq
cycles

Tcla
cycles

Tcsa
cycles

0 1 8 10 32 25
1 2 4 13 34 19
2 4 2 19 28 19
3 8 1 31 22 22
4 16 1 63 28 28

5 32 1 127 34 34
6 64 1 255 40 40

7 128 1 511 46 46

8 256 1 1023 52 52
9 512 1 2047 58 58
10 1024 1 4095 64 64
11 2048 1 8191 70 70
12 4096 1 16383 76 76
13 8192 1 32767 82 82
14 16384 1 65535 88 88
15 32768 1 131071 94 94
16 65536 1 262143 100 100

the number of bits in operands = 500000

Dimension of proc. q Tseq Tcla Tcsa
Hypercube (bits/proc) cycles cycles cycles

0 1 500000 500002 2000000 1500001
1 2 250000 500005 2000002 750007
2 4 125000 500011 1500004 375013
3 8 62500 500023 1000006 187519
4 16 31250 500047 625008 93775
5 32 15625 500095 375010 46906
6 64 7813 500223 218776 23476
7 128 3907 500479 125038 11764
8 256 1954 500991 70360 5911
9 512 977 501759 39098 2986
10 1024 489 503807 21536 1528
11 2048 245 507903 11782 802
12 4096 123 516095 6420 442
13 8192 62 532479 3498 265
14 16384 31 557055 1888 178
15 32768 16 622591 1054 139
16 65536 8 720895 576 121

for the setup time and one cycle for communicating that carry bit). The total time

for the communication of carries

Another algorithm which is used in the comparative analysis is the one proposed by

Ziavras and Davis [10], which is also implemented on hypercube structures. In

this algorithm, all processors work simultaneously in the SIMD mode of

computation. The total time consumed in this addition is found as follows.

1) A total of q cycles are consumed in order to generate the group carries at

each bit position i (i.e., al b1) and q more cycles in order to generate the group

propagate terms (i.e a, + b,). Therefore.

Ti = 2q

2) In this algorithm, q bits of group carries and q more bits of group

propagates, are exchanged between the processors in each communication step,

so the total time taken by communication is

T-, = d(2q + 2).

3) The next step is to update the values of q group carry and q group

propagate terms. Their values are updated after every cycle of communication.

therefore the total time taken by this step is

T3 = 2dq.

4) The last step contains computation operations within the processors, where

the final carry ci is generated at all bit positions and then the sum bit is obtained for

all bits in the operands (i.e , s, = a, @ b, c1). The total time for this step is given

by

T4 = 2q.

54

Therefore the total time for addition using this algorithm is given II\

The comparative analysis of these addition algorithms involving simulation results

using up to a 16-dimensional hvpercube, for various sizes of operand. are shown in

Table 3.2 and Fig3.4. These simulation results show that the performance of the

new algorithm is not good for small numbers of bits. These results show that the

ripple carry addition gives better result under these conditions.

Chapter 4

MULTIPLICATION ALGORITHMS

Multiplication is a very important arithmetic operation. Various existing add-shift

methods are presented in Section 4.1 to speed-up multiplication In addition, a new

algoi ithm is proposed in Section 4.2 which can be implemented on hypercube

computers. A comparison of these algorithms is presented in the last section of this

chapter.

4.1 Existing, Multiplication Algorithms

Multiplication can be implemented as a sequence of repeated additions. The

number to be added is called multiplicand, the number of times to be added is

called the multiplier, and the result is called the product. The sum generated after

each addition is known as the partial product. This technique of multiplication is

extremely slow, therefore various other algorithms have been suggested to speed up

this operation

If the two operands of the multiplication, namely the multiplicand and the

multiplier, contain n and ni bits respectively. including the sign bits, then the

product will consist of n+m bits, including the sign bit Let A, B and P be the

56

multiplicand, the multiplier and the product respectively If m=n and the 2's

complement repiesentation is used for the signed numbers, then

The speed of multiplication heavily depends on the way addition of partial

products is pet-formed, and the best way to add multiple operands is to use the

Carry Save addition (CSA) discussed in the previous chapter.

4. 1 . 1 Sequential Add-Shift Multiplication

The simple add-shift method that was briefly discussed earlier is the conventional

way of multiplying t\\ o numbers A and B. It is described as follows. For A and

B as above. the product P of A and B is obtained by the following set of

additions. Partial products are shown with the sign extension.

There are ii partial products generated in the above multiplication. where each one

is shifted by one position to the left with respect to the previous one, and the MSB

gives the sign of the partial product. These partial products aie added using any

suitable addition algorithm: a good choice is the CSA algorithm which can reduce

multiple operands into two operands which are finally added using any fast

algorithm

57

4.1.2 Booth's Algorithm

Multiplication can he speeded up by reducing the number of partial product . It is

possible to achieve this goal by using some encoding techniques. A bit scanning

technique is introduced by Booth's algorithm in order to reduce the number of

partial products. It is based on the idea that a string of 0's in the multiplier can be

skipped because they generate partial products of zero value, so the partial products

are only generated due to the l's in the multiplier. Therefore, the larger the number

of zeros in the multiplier, the faster the multiplication. In addition, a string of

continuous 1's can also be skipped by only generating partial products for the

boundaries of that string. Consider a string of k consecutive l's in the multiplier,

v, bele the fir.t 1 i'. in bit position i and the last 1 is in bit position L.-FL These k

consecutive l's can he replaced by a -1 in bit position /. a +1 in hit position

i+k+.1 , and O's in hit positions 1+1 through i+k. This recoiling of multiplier bits is

repeated. for all strings of consecutive l's in the multiplier

Two partial products are generated for each related pair of a -1 and a +1 The one

corresponding to -1 is the 2's complement of the multiplicand shifted i-/ times

while the other is the multiplicand shifted i+k times [2]. So, according to Booth's

algorithm the number of partial products generated is equal to the number of

variation, in the multiplier from 0 to 1 or vise versa. The speed of multiplication in

Booth's algorithm depends upon the bit configuration in the multiplier. Another

advantage of this algorithm is that it treats signed and unsigned numbers in the same

w a V

58

4.1.3 Modified Booth's Algorithm

The drawback of Booth's algorithm is that the speed of this multiplication is

absolutely data dependent and m the waist case the speed of this algorithm becomes

same as that of the simple add-shift multiplication. So. Booth's algorithm is

modified to get better results The modified Booth's algorithm guarantees that an n-

bit multiplier will generate Tri/2-1 partial products. There is no need for

precomplementing, the multiplier or postcomplementing the product.

In the modified Booth's algorithm, the multiplier is first shifted to the left by one bit

position to get a 0 in the LSB position, then the multiplier is divided into substrings

of three consecutive bits in such a way that adjacent groups share a common bit.

The partial products are then generated according to the bit configuration of these

substrings. There are eight possible combinations of three bits, hence there are eight

possible actions to be taken The shifted version of the multiplier is scaned from the

least significant bit group to the most significant bit group, and partial products are

generated according to the bit configuration of each group as given in Table 4.1

Each of these partial products is shifted to the left twice with respect to the

previously generated partial product

This encoding technique reduces the number of partial products to half of those

appearing in the worst case of the standard algorithm, therefore the speed of the

multiplication may be doubled [1,2] In this research, the modified Booth's

algorithm is selected for multiplication on parallel hypercube computers. An

extension of the modified Booth's algorithm involves the encoding of 3 bits

simultaneously while examining 4 multiplier bits. Using this scheme, Fn/31 partial

products are generated. These partial products are reduced to two using the Wallace

tree reduction technique which reduces n partial products to two summands, which

are later added using any suitable technique

59

Table - 4.1. Encoding the 3 multiplier bits in the modified Version of
booth's algorithm.

Bit

21
20

2
-1

Operation

1Y+ 1 1 Y- Yi-1

0 0 0 add zero (no string) +0

0 0 1 add multiplicand (end of string) +X

0 1 0 add multiplicand (a string) +X

0 1 1 add twice the multiplicand (end of string) +2X

1 0 0 subtract twice the multiplicand (begining of string) -2X

1 0 1 subtrct the multiplicand (-2X and +X) -X

1 1 0 subtract the multiplicand (begining of string) -X

1 1 1 subtract zero (center of string) -0

4.1.3 LRCF Multiplication algorithm

This algorithm was proposed by Ercegovac and Lang. The LRCF (left-to-right

carry flee) scheme can be used both for sequential and combinational

implementation. Attention is given to the combinational case in order to achieve

the speed advantage. Let X be the radix-2 representation of the normalized

fractional magnitude x

and Y be the radix-r representation of the normalized fractional magnitude y

where r = 2q .

The LRCF multiplication algorithm is a recurrence that produces a sequence of two

accumulated partial products. w and p, which are given by the following equations

In this algorithm, the multiplier is scanned from most significant digit to the least

significant digit, unlike in the conventional multiplication scheme where the

multiplier is scanned from right to left.

According to the LRCF algorithm, the sum of the partial products after k steps is

61

Fig - 4.1 One Step of the LRCF Multiplication Scheme

62

p[n/q] and w[n/q] are the upper and lower parts of the product.

A block diagram of the one step of recurrence is shown in Fig 4.1. A fast

implementation of this scheme also requires fast adders (redundant adder [11]),

addition by concatenation and on-the-fly conversion of the signed digit

representation of p[j].

Several other multiplication algorithms exist, like table look-up multiplication,

planar array multiplication and 2's complement array multiplication [2].

4.2 New Multiplication Algorithm

High speed multiplication is required in various applications In this section. a new

parallel algorithm for fast multiplication is developed. based on the modified

Booth's algorithm. Since the multiplication time heavily depends on the number

of partial products, the modified version of Booth's algorithm reduces the number

of partial products to half. Additional speedup is obtained by making use of parallel

processing. The task of multiplication is divided into independent subtasks, which

are processed simultaneously by different processors of the hypercube. The partial

products are added by using the newly developed method discussed in the previous

chapter. The multiplication operation is performed between the two operand (i.e ,

the multiplicand Md and the multiplier Mr). If the multiplier Mr contains 11 bits and

the multiplicand Md contains m bits, then their product will contain n+ni bits. The

multiplication algorithm discussed in this section is composed of two phases. In the

63

first phase. the partial products are generated in parallel in different processors, and

in the second phase they are reduced to two operands using carry save addition and

finally these two operands are added usim2, the conditional sum logic as discussed in

the previous chapter.

In the first phase, the operands are first distributed among the processors of the

hypercube. The hypercube is mapped into a linear array as discussed in the second

chapter by labeling each processor using reflected Gray codes. Processors with

their binary labels differing in a single bit position are directly connected to each

other, the operand with the smaller number of bits is chosen as the multiplier

(i e., n < in), because this produces the smaller number of partial products. The

two's complement of the multiplicand Md is also found by using the addition

algorithm described previously. The number of partial products generated when

using the modified Booth's algorithm is equal to a=i-n/2-1. and the number of partial

products per processor in the d dimensional hypei cube containing 2dprocessors is

equal to r in/2-1/2`i = b. If the number of processors available is greater then the

number of partial products, then those processors work that contain

multiplier's bits. Before distribution of the operands, the multiplier Mr is shifted

toward left by one bit position and us sign extension is done in order to make its

total number of bits an exact multiple of the number of processors.

The number of processors in use is equal to Fa/bi = P„,,,d and the total number of

multiplier bits to be distributed is equal to /=(2xPused xb), therefore Mr is extended

to I bits. The technique for distribution is high-order interleaving and groups of Z

(Z = 2xb+1) consecutive bits are divided among the processors in such a way that

the processor with label G[i] contains the group Z, and two consecutive groups Z,

and Z,+1 have one bit common between them. Therefore, the processor G[0]

contains group 4, where 4 contains all the bits with the subscript j such that 0 < j

< 2),1). the processor G[l] contains the group Zi which contains 2xb < j < 4xh.

64

So the processor with the Libel GI i I contains the group Z,. ,which is composed of

the bits of the multiplier with subscitpt j such that /.121b < i <2.1b(i+1).

Then left shifted versions of the multiplicand and its two's complement are stored

in each processor The numbei of left shifts in these operands depends on the

address of the processor in which they are stored. The number of left shifts in the

ith processor having label G[i] is equal to 2Ailb. Sign extension of these operands

is first performed. As the product of Md and Mr contains n+m bits, both the

multiplicand and its two's complement must be extended to make their number of

bits equal to n+m.

After this distribution, the generation of partial products starts, simultaneously in

all the processors. Each processor G[i] contains b partial products obtained by

scanning triples of consecutive hits m the multiplier Z, stored in it and generating the

partial product depending upon the bit configuration of that scanned group. There

are eight possible combinations for the scanned three-bit group and the

corresponding partial product is generated according to Table 4.1. If b>l, this

means that more than one partial product is generated in any processor, and this

requires proper shifting of the multiplier, the multiplicand and the two's

complement of the multiplicand. after the generation of each partial product: this

shifting process is repeated h times. This process is described mathematically as

follows. Let Z,. be the group of multiplier bits in processor G[i], and Y, be the

scanned three bits group then the value of Y, gives the partial product as described

in Table 4.1.

Then shifting of all those operands by two bits places is done as,

Where CMcl, is the two's complement of Mdi.

Therefore, each processor generates b partial products The total number of partial

products is a, but some time it is possible that b*Pused > a, so only the first a partial

products are useful.

The second phase of the algorithm involves the reduction of the partial products.

We remind that the number of processors available in the d-d imension al

hypercube is 2d and the hypercube is mapped into a linear array of 2d processors.

Each partial product contains n+m bits and is distributed among the 2d processors

using high-order interleaving. This distribution is done in parallel by all the

processors in b*q*d*2d-1 cycles. But n+m may not be evenly divided by 2d ,

therefore sign extension of each operand is performed to make the number of bits

equal to the nearest multiple of 2d. Therefore, all the partial products are extended to

/ bits where /,-2dr(n+m)/26-1 Let for each processor the group Qh contains q

consecutive bits of the partial product k, where q=1-(n+ni)/2di and 0<k<a This

interleaving is like in the addition algorithm discussed in the previous chapter, hut

in this case each pi ocessor contains more than two groups of q consecutive bits

The iterative reduction of partial products is performed in all processors

simultaneously using the CSA technique discussed in the previous chapter. In any

processor i three groups Qo, Q, and Q2 are reduced to two groups of the same

number of bits (i.e , S and C) Let Qkr represent the rth bit of the kth group in

processor G[i], where 0<r<q. Following parallel operations performed in the first

cycle of the reduction process, we get

where S, and C, represent the rth bit of the sum and the carry group respectively.

The next step involves the shifting of the carry toward left by one bit position, to

get the proper alignment of the carry and sum bits. This alignment is achieved by

66

left shifting C h\ one hit position in all the processors simultaneously, such that the

MSB of C in processor G[i] is copied in the LSB position of C in processor

G[i+1], except for the MSB of C in G[2/-1], which is discarded In this process,

communications that require one hop are performed.

After that the following set of iterations in the reduction process are performed in

parallel.

In each reduction cycle, three operands are reduced to two, in parallel, by using

the CSA technique and total of (1-n/2-1 - 2) iterations are required to reduced

1 n/2-1 partial products to two and after each iteration proper alignment of C is

performed. This is a totally parallel operation, because S and C can be calculated

.miultaneously for all bit positions independently of one another.

The last iteration results in two operands S and C properly aligned, which are

added using the algorithm discussed in the previous chapter.

4.3 Comparison with Existing Algorithms

The algorithm discussed in the last section is based on the modified Booth's

algorithm which approximately doubles the speed of the multiplication process by

reducing the number of partial products to half. More specifically, in conventional

multiplication, with n multiplier bits, the number of partial products generated is

equal to n, whereas using Booth's recoding technique the number of partial

products is Fn/21. Another factor that causes further speed up is the use of parallel

processing Using the hypercube structure, the task of multiplication is divided into

suhtasks which are processed simultaneously in all the processors. The third factor

for its high speed is the way, the addition of multiple operands (partial products) is

67

performed. The carry' sa \ e addition technique is used to reduce these operands into

two operands. with each iteration reducing three operands into two operands

(carry and sum).

If the hypercube of dimension d, which contains 2d processors, is used to perform

the multiplication, then the multiplication process is divided into the following

steps, and the time for each step is given as follows.

1) Generation of partial products

Each processor scans consecutive bits of the multiplier and generates b partial

products; after each generation of a partial product, it shifts the multiplier, the

multiplicand and the 2's complement of the multiplicand by two bits, except for the

generation of the last partial product. b cycles are consumed for the generation of

partial products and 3(b-1) cycles in shifting three operands. So, the total time for

the first step of multiplication is

2) Partial products are redistributed among all the processors, and this

operation is performed in parallel by all the processors in time

2) Reduction of partial products

The carry save addition technique is used in this step and rn/271 partial produuts

are reduced to two. All of these partial products are distributed among the 2d

processors using high-level interleaving, as discussed in the previous section

q=1-(n+m)/2di is the number of bits of each partial product present in one

processor. and in each iteration three q-bit groups are reduced into two (i.e . carry

and sum) and then the carry is shifted toward left by one bit position. Each shift

operation requires the communication of one bit to an adjacent processor. The total

time taken by this step is

69

(V) Multiplier bits = 100 and multiplicand bits = 1000.

Dimension of proc. q Tb Tc Ts
Hypercube (bits/proc) cycles cycles cycles

0 1 1100 109242 219493 109198
1 2 550 68448 137399 136845
2 4 275 41731 82605 137364
3 8 138 25442 49340 132940
4 16 69 15845 29525 129226
5 32 35 9245 18500 131297
6 64 18 5420 10829 139675
7 128 . 9 5111 6161 155800
8 256 5 5809 6459 207576
9 512 3 7409 7859 310744
10 1024 2 10644 10994 516824
11 2048 1 11575 11825 821976
12 4096 1 24893 25143 1646296
13 8192 1 53571 53821 3296984
14 16384 1 115017 115267 6602456
15 32768 1 246095 246345 13221592
16 65536 1 524629 524879 26476248

Table 4.2(
co
Comparative Analysis for multiplication for
different sizes of operands.
Multiplier bits = 10 and multiplicand bits = 100.

Dimension of proc. q Tb Tc Ts
Hypercube (bits/proc) cycles cycles cycles

0 1 110 1017 2143 1018
1 2 55 685 1364 1305
2 4 28 503 912 1432

3 8 14 323 649 1537
4 16 7 322 407 1638
5 32 4 397 452 2310
6 64 2 449 484 3238
7 128 1 510 535 5030
8 256 1 1092 1117 10214
9 512 1 2378 2403 20710
10 1024 1 5200 5225 41958
11 2048 1 11350 11375 84966
12 4096 1 24668 24693 172006
13 8192 1 53346 53371 348134
14 16384 1 114792 114817 704486
15 32768 1 245870 245895 1425382
16 65536 1 524404 524429 2883558

Table 4.1
c)
Comparative Analysis for multiplication for
different sizes of operands.
Multiplier bits = 500 and multiplicand bits = 1000.

Dimension of proc. q Tb Tc Ts
Hypercube (bits/proc) cycles cycles cycles

0 1 1500 750242 1501493 749998
1 2 750 469248 938999 938245
2 4 375 282631 564005 940864
3 8 188 166892 331640 903290
4 16 94 95864 191775 869301
5 32 47 54337 108684 857109
6 64 24 31202 62393 897661
7 128 12 17532 35039 978097
8 256 6 9932 19829 1160491
9 512 3 9209 11459 1538344
10 1024 2 12044 13794 2563624
11 2048 1 12575 13825 4097576
12 4096 1 25893 27143 8198696
13 8192 1 54571 55821 16402984
14 16384 1 116017 117267 32815656
15 32768 1 247095 248345 65649192
16 65536 1 525629 526879 131332648

70

3) Tht third and final step is the addition of the sum and the carry bits using

the method discussed in the previous chapter. This pi (loess takes time

Therefore, the time for multiplication is given by

In order to compare the performance this new algorithm with that of conventional

multiplication algorithm, it is required to find out the time taken by the conventional

multiplication algorithm, if it is implemented in the same parallel processing

environment. In conventional multiplication, the number of partial products

generated is equal to the number of bits in the multiplier, therefore the total number

of partial products is n which can be reduced by half by using the modified

Booth's algorithm. Even if we use the CSA technique for the reduction of the

partial products and the new addition algorithm for addition, the tune taken by the

conventional method of multiplication will be higher due to different values of a and

74

I> in Eq. 4.3.2. hut the second term of above equation is reduced to 2(b-1) because

only two operands are required to he shifted after the generation of each partial

product (i.e., the multiplier and the multiplicand). The total time taken by

multiplication using the conventional way of multiplication is

The third algorithm for multiplication used here in the comparative analysis is

completely sequential add-shift method. The time consumed in multiplication using

this method is divided into following steps.

1) Generation of partial products

Ecr Ii processor generates b = rn/2d-1 partial products and two operands are required

to be shifted after each generation. Total time for this step is given by

,-)_) Redistribution of partial products among all the processors in parallel takes

the time

3) Total time to add a=n partial products using conventional ripple carry

addition is

Total time using this method of multiplication is

Results obtained by using both these two algorithms are summarized in Table 4.2

and Fig 4.3 for comparison between these two algorithms. Simulation for

comparative analysis for these methods of multiplication is given in appendix.

75

Chapter 5

CONCLUSIONS

The results obtained in previous chapters show that our initial goal to improve the

speed of addition and multiplication have been achieved. The comparative analysis

of the new and existing algorithms shows that our new algorithms give higher

performance for operands operands containing a large number of bits.

The Conditional Sum Addition logic has been chosen for addition. This algorithm

has been proved the fastest algorithm for addition by Winograd [1] and by J.

Sklansky [7] as shown in Fig. 3.3. Using this method of addition, the conditional

sum is found assuming conditional carries, and then groups of bits are combined

with each other according to their correct position, as described in the previous

chapter. Assuming conditional carries, this addition can be performed in parallel

and a small amount of communication is involved. The modified Booth's algorithm

is the basis of our multiplication process; this process generates Fn/271 partial

products for n bits in the multiplier, whereas in the conventional way the number

of partial products is n. Therefore the smaller number of partial products may

double the speed of multiplication. Additional speed is obtained by the generation of

76

partial products in parallel and by reducing the partial products to two, using the

carry save addition (CSA) technique.

These algorithms were designed for hypercube parallel computer, operating in the

SIMD mode of computation. The hypercube is well suited to these techniques due

to its rich interconnection structure. Due to this elegant feature, the communication

delay between the processors is minimum. Although the cost of arithmetic

operations is increased by using the hypercube structure, but the speed of

computation is also increased enormously for operands containing a large number

of bits. The analysis performed in previous chapters shows that the performance of

our algorithms is not good for small numbers of bits in the operands due to the

large portion of communication overhead.

Although the speed obtained by our techniques is better then the speed of

previously existing techniques, improvements are still possible. In the proposed

algorithm for addition, groups of q bits work independently of each other to some

extent. But the proper combination of these groups still depends on each other, and

this part takes time 0(1022N), where N is the number of processors in the

hypercube.

Carry free operations are only possible in some particular number representations;

although these operations are then extremely fast they consume large amounts of

time during the conversion of the result to the standard binary system. However,

the positional residue number system [4], can overcome this problem to some

extent, because the conversion of numbers is performed digitwise, i.e., this

conversion does not depend on adjacent digits. The incorporation of this technique

in the conversion process can yield efficient arithmetic operations. This can be a

future research goal.

77

Bibliography

[1] S. Waser and M.J. Flynn, Introduction to Arithmetic for Digital System

Designers, Dryden, Holt, Rinehart & Winston, 1982.

[2] J.J.F. Cavanagh, Digital Computer Arithmetic, Design and Implementation,

McGraw-Hill, New York, 1984.

[3] K. Hwang and F A Briggs. Computer Architecture and Parallel Processing.

McGraw-Hill, 1984.

[4] S. Mukhopadhyay, A. Basuray, and A.K. Datta, "New Technique of Arithmetic

Operation using the Positional Residue System", Applied Optics. vol. 29, No 20,

July, 1990, pp. 2981-2983.

[5] Michael T. Heath, Hypercube Multiprocessors 1987, SIAM, Philadelphia, 1987.

[6] J. Sklansky, "Conditional Sum Addition Logic", Trans. IRE. vol. EC-9, No. 2,

June 1960, pp. 226-230.

[7] J. Sklansky, "An Evaluation of Several Two-Summand Binary Adders", Trans.

78

IRE. vol. EC-9, No 1, June 1960, pp. 213-225.

[8] S. Ranka and S. Sahni, "Odd Even Shifts in SIMD Hypercubes", IEEE Trans. on

Parallel and Distributed Systems, vol. 1, No. 1, Jan 1990, pp. 77-82.

[9] S.L. Johnsson, "Communication Efficient Basic Linear Algebra Computations on

Hypercube Artectures", J. of Parallel and Distributed Computing, vol. 4, 1987, pp.

133-172.

[10] S.G. Ziavras and L.S. Davis, "Fast addition on the FAT Pyramid and its

Simulation on the Connection Machine", Report No. CAR-TR-383 and CS-TR-

2093 , Center for Automation Research, University of Maryland, August 1988.

[11] M.D. Ercegovac and T. Lang, "Fast Multiplication without Carry Propagation

Addition", IEEE Trans on Computers, vol. 39, No 11, November 1990, pp.

1385-1393.

[12] Y. Saad and M.H. Schultz, "Topological Properties of Hypercubes", IEEE Trans.

on Computers, vol. 37, No. 7, July 1988, pp. 867-872.

79

Appendix

80

/**/

/* Simulation of Conditional Sum Addition Logic */

/* on the Hypercube Structure. */
/**/

#include<stdio.h>
#include<math.h>

/* Global variables */

static int g[64];
static long int x[64],y[64],sum;

main()

{

static int
i,j,k,intsz,mdbit,b pp,lintsz,dim,nproc,p_used,used _ dim;

static long int na,nb,md,plast;

intsz = 8*sizeof(int);
lintsz = 2*intsz;
/* Get the value of two operands to be added */

puts("\ngive the no. na and nb to be added\n");
scanf("%ld\n%ld",&na,&nb);
/* Get the dimension of hypercube available for

addition */

puts("\ngive the dimension of the hypercube\n");
scanf("%d",&dim);
printf("\nna = %ld\nnb = %ld\ndim = %d",na,nb,dim);

/* Choose the multiplier */

if(labs(na)>labs(nb))
m_d = na;

else m_d = nb;
/* Count the number of bits in operands */

mdbit = count(labs(md)) + 1;

printf("\n no: of bits to be added = %d\n",mdbit);

/* find the number of processors in the hypercube */

nproc = pow((double)2,(double)dim);

/* call the function to get the Gray codes */

gray(nproc);

/* Find the number of bits per processor */

b_pp = ceil((double)mdbit/(double)nproc);

if(nproc>mdbit)

f

p_used = mdbit;
plast = p_used;
used dim =

ceil((double)(log((double)p_used)/log((double)2)));
p_used = pow((double)2,(double)used_dim);
}
else
{
p_used = nproc;
plast = p_used;
used dim = dim;

}

/* distribute operands among the processors of
hypercube using

high-order interleaving */

dist(na,nb,p_used,b_pp);

/* Call the function to add these operands in parallel
*/

addition(pused,useddim,bpp);

/* recover the sum from the processors */

recov(b_pp,p_used);

printf("sum = old", sum);
}

count(n)
long int n;
{

int x;
x =

ceil((double)log((double)(n+1))/(double)log((double)2)) + 1;
return(x);
}

gray(n)
int n;

1
int i;
for(i=0; i<n; i++)

{
g[i] = i>>1;
g[i] ^.= i;

}

1

dist(na,nb,pused,b_pp)
long int na,nb;
int p_used,b_pp;
{

int i,mask;
mask = pow(2,bpp)-1;

for(i=0; i<p_used; i++)
{

x[g[i]] = na»(b_pp*i) & mask;
y[g[i]] = nb>>(bpp*i) & mask;

1
}

addition(p_used,used_dim,b_pp)
int p_used,used_dim,b_pp;

{

static int
i,j,gc[64],gn[64],shift,ini,fin,a,b,mask[64],k,t_ini,t_fin;

static long int temp1,temp2,tempn[64],tempc[64];
static int oper[64],t_mask[64],tempo;

for(i=0; i<p_used; i++)

{

if(b_pp ==1)

{
tempi = x[g[i]] A y[g[i]];
temp2 = x[g[i]] ^ y[g[i]]^ 1;

gn[g[i]] = x[g[i]] & y[g[i]];
gc[g[i]] = x[g[i]] & y[g[i]] I (x[g[i]]

y[g[i]]);

x[g[i]] = tempt;
y[g[i]] = temp2;

}

else if(bpp>>1)

{
tempi = x[g[i]] + y[g[i]];
temp2 = x[g[i]] + y[g[i]] + 1;

x[g[i]] = tempi & ((int)pow(2,b_pp)-1);
y[g[i]] = temp2 & ((int)pow(2,b_pp)-1);
shift =pow(2,bpp);

if(templ & (int)pow(2,b_pp))

gn[g[i]] = 1;
else gn[g[i]] = 0;

if(temp2 & (int)pow(2,b_pp))
gc[g[i]] = 1;

else gc[g[i]] = 0;

}

mask[g[i]] I= gn[g[i]];
mask[g[i]] <<= 1;
mask[g[i]] I= gc[g[i]];
oper[g[i]] = 1;

}

for(i=1; i<=used_dim; i++)

{
t ini = 0;
tifin = pow(2,i)-1;
for(j=1; j<=pow(2,(used_dim-i)); j++)

{
ini = t ini;
fin = t —fin;_

for(k=1; k<=pow(2,(i-1)); k++)

{
t mask[g[fin]] = mask[g[ini]];

if(!(mask[g[fin]] == 0 1 1 mask[g[fin]] == 3))

{

switch (tmask[g[fin]])

{
case 0:

mask[g[fin]] A=1;
break;

case 1:
break;

case 2:
mask[g[fin]] A=3;
break;

case 3:
mask[g[fin]] A=2;
break;

} }

switch (oper[g[fin]])

{
case 0:
case 3:

break;

case 1:

oper[g[fin]] = t_mask[g[fin]];
break;

case 2:

switch (t_mask[g[fin]])

{

case 0:
oper[g[fin]] = 3;
break;

case 3:
oper[g[fin]] = 0;
break;

case 1:

break;
case 2:

oper[g[fin]] =1;
break;

}
}

if(i != used dim) mask[g[ini]] = mask[g[fin]];

++ini;
--fin;
}

t ini += pow(2,i);
tifin += pow(2,i);
}
}

for(i=0; i<=p used; i++)

{
switch (oper[g[i]])

{
case 0:

y[g[i]] = x[g[i]];
break;

case 1:

break;

case 2:
tempo = x[g[i]];
x[g[i]] = y[g[i]];
y[g[i]] = tempo;
break;

case 3:

x[g[i]] = y[g[i]];
break;

}
}
}

recov(b_pp,p_used)
int bpp,pused;

1

static int i,check,carry=0;

static long int a;

check = b_pp*pused;
for(i=p used-i; i>=0; i--)

{
if(carry==0)

sum 1= x[g[i]];

else
sum 1= y[g[i]];

if(i != 0) sum <<= b_pp;

a=1;

if (sum & (a<<check-1))

sum 1= -((a<<check)-l);

1

/***/

/* Simulation of Modified Booth's Algorithm for */

/* the Multiplication on the Hypercube Structure, */
/* this algorithm uses carry save addition */

/* technique for reduction of partial products */

/* and conditional sum addition technique for */

/* final addition. */
/***/

include <stdio.h>
include <math.h>
include <conio.h>
include <graphics.h>
include <dos.h>
/*# include "title.c"*/

/* global variables */
static int m_d,dim,cm_d,g[64],bin[64][8*sizeof(int)];
static int mdbit,mrbit,cou,sa,sb;
static long int
multi_d[64],cmulti_d[64],p[64][20],s[64],x[64],y[64],multi_r
[64];
static long int mr,sum;
static long int z[64][128];

main()

{

static int na,nb,ct,i,intsz,k,l,m;
static int a,b,n_proc,pp_used,p_used,used_dim,b_pp;

/* title(); */

textbackground(11);
textcolor(4);
clrscr();

/* get two operands of multiplication (multiplier and
multiplicand) */

/* and the dimension of the hypercube used for
multiplication. */

puts("\n\tgive the value of na and nb\n");
puts("\t");
scanf("%d\n%d",&na,&nb);
puts("\tgive the dimension of hypercube\n");
puts("\t");
scanf("%d",&dim);
puts("\n");
printf("\n\tna = %d\n\tnb = %d\n\tdim =

%d\n",na,nb,dim);

/* chose the multiplier from two inputs
*/

if(abs(na)>abs(nb))
{m_d=na;
m_r=nb;}

else
{m_d=nb;
m r=na;}

/* call the function to find the no: of bits in each
operand with sign bit*/

mdbit = count(abs(m_d));
printf("\tno: of bits in multiplicand = %d\n",mdbit);
mrbit = count(abs(m_r));
printf("\tno: of bits in multiplier = %d\n",mrbit);

/* call the function to find out the 2'complement of
multiplicand */

cm _d = com(m d);_ _

n _proc = pow((double)2,(double)dim);

/* no of partial products in case of using modified Booth's
algorithm*/

if(!(mrbit%2))
a = mrbit/2;

else a = (mrbit + 1)/2;

/* no of partial products per processor */

b = ceil((double)a/(double)n_proc);
printf("\n\tno of p.p = %d\n\tno of p.p / processor =

%d",a,b);

/* call the function to generate the gray codes */

gray(n_proc);

/* call the function for data distribution */
/* first shift m_r to left by one */

p_used = ceil((double)a/(double)b);
m r <<= 1;
dist(b,p_used);

/* call the function to mask the multiplier and to generate
the

partial products in each processor */

p_pro(p_used,b);
pp used = p_used;

/* As the total number of bits in product is the sum of
multipier

and multiplicand bits*/

mdbit = mdbit+mrbit;
b pp = ceil((double)mdbit/(double)n_proc);
iY(n_proc>mdbit)

{
p_used = mdbit;
used dim =

ceil((doale)(log((double)p_used)/log((double)2)));
p_used=pow(2,used_dim);
}
else
{p_used = n proc;
used dim = dim;
}
used_

/* distribute the partial products in the extended form
using

high-order interleaving */

for(k=0; k<pp_used; k++)
for(1=0; 1<b; l++)
{
if(++ct <= a)
{
cou = ct-1;
dist2(k,l,p_used,b_pp);
}
else goto next;
}

next: if(a<3)

for(i=0; i<p_used; i++)

{

if(a==1) x[g[i]] = z[g[i]][0];
else if(a==2) { x[g[i]] = z[g[i]][0];

y[g[i]] = z[g[i]][1];

}
}

/* perform the carry save addition in case of more than two
partial products */

else if(a>=3) csa(a,pused,bpp);

/* perform the addition operation using conditional sum
addition logic*/

addition(pused,useddim,bpp);

/* get the final sum from distributed hypercube processors
*/

recov(b_pp,p_used);
printf("\n\t ans = %ld\n",sum);

}

count(n)
int n;

{
int x;
x =

ceil((double)log((double)(n+l))/(double)log((double)2)) + 1;
return(x);
}

com(a)
int a;
{
int x;
x = -a + 1;
return(x);

}

gray(n)
int n;
{
int i,j;
for(i=0; i<n; i++)
{

g[i] = i>>1;
g[i] ̂ = i;

}

dist(b,p_used)
int b,p_used;
{
int i,j,sz;

for(i=0; i<p_used; i++)
{

multi d[g[i]] = (long)m_ d << 2*i*b;
cmulti d[g[i]]= (long)cm d << 2*i*b;
multij[g[i]] = (long)m_T >> 2*i*b;

puts("\n");

/* sz = 8*sizeof(cmulti_d[g[i]]);
for(j=0; j<sz; j++)
printf("%d",(cmulti_d[g[i]]>> sz-(j+1)&1));

*/

}
}

p_pro(pused,b)
int pused,b ;
,
1

int i,j,k,mask = 0;
for(i=0; i<p_used; i++)
{

for(j=0; j<b; j++)
{
mask = multi r[g[i]] & 7;
switch (mask)

{
case 0:
case 7:

p[g[i]][j] = 0;
break;

case 1:
case 2:

p[g[i]][j] = multi_d[g[i]];
break;

case 3:
p[g[i]][j] = multi_d[g[i]] << 1;
break;

case 4:
p[g[i]][j] = cmulti_d[g[i]] « 1;
break;

case 5:
case 6:

p[g[i]][j] = cmulti_d[g[i]];
break;

}

multi_r[g[i]] >>= 2;
multi d[g[i]] «= 2;
cmultId[g[i]] <<= 2;

}
}
}

dist2(k,l,p_used,b_pp)
int k,l,p_used,b_pp;

{
static int i;
static long int m;

m = pow(2,b_pp)-1;

for(i=0; i<p_used; i++)
{
if(p used == 1) z[g[i]][cou] = p[g[k]][1];
else z[g[i]][cou] = (p[g[k]][1] >> (b_pp*i))

& m;
}
1
csa(a,p_used,b_pp)
int a,p_used,b_pp;

{
static int i,j,k,mas[64];
static long int temp;
for(i=0; i<p_used; i++)

{
x[g[i]] = z[g[i]][0] " z[g[i]][l] " z[g[i]][2];
y[g[i]) = z[g[i]][0] & z[g[i]][1] 1 (z[g[i]][2] &

(z[g[i]][0] 1 z[g[i]][1]));

1
for(i=0; i<p_used; i++)

I,
mas[g[i]] = (y[g[i]] >> (b_pp-1))&1;
y[g[i]] = (y[g[i]] <<1) & ((int)pow(2,b_pp)-1);
}
for(i=0; i<p_used-1; i++)
{
y[g[i+l]] = y[g[i+l]] 1 mas[g[i]];
mas[g[i]] = 0;
}
for(j=3; j<a; j++)
{

for(i=0; i<p_used; i++)

{
temp = x[g[i]];
x[g[i]] = x[g[i]] " y[g[i]] " z[g[i]][j];
y[g[i]] = temp & y[g[i]] 1 (z[g[i]][j) & (temp 1

y[g[i]]));
temp = 0;
}
for(i=0; i<pused; i++)

{
mas[g[i]] = (y[g[i]] >> (b_pp - 1)) & 1;
y[g[i]] = (y[g[i]] << 1) & ((int)pow(2,b_pp)-1);
}
for(i=0; i<p_used-1; i++)

{
y[g[i+1]] = y[g[i+1]] 1 mas[g[i]];
mas[g[i]] = 0;
}

}

}

addition(p_used,useddim,b_pp)
int p_used,used_dim,b_pp;

{

static int
i,j,gc[64],gn[64],shift,ini,fin,a,b,mask[64],k,t_ini,t_fin;
static long int temp1,temp2,tempn[64],tempc[64];
static int oper[64],tmask[64],tempo;

for(i=0; i<p_used; i++)

{

if(b_pp ==1)

{
tempi = x[g[i]] A y[g[i]];
temp2 = x[g[i]] A y[g[i]]A 1;

gn[g[i]] = x[g[i]] & y[g[i]];
gc[g[i]] = x[g[i]] & y[g[i]] 1 (x[g[i]] 1

y[g[i]]);

x[g[i]] = templ;
y[g[i]] = temp2;

1

else if(bpp>1)

{
tempi = x[g[i]] + y[g[i]];

temp2 = x[g[i]] -t- y[g[i]] + 1;

x[g[i]] = tempi_ & ((int)pow(2,b_pp)-1);
y[g[i]] = temp2 & ((int)pow(2,b_pp)-l);
shift =pow(2,b pp);

if(templ & (int)pow(2,b_pp))

gn[g[i]] = 1;
else gn[g[i]] = 0;

if(temp2 & (int)pow(2,b_pp))
gc[g[i]] = 1;

else gc[g[i]] = 0;

}

mask[g[i]] 1= gn[g[i]];
mask[g[i]] «= 1;
mask[g[i]] 1= gc[g[i]];
oper[g[i]] = 1;

}

for(i=1; i<=used dim; i++)

{
t ini = 0;
tifin = pow(2,i)-l;
for(j=1; j<=pow(2,(useddim-i)); j++)

{
ini = t ini;
fin = t —fin;

for(k=1; k<=pow(2,(i-l)); k++)

{
t mask[g[fin]] = mask[g[ini]];

if(!(mask[g[fin]] == 0 1 1 mask[g[fin]] == 3))
{

switch (t mask[g[fin]])

{
case 0:

mask[g[fin]] ^=1;
break;

case 1:
break;

case 2:
mask[g[fin]] ^=3;
break;

case 3:
mask[g[fin]] ^=2;
break;

} }

switch (oper[g[fin]])

{
case 0:
case 3:

break;

case 1:

oper[g[fin]] = t_mask[g[fin]];
break;

case 2:

switch (t_mask[g[fin]])
{

case 0:
oper[g[fin]] = 3;
break;

case 3:
oper[g[fin]] = 0;
break;

case 1:

break;
case 2:

oper[g[fin]] =1;
break;

1
}

if(i I= used_dim) mask[g[ini]] = mask[g[fin]];

++ini;
--fin;
}

t_ini += pow(2,i);
t_fin += pow(2,i);
}
}

for(i=0; i<=p used; i++)

{
switch (oper[g[i]])

{
case 0:

y[g[i]] = x[g[i]];
break;

case 1:

break;

case 2:
tempo = x[g[i]];
x[g[i]] = y[g[i]];
y[g[i]] = tempo;
break;

case 3:

x[g[i]] = y[g[i]];
break;

1
}
}

recov(b_pp,p_used)
int bpp,pused;

static int i,check,carry=0;

static long int a;

check = b_pp*p_used;
for(i=pused-1; i>=0; i--)

{
if(carry==0)

sum I= x[g[i]];

else
sum I= y[g[i]];

if(i != 0) sum <<= b_pp;

1
a=1;

if (sum & (a«check-1))

sum I= -((a«check)-1);

/***/
/* Comparative Analysis of Various Addition */
/* Algorithms for different sizes of operands and */
/-* on the different dimensions of the hypercube */
/***/

#include <stdio.h>
#include <math.h>

main()

{
static long int q,tcar,ts,tcsa,proc,bits,i,j,k;
static int d;

scanf(" \n %ld",&bits);
puts("\n\n\n");

printf("\tTable 3.2 Comparative analysis of various addition\n\t algorit
puts(" ");
puts(" Dimension of proc. q Tseq Tcla Tcsa
puts(" Hypercube (bits/proc) cycles cycles cycles
puts (" 1 1 1 1 1 1")
for(i=0; i<=16; i++)

{
proc = pow(2,i);
q = ceil((double)bits/(double)proc);
tcar = 4*q + 4*i*q + 2*i;
tcsa = 3*q + 6*i + 1;
is = proc *(q+3) -1;
printf(" %d \t",i);
printf(" %ld\t\t",proc);
printf(" %ld\t",q);
printf(" %ld\t",ts);
printf(" %ld\t",tcar);
printf(" %ld\n",tcsa);

}
}

/***/

/* Comparative analysis of Modified Booth's Algorithm */
/* and Sequential Add and Shift method */
/***/

#include <stdio.h>
#include <math.h>

main()

{
static long int q,ts,proc,bits,i,j,k,a,b,tb,tc,mr,md,al,b1;
static int d;

scanf(" \n %ld",&mr);
scanf("\n %ld",&md);
puts("\n\n\n");
printf("Table 4.2 Comparative Analysis for multiplication for\n\t diffe

puts("
puts(" Dimension of proc. q Tb Tc Ts
puts(" Hypercube (bits/proc) cycles cycles cycles
puts(" 1 I 1 I 1
for(i=0; i<=16; i++)

{
proc = pow(2,i);
q = ceil((double)(mr+md)/(double)proc);
a = ceil((double)mr/(double)2);
b = ceil((double)a/(double)proc);
al= mr;
b1= ceil((double)al/(double)proc);
tb = b+3*(b-l)+(a-2)*(2*q+3)+ 3*q + 6*i + 1 + b*q*proc*i/2;
tc = b1+2*(b1-1)+(a1-2)*(2*q+3) +3*q + 6*i +1 + b1*q*proc*i/2;
is = bi +2*(b1-1)+ (a1-1)*(proc*(q+3)-3)+bl*q*proc*i/2;
printf(" %d \t",i);
printf(" %ld\t\t",proc);
printf(" %ld\t",q);
printf(" %ld\t",tb);
printf(" %ld\t ",tc);
printf(" %ld\t\n",ts);

1
}

	Fast arithmetic operations on the hypercube using conditional sum addition and modified booth's algorithm
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Acknowledgements
	Abstract
	Approval Sheet
	Vita
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Hypercube Topology
	Chapter 3: Addition Algorithms
	Chapter 4: Multiplication Algorithms
	Chapter 5: Conclusions
	Bibliography
	Appendix

	List of Figures
	List of Tables

