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ABSTRACT 

Title of Thesis: Direct Recovering of Composite Surface 
Using UOFF 

Name: Zhesheng Huang 
Master of Science in Electrical Engineering, 1991 
Department of Electrical and Computer Engineering 

Thesis directed by: Dr. Y.Q. Shi 

The research work reported in the thesis is motivated by the prob-

lem raised in the computer vision area. It utilizes direct method to recover 

surface structure of objects in 3-D space from a pair of stereo images. The 

direct method, compared with optical flow-based approach and feature-based 

approach, is robust and computationally efficient. However it can only recover 

planar surface structure so far. A new approach to recover structure from a 

pair of stereo images based on unified optical flow field (UOFF) is developed 

recently. It can recover curved surface structure. 

In this thesis, the problem of recovering surface structure of composite 

objects has been studied. That is, the surface is characterized by a factorable 

polynomial equation. Furthermore, instead of surfaces having finite large area 

(finite components in size), the infinite large surfaces (infinite components in 

size) are considered. The successful simulation results are presented. They 

show that the new approach is capable of recovering composite structure. 
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Chapter 1 

Introduction 

1.1 Problem Formation 

The ability to discern objects, ascertain their motion, and navigate in 

three-dimensional space through the use of vision is almost universal among 

animals. The ease with which humans detect structure and motion around 

objects and the difficulty of duplicating these capabilities in machines have 

recently led to major efforts by computer engineers and scientist to develop 

the vision systems by computer. 

The main task in the area of computer vision is recovering body mo-

tion and surface structure from a sequence of stereo images. Two types of 

approaches have been pursued: the feature correspondence approach and the 

optical flow field approach [1]. 

In much of the work on recovering surface structure and motion by two 

approaches mentioned above, it is assumed that either a correspondence be-

tween a sufficient number of feature points in successive frames has been es-

tablished for the feature-based approach or that a reasonable estimate of the 

full optical flow field is available for the optical flow approach [1-3]. In general, 

it is difficult to extract and establish feature correspondence. On other hand, 
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to computer the optical flow field, one needs additional constraints such as 

the smoothness constraint. This, in some cases, leads to an estimated optical 

flow field that is not the same as the true motion field. 

In 1985, a new approach, direct method, was proposed by Shahriar 

and Horn [4]. It is more robust since information over the whole image is 

employed. And it requires less computation since readily computable data 

(image brightness gradients and time derivatives) are used directly to extract 

structure and motion information. It does not need the intermediate steps 

(feature detection or optical flow computation) which are computationally 

complicated. 

Since then, several developmental and fundamental works on the di-

rect method were introduced and contributed by Horn and Weldom (1988) 

[5], Heel and Negandaripour (1990) [6], Neganderipour et al. (1989) [7], 

.A/o7morios et al. [8], Hayashi and Negandaripour (1990) [9] and so on. 

Negandempour and Horn showed how to recover the structure and mo-

tion of an observer relative to a planar surface from image brightness deriva-

tives in their experiment. The direction of translational motion and depth of 

object are recovered using a procedure which involves minimizing the sum of 

the squared error of a linear constraint equation over the image by Hayashi 

and Negandaripour. The contributions of Horn and Weldon are recovering 

the structure and motion of an object in a static-environment in the case of 

pure rotation and pure translation, where a planar object is assumed. 

However this method only solves the planar surface successfully. So far 

there is little in the literature about how to recover the higher order surface 

structure of combinational object by using the direct approach. This is the 

motivation for pursuing a new approach to solve this problem. 
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1.2 A Solution to the Problem 

Recently, a new concept of the unified optical flow field is established 

which is an extension of the classical optical flow determined by Horn and 

Schunck. Two main aspects of the UOFF are discussed in [10-13]. First, the 

brightness function of an image is considered as not only a function of time but 

also a function of the camera's spatial position. The concept of imaging space 

is presented as an accurate description of the set of all possible brightness 

function. Secondly, the brightness invariance is recognized not only for the 

time variation but also for the camera's space variation so that the brightness 

invariance equations for both time domain and space domain are established. 

Based on the UOFF, a new approach for recovering surface structure 

characterized by an Nth degree polynomial equation has been recently devel-

oped [14]. In this thesis work, this approach is utilized to recover composite 

surface structure, i.e., surface characterized by an Nth degree factorable poly-

nomial equation. 

If the relative positions between two cameras are set and known at any 

specific moment, we can determine the surface structure of a combinational 

object directly from the image brightness gradient without the need to com-

puter the optical flow as an intermediate step. Under the assumption that the 

geometrical relation between two cameras is known, we will first derive the 

image brightness constraint equation and an Nth order polynomial equation. 

Then from these equations, a least squares formulation allows us to derive a 

linear matrix equation with the structure parameters as unknows. By solving 

this linear matrix equations, we can recover the structure of the object. 
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1.3 Outline 

The rest of this thesis is organized as follows. In Chapter 2, the concept 

of the UOFF is introduced. We derive the brightness invariant equation in 

spatial domain. Some basic image geometry, such as coordinate system trans-

formation and perspective transformation, are examined in Chapter 3. With 

these basic image geometry we establish some relationships between 3 — D 

space and image plane in Chapter 4. In Chapter 4, we also present polyno-

mial equations which describe surface structures under consideration. Using 

the spatial brightness invariant equation, a direct method, which involves min-

imizing the sum of the squared error of this surface polynomial equation over 

the whole image, is derived to estimate all the coefficients of the polynomial 

equations characterizing the combinational structures. 

Simulation experiments which involve recovering combinational structure 

of two planes and three planes, respectively, and the respective results are 

presented in Chapter 5. Finally, some conclusions and the possible further 

researches are discussed in Chapter 6. 
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Chapter 2 

Background 

2.1 Optical Flow 

2.1.1 Brightness Invariant Equation for Temporal Op-
tical Flow 

Optical flow is the distribution of apparent velocities of movement of 

brightness pattern in an image. Optical flow arises from the relative movement 

between object and the viewer. Consequently, optical flow can give important 

information about the spatial arrangement of the object viewed and the rate 

of change of this arrangement. 

We will derive an equation that relates the change in image brightness 

at a point to the motion of brightness pattern [2]. Let the image brightness at 

the point (x, y) in the image plane at the moment t be denoted g(x, y, t) and 

it is displaced a distance Ax in the X-direction and Ay in the Y-direction in 

the time interval At. The brightness of this image point is assumed to remain 

constant so that: 

Expanding the right-hand side about the point (x, y, t) by Taylor series, 
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we get: 

where e contains second and higher order terms in Ax, Ay and At. After sub-

tracting g(x, y, t) from both sides and dividing through by At and evaluating 

the limit as At —> 0. we have: 

where 0 (At) is a term of order At (we assume that Ax and Ay vary as At). 

In the limit as At --3 0, this becomes: 

If we let: 

Then we get the brightness invariant equation in the time domain: 



2.1.2 The Smoothness Constraints 

We can't solve two unknown flow velocities u and v from one brightness 

invariant equation (2.6). In order to recover optical flow we must introduce 

additional constraints. 

It is evident that if every point of the brightness pattern can move inde-

pendent, there is little hope of recovering the optical velocities. So we assume 

that the neighboring points on the objects have similar velocities and the 

velocity field of the brightness pattern in the image varies smoothly almost 

everywhere. 

One way to meet this smoothness constraint is to minimize the sum of 

the square of the magnitude of the gradient of the optical flow: 

That is, the sum of the square of the magnitude of the gradient is used 

• as the smoothness measure. 

2.1.3 Solving the Optical Flow 

Now we have two equations: the brightness invariant equation and the 

smoothness constraint equation. The problem then is to minimize the sum of 

the errors in the brightness invariant equation: 

and the measure of the departure from smoothness in the optical flow: 



Let the total error function is: 

The minimization of this error function is to be accomplished by finding 

suitable value for the optical flow (u, v). We can get: 

Then we can use iterative method to solve (u, v) from these equations. 

From the above description, it is evident that the recovering of the optical 

flow, the intermediate step for recovering of structure and motion of object, 

involves large amount of computation. Moreover it is necessary to introduce 

the smoothness constraint for determining the optical flow. The problem is 

sometime this constraint is not realistic. 

2.2 Unified Optical Flow Field 

2.2.1 General Concept 

The current interest is in the development of robust and computation-

ally efficient approach to recover motion and structure. Recently, a new con-

cept, UOFF, has been developed [12][13]. It is an extension of classic optical 

flow determined by Horn and Schunck. 

According to the concept of UOFF, the brightness function of an image 

is considered as not only a function of time but also a function of camera's 

spatial position and the brightness invariance is recognized not only for the 

time variation but also for the space variation so that the brightness invariant 

equation for both time and space domain are established. 
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Figure 2.1: Four Frame Model 

By extending the optical flow to the DOFF, more information for recov-

ering of structure and motion of object in 3-D space can be provided. We can 

use direct approach, which will be discussed in next section, to recover the 

structure and motion of object directly and efficiently. 

2.2.2 Spatial Brightness Invariant Equation 

The four frame models of image shown in Figure 2.1 are chosen from a 

stereo image sequence where images (a) and (c) are taken by the left camera 

at moment t and t1  . t + At, respectively, images (b) and (d) by left camera 

at t and ti , respectively. Images (a) and (b) are a pair of stereo image at 

t, images (c) and (d) a pair at ti . In our derivations, the image brightness 

at the point (x, y) on the image plane at time t is denoted by g(x, y, t) with 
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superscript indicating which camera is associated with. 

The classic optical flow only considers the temporal sequence of images 

with the camera fixed in the space domain, for example from image (a) to 

image (c) or from image (b) to image(d). From image (a) to image (b) can be 

viewed as a spatial sequence of images with the moment "fixed" in the time 

domain. Under the assumption made above, we have: 

where (xL, yL) and (xR, yR) are the coordinates of the image points on im-

age (a) and image (b) respectively, such that they are corresponding to the 

same world point in 3 — D space. It is the counterpart of the invariance of 

the brightness of a pair of image pixels on two images took at two different 

moment, respectively associated with the same world point in 3 — D space. 

Define: 

Hence: 

The right hand side of the above equation can be expanded in the TaylorSeries: 

Where E contains second and higher order terms in (5x and Sy. From equation 

(2.12), (2.14), (2.15), it follows that: 



Dividing both sides of Equation (2.16) by 6s leads to: 

Where 0(6s) is a term of order 6s (Sx and by vary as 6s). In the limit as 

Ss -4 0 Equation (2.17) becomes: 

The above defined us and vs are, respectively, the spatial variation rates 

of Sx and 6y with respect to Ss. These two quantities generated from the spa-

tial sequence of images can be viewed as the counterpart of u and v generated 

from the temporal sequence of images in Equation (2.6). 

2.3 Direct Approach 

The direct method is one of the methods for the recovering of structure 

and motion of object. In this method, we first derive a linear equation by 

some constraints, so-called the linear constraint equation, for estimating the 

structure and motion of object. Then we can get the optimal results by min-

imizing the integral of the square of the error difference, i.e.,the between the 
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estimated and the actual values. The integral is taken over the image region ' 

of interest which is usually taken to be the whole image [4-9]. 

The first advantage of this direct approach is that certain computational 

difficulties inherent in the calculation of optical flow are avoided. In optical 

flow approach, it is necessary to make an extra assumption, an often utilized 

one is that the optical flow field is smooth, which sometimes is not realistic. 

Secondly, this direct approach is more robust. Image brightness value 

are distorted with camera noise and quantization error. These inaccuracies are 

further accentuated by methods used for estimating the brightness gradient. 

Thus it is not advisable to base a method on measurement at just a few points. 

Instead we propose to minimize the error in the brightness constraint equation 

over the whole region I in the image plane. 

The current interest is in the development of robust and computationally 

efficient approach to recover structure and motion information. In this thesis, 

by using UOFF equations and direct approach, a new recovering algorithm 

based on the direct structure constraint equation is discussed and used to 

estimate the combinational structure. 
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Chapter 3 

Image Geometry 

3.1 Coordinate System Transformations 

In order to deal with the generation of stereo images in Chapter 5, we 

will discuss some basic transformation of coordinate [18]. A point in 3-D 

space has coordinates (XL, Y1, TL) with respect to the Cartesian coordinate 

system OL  - XLYL ZL  associated with the left camera, and (X1R, YR, Z'R) for the 

Cartesian coordinate system OL  - XLYL ZL  associated with the right camera. 

3.1.1 Translation 

Suppose that the Cartesian coordinate system of the right camera is gen-

erated by translating the Cartesian coordinate system of the left camera to a 

new location with displacement (1, h, k). The relation between the coordinates 

of the two Cartesian coordinate systems for a same point can be described by 

using the following equation: 



Equation (3.1) may be expressed in matrix form by writing: 

Denoted the translation matrix as: 

Using this transform, we can calculate the coordinates of a point in the 

Cartesian coordinate system of the left camera from the coordinates of the 

point in the Cartesian coordinate system of the right camera and vice versa. 

Since the matrix T is nonsingular. 

3.1.2 Rotation 

The transformation used for rotation in 3-D space is inherently more 

complex than the transformations discussed above. 

With reference to Figure 3.1, because of the rotation of a Cartesian 

coordinate system about Y coordinate axes by an angle 0, the transformation 

between coordinates of the two Cartesian coordinate systems for a same point 

can be described by using the following matrix: 

where the rotation angle is measured clockwise when looking at the origin 

from a point on the +Y axis. It is noted that this transformation affects only 
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Figure 3.1: Rotation of Cartesian Coordinate System 

the values of X and Z coordinates. 

Rotation of a Cartesian coordinate system about X axis by angle a is 

performed by using the transformation 

and rotation of a Cartesian coordinate system about Z axis by angle 0 is 

achieved by using transformation: 



Figure 3.2: Two Cameras Setting 

3.1.3 Camera Setting 

The setting of the two cameras is shown in Figure 3.2. There OL, — 

-KLY.LZL and OR  — XRYRZR are two Cartesian coordinate systems such that 

OL  and OR  are the centers of the left lens and the right lens, respectively, 

OL ZL  and ORZR  are the optical axes of the left and right lenses, respectively. 

It is assumed in this thesis that the two optical axes OLZL  and ORZR  are 

on the same plane, i.e., the four axes: OL ZL, ORZR, OLXL, and ORXR  are 

coplanar. The axis OLYL, is not drawn in Figure 3.2 and is understood as 

being perpendicular to XLOL ZL, plane, ORYR  is the corresponding component 

associated with OR —XRYRZR. The distance between two lens centers is OLOR  

denoted by 1. The angle between OLXL  and ORXR  is denoted by cb. 

Considering a point P in 3-D space. Its coordinates in the two coordinate 
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system are (XL, Y1, TL) and ()CR, YR,' 4), respectively. According to the 

transformation of coordinate system described above, the relationship between 

the two coordinates can be expressed as follows: 

where Ry  is rotation matrix about Y axis and T is translation matrix. So we 

can get: 

This is a basic relation formula between two Cartesian coordinate systems of 

camera in Chapter 5. 

3.2 Image Perspective Transformations 

3.2.1 Perspective Transformation 

A perspective transformation (also called an imaging transformation) 

projects 3-D points onto a image plane. Perspective transformation play a 

central role in image processing because they provide an approximation to the 

manner in which an image is formed by viewing a 3-D world. 

A model of the image perspective transformation is shown in Figure 3.3. 

We define camera coordinate system as having the image plane coincident 

with the XY plane, and assume the optical axis of the camera aligns with the 

Z axis and f is the focal length of the lens. 
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Figure 3.3: Image Perspective Transformation 

Let P(X, Y, Z) be the coordinates of any point in a 3 — D scene. What 

we wish to do first is to obtain a relationship that gives the coordinates p(x , y) 

of the projection of the point P(X, Y, Z) onto the image plane. This is easily 

accomplished by the use of similar triangles. With reference to Figure 3.3, it 

follows that: 

In this thesis, f is set to unit, f = 1. So we get: 



Chapter 4 

Direct Structure Stereo 

4.1 Optical Flow of Stereo Images 

According to the concept of imaging space introduced in Section 1.2, 

though an object does not move in 3-D space, it looks as if it would have ex-

perienced certain movement from the different cameras' view. These pseudo-

movement can be treated in a manner similar to the treatment of the relative 

motion between the camera and the object. This type of movement is charac-

terized by: 

-4  where 7, is the translational component and the Cis  the rotational component. 

We define: 

Then we have: 



where F's  is a vector of (X, Y, Z)T  representing a point in 3-D space. By 

extending Equation (4.4), we get: 

From the spatial optical flow us and vs defined in Equations (2.20) and 

(2.21), the perspective projection Equation (3.11) and the Equation (4.5), we 

can obtain the following equations: 

These are important equations for recovering the structure of combina-

tional object in this thesis work. 

4.2 Surface Structure Polynomial Equation 

In this thesis, we consider a combinational surface that can be charac-

terized by an Nth order polynomial equation [14]. That is: 



where 0 < a(j) + OW + -y(j) < N, K is the number of coefficients, that 

are not identically vanishing, in the Nth order polynomial. The coefficients 

A(j), j = 0,1, ... K —1 is an arbitrary but fixed index sequence in which 

all K coefficients are arranged. Obviously, there is a problem in choosing 

K —1 independent coefficients from the total K dependent coefficients. So 

that Equation (4.8) can be rewritten as: 

The use of (3.11) leads to 

4.3 Direct Structure Stereo Constraint Equa-
tion 

We have gotten spatial brightness invariant equation and the surface 

constraint equation of combinational structure: 



From Equation (4.13), it is obvious that if we can solve Z, we can esti-

mate the coefficients A(j) of the constraint Equation (4.11) so that the struc-

ture of the combination could be recovered. 

When the camera translational component f, and rotation component c<7., 

are known in advance, we can solve Z from spatial invariant equation (4.12). 

Substituting Equations (4.6) and (4.7) into (4.12) we obtain: 

It is noted that A.,,B,,C,,U„V, and W, can be determined once the 

relative positions of the two cameras in the stereo system are known. The 

gs, gy and gs  can be determined from the given image data. The (x, y) is 

coordinate on the image plane. However instead of explicitly solving Z-1, 

we will apply direct approach to the structure equation in a least squares 

formulation below. 

According to (4.14), Equation (4.13) can be converted to: 
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Define the cost function J as: 

where I is the region on the image plane associated with thee concerned surface 

in 3-D space. The task is to find a set of coefficients AO) so that the cost 

function J is minimized. 

It is well known that the following linear equations are the necessary 

conditions for the minimization of the cost function J: 

where i = 0, 1, ... , K — 2. We can get: 



where: 

with i, j = 0,1, ... ,K — 2. 

In this set of linear equations all of coefficients of the N the order poly-

nomial, i.e.,A(0), ... , ,\(K — 2) are unknown. all of the entries in the matrix, 

z.e.,..41 0  and all of the entries in the vector,i.e., D, can be computed from the 

given stereo image data and the known imaging setting. The unknown coeffi-

cients A(0), ... , A(K —2) can thus be solved. In other words, we can recover the 

surface structure of combination: both the shape of the combination and the 

position of the combination in 3 — D space because the polynomial equation 

characterizing the combinational structure has been completely determined. 

From the above description, the problem of recovering complicated and 

even insolvable high order surface structure in time domain is solved in space 

domain successfully. This is made possible by the introduction of the UOFF. 

The setup parameters of the camera in space simplify our estimation. 
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Chapter 5 

Simulation Experiment 

5.1 Combinational Structure of Multiplane in 

Space 

5.1.1 Geometry Function of Combinational Structure 

To simulate our recovering approach derived above, we set up a simu-

lated combinational structure depicted in Figure 5.1, the combination of three 

planes is the object in 3-D space in our experiment. We denoted plane aO'c as 

plane 1 (p1), plane aO'b as plane 2 (p2) and plane b01  c as plane 3 (p3). Each 

plane is defined by its normal vector (A, B, C) and one point (X0, Y0, Z0) on 

this plane and can be expressed as: 



Figure 5.1: Combinational Structure by Three Planes 

By substituting these parameters into (5.1), we can rewrite Equation (5.1) as: 



5.1.2 Brightness Function of Combinational Structure 

For each plane, the brightness function is defined as a sinusoidal function 

where i = 1, 2, 3 and (X:, Y:', Z:) is the coordinate of a point on plane i within 

the 0 — XY Z Cartesian coordinate system. And k1  = 1000 and k2  = 4, which 

are used to adjust the brightness pattern on the planes. 

5.2 Simulation Data in Stereo Image 

5.2.1 Setup of Stereo Images 

With respect to the combinational structure of three planes in space, we 

can obtain a pair of stereo images by using a stereo imaging described in Figure 

5.2, which provides the basic information for recovering this combinational 

structure. 

Figure 5.2 shows a stereo imaging system for this experiment. The center 

of the left camera OL  is located on the origin of the reference coordinate system 

OL  — XLYL ZL. The optical axis of the left camera is aligned with the OL ZL. 

The distance between the vertex of the combination of three planes and the 

origin OL  equals d. 
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Figure 5.2: Stereo System Configuration 

The Cartesian coordinate system OR  — XRYR ZR  of the right camera can 

be obtained by translating the GI L — XLYL ZL  along XL  axis by / and followed 

by rotating the OL  — XLYLZL around YL  axis by angle 0. The optical axis of 

the right camera is aligned with the ORZR. 

In this experiment, we assume that the two cameras are identical with 

focal length being equal to 1 and that the two cameras are far from the 

object. We should choose small 0 and large d, so that 

ORO' = OLO' (5.8) 

The left and right image planes are perpendicular to OL,ZL, and ORZR, respec-

tively. And x LoL yL  and x RoRyR  are the Cartesian coordinate systems of left 

image plane and right image plane respectively. 
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From this stereo image system, we can get a pair of images. Figure 5.3 

shows that a pair of stereo images for the composite surface of three planes. 

5.2.2 The Generation of Simulation Data 

For recovering the combinational structure in 3-D space, we should first 

get some information from a pair of stereo images. They are the correspond-

ing point (X', Y', Z') in 3-D space of a point (x, y) on the image plane, the 

gradients of image brightness, i.e., gx  and gy  and gs, which are introduced in 

Chapter 2. 

Determine the corresponding point in 3-D space 

In this experiment, we choose the lengths of object in 3-D space as 2R, 

so the whole visual field of object in 3-D space is a 2R x 2R square. According 

to similar triangle principle, shown in Figure 5.4, if f = 1 then a square on 

the image plane with size 2R/d x 2R/d will contain the whole picture of the 

object. 

We convert this square on the image plane into 128 x 128 pixels. Then 

for each pixel in the image plane, we should find its corresponding point on the 

object in 3-D space. That means for a specific pixel (x, y), the corresponding 

point (X', Y', Z') must be calculated firstly. 

Starting from the plane Equation (5.4) 





Figure 5.4: The Region of Image Plane 

Y = yZ (5.11) 

we can have 

So the corresponding coordinates in 3-D space will be determined ac-

cording to the next three equations. 

There are two planes (for the case of a combinational surface consisting 

31 



of two planes) or three planes (for the case of a combinational surface consist-

ing of three planes). So for a specific pixel (x, y), there will be two or three 

corresponding points in 3-D space. Which one is truly needed is depended 

on the structure of these combinational surface. In our experiment, we select 

the corresponding point which has farther distance from the origin of its co-

ordinate system. For example, in the case of a combinational surface of two 

planes in 3-D space, i.e., plane 1 and plane 2, there will be two corresponding 

points (X/0  Y', Z1) and (X2, Y2, Z2) on the plane 1 and plane 2, respectively. 

If 4 > Z. . we will select (Xi, Yi', Z1) as the corresponding point of the pixel, 

otherwise, the (.X. , .17. , Z2) as the corresponding point. This criterion is also 

applied in the case of a combinational surface of three planes. 

Calculate gx  and gy  

We can rewrite brightness function Equation (5.7) for each plane equa- 

tion as follows: 



For each given pixel (x, y) on the image plane, if the plane equation, i.e., 

A2 , B2, C, and the distance d are known, we can calculate its gx  and gy  by using 

Equations (5.15) and (5.16). 

Calculate gs  

According to Equation (2.19): 

It means that g, can be approximated by the ratio of the difference 

between the brightness of pixels in both right image plane and left image 

plane at the same location and the 6s. 

We can calculate the g, through the following steps. 

STEP 1: Obtain the planar equations in the coordinate systems asso-

ciated with the left camera and the right camera, respectively. 
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We express a planar structure equation in the Cartesian coordinate sys-

tem of associated with the left camera as 

Using coordinate system transformation discussed in Chapter 3, we then get 

the planar structure equation for the same plane in the Cartesian coordinate 

system of the right camera. Using Equation (3.8), Equation (5.19) can be 

converted to: 

That is equivalent to: 



This is the planar structure equation for the same plane in the Cartesian 

coordinate system of the right camera. 

STEP 2: Calculate the coordinates of the corresponding point for the 

same pixel in the left image plane and right image plane respectively. 

Denote the pixels having the same location on the left image plane and 

right image plane as (xL, yL) and (xR, yR), respectively. Using Equation (5.13), 

we have 

STEP 3: Calculate the difference of brightness between the world point 

(X1,171, Z/L ) and (X/R,371'1, Z'R). 

According to Equation(5.7), we have 

In order to follow the principle that the brightness of every point on 

object surface must remain the same for the right image, we should calculate 

the brightness of world point (X'R, 17h, Z'R) with the same brightness func-

tion. So before assigning the brightness value to gR(x R, yR), we first should 
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transform the coordinate (X'R, Yh, Z'R) to the coordinate (X'Ll7;,', ZD in the 

Cartesian coordinate system OL  — XLYLZL. Using Equation (3.8), we have 

Then we get 

Final we obtain 

We emphasize here that the correspondence problem of a stereo system 

has, unfortunately, been found to be a difficult one. Because of combination 

of multiplanes, there are several world points (correspondences) in 3-D space 

corresponding to one point on the image plane. On the other hand, due to 

the transformation of position between two cameras, the pixels at the same 

location of the two image planes would possibly be associated with different 

planes in 3-D space. 

In order to recover the combinational structure, before computation of 

gs, we should first determine that which plane in 3-D space the pixel at same 

location of the two image planes will correspond to. Let 
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There are 9 cases for combinational object of three planes which will not 

be discussed here in detail. 
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5.3 The Result of Experiment 

5.3.1 Choice of Coordinate System for Estimation 

Because the assumption of far-field in the stereo system is made in this 

experiment and in reality which usually is the case in stereo imagery, the 

depth Z in the simulation is too large compared with the other quantities 

involved. To avoid computational error, we shift the coordinate system from 

the reference coordinate system 0 — XY Z with its origin being (0, 0, 0) to the 

coordinate system O - XYZ with its new origin bring (0, 0, d). Obviously, 

= X, 17  = Y and 2 = Z - d. By using this new coordinate system, for 

combinational structure of two planes, we get: 

The final combinational equation of two planes in space with new coordinate 

system can be written as: 

and 

Also, we have a structure equation for the composite surface of three 

planes: 
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where 



We will estimate the coefficients of the combinational structure of two 

planes and three planes, respectively. 

5.3.2 Estimation of Coefficient 

Given N = 2, the coefficient of 22  can be chosen as the normalized 

coefficient. We can use a second degree polynomial equation to estimate the 

combinational structure of two planes. That is: 

where 

According Equations (4.17) and (3.10), we can get 



where 

By minimizing the cost function J as derived in Chapter 4, finally, we 

obtain the linear matrix equations for recovering combinational structure: 

When N = 3 and the coefficient of 23  chosen as the normalized term, we 

can also get the linear matrix equations for recovering combinational structure 

of three planes: 

where 



The results of experiment, the estimation of coefficients of A(j) for com-

binational structure of two planes, are shown in Tables 5.1 to 5.3 and the 

results for combinational structure of three planes are shown in Table 5.4. 

In these tables, the left-most column contains all of the monomial in the 
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polynomial equation for characterizing the composite surface structure of two 

or three planes. For each row, the right three items are coefficients associated 

with the monomial listed in the left-most item of the row. Among these right 

three items, the left one is the actual value and the right two are the estimated 

values. 



Table 5.1: Estimation of Combinational Structure of Two Planes by Varying 

with R = 2 and d = 100 

Terms Coef. of object Coef.:0 = 0.05° Coef.:0 = 0.01° 
.)-( 2 -6.1100 -5.5782 -5.9989 
ir-  2 2.0458 2.0380 2.0199 
A.1'7.  0.0 -0.0054 0.0015 
.k 2 0.0 0.0097 0.0005 
YZ -2.8623 -2.8553 -2.8420 
_."1... 0.0 0.1241 0.0080 
Y 0.0 0.6370 0.0308 
Z 0.0 -0.4185 -0.0206 
constant 0.0 0.4331 0.0209 
depth 100.0 102.6254 102.61 

Table 5.2: Estimation of Combinational Structure of Two Planes by Varying 
R 

with = 0.01° and d = 300 

Terms Coef. of object Coef.:R = 4 Coef.:R = 2 
..
k 2 -6.1100 . -6.0031 -6.0017 
Y2 2.0458 2.0241 2.0188 
.k1".7  0.0 -0.0082 -0.0029 
.k2 0.0 0.0072 0.0062 
YZ -2.8623 -2.8460 -2.8414 
X 0.0 0.0351 0.0102 
Y 0.0 0.0752 0.0241 
Z 0.0 -0.0392 -0.0169 
constant 0.0 0.0943 0.0153 
depth 300.0 305.29 302.53 
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Table 5.3: Estimation of Combinational Structure of Two Planes by Varying 
d 

with 0 = 0.01° and R = 4 

Terms Coef. of object Coef.:d = 300 Coef.:d = 500 
2 -6.1100 -6.0031 -6.0054 

1r2 2.0458 2.0241 2.0228 
.,1h7  0.0 -0.0082 0.0001 
jL" Z 0.0 0.0072 0.0041 
1' 2 -2.8623 -2.8460 -2.8426 
± 0.0 -0.0351 -0.0104 
31-  0.0 0.0752 0.0633 
Z 0.0 -0.0392 -0.0336 
constant 0.0 0.0943 0.0809 
depth 300/500 305.29 505.09 



Table 5.4: Estimation of Combinational Structure of Three Planes 
with q5 = 0.001°, d = 1000 

Terms Coef. of object Coef.:R = 4 Coef.:R = 2 
.g3  0.0 - 0.0018 -0.0015 
3-7-3  5.6991 5.7275 5.7617 
:Pk -17.0232 - 17.054 -17.176 
Air  . 2 2 -6.0040 - 6.0401 -6.0134 
±1'".2  0.0 - 0.0023 0.0009 
Si' 2 2 -6.0314 - 6.0419 -6.0901 
.A-- 22  0.0 - 0.0033 0.0034 
1722 0.0 - 0.0054 0.0150 
XYZ 0.0 0.0069 0.0010 

2 0.0 0.0582 -0.0110 
3,-2 0.0 - 0.1046 0.0014 
22 0.0 - 0.0508 -0.0112 
±17  0.0 - 0.0411 -0.0076 
.):' 2̂ 0.0 0.0509 -0.0213 
3-7  '2 0.0 0.1019  -0.0110 
ji.r 0.0 - 0.1534  0.0350 
Y 0.0 0.0329 0.0129 
Z 0.0 - 0.1916 0.0376 
constant 0.0 0.2072 -0.0298 
depth 1000.0 1006.82 1003.39 



Chapter 6 

Conclusion and Discussion 

1. The optical flow determined by Horn and Schunck has been extended to 

spatial sequences of images resulting in unified optical flow field ( UOFF) 

[13]. The brightness invariant equations in both temporal domain and 

spatial domain are presented, which can provide more information to 

recover structure and motion of object efficiently. 

2. Based on the UOFF, a direct recovering algorithm [14], which involves 

minimizing the sum of the squared error of the surface polynomial equa-

tion over the whole image plane, is presented to estimate all the coeffi-

cients of the polynomial equation of a combinational structure. In the 

thesis work, this method is utilized to tackle the problem of recovering 

the combination of multiplanar surface. 

3. The associated experimental works are conducted to verify the feasibility, 

efficiency of this new algorithm for recovering the composite multiplanar 

surface structure. This is a significant progress made compared with the 

cases where only one planar structure can be recovered [4]. 

4. In the generation of the simulation stereo images for composite surfaces, 

care has to be taken to deal with possible multiple correspondence prop- 
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erly. 

5. As shown by the experiments, the setting of two cameras has a great in-

fluence upon the result of estimation with this new method. Generally, 

the choice of the rotation angle cb between two cameras, the distance 

d between the camera and object and the radius of the visual field of 

camera R should be chosen such that the assumption of far-field is sat-

isfied. In general, q  and R should be small and d large properly. This 

assumption is accorded with the practice of stereo imagery. 

6. The estimation about motion of combinational structure is under inves-

tigation. 
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