
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

5-31-1991 

Automatic infrared and visual inspection of solder joints on PCBs Automatic infrared and visual inspection of solder joints on PCBs 

Jiang Huang 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Huang, Jiang, "Automatic infrared and visual inspection of solder joints on PCBs" (1991). Theses. 2500. 
https://digitalcommons.njit.edu/theses/2500 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2500?utm_source=digitalcommons.njit.edu%2Ftheses%2F2500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

Title of Thesis: AUTOMATIC INFRARED AND VISUAL
INSPECTION OF SOLDER JOINTS
ON PCBs

Author: JIANG HUANG
MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING, 1990

Thesis directed by: DR. Y. Q. SHI
ASSISTANT PROFESSOR OF ELECTRICAL
AND COMPUTER ENGINEERING

Department : ELECTRICAL AND COMPUTER ENGINEERING

This thesis reports the research results of automatic inspection of solder

joints on printed circuit boards (PCBs). The previous work on this regard has

been advanced significantly in the following three aspects. With the applica-

tion of some microlens and the principle of geometric optics solder joints of

real size are inspected in this work instead of larger simulation solder joints in

the previous work. A new set of features is formulated and used for infrared

inspection. Consequently, better results have been achieved in this work.

Reasonably good results demonstrate the capability of infrared inspection

of solder joints on PCBs. Once again, the fusion of infrared and visual imaging

techniques for the inspection is proved to bring out better results than that

obtained by using each technique alone.



' iAUTOMATIC INFRARED AND VISUAL

INSPECTION OF SOLDER JOINTS

ON PCBS

by

Jiang Huang

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of

Master of Science in Electrical Engineering

1991



APPROVAL SHEET

Title of Thesis: AUTOMATIC INFRARED AND VISUAL INSPECTION
OF SOLDER JOINTS ON PCBs

Candidate: Jiang Huang
Master of Science in Electrical Engineering. 1991

Thesis and Abstract Approved by the Examining Committee:

Dr. Y,\Ci, Shi, Thesis Advisor Date

Assistant Professor
Department of Electrical and Computer Engineering

Dr. N. Ansari Date

Assistant Professor
Department of Electrical and Computer Engineering

Dr. E. Hou Date
Assistant Professor
Department of Electrical and Computer Engineering

Dr. C. Q. Shu Date
Research Associate
Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey.



VITA

Jiang Huang

Date of Birth

Place of Birth

Education

1989-1991 New Jersey Institute of Technology, Newark,
New Jersey, U.S.A.
MSEE

1982-1986 Guang Zhou College, Guang Zhou, P.R.C.
BS

1978-1980 Guang Zhou Mechanical & Electrical Institute,
Guang Zhou, P.R.C.



Dedicated to

My Wife and My Parents



ACKNOWLEDGMENT

Many people have assisted me during the course of this work. I am very

grateful to my thesis advisor Dr. Y. Q. Shi whose inspiration and guidance

benefitted me significantly. Without his support this work could not have

been completed.

I would like to express my appreciation to Dr. C. Q. Shu, manager of

the Electronic Imaging Laboratory at Electrical and Computer Engineering

Department, NJIT. His help in regard of Datacube Image System, both the

software application and hardware configuration, and his comments on the

research work are valuable.

And I would like to express my appreciation to Dr. W. F. Kosonocky for

his leadership as NJIT Foundation Chair for Optoelectronics and Solid-State

Circuits.

I would also like to express my appreciation to many of my laboratory

colleagues, in Room 410 of Faculty Hall, who gave their assistance in many

ways, and to my family who have supported my study at NJIT.



Contents

1 Introduction 1

1.1 Purpose   1

1.2 A Description of the Previous Work   2

1.2.1 A small scale image processing system   2

1.2.2 Visual light inspection experiment   2

1.2.3 Infrared inspection of simulation solder joints experiment 3

1.2.4 Fusion inspection experiment   4

2 System Construction 5

2.1 Hardware Construction   5

2.2 Pattern Recognition Method for Solder Joint Inspection . . .   9

2.2.1 Basic concepts of statistical pattern recognition   9

2.2.2 Feature extraction for the solder joint inspection . . .   12

3 Visual Light Inspection Experiment 16

3.1 Experiment and Results   17

4 Infrared Image Inspection 21

4.1 Introduction of the IR-CCD Camera   21

4.2 Enlargement of the Pictures of Solder Joints   24

4.3 Image Enhancement   25



4.4 Compensation of the Chip Holders Effect   30

4.5 A New Set of Features   31

4.6 Experiment of the Infrared Inspection   33

4.7 Experiment of Fusion Inspection   36

5 Window Tool for Solder Joint Inspection 38

6 Conclusion and Discussion 46

7 References 47

8 Appendices 49

A Solder Joint Inspection Window Tool C Source Code   49

B Interpolation C Source Code   75

C Histogram Transformation C Source Code   77

D Weight.vec Files   78



List of Figures

2.1 A Datacube Image System  6

2.2 Construction of Image Processing System   8

2.3 Patterns in Euclidean Space   12

3.1 Solder Joint Defects[11]   17

3.2 The Visual Light Image   18

3.3 The Results of the Visual Light Inspection   19

4.1 The IR-CCD Camera  22

4.2 Ray Diagram of A Lens   24

4.3 The Thermal Image Taken with IR-CCD  26

4.4 The Thermal Image after Interpolation   27

4.5 The Histogram Transformation   28

4.6 The Thermal Image after Histogram Transformation   29

4.7 The Structure of a Joint Subimage   32

4.8 The Results of the Infrared Inspection   35

4.9 Fusion Inspection Approach   36

4.10 The Results of the Fusion Inspection   37

5.1 A Window Tool for Solder Joint Inspection   40



Chapter 1

Introduction

1.1 Purpose

This thesis is a part of a long term project on the application of electronic

imaging techniques, which is one of the major tasks undertaken at the Elec-

tronic Imaging Laboratory, led by Dr. Kosonocky, at Electrical and Computer

Engineering Department, NJIT.

The research work described in this thesis is automatic inspection of solder

joints on printed circuit boards (PCBs), using a small scale image processing

system and unsupervised statistical pattern recognition technique. The target

is to classify solder joints on the PCB into distinct classes according to their

different quality status. The subject falls into machine vision area.

Machine vision, technically composed of image processing and pattern

recognition, is one of the fastest growing areas to which many scientists and

engineers majoring in computer and signal processing devoted their great ef-

forts in the past decade. Machine vision is one of the most important parts

of artificial intelligence. Any significant improvement in this area will affect

the performance of the next generation of computers. On the other hand, the

application of machine vision in industry has significant economic profits.

1



Machine vision systems — computer systems that can see and recognize —

have been applied in virtually every branch of manufacturing, in which most

of the applications are in inspection and quality control. Automatic solder

joint inspection is only one of the many applications in this regard. System

development and research papers in this category are only a small part in the

survey of automated visual inspection. The work included in this thesis is a

part of new efforts in this attractive developing area.

1.2 A Description of the Previous Work

A fellow student, Mr. K. K. Zhou, did this research and finished his master

thesis [14] in May 1990. In what follows a brief description of his work is given

for the reference.

1.2.1 A small scale image processing system

A small scale image processing system had been set up. Zhou applied this

system to

• 1. Acquire digital image frames from pictures taken by a camera;

• 2. Display digital image;

• 3. Process and store the digital image in the host computer;

• 4. Implement solder joint inspection using the Window Tool on the SUN

workstation.

1.2.2 Visual light inspection experiment

Zhou [14] began his experiment with a printed circuit board. Solder joints

were hand-made on the PCB. The joints on the PCB were of real size for dual

2



in-line ICS mounting. Four fundamental types of solder joints were made.

They were the excess solder, the normal, the insufficient solder and the no-

solder ones. A CCD visual light camera was used. The original lens had

a focal length of 16 mm and a minimum photo distance of 0.3 m. Then a

microlens having a focus of 75 mm and a minimum photo distance of 1 m

was used to take pictures. The size of solder joint subimage on the picture

was 10 pixels in X axis direction and 14 pixels in Y axis direction. By solder

joint subimage, we mean a portion of the image entirely containing the joint.

His best experiment results were that the good/bad rate was 78.7% or 85 in

total 108 solder joints, the correct classified rate was 62.96% or 68 in total 108

solder joints. The good/bad rate means the rate of correctly classifying solder

joints to the following two categories: the "good" and the "bad." The correct

classified rate means the rate of correctly classifying solder joints to one of the

four categories mentioned above.

1.2.3 Infrared inspection of simulation solder joints ex-
periment

Zhou [14] tried another approach to realize automatic inspection of the

solder joints on PCBs. An infrared camera which had a focal length of 1.5m

was utilized. Because the original solder joints were too small to be inspected

correctly, he made an enlarged simulation of solder joints on a board for ex-

perimental purpose. There were 20 joints, each in diameter of 15mm, in four

different classes mentioned above. Each class had 5 joints.

The best results achieved were that the good/bad inspection rate was 85%

and the correct classified rate 80% with solder joint subimage size of 34 x 46

pixels.

3



1.2.4 Fusion inspection experiment

Since the result was still not satisfied, the fusion inspection was conducted.

A visual light image and an infrared image of the same simulation solder joints

were taken and processed respectively. The individual results were then used

with some appropriate weight vector to obtain better results.

The best result obtained by visual inspection with respect to the simulation

solder joints was that the good/bad rate was 95% and the correct classified

rate 90% with the solder joint size of 46 x 48. The best results in infrared

inspection were that the good/bad rate was 85% and the correct classified

rate 80% with the joint subimage size of 36 x 42. The best results of fusion

inspection with respect to the simulation solder joints were 100% in both the

good/bad inspection rate and the correct classified rate [14].

4



Chapter 2

System Construction

2.1 Hardware Construction

The host computer of the system in the Electronic Imaging Laboratory

is a SUN 3/260 workstation. The MaxVideo modules, made by Datacube,

Inc., are used to construct a special image processor to perform some function

like video data acquisition and image displaying. Each module presents some

individual functions of image processing. They can work compatibly with each

other to construct different systems having its own purpose and performance,

also for particular application requirement and investing scope.

In the Datacube real time image processing system, there are different

operating functions for every MaxVideo module. There are some connector

ports, as shown in Figure 2.1 which is a top view. Every MaxVideo module

board has 14 pins. The connection between boards can be changed by the user.

The Datacube image processing system provides a flexible function selector

(hardware setting and the Hardware Access Tool) to fit the different operating

requirement.

Only three MaxVideo modules are used in this work. They are MAX-

SCAN, ROI-STORE, and MAX-GRAPH. The MaxVideo modules group uses

5



Figure 2.1: A Datacube Image System

6



an open modular structure to provide the real time image manipulation, acqui-

sition, storage, processing and display functions. These are briefly described

below.

(1) MAX-SCAN is a complex, programmable asynchronous input module

which can acquire either analog or digital input data with a variety of resolu-

tion and frame rate. We only use its analog signal I/O port (P12) which can be

operated at data rates up to 10 MHz. MAX-SCAN can digitalize the output

of low resolution, very fast frame rate sensors, and also very high resolution

slow frame rate sensors. It creates a 10 MHz stream of scan sequential digital

video data, suitable for connection to a wide variety of the MaxVedio modules.

The digitized video signal is downloaded from the MAXbus Digital Output

(P5) to the Digital Input Port (P9) of ROI-STORE in our construction.

(2) ROI-STORE is a region-of-interest (ROI) memory and a Max-Video

compatible framestore module which supports user programmable video res-

olutions and processes the regions-of-interest image. ROI-STORE accommo-

dates video signals from RS-170 and non-RS-170 MAXbus sources and trans-

fers data in and out of its MAXbus ports at the standard MAXbus rates (10

MHz) and 7.16 MHz. ROI-STORE module can store images, or create regions

of images in its memory, with any horizontal or vertical resolution up to 4K.

The P4 of ROI-ROI-STORE connected with P4 of MAX-SCAN is for the ROI

Timing.

(3) MAX-GRAPH is a graphics generation module. It displays graphics

in interlaced RS-170 format as well as in non-interlaced format. It supports

mouse and light pen interfaces and RGB color output. It is compatible with

7



Figure 2.2: Construction of Image Processing System

10 MHz streams of digital video data (for 512 x 512 systems). The signal is

from the Digital Output (P5) of ROI-STORE to the Digital Input (P4) of

MAX-GRAPH. And then, the signal is output from the Analog Output (P12)

of MAX-GRAPH to a TV monitor.

In the small system, the VMEbus is used as the data channel between

MaxVideo modules and the host computer. B bus adapter and cable are

connected to the VMEbus of host computer SUN 3/260. The hardware con-

struction is shown in Figure 2.2.

The functions of the Datacube real time image processing system we applied

are:

• Show thermal images from the IR-CCD camera on a TV monitor.

8



• Freeze what the camera is viewing.

• Store and load the digital image into and out of the host computer (SUN

Workstation).

Driving program for individual module offered by Datacube can be mounted

into the kernel of operating system of SUN workstation. The operating of mod-

ules could be made into standard library procedure. What user should do is

programming in language C and call for these library procedures if certain

module operating is wanted.

As seeing from above the system setting up includes the connecting of hard-

ware system, testing, debugging and programming for the user's subroutine.

The final target is making the system easy to use for any professors or graduate

students who want to use it.

2.2 Pattern Recognition Method for Solder

Joint Inspection

2.2.1 Basic concepts of statistical pattern recognition

Statistical pattern recognition method is utilized in this work for automatic

solder joints inspection. A computer program is written in C to specifically

implement the pattern recognition.

Recognition is regarded as a basic attribute of human being. A pattern is

the description of an object. Pattern recognition means classifying a class of

objects from any other classes by computer systems instead of human beings.

In statistical pattern recognition a pattern is described by a series of math-

ematics quantities, termed as feature vector, or simply, features. An object

or a pattern could be distinguished from others only if it has distinct features

9



from the others. In this thesis only the photographed object is concerned .

In other words, the visual light and infrared phonographs of solder joints on

PCB are needed to be recognized.

Only the concept of pattern classification by distance functions, the sim-

plest and most intuitive approach to the statistical pattern classification, is

discussed here briefly.

Prior to a more quantitative discussing some notations are given next.

Symbol Explanation

Consider the simplest situation where only two classes, wi and wi are con-

cerned. Furthermore, each is described by a 2-dimensional feature vector.

These two feature vectors can be positioned in a 2-dimensional Euclidean

space, i.e., a planed as shown in Figure 2.3. Every point with the two con-

tours is a feature vector, which is computed from certain object belonging to

10



Now consider an unknown object X that needs to be classified. Its features

can be computed, then it is positioned on the plane, as shown in Figure 2.3,

noted as x. In Figure 2.3 the distance from x to w, is obviously less than that

of x to w3. x is therefore classified to w, according to the minimum-distance

classification algorithm.

Now the space in Figure 2.3 can be imagined as an n-dimensional Euclidean

space En, every point is an n-dimensional vector. Same algorithm can be used

as a classifier. In the space En, distance between two vectors a and b has been

defined previously in the table about symbols.

11



Figure 2.3: Patterns in Euclidean Space

If there are more than two classes in the En space, the same algorithm is still

working as a classifier. That is the statistical pattern recognition algorithm

used in this automatic solder joint inspection system.

2.2.2 Feature extraction for the solder joint inspection

The features used to classify the solder joint subimages are mathematically

defined next:

1. Normalization: It is assumed that discrete solder joint subimage datum



The 2-D array data are normalized into the interval {0,1}, denoted as

for all possible (i, j).

2. Total volume or mean normalized gray level is defined as:

This is the first feature used, i.e.,

3. Variance of normalized gray level defined below is the second feature:

4. Central subwindow volume:

5. Outer frame region volume:





We use seven features to classify the solder joints subimages. They work

very well in classifying the visual light solder joints subimages, but in infrared

image, we found some of these features did not work so well. The reason is

infrared image has its own characteristics. The main difficulty we met was

the temperature in the PCB was not well-distributed caused by the different

quantity of the integrated chip holder mounted on the other side of PCB. So,

we should find some other classifying features. We did find some other special

features for the infrared image processing which will be discussed in Chapter

4 in detail.

15



Chapter 3

Visual Light Inspection
Experiment

A raw printed circuit board is soldered manually. The joints on the PCB

are real size for dual in-line ICs mounting. Four fundamental types of solder

joints are made. They are excess solder, normal, less solder and no solder,

which are shown on Figure 3.1.

The real size solder joints are so small that is very difficult for taking

pictures of solder joints suitable for automatic inspection. The approach we

adopt is utilizing a microlens to enlarge the original solder joints more than

6 times. The distance we made photographing is about 30 cm or less. The

size of solder joint subimage on the picture is more than 18 pixels in X axis

direction and more than 18 pixels in Y axis direction now. But there are

some other problems for automatic inspection. They are the rosin and the

illuminating light. So, before taking a picture of the PCB, we used some

alcohol to remove the rosin on the surface of the solder joints. And a circular

fluorescent lamp is used for illuminating instead of projector illumination to

achieve better quality of pictures. Set the camera in front of the PCB, focus

it well and take pictures, and store the images into the host computer by the

16



Figure 3.1: Solder Joint Defects[11]

software named "sample."

3.1 Experiment and Results

After we obtained images stored in host computer, we can run the program

"pcbl" to process them. We have tried to process solder joint subimages with

size varying from 16 x 16 to 46 x 46, but the output does not show much

difference. So we choose the size about 22 x 20 in our work. The image in our

work is shown on Figure 3.2.

When a solder joint is being classified, its different feature is multiplied by

a different weight. A set of weights is called a weight vector. Various different

weight vectors are tried to obtain the best classification result. These weight

vector and the associated results are shown in Figure 3.3. There, Box X

17



Figure 3.2: The Visual Light Image

18



Figure 3.3: The Results of the Visual Light Inspection

and Box Y indicate the size of the subimages of the joints being processed.

The number in the column of Weight means which file among the six files,

i.e., Weight(n).vec = 1,2,...,6), is used for the experiment associated with

that row. From Appendix D, it is clear that each file among Weight(n).vec

(n = 1,2,...,6) represents a different weight vector. CC means the correct

classified rate. G/B means the good/bad rate. The best results are that, the

correct classified rate is 98%, in other words, 49 among total 50 solder joints

are correctly classified, and the good/bad rate is 100%.

There are some reasons that we can not reach the correct classified rate of

100%. Firstly, the solder joints manually made in our work look very different

from those joints made by soldering machine. The uniformity even for those

supposed to be good solder joints is poor. Some solder joints are hard to be

19

'

.

Total is 50joints
Box X Box Y Weight CC G/B %CC j %G/B
20 16 1 49 49 98% 1 98%
20 18 1 48 49 96% 99%
20 20 1 48 50 96% 100%
22 20 1 48 50 96% 100%
24 20 1 45 47 90% 96%
24 22 1 47 50 96% j 100%
22 22 1 48 50 98% 100%
22 22 2 49 50 98% 1 100%
22 22 3 47 48 94% 96%
22 22 4 46 49 92% ' 98%
22 22 5 46 49 92% 1 98%
22 22 6 48 50 96% 1 100%



determined which class they should be classified to even by a human inspector.

Secondly, the surface of the solder joints is covered by rosin. Though we have

used alcohol to try to remove it, the remaining rosin still makes the image

worse. Finally, the reflection of the fluorescent lamp also affect the quality of

images of joints.

20



Chapter 4

Infrared Image Inspection

To overcome the effect caused by the remaining rosin on the surface of the

joints and the reflection of the light, we use another approach to realize the

automatic inspection of the solder joints. That is infrared inspection.

4.1 Introduction of the IR-CCD Camera

The IR-CCD camera used in this research work was built by graduate stu-

dents of the E.E. Department, NJIT, at the David Sarnoff Research Cen-

ter (DSRC), in Princeton, N.J., under the direction of Professor Walter F.

Kosonocky, NJIT Foundation Chairman for Optoelectronics and Solid State

Circuit [10]. There are two main sections in this IR-CCD camera, the camera

head section (lens and sensor) and the electronic box (A/D converter for 12-bit

digital output port and D/A converter for RS-170 display). They are shown

in Figure 4.1.

A 320 x 244-PtSi IR CCD camera is utilized for the automatic inspection.

It operates with a 100-mm ff/1.4 lens, f/1.3 cold shield, and a long-pass filter

having a cut-off wavelength of 3.4 pm. The characteristics of the IR-CCD

camera are summarized below:

21



Figure 4.1: The IR-CCD Camera

22



* FPA structure

-Number of Pixels : 320 (H) x 244 (V)

-Pixel Size : 40 urn (H) x 40 urn (V)

-Chip Size : 40 um (H) x 40 urn (V)

-Imager Architecture : Monolithic Silicon ITCCD

-IR Sensor Element : PtSi Schottky-barrier Detector

* Camera Electronics

-Frame Rate : 30 frames/s with 2 vertically
interlaced 320 x 122 fields/frame

-Hor. Line Readout : 63.5 us/HL with imager signal on
alternate horizontal TV lines

-Uniformity Correction : one-point off-set-type averaging
up to 16 reference frames

* Optics

-Lens : 100 mm , f/1.4

-Cold Shield : f/1.3

-IR Filter : 3.4 pm long pass

* System Performance

-Operating Temperature : 77 K

-Imager Responsivity :

—at FPA output : 57.9 mV/K

—at camera output : 34.5 mV/K

-NEST at FPA output : 0.034 K

23



4.2 Enlargement of the Pictures of Solder Joints

The first step is still to enlarge the pictures of solder joints. There are two

methods to achieve this task. One is using a special camera microlens, which

can be installed in front of the original camera lens. Another is utilizing the

principle of the geometric optics that is shown in Figure 4.2, i.e,



where f is the focal length, u is the distance between the object and the

center of the lens, v is that between the image and the center of the lens. What

we obtain is an inverse. If the values of u and v are selected appropriately, we

can enlarge the image.

Both methods enlarge the image of joints very well. The picture we shown

on Figure 4.3 is taken by using the second method.

4.3 Image Enhancement

After we obtain the infrared (IR) joint pictures, we need to process the

images before classification can be implemented. Firstly, on the IR picture we

obtained, only every other line has data, the rest lines are all black (0 gray

level). Interpolation is hence applied. At each column assign to each "empty"

pixel the average gray value of its immediate upper and lower pixels, Figure

4.4 is the IR picture after the interpolation. Compared with Figure 4.3, the

effect of improvement is obvious.

Secondly, the histogram of the IR images reveals the following fact. That

is, the distribution of the gray levels in the IR images is generally concentrated

in the range from gray level 120 to gray level 220, sometimes this range is from

60 to 180, depending on the temperature of the PCB. The full range of gray

levels for an 8 bit digital image is from 0 to 255. The difference between the

highest gray level and the lowest gray level is about 100 to 120. The features

on the IR images are therefore not very apparent. So, we enhance the picture

by applying histogram modification techniques.

There are several ways to modify the histogram of a digital image. Here,

we apply the linear gray transform. The transform function is shown in Figure

25



Figure 4.3: The Thermal Image Taken with IR-CCD

26



Figure 4.4: The Thermal Image after Interpolation

27



Figure 4.5: The Histogram Transformation

4.5.

where z1 and z2 represent the lower and upper bounds of gray levels in the

original image, respectively, while a and b represent the corresponding bounds

for the new image.

Mathematically, the transform can be represented by the following formula,

where g is the gray level for the original image, while g' is the new value

after transform.

After this transform, the quality of the IR image becomes better, see Figure

4.6. The correct classified rate is raised from 60% to 80%.

28



Figure 4.6: The Thermal Image after Histogram Transformation

29



4.4 Compensation of the Chip Holders Effect

After using the histogram transformation, the IR image is much clearer in

the screen. Now, we find that it has some different background temperature.

Why? Because there are some chip holders on another side of the PCB, so

that the cooling processes of different parts of the PCB are not the same.

In the center part of the holders, the temperature is higher than that on the

edges of the holders. We can see this on the screen, some parts have a little bit

darker background than other parts. These differences in temperature distort

the useful information contained in the thermal behavior of joints and make

the classification more difficult.

We use two ways to try to compensate the background temperature differ-

ences caused by chip holders. First, we try to average background tempera-

ture. The idea is that we sum each pixel gray level of the whole board except

the joint pixel, then divide the total number of the pixels which have been

counted. The result is the general average background gray level denoted



After this measure being taken, the correct classified rate is raised to near

90%.

But, we think that when we take this measure to eliminate the temperature

difference in the cooling processes of different parts of the PCB, at the same

time, some useful information of the solder joints may be also removed. So,

we try to select new features suitable for IR images which are discussed in the

next section.

4.5 A New Set of Features

Despite the holders' effect, we still could find some useful information from

the solder joints subimages. Those are different from that contained in visual

light images. By carefully analyses, we found that in a solder joint subimage,

the difference between different areas was apparent. The subimages of the four

different joint classes have their own distinct appearance for different areas. So,

we should find some special features for the IR image. Obviously, something

like mean value in the features becomes less useful, because the chip holders'

temperature differences exist. But the variance, the second order moment,

the differences of each area of the joint become much more meaningful. So,

another set of features is extracted. They are described as follow.

31





Thus, a new set of features is formulated. With this new set of features,

the result of the correct classified rate increases up to more than 90%.

4.6 Experiment of the Infrared Inspection

Before we take IR images, we should make an initial focusing of the camera

with respect to the object position. That means we should fix the distance

between the camera and the object. Because when the board is heated, at

beginning, the picture in the monitor is all white. So, at that time we can not

do any focusing. When the picture is becoming apparent, the temperature

decreases fast, we do not have enough time to adjust the focus at that stage.

We use an oven to heat the PCBs. Using some aluminium paper makes

the surrounding temperature same. Heating continues until the PCB reaches

more than 75°C.

Put the PCB at the position we previously determined. Adjust a little

bit focusing if it is still needed. When the temperature goes down, first, the

33



IR subimages of excess-solder joints and non-solder joints become apparent,

next the less-solder joints. The subimages of normal joints become apparent

last. When the temperature decreases to about 48°C to 40°C , the subimages

of joints become clearest. One thermometer has been attached to another

side of the PCB to monitor the temperature. IR pictures are taken as the

temperature goes down every 2°C degree, i.e., at 50°C, 48°C, 46°C, 44°C,

42°C, 40°C and 38°C.

Apply the methods we described above to process the image in the SUN

workstation. The best correct classified rate is about 94% and the good/Bad

rate 96% at the 42°C. The size of subimages of solder joints is 22 x 22 or 20 x 16.

There are total 50 joints in the PCB. Only are 3 joints wrongly classified. The

correct classified rate for other experiments are about 90%. These results are

shown in Figure 4.8. The wi (i = 1,2, ..., 7) are the file names of the images;

z1, z2 are the gray levels mentioned in Figure 4.5; The meanings of CC and

G/B are the same as defined in Section 3.1.

Continue

34

(1) Total joints is 50 in 20 x 16
Temperature zi. z2 CC G/B %CC %G/B
w1 50°C 250 140 39 41 78% 82%

w2 48°C 250 140 42 45 84% 90%
w3 46°C 250 140 43 45 86% 90%
w4 44°C 250 140 45 47 90% 94%
w5 42°C 250 140 47 48 94% 96%
w6 40°C 160 60 41 47 82% 94%
w7 38°C 180 100 40 45 80% 90%



Figure 4.8: The Results of the Infrared Inspection

35

— (2) Total joints is 50 in 22 x 18 —
_ Temperature zi z2 CC G/B %CC %G/B

w1 50°C 250 140 39 41 78% 82%
w2 48°C 250 140 44 45 88% 90%
w3 46°C 250 140 45 47 90% 94%
w4 44°C 250 140 45 47 90% 94%
w5 42°C 250 140 46 47 92% 1 94%
w6 40°C 160 60 46 47 92% 94%
w7 38°C 180 100 43 47 86% 94%

—(3) Total joints is 50 in 22 x 20 —
Temperature zi z2 CC G/13 %CC %G/B
w1 50°C 250 140 33 35  66% 70%
w2 48°C 250 140 43 44 86% 88%
w3 46°C 250 140 46 48 92% 96%
w4 44°C 250 140 43 45 86% 90%
w5 42°C 250 140 47 1 48 94% 96%
w6 40°C 160 60 46 48 92% 96%
w7 38°C 180 100 38 45 76% 90%

—(4) Total joints is 50 in 22 x 22 —
Temperature zi 2.-2 CC G/B %CC %G/B
w1 50°C 250 140 36 41 72% 82%
w2 48°C 250 140 43 44 86% 88%
w3 46°C 250 140 43 44 i 86% 88%
w4 44°C 250 140 43 45 86% 90%
w5 42°C 250 140 47 48 94% 96%
w6 40°C 160 60 43 46 86% 92%
w7 38°C 180 100 41 46 82% 92%

—(5) Total joints is 50 in 24 x 20 —
Temperature zi z2 CC G/B %CC %G/B
w1 50°C 250 140 37 40 74% 80%

w2 48°C 250 140 45 46 90% 92%
w3 46°C - 250 140 45 47 90% 94%
w4 44°C 250 140 42 43 84% 86%
w5 42°C 250 140 46 48 92% 96%

ws 40°C 160 60 45 48 90% 96%
w7 38°C 180 100 41 48 82% 96%



4.7 Experiment of Fusion Inspection

The fusion of infrared and visual light inspection data has been conducted

to see if it can achieve any improvement. The block diagram of the fusion

inspection is shown in Figure 4.9. The normalized feature distance means the

normalized distance between the features of solder joint to the mean features

of certain class, as defined in Chapter 2. If the solder joints on the PCB are

denoted by S, i = 1, ...., 20, D/2; is the normalized feature distance from S2 to

Class j in infrared inspection. DI723 is the normalized feature distance from

8, to Class j in visual light inspection. A normalized fusion distance DF23 is

defined as

where i = 1, ...,20, j = 1, ...,4, and a + b = 1. A set of new normalized fusion

distances are used to classify the solder joints into certain classes according to

the minimum distance principle.

36



A group of experiment results is shown in Figure 4.10. The original results

are that the correct classified rate is 98% and the good/bad rate 98% with

the joint subimage size of 20 x 16 in visual technique, and that the correct

classified rate is 94% and the good/bad rate is 96% with the joint subimage

size of 20 x 16 in IR technique. Then, the fusion results show that it reaches to

the best 100% in both the correct classified rate and the good/bad classified

rate. The a and b are weights mentioned in Figure 4.9. The CC and G/B are

the same definitions as mentioned in Section 3.1.

Figure 4.10: The Results of the Fusion Inspection

—Total joints is 50 —
a b CC G/B %CC %G/B
0.7 0.3 48 49 96% 98%
0.5 0.5 49 50 98% 100%
0.3 0.7 49 50 98% 100%
0.2 0.8 50 50 100% 100%



Chapter 5

Window Tool for Solder Joint
Inspection

This tool is a complete application software package written in Sunview

window. Each step of unsupervised statistical pattern recognition is done by

pushing certain software button using the mouse of the SUN workstation. The

C source code of the whole software is shown in Appendix B.

While totally four kinds of windows are offered by Sunview, only two dif-

ferent kinds of windows, Canvas and Panel are used in this tool. Canvas is an

environment for graph and image displaying. Panel is one of the main meth-

ods for man-machine communication, such as keying-in file names, selecting

functions, setting parameters etc.. This tool, when working on the SUN work-

station screen, is that shown in Figure 5-1, where Image 't' is showing on the

Canvas. Whole procedure is described next step by step.

A. Solder joint segmentation:

1. Typing-in image data file name: move the arrow cursor near by the line

prompted with "Draw data filel:", press the left button of the mouse, a small

triangle cursor will flash next to the ":", type in the data file name, denoted

38



as filenamel below.

2. Typing-in position file name: Position file is used to tell the computer

where a certain class of solder joints is. Do the same thing as Stop(1), let

small triangle flash on the second line, prompted with "Position filel:", type

in the initial name of position file, denoted as name2 below. An extension

".pos" is assumed.

3. To show the image: push the Panel button "New", that is done by

moving arrow cursor onto the Panel button "New" and pressing the left button

of the mouse. Through out this thesis this concrete operating procedure will

not be repeated when a term push Panel button "(specific function name)" is

mentioned.

4. To position the solder joints: When arrow cursor is moved onto Canvas,

it becomes square with a cross tail, horizontal and vertical, which is helpful

to position adjacent solder joints. The keys "W, Z, A, S" on the keyboard are

used to move the square cursor one pixel "up, down, left, right", respectively.

If the center of the cross seems accurately in the center of the solder joint which

belongs to the class to be positioned, press the key "E" on the keyboard, a

small frame box will appear surrounding the center of the solder joint and a

pair of X-Y coordinates is recorded in memory. The size of the box , either X

side or Y side, should be adjusted by changing the Panel items "Box X" and

"Box Y:", that will be explained below in detail.

5. To erase an input position: If a box seems not accurately positioned

on the center of a solder joint, move square cursor onto the box and press key

"Q" to erase the old box together with the position record in memory. Use

"W, Z, A, S" to adjust the square cursor and press "E" when the position

seems satisfactory. Repeat this step until the box is located on the center of

39



Figure 5.1: A Window Tool for Solder Joint Inspection

40



the solder joint.

6. To create a position file: When a certain class of solder joints are

partially or totally positioned, push the Panel button "Output", which will

save all records onto the position file name2.pos.

7. To modify a position file: After the Steps (1), (2), (3), push the Panel

button "Read", every position defined in the old position file will be called

back and boxes are shown on the solder joints. Boxes can be erased, added,

modified. After everything is ready, push "Output" again. The old position

file will be covered by a new on with the same name.

Repeat Steps (2)-(7) to create different position files for different classes

of solder joints. This completes the segmentation phase of the inspection.

B. Mean features learning or training:

Before training an important preparation is to decide the processing size

of the solder joint subimage. The size is set by Panel items "Box X:" and

"Box Y:". One way to change them is moving the arrow cursor near the circle

symbol and Pushing the left button of the mouse. Size will be changed to

presetting value circularly for every click. Another way, a pull-down menu

can be selected by pushing the right button of the mouse, moving mouse to

highlight certain setting then releasing the button. Training steps are:

1. The first step here is the same as Step (1) of Phase A.

_2. To begin a new round of training: push the Panel button "Open" for

beginning a new round of training, namel.lnm and namel.fea will be created or

renewed. Because the new data will be appended to these files while different

classes of solder joints are used for training one by one.

3. Same as Step (2) of Phase A.

41



4. To train: push the Panel button "Train", the class in the name2.pos

will be used for training and statistical mean features are recorded.

Repeat Steps (3), (4) until every position fill for the image namel goes

through. This finishes the training phase. It is recommended that always keep

the same order of the position files for different rounds of training. Mean fea-

ture vectors are ready for the next phase "Classification:", in file namel.fea.

Another output file namel.lnm is minimum and maximum values for every

feature and every class. It is used to calculate the maximum value needed

to normalize all features. That is also useful for analysis purpose. After nor-

malization features are in the range of 0 to 1 and have equal weight to the

distance decision. In the meantime a set of files name2.fea are output for

analysis purpose. The standard deviation and relative errorfor every kind of

feature are useful to evaluate the feature.

C. Classification:

Before starting to classify, a weighting vector should be ready. As the

initial value, a vector has its each component being 1. Text editor could be

used to create a file named as weightl.vec, where only is separated by space

exist. The number of is is the same as the number of features to be trained.

Other weighting vectors could be put on weight2.vec, weight3.vec,.... Using

Panel circle selecting item "weighting :" to decide which vector should be

used. Be sure that always keep the same box size in one round of training and

classifying. Classifying steps are described in the following:

1. The same as Step (1) of Phase A.

2. Selecting weighting vector: use Panel circle item "weighting :".

3. The same as Step (2) of Phase A.

42



4. Classifying: push the Panel button "Sort".

Repeat Steps (3),(4) for every class of solder joint by changing position

files in the same orders when they are used for training . In classification

phase two kinds of files are generated. One is namel.sot. This is an appended

file. Sorting every position file will produce one line message. Classes are

named as 1 to 4, following the order in which they are trained and sorted.

The number shown after each class number means how many solder joints

have being classified into this class. because first line shows the results of

the classification of Class 1, a largest number in the first line of the group

is expected after the integer 1. The largest number in the second line of

the group is expected after the integer 2, and so on. Two main error rates,

Good/bad inspection rate and correct classified rate, are used to evaluate the

performance of the classifier. Since only one class of solder joints is known

as "good", Class 2 in the experiment here, the Good/bad inspection rate is

computed by plus how many solder joints of Class 2 are classified into Class 2

and how many solder joints of other classes are not recognized as Class 2, then

divided by total number of solder joints in this image. The correct classified

rate is the number of solder joints which are classified into the right classes

divided by total.

Another kind of output files after sorting is a set of filename2.out files. The

X-Y coordinates of every solder joint, the normalized distances between the

feature vector associated with the solder joint and the mean feature vector of

each class are printed in one line. At the end of this line is the class number to

which the solder joint is assumed to belong. That is, it has the least distance

to this class comparing to others. These files give the information about why

a certain solder joint is sorted to a wrong class, how far it is away from its

43



own class, or how far it is away from other classes when it is sorted correctly.

A group of experiment, training or sorting, means going through all posi-

tion files associated with one image, when all parameters kept unchanged. A

round of experiment means beginning from a group of training and ended by

one or more groups sorting. For example, changing the weighting vector, more

than one group of sorting can be implemented and different results could be

obtained while the mean features are kept unchanged. Changing the size of

the solder joint subimage, by changing the "Box X:" and "Box Y:" setting,

and changing the typical sets of solder joints used for training, more rounds of

training and sorting could be tested and more different sorting results could

be obtained.

D. Classification of fusing visual light and infrared images.

There are two set of features for training and sorting. One is the original

set, which can be used in visual light image processing. The other one is for

thermal image processing. If you want to use these features to process the

thermal image, you can push the Panal item "Visual/Infrared" to make your

choice. After that you can proceed the process as described above. as reverse,

you can push the P anal item again to choose the original set of the features

To make fusion experiment of visual light and infrared images, first, you

should process one visual light image and one infrared image respectively to

obtain the output files which have the extension ".out". Then, you should put

one visual light image file name which has been processed beside the Panal

item, "Data filet:", and its position file name beside the Panal item "Position

filet:". Then put the processed infrared image file name beside the Panal item

"Data file2", and its position file beside the "Position file2:". Then, choosing

44



the vector by push the Panal item "Fuse vec", this is the weighting vector of

the position filenamel, and the 1-vector will be the weighting vector of the

position filename2. After that push the Panal button of "Fuse", the output

will be stored in the files with extension ".fus". You can do fusion inspection

for different position files by change the position filenamel and the position

filename2. Repeat the process described above.

45



Chapter 6

Conclusion and Discussion

1. The capability of the infrared automatic inspection for solder joints on

PCBs is proved in this research work. The results agree with the theoretical

expectation which has been predicted in [9].

2. Very good results have been achieved via our work in the Electronic

Imaging Laboratory. The automatic infrared inspection of solder joints on

PCBs can be applied to PCB industry. In the next step, we should look for

industrial partners to continue this work.

3. Fusion inspection is a useful measure to obtain better results.

4. More weighting vectors could be tried to improve the results. One way

to select weighting vector is to average the relative errors for every feature in

different classes which are listed in the files named as filename2.fea.

46



References

[1] P. J. Besl, E. J. Delp and R. Jain, "Automatic visual solder joint in-

spection," IEEE Journal of Robotics and Automation, Vol. RA-1, No.

1, pp. 42-56, Mar. 1985.

[2] S. L. Bartlett, P. J. Besl, C. L. Cole, R. Jain, D. Mukherjee and K. D.

Skifstad, "Automatic solder joint inspection," IEEE Trans. on Pattern

A nalysis and Machine Intelligence, Vol. 10, No. 1, pp. 31-43, Japan,

1988.

[3] P. D. Blume, "Uniformity corrector and signal processing for a 160 x 244

elements IR-CCD image with PtSi Schottky-barrier detectors," Mas-

ter's thesis directed by Dr. W. F. Kosonocky, Electrical and Com-

puter Engineering Department, New Jersey Institute of Technology,

Dec. 1989.

[4] S. Blume, "Infrared TV camera with PtSi Schottky-barrier detectors,"

Master's thesis directed by Dr. W. F. Kosonocky, Electrical and Com-

puter Engineering Department, New Jersey Institute of Technology,

Dec. 1989.

[5] Applications of Thermal Imaging, Edited by S. G. Burnay, T. L. Williams

and C. H. Jones, Adam Hilger, Bristol and Philadelphia, 1988.

47



[6] R. T. Chen, "Survey automated inspection: 1981 to 1987," Computer

vision, Graphics, and Image processing, 41, pp. 346-381, 1988.

[7] Datacube User's Manual, Datacube Inc., Oct. 1988.

[8] R. C. Gonzalez and P. Wintz, Digital Image Processing (Second Edi-

tion), Addison-Wesley Publishing Company, Reading, Massachusetts,

Nov. 1987.

[9] W. F. Kosonocky, A. N. Akansu, C. II. Lu and Y. Q. Shi, "Infrared

imaging for machine vision," Proposal to New Jersey Commission of

Science and Technology, Nov. 1987.

[10] C. M. Leng, "Uniformity correction for infrared IR-CCD camera," Mas-

ter's thesis directed by Dr. W. F. Kosonocky, Electrical and Com-

puter Engineering Department, New Jersey Institute of Technology,

Dec. 1990.

[11] Y. Nakagawa, "Automatic visual inspection of solder joints on printed

circuit boards," Proc. SPIE, Robot Vision, Vol. 336, pp. 121-127, May

1982.

[12] Sunview Programming User's Instruction, SUN Microsystem Inc., 1988.

[13] J. T. Tou and R. C. Genzalez, Pattern Recognition Principles, Addision-

Wesley Publishing Company, Reading, Massachusetts, 1974.

[14] K. K. Zhou, "Automatic infrared inspection of solder joints on printed

circuit boards," Master's thesis directed by Dr. Y. Q. Shi, Electrical

and Computer Engineering Department, New Jersey Institute of Tech-

nology, May 1990.

48



Appendices

A Solder Joint Inspection Window Tool C Source Code

#include <stdio.h>

#include <math.h>

#include <suntool/sunview.h>

#include <suntool/panel.h>

#include <suntool/canvas.h>

#include <suntool/tty.h>

#define CMS SIZE 256

static void help_proc(), quit_proc(), pos_proc(),

fuse_proc();
static void output_proc(), sort_proc(), train_proc(),

draw();

static void handle_event(), read_proc(), new_proc(),

features();

static void clear_proc(), open_proc(), size_proc(),

rpos_proc();

static int value_to_op();

static char value_to_c(), value_to_d(), value_to_e();

static char cmdstring[256], *fv;

static short posvect[512]=NULL;

static int pcbpix[64][64], xsize, ysize;

static int bx2, by2, cswx, cswy, ofrx, ofry;

static float feavect[20], fea[120][10], data[512],

datal[512], mean[6][20];

static float deltax, deltay, delta, deltx2, delty2,

pos, vec;

static float sjpix[64][64], 11[5] [20], mm[5][20]; ;

static Panel_item fname_item;

static Panel_item flname_item;

static Panel_item f2name_item;

static Panel_item f3name_item;

static Panel_item box_xsize;

49



static Panel_item box_ysize;

static Panel_item weight_num;

static Panel_item visual_infrared;

static Panel_item fuse_vec;

static Panel_item cursor_x;

static Panel_item cursor_y;

Pixfont *bold;

struct rasterfile rh;

/* static short icon_image[]=1

#include </usr/mesunb/users/kxz4467/squr>

I;

DEFINE_ICON_FROM_IMAGE(my_icon, icon_image); */

static Frame frame;

static Panel panel;

static Canvas canvas;

static Tty tty;

static Cursor cursor;

static Menu menu;

main(argc, argv)

int argc;

char **argv;

{
Rect *r;

register Pixwin *pw;

register int i, k ;

un_char red[CMS_SIZE], green[CMS_SIZE],

blue[CMS_SIZE];
struct pixrect *orig_pr, *new_pr;

pos=0;

bold=pf_open("/usr/lib/fonts/fixedwidthfonts/screen.b.1

2");

if (bold==NULL) exit(1);

frame=window_create(0, FRAME, FRAME_LABEL, "PCB

Inspection",

FRAME_CMDLINE_HELP_PROC,

help_proc,

FRAME_ARGS, argc, argv,

/* FRAME_ICON, &my_icon,*/

FRAME_NO_CONFIRM, TRUE,

WIN_ERROR_MSG, "Can't create

window.",

WIN_HEIGHT, 484,

WIN_WIDTH, 512,

50



0);

menu=menu_create(MENU_ACTION_ITEM, "Quit", quit_proc,

0);

canvas=window_create(frame, CANVAS,

WIN_CONSUME_KBD_EVENT,

WIN_ASCII_EVENTS,

WIN_CONSUME_PICK_EVENT, LOC_DRAG,

WIN_HEIGHT, 484,

WIN_WIDTH, 512,

WIN_EVENT_PROC, handle_event,

0);

window_fit(canvas);

/* copy the orignal cursor image */

orig_pr = (struct pixrect *) (LINT_CAST(

cursor_get(window_get(canvas, WIN_CURSOR),

CURSOR_IMAGE)));

new_pr = (struct pixrect *)(LINT_CAST(mem_create(

orig_pr->pr_width, orig_pr->pr_height, orig_pr-

>pr_depth)));
(void)pr_rop(new_pr, 0, 0, new_pr->pr_width,

new_pr->pr_height,

PIX_SRC, orig_pr, 0, 0);

cursor = cursor_create(CURSOR_IMAGE, new_pr,

CURSOR_OP, PIX_SRC - PIX_DST,

0);

cursor_set(cursor,

CURSOR_SHOW_CURSOR, 1,

CURSOR_XHOT, 7,

CURSOR_YHOT, 7,

CURSOR_OP, PIX_NOT(PIX_DST),

CURSOR_CROSSHAIR_LENGTH, 64,

CURSOR_CROSSHAIR_GAP, 16,

CURSOR_CROSSHAIR_COLOR, 255,

CURSOR_CROSSHAIR_OP, PIX_SRC

CURSOR_SHOW_CROSSHAIRS, TRUE,

0);

window_set(canvas, WIN_CURSOR, cursor, 0);

panel=window_create(frame, PANEL, WIN_X, 0,

WIN_BELOW, canvas,

WIN_FONT, bold,

51



0);

create_panel_item();

window_fit_height(panel);

/* tty=window_create(frame, TTY, WIN_BELOW, panel,

WIN_X, 0,

WIN_WIDTH, 512,

WIN_ROWS, 18,

WIN_FONT, bold,

0);

window_fit(tty); */

window_fit(frame);

pw=canvas_pixwin(canvas);

for (i=0; i<CMS_SIZE; i++)

red[i]=green[i]=blue[i]=1;

pw_setcmsname(pw, "showcolor" );

pw_putcolormap(pw, 0, CMS_SIZE, red, green, blue );

size_proc();

window_main_loop(frame);

exit(0);
}

create_panel_item()

{

fname_item = panel_create_item(panel, PANEL_TEXT,

PANEL_LABEL_STRING, "Data filel:",

0);

finame_item = panel_create_item(panel, PANEL_TEXT,

PANEL_LABEL_X, ATTR_COL(0),

PANEL_LABEL_Y, ATTR_ROW(1)+9,

PANEL_LABEL_STRING, "Position file1:",

0);

f2name_item = panel_create_item(panel, PANEL_TEXT,

PANEL_LABEL_X, ATTR_COL(32),

PANEL_LABEL_Y,ATTR_ROW(0)+4,

PANEL_LABEL_STRING, "Data file2:",

0);

f3name_item = panel_create_item(panel, PANEL_TEXT,

PANEL_LABEL_X, ATTR_COL(32),

PANEL_LABEL_Y, ATTR_ROW(1)+9,

PANEL_LABEL_STRING, "Position file2:",

0);

52



box_xsize = panel_create_item(panel, PANEL_CYCLE,

PANEL_LABEL_X, ATTR_COL(0),

PANEL_LABEL_Y, ATTR_ROW(2)+10,

PANEL_LABEL_STRING, "Box X:",

PANEL_VALUE, 6,

PANEL_CHOICE_STRINGS,

"8", "12", "14", "16", "18", "20",

"22", "24", "30", "34", "40", 0,

PANEL_NOTIFY_PROC, size_proc,

0);

box_ysize = panel_create_item(panel, PANEL_CYCLE,

PANEL_LABEL_X, ATTR_COL(0),

PANEL_LABEL_Y, ATTR_ROW(4)-6,

PANEL_LABEL_STRING, "Box Y:",

PANEL_VALUE, 6,

PANEL_CHOICE_STRINGS,

"8", "12", "14", "16", "18", "20",

"22", "24", "30", "34", "40", 0,

PANEL_NOTIFY_PROC, size_proc,

0);

weight_num = panel_create_item(panel, PANEL_CYCLE,

PANEL_LABEL_X, ATTR_COL(0),

PANEL_LABEL_Y, ATTR_ROW(5)+4,

PANEL_LABEL_STRING, "Weighting:",

PANEL_VALUE, 0,

PANEL_CHOICE_STRINGS,
"1'', 11211, "3", 114", "5", "6", "7", ''8'',

0,

0);

visual_infrared = panel_create_item(panel, PANEL_CYCLE,

PANEL_LABEL_X, ATTR_COL(33),

PANEL_LABEL_Y, ATTR_ROW(5)+4,

PANEL_LABEL_STRING, "Visual/Infrared:",

PANEL_VALUE, 3,

PANEL_CHOICE_STRINGS,

"Visual", "Infrared", 0,

0);

fuse_vec = panel_create_item(panel, PANEL_CYCLE,

PANEL_LABEL_X, ATTR_COL(16),

PANEL_LABEL_Y, ATTR_ROW(5)+4,

PANEL_LABEL_STRING, "Fuse vec:",

PANEL_VALUE, 4,

PANEL_CHOICE_STRINGS,

"0.1", "0.2", "0.3", "0.4", "0.5",
"0.6", "0.7", "0.8", "0.9", 0,

0);

53



cursor_x = panel_create_item(panel, PANEL_SLIDER,

PANEL_LABEL_X, ATTR_COL(0),

PANEL_LABEL_Y, ATTR_ROW(7)-4,

PANEL_LABEL_STRING, "X:",

PANEL_SLIDER_WIDTH, 256,

PANEL_VALUE, 0,

PANEL_MIN_VALUE, 0,

PANEL_MAX_VALUE, 511,

0);

cursor_y = panel_create_item(panel, PANEL_SLIDER,

PANEL_LABEL_X, ATTR_COL(0),
PANEL_LABEL_Y, ATTR_ROW(8)+4,

PANEL_LABEL_STRING, "Y:",

PANEL_SLIDER_WIDTH, 242,

PANEL_VALUE, 0,

PANEL_MIN_VALUE, 0,

PANEL_MAX_VALUE, 483,

0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Pos", 5, 0),

PANEL_ITEM_X, ATTR_COL(20),

PANEL_ITEM_Y, ATTR_ROW(2)+10,

PANEL_NOTIFY_PROC, pos_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Fuse", 5,

0),

PANEL_ITEM_X, ATTR_COL(28),

PANEL_ITEM_Y, ATTR_ROW(2)+10,

PANEL_NOTIFY_PROC, fuse_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Sort", 5,

0),

PANEL_ITEM_X, ATTR_COL(36),

PANEL_ITEM_Y, ATTR_ROW(2)+10,

PANEL_NOTIFY_PROC, sort_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Output", 6,

0),

54



PANEL_ITEM_X, ATTR_COL(44),

PANEL_ITEM_Y, ATTR_ROW(2)+10,

PANEL_NOTIFY_PROC, output_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Clear", 6,

0),
PANEL_ITEM_X, ATTR_COL(53),

PANEL_ITEM_Y, ATTR_ROW(2)+10,

PANEL_NOTIFY_PROC, clear_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Quit", 5,

0),

PANEL_ITEM_X, ATTR_COL(20),

PANEL_ITEM_Y, ATTR_ROW(4)-6,

PANEL_NOTIFY_PROC, quit_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Read", 5,

0),

PANEL_ITEM_X, ATTR_COL(28),

PANEL_ITEM_Y, ATTR_ROW(4)-6,

PANEL_NOTIFY_PROC, read_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "New", 5, 0),

PANEL_ITEM_X, ATTR_COL(36),

PANEL_ITEM_Y, ATTR_ROW(4)-6,

PANEL_NOTIFY_PROC, new_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Train", 6,

0),

PANEL_ITEM_X, ATTR_COL(44),

PANEL_ITEM_Y, ATTR_ROW(4)-6,

PANEL_NOTIFY_PROC, train_proc, 0);

panel_create_item(panel, PANEL_BUTTON,

PANEL_LABEL_IMAGE,

panel_button_image(panel, "Open", 6,

0),

PANEL_ITEM_X, ATTR_COL(53),

PANEL_ITEM_Y, ATTR_ROW(4)-6,

55



PANEL_NOTIFY_PROC , open_proc , 0) ;

}

static void

train_proc 0 /* input: file, f ile .pos . output: f ile . f ea

*/

{

Pixrect *image;

FILE *fpi, *f open() ;
register int i=0, j=0, k=0;

int x, y;

short 1;

float f ea [128] [10] ;

Pixwin *pw=canvas_pixwin(canvas) ;

new_proc() ;

sprintf (cmdstring, "%s .pos " ,

panel_get_value(flnarne_item)) ;
f v=&cmdstring [0] ;

fpi = fopen(fv, , "r") ;
while (i<512)

fscanf (fpi, "'/.hi", &posvect [i++]) ;

f close (fpi) ;

for(i=0;i<20;i++) {

mean [0] [i] =0 ;

mean [5] [i] =0 ;
}

i=0;

while( (x=posvect [i++]) ! =0) {

y=posvect [1++] ;

pw_batch_on(pw) ;

for(j=0; j<xsize+1 ;j++)

f or (k=0 ;k<ysize+1 ;k++){

pcbpix [j] [k]=pw_get (pw, x-bx2+j , y-

by2+k) ;

J.

pw_batch_off (pw) ;

features(i,x,y);

k=i/2;

for(j=0;j<7;j++) {

if (11 [0] [j]>feavect [j]) 11[0] [j]=feavect [j] ;

if (mm[0] [j]<feavect [j] ) mm[0] [j]=feavect [j] ;

mean [0] [j] =mean [0] [j]+feavect [j] ;
f ea [k] [j]=feavect [j] ;
}

56



pw_batch_on(pw);

for(k=0;k<ysize+1;k++) {

for(j=0;j<xsize+1;j++) {

pw_put(pw, x-bx2+j, y-by2+k, 0);
}

}

pw_batch_off(pw);
}

k=i/2;

for(i=0;i<7;i++) {

mean [0] [i] =mean [0] [i] /k ;

for(j=1;j<=k;j++)

mean [5] [i] =mean [5] [i]+ (f earn [i] -

mean [0] [1] )*(f ea[i] [i] -mean [0] [i] ) ;

mean [5] [1] = (float ) sqrt ( (double )mean[5] [i] / (k-1) ) ;
}

sprintf(cmdstring, "%s.fea",

panel_get_value(f1name_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");

for(i=0;i<7;i++)

fprintf(fpi,"%f ", mean[0][i]);

fprintf(fpi," for '/,3d samples\n", k);

for(i=0;i<7;i++)

fprintf(fpi,"%f ", mean[5][i]);

fprintf(fpi,"\n");

for(i=0;i<7;i++)

fprintf(fpi,"%.4f%% ", mean[5][i]/mean[0][i]*100);

fprintf(fpi,"\n");

for(i=0;i<7;i++)

fprintf(fpi,"%.4f ", mean[0][i]/mean[5][i]);

fprintf(fpi,"\n");

fclose(fpi);

sprintf(cmdstring, "%s.fea",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "a");

for(i=0;i<7;i++)

fprintf(fpi,"%f ", mean[0][i]);
fprintf(fpi,"\n");

fclose(fpi);

sprintf(cmdstring, "%s.lnm",

panel_get_value(fname_item));

57



fv=&cmdstring[0];

fpi = fopen(fv, "a");

for(i=0;i<7;i++) {

fprintf(fpi,"%f ", 11[0][i]);

11[0][i]=1000;
}

fprintf(fpi,"\n");
for(i=0;i<7;i++) {

fprintf(fpi,"%f ", mm[0][i]);
mm [o] DJ =o ;
1
fprintf(fpi,"\n");

fclose(fpi);
}

static void

features(oi, ox, oy) /* output: file.fea */

int oi, ox, oy;

{
FILE *fpi, *fopen();

register int i=0, j=0, k=0;

short 1, m;

float midd,vtot, sigma2, vcsw, vofr, x, y, x2,

y2;

float sum;

float xcm, ycm, iaa, ibb, icc, iratio;

float ia, ib, ic, id, mij, zz;

sprintf(cmdstring, "%c",

value_to_c(panel_get_value(weight_num)));

m=cmdstring[0];

sprintf(cmdstring, "%c",

value_to_d(panel_get_value(visual_infrared)));

m=cmdstring[0];

if(m==105){

/* normalization */

1=255;

m=0;

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++) {

if(1>pcbpix[j][i]) 1=pcbpix[j][i];

if(m<pcbpix[j][i]) m=pcbpix[j][i];
}

for(j=00<xsize+10++)

for(i=0;i<ysize+1;i++)

58



sjpix[j][i]=(float)pcbpix[j][i]im;

/* Mean grey level, Normalized volume */

sum=0;

for(j=00<xsize+10++)

for(i=0;i<ysize+1;i++)

sum=sum+sjpix[j][i];

vtot=sum*delta;

iaa=vtot;

/* Central subwindow mean */

sum=0;

for(j=bx2-cswx;j<by2+cswy+1;j++)

for(i=bx2-cswx;i<by2+cswy+1;i++)

sum=sum+sjpix[j][i];
vcsw=sum*delta;

/* Outer frame region volume */

sum=0;

for(j=bx2-ofrx;j<by2+ofry+1;j++)

for(i=bx2-ofrx;i<by2+ofry+1;i++)

sum=sum+sjpix[j][i];

vofr=sum*delta;

vofr=vtot-vofr;

iratio=vofr;

/*middle frame region volume */

midd=vtot-vcsw-vofr;

icc=midd;

/* Variance of normalized grey level */

sum=0;

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++)

sum=sum+(sjpix[j][i]-midd)*(sjpix[j][i]-
midd);

vtot=sum/((xsize+1)*(ysize+1)-1);

/* Central subwindow variance */

sum=0;

for(j=bx2-cswx;j<by2+cswy+10++)

for(i=bx2-cswx;i<by2+cswy+1;i++)

sum=sum+(sjpix[j][i]-midd)*(sjpix[j][i]-
midd);

vcsw=sum*delta;

/* Outer frame region variance */
sum=0;

for(j=bx2-ofrx0<by2+ofry+1;j++)

59



for(i=bx2-ofrx;i<by2+ofry+1;i++)
sum=sum+(sjpix[j][i]-midd)*(sjpix[j][1]-

midd);

vofr=sum*delta;

sigma2=vofr-vcsw;

vofr=vtot-vofr;

/* Inertia Features */

}

else{

/* normalization */
1=255;

m=0;

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++) {

if(1>pcbpix[j][i]) 1=pcbpix[j][i];
if(m<pcbpix[j][i]) m=pcbpix[j][i];
}

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++)

sjpix[j][i]=(float)pcbpix[j][i]/m;

/* Mean grey level, Normalized volume */
sum=0;

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++)

sum=sum+sjpix[j][1];
vtot=sum*delta;

/* Variance of normalized grey level */
sum=0;

for(j=0;j<xsize+1;j++)

for(i=0;i<ysize+1;i++)

sum=sum+(sjpix[j][i]-vtot)*(sjpix[j][i]-
vtot);

sigma2=sum/((xsize+1)*(ysize+1)-1);

/* Central subwindow volume */

sum=0;

for(j=bx2-cswx;j<by2+cswy+1;j++)

for(i=bx2-cswx;i<by2+cswy+1;i++)

sum=sum+sjpix[j][1];
vcsw=sum*delta;

/* Outer frame region volume */

60



sum=o;

for(j=bx2-ofrx;j<by2+ofry+1;j++)

for(i=bx2-ofrx;i<by2+ofry+1;i++)

sum=sum+sjpix[j][1];
vofr=sum*delta;

vofr=vtot-vofr;

/* Inertia Features */

xcm=0;

for(i=0;i<xsize+1;i++)

for(j=0;j<ysize+1;j++)

xcm=xcm+sjpix[i][j]*(i-bx2);

xcm=xcm/vtot*delta;

ycm=0;

for(i=0;i<xsize+1;i++)

for(j=0;j<ysize+1;j++)

ycm=ycm+sjpix[i][j]*(j-bx2);

ycm=ycm/vtot*delta;

iaa=0;

ibb=0;

icc=0;

for(i=0;i<xsize+1;i++)

for(j=0;j<ysize+1;j++) {

x=xcm+bx2-i;

y=ycm+by2-j;

x2=x*x;

y2=y*y;

mij=2*delta*sjpix[i][j];
zz=sjpix[i][j]*sjpix[i][j];

ia=((4*zz*zz+delty2)/12+y2)*mij;

ib=x*y*mij;

ic=((4*zz*zz+deltx2)/12+x2)*mij;

id=((deltx2+delty2)/12+x2+y2)*mij;

x=ia*ib*ib;

ladatRq;

ibb=ibb+y-x;

icc=icc+id;
}

iratio=(iaa+ibb)/2/icc;

}

feavect[0]=vtot;

feavect[1]=sigma2;

feavect[2]=vcsw;

feavect[3]=vofr;

61



feavect[4]=iaa;

feavect[5]=icc;

feavect[6]=iratio;

}

static void

sort_proc() /* input: f, f.pos, fl.fea-f5.fea. output:

f.cls */

{
Pixrect *image;

FILE *fpi, *fopen();
register int i=0, j=0, k=0;

int x, y, c, port[5];

short 1;

float dist[5 ], dd;

char cc;

Pixwin *pw=canvas_pixwin(canvas);

new_proc();

sprintf(cmdstring, "weight%c.vec",

value_to_c(panel_get_value(weight_num)));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

for(i=0;i<7;i++) {

fscanf(fpi,"%f", &mean[0][i]);
11[0] [i] =1000;

mm[0][1]=0;
}

fclose(fpi);

sprintf(cmdstring, "%s.fea",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

for(i=1;1<5;i++) {

port[i]=0;

for(j=0;j<7;j++) {

fscanf(fpi,"%f", &mean[i][j]);
}

}

fclose(fpi);

sprintf(cmdstring, "%s.lnm",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

62



for(j=1;j<5;j++) {

for(i=0;i<7;i++) fscanf(fpi,"%f", 8c11[j][i]);
for(i=0;i<7;i++) fscanf(fpi,"%f", &ram[j] [i]);
}

fclose(fpi);

for(j=0;j<7;j++)

for(i=1;i<5;1++) {

if(11[0] [j]>11[i] [j]) 11[0][j]=11[i][j];
if (mm [0] [j]<mma] [j]) mm[0] [j]=mm[i] [j] ;
}

for(i=1;i<5;i++)

for(j=0;j<7;j++)

mean [i] 1j] =mean[i] [j]/mm [0] [j] ;

i=0;

sprintf(cmdstring, "%s.pos",

panel_get_value(flname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

while(i<512)

fscanf(fpi,"%hi", kposvect[i++]);
fclose(fpi);

sprintf(cmdstring, "%s.out",

panel_get_value(flname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");

i=0;

while((x=posvect[1++]) 1 =0) {
y=posvect[i++];

pw_batch_on(pw);

for(j=0;j<xsize+1;j++)

for(k=0;k<ysize+1;k++){

pcbpix[j][k]=pw_get(pw, x-bx2+j, y-
by2+k);

1
pw_batch_off(pw);

features(i,x,y);

for(j=0;j<7;j++)

feavect[j]=feavect[j]/mm[0][j];

for(k=1;k<5;k++) {

dist[k]=0;

63



for(j=0;j<7;)++) {

dd=(mean[k][j]-feavect[j])*mean[0][j];

dist[k]=dist[k]+dd*dd;
}

dist[k]=sqrt((double)dist[k]);

1
dd=1000;

for(k=1;k<5;k++) {

if(dd>dist[k]) {

dd=dist[k];

c=k;
}

}

port [c] ++;

if(c==1) cc='1';

if(c==2) cc='2';

if(c==3) cc='3';

if(c==4) cc='4';

fprintf(fpi, "%3d %3d %.4f %.4f %.4f %.4f %c

\n",

x, y, dist[1], dist[2], dist[3], dist[4], cc);

pw_batch_on(pw);

for(j=0;j<xsize+1;j++)

for(k=0;k<ysize+1;k++)

pw_put(pw, x-bx2+j, y-by2+k, 0);

pw_batch_off(pw);
}

fclose(fpi);

sprintf(cmdstring, "%s.sot",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "a");

k=i/2;

for(i=1;i<5;i++)

fprintf(fpi, " %d %3.2f%%", i,

(float)port[i]/k*100);

fprintf(fpi, " for %3d samples\n", k);

fclose(fpi);

}

static void

size_proc()

{

xsize=value_to_op(panel_get_value(box_xsize));

ysize=value_to_op(panel_get_value(box_ysize));

bx2=xsize/2;

64



by2=ysize/2;

cswx=(int)((float)bx2*.3);

cswy=(int)((float)by2*.3);

ofrx=(int)((float)bx2*.7);

ofry=(int)((float)by2*.7);

deltax=(float)1/(float)(xsize+1);

deltay=(float)1/(float)(ysize+1);
delta=deltax*deltay;

deltx2=deltax*deltax;

delty2=deltay*deltay;

}

static int

value_to_op(value)

register int value;

{

switch (value) {

case 0: return 8;

case 1: return 12;

case 2: return 14;

case 3: return 16;

case 4: return 18;

case 5: return 20;

case 6: return 22;

case 7: return 24;

case 8: return 30;

case 9: return 36;

case 10: return 40;
}

}

static char

value_to_c(value)

register int value;

{
switch (value) {

case 0: return '1';

case 1: return '2';

case 2: return '3';

case 3: return '4';

case 4: return '5';

case 5: return '6';

case 6: return '7';

case 7: return '8';

case 8: return '9';
}

}

65



static char

value_to_d(value)

register int value;
{

switch (value) {

case 0: return 'i';

case 1: return 'v';
}

}

static char

value_to_e(value)

register int value;
{

switch (value) {

case 0: return 1;

case 1: return 2;

case 2: return 3;

case 3: return 4;

case 4: return 5;

case 5: return 6;

case 6: return 7;

case 7: return 8;

case 8: return 9;
}

}

static void

help_proc(name)

char *name;
{

fprintf(stderr, "This program is ths", name);

frame_cmdline_help(name);
}

static void

quit_proc()
{

window_set(frame, FRAME_NO_CONFIRM, TRUE, 0);

window_destroy(frame);
}

static void

ls_proc()
{

char cmdstring[256];

sprintf(cmdstring, "ls -1 %s*\n",
panel_get_value(fname_item));

66



ttysw_input(tty, cmdstring, strlen(cmdstring));
}

static void

pos_proc()

{

int x, y;

x=(int)(LINT_CAST(panel_get_value(cursor_x)));

y=(int)(LINT_CAST(panel_get_value(cursor_y)));
window_set(canvas, WIN_MOUSE_XY, x, y, 0);

}

static void

fuse_proc(item, event)

Panel_item item;

Event *event;

{

FILE *fpi, *fopen();

register int i=0, j=0, k=0;

int x, y, c, port[5];

short 1;

float dist[5], dd;

char cc;

Pixwin *pw=canvas_pixwin(canvas);

vec=value_to_e(panel_get_value(fuse_vec));

vec=vec/10;

for(j=0;j<512;j++) {

data[j]=0;

datal[j]=0;
}

sprintf(cmdstring, "%s.out",

panel_get_value(flname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

while(i<512)

fscanf(fpi,"%f", &data[i++]);

fclose(fpi);

i=0;

sprintf(cmdstring, "%s.out",

panel_get_value(f3name_item));

fv=&cmdstring[0];

fpi = fopen(fv, "r");

while(i<512)

fscanf(fpi,"%f", &datal[i++]);
fclose(fpi);

67



sprintf (cmdstring, "%s.fus",

panel_get_value(flname_item));

fv=kcmdstring[0];

fpi = fopen(fv, "w");

1=0;

while((dd=data[i])!=0) {
x=(int)data[i++];

y=(int)data[i++];

for(k=1;k<5;k++) {

dist[k]=vec*data[i]+(1-vec)*datalii];
i++;

}

i++;

dd=1000;

for(k=1;k<5;k++) {

if(dd>dist[k]) {

dd=dist[k];

c=k;
}

}

port [c] ++;

if(c==1) cc='1';

if (c==2) cc='2';

if(c==3) cc='3';

if(c==4) cc='4';

fprintf(fpi, "Y.3d %3d %.4f %.4f %.4f %.4f

%c \n",

x, y, dist[l], dist[2], dist[3], dist[4], cc);
}

fclose(fpi);

1

static void

draw(canvas_local)

Canvas canvas_local;

{

struct pixrect *image;

FILE *fpi, *fopen();

colormap_t *colormap=NULL;

Pixwin *pw=canvas_pixwin(canvas_local);

sprintf(cmdstring, "%s", panel_get_value(fname_item));
fv=&cmdstring[0];

rh.ras_magic = RAS_MAGIC;

rh.ras_width = 512;

rh.ras_height = 484;

rh.ras_depth = 8;

68



rh.ras_length = 512*484;

rh.ras_type = RT_STANDARD;

rh.ras_maptype = RMT_NONE;

rh.ras_maplength = 512;

fpi = fopen(fv, "r");

image = pr_load_std_image(fpi, &rh, colormap);
pw_write(pw, 0, 0, 512, 484, PIX_SRC-PIX_DST, image, 0,

0);

}

static void

read_proc()
{

FILE *fpi, *fopen();
register short i=0;

short x, y, k;

Pixwin *pw=canvas_pixwin(canvas);

i=pos;

sprintf(cmdstring,"%s.pos",panel_get_value(f1name_item)

);
fv=&cmdstring[0];

fpi = fopen(fv, "r");

while(i<512)

fscanf(fpi,"%hi", &posvect[i++]);
}

fclose(fpi);

i=0;

while(posvect[i]!=0 I I posvect[i+1]!=0) i+=2;

pos=i;

1=0;

while(posvect[i]!=0 I I posvect[i+1]!=0) {

x=posvect[i++];
y=posvect[i++];

pw_batch_on(pw);

pw_vector(pw, x-bx2, y-by2, x+bx2, y-by2, PIX_SRC,

255);

pw_vector(pw, x+bx2, y-by2, x+bx2, y+by2, PIX_SRC,

255);

pw_vector(pw, x-bx2, y-by2, x-bx2, y+by2, PIX_SRC,

255);

pw_vector(pw, x-bx2, y+by2, x+bx2, y+by2, PIX_SRC,

255);

pw_batch_off(pw);
}

window_set(canvas, WIN_MOUSE_XY, 256, 242, 0);
}

69



static void

clear_proc()
{

FILE *fpi, *fopen();

register short i=0;

short x, y, k;

sprintf(cmdstring, "%s.err",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");

fclose(fpi);

}

static void

open_proc()
{

FILE *fpi, *fopen();

register short 1=0;

short x, y, k;

sprintf(cmdstring, "3/4s.fea",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");

fclose(fpi);

sprintf (cmdstring, "%sanm",

panel_get_value(fname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");
fclose(fpi);

for(i=0;i<20;i++) {

11[0] [1)=1000.0;

mm[0][i]=0;
}

}

static void

new_proc()
{

register int i=0;

Pixwin *pw=canvas_pixwin(canvas);

while(i<512)

posvect[i++]=0;

70



pos=0;

pw_writebackground(pw, 0, 0, 512, 484, PIX_SRC);

draw(canvas);
}

static void

handle_event(canvas_local, event, arg)

Canvas canvas_local;

Event *event;

caddr_t arg;
{

Pixwin *pw=canvas_pixwin(canvas);

register int i=0, j=0, k;

short x, y;

if (event_is_up(event))

return;

x=event_x(event);

y=event_y(event);

k=event_id(event);

switch(k){

case 'w':

y--;

j=1;

break;

case 'a':

x--;

j=1;

break;

case 's':

x++;

j=1;
break;

case 'z':

y++;

j=1;

break;

case 'e':

while(posvect[i]!=0 I I posvect[i+1]!=0) i+=2;

posvect [i++] =x;

posvect [i++] =y;

pw_batch_on(pw);

pw_vector(pw, x-bx2, y-by2, x+bx2, y-by2, PIX_SRC,

255);

pw_vector(pw, x+bx2, y-by2, x+bx2, y+by2, PIX_SRC,

255);

pw_vector(pw, x-bx2, y-by2, x-bx2, y+by2, PIX_SRC,

71



255);

pw_vector(pw, x-bx2, y+by2, x+bx2, y+by2, PIX_SRC,

255);

pw_batch_off(pw);
break;

case 'q':

while(posvect[i]!=0 1 1 posvect[i+1]!=0) i+=2;

i--; k=0;

while(i>0)

if(abs(y-posvect[i]) < bx2 && abs(x-
posvect[1.-1]) < bx2) {

k=i; i=0;
}

else i-=2;
}

if(k!=0) {

while(k<254) {

posvect[k-1]=posvect[k+1];

posvect[k]=posvect[k+2];

k+=2;
}

pw_writebackground(pw, 0, 0, 512, 484,
PIX_SRC);

draw(canvas);

while(posvect[i]!=0 1 1 posvect[1+1]!=0) {

x=posvect[i++];
y=posvect[i++];

pw_batch_on(pw);

pw_vector(pw, x-bx2, y-by2, x+bx2, y-

by2, PIX_SRC, 255);

pw_vector(pw, x+bx2, y-by2, x+bx2,
y+by2, PIX_SRC, 255);

pw_vector(pw, x-bx2, y-by2, x-bx2,
y+by2, PIX_SRC, 255);

pw_vector(pw, x-bx2, y+by2, x+bx2,

y+by2, PIX_SRC, 255);

pw_batch_off(pw);
}

}

break;

default:

break;
}

if(j==1) {

window_set(canvas, WIN_MOUSE_XY, x, y, 0);
return;
}

72



switch (event_action(event)) {

case MS LEFT:

case MS MIDDLE:

case MS RIGHT:

/* translate the event to window space,

* then show the menu.
*/

(void) menu_show(menu, canvas_local,

canvas_window_event(canvas_local,
event), 0);

break;

default:

break;
}

1

static void

output_proc()

{

FILE *fpi, *fopen();
register int i=0, k;

int o, p, r;

short m, n, 1, q;

while(posvect[i]!=0 I I posvect[i+1]!=0) i+=2;

p=i-1;

o=1;

r=1;

while(o<p) {
1=posvect[o];

for(i=o+2;i<=p;i+=2)

if(abs(posvect[i]-l)>20) break;

r=i;

for(i=r+2;i<=p;i+=2) {

if(abs(posvect[i]-1)<=20) {
m=posvect[i-1];

n=posvect[i];

posvect[1.-]=posvect[r-1];
posvect[i]=posvect[r];

posvect[r-1]=m;
posvect [r] =n;

r+=2;
}

73



}

for(i=o;i<r;i+=2) {

q=posvect[i-1];

for(k=i+2;k<r;k+=2)

if (posvect [k-i] <q) {

m=posvect[k-1];
n=posvect[k];
posvect[k-1]=posvect[i-1];

posvect[k]=posvect[i];

posvect[1-1]=m;

posvect[i]=n;

q=m;
}

}

o=r;
}

i=0;

sprintf(cmdstring, "%s.pos",
panel_get_value(flname_item));

fv=&cmdstring[0];

fpi = fopen(fv, "w");

while(posvect[i]!=0 I I posvect[i+1]!=0) {

fprintf(fpi,"%d ",posvect[i++]);

fprintf(fpi,"%d\n",posvect[i++]);
}

fclose(fpi);
}

74



B Interpolation C Source Code

/* Filename $1 $2 */

#include <stdio.h>

int mmax;

float x,y;

main (argc,argv)

int argc;

char **argv;

{

int i,j,k,l,tempi;

unsigned char m[612][512],tempc;

FILE *filel,*file2,*file3,*file,*fopen(),*fclose();

if (argc != 3) {

fprintf(stderr,"Usage: can't open file

%s\n",argv[0]);

exit(1);
}

if ((file1 = fopen(argv[1],"r")) == NULL) {

fprintf(stderr,"\007 can't open file

Xs\n",argv[1]);

exit(1);
}

if ((file2 = fopen(argv[2],"w")) == NULL) {

fprintf(stderr,"\007 can't open file

Xs\n",argv[2]);

exit(1);
}

mmax=255;

fread(m,sizeof(char),512*512,filel);

for(i=4;i<510; i++){

for(j=0; j<510; j++){

if(m[i] [j]>0)

x=0;

else if(m[i+1] [j]>0)

x=0;

else{

m [i] [j] =(m[i-1] [j] +m[i+2] [j])/2;
m[i+1] [j]=m[i] [j];
}

}
}

fwrite(m,sizeof(char),512*512,fi1e2);

75



fclose(filel);

fclose(file2);

}

76



C Histogram Transformation C Source Code

/* Filename $1 $2 */

#include <stdio.h>

int mmax;

float x,y;

main ( argc,argv )

int argc;

char **argv;
{

int i,j,k,l,tempi;

unsigned char m[512][512],tempc;

FILE *filel,*file2,*file3,*file,*fopen(),*fclose();

if (argc != 3) {

fprintf(stderr,"Usage: can't open file

Xs\n",argv[0]);
exit(1);

}

if ((filel = fopen(argv[1],"r")) == NULL) {
fprintf(stderr,"\007 can't open file

%s\n",argv[1]);
exit(1);

}

if ((file2 = fopen(argv[2],"w")) == NULL) {

fprintf(stderr,"\007 can't open file

Xs\n",argv[2]);

exit(1);
}

mmax=255;

fread(m,sizeof(char),512*512,filel);

for (i=0;i<512; i++)

for (j=0; j<512;j++){

if ( m[i] [j] > 250) m[i] [j] = 250;

y= (float )m [i] [j];
x=250*(y-140)/(250-140);

if(x<10)x=10;

if(x>255)x=250;

m[i][j]=(int)x;

if (m[l] [j]<0) m[i][j]=0;
}

fwrite(m,sizeof(char),512*512,fi1e2);

fclose(filel);

fclose(file2);
}

77



D Weight.vec Files

weightl.vec

1 1 1 1 1 1 1

weight2.vec

0.7 0.7 0.7 0.7 0.3 0.3 0.3

weight3.vec

0.3 0.3 0.3 0.3 0.7 0.7 0.7

weight4.vec

8.8739 0 9.4205 11.6631 0 10.1209 0

weight5.vec

1 0 1 1 0 1 0

weight6.vec

1 1 1 1 0 1 0

i8


	Automatic infrared and visual inspection of solder joints on PCBs
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Dedication
	Acknowledgement
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: System Construction
	Chapter 3: Visual Light Inspection Experiment
	Chapter 4: Infrared Image Inspection
	Chapter 5: Window Tool for Solder Joint Inspection
	Chapter 6: Conclusion and Discussion
	References
	Appendices

	List of Figures

