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ABSTRACT 

A CASE STUDY 
ON 

PETRI NET MODELING, ANIMATION, AND SIMULATION 

Gurala Suresh C, Master of Science, 1991 

Thesis directed by: Dr. MengChu Zhou, Assistant Professor of Electrical & Computer 
Engineering 

Petri nets as a graphical tool has developed over the last decade into a 

suitable model for representing, modeling, designing, analyzing and studying concurrent 

systems. In this thesis, Petri nets are applied for analyzing, modeling and simulation of a 

flexible assembly station. An existing AT&T FWS200 flexible assembly workstation for 

printed circuit board is modeled using Petri nets without the consideration of insertion 

failures and other abnormalities in the system. The Petri net model is then simulated using 

Graphics simulation language (GSL). 
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 CHAPTER  

1  

INTRODUCTION 

1.1 BACKGROUND AND PREVIOUS RESEARCH 

Historically speaking, the concept of Petri nets (PN) was developed by Carl 

Adam Petri in 1962 to be used for as a graphical and mathematical modeling tool to many 

systems which are characterized as being concurrent, asynchronous, distributed, parallel, 

non deterministic and/or stochastic. Since that time considerable work has been done in 

both theory and applications of Petri nets [3, 4, 12]. Petri nets were developed to model 

discrete event systems [1, 2 ]. By analyzing a Petri net model, useful information about the 

underlaying system can be obtained [1, 2, 5, 6]. This information may reveal bottlenecks, 

deadlocks, etc., which exist and can be used tests on the actual system. Because Petri 

nets are a mathematical model, various tools have developed to analyze them [1, 5]. 

Petri net theory previously developed for modeling, analysis, and simulation 

of Flexible Manufacturing Systems (FMS) has been used in this report. The application of 
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Petri nets for modeling flexible manufacturing systems and production processes are 

previously proposed by Hack [7], Dubious & Stecke [8], and Narahari Viswanadham [9] 

.nets Hack proposed a brief description of the mapping of production schemata in Petri 

nets. His work centered in developing tools for analyzing safeness and liveness in a 

restricted class of Petri net, free choice nets using top-down analysis approach. Dubious 

and Steck emphasized the use of timed Petri nets in modeling FMS for analyzing the 

quantitative aspects of FMS performance and to conduct temporal performance analysis, 

ie., to determine production rate, resource utilization etc., Hence if modeled with timing it 

is possible to detect a bottleneck in an FMS or to determine a optimal buffer size, optimal 

pallet distribution etc. Narahari and Viswanadham proposed a method for developing 

Petri net models for complex FMS by combining simpler subnets. Krogh and Sreenivas 

[4] introduced the concept of essentially decision free places in Petri netsnets to represent 

the absence of unresolved resource allocation conditions. 

Petri nets are useful tools for modeling systems with following characteristic: 

1. Concurrency and Parallelism: In manufacturing system, many operations take place 

simultaneously. 

2. Asynchronous operations: Machines complete their operations in variable amounts of 

time and so the model must be able to represent asynchronous events or operations. 

3. Deadlock: In this case, a state can be reached where none of the processes can 

continue. This can happen when two processes share two resources. The order by 

which these resources are used and released could produce a deadlock. 

4. Conflicts: This may occur when two or more processes require a common resource at 

the same time. e.g., two work stations may share a common transport system or might 

want access to the same database. 
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5. Event driven: The manufacturing system can be viewed as a sequence of discrete 

events. Since operations occur concurrently, the order of occurrence of events is not 

necessarily unique; it is one of the many allowed by the system structure. 

These types of systems have been difficult to accurately model with 

differential equations and queueing theory. The application of Petri nets to Flexible 

Manufacturing Systems which can provide accurate models is because of the following 

reasons: 

1. Petri nets capture the precedence relations and structural interactions of concurrent 

and asynchronous events. 

2. They are logical models derived from the knowledge of how the system works. As a 

result, they are easy to understand and their graphical nature is very well visualized. 

3. Deadlocks, conflicts, and buffer sizes can be modeled easily and concisely. 

4. Petri net models have a well developed mathematical foundation that allows a 

qualitative analysis of the system. 

5. Finally, Petri net models can also be used to implement real-time control systems for 

an automated manufacturing system. They can sequence and coordinate the sub 

systems as a programmable logic controller does. 

Generally speaking, Petri net modeling includes two parts [13]: Ordinary 

Petri nets for system behavior analysis and Temporal Petri nets for system performance 

evaluation. The ordinary Petri nets also called non-timed Petri nets are used to analyze 

such system properties as deadlock-freeness, buffer-boundedness, reversibility and 

conflict-freeness. After ordinary Petri nets are built, time variables can be used to be 

associated with their places and transitions resulting in temporal Petri net models. These 

models serve to derive system performance indices including, productivity an machine 

utilization. When there are several operational settings possible, different Petri net models 
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can be obtained and used to study the optimal setting by comparing the results of Petri 

net based performance evaluation. 

1.2 OBJECTIVE OF THE THESIS 

It is highly desirable for researchers, system analysts, and production 

engineers to have unified model for modeling, analysis, simulation and control of 

manufacturing systems [10]. Hence, Petri netsnets as a general graphical tool is very well 

suited to the distributed and concurrent systems which exhibit synchronization and 

contention for shared resources. Therefore, Petri nets have been claimed to be an ideal 

modeling tool for FMS's. 

The objectives of this thesis are as follows: 

1. To model AT&T Flexible Assembly Station for Printed Circuit Board at NJIT [19]. 

2. To study the operation of the System via Petri net. 

3. To present an overview on Simulation and the IGRIP software [15]. 

4. To build the Petri net model in Silicon Graphics using IGRIP software. 

5.. The Petri net model constructed in the IGRIP is simulated and animated using 

Graplhics Simulation Language (GSL). 
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1.3 ORGANIZATION OF THE THESIS 

The thesis is organized as follows: 

Chapter 2 gives a reveiw of Petri nets. In Chapter 3, a discussion on the 

application of Petri nets to modeling discrete event systems is presented. Specific 

attention is paid to the modeling and analysis of a flexible assembly system. In Chapter 4, 

a general overview of the simulation and the software !GRIP is dicussed. along with the 

steps as to how the simulation is acheived for the Petri net model are dicussed in Chapter 

3. In Chapter 5, contributions, limitations, and the future work to be done are presented. 
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 CHAPTER  

2  

PETRI NET THEORY 

2.1 INTRODUCTION 

Petri nets will be used throughout the thesis as a tool for modeling, 

analyzing, and simulating the existing physical Flexible Assembly Station for Printed 

Circuit board. Because of the various features of Petri nets they are very appropriate for 

modeling flexible manufacturing systems. They lead to a description of a system that can 

be investigated analytically, simulated and implemented for control [1, 2] . 

A Petri net is an abstract, formal model of information flow. The properties 

concepts and techniques of Petri nets are being developed in a search for natural, simple 

and powerful methods for describing and analyzing the flow of information and control in 

systems, particularly systems that may exhibit asynchronous and concurrent activities. 

The major use of Petri nets has been the modeling of systems of events in which it is 

possible for some events to occur concurrently, but there are constraints on the 
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concurrence of precedence of these occurrences. This chapter reviews the Petri net 

theory 

2.2 BASIC DEFINITIONS 

2.2.1 Structure of a Basic Petri Net 

I intend to use Petri net to model the Flexible Assembly Station in this thesis. 

Place-Transition nets are special bipirate graphs. They are also known as Petri nets. An 

example of Petri net is shown in Figure 2.1. The standard Petri net model or a Petri net 

graph is defined by a set of places, a set of transitions and a set of directed arcs which 

connect places to transitions or vice versa. Places are represented by circle, transitions 

by bars and connection between them by arcs. If an arc is directed from node i to node j 

ie., either from place to transition or transition to place, then i is an input to j and j is an 

output to i. Places may contain tokens represented by dots. A Petri net with tokens is a 

marked Petri net. The marking of a marked Petri net is a vector, the elements of which are 

given by the distribution of tokens in the places of the net. 

A marking represents the state of system being modeled. Generally places 

represent conditions and transitions represent events. A place is an input(output) place of 

transition is an arc which is exists from place(transition) to the transition(place). The 

dynamic behavior of a system is modeled as follows: the occurrence of an event (state 

change) is represented by the firing of corresponding transition. The movement of tokens 

in the net resulting from the firing of one or more transition represents a change in the 

state. 

To complete the definition, it is necessary to define the relationship between 

places and transitions. This is done by specifying two functions connecting transitions to 

places: I, the input function and 0, the output function. 
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In a Petri net graph, the input and output functions are represented as arcs 

going from places to transitions and transitions to places respectively. An arc is directed 

from place p; to transition ti if the place is an input of the transition. Similarly an arc is 

directed from a transition tito place A if the place is an output of the transition. A Petri net 

is thus a directed graph, since the arcs are directed. 

Moreover, since the Petri nodes can be partitioned into two sets (places and 

transitions) such that each arc is directed from an element of one set to an element of the 

order of the other set, a Petri net is a bipartite directed graph. 

Formally, an ordinary Petri net (PN) is a five-tuple, 

PN = (P, T, 0, m) (2.1) 

where, 

P= { pi, pz..., pri }, n>0, and is a set of n places; 

T= t1, t2,..., ts }, s>0, and is a set of s transitions; 

/ is an n x s matrix indicating the places which are the input of each 

transition. It is a mapping : Px T-4 N corresponding to the set of directed arcs from places 

to transitions, where N = {0, 1, 2,  }. 

0 is an n x s matrix indicating the places which are the output of each 

transition. It is a mapping : P x T --> N corresponding to the set of directed arcs from 

transitions to places, where N = {0, 1, 2,  }. 
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m : P---> N and is a marking whose ith component represents the number 

of tokens in the ith place. An initial marking is denoted by m0. 

These four items are the set of places, the set of transitions, the input function define the 

structure of the Petri net [ 2]. 

A Petri net graphically consists of : 

1. Circles (called places) representing conditions or availability of resources e.g. 

machines, parts, data, etc. 

2. Bars (called transitions) representing the initiation or termination of an event. 

3. Black dot (called a token) in a operation place representing the operation in that place 

being executed, while that in a resource place representing the availability of the 

corresponding resources. 

4. A pattern of tokens in a Petri net (called a marking) representing the state of the 

system. 

We denote postset and preset as follows : 

t t.1.  is the set of all output places of transition t • 

.ti is the set of all input places of transition ti. 

pi
• 
 is the set of all output transitions of place pi. 

'pi  is the set of all input transitions of place pi. 

For the Petri net shown in Figure 2.1 : 

P = {Pp Po P3,  P4,  P5,  Ps}, T= {ft , t2, t3, t4, t5} 
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sti = {PI},  .t2= {PA, .t3= {P3}, .t4={134, P5}, .t5 = {P6} 

t1 = {133}, tl= {Pth,  13= 11,4, Pth, Li.= {P4, t5.= {/34 

• • r„ • r, , 
P3= {t1},  P4 = { t3,t5), P5= {t3}, P6= 112,i

,,, 
 41 

Pl.= {t1, t2}, P1 = {t2}, P; = {t3}, P4.=  {t4}, P5 = {t4, Pi= {tth 

11000 0 0 0 o 6 
01000 0000 o 

/ . oo 1 oo o . 1 000 
o o o 20 00101 
00010 00100 
00001 01010 

Figure 2.1: Example of PN 
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2.2.2 Marking of a Petri Net 

A marking of a Petri net is an assignment of tokens to the places in that net. 

Tokens reside in the places of the net. The number and positions of the tokens in a net 

may change during its execution. On a Petri net graph, tokens are represented by small 

solid dots inside the circles representing the places of the net. Since any number of the 

tokens can be assigned to the places, there is an infinite number of markings for a Petri 

net. 

m = [m1, m2,..., m„ ]t is an n-dimensional integer valued vector indicating the number of 

tokens in each place, with each element corresponding to one of the places, and is known 

as the marking of the Petri net. 

T 
For the example of Figure 2.2 : m = [1, 0, 0, 2, 0, 1] 

Figure 2.2: Example of Marked PN 
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2.2.3 Rules of Operation 

A Petri net executes by firing transitions. A transition may fire if it is enabled. 

A transition is enabled if each of its input places has at least l(p, t) tokens in it. A transition 

fires by removing one token from each of its input places and then placing one token into 

each of its output places. The movement of tokens through the Petri net graph represents 

the flow of information or control in the system. 

Hence, a transition t is enabled by marking mo  if every input place of this transition con-

tains at least l(p, t) tokens, i.e., V p E .t, mo(p) ?_ I(p,t) 

Every transition enabled by marking mo  can fire. When a transition fires l(p, 

t) tokens are removed from each of its input places and 0(p, t) tokens are added to each 

of its output places. Therefore a new marking m1  obtained by the firing of transition t, 

verifies for each place p. 

Using the matrix form, we have 

mi(P) = mo(P) - /(P,t) + 0(P,0 V p E P (2.2) 

Tokens are indivisible i.e. a token can be removed from a place by only one transition. 

Except for the above restrictions, firing of transitions proceeds in an asynchronous 

manner. 

For example in the Petri net shown in figure 2.2, t1  is enabled, but not t2. 

After t1  has fired once, the new marking is : m1  = (0, 0,1,2, 0,1)1  

This is represented as : 

t 
mo -4 m1 
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For any transition ti and all places pi (le {1, 2, ..., n)), the relation (2.2) can be written in 

a compact form as : 

m/ = mo + (0 - 0 • Xj= mo + CXj (2.3) 

where, 

X.1 is a m-dimensional vector with all components equal to zero except the ith one, which 

equals 1 : X,= (0, 0,...,1,...0)2  and 

C. 0 - / 

2.2.4 Incidence matrix 

The incidence matrix denoted by C, characterizes the structure of the Petri 

net in the following way : the columns of the matrix corresponds to the transitions of the 

net and the rows to the places. C is therefore, an n x s matrix, such that: 

C(p, t) = 0(p,t) - l(p,t) e p e P, V tE T 

For example the Petri net in figure 2.1 has the following incidence matrix, 

—1 —1 0 0 0 
0 —1 0 0 0 

C =  1 0 —1 0 0 
0 0 1 —1 1 
0 0 1 —1 0 
0 1 0 1 —1 
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2.3 BASIC PROPERTIES OF PETRI NETS 

Once the system is modeled using Petri nets it is essential that the Petri nets 

support for analysis of many properties and problems associated with concurrent 

systems. In this basic definitions and results pertaining to the behavioral properties ie., the 

Petri net model which depends on initial marking is discussed [13]. 

1. RECHABILITY 

This is a fundamental basis for studying the dynamic properties of any 

system. According to the transition rule, once the firing of an enabled transition occurs, 

there may be a change in the distribution of tokens in the net. Then a marking m is said 

to be reachable from marking mo  if there exists a sequence of firings that transforms mo  

to m. 

2. ROUNDEDNESS 

A Petri net is said to be k-bounded if the number of tokens in each place 

does not exceed a finite number k for any marking reachable from m0. Also a Petri net is 

bounded, if for each place in the net, there exists an upper bound to the number of tokens 

that can be there simultaneously. A Petri net is said to be safe if it is 1-bounded, i.e., if 

k=1. 

Mathematically a Petri net is k-bounded if, 

m(p) 5 k, VME R(m0 ), Vpe P 
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In a manufacturing environment, the boundness or safeness of a Petri net 

indicates the absence of overflows in the modeled system [9, 11]. For example, a buffer 

in the production facility will have a finite capacity, and its representation as a bounden 

place will guarantee that the resulting control code will not allow this capacity to be 

exceeded. Safeness means no more than one token will mark the place. This implies that 

there is no possibility to restart the ongoing process if the place represents the process. 

For instance, if a place represents a machine that can only process one part at a time, 

safeness would guarantee that no other parts are loaded until the current one is 

completed. If a place happens to represent the availability of a single resource, then this 

place must be safe. 

3. LIVENESS 

A Petri net is said to be live if, no matter what marking has been reached 

from mo, it is possible to ultimately fire any transition of the net progressing through some 

further firing sequence. 

Mathematically a net is said to be live if, 

V t E T and V m E R( mo ), there exists a sequence of transitions a, such 

that firing a leads to a marking which enables t. 

A transition that cannot fire is a redundant transition and can be eliminated 

from the net. However, if such a transition exists in a net model, it needs to be identified 

since it may represent an error in the model or an inconsistency in the system being 

modeled. A transition is dead in a marking if there is no sequence of transition firings that 

can enable it. A transition is potentially firable if there exists some firing sequence that 

enables it. A transition is live if it is potentially firable in all reachable markings. 
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Liveness is tied to the concept of deadlock and deadlock-freeness, as 

related to the modelling of operating systems [11]. Thus it may be important not only that 

a transition be firable in a given marking, but that it stay potentially firable in all markings 

reachable from that marking. If this is not true, then it is possible to reach a state in which 

the transition is dead, perhaps signifying a possible deadlock. 

4. REVERSIBILITY 

A Petri net is said to be reversible, if for each marking m in R(m0), mo is 

reachable from m. Thus in the reversible net one can always get back to the initial marking 

(including failure states) [14]. 

Mathematically a net is said to be reversible if, 

V m E R( mo ), if m0 E R(m) 

i.e. there exists a sequence of transitions whose firing lead m to m0. 

5. COVERABILITY 

A marking m in a Petri net is said to be coverable if there exists a marking 

m1  in R(mo) such that m1(p) m(p) for each p in the net. 

Mathematically the net is said to be coverable if, 

m1  € R(mo), 3 m1(p) __ m(p), V p E P 
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6. PERSISTENCE 

A Petri net is said to be persistent if, for ant two enabled transitions, the firing 

of one transition will not disable the other. Also, in a persistent net a transition once 

enabled will stay enabled until it fires. 

7. CONSISTENCY 

A Petri net is consistent if and if only there exists a marking m and a firing 

sequence o such that, o brings the marking m of the net back to itself. and o contains 

each transition at least once. o is called a cyclic firing sequence. Also, consistency is 

different from reversibility in the sense that in case of reversibility, guarantees 

consistency but not vice versa. 
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 CHAPTER  
3  

SYSTEM MODELING 
WITH PETRI NETS 

3.1 SYSTEM MODELING WITH PETRI NETS 

Analytical methods have gained widespread acceptance as a powerful and 

inexpensive tool for the performance evaluation and predictions of the systems. They 

provide accurate and robust performance indices, even in the case of complex 

multiprocessor computer systems. This is of great importance, since the simulation and 

the setup of prototypes for this type of computing systems is rather inexpensive. 

Petri nets a graphical tool very well suited to the description of distributed 

and concurrent systems which exhibit synchronization and contention for shared 

resources, have been widely used for modelling logic controllers, computer networks, 

communication protocols, operating systems, as well as production systems. This chapter 

discusses how Petri nets can be used to model such systems. 
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3.1.1 Theory 

In many fields of study, a phenomenon is not studied directly but indirectly 

through a model of the phenomenon. A model is a representation, often in mathematical 

terms, of what are felt to be the important features of the object or system under study. By 

the manipulation of the representation, it is hoped that the new knowledge about the 

modeled phenomenon can be obtained without danger, cost, or inconvenience of 

manipulating the real phenomenon itself. 

Most of the systems we want to model are quite complex. For example, 

computer systems are very complex, often large, systems of many interacting 

components. Each component can be quite complex, as can its interaction with other 

components in the system. This is also true of many other systems. Economic systems, 

legal systems, traffic control systems, manufacturing systems and chemical systems all 

involve many individual components interacting with other components, possibly in 

complex ways. Thus despite the diversity of systems which we want to model, several 

common points stand out. These should then be featured as a useful model of these 

systems. One fundamental idea is that systems are composed of separate, interacting 

components. Each component may itself be a system, but its behavior can be described 

independently of other components of the system except for well-defined interactions with 

other components. Each component has its own state of being. The state of a component 

is an abstraction of the relevant information necessary to describe its (future) actions. 

Often the state of a component depends on the past history of the component. Thus the 

state of the component may change over time. The concept of "state" is very important to 

modeling a component. For example, in a model of hospital, the state of a patient might 

be critical, serious, fair, good, or excellent. The components of a system may exhibit 

concurrent behavior. Activities of one component of a system may occur simultaneously 

with other activities of other components. In a computer for example, peripheral devices 

such as, card readers, line printers, tape drives and so on, may all may operate 

concurrently under the ultimate control of the computer. In a factory a number of activities 
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take place simultaneously. The concurrent nature of activity in a system creates some 

difficult modeling problems. when the components of a system interact, it is necessary for 

synchronization to occur. The transfer of information or materials from one component to 

the other requires that the activities of the involved components be synchronized while the 

interaction is occurring. This may result in one component waiting for another component. 

The timing of actions of different components may be very complex and the resulting 

interactions between components become difficult to describe. 

The development of high speed computers has greatly increased the use 

and usefulness of modelling. By representing the system as a mathematical model, 

converting that model into instructions for a computer and thereby running the computer, 

it is possible to model larger and more complex systems than ever before. This has 

resulted in considerable study of computer modeling techniques and of computers 

themselves. Computers are involved in modeling in two ways: 1). computational tool for 

modeling and 2). as a subject of modeling. 

The use of analytical models requires good background in applied 

probability theory as well as some experience in the modeling field. Indeed, it is very 

important to include in the model those features of the system that have a significant 

impact on the performance indices of interest, while not unnecessarily complicating the 

model with too many details. 

For this reason the availability of high level interfaces for the specification of 

a stochastic model is extremely important. Queueing theory has long been used for this 

purpose. Indeed, it is much simpler to specify a model in terms of a network of queues 

rather than directly at the level of the associated stochastic process. Moreover, a 

queueing network model is much better understood by a non specialist than a lower level 

probabilistic description. 

More recently, Stochastic Petri nets were introduced to provide a simple 

graphical interface to the construction of stochastic models of computer systems. The 

advantage of SPNs over queueing networks are two fold. First, they allow one to easily 

represent some features of computer systems, such as synchronization, that are not 
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easily described with queueing network models. Second, they allow the description of 

system at different levels of abstraction, so that the user can choose the one that best 

suits his needs. Thirdly, if system behavior is non stochastic in nature, then performance 

results can obtained by event driven simulation. 

In brief, the Petri net description of systems concentrates on two concepts : 

events and conditions. Events are conditions that occur in system and condition describe 

the state of various parts of the system. The condition is either true or false. In order for 

events to occur, certain conditions, referred to as pre-conditions, must exist. After an 

event occurs, these pre-conditions change and another set of conditions, referred to as 

post-conditions, become valid. The post-conditions of one event may be pre-conditions of 

another and so a sequence of events may occur. By listing the events that take place in 

system along with conditions necessary for each event to occur and the conditions that 

result after each event, a system can be modeled. 

3.1.2 Example 

A typical example described by peterson [17] is of a computer system : 

• Jobs appear and are put on an input list. When the processor is free, and there is a 

job on the input list, the processor starts to process the job. 

• When a job is complete, it is placed on an output list, and if there are more jobs on 

the input list, the processor continues with another job; otherwise it waits for another 

job. . 

This is a very simple system composed of several elements : the processor, 

the input list, the output list and the jobs. We can identify several conditions of interest. 
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The processor is idle : pi  

A job is on the input list :132  

A job is being processed : p3  

A job is on the output list : p4  

and several events : 

A new job enters the system : t i  

Job processing is started : t2  

job processing is completed : t3  

A job leaves the system : t4  

After identifying the conditions and events of this system, it can be modeled 

using Petri nets. The Petri net model thus obtained is as shown in Figure (3.1). 

Figure 3.1 : Petri net model of a simple computer system 
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3.2 PROPERTIES OF PETRI NETS IN MODELING 

In the Petri net model, unrelated events can occur independently and in 

effect simultaneously. Another major feature of Petri net is their asynchronous nature. 

There is no inherent measure of time or flow of time in a Petri net except for timed 

transition. The Petri net structure itself contains all necessary information to define the 

possible sequences of the events for the modeled system. 

A Petri net can reflect a real-time situation where several things are 

happening concurrently. The order of occurrence of events is not unique so that any set 

of may occur. While non-detrministic is advantageous from the modeling point of view, it 

introduces considerable complexity in the analysis of Petri net. To reduce this complexity, 

one limitation is generally accepted in the modeling of systems by Petri net; the firing of 

a transition is considered to be instantaneous. The exception is the fore mentioned timed 

transition. Petri nets are also used for analyzing and synchronizing nature events, like the 

dining Philosophers problem explained by J.L. Peterson. 

3.3 MODELING OF A FLEXIBLE PCB ASSEMBLY SYSTEM 

The AT&T FWS200 flexible robotic assembly system for printed circuit 

boards include the following components: 

1. Robots to perform assembly operations 

2. Tools provided to robots 

3. Feeders to supply components 

4. Conveyors to supply boards. 

The above mentioned systems have different layouts, hence it is essential 

to have the optimal sequence of component insertions/placements which vary from one 
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board to another. Also some insertions may be more restricted than others, as different 

insertions may require different robots with perhaps different tools. In order to achieve 

global optimum, all these tasks must be well planned and their operations should be 

coordinated. 

3.3.1 Modeling Issues 

The first important issue is the modeling of sequential operations for each 

robot in the system. For example, after certain layout of the system such as sequence of 

assembly tasks, sequence of component insertions, and locations of feeders have been 

determined, there exists a problem of planning robot operations including pick-up, 

transport, insertion, etc., and making decisions in case of robot failures. Hence a certain 

order of operations needs to be followed by each robot in the system [19]. 

The second modeling issue is synchronization. For example, a robot will 

pick up a component only when it is present. It will never finish pick up operation if the 

component is missing. Similarly, the PCB to be assembled has to be present before the 

insertions of components can be fulfilled. Also, when other resources are needed to 

complete the operation, they must also be available and ready. 

The third issue is modeling of concurrency. Concurrency means that there 

are parallel relations among the concerned events [18]. For example, two physical events 

pick up a part by robot1 and pick up a part by robot2 are concurrent if both the events 

occur simultaneously. High concurrency among system resources implies high 

productivity. 

The fourth issue in modeling is the conflict. This is because of the resource 

sharing or sharing of the space. The mutual exclusion concept proposed in [21, 20] is 

especially useful to model the characteristic of resources shared by independent 

processes or sequentially related ones. 
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3.3.2 System Description 

The major components of the AT&T FWS200 flexible workstation shown in 

Figure (3.2) for which the Petri net model is constructed is as follows [19]: 

1. The frame structure supports the control cabinet, robot arms, platen, work table, etc. 

2. The Control Cabinet houses hardware including an AT&T personal computer, Industrial 

I/O modules and STD bus, control electronics, display, pneumatic and ventilation 

systems, and power supplies. 

3. The Robot Arms are able to accomplish pick and place operations, with their X, Y, Z 

and 0 motions in high accuracy (+/-0.001 in. along X, Y, Z axes and +/-0.150 about 

Z axis). 

4. The AT&T PC 6386 computer serves as the supervisory controller for the system. 

5. The Drive Electronics contain the electronics for controlling the various axes, with two 

servo motor amplifiers for separate Z and 0 motions and a stepper motor amplifier for 

both X and Y motions. 

6. The Control Panel contains power buttons, touch display, pressure and vacuum gauges 

and include IRI SV512 and ICOS M1000 modules. 

7. The Peripheral Equipment includes part feeders and others. 

The above system is used to accomplish tasks such as assembly of surface 

mpunt components, assembly of through hole components etc. The common work area 

is .24" x 32" 

3.3.3 Operation of the System 

The working cycle of the above system without considering the tool 
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Figure 3.2 : AT&T Workstation 
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changes, insertion failures and robot errors is as follows: 

1. Initially the PCB area, feeder area, components for robot1 and robot2, and the robots 

themselves are available. 

2. Depending on the timing, the robot 1 picks up a component which is available for it from 

the feeder area. 

3. Once the component is picked by robot 1, it moves into the PCB area thereby making 

the feeder area available for robot 2. 

4. The robot 1 then inserts the component, and in the meantime the robot picks up the 

component available for it from the feeder area. 

5. After the component insertion by robot 1 is completed, it moves away from the PCB 

area thereby, making the PCB area available for robot 2. 

6. The robot 2 now moves into the PCB area, thus leaving the PCB area available for 

robotl. 

7. The robot then inserts the component and moves outfrom the PCB area, during which 

robot 1 is ready to pick up component from the feeder area. 

8. The cycle repeats. 

3.3.4 Petri Net Execution 

In a dedicated production line for assembly of PCB, a robot does repeatedly 

the following jobs: picking-moving-inserting-moving. Like such a robot, each arm of the 

FWS-200 workstation can do these jobs. However since both the arms work on the same 

circuit boards and obtain components from the same feeder area, avoidance of arm 

collision has to be considered. Collision avoidance can be achieved by mutual exclusion 

structure. Thus when one robot is doing a job above the PCB area, the other is prohibited 

from moving into the same area. Mutual exclusion structure is also used in the feeder area 
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because of the possible collision which may occur even in this area. Using the mutual 

exclusion theory developed by Zhou [18, 21, 20], conclude that the net is live, safe, and 

reversible. These properties gaurentee the following important charecteristics of the 

system: 

1. The liveness implies that the system is free from deadlock. 

2. The safeness of a resource place such as p1 and p2 guarantees that the modeled 

resource is unique. The safeness of an operation place such as p12 and p22 

guarantees that there will not be any attempt to re-initiate any ongoing operatio until 

it is completed. 

3. The reversibility implies that the system can be restarted, i.e. it can return to its 

begining state from any current state. This guaranrees the repetitive operatios of this 

system. 

For the above activities of the system, the design of the Petri net model is 

as shown in Figure (3.3). The meaning of places pi (i = 1 to 25) and transitions tj (j = 11 to 

25) is explained in Tablel. R1 and R2 represent Robotl and Robot2 and their activities 

respectively. 

Table 1. Places and Transitions in the Petri net of Figure 3.3 

p1 : Robotl ready 111: Completion of Robotl picking the component 

p2 : Robot2 ready from the feeder area 

p3 : Feeder area available t12 : Availability of feeder area and non-availability of 

p4 : PCB available PCB area 

p11: Component for Robotl available t13 • Completion of Robotl moving into PCB area 

P12 : Robotl picking the component t14 : Completion of insertion by Robotl 

p13 : Robotl moving into PCB area t15 : Completion of Robotl moving out of PCB area and 

p14 : Robotl inserting component there by making the PCB area and Robotl available 

p15 : Robotl moving out of PCB area t21 : Completion of Robot2 picking the component from 
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p21 : Component for Robot2 available the feeder area 

p22 : Robot2 picking t22 : Availability of feeder area and non availability of PCB 

p23 : Robot2 moving into PCB area area 

p24 : Robot2 inserting t23 : Completion of Robot2 moving into PCB area 

p25 : Robot2 moving out of PCB area t25 : Completion of Robot2 moving out of PCB area and 

thereby making the PCB area and Robot2 available 

The sample of complete cycle of the system operation of the system is 

illustrated by Petri nets as shown in Figures 3.3 to 3.14, when the assumption is made 

that Robort1 is prioritized. 
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 CHAPTER  

4  

SIMULATION 

4.1 INTRODUCTION 

Simulation is the technique of constructing and running a computer model 

of a real system in order to make dynamic analysis without disrupting its environment, 

prior to its implementation. Simulation provides requsite information to determine the 

feasibility of a system by studying it under totally dynamic conditions. It is used to 

construct and display mathematical models with the same constraints as those of the 

actual robots, so as to manipulate and visualize the three dimensional models accuretely. 

It is also a real time analysis and control tool as it allows the designer to visualize motions 

at every stage of the cycle in real time. It also helps an engineer select the best robot for 

the job based on interference checks, and recahability of various points in the workcell. 

Various studies like cycle time analysis and collision detection help in optimization. 
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Simulation systems provide significant time savings in the layout and 

modeling of robotic work cells. Furthermore, as manufacturing equipment becomes more 

integrated complex and costly, these systems provide added assurance in cell layout 

optimization. It has been estimated that the task of implementing a robotic workcell is 

devoted to cell layout, equipment design, robot selection, and hardware mockup of the 

workcell. Remaining efforts are in the programming and actual implementation of the 

factory floor.The general characteristics of a simulation systems as well as the salient 

features of the !GRIP, the simulation system used in this work, are discussed. They are 

examplified by the design of Petri net animation and simulation for the flexible assembly 

workstation dicussed in Chapter 3. 

4.2 CHARECTERISTICS OF A SIMULATION SYSTEM 

The main objectives of simulation system: 

1. Improved Accuracy 

2. Improved Communication 

3. Reduces Development Time 

A simulation system should have good graphics capabilities as well as solid 

modeling modules so that the user can validate the model accuracy and completeness. 

It should also allow the import of standard file format such as IGES (Initial Graphics 

Exchange Specification). The system should be user friendly to enable easy, interactive 

modeling and simulation. Ability to simulate different operations like painting, welding, 

etc., is desired to increase the system's versatility. Features like collision detection and 

cycle time analysis are a must to assist in optimization. The user should have an access 

to a database of the most commonly used robots. The system should be able to simulate 

the kinematic and dynamic behavior of the robots. The simulation system should possess 
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the capability of interfacing with the shop floor equipment so as to download the simulation 

sequence directly to the robot controller. 

Simulation should be continued even after workcell implementation on the 

shop floor for optimization. The underlying philosophy is to provide a dynamic, interactive 

environment on a high-performance engineering workstation and to be able to shorten the 

design/evaluation cycle as well as optimize the operations. 

4.3 IGRIP 

IGRIPTM ( Interactive Graphics Robot Instruction Program from Deneb 

Robotics, Inc. ) is a user-friendly computer graphics based simulation system for workcell 

layout, simulation and off-line programming (OLP). Parts modeled within the Part Modeler 

(CAD Context) are put together to define Devices with multiple degrees of freedom. A 

Device has both geometric and non-geometric information stored with it. Non-geometric 

information like kinematics, dynamics, velocities etc. can be entered through interactive 

menus. A workcell is composed of devices, positioned relative to each other 

(WORKCELL Context). Devices may be selected from library of robots, conveyors, and 

effectors or modeled by the user in the Device context. IGRIP has the capability to 

generate robot programs interactively (MOTION Context). Several Devices may be 

simulated simultaneously with Input/Output signaling between them. 

4.3.1 Invocation 

The IGRIP simulation system is invoked by changing to the /user/deneb/ 

igrip.4d directory, where the igrip executable file resides. Enter 'cd/usr/deneb/igrip.4d' 

after logging in to the SGI (Silicon Graphics) workstation. Enter 'igrip -f' to invoke the 
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fullscreen mode of IGRIP. At this point IGRIP's main menu should appear. 

The IGRIP menu system is divided mainly into Contexts, which are arranged across the 

top of the IGRIP screen, each which has a group of subdivisions called Pages. The 

Contexts are : 

1. CAD The CAD Context allows the user to create and modify 3-D surface or wireframe 

geometry used to represent parts. 

2. DEVICE he DEVICE COntext allows the user to build and modify devices by putting 

together the Parts built in the CAD context. 

3. LAYOUT The LAYOUT Context allows the user to lay out a workcell. This includes 

positioning Devices, creating Paths for motion definition, connecting I/O signals and 

creating Collision Queues. 

4. MOTION The MOTION Context allows the user to define and execute motion for 

Devices. Motion can be commanded interactively or through Program control (when 

running a simulation). Simulation programs can also be downloaded to specific 

controller or generic formats. 

5. DIMENSION The DIMENSION Context allows the user to create and manipulate 

various kinds of dimension entities to document workcell layouts and geometric data. 

Dimensions are fully three dimensional planar entities, and can be translated and 

rotated in space with respect to coordinate system that is local to the dimension. 

Dimensions are also dynamically associative, or "data-driven", which implies that the 

dimensions are attached to geometry, and are continuously updated to reflect the 

current state of that geometry. 

6. USER The USER context allows customization of the user interface to define custom 

Menu Pages with functions taken from other Pages, or functions to invoke CLI 

(Command Line Interpreter) macro files. 

7. ANALYSIS The ANALYSIS Context allows user to perform various forms of analysis. 

Functions on the MEASURE Page allow identification of various items in world , as well 

as the determination of the distances and the angles between them. The units for 
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reporting as well as the frame of reference may be set by the user. Entity properties 

such as area and volume may be queried using functions on the PROPERTIES Page. 

All analysis functions utilize "Analysis Registers" that can be used in conjunction with 

IGCALC. Some of the Registers and the data values they represent are : 

- c: Value of the current Popup field 

- p: Last value entered 

- x, y, z: x-, y-, and z-coordinate of a point respectively 

- dx, dy, dz: Distance in the x-, y-, and z-direction respectively 

- d: Total Cartesian distance 

- V: Object volume 

- A: Object area 

- dia: Polygon diameter 

- ang: Angle between entities 

- R, P, Y: Pitch, and Yaw angle about Z-, Y-, and X-axis respectively. 

8. SYSTEM The SYSTEM Context provides system utilities to modify the system 

environment and world attributes as well as to interact with UNIX file system. 

9. CLI The CLI (Command Line Interpreter) Button is used to enter CLI commands 

interactively. This enables the expert user to type in a command from any Context 

without switching to the relevant Context. 

4.3.2 CAD 

Before beginning the design of Parts, the units should be set up ( if other than default , 

mm, is desired) as below : 

1. Select the ANALYSIS context. Select the UNITS Button and enter the new units in 

the Popup (or use the LMB to select from the choices),. The new units will be used for 

all the subsequent operations. 
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2. To actually design the Parts, select the CAD context and click on the CREATE Button 

to go to the CREATE page. The CAD context is used to model the geometry used to 

design Parts, which consist of one or more Objects which in turn comprise one or more 

Subobjects composed of Lines and Polygons. 

3. Objects are created using the CAD primitive Block, Cylinder, Cone, Wedge, Pipe, and 

sphere. These objects are modified using the CAD operators such as Cut, Mirror, Loft, 

Clone, Extrude & Revolve. From MODIFY page, use Merge, Smash, Scale, Cut, Color 

Object, and Extract Obj to further modify the Objects. From Auxiliary page, create 

Coorsys to assist in attaching subobjects to make up an Object. 

The places (blue circles), transitions (green bars), arcs (yellow lines), 

enabled transitions (red bars), and tokens (red dots) are all constructed at the Systems 

cordinate system using the CAD primitives, defining the required dimensions as shown in 

Figure 4.1. Once the required number of objects are created, cloned, translated and 

roated, they are saved at the it the coordinate system. 

4.3.3 DEVICE 

To build a new Device , use the following procedure: 

1. Select the DEVICE Context, then the NEW DEVICE Button. You will be placed in the 

syslib/PARTS directory. Select the appropriate directory on the Popup to move to your 

directory. 

2. Select the part to be used as the base of the new device. 

3. Enter a name for the Device and accept the defaults for the Device parameters in the 

Popup. 

4. Select the AXES Button, then pick the Part that was just retrieved, to force the 

coorsyses to always stay visible. 
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5. Select the ATTACH PART Button and then pick the base of the Part to indicate the 

Part that the new Part will be attached onto. 

6. Choose the other Parts and then the key Coorsyses, placed in the CAD Context to 

facilitate easy positioning of the Parts. 

7. Select the KIN Page, and select the JOINT TYPES Button. This is where the 

Translational vs Rotational dof are assigned at each joint. Change these first three to 

be Translational and accept the default, Rotational for other three joints. 

8. Select the SET DOF Button and pick the Part which is supposed to move along X-

and Y-axis. The "Link Transformation" Popup is used to describe how the Joint 

should move. The most common choices are to Translate along an axis, or to 

Rotate about an axis. 

9. First specify " Set Home", next specify "Trans X" enter a 1 for the 

10. Translate X Expr:" finally select "Return". The "Set Home" option indicates that the 

system should use the current location and orientation as the "zero" position 

whencalculating the location. The "Trans X" option defines motion along the Part's X 

axis. This motion is tied to degree of freedom number 1. In other words, Joint 1 is a 

Translational Joint that moves positive in the parts positive direction. The "Return" 

choice completes the DOF definition. It is possible to have more than one DOF 

number for the same part, as also to have one DOF number control motion for many 

Parts, in many different directions, as well as mixing types of motion. 

11. Select the other Parts and repeat the above except choose "Trans Y", "Trans Z", 

"Rotate Z", "Rotate Y", and "Rotate X" with DOF numbers 2,3,4,5 and 6 respectively. 

12. Now select the KINEMATICS Button and choose the "Inverse Kinematics" option 

from the Popup. 

To model a new device the kinematics of any existing Devices can be used, in the 

following conditions are satisfied: 

1. The base coordinates systems for each part on each device must match exactly. 

The Positive/negative directions of rotation must be identical. 
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2. The number of dofs for both devices must be same. 

3 The type of dof must be the same in both Devices(i.e, ROTATIONAL vs 

TRANSLATIONAL). Selecting 'Device Kinematics' from the displayed Popup 

allows the user to select any device existing in the DEVICE directory. The 

Device being built will assume the kinematics math-routine defined for the 

Device name selected from the file-list Popup. Note that if a theparameters 

mentioned above (link lengths, link offsets, link types, mounting plate offset, or 

DOF definition) do not match those of the selected Device, the new Device will 

not be able to reach its points. 

13. Select JOINT LENGTHS. This is where the D.H parameters (The Denavit Hartenberg 

notation is used to represent the robot kinematically using link lengths and offsets 

based on the coordinate system of each link fixed at arbitrary locations i.e, lengths 

between base coordinate systems as well as offsets from the principal lane) are 

assigned. 

14. Select BASE PRT and pick the Part of the Device which is serve as the base. Use 

UFRAME under the MOTION Context to verify by picking the 'Display' option from the 

Popup, that the UFRAME is the base Coorsys of the Base Part. 

15. Select the MNT PLT Button. Here the user graphically selects the part which 

represents the device mounting plate and defines the offset values. Use UTOOL 

Button under MOTION Context to set Tool Point. Pick 'Display' from the Popup and 

verify the Tool Point. 

16. Select HOME POSITION Button and set the home position to be the current Joint 

value by choosing the "Use Current Position" option in the Popup. 

17. Select the SPEEDS Button located under the LIMITS Title and complete the Popup. 

Select the ACCELS Button and set the maximum accelerations. 

18. Select the TRAVEL Button and set the travel limits. 

19. This completes the definition of the new Device. If any modifications are necessary, 
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use REDEFINE DEVICE Button and make the requisite changes in the Popup. 

20. Finally, select SAVE DEVICE Button and complete the Popup with the name of your 

directory and the filename. 

In this module, the parts created in the CAD module are retrieved and the 

required number of parts are cloned, rotated, translated inorder to construct the Petri net 

as shown in Figure 4.2. Also the enabled transitions (red bars) and the tokens are 

retrieved from the CAD module, then they are translated, roated and saved at respective 

positins. Kinematics are applied to all the parts retrieved in the DEVICE module. 

4.3.4 WORKCELL 

To layout a Workcell, follow the steps below: 

1. Select the LAYOUT Context and the WORKCELL Page. 

2. Select the RETRIEVE DEVICE Button. Choose your directory from the Popup, and 

pick the relevant Device. 

3. Select the AXES Button; this will toggle the Device's display mode so that it's 

Coorsyses are always displayed. 

4. Select the RETRIEVE DEVICE Button again to pick the other Devices to be laid out 

in the Workcell. 

5. Select TRN DEV or ROT DEV to arrange the Devices in the Workcell. The SNP Button 

is a quick way to do 90 degree rotations about the primary axis. The LMB rotates 

about X, MMB about Y, and the RMB about the Z axis. If any Devices are to be 

attached to another Device, select SNAP DEV Button. Choose the 'Frame' option 

from the "Snap Device On..." and pick the Coorsyses on the Device. 

6. Select the ATTACH Button using the MMB(Middle Mouse Button). This will give a list 

of all the Devices that are currently in the Workcell. Choose a device and pick a part 
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Figure 4.2 : Petri net model as Device 
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on the Device to attach it to. The part should highlight and any Coorsyses, if present, 

will appear. Pick the right Coorsys and the Device will snap onto the part using the 

orientation of the Coorsys. 

7. At this point, the locations and orientations of each Device should be saved. Move to 

the SYSTEM Context, WORLD Page, and pick the SAVE POSITIONS Button. 

Choose the "All Devices" option from the "Save/Restore Positions" Popup. This 

establishes "Restore Positions" for the location and the Joint values of each Device. 

This can be used as the starting point when running simulations. If this is not done, 

when the simulation is RUN using "Previous Values" all the Devices jump to the World 

Origin. 

8. Use the World Display functions to move to a view of the Workcell that shows most 

of the Devices, and save the Workcell using SAVE WORKCELL Button. 

In this module all the devices created in the DEVICE module are retrieved 

and arranged as a layout by using the translation and rotation option. The workcell is 

saved as per the arrangement of the devices as shown in Figure 4.3. 

4.3.5 Tag Points 

Tag Points are primarily used to indicate destination positions for robot 

motion. The user places Tag Points at the desired location and orientation and then, 

instructs the robot to move to the Tag Point position. 

Tag Points may be set up as follows: 

1. Select the LAYOUT Context and then the RETRIEVE WORKCELL Button. Choose 

the Workcell from the Popup. 

2. Select the TAGS Page and then the NEW PATH Button, pick the Device to attach the 

Path to. 
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3. Select the SETUP Button and complete the Popup. This allows you to constrain or 

free the Degree of Freedom. 

4. Select the SURFACE Button and then, using the LMB(Left Mouse Button), pick the 

surface to snap the Tag Point onto. You may also select the VERTEX, EDGE, FRAME 

Buttons as appropriate. 

5. If the orientation of the most recently created Tag Point is desired for subsequent Tag 

Point placements, pick the surface with the RMB(Right Mouse Button). This will place 

a new Tag Point at that position with the same orientation as the previous. If your Tag 

Point names end in integer numbers, the new Tag Point will be added to the current 

Path and given the next available ending number. If only part of the Tag Point is 

visible, part of it is hidden inside of the polygon. You may want to go to the SYSTEM 

Context and select the Z-BUFFER Button, it should dehighlight(which means the real 

time Z-Buffer is turned off) and all of the Tag Point axes become visible. 

This completes the Path layout. To check on the reachability of these Tag 

Points, select the T-JOG Button. Pick the Device(Robot) to be T-Jogged when the Tags 

are moved. Now the Device will move to any Tag Point, align itself to the Tag Point using 

its Utool, and follow it. The Tag Points can be selected one by one to check position and 

orientation. If needed, any changes may be using TRN TAG and ROT TAG Buttons. 

The tag points are attached to the devices in the workcell by selecting 

individual devices, new path and autotag commands. Figure 4.4 shows the tag points 

attached to the devices in the workcell. 

4.3.6 Input/Output Signals 

To layout the I/O connections: 

1. Select the LAYOUT Context and the WORKCELL Page. Select the RETRIEVE 
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Figure 4.4 : Petri net model with Tag points 
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WORKCELL Button and retrieve your Workcell from your directory. 

2. Select the I/O Page 

3. Select the DUAL CONNECTION Button to allow signals to be sent both directions. 

Pick the first Device and select I/O 01 as the line you want to connect to it. Now pick 

the second Device to connect 01 to. Select I/O 01 as the corresponding file. 

4. Select DISPLAY CONNECTION Button and pick the Device whose signals you want 

to display. The Popup will show the Device's input 01 coming from the other Device 

and it's output 01 going to the other. 

All the devices are given dual input/output connections, to assertain that all 

the operations are performed sequentially. 

4.3.7 PROGRAM 

The PROGRAM Page in the MOTION Context is primarily used for Program 

Scripting. This is the process of automatically scripting program statements with correct 

syntax to a GSL program using menu Buttons. The program statements are executed 

when they are scripted so that you can interactively see the effect of each statement. To 

use the PROGRAM Page for program writing: 

1. Select NEW PROGRAM, pick the Device to be programmed and enter the program 

name. A Program Edit Window should appear with a basic program template in it. 

2. Select the SYSTEM VARS Button, set the variables desired by choosing the 

UNITS,Speed, Motype options. 

3. Select the MOVE Button and choose the "Move To" option. Pick the Tag Point to be 

moved to and the Device should move to it. If you can't see the Tag Point to pick it, 

select the "Move To" option using the MMB(Middle Mouse Button) and the system 

will let you select the Tag Point from the list of all available Tag Points. 
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4. You can also add Routines or Procedures, If, While, For conditions to your program 

by picking the function Buttons. You can enter text Iike"sim-update" using the GSL 

Button and the "Enter Text" option. I/O statements may be added by means of the I/O 

Button. 

5. To see the program run, move the mouse up in the file until the highlighted line is the 

UNITS=METRIC line. Select the EXECUTE Button and watch the system step 

through the program. 

6. If the program runs satisfactorily, select the WRITE Button located on the left side of 

the Program Edit Window. Save the program into your directory. 

In this module, individual device is selected and the required program is 

return as listed in the appendix. 

4.3.8 MOTION 

1. Select the MOTION Context, and the SIMULATE Page. 

2. Select the RETRIEVE WORKCELL Button and pick the desired Workcell from the 

Popup. 

3. Select Load using the MMB(this displays a list of all the Devices in the Workcell). Pick 

the Device to be loaded, choose the "Load Selected Program"option from the Popup 

and pick the program to be loaded into it. If the message window doesn't read 

"Program x x x.gsl successfully loaded", there are errors in the Program; choose the 

"yes"option from the Edit Program window. The igedit window will appear to allow you 

to debug the Program(If vi editor is preferred, change the editor option to vi by picking 

the Environ Button under the WORLD Page in the SYSTEM Context). 

4. Select the STEPSIZE Button and change the "Simulation Step Size" to be 0.2 

seconds, and "Steps per graphic update" to 1. This means that the system will 
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calculate and display the simulation at 0.2 second intervals, and update and display 

the graphics every step. 

5. Select the ACTIVATE Button and choose the "All Devices" option to activate all the 

Devices that have GSL programs loaded into them. 

6. Select the RUN Button using the RMB to skip the Popup. This will use the "Previous 

Values" for the Device locations, and their Joint positions. 

7. The World Display Buttons on the bottom of the screen may be selected and used any 

time during a simulation run. 

8. To inspect the simulation while it is running, select the CYCLE Button, and then pick 

the Device. Choose the "Cycle Time On" option to display a Popup that indicates the 

current Cycle Time for the Device. Similarly, to see a display of the Joint values select 

the JNT VALS Button. 

In this module, all the programs are loaded and the devices are activated to 

see the operation of the Petri net model. 

4.4 Simulation Set-up: 

The simulation set-up is as shown in Figure (4.5 ). The places (blue cir-

cles), transitions (green bars), arcs (yellow lines) are contructed as one device. The 

enabled transitions (red bars) and the tokens (red dots) are constucted as individual 

devices. The operation of the net is as explained in chapter 3. For any transition in the 

net to fire all the tokens must be present at the transition, if any of the token is not avail-

able, the trasition does not fire. 

After all the devices are retrieved into the workcell, the home positions are 

restored. If one desires a demonstration run is provided which gives one a better idea of 

how the Petri net model for Flexible Work Station operates, thus making the choices to 
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answer the querries apperent. If one desires to get on with the simulation, the demo can 

be hurried along by increasing '»' Button which dobules the step size. 

4.5 Running the Simulation : 

After logging into the SGI Workstation : 

1. Move to the IGRIP directory by entering "cd /usr/deneb/igrip.4d" 

2. Invoke full screen mode of the !GRIP by entering "igrip -f" 

3. Select the MOTION context and then the SIMULATE page. 

4. Select RETRIEVE WORKCELL button, select "suresh", and then from the popup, pick 

"test". 

5. Select MOTION context. 

6. Select LOAD, pick up each component and then pick the appropriate program from 

the popup. 

7. Select ACTIVATE and choose "All Devices" option from the popup. 

8. Select RUN to get the simulation running. 

The block diagram of the simulation run is as shown in Figure 4.6 



Chapter 4 : SIMULATION 57 

Figure 4.6 : Block diagram for Simulation Run 
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 CHAPTER  
5  

CONCLUSIONS AND 
FUTURE RESEARCH 

This chapter briefly outlines the contributions of this thesis and dicusses the 

results obtained. Therefore some suggestions to enhance the work done are given and 

directions for future work, in the application of Petri nets for modeling, analysis and simu-

lation of manufacturing systems are outlined. 

5.1 CONCLUSIONS 

This thesis is a tutorial on Petri nets and their models, and the begining of 

real time simulation of manufacturing systems. The concepts of how the events and con-

ditions of a system can be mapped to the transitions and places of a Petri net model 

have been illustrated with examples. The execution of Petri net is dicussed along with 
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some important properties of Petri nets. Also, simulation can be successfully used to 

study a typical robotic workcell operation by observing such performance criteria as cycle 

time. Cycle time analysis can help the engineer in searching an optimum of the various 

parameters such as speed of manipulator offset, usage of two types of manipulators and 

the chip placement sequence. 

The mathematical model of a flexible manufacturing cell has been built using 

Petri nets. The concurrency, resource-sharing, and sequential operations have been built 

in this mode. The resulting net model has the system properties such as liveness, 

boundedness, and reversibility. Furthermore the deterministic timing information is incor-

porated into the places and transition of this model. 

The simulation program allows a layman to run the FWS without prior knowl-

edge of either M2L or the FWS. (GRIP is a very effective simulation package from the 

point of view of analysis. The models of actual devices such as robots and automatic 

guided vehicles can be visualized in great deal. It is possible to observe the rechability of 

various devices. Collisions between the component devices in a workcell can be 

detected. Optimizations can be carried out based on cycle time analysis. 

New products can be analyzed before purchase to determine suitability for the 

desired purpose. Sequences of the animated display can be put on to video tape for 

future reference. Pictures of layouts can be printed directly on to a color printer providing 

the designer with a series of drawings. 

5.2 DIRECTIONS FOR FUTURE RESEARCH 

The popularity of Petri nets to model, analyze, design and control of auto-

mated manufacturing systems has grown multiple-fold in the past five years. This is 

mainly because Petri nets have a great potential to overcome many difficuties encoun 
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teered in complex automated manufacturing systems. This should allow for true flexibility 

and integration. Evidently a lot of work can be done and thus, has to be one in this field. 

This thesis provides industrial engineers and academic researchers with a comprehen-

sive real life example of applying Petri net theory to help them develop their own applica-

tions. 

Off-line programming of the simulated model can be implemented by down-

loading, and thus it is obvious that the next step is to reverse the process. Uploading is 

the process of carrying out an actual run on the FWS and then sending over the data to 

the simulation system to enable real-time simulation update and any required modifica-

tions. 

Real-time control of the FWS can be implemented using two way communi-

cation. Every motion of the FWS model on the terminal should be replicated by the FWS 

on the factory floor. In this case, every step of the simulation run should instantly down-

loaded to the FWS instead of downloading the entire sequence of motions at one time. 

At the other end, the FWS should send a signal on completion of motion replecation to 

the simulation system. On the other hand, a motion of the FWS on the floor could be rep-

licated on the terminal. 
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ROBOT! 

PROGRAM token 1 
VAR 

Main Declaration Section  
ta27 : POSITION 
ta26 : POSITION 
ta25 : POSITION 
tal8 : POSITION 
tall : POSITION 
tal6 : POSITION 
tal4 : POSITION 
tal3 : POSITION 
tal2 : POSITION 
tal0 : POSITION 
ta9 : POSITION 
ta6 : POSITION 
ta3 : POSITION 
ta2 : POSITION 
tal : POSITION 

BEGIN MAIN 

$speed = 2000 
MOVE TO tal 
MOVE TO ta2 
WAIT UNTIL DIN[ 1 ] == ON 
WAIT UNTIL DIN[ 2 ] == ON 
$speed = 500 
MOVE TO ta3 
GRAB Dummy#31  AT LINK 1 
GRAB 'Dummy#2' AT LINK 1 
DOUT[ 3 ] = ON 
delay 1500 
MOVE TO ta6 
delay 3000 
DOUT[ 6 ] = ON 
delay 3000 
MOVE TO ta9 
WAIT UNTIL DIN[ 4 ] == ON 
DOUT[ 5 ] = ON 
DOUT[ 11 ] = ON 
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delay 4000 
MOVE TO tal2 
delay 3000 WAIT UNTIL DIN[ 7 ] == ON 
MOVE TO tal3 
DOUT[ 8 ] = ON 
delay 1500 
MOVE TO tal4 
delay 3000 
DOUT[ 16 ] = ON 
DOUT[ 15 ] = ON 
DOUT[ 14 ] = ON 
WAIT UNTIL DIN[ 13 ] == ON 
MOVE TO tal6 
DOUT[ 12 ] = ON 
delay 1500 
MOVE TO tall 
delay 3000 
MOVE TO tal8 
DOUT[ 10 ] = ON 
DOUT[ 0 ] = ON 
delay 1500 
RELEASE 'Dummy#3' 
RELEASE 'Dummy#2' 
$speed = 1500 
MOVE TO ta25 
MOVE TO ta26 
MOVE TO ta27 
delay 3000 

END MAIN  
END tokenl 
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COMPONENT1 

PROGRAM token 11 
VAR 

Main Declaration Section  
ta31 : POSITION 
ta30 : POSITION 
ta29 : POSITION 
ta28 : POSITION 
ta3 : POSITION 

BEGIN MAIN 

$speed = 500 
MOVE TO ta3 
DOUT[ 1 ] = ON 
WAIT UNTIL DIN[ 0 ] == ON 
$speed = 3000 
delay 1500 
MOVE TO ta28 
MOVE TO ta29 
MOVE TO ta30 
MOVE TO ta31 
DOUT[ 4 ] =ON 
delay 3000 

END MAIN  
END tokenll 



Appendix : PROGRAMS 67 

TRANSITION11 

PROGRAM fire 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 3 ] == ON 
MOVE JOINT 2 BY -.2 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.2 NOSIMUL 

END MAIN  
END fire 
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TRANSITION12 

PROGRAM firet12 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 6 ] == ON 
WAIT UNTIL DIN[ 5 ] == ON 
MOVE JOINT 2 BY -0.2 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.2 NOSIMUL 

END MAIN  
END firetl2 
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TRANSITION13 

PROGRAM fireta3 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 8 ] == ON 
MOVE JOINT 2 BY -0.2 NOSIMUL 
delay 2000 
MOVE JOINT 2 BY 0.2 NOSIMUL 

END MAIN  
END fireta3 
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I 

TRANSITION14 

PROGRAM firetal4 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 12 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END firetal4 
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TRANSITION15 

PROGRAM firetal5 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 10 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END firetal5 
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ROBOT2 

PROGRAM token2 
VAR 

Main Declaration Section  
ta53 : POSITION 
ta52 : POSITION 
ta54 : POSITION 
ta42 : POSMON 
ta43 : POSITION 
ta45 : POSITION 
ta44 : POSITION 
ta41 : POSITION 
ta39 : POSITION 
1a38 : POSITION 
ta36 : POSITION 
ta24 : POSITION 
ta23 : POSITION 
tall : POSITION 
ta22 : POSITION 
ta21 : POSITION 

BEGIN MAIN 

WAIT UNTIL DIN[ 15 ] == ON 
$speed = 2000 
MOVE TO ta21 
MOVE JOINT 2 BY -.2 NOSIMUL 
MOVE TO ta22 
WAIT UNTIL DIN[ 0 ] == ON 
WAIT UNTIL DIN[ 1 ] == ON 
$speed = 500 
MOVE TO ta23 
GRAB 'Dummy#5' AT LINK 1 
GRAB 'Dummy#7' AT LINK 1 
DOUT[ 2 ] = ON 
delay 1500 
MOVE JOINT 2 BY 0.2 NOSIMUL 
MOVE TO ta24 
delay 3000 
DOUT[ 13 ] = ON 
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WAIT UNITh DIN[ 4 ] == ON 
MOVE TO ta38 
MOVE JOINT 2 BY -0.2 NOSIMUL 
WAIT UNTIL DIN[ 10 ] == ON 
DOUT[ 5 ] = ON 
delay 2000 
MOVE TO ta39 
delay 3000 
MOVE TO ta4l 
DOUT[ 7 ] = ON 
delay 1500 
MOVE TO ta42 
delay 3000 
MOVE TO ta43 
DOUT[ 8 ] = ON 
delay 1500 
MOVE TO ta44 
delay 3000 
MOVE TO ta45 
DOUT[ 11 ] = ON 
DOUT[ 12 ] = ON 
delay 2500 
RELEASE 'Dummy#7' 
RELEASE 'Dummy#5' 
DOUT[ 9 ] = ON 
MOVE TO ta54 
$speed = 1000 
MOVE TO ta52 
MOVE TO ta53 
delay 3000 

END MAIN  
END token2 
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COMPONENT2 

PROGRAM token2l 
VAR 

Main Declaration Section  
ta51 : POSITION 
ta50 : POSITION 
ta49 : POSITION 
ta48 : POSITION 
ta23 : POSITION 

BEGIN MAIN 

$speed = 500 
WAIT UNTIL DIN[ 14 ] == ON 
MOVE JOINT 2 BY -0.4 NOSIMUL 
MOVE TO ta23 
DOUT[ 1 ] = ON 
WAIT UNTIL DIN[ 11 ] == ON 
$speed = 3000 
delay 3000 
MOVE TO ta48 
MOVE JOINT 2 BY 0.4 NOSIMUL 
MOVE TO ta49 
MOVE TO ta50 
MOVE TO ta51 
delay 3000 

ENDMAIN  
END token2l 
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TRANSITION21 

PROGRAM firet2l 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 2 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END firet2l 
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TRANSITION22 

PROGRAM fireta22 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 16 ] == ON 
WAIT UNTIL DIN[ 5 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END fireta22 
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TRANSITION23 

PROGRAM fireta23 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 7 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END fireta23 
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TRANSITION24 

PROGRAM fireta24 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DINE 8 ] == ON 
MOVE JOINT 2 BY -.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END fireta24 



Appendix : PROGRAMS 79 

TRANSITION25 

PROGRAM fireta25 
VAR 

Main Declaration Section  

BEGIN MAIN 

WAIT UNTIL DIN[ 9 ] == ON 
MOVE JOINT 2 BY -0.3 NOSIMUL 
delay 1000 
MOVE JOINT 2 BY 0.3 NOSIMUL 

END MAIN  
END fireta25 
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FEEDER 

PROGRAM token3 
VAR 

Main Declaration Section  
ta40 : POSITION 
ta37 : POSITION 
ta36 : POSITION 
ta35 : POSITION 
ta34 : POSITION 
ta33 : POSITION 
ta32 : POSITION 
ta3 : POSITION 
ta4 : POSITION 
ta5 : POSITION 

BEGIN MAIN 

$speed = 1000 
MOVE TO ta4 
MOVE TO ta5 
MOVE TO ta3 
$speed = 500 
DOUT[ 2 ] = ON 
WAIT UNTIL DIN[ 0 ] == ON 
$speed = 1000 
MOVE TO ta32 
MOVE TO ta33 
MOVE TO ta34 
delay 5000 
$speed = 1800 
MOVE TO ta35 
MOVE TO ta36 
delay 2500 
MOVE TO ta37 
DOUT[ 10 ] = ON 
DOUT[ 16 ] = ON 
delay 2000 
MOVE TO ta40 
delay 3000 

END MAIN  
END token3 
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PCB AREA. 

PROGRAM token4 
VAR 

Main Declaration Section  
ta47 : POSITION 
ta34 : POSITION 
ta46 : POSITION 
ta23 : POSITION 
ta20 : POSITION 
ta19 : POSITION 
tall : POSITION 
tal0 : POSITION 
ta8 : POSITION 
ta7 : POSITION 

BEGIN MAIN 

WAIT UNTIL DIN[ 3 ] == ON 
$speed =1000 
MOVE TO ta7 
MOVE TO ta8 
DOUT[ 4 ] = ON 
delay 5000 
$speed = 500 
MOVE TO tal0 
DOUT[ 6 ] = ON 
WAIT UNTIL DIN[ 11 == ON 
MOVE TO tall 
MOVE JOINT 2 BY -0.4 NOSIMUL 
delay 3000 
DOUT[ 7 ] = ON 
WAIT UNTIL DIN[ 16 ] == ON 
$speed = 1000 
MOVE TO ta19 
MOVE TO ta20 
MOVE TO ta23 
$speed = 500 
DOUT[ 0 ] = ON 
DOUT[ 1 ] = ON 
WAIT UNTIL DIN[ 12 ] == ON 
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$speed = 1000 
MOVE TO ta46 
MOVE JOINT 2 BY 0.4 NOSIMUL 
delay 3000 
MOVE TO ta47 
MOVE TO ta34 
delay 3000 

END MAIN  
END token4 

 I 
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