
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

12-31-1991

A case study on petri net modeling, animation, and simulation A case study on petri net modeling, animation, and simulation

Suresh C. Gurala
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Manufacturing Commons

Recommended Citation Recommended Citation
Gurala, Suresh C., "A case study on petri net modeling, animation, and simulation" (1991). Theses. 2490.
https://digitalcommons.njit.edu/theses/2490

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=digitalcommons.njit.edu%2Ftheses%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2490?utm_source=digitalcommons.njit.edu%2Ftheses%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

A CASE STUDY
ON

PETRI NET MODELING, ANIMATION,
AND SIMULATION

By

GURALA SURESH C.

Thesis submitted to the faculty of the Graduate School of New Jersey
Institute of Technology in the partial fulfillment of the requirements
for the degree of Master of Science in Manufacturing Engineering

1991

APPROVAL SHEET

Title of Thesis:

A CASE STUDY
ON

PETRI NET MODELING, ANIMATION, AND SIMULATION

Name of Candidate: Gurala Suresh C.

Master of Science in Manufacturing Engineering, 1991

Thesis and
Abstract Approved:

i)

Dr. Mengchu Zhou, Advisor Date
Assistant Professor
Electrical & Computer Engineering

Signature of the other
members of thesis committee:

Dr. Raj Raj Sodhi Date
Director, Associate Professor
Manufacturing Engineering

U
Dr. Nouri Levy Date
Associate Professor
Mechanical Engineering

i

VITA

NAME: Gurala Suresh C.

PERMANENT ADDRESS:

DEGREE AND DATE TO
BE CONFERRED:

DATE OF BIRTH:

PLACE OF BIRTH:

COLLEGE & INSTITUTIONS ATTENDED:

DATE DEGREE

Jagadguru Mrugarajendra 1984-88 B.E.(Elec. & Com.)
Institute of Technology
(Mysore University)
Mysore, India

New Jersey Institute 1990-91 M.S.(MnE)
of Technology
Newark, New Jersey

Major: Manufacturing Engineering

Positions held:

Research Assistant Center For Manufacturing Systems. N.J.I.T
1990-1991 Newark, New Jersey

Graduate Assistant Finance Department., N.J.I.T
1991-Present Newark, New Jersey

ii

Acknowledgements

I take this opportunity to express my deep gratitude to Dr. MengChu Zhou,

Assistant Professor in Electrical & Coputer Engineering Department of N.J.I.T for his

valuable guidance and help throughout the course of this work. It was his immaculate

advice, which led my work to the set mark of culmination.

I am also very thankful to Dr. Nouri Levy and Dr.Sodhi for spending their

precious time to review my work and to provide constructive suggestions for enhancing

my work.

iii

To My Parents

iv

ABSTRACT

A CASE STUDY
ON

PETRI NET MODELING, ANIMATION, AND SIMULATION

Gurala Suresh C, Master of Science, 1991

Thesis directed by: Dr. MengChu Zhou, Assistant Professor of Electrical & Computer
Engineering

Petri nets as a graphical tool has developed over the last decade into a

suitable model for representing, modeling, designing, analyzing and studying concurrent

systems. In this thesis, Petri nets are applied for analyzing, modeling and simulation of a

flexible assembly station. An existing AT&T FWS200 flexible assembly workstation for

printed circuit board is modeled using Petri nets without the consideration of insertion

failures and other abnormalities in the system. The Petri net model is then simulated using

Graphics simulation language (GSL).

v

TABLE OFCONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT v

CHAPTER 1: INTRODUCTION

1.1 Background and Previous Research 1

1.2 Objective of the Thesis 4

1.3 Organization of the Thesis 5

CHAPTER 2: PETRI NET THEORY

2.1 Introduction 6

2.2 Basic Definitions 7

2.2.1 Structure of a Basic Petri Net 8

2.2.2 Marking of a Petri Net 11

2.2.3 Rules of Operation 12

2.1.4 Incidence Matrix 13

2.3 Properties of Petri Net 14

CHAPTER 3: SYSTEM MODELING WITH PETRI NETS

3.1 System Modeling with Petri Nets 18

3.1.1 Theory 19

vi

3.1.2 Example 21

3.2 Properties of Petri Nets in Modeling 23

3.3 Modeling of a Flexible PCB Assembly System 24

3.3.1 Modeling Issues 24

3.3.2 System Description 25

3.3.3 Operation of the System 26

3.3.4 Petri Net Execution 27

CHAPTER 4: SIMULATION

4.1 Introduction 37

4.2 Charecteristics of Simulation System 38

4.3 IGRIP 39

4.3.1 Invocation 39

4.3.2 CAD 41

4.3.3 Device 42

4.3.4 Workcell 46

4.3.5 Tag Points 48

4.3.6 I/O Signals 50

4.3.7 Program 52

4.3.8 Motion 53

4.4 Simulation Set-up 54

4.5 Running the Simulation 56

CHAPTER 5 :CONCLUSION AND FUTURE WORK

5.1 Conclusions 58

5.2 Directions for Future Research 59

vii

REFERENCES 61

APPENDIX : A List of Programs 64

viii

LIST OF FIGURES AND TABLES

Figure 2.1 Example of Petri Net 10

Figure 2.2 Example of Marked Petri Net 11

Figure 3.1 Petri Net model of a simple Computer System 22
Figure 3.2 AT&T Workstation 26

Figure 3.3 Initial marking 30

Figure 3.4 Robot1 picking 31

Figure 3.5 Robot1 moving into PCB area 31

Figure 3.6 Robot1 inserting 32

Figure 3.7 Robot2 picking 32

Figure 3.8 Robot1 moving out 33

Figure 3.9 Robot1 ready 33

Figure 3.10 Robot2 moving into PCB area 34

Figure 3.11 Robot2 inserting 34

Figure 3.12 Robot1 picking 35

Figure 3.13 Robot2 moving out 35

Figure 3.14 Robot2 ready 36

Figure 4.1 CAD primitives of IGRIP used for modeling 43

Figure 4.2 Petri Net model as Device 47

Figure 4.3 Petri Net model in the Workcell 49

Figure 4.4 Petri Net model with Tag points 51

Figure 4.5 Final Petri Net model for Simulation 55

Figure 4.6 Block diagram for Simulation Run 57

Table 1 Places and Transitions in the Petri Net of Figure 3.3 28

ix

Chapter 1 : INTRODUCTION 1

 CHAPTER

1

INTRODUCTION

1.1 BACKGROUND AND PREVIOUS RESEARCH

Historically speaking, the concept of Petri nets (PN) was developed by Carl

Adam Petri in 1962 to be used for as a graphical and mathematical modeling tool to many

systems which are characterized as being concurrent, asynchronous, distributed, parallel,

non deterministic and/or stochastic. Since that time considerable work has been done in

both theory and applications of Petri nets [3, 4, 12]. Petri nets were developed to model

discrete event systems [1, 2]. By analyzing a Petri net model, useful information about the

underlaying system can be obtained [1, 2, 5, 6]. This information may reveal bottlenecks,

deadlocks, etc., which exist and can be used tests on the actual system. Because Petri

nets are a mathematical model, various tools have developed to analyze them [1, 5].

Petri net theory previously developed for modeling, analysis, and simulation

of Flexible Manufacturing Systems (FMS) has been used in this report. The application of

Chapter 1 : INTRODUCTION 2

Petri nets for modeling flexible manufacturing systems and production processes are

previously proposed by Hack [7], Dubious & Stecke [8], and Narahari Viswanadham [9]

.nets Hack proposed a brief description of the mapping of production schemata in Petri

nets. His work centered in developing tools for analyzing safeness and liveness in a

restricted class of Petri net, free choice nets using top-down analysis approach. Dubious

and Steck emphasized the use of timed Petri nets in modeling FMS for analyzing the

quantitative aspects of FMS performance and to conduct temporal performance analysis,

ie., to determine production rate, resource utilization etc., Hence if modeled with timing it

is possible to detect a bottleneck in an FMS or to determine a optimal buffer size, optimal

pallet distribution etc. Narahari and Viswanadham proposed a method for developing

Petri net models for complex FMS by combining simpler subnets. Krogh and Sreenivas

[4] introduced the concept of essentially decision free places in Petri netsnets to represent

the absence of unresolved resource allocation conditions.

Petri nets are useful tools for modeling systems with following characteristic:

1. Concurrency and Parallelism: In manufacturing system, many operations take place

simultaneously.

2. Asynchronous operations: Machines complete their operations in variable amounts of

time and so the model must be able to represent asynchronous events or operations.

3. Deadlock: In this case, a state can be reached where none of the processes can

continue. This can happen when two processes share two resources. The order by

which these resources are used and released could produce a deadlock.

4. Conflicts: This may occur when two or more processes require a common resource at

the same time. e.g., two work stations may share a common transport system or might

want access to the same database.

Chapter 1 : INTRODUCTION 3

5. Event driven: The manufacturing system can be viewed as a sequence of discrete

events. Since operations occur concurrently, the order of occurrence of events is not

necessarily unique; it is one of the many allowed by the system structure.

These types of systems have been difficult to accurately model with

differential equations and queueing theory. The application of Petri nets to Flexible

Manufacturing Systems which can provide accurate models is because of the following

reasons:

1. Petri nets capture the precedence relations and structural interactions of concurrent

and asynchronous events.

2. They are logical models derived from the knowledge of how the system works. As a

result, they are easy to understand and their graphical nature is very well visualized.

3. Deadlocks, conflicts, and buffer sizes can be modeled easily and concisely.

4. Petri net models have a well developed mathematical foundation that allows a

qualitative analysis of the system.

5. Finally, Petri net models can also be used to implement real-time control systems for

an automated manufacturing system. They can sequence and coordinate the sub

systems as a programmable logic controller does.

Generally speaking, Petri net modeling includes two parts [13]: Ordinary

Petri nets for system behavior analysis and Temporal Petri nets for system performance

evaluation. The ordinary Petri nets also called non-timed Petri nets are used to analyze

such system properties as deadlock-freeness, buffer-boundedness, reversibility and

conflict-freeness. After ordinary Petri nets are built, time variables can be used to be

associated with their places and transitions resulting in temporal Petri net models. These

models serve to derive system performance indices including, productivity an machine

utilization. When there are several operational settings possible, different Petri net models

Chapter 1 : INTRODUCTION 4

can be obtained and used to study the optimal setting by comparing the results of Petri

net based performance evaluation.

1.2 OBJECTIVE OF THE THESIS

It is highly desirable for researchers, system analysts, and production

engineers to have unified model for modeling, analysis, simulation and control of

manufacturing systems [10]. Hence, Petri netsnets as a general graphical tool is very well

suited to the distributed and concurrent systems which exhibit synchronization and

contention for shared resources. Therefore, Petri nets have been claimed to be an ideal

modeling tool for FMS's.

The objectives of this thesis are as follows:

1. To model AT&T Flexible Assembly Station for Printed Circuit Board at NJIT [19].

2. To study the operation of the System via Petri net.

3. To present an overview on Simulation and the IGRIP software [15].

4. To build the Petri net model in Silicon Graphics using IGRIP software.

5.. The Petri net model constructed in the IGRIP is simulated and animated using

Graplhics Simulation Language (GSL).

Chapter 1 : INTRODUCTION 5

1.3 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

Chapter 2 gives a reveiw of Petri nets. In Chapter 3, a discussion on the

application of Petri nets to modeling discrete event systems is presented. Specific

attention is paid to the modeling and analysis of a flexible assembly system. In Chapter 4,

a general overview of the simulation and the software !GRIP is dicussed. along with the

steps as to how the simulation is acheived for the Petri net model are dicussed in Chapter

3. In Chapter 5, contributions, limitations, and the future work to be done are presented.

Chapter 2 : PETRI NET THEORY 6

 CHAPTER

2

PETRI NET THEORY

2.1 INTRODUCTION

Petri nets will be used throughout the thesis as a tool for modeling,

analyzing, and simulating the existing physical Flexible Assembly Station for Printed

Circuit board. Because of the various features of Petri nets they are very appropriate for

modeling flexible manufacturing systems. They lead to a description of a system that can

be investigated analytically, simulated and implemented for control [1, 2] .

A Petri net is an abstract, formal model of information flow. The properties

concepts and techniques of Petri nets are being developed in a search for natural, simple

and powerful methods for describing and analyzing the flow of information and control in

systems, particularly systems that may exhibit asynchronous and concurrent activities.

The major use of Petri nets has been the modeling of systems of events in which it is

possible for some events to occur concurrently, but there are constraints on the

Chapter 2 : PETRI NET THEORY 7

concurrence of precedence of these occurrences. This chapter reviews the Petri net

theory

2.2 BASIC DEFINITIONS

2.2.1 Structure of a Basic Petri Net

I intend to use Petri net to model the Flexible Assembly Station in this thesis.

Place-Transition nets are special bipirate graphs. They are also known as Petri nets. An

example of Petri net is shown in Figure 2.1. The standard Petri net model or a Petri net

graph is defined by a set of places, a set of transitions and a set of directed arcs which

connect places to transitions or vice versa. Places are represented by circle, transitions

by bars and connection between them by arcs. If an arc is directed from node i to node j

ie., either from place to transition or transition to place, then i is an input to j and j is an

output to i. Places may contain tokens represented by dots. A Petri net with tokens is a

marked Petri net. The marking of a marked Petri net is a vector, the elements of which are

given by the distribution of tokens in the places of the net.

A marking represents the state of system being modeled. Generally places

represent conditions and transitions represent events. A place is an input(output) place of

transition is an arc which is exists from place(transition) to the transition(place). The

dynamic behavior of a system is modeled as follows: the occurrence of an event (state

change) is represented by the firing of corresponding transition. The movement of tokens

in the net resulting from the firing of one or more transition represents a change in the

state.

To complete the definition, it is necessary to define the relationship between

places and transitions. This is done by specifying two functions connecting transitions to

places: I, the input function and 0, the output function.

Chapter 2 : PETRI NET THEORY 8

In a Petri net graph, the input and output functions are represented as arcs

going from places to transitions and transitions to places respectively. An arc is directed

from place p; to transition ti if the place is an input of the transition. Similarly an arc is

directed from a transition tito place A if the place is an output of the transition. A Petri net

is thus a directed graph, since the arcs are directed.

Moreover, since the Petri nodes can be partitioned into two sets (places and

transitions) such that each arc is directed from an element of one set to an element of the

order of the other set, a Petri net is a bipartite directed graph.

Formally, an ordinary Petri net (PN) is a five-tuple,

PN = (P, T, 0, m) (2.1)

where,

P= { pi, pz..., pri }, n>0, and is a set of n places;

T= t1, t2,..., ts }, s>0, and is a set of s transitions;

/ is an n x s matrix indicating the places which are the input of each

transition. It is a mapping : Px T-4 N corresponding to the set of directed arcs from places

to transitions, where N = {0, 1, 2, }.

0 is an n x s matrix indicating the places which are the output of each

transition. It is a mapping : P x T --> N corresponding to the set of directed arcs from

transitions to places, where N = {0, 1, 2, }.

Chapter 2 : PETRI NET THEORY 9

m : P---> N and is a marking whose ith component represents the number

of tokens in the ith place. An initial marking is denoted by m0.

These four items are the set of places, the set of transitions, the input function define the

structure of the Petri net [2].

A Petri net graphically consists of :

1. Circles (called places) representing conditions or availability of resources e.g.

machines, parts, data, etc.

2. Bars (called transitions) representing the initiation or termination of an event.

3. Black dot (called a token) in a operation place representing the operation in that place

being executed, while that in a resource place representing the availability of the

corresponding resources.

4. A pattern of tokens in a Petri net (called a marking) representing the state of the

system.

We denote postset and preset as follows :

t t.1. is the set of all output places of transition t •

.ti is the set of all input places of transition ti.

pi
•
 is the set of all output transitions of place pi.

'pi is the set of all input transitions of place pi.

For the Petri net shown in Figure 2.1 :

P = {Pp Po P3, P4, P5, Ps}, T= {ft , t2, t3, t4, t5}

Chapter 2 : PETRI NET THEORY 10

sti = {PI}, .t2= {PA, .t3= {P3}, .t4={134, P5}, .t5 = {P6}

t1 = {133}, tl= {Pth, 13= 11,4, Pth, Li.= {P4, t5.= {/34

• • r„ • r, ,
P3= {t1}, P4 = { t3,t5), P5= {t3}, P6= 112,i

,,,
 41

Pl.= {t1, t2}, P1 = {t2}, P; = {t3}, P4.= {t4}, P5 = {t4, Pi= {tth

11000 0 0 0 o 6
01000 0000 o

/ . oo 1 oo o . 1 000
o o o 20 00101
00010 00100
00001 01010

Figure 2.1: Example of PN

Chapter 2 : PETRI NET THEORY 11

2.2.2 Marking of a Petri Net

A marking of a Petri net is an assignment of tokens to the places in that net.

Tokens reside in the places of the net. The number and positions of the tokens in a net

may change during its execution. On a Petri net graph, tokens are represented by small

solid dots inside the circles representing the places of the net. Since any number of the

tokens can be assigned to the places, there is an infinite number of markings for a Petri

net.

m = [m1, m2,..., m„]t is an n-dimensional integer valued vector indicating the number of

tokens in each place, with each element corresponding to one of the places, and is known

as the marking of the Petri net.

T
For the example of Figure 2.2 : m = [1, 0, 0, 2, 0, 1]

Figure 2.2: Example of Marked PN

Chapter 2 : PETRI NET THEORY 12

2.2.3 Rules of Operation

A Petri net executes by firing transitions. A transition may fire if it is enabled.

A transition is enabled if each of its input places has at least l(p, t) tokens in it. A transition

fires by removing one token from each of its input places and then placing one token into

each of its output places. The movement of tokens through the Petri net graph represents

the flow of information or control in the system.

Hence, a transition t is enabled by marking mo if every input place of this transition con-

tains at least l(p, t) tokens, i.e., V p E .t, mo(p) ?_ I(p,t)

Every transition enabled by marking mo can fire. When a transition fires l(p,

t) tokens are removed from each of its input places and 0(p, t) tokens are added to each

of its output places. Therefore a new marking m1 obtained by the firing of transition t,

verifies for each place p.

Using the matrix form, we have

mi(P) = mo(P) - /(P,t) + 0(P,0 V p E P (2.2)

Tokens are indivisible i.e. a token can be removed from a place by only one transition.

Except for the above restrictions, firing of transitions proceeds in an asynchronous

manner.

For example in the Petri net shown in figure 2.2, t1 is enabled, but not t2.

After t1 has fired once, the new marking is : m1 = (0, 0,1,2, 0,1)1

This is represented as :

t
mo -4 m1

Chapter 2 : PETRI NET THEORY 13

For any transition ti and all places pi (le {1, 2, ..., n)), the relation (2.2) can be written in

a compact form as :

m/ = mo + (0 - 0 • Xj= mo + CXj (2.3)

where,

X.1 is a m-dimensional vector with all components equal to zero except the ith one, which

equals 1 : X,= (0, 0,...,1,...0)2 and

C. 0 - /

2.2.4 Incidence matrix

The incidence matrix denoted by C, characterizes the structure of the Petri

net in the following way : the columns of the matrix corresponds to the transitions of the

net and the rows to the places. C is therefore, an n x s matrix, such that:

C(p, t) = 0(p,t) - l(p,t) e p e P, V tE T

For example the Petri net in figure 2.1 has the following incidence matrix,

—1 —1 0 0 0
0 —1 0 0 0

C = 1 0 —1 0 0
0 0 1 —1 1
0 0 1 —1 0
0 1 0 1 —1

Chapter 2 : PETRI NET THEORY 14

2.3 BASIC PROPERTIES OF PETRI NETS

Once the system is modeled using Petri nets it is essential that the Petri nets

support for analysis of many properties and problems associated with concurrent

systems. In this basic definitions and results pertaining to the behavioral properties ie., the

Petri net model which depends on initial marking is discussed [13].

1. RECHABILITY

This is a fundamental basis for studying the dynamic properties of any

system. According to the transition rule, once the firing of an enabled transition occurs,

there may be a change in the distribution of tokens in the net. Then a marking m is said

to be reachable from marking mo if there exists a sequence of firings that transforms mo

to m.

2. ROUNDEDNESS

A Petri net is said to be k-bounded if the number of tokens in each place

does not exceed a finite number k for any marking reachable from m0. Also a Petri net is

bounded, if for each place in the net, there exists an upper bound to the number of tokens

that can be there simultaneously. A Petri net is said to be safe if it is 1-bounded, i.e., if

k=1.

Mathematically a Petri net is k-bounded if,

m(p) 5 k, VME R(m0), Vpe P

Chapter 2 : PETRI NET THEORY 15

In a manufacturing environment, the boundness or safeness of a Petri net

indicates the absence of overflows in the modeled system [9, 11]. For example, a buffer

in the production facility will have a finite capacity, and its representation as a bounden

place will guarantee that the resulting control code will not allow this capacity to be

exceeded. Safeness means no more than one token will mark the place. This implies that

there is no possibility to restart the ongoing process if the place represents the process.

For instance, if a place represents a machine that can only process one part at a time,

safeness would guarantee that no other parts are loaded until the current one is

completed. If a place happens to represent the availability of a single resource, then this

place must be safe.

3. LIVENESS

A Petri net is said to be live if, no matter what marking has been reached

from mo, it is possible to ultimately fire any transition of the net progressing through some

further firing sequence.

Mathematically a net is said to be live if,

V t E T and V m E R(mo), there exists a sequence of transitions a, such

that firing a leads to a marking which enables t.

A transition that cannot fire is a redundant transition and can be eliminated

from the net. However, if such a transition exists in a net model, it needs to be identified

since it may represent an error in the model or an inconsistency in the system being

modeled. A transition is dead in a marking if there is no sequence of transition firings that

can enable it. A transition is potentially firable if there exists some firing sequence that

enables it. A transition is live if it is potentially firable in all reachable markings.

Chapter 2 : PETRI NET THEORY 16

Liveness is tied to the concept of deadlock and deadlock-freeness, as

related to the modelling of operating systems [11]. Thus it may be important not only that

a transition be firable in a given marking, but that it stay potentially firable in all markings

reachable from that marking. If this is not true, then it is possible to reach a state in which

the transition is dead, perhaps signifying a possible deadlock.

4. REVERSIBILITY

A Petri net is said to be reversible, if for each marking m in R(m0), mo is

reachable from m. Thus in the reversible net one can always get back to the initial marking

(including failure states) [14].

Mathematically a net is said to be reversible if,

V m E R(mo), if m0 E R(m)

i.e. there exists a sequence of transitions whose firing lead m to m0.

5. COVERABILITY

A marking m in a Petri net is said to be coverable if there exists a marking

m1 in R(mo) such that m1(p) m(p) for each p in the net.

Mathematically the net is said to be coverable if,

m1 € R(mo), 3 m1(p) __ m(p), V p E P

Chapter 2 : PETRI NET THEORY 17

6. PERSISTENCE

A Petri net is said to be persistent if, for ant two enabled transitions, the firing

of one transition will not disable the other. Also, in a persistent net a transition once

enabled will stay enabled until it fires.

7. CONSISTENCY

A Petri net is consistent if and if only there exists a marking m and a firing

sequence o such that, o brings the marking m of the net back to itself. and o contains

each transition at least once. o is called a cyclic firing sequence. Also, consistency is

different from reversibility in the sense that in case of reversibility, guarantees

consistency but not vice versa.

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 18

 CHAPTER
3

SYSTEM MODELING
WITH PETRI NETS

3.1 SYSTEM MODELING WITH PETRI NETS

Analytical methods have gained widespread acceptance as a powerful and

inexpensive tool for the performance evaluation and predictions of the systems. They

provide accurate and robust performance indices, even in the case of complex

multiprocessor computer systems. This is of great importance, since the simulation and

the setup of prototypes for this type of computing systems is rather inexpensive.

Petri nets a graphical tool very well suited to the description of distributed

and concurrent systems which exhibit synchronization and contention for shared

resources, have been widely used for modelling logic controllers, computer networks,

communication protocols, operating systems, as well as production systems. This chapter

discusses how Petri nets can be used to model such systems.

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 19

3.1.1 Theory

In many fields of study, a phenomenon is not studied directly but indirectly

through a model of the phenomenon. A model is a representation, often in mathematical

terms, of what are felt to be the important features of the object or system under study. By

the manipulation of the representation, it is hoped that the new knowledge about the

modeled phenomenon can be obtained without danger, cost, or inconvenience of

manipulating the real phenomenon itself.

Most of the systems we want to model are quite complex. For example,

computer systems are very complex, often large, systems of many interacting

components. Each component can be quite complex, as can its interaction with other

components in the system. This is also true of many other systems. Economic systems,

legal systems, traffic control systems, manufacturing systems and chemical systems all

involve many individual components interacting with other components, possibly in

complex ways. Thus despite the diversity of systems which we want to model, several

common points stand out. These should then be featured as a useful model of these

systems. One fundamental idea is that systems are composed of separate, interacting

components. Each component may itself be a system, but its behavior can be described

independently of other components of the system except for well-defined interactions with

other components. Each component has its own state of being. The state of a component

is an abstraction of the relevant information necessary to describe its (future) actions.

Often the state of a component depends on the past history of the component. Thus the

state of the component may change over time. The concept of "state" is very important to

modeling a component. For example, in a model of hospital, the state of a patient might

be critical, serious, fair, good, or excellent. The components of a system may exhibit

concurrent behavior. Activities of one component of a system may occur simultaneously

with other activities of other components. In a computer for example, peripheral devices

such as, card readers, line printers, tape drives and so on, may all may operate

concurrently under the ultimate control of the computer. In a factory a number of activities

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 20

take place simultaneously. The concurrent nature of activity in a system creates some

difficult modeling problems. when the components of a system interact, it is necessary for

synchronization to occur. The transfer of information or materials from one component to

the other requires that the activities of the involved components be synchronized while the

interaction is occurring. This may result in one component waiting for another component.

The timing of actions of different components may be very complex and the resulting

interactions between components become difficult to describe.

The development of high speed computers has greatly increased the use

and usefulness of modelling. By representing the system as a mathematical model,

converting that model into instructions for a computer and thereby running the computer,

it is possible to model larger and more complex systems than ever before. This has

resulted in considerable study of computer modeling techniques and of computers

themselves. Computers are involved in modeling in two ways: 1). computational tool for

modeling and 2). as a subject of modeling.

The use of analytical models requires good background in applied

probability theory as well as some experience in the modeling field. Indeed, it is very

important to include in the model those features of the system that have a significant

impact on the performance indices of interest, while not unnecessarily complicating the

model with too many details.

For this reason the availability of high level interfaces for the specification of

a stochastic model is extremely important. Queueing theory has long been used for this

purpose. Indeed, it is much simpler to specify a model in terms of a network of queues

rather than directly at the level of the associated stochastic process. Moreover, a

queueing network model is much better understood by a non specialist than a lower level

probabilistic description.

More recently, Stochastic Petri nets were introduced to provide a simple

graphical interface to the construction of stochastic models of computer systems. The

advantage of SPNs over queueing networks are two fold. First, they allow one to easily

represent some features of computer systems, such as synchronization, that are not

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 21

easily described with queueing network models. Second, they allow the description of

system at different levels of abstraction, so that the user can choose the one that best

suits his needs. Thirdly, if system behavior is non stochastic in nature, then performance

results can obtained by event driven simulation.

In brief, the Petri net description of systems concentrates on two concepts :

events and conditions. Events are conditions that occur in system and condition describe

the state of various parts of the system. The condition is either true or false. In order for

events to occur, certain conditions, referred to as pre-conditions, must exist. After an

event occurs, these pre-conditions change and another set of conditions, referred to as

post-conditions, become valid. The post-conditions of one event may be pre-conditions of

another and so a sequence of events may occur. By listing the events that take place in

system along with conditions necessary for each event to occur and the conditions that

result after each event, a system can be modeled.

3.1.2 Example

A typical example described by peterson [17] is of a computer system :

• Jobs appear and are put on an input list. When the processor is free, and there is a

job on the input list, the processor starts to process the job.

• When a job is complete, it is placed on an output list, and if there are more jobs on

the input list, the processor continues with another job; otherwise it waits for another

job. .

This is a very simple system composed of several elements : the processor,

the input list, the output list and the jobs. We can identify several conditions of interest.

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 22

The processor is idle : pi

A job is on the input list :132

A job is being processed : p3

A job is on the output list : p4

and several events :

A new job enters the system : t i

Job processing is started : t2

job processing is completed : t3

A job leaves the system : t4

After identifying the conditions and events of this system, it can be modeled

using Petri nets. The Petri net model thus obtained is as shown in Figure (3.1).

Figure 3.1 : Petri net model of a simple computer system

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 23

3.2 PROPERTIES OF PETRI NETS IN MODELING

In the Petri net model, unrelated events can occur independently and in

effect simultaneously. Another major feature of Petri net is their asynchronous nature.

There is no inherent measure of time or flow of time in a Petri net except for timed

transition. The Petri net structure itself contains all necessary information to define the

possible sequences of the events for the modeled system.

A Petri net can reflect a real-time situation where several things are

happening concurrently. The order of occurrence of events is not unique so that any set

of may occur. While non-detrministic is advantageous from the modeling point of view, it

introduces considerable complexity in the analysis of Petri net. To reduce this complexity,

one limitation is generally accepted in the modeling of systems by Petri net; the firing of

a transition is considered to be instantaneous. The exception is the fore mentioned timed

transition. Petri nets are also used for analyzing and synchronizing nature events, like the

dining Philosophers problem explained by J.L. Peterson.

3.3 MODELING OF A FLEXIBLE PCB ASSEMBLY SYSTEM

The AT&T FWS200 flexible robotic assembly system for printed circuit

boards include the following components:

1. Robots to perform assembly operations

2. Tools provided to robots

3. Feeders to supply components

4. Conveyors to supply boards.

The above mentioned systems have different layouts, hence it is essential

to have the optimal sequence of component insertions/placements which vary from one

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 24

board to another. Also some insertions may be more restricted than others, as different

insertions may require different robots with perhaps different tools. In order to achieve

global optimum, all these tasks must be well planned and their operations should be

coordinated.

3.3.1 Modeling Issues

The first important issue is the modeling of sequential operations for each

robot in the system. For example, after certain layout of the system such as sequence of

assembly tasks, sequence of component insertions, and locations of feeders have been

determined, there exists a problem of planning robot operations including pick-up,

transport, insertion, etc., and making decisions in case of robot failures. Hence a certain

order of operations needs to be followed by each robot in the system [19].

The second modeling issue is synchronization. For example, a robot will

pick up a component only when it is present. It will never finish pick up operation if the

component is missing. Similarly, the PCB to be assembled has to be present before the

insertions of components can be fulfilled. Also, when other resources are needed to

complete the operation, they must also be available and ready.

The third issue is modeling of concurrency. Concurrency means that there

are parallel relations among the concerned events [18]. For example, two physical events

pick up a part by robot1 and pick up a part by robot2 are concurrent if both the events

occur simultaneously. High concurrency among system resources implies high

productivity.

The fourth issue in modeling is the conflict. This is because of the resource

sharing or sharing of the space. The mutual exclusion concept proposed in [21, 20] is

especially useful to model the characteristic of resources shared by independent

processes or sequentially related ones.

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 25

3.3.2 System Description

The major components of the AT&T FWS200 flexible workstation shown in

Figure (3.2) for which the Petri net model is constructed is as follows [19]:

1. The frame structure supports the control cabinet, robot arms, platen, work table, etc.

2. The Control Cabinet houses hardware including an AT&T personal computer, Industrial

I/O modules and STD bus, control electronics, display, pneumatic and ventilation

systems, and power supplies.

3. The Robot Arms are able to accomplish pick and place operations, with their X, Y, Z

and 0 motions in high accuracy (+/-0.001 in. along X, Y, Z axes and +/-0.150 about

Z axis).

4. The AT&T PC 6386 computer serves as the supervisory controller for the system.

5. The Drive Electronics contain the electronics for controlling the various axes, with two

servo motor amplifiers for separate Z and 0 motions and a stepper motor amplifier for

both X and Y motions.

6. The Control Panel contains power buttons, touch display, pressure and vacuum gauges

and include IRI SV512 and ICOS M1000 modules.

7. The Peripheral Equipment includes part feeders and others.

The above system is used to accomplish tasks such as assembly of surface

mpunt components, assembly of through hole components etc. The common work area

is .24" x 32"

3.3.3 Operation of the System

The working cycle of the above system without considering the tool

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 26

Figure 3.2 : AT&T Workstation

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 27

changes, insertion failures and robot errors is as follows:

1. Initially the PCB area, feeder area, components for robot1 and robot2, and the robots

themselves are available.

2. Depending on the timing, the robot 1 picks up a component which is available for it from

the feeder area.

3. Once the component is picked by robot 1, it moves into the PCB area thereby making

the feeder area available for robot 2.

4. The robot 1 then inserts the component, and in the meantime the robot picks up the

component available for it from the feeder area.

5. After the component insertion by robot 1 is completed, it moves away from the PCB

area thereby, making the PCB area available for robot 2.

6. The robot 2 now moves into the PCB area, thus leaving the PCB area available for

robotl.

7. The robot then inserts the component and moves outfrom the PCB area, during which

robot 1 is ready to pick up component from the feeder area.

8. The cycle repeats.

3.3.4 Petri Net Execution

In a dedicated production line for assembly of PCB, a robot does repeatedly

the following jobs: picking-moving-inserting-moving. Like such a robot, each arm of the

FWS-200 workstation can do these jobs. However since both the arms work on the same

circuit boards and obtain components from the same feeder area, avoidance of arm

collision has to be considered. Collision avoidance can be achieved by mutual exclusion

structure. Thus when one robot is doing a job above the PCB area, the other is prohibited

from moving into the same area. Mutual exclusion structure is also used in the feeder area

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 28

because of the possible collision which may occur even in this area. Using the mutual

exclusion theory developed by Zhou [18, 21, 20], conclude that the net is live, safe, and

reversible. These properties gaurentee the following important charecteristics of the

system:

1. The liveness implies that the system is free from deadlock.

2. The safeness of a resource place such as p1 and p2 guarantees that the modeled

resource is unique. The safeness of an operation place such as p12 and p22

guarantees that there will not be any attempt to re-initiate any ongoing operatio until

it is completed.

3. The reversibility implies that the system can be restarted, i.e. it can return to its

begining state from any current state. This guaranrees the repetitive operatios of this

system.

For the above activities of the system, the design of the Petri net model is

as shown in Figure (3.3). The meaning of places pi (i = 1 to 25) and transitions tj (j = 11 to

25) is explained in Tablel. R1 and R2 represent Robotl and Robot2 and their activities

respectively.

Table 1. Places and Transitions in the Petri net of Figure 3.3

p1 : Robotl ready 111: Completion of Robotl picking the component

p2 : Robot2 ready from the feeder area

p3 : Feeder area available t12 : Availability of feeder area and non-availability of

p4 : PCB available PCB area

p11: Component for Robotl available t13 • Completion of Robotl moving into PCB area

P12 : Robotl picking the component t14 : Completion of insertion by Robotl

p13 : Robotl moving into PCB area t15 : Completion of Robotl moving out of PCB area and

p14 : Robotl inserting component there by making the PCB area and Robotl available

p15 : Robotl moving out of PCB area t21 : Completion of Robot2 picking the component from

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 29

p21 : Component for Robot2 available the feeder area

p22 : Robot2 picking t22 : Availability of feeder area and non availability of PCB

p23 : Robot2 moving into PCB area area

p24 : Robot2 inserting t23 : Completion of Robot2 moving into PCB area

p25 : Robot2 moving out of PCB area t25 : Completion of Robot2 moving out of PCB area and

thereby making the PCB area and Robot2 available

The sample of complete cycle of the system operation of the system is

illustrated by Petri nets as shown in Figures 3.3 to 3.14, when the assumption is made

that Robort1 is prioritized.

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 30

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 31

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 32

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 33

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 34

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 35

Chapter 3 : SYSTEM MODELING WITH PETRI NETS 36

Chapter 4 : SIMULATION 37

 CHAPTER

4

SIMULATION

4.1 INTRODUCTION

Simulation is the technique of constructing and running a computer model

of a real system in order to make dynamic analysis without disrupting its environment,

prior to its implementation. Simulation provides requsite information to determine the

feasibility of a system by studying it under totally dynamic conditions. It is used to

construct and display mathematical models with the same constraints as those of the

actual robots, so as to manipulate and visualize the three dimensional models accuretely.

It is also a real time analysis and control tool as it allows the designer to visualize motions

at every stage of the cycle in real time. It also helps an engineer select the best robot for

the job based on interference checks, and recahability of various points in the workcell.

Various studies like cycle time analysis and collision detection help in optimization.

Chapter 4 : SIMULATION 38

Simulation systems provide significant time savings in the layout and

modeling of robotic work cells. Furthermore, as manufacturing equipment becomes more

integrated complex and costly, these systems provide added assurance in cell layout

optimization. It has been estimated that the task of implementing a robotic workcell is

devoted to cell layout, equipment design, robot selection, and hardware mockup of the

workcell. Remaining efforts are in the programming and actual implementation of the

factory floor.The general characteristics of a simulation systems as well as the salient

features of the !GRIP, the simulation system used in this work, are discussed. They are

examplified by the design of Petri net animation and simulation for the flexible assembly

workstation dicussed in Chapter 3.

4.2 CHARECTERISTICS OF A SIMULATION SYSTEM

The main objectives of simulation system:

1. Improved Accuracy

2. Improved Communication

3. Reduces Development Time

A simulation system should have good graphics capabilities as well as solid

modeling modules so that the user can validate the model accuracy and completeness.

It should also allow the import of standard file format such as IGES (Initial Graphics

Exchange Specification). The system should be user friendly to enable easy, interactive

modeling and simulation. Ability to simulate different operations like painting, welding,

etc., is desired to increase the system's versatility. Features like collision detection and

cycle time analysis are a must to assist in optimization. The user should have an access

to a database of the most commonly used robots. The system should be able to simulate

the kinematic and dynamic behavior of the robots. The simulation system should possess

Chapter 4 : SIMULATION 39

the capability of interfacing with the shop floor equipment so as to download the simulation

sequence directly to the robot controller.

Simulation should be continued even after workcell implementation on the

shop floor for optimization. The underlying philosophy is to provide a dynamic, interactive

environment on a high-performance engineering workstation and to be able to shorten the

design/evaluation cycle as well as optimize the operations.

4.3 IGRIP

IGRIPTM (Interactive Graphics Robot Instruction Program from Deneb

Robotics, Inc.) is a user-friendly computer graphics based simulation system for workcell

layout, simulation and off-line programming (OLP). Parts modeled within the Part Modeler

(CAD Context) are put together to define Devices with multiple degrees of freedom. A

Device has both geometric and non-geometric information stored with it. Non-geometric

information like kinematics, dynamics, velocities etc. can be entered through interactive

menus. A workcell is composed of devices, positioned relative to each other

(WORKCELL Context). Devices may be selected from library of robots, conveyors, and

effectors or modeled by the user in the Device context. IGRIP has the capability to

generate robot programs interactively (MOTION Context). Several Devices may be

simulated simultaneously with Input/Output signaling between them.

4.3.1 Invocation

The IGRIP simulation system is invoked by changing to the /user/deneb/

igrip.4d directory, where the igrip executable file resides. Enter 'cd/usr/deneb/igrip.4d'

after logging in to the SGI (Silicon Graphics) workstation. Enter 'igrip -f' to invoke the

Chapter 4 : SIMULATION 40

fullscreen mode of IGRIP. At this point IGRIP's main menu should appear.

The IGRIP menu system is divided mainly into Contexts, which are arranged across the

top of the IGRIP screen, each which has a group of subdivisions called Pages. The

Contexts are :

1. CAD The CAD Context allows the user to create and modify 3-D surface or wireframe

geometry used to represent parts.

2. DEVICE he DEVICE COntext allows the user to build and modify devices by putting

together the Parts built in the CAD context.

3. LAYOUT The LAYOUT Context allows the user to lay out a workcell. This includes

positioning Devices, creating Paths for motion definition, connecting I/O signals and

creating Collision Queues.

4. MOTION The MOTION Context allows the user to define and execute motion for

Devices. Motion can be commanded interactively or through Program control (when

running a simulation). Simulation programs can also be downloaded to specific

controller or generic formats.

5. DIMENSION The DIMENSION Context allows the user to create and manipulate

various kinds of dimension entities to document workcell layouts and geometric data.

Dimensions are fully three dimensional planar entities, and can be translated and

rotated in space with respect to coordinate system that is local to the dimension.

Dimensions are also dynamically associative, or "data-driven", which implies that the

dimensions are attached to geometry, and are continuously updated to reflect the

current state of that geometry.

6. USER The USER context allows customization of the user interface to define custom

Menu Pages with functions taken from other Pages, or functions to invoke CLI

(Command Line Interpreter) macro files.

7. ANALYSIS The ANALYSIS Context allows user to perform various forms of analysis.

Functions on the MEASURE Page allow identification of various items in world , as well

as the determination of the distances and the angles between them. The units for

Chapter 4 : SIMULATION 41

reporting as well as the frame of reference may be set by the user. Entity properties

such as area and volume may be queried using functions on the PROPERTIES Page.

All analysis functions utilize "Analysis Registers" that can be used in conjunction with

IGCALC. Some of the Registers and the data values they represent are :

- c: Value of the current Popup field

- p: Last value entered

- x, y, z: x-, y-, and z-coordinate of a point respectively

- dx, dy, dz: Distance in the x-, y-, and z-direction respectively

- d: Total Cartesian distance

- V: Object volume

- A: Object area

- dia: Polygon diameter

- ang: Angle between entities

- R, P, Y: Pitch, and Yaw angle about Z-, Y-, and X-axis respectively.

8. SYSTEM The SYSTEM Context provides system utilities to modify the system

environment and world attributes as well as to interact with UNIX file system.

9. CLI The CLI (Command Line Interpreter) Button is used to enter CLI commands

interactively. This enables the expert user to type in a command from any Context

without switching to the relevant Context.

4.3.2 CAD

Before beginning the design of Parts, the units should be set up (if other than default ,

mm, is desired) as below :

1. Select the ANALYSIS context. Select the UNITS Button and enter the new units in

the Popup (or use the LMB to select from the choices),. The new units will be used for

all the subsequent operations.

Chapter 4 : SIMULATION 42

2. To actually design the Parts, select the CAD context and click on the CREATE Button

to go to the CREATE page. The CAD context is used to model the geometry used to

design Parts, which consist of one or more Objects which in turn comprise one or more

Subobjects composed of Lines and Polygons.

3. Objects are created using the CAD primitive Block, Cylinder, Cone, Wedge, Pipe, and

sphere. These objects are modified using the CAD operators such as Cut, Mirror, Loft,

Clone, Extrude & Revolve. From MODIFY page, use Merge, Smash, Scale, Cut, Color

Object, and Extract Obj to further modify the Objects. From Auxiliary page, create

Coorsys to assist in attaching subobjects to make up an Object.

The places (blue circles), transitions (green bars), arcs (yellow lines),

enabled transitions (red bars), and tokens (red dots) are all constructed at the Systems

cordinate system using the CAD primitives, defining the required dimensions as shown in

Figure 4.1. Once the required number of objects are created, cloned, translated and

roated, they are saved at the it the coordinate system.

4.3.3 DEVICE

To build a new Device , use the following procedure:

1. Select the DEVICE Context, then the NEW DEVICE Button. You will be placed in the

syslib/PARTS directory. Select the appropriate directory on the Popup to move to your

directory.

2. Select the part to be used as the base of the new device.

3. Enter a name for the Device and accept the defaults for the Device parameters in the

Popup.

4. Select the AXES Button, then pick the Part that was just retrieved, to force the

coorsyses to always stay visible.

C
ha

st
e
r

4
: S

IM
U

LA
TI

O
N

F
ig

ur
e

4.
1:

 C
A

D
 p

ri
m

iti
ve

s
of

 IG
R

IP
 u

s

ed

 f
o

r
m

odeling

Chapter 4 : SIMULATION 44

5. Select the ATTACH PART Button and then pick the base of the Part to indicate the

Part that the new Part will be attached onto.

6. Choose the other Parts and then the key Coorsyses, placed in the CAD Context to

facilitate easy positioning of the Parts.

7. Select the KIN Page, and select the JOINT TYPES Button. This is where the

Translational vs Rotational dof are assigned at each joint. Change these first three to

be Translational and accept the default, Rotational for other three joints.

8. Select the SET DOF Button and pick the Part which is supposed to move along X-

and Y-axis. The "Link Transformation" Popup is used to describe how the Joint

should move. The most common choices are to Translate along an axis, or to

Rotate about an axis.

9. First specify " Set Home", next specify "Trans X" enter a 1 for the

10. Translate X Expr:" finally select "Return". The "Set Home" option indicates that the

system should use the current location and orientation as the "zero" position

whencalculating the location. The "Trans X" option defines motion along the Part's X

axis. This motion is tied to degree of freedom number 1. In other words, Joint 1 is a

Translational Joint that moves positive in the parts positive direction. The "Return"

choice completes the DOF definition. It is possible to have more than one DOF

number for the same part, as also to have one DOF number control motion for many

Parts, in many different directions, as well as mixing types of motion.

11. Select the other Parts and repeat the above except choose "Trans Y", "Trans Z",

"Rotate Z", "Rotate Y", and "Rotate X" with DOF numbers 2,3,4,5 and 6 respectively.

12. Now select the KINEMATICS Button and choose the "Inverse Kinematics" option

from the Popup.

To model a new device the kinematics of any existing Devices can be used, in the

following conditions are satisfied:

1. The base coordinates systems for each part on each device must match exactly.

The Positive/negative directions of rotation must be identical.

Chapter 4 : SIMULATION 45

2. The number of dofs for both devices must be same.

3 The type of dof must be the same in both Devices(i.e, ROTATIONAL vs

TRANSLATIONAL). Selecting 'Device Kinematics' from the displayed Popup

allows the user to select any device existing in the DEVICE directory. The

Device being built will assume the kinematics math-routine defined for the

Device name selected from the file-list Popup. Note that if a theparameters

mentioned above (link lengths, link offsets, link types, mounting plate offset, or

DOF definition) do not match those of the selected Device, the new Device will

not be able to reach its points.

13. Select JOINT LENGTHS. This is where the D.H parameters (The Denavit Hartenberg

notation is used to represent the robot kinematically using link lengths and offsets

based on the coordinate system of each link fixed at arbitrary locations i.e, lengths

between base coordinate systems as well as offsets from the principal lane) are

assigned.

14. Select BASE PRT and pick the Part of the Device which is serve as the base. Use

UFRAME under the MOTION Context to verify by picking the 'Display' option from the

Popup, that the UFRAME is the base Coorsys of the Base Part.

15. Select the MNT PLT Button. Here the user graphically selects the part which

represents the device mounting plate and defines the offset values. Use UTOOL

Button under MOTION Context to set Tool Point. Pick 'Display' from the Popup and

verify the Tool Point.

16. Select HOME POSITION Button and set the home position to be the current Joint

value by choosing the "Use Current Position" option in the Popup.

17. Select the SPEEDS Button located under the LIMITS Title and complete the Popup.

Select the ACCELS Button and set the maximum accelerations.

18. Select the TRAVEL Button and set the travel limits.

19. This completes the definition of the new Device. If any modifications are necessary,

Chapter 4 : SIMULATION 46

use REDEFINE DEVICE Button and make the requisite changes in the Popup.

20. Finally, select SAVE DEVICE Button and complete the Popup with the name of your

directory and the filename.

In this module, the parts created in the CAD module are retrieved and the

required number of parts are cloned, rotated, translated inorder to construct the Petri net

as shown in Figure 4.2. Also the enabled transitions (red bars) and the tokens are

retrieved from the CAD module, then they are translated, roated and saved at respective

positins. Kinematics are applied to all the parts retrieved in the DEVICE module.

4.3.4 WORKCELL

To layout a Workcell, follow the steps below:

1. Select the LAYOUT Context and the WORKCELL Page.

2. Select the RETRIEVE DEVICE Button. Choose your directory from the Popup, and

pick the relevant Device.

3. Select the AXES Button; this will toggle the Device's display mode so that it's

Coorsyses are always displayed.

4. Select the RETRIEVE DEVICE Button again to pick the other Devices to be laid out

in the Workcell.

5. Select TRN DEV or ROT DEV to arrange the Devices in the Workcell. The SNP Button

is a quick way to do 90 degree rotations about the primary axis. The LMB rotates

about X, MMB about Y, and the RMB about the Z axis. If any Devices are to be

attached to another Device, select SNAP DEV Button. Choose the 'Frame' option

from the "Snap Device On..." and pick the Coorsyses on the Device.

6. Select the ATTACH Button using the MMB(Middle Mouse Button). This will give a list

of all the Devices that are currently in the Workcell. Choose a device and pick a part

Chapter 4 : SIMULATION 47

Figure 4.2 : Petri net model as Device

Chapter 4 : SIMULATION 48

on the Device to attach it to. The part should highlight and any Coorsyses, if present,

will appear. Pick the right Coorsys and the Device will snap onto the part using the

orientation of the Coorsys.

7. At this point, the locations and orientations of each Device should be saved. Move to

the SYSTEM Context, WORLD Page, and pick the SAVE POSITIONS Button.

Choose the "All Devices" option from the "Save/Restore Positions" Popup. This

establishes "Restore Positions" for the location and the Joint values of each Device.

This can be used as the starting point when running simulations. If this is not done,

when the simulation is RUN using "Previous Values" all the Devices jump to the World

Origin.

8. Use the World Display functions to move to a view of the Workcell that shows most

of the Devices, and save the Workcell using SAVE WORKCELL Button.

In this module all the devices created in the DEVICE module are retrieved

and arranged as a layout by using the translation and rotation option. The workcell is

saved as per the arrangement of the devices as shown in Figure 4.3.

4.3.5 Tag Points

Tag Points are primarily used to indicate destination positions for robot

motion. The user places Tag Points at the desired location and orientation and then,

instructs the robot to move to the Tag Point position.

Tag Points may be set up as follows:

1. Select the LAYOUT Context and then the RETRIEVE WORKCELL Button. Choose

the Workcell from the Popup.

2. Select the TAGS Page and then the NEW PATH Button, pick the Device to attach the

Path to.

F
i lure

 4.3
 : Petri ne

t m
odel in

 the W
orkcell

C
ha

pte
r 4

 :

S
IM

U
LA

T
IO

N

4
9

Chapter 4 : SIMULATION 50

3. Select the SETUP Button and complete the Popup. This allows you to constrain or

free the Degree of Freedom.

4. Select the SURFACE Button and then, using the LMB(Left Mouse Button), pick the

surface to snap the Tag Point onto. You may also select the VERTEX, EDGE, FRAME

Buttons as appropriate.

5. If the orientation of the most recently created Tag Point is desired for subsequent Tag

Point placements, pick the surface with the RMB(Right Mouse Button). This will place

a new Tag Point at that position with the same orientation as the previous. If your Tag

Point names end in integer numbers, the new Tag Point will be added to the current

Path and given the next available ending number. If only part of the Tag Point is

visible, part of it is hidden inside of the polygon. You may want to go to the SYSTEM

Context and select the Z-BUFFER Button, it should dehighlight(which means the real

time Z-Buffer is turned off) and all of the Tag Point axes become visible.

This completes the Path layout. To check on the reachability of these Tag

Points, select the T-JOG Button. Pick the Device(Robot) to be T-Jogged when the Tags

are moved. Now the Device will move to any Tag Point, align itself to the Tag Point using

its Utool, and follow it. The Tag Points can be selected one by one to check position and

orientation. If needed, any changes may be using TRN TAG and ROT TAG Buttons.

The tag points are attached to the devices in the workcell by selecting

individual devices, new path and autotag commands. Figure 4.4 shows the tag points

attached to the devices in the workcell.

4.3.6 Input/Output Signals

To layout the I/O connections:

1. Select the LAYOUT Context and the WORKCELL Page. Select the RETRIEVE

Chapter 4 : SIMULATION 51

Figure 4.4 : Petri net model with Tag points

Chapter 4 : SIMULATION 52

WORKCELL Button and retrieve your Workcell from your directory.

2. Select the I/O Page

3. Select the DUAL CONNECTION Button to allow signals to be sent both directions.

Pick the first Device and select I/O 01 as the line you want to connect to it. Now pick

the second Device to connect 01 to. Select I/O 01 as the corresponding file.

4. Select DISPLAY CONNECTION Button and pick the Device whose signals you want

to display. The Popup will show the Device's input 01 coming from the other Device

and it's output 01 going to the other.

All the devices are given dual input/output connections, to assertain that all

the operations are performed sequentially.

4.3.7 PROGRAM

The PROGRAM Page in the MOTION Context is primarily used for Program

Scripting. This is the process of automatically scripting program statements with correct

syntax to a GSL program using menu Buttons. The program statements are executed

when they are scripted so that you can interactively see the effect of each statement. To

use the PROGRAM Page for program writing:

1. Select NEW PROGRAM, pick the Device to be programmed and enter the program

name. A Program Edit Window should appear with a basic program template in it.

2. Select the SYSTEM VARS Button, set the variables desired by choosing the

UNITS,Speed, Motype options.

3. Select the MOVE Button and choose the "Move To" option. Pick the Tag Point to be

moved to and the Device should move to it. If you can't see the Tag Point to pick it,

select the "Move To" option using the MMB(Middle Mouse Button) and the system

will let you select the Tag Point from the list of all available Tag Points.

Chapter 4 : SIMULATION 53

4. You can also add Routines or Procedures, If, While, For conditions to your program

by picking the function Buttons. You can enter text Iike"sim-update" using the GSL

Button and the "Enter Text" option. I/O statements may be added by means of the I/O

Button.

5. To see the program run, move the mouse up in the file until the highlighted line is the

UNITS=METRIC line. Select the EXECUTE Button and watch the system step

through the program.

6. If the program runs satisfactorily, select the WRITE Button located on the left side of

the Program Edit Window. Save the program into your directory.

In this module, individual device is selected and the required program is

return as listed in the appendix.

4.3.8 MOTION

1. Select the MOTION Context, and the SIMULATE Page.

2. Select the RETRIEVE WORKCELL Button and pick the desired Workcell from the

Popup.

3. Select Load using the MMB(this displays a list of all the Devices in the Workcell). Pick

the Device to be loaded, choose the "Load Selected Program"option from the Popup

and pick the program to be loaded into it. If the message window doesn't read

"Program x x x.gsl successfully loaded", there are errors in the Program; choose the

"yes"option from the Edit Program window. The igedit window will appear to allow you

to debug the Program(If vi editor is preferred, change the editor option to vi by picking

the Environ Button under the WORLD Page in the SYSTEM Context).

4. Select the STEPSIZE Button and change the "Simulation Step Size" to be 0.2

seconds, and "Steps per graphic update" to 1. This means that the system will

Chapter 4 : SIMULATION 54

calculate and display the simulation at 0.2 second intervals, and update and display

the graphics every step.

5. Select the ACTIVATE Button and choose the "All Devices" option to activate all the

Devices that have GSL programs loaded into them.

6. Select the RUN Button using the RMB to skip the Popup. This will use the "Previous

Values" for the Device locations, and their Joint positions.

7. The World Display Buttons on the bottom of the screen may be selected and used any

time during a simulation run.

8. To inspect the simulation while it is running, select the CYCLE Button, and then pick

the Device. Choose the "Cycle Time On" option to display a Popup that indicates the

current Cycle Time for the Device. Similarly, to see a display of the Joint values select

the JNT VALS Button.

In this module, all the programs are loaded and the devices are activated to

see the operation of the Petri net model.

4.4 Simulation Set-up:

The simulation set-up is as shown in Figure (4.5). The places (blue cir-

cles), transitions (green bars), arcs (yellow lines) are contructed as one device. The

enabled transitions (red bars) and the tokens (red dots) are constucted as individual

devices. The operation of the net is as explained in chapter 3. For any transition in the

net to fire all the tokens must be present at the transition, if any of the token is not avail-

able, the trasition does not fire.

After all the devices are retrieved into the workcell, the home positions are

restored. If one desires a demonstration run is provided which gives one a better idea of

how the Petri net model for Flexible Work Station operates, thus making the choices to

F
ig

ur
 4

.5
 :
 F

in
a l
 Pe

tr
i n

et
 m

od
el

 f
o r

 S
im

ul
at

io
n

C
h

a
pt

e
r

4
 :

 S
IM

U
LA

T
IO

N

5

Chapter 4 : SIMULATION 56

answer the querries apperent. If one desires to get on with the simulation, the demo can

be hurried along by increasing '»' Button which dobules the step size.

4.5 Running the Simulation :

After logging into the SGI Workstation :

1. Move to the IGRIP directory by entering "cd /usr/deneb/igrip.4d"

2. Invoke full screen mode of the !GRIP by entering "igrip -f"

3. Select the MOTION context and then the SIMULATE page.

4. Select RETRIEVE WORKCELL button, select "suresh", and then from the popup, pick

"test".

5. Select MOTION context.

6. Select LOAD, pick up each component and then pick the appropriate program from

the popup.

7. Select ACTIVATE and choose "All Devices" option from the popup.

8. Select RUN to get the simulation running.

The block diagram of the simulation run is as shown in Figure 4.6

Chapter 4 : SIMULATION 57

Figure 4.6 : Block diagram for Simulation Run

Chapter 6: CONCLUSIONS AND FUTURE RESEARCH 58

 CHAPTER
5

CONCLUSIONS AND
FUTURE RESEARCH

This chapter briefly outlines the contributions of this thesis and dicusses the

results obtained. Therefore some suggestions to enhance the work done are given and

directions for future work, in the application of Petri nets for modeling, analysis and simu-

lation of manufacturing systems are outlined.

5.1 CONCLUSIONS

This thesis is a tutorial on Petri nets and their models, and the begining of

real time simulation of manufacturing systems. The concepts of how the events and con-

ditions of a system can be mapped to the transitions and places of a Petri net model

have been illustrated with examples. The execution of Petri net is dicussed along with

Chapter 6: CONCLUSIONS AND FUTURE RESEARCH 59

some important properties of Petri nets. Also, simulation can be successfully used to

study a typical robotic workcell operation by observing such performance criteria as cycle

time. Cycle time analysis can help the engineer in searching an optimum of the various

parameters such as speed of manipulator offset, usage of two types of manipulators and

the chip placement sequence.

The mathematical model of a flexible manufacturing cell has been built using

Petri nets. The concurrency, resource-sharing, and sequential operations have been built

in this mode. The resulting net model has the system properties such as liveness,

boundedness, and reversibility. Furthermore the deterministic timing information is incor-

porated into the places and transition of this model.

The simulation program allows a layman to run the FWS without prior knowl-

edge of either M2L or the FWS. (GRIP is a very effective simulation package from the

point of view of analysis. The models of actual devices such as robots and automatic

guided vehicles can be visualized in great deal. It is possible to observe the rechability of

various devices. Collisions between the component devices in a workcell can be

detected. Optimizations can be carried out based on cycle time analysis.

New products can be analyzed before purchase to determine suitability for the

desired purpose. Sequences of the animated display can be put on to video tape for

future reference. Pictures of layouts can be printed directly on to a color printer providing

the designer with a series of drawings.

5.2 DIRECTIONS FOR FUTURE RESEARCH

The popularity of Petri nets to model, analyze, design and control of auto-

mated manufacturing systems has grown multiple-fold in the past five years. This is

mainly because Petri nets have a great potential to overcome many difficuties encoun

Chapter 6: CONCLUSIONS AND FUTURE RESEARCH 60

teered in complex automated manufacturing systems. This should allow for true flexibility

and integration. Evidently a lot of work can be done and thus, has to be one in this field.

This thesis provides industrial engineers and academic researchers with a comprehen-

sive real life example of applying Petri net theory to help them develop their own applica-

tions.

Off-line programming of the simulated model can be implemented by down-

loading, and thus it is obvious that the next step is to reverse the process. Uploading is

the process of carrying out an actual run on the FWS and then sending over the data to

the simulation system to enable real-time simulation update and any required modifica-

tions.

Real-time control of the FWS can be implemented using two way communi-

cation. Every motion of the FWS model on the terminal should be replicated by the FWS

on the factory floor. In this case, every step of the simulation run should instantly down-

loaded to the FWS instead of downloading the entire sequence of motions at one time.

At the other end, the FWS should send a signal on completion of motion replecation to

the simulation system. On the other hand, a motion of the FWS on the floor could be rep-

licated on the terminal.

REFERENCES

[1] J. L. Peterson, "Petri nets", ACM Computing Surveys, Vol. 9, pp. 223-252, September 1977.

[2] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc., Engle
wood Cliffs, NJ, 1981.

[3] C. L. Beck and B. H. Krogh, "Models for simulation and discrete control of Manufacturing
Systems," Proceedings of the 1986 IEEE International Conference on Robotics and Auto-

mation, San Francisco, CA, pp.305-310, April 1986.

[4] B. H. Krogh and R. S. Sreenivas, "Essentially decision free Petri nets for real time resource

allocation," Proceedings of the 1987 IEEE International Conference on Robotics and Auto-
' mation, Raleigh, N.C., pp. 1005-1011, April 1987.

[5] C. Ramchandani, "Analysis of asynchronous concurrent systems by timed Petri nets,"

Ph.D. dissertation, MIT, Cambridge, Project MAC Rep. MAC-TR-120, 1974.

[6]J. Sifakis, "Structural properties of Petri nets," Mathematical Foundations of Com-

puter Science, Lecture notes in Computer Science, No. 64, Springer-Verlag, Ber-
lin, FRG, pp. 474-483, 1978.

[7] M. Hack, "Analysis of production schemata by Petri nets," Technical Report 94, MIT, Feb-
ruary 1972.

[8] D. Dobois and K. Stecke, "Using Petri nets to represent production processes," Proceedings
of the 22nd IEEE conference on Decision and Control, San Antonio, TX, pp. 1062-1067,
1983.

REFERENCES 62
[9] Y. Narahari and N. Viswanadham, "A Petri net approach to the modeling and analysis of

Flexible Manufacturing Systems," Annals of Operations Research, vol. 3, pp. 449-472,

1984.

[10] M. C. Zhou, K. J. McDermott, P. Patel, and D. Tang, "Construction of Petri net based

mathematical models of an FMS cell," Proceedings of 1991 IEEE Int. Conference on Sys-

tems, Man, and Cybernetics, Charlottesville, Virginia, pp. 146-151, October 1991.

[11] M. C. Zhou, F. DiCesare and A. A. Desrochers, "A top-down modular approach to system-

atic synthesis of Petri net models for manufacturing systems," Proceedings of IEEE

Robotics and Automation Conference, Scottsdale, AZ, pp. 534-539, May 1989.

[12] H. P. Hillion, "Performance evaluation of decisionmaking organizations using
timed Petri nets," Master's Thesis Report LIDS-TH-1590, Laboratory for Informa-
tion and Decision Systems, MIT, Cambridge, MA., August 1986.

[13] T. Murata, "Petri nets: properties, analysis and applications," Proceedings IEEE,
vol. 77, no. 4, pp. 541-579, April 1989.

[14] M. C. Zhou and F DiCesare, "Adaptive design of Petri net controllers for error recovery

in automated manufacturing systems," IEEE Trans. on Systems, Man, and Cybernetics,

SMC-19, 5, pp. 963-973, 1989.

[15] IGRIP "Simulation System User Manual", Deneb Robotics Inc., Version 2.0, Mar '90.

[16] K. H. Lee, J. Favrel, and P. Baptiste, " Generalized Petri net reduction method,"
IEEE Trans. Systems, Man, and Cybernetics, SMC-17, No. 2, pp. 297-303,
1987.

REFERENCES 63

[17] J.L Petrson, "Petri Nets", ACM Computing Surveys, Vol. 9, p. 223-252, September 1977.

[18] M. C. Zhou, A Theory for the Synthesis and Augmentation of Petri Nets in Automation,

Doctoral Dissertation, ECSE, Rensselaer Polytechnic Institute, Troy, NY, 1990.

[19] M.C. Zhou and Ming C. Leu, "Petri net modeling of a flexible assembly station for printed

circuit boards," Proceedings of IEEE Int. Conference on Robotics and Automation, Sac-

ramento, CA, pp. 2530-2535, April, 1991.

[20] D. Crockett, A. A. Desrochers, F. DiCesare, and T. Ward, "Implementation of a

Petri net controller for a machining workstation," Proceedings of IEEE Int. Con-

ference on Robotics and Automation, Raleigh, NC, pp. 1861-1867, 1987.

[21] M.C. Zhou and f. DlCesare, "A Petri Net design method for automated manufacturing sys-

tems with shared resources," Proceedings of IEEE Int. Conference on Robotics and Auto-

mation, pp. 526-531, Cincinnati, OH,1990.

[22] Y. C. Ho, "Performance evaluation and perturbation analysis of discrete event dynamic

systems," IEEE Trans. on Automatic Control, Vol. AC-32, No. 7, pp. 563-572, 1987.

[23] M. Molloy, "Performance analysis using stochastic Petri nets," IEEE Trans. Comput., vol.

C-31, no. 9, pp. 913-917, 1982.

[24] D. L. Guo, F. DiCesare, and M. C. Zhou, "A moment generating function-based

approach for evaluating extended stochastic Petri nets," Accepted for IEEE

Trans. Automatic Control, 1991.

Appendix : PROGRAMS 64

ROBOT!

PROGRAM token 1
VAR

Main Declaration Section
ta27 : POSITION
ta26 : POSITION
ta25 : POSITION
tal8 : POSITION
tall : POSITION
tal6 : POSITION
tal4 : POSITION
tal3 : POSITION
tal2 : POSITION
tal0 : POSITION
ta9 : POSITION
ta6 : POSITION
ta3 : POSITION
ta2 : POSITION
tal : POSITION

BEGIN MAIN

$speed = 2000
MOVE TO tal
MOVE TO ta2
WAIT UNTIL DIN[1] == ON
WAIT UNTIL DIN[2] == ON
$speed = 500
MOVE TO ta3
GRAB Dummy#31 AT LINK 1
GRAB 'Dummy#2' AT LINK 1
DOUT[3] = ON
delay 1500
MOVE TO ta6
delay 3000
DOUT[6] = ON
delay 3000
MOVE TO ta9
WAIT UNTIL DIN[4] == ON
DOUT[5] = ON
DOUT[11] = ON

Appendix : PROGRAMS 65

delay 4000
MOVE TO tal2
delay 3000 WAIT UNTIL DIN[7] == ON
MOVE TO tal3
DOUT[8] = ON
delay 1500
MOVE TO tal4
delay 3000
DOUT[16] = ON
DOUT[15] = ON
DOUT[14] = ON
WAIT UNTIL DIN[13] == ON
MOVE TO tal6
DOUT[12] = ON
delay 1500
MOVE TO tall
delay 3000
MOVE TO tal8
DOUT[10] = ON
DOUT[0] = ON
delay 1500
RELEASE 'Dummy#3'
RELEASE 'Dummy#2'
$speed = 1500
MOVE TO ta25
MOVE TO ta26
MOVE TO ta27
delay 3000

END MAIN
END tokenl

Appendix : PROGRAMS 66

COMPONENT1

PROGRAM token 11
VAR

Main Declaration Section
ta31 : POSITION
ta30 : POSITION
ta29 : POSITION
ta28 : POSITION
ta3 : POSITION

BEGIN MAIN

$speed = 500
MOVE TO ta3
DOUT[1] = ON
WAIT UNTIL DIN[0] == ON
$speed = 3000
delay 1500
MOVE TO ta28
MOVE TO ta29
MOVE TO ta30
MOVE TO ta31
DOUT[4] =ON
delay 3000

END MAIN
END tokenll

Appendix : PROGRAMS 67

TRANSITION11

PROGRAM fire
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[3] == ON
MOVE JOINT 2 BY -.2 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.2 NOSIMUL

END MAIN
END fire

Appendix : PROGRAMS 68

TRANSITION12

PROGRAM firet12
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[6] == ON
WAIT UNTIL DIN[5] == ON
MOVE JOINT 2 BY -0.2 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.2 NOSIMUL

END MAIN
END firetl2

Appendix : PROGRAMS 69

TRANSITION13

PROGRAM fireta3
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[8] == ON
MOVE JOINT 2 BY -0.2 NOSIMUL
delay 2000
MOVE JOINT 2 BY 0.2 NOSIMUL

END MAIN
END fireta3

Appendix : PROGRAMS 70

I

TRANSITION14

PROGRAM firetal4
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[12] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END firetal4

Appendix : PROGRAMS 71

TRANSITION15

PROGRAM firetal5
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[10] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END firetal5

Appendix : PROGRAMS 72

ROBOT2

PROGRAM token2
VAR

Main Declaration Section
ta53 : POSITION
ta52 : POSITION
ta54 : POSITION
ta42 : POSMON
ta43 : POSITION
ta45 : POSITION
ta44 : POSITION
ta41 : POSITION
ta39 : POSITION
1a38 : POSITION
ta36 : POSITION
ta24 : POSITION
ta23 : POSITION
tall : POSITION
ta22 : POSITION
ta21 : POSITION

BEGIN MAIN

WAIT UNTIL DIN[15] == ON
$speed = 2000
MOVE TO ta21
MOVE JOINT 2 BY -.2 NOSIMUL
MOVE TO ta22
WAIT UNTIL DIN[0] == ON
WAIT UNTIL DIN[1] == ON
$speed = 500
MOVE TO ta23
GRAB 'Dummy#5' AT LINK 1
GRAB 'Dummy#7' AT LINK 1
DOUT[2] = ON
delay 1500
MOVE JOINT 2 BY 0.2 NOSIMUL
MOVE TO ta24
delay 3000
DOUT[13] = ON

Appendix : PROGRAMS 73

WAIT UNITh DIN[4] == ON
MOVE TO ta38
MOVE JOINT 2 BY -0.2 NOSIMUL
WAIT UNTIL DIN[10] == ON
DOUT[5] = ON
delay 2000
MOVE TO ta39
delay 3000
MOVE TO ta4l
DOUT[7] = ON
delay 1500
MOVE TO ta42
delay 3000
MOVE TO ta43
DOUT[8] = ON
delay 1500
MOVE TO ta44
delay 3000
MOVE TO ta45
DOUT[11] = ON
DOUT[12] = ON
delay 2500
RELEASE 'Dummy#7'
RELEASE 'Dummy#5'
DOUT[9] = ON
MOVE TO ta54
$speed = 1000
MOVE TO ta52
MOVE TO ta53
delay 3000

END MAIN
END token2

Appendix : PROGRAMS 74

COMPONENT2

PROGRAM token2l
VAR

Main Declaration Section
ta51 : POSITION
ta50 : POSITION
ta49 : POSITION
ta48 : POSITION
ta23 : POSITION

BEGIN MAIN

$speed = 500
WAIT UNTIL DIN[14] == ON
MOVE JOINT 2 BY -0.4 NOSIMUL
MOVE TO ta23
DOUT[1] = ON
WAIT UNTIL DIN[11] == ON
$speed = 3000
delay 3000
MOVE TO ta48
MOVE JOINT 2 BY 0.4 NOSIMUL
MOVE TO ta49
MOVE TO ta50
MOVE TO ta51
delay 3000

ENDMAIN
END token2l

Appendix : PROGRAMS 75

TRANSITION21

PROGRAM firet2l
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[2] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END firet2l

Appendix : PROGRAMS 76

TRANSITION22

PROGRAM fireta22
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[16] == ON
WAIT UNTIL DIN[5] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END fireta22

Appendix : PROGRAMS 77

TRANSITION23

PROGRAM fireta23
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[7] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END fireta23

Appendix : PROGRAMS 78

TRANSITION24

PROGRAM fireta24
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DINE 8] == ON
MOVE JOINT 2 BY -.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END fireta24

Appendix : PROGRAMS 79

TRANSITION25

PROGRAM fireta25
VAR

Main Declaration Section

BEGIN MAIN

WAIT UNTIL DIN[9] == ON
MOVE JOINT 2 BY -0.3 NOSIMUL
delay 1000
MOVE JOINT 2 BY 0.3 NOSIMUL

END MAIN
END fireta25

Appendix : PROGRAMS 80

FEEDER

PROGRAM token3
VAR

Main Declaration Section
ta40 : POSITION
ta37 : POSITION
ta36 : POSITION
ta35 : POSITION
ta34 : POSITION
ta33 : POSITION
ta32 : POSITION
ta3 : POSITION
ta4 : POSITION
ta5 : POSITION

BEGIN MAIN

$speed = 1000
MOVE TO ta4
MOVE TO ta5
MOVE TO ta3
$speed = 500
DOUT[2] = ON
WAIT UNTIL DIN[0] == ON
$speed = 1000
MOVE TO ta32
MOVE TO ta33
MOVE TO ta34
delay 5000
$speed = 1800
MOVE TO ta35
MOVE TO ta36
delay 2500
MOVE TO ta37
DOUT[10] = ON
DOUT[16] = ON
delay 2000
MOVE TO ta40
delay 3000

END MAIN
END token3

Appendix : PROGRAMS 81

PCB AREA.

PROGRAM token4
VAR

Main Declaration Section
ta47 : POSITION
ta34 : POSITION
ta46 : POSITION
ta23 : POSITION
ta20 : POSITION
ta19 : POSITION
tall : POSITION
tal0 : POSITION
ta8 : POSITION
ta7 : POSITION

BEGIN MAIN

WAIT UNTIL DIN[3] == ON
$speed =1000
MOVE TO ta7
MOVE TO ta8
DOUT[4] = ON
delay 5000
$speed = 500
MOVE TO tal0
DOUT[6] = ON
WAIT UNTIL DIN[11 == ON
MOVE TO tall
MOVE JOINT 2 BY -0.4 NOSIMUL
delay 3000
DOUT[7] = ON
WAIT UNTIL DIN[16] == ON
$speed = 1000
MOVE TO ta19
MOVE TO ta20
MOVE TO ta23
$speed = 500
DOUT[0] = ON
DOUT[1] = ON
WAIT UNTIL DIN[12] == ON

Appendix : PROGRAMS 82

$speed = 1000
MOVE TO ta46
MOVE JOINT 2 BY 0.4 NOSIMUL
delay 3000
MOVE TO ta47
MOVE TO ta34
delay 3000

END MAIN
END token4

 I

	A case study on petri net modeling, animation, and simulation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	VITA
	Acknowledgements
	Dedication
	Abstract
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Petri Net Theory
	Chapter 3: System Modeling with Petri Nets
	Chapter 4: Simulation
	Chapter 5: Conclusions and Future Research
	 References
	Appendix: Programs

	List of Figures and Tables

