
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

12-31-1991

Editing digital audio using a perceptual model Editing digital audio using a perceptual model

J. Mark Goode
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Goode, J. Mark, "Editing digital audio using a perceptual model" (1991). Theses. 2488.
https://digitalcommons.njit.edu/theses/2488

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2488?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
Editing Digital Audio Using a Perceptual Model

by
J. Mark Goode

In this paper we describe an intelligent system used

to aid an audio recording producer in the selection of

edit points in a musical sequence. It is possible to make

meaningful recommendations concerning auditory input data

without the ability to fully classify that data or

interpret all outside goals. Perceptual modeling of the

auditory input can allow sufficient reasoning ability for

an intelligent system to be of use editing digital audio.

To create a perceptual model, the information which can

be extracted by the ear is embodied in several expert

sections which communicate with a rule based decision

maker via a blackboard. The envelope expert "listens" for

the changes in amplitude. The spectrum expert examines

spectral changes. The rhythm expert examines the

distances between note crests. This paper is intended to

describe the architecture and discuss its use in the

creation of an intelligent editing system.

EDITING DIGITAL AUDIO USING A PERCEPTUAL MODEL

by
J. Mark Goode

A Thesis
Submitted to the Faculty of the Graduate Division of

the
New Jersey Institute of Technology in Partial

Fulfillment of the Requirements for the Degree of
Master of Science

Department of Computer Science
December 1991

Copyright 1991 by J. Mark Goode

ALL RIGHTS RESERVED

APPROVAL PAGE
Editing Digital Audio Using a Perceptual Model

by
J. Mark Goode

Dr. Bonnie MacKeilar, Thee Advisor
Professor of Compute-t- Science, NJIT

BIOGRAPHICAL SKETCH

Author: J. Mark Goode

Degree: Bachelor of Music in Music Engineering
Technology

Date: December 1991

Date of Birth:

Place of Birth:

Undergraduate Education:

Bachelor of Music in Music Engineering Technology,
University of Miami, Coral Gables, Florida,
1983

Major: Computer Science

Presentations and Publications:
"db Test Report: Goldline 30" db The Sound

Engineering Magazine 17-2 (1983)

"db Test Report: The Shure AMS Automatic Mixer" db
The Sound Engineering Magazine 17-6 (1983)

This thesis is dedicated to

Mrs. Marie Goode

Acknowledgement

The author wishes to acknowledge the effort of Dr.

Bonnie MacKellar for her supervision and support under

unfavorable, to say the least, working conditions of long

distance mail.

Additional thanks go to Audio Animation, Inc. for

the use of their equipment and facilities.

The author appreciates the suggestions and help

concerning the mathematical analysis from David Landau

and Gilad Keren from Audio Animation, Inc.

A special thanks is given to Dr. James Geller for

his help in finding such a patient advisor in both music

and computer science.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. SURVEY OF CURRENT LITERATURE 4

3. THE PROCESS OF MAKING AN EDIT 6

4. SYSTEM ARCHITECTURE 12

5. ARCHITECTURE OF THE DECISION MAKING SECTION 20

6. ARCHITECTURE OF THE EXPERT SECTION 26

7. THE ENVELOPE EXPERT 30

8. THE SPECTRUM EXPERT 35

9. THE RHYTHM EXPERT 39

10. ERROR HANDLING 43

11. AN EXAMPLE 46

12. FUTURE RESEARCH 50

13. CONCLUSION 57

APPENDIX A The Decision Maker 59

APPENDIX B The Envelope Expert 124

APPENDIX C The Spectrum Expert 146

APPENDIX D The Rhythm Expert 161

APPENDIX E The Blackboard 173

APPENDIX F The Mailboxes 179

APPENDIX G Text Output Files 185

BIBLIOGRAPHY 194

CHAPTER 1

INTRODUCTION

An edit is the selection of a specific point in two

digital audio sequences where the first part of the first

sequence will be joined to the second part of the second

sequence. The process of editing two audio sources is

primarily difficult because there is no fixed definition

of what constitutes an acceptable edit. An acceptable

edit for the purpose of this paper is one in which the

audible change resulting solely from the edit is not

distinguishable from the changes in the music itself.

Though musical form does influence the acceptability of

an edit, it is not considered in this paper. It is

possible to expand this architecture to include musical

form in the decisions, but that is future research. The

application is further restricted to include only music,

so that we can use the patterns which naturally develop

in musical passages to add constraints to our search

space. This is only partially helpful because there is no

fixed definition for music. We therefore define music to

be only audio sequences which can be represented using

conventional music notation, i.e. a staff with notes and

a determinable time and key signature. This limits the

search space by eliminating the problem of lyrics, speech

recognition, and decisions based on other arbitrary

sounds.

2

Editing two musical sequences to form a single

output sequence, even after selecting the notes in the

music which will border the junction point, usually

requires many minutes of repeatedly listening to the same

passage. After several attempts at the edit, an

acceptable compromise between various attributes may be

achieved and the edit is retained. Edits may also be

rejected after this effort. Avast majority of commercial

recordings are subjected to this treatment. It is time

consuming and expensive. By allowing an artificially

intelligent assistant to listen to the music and make

edit propositions, that time may be substantially

reduced.

The process of editing music can still become a non-

trivial issue if outside goals are left to the system. It

is beyond the scope of this research to consider the

purpose of editing music at all, but the general reasons

might be to produce a sequence that is longer, shorter,

or contains different performances than the sequence or

sequences originally recorded. In effect, these purposes

represent outside goals which cannot be fully determined

by the musical information itself. We alleviate this

problem by considering all outside goals to be determined

by an outside entity, in this case the producer, while we

concentrate on modeling the job of the engineer.

3

Though the external goals are considered to be a

problem left to the producer, it should be noted that in

a practical situation, the engineer is usually culturally

educated similarly to the producer. The engineer and

producer typically practice within the same musical

culture, i.e. both might be oriented to classical music,

or rap. This commonality of education can cause the

engineer to make practical decisions that we will

consider the domain of the producer. In practice, our

model is roughly equivalent to an American engineer who

is totally naive in the ways of far eastern culture

editing a tape of Japanese folk music.

The editing process is additionally difficult to

automate because it has traditionally been considered an

area where musical intuition and artistic talent have

been a necessary prerequisite. By using perceptual models

of the human ear, and a rule based system to represent

the guidelines used by an engineer, we can make

relatively good attempts at edits in an effort to assist

the producer in his objectives.

CHAPTER 2

SURVEY OF CURRENT LITERATURE

There are two forms of editing music. One form is

occurring more and more frequently as technology allows

the composer himself to generate a larger and larger

percentage of the final musical piece using synthesizers

(9) and computer generated music (5). In this form, the

information to be edited is the instructions for

producing the music, i.e. the synthesizer command

sequence. This is a far simpler form of editing for two

main reasons. First, production rules for an expert

system generated for this purpose would be concerned with

musical form and could be used in the second form of

editing which will be discussed in a moment. This is

necessarily true because there is nothing to be

classified or identified at a lower level (the music does

not exist as a performance yet). Second, the sequence

production system (sequencer) is limited, by definition,

to the set of sounds and representations that it can

produce, therefore, nothing foreign to the music needs to

be considered. These systems are common and there is a

wide body of information (5) (11) (12) for the

commercially available systems. There have also been the

development of languages specifically designed for the

expression of music and its form within a computer system

(1) (9).

4

5

The second form of editing is much more difficult

and the research has been more limited. Existing

performances must be edited. This may be necessary

because the various parts were produced at different

locations or at different times. For commercial record

album releases, different length versions of the same

sequence may be necessary for release on different media.

In any case, the decision is made by the producer to edit

the music with some particular goal in mind. Form rules

could be used if the music is first identified and

classified. This involves establishing the location of

significant musical events in the sequence and producing

a notation on which the rules can be applied (2). Most of

the available literature is primarily concerned with this

identification and classification of musical landmarks to

produce a mapping between the location in the sequence

and the musical event. Signal processing techniques have

focused on the identification of these constructs and the

production of the mapping system (3). The primary goals

of previous research has been the process of

transcription, or creating a representation of the music

in a manner in which the computer can retain information

about the musical form. Although this is a tremendous aid

in terms of communicating with the human operator to

obtain the human's intent, it is not essential to produce

helpful assistance to the operator.

CHAPTER 3

THE PROCESS OF MAKING AN EDIT

The process of making an edit is shown in figure 1.

The edit can be considered the joining of two source

sequences at a specified time in each one to produce an

output sequence containing the first part of the first

sequence and the second part of the second sequence. The

two source sequences may be the same sequence. In the

case where the source sequences are the same sequence,

the output sequence can effectively have duplicated or

omitted information.

The first step is to determine which sequences will

be used. This implies that the sequences exist as files

in a storage medium. The files get to the storage medium

by the process of recording. Recording, for the purposes

of this research, is merely the sampling of the input

audio at a specific rate (a compact disk is audio sampled

at 44100 times per second) and conversion of the audio to

a number representing the deviation of the air pressure

from the non-excited norm. The sequence of these samples

is then placed in a storage medium, typically a hard

disk, for later reproduction.

After the sequences are determined, the approximate

time in each sequence where the edit should be performed

is determined. It is this stage where classification is

most helpful. Classification of the music, in its

simplest form, may be nothing more than the determination

of the start and end of various notes. In a more

complicated form, it may be the complete construction of

a musical score. The segmentation process could provide

additional information on musical style which might be

used to aid and further constrain the possible edit

choices.

In order to obtain an interface with the producer to

establish his editing needs, a human engineer, for

example, would at least be able to determine that there

are notes and discuss the location of potential edits in

terms of these notes. To allow an interface between the

producer and the automated engineer without the

segmentation ability, the range of samples representing

the individual notes is manually input into the editing

system. This method tends to be cumbersome, but the

interface to the producer is not the primary issue.

With human producers and engineers, there is verbal

communication to indicate the note that the producer

intends to edit around. The interface between engineer,

producer, and editing machine, becomes especially blurred

in this domain. Traditionally, the engineer and producer

are presented with some representation of the musical

samples. This is usually an envelope plot of the musical

wave form. The degree to which this representation can be

abstracted depends primarily on the ability to classify.

As we have said, we assume that an engineer can at least

determine notes, and we should represent the music to the

producer in the form of classical music notation.

Although a complete score does not need to be produced

(in fact, the engineer may make his edits without ever

hearing the sequences in their entirety), the area around

the edit should be represented by a score. This again

falls into the area of classification and is avoided in

this model. Instead we take the sample which is at the

beginning of the note and the sample at the end of the

note to represent the range of the note. A more

acceptable method of acquiring the producer's intent

would be some form of graphical representation, but that

is not the primary interest of this research. It should

be noted that the addition of classification is necessary

if the form of the music is to be considered in the

choice of an edit point.

After determination of the input sources and the

range in each input sequence where the edit is most

desirable, the engineer would listen to the music to try

to get a better idea of the structure of the music around

the edit range. After picking a possible sample where the

edit would take place, the second sequence is auditioned.

The most probable point of success is determined for the

second sequence and a complete resulting sequence can be

proposed. There are several attributes which each

sequence should have to make the final choice for

possible edit the most probable to succeed. Such

attributes might be a minimum in the envelope of the

signal, or an area in which the spectrum contains the

least energy. Timing and rhythm are also considerations

in choosing a potential edit.

After each sequence has been heard and the most

likely point for a successful edit has been selected, the

edited sequence is produced and evaluated. The evaluation

may look for several areas of failure, again using the

same type of information extraction as when the source

points were selected. A sudden jump in amplitude

attributable to the edit would make the edit

unacceptable. A sudden change in the spectral response of

the music which is not representative of the attack of a

note might also be a reason for rejection. Additionally,

the tempo of the music and the rhythm through the edit

area cannot be degraded by the edit itself. There are

other things which may be cause for rejection of the

edit. It is essential in the design of the system, that

new criteria and analysis procedures can be easily

adapted to the architecture of the editing system.

If the edit passes the evaluation stage, it is

presented to the producer as the best solution to the

edit that the engineer can produce. The producer has the

final say in the edits acceptability, because the

producer is the only one who has the knowledge as to

whether the edit meets the criteria for external goals.

If the edit does not pass the evaluation stage, potential

adjustments are identified, and the original sequences

are reauditioned in light of the new information obtained

in the joining. The process of edit proposition and

evaluation is repeated until either the edit passes the

evaluation stage and is presented to the producer or the

adjustments are not fruitful and the requested range is

categorically rejected as not musically editable. This is

a tedious process requiring various lengths of the

engineers time depending on the difficulty of the edit.

Automated assistance would more quickly eliminate non-

productive avenues and aid in selecting a beneficial

approach. As the assistance is improved a more complete

solution might be obtained.

If the edit was rejected and the producer is able to

find an edit in that range which he considers acceptable,

it is necessary to determine if the evaluation criteria

employed by the engineer was too restrictive or the edit

is an exception to normal criteria due to external goals.

There is also the possibility that the producer will

reject an edit that the engineer has proposed as

acceptable. In this case, the evaluation criteria may not

be restrictive enough. The other possibility which would

cause this is the inability of the model to extract the

information that the producer is using to reject the

edit.

This is a learning stage which is closely coupled to

the classification stage. It may be necessary to vary the

criteria used in evaluation depending on the style of the

music and the tastes of the producer. This learning stage

involves case based reasoning. It may be that adjustments

to the evaluation criteria would correct the false

rejection or false acceptance. Due to external goals and

varying classifications, changes in evaluation parameters

may never make the correct decision for certain cases. In

other words, it is not possible for any human being to

foretell all artistic decisions that another human being

may make. Even if our editing system is perfect in its

ability to model a human being, human engineers sometimes

make decisions which are unacceptable to the producers

that they work with, so we should expect a certain degree

of failure.

Figure 2. The blackboard interface to the expert tasks.
Information flow is in the direction indicated by the
arrows.

CHAPTER 4

SYSTEM ARCHITECTURE

The basic system architecture is shown in figure 2.

The entire system is written in a real-time operating

system which allows tasks to be prioritized. The time-

slice features of the operating system allow the system

to be later divided among many processors without

changing the general architecture and philosophy of the

solution. Additionally, slow processes will not block the

decision maker from continuing to process results from

other tasks. The implementation of the solution must be

modular so that if new evaluation techniques are

identified, they can easily be incorporated into the

existing architecture. The decision maker is a set of

rules written in CLIPS (4). These rules represent the

ability of the human to "listen for" specific qualities

of the music and make decisions based on what is heard.

To model the ears, the information is gathered by three

experts, though this is a somewhat arbitrary number.

Though loudness, spectral content, and rhythm is

sufficient for many edits, more experts could be added to

increase the abilities of the system. The rules embody

the knowledge of when information should be gathered and

what significance that knowledge has to the solution.

This knowledge is encapsulated in the CLIPS rule

base. CLIPS consists of a set of production rules, a set

of facts, and an agenda. If the current facts match the

"if" section of a rule, the rule is considered to be

triggered. Triggered rules are placed on the agenda. As

the facts are changed, several rules may be triggered at

the same time. After the completion of the analysis of

the facts to determine triggered rules, the first

triggered rule in the agenda is fired and the procedures

dictated by the "then" section of the rule are executed.

This may be instructions to assert new facts, which adds

new facts to the fact list, or retract existing facts by

removing them from the fact list. After each rule is

fired, the facts are examined to see if new rules have

been triggered or triggered rules should be removed from

the agenda.

For the purpose of performing an edit, an objective

we wish to achieve is termed a goal. In this model, the

agenda is used as a goal stack where rules evaluate

recovered data (facts) and determine if a goal has been

met, a goal has transformed into a new goal, or remaining

goals must be broken into smaller goals.

As an example, we start with the goal "produce an

edit" on the goal stack (agenda). This goal is not

directly achievable, but could be achieved if we achieve

the goals:

-- Select edit point in first sequence

-- Select edit point in second sequence

-- Join sequences

-- Evaluate edit.

These goals are placed on the goal stack. An example of

this type of rule would be:

(defrule get-source-info ""

(goal plan-edit)

=>

(assert (goal get second sampling-frequency))

(assert (goal get first sampling-frequency))

(assert (goal get second range))

(assert (goal get first range))

(assert (goal get output take))

(assert (goal get second take))

(assert (goal get first take)))

In this rule, taken from Appendix A, we see that the goal

is to plan an edit. In order to plan an edit, we must

acquire some information. We post the goals of acquiring

each piece of information in the facts.

Eventually goals reach a low level where the intent

of the goal must be directly performed. A rule of this

type would look like this:

(defrule get-env-edit ""

(goal get ?take edit-point)

(envelope take-is ?name)

(have sampling-rates)

(envelope range-is ?start ?stop)

(?take range-is ?start ?stop)

(envelope analyzed ?start ?stop)

=>

(ask envelope find-edit))

In this case, our goal is to get an edit point proposal.

If we have all the necessary information, we can ask the

envelope expert (a dedicated program discussed later)

what that type of analysis would lead us to expect for

editing location. The "ask" function is a function

attached to CLIPS which will cause the command

immediately following the expert's name to be placed in

the mailbox of the expert immediately following the

"ask". The "ask" syntax is as follows:

(ask <expert name> <command> <parameter>)

The mailbox is a separate child program of the expert in

question and is discussed in the section about the expert

architecture.

The process of evaluating goals is repeated until

each objective is either achieved or broken into smaller

goals. When the goal stack is empty, the edit has been

achieved (if it was possible). This is the manner in

which the decision maker decides how to issue commands to

the various experts. This example will be continued after

the discussion about the various experts.

The entire area of classification and identification

of input sequences and ranges for edit points is reduced

to a goal in the agenda. Ideally, a full system would use

some graphical interface to obtain the necessary

information from the producer. Perhaps a method more

appropriate to this model would be to play the sequence

for the producer and have him indicate the approximate

time where the edit should occur (by pushing a button,

for example). It can be argued that the engineer should

be able to extract the information where the note

indicated begins and ends based on the same type of

techniques used to determine the edit point. Indeed, it

is a rather simple procedure to determine the start of

the notes, however, this is again encroaching on the

problem of classification and segmentation (2) (3). The

text method that is currently used in this research is

cumbersome at best, but does allow the information to be

entered.

To accomplish the edit proposal and evaluation

stages, a blackboard expert system is used. This is

represented in the decision making section by several

goals in the rules. The first goal is to determine an

edit point for the first sequence. This is then broken

into several additional goals that require communication

with the individual experts and the extraction of

information about the musical sequences they are

evaluating. The information that the experts extract is

then placed on the blackboard where it is interpreted by

the decision maker. There is no reason that any one

expert cannot access information from any other expert,

but the present design has the experts only communicating

with the decision maker. The decision maker gathers the

information from the experts and determines which goals

have been met and how events should proceed.

Each of the decision maker and the experts is an

individual task. This is to allow the experts to be off-

loaded to signal processors as the system expands. For

the sake of cost, the signal processing is currently

being done on the same computer with the decision maker.

The system allows priorities to be assigned to the

various tasks so that certain tasks are considered more

important than others and are therefore done first. The

decision maker could be given priority over the experts

and the experts over the blackboard, but all the tasks

are currently being run in a time-sharing fashion.

The blackboard is a child process of CLIPS generated

when the function "initialize experts" is called from

within a CLIPS rule. The "initialize experts" function is

another function attached to the CLIPS environment. The

function generates a child process for each expert and a

child process for the blackboard. Each expert child

spawns an additional child process representing the

mailbox for that expert.

Figure 3. Communication paths between experts and
decision maker. Messages are never initiated by the
blackboard or mailbox. Handshaking occurs both direc-
tions, but information only travels counter-clockwise,
preventing deadlock.

The architecture as shown in figure 2 is subject to

deadlock if information and messages are allowed to

travel in the same direction. If the blackboard is trying

to send information to the decision maker, who is trying

to send information to an expert, who is posting

information on the blackboard, the system will stop. For

this reason, the blackboard is never allowed to send

messages. The blackboard only replies to received

messages. The messages can be instructions to place

information on the blackboard or to read information that

has been posted there. In the case where the message is

an instruction to read the blackboard, the actual

movement of information is contained in the reply to that

request, allowing the information to move opposite to the

direction the message was moving (figure 3). Although

there is no security on the system (any task can read the

blackboard if it sends the appropriate request) the

blackboard is only read by the decision maker. The

blackboard is implemented as a message queue.

It is the blackboard expert system which models the

perception of the engineer as he edits and is the focus

of this research. The evaluation parameters have been set

into a single frame and coded directly into the routines.

If the classification and learning stages were expanded,

additional frames could be added to allow a case based

reasoning ability. This would allow some flexibility in

the editor to adapt to the producer who is using the

editor and the type of music being edited. The case based

reasoning section requires a substantial expenditure of

time to produce cases and has not been practical at this

point.

A small model of the learning stage is represented

by a phase (goal) in the rule based system. The learning

stage would need a great deal of expansion to be

practical, and, as mentioned before, even the human

counterpart we are trying to model cannot expect complete

success.

CHAPTER 5

ARCHITECTURE OF THE DECISION MAKING SECTION

The decision making section is constructed of

various rules which generally follow the logical

progression of an edit shown in figure 1 by using a

series of goals or phases. As each section of the logical

flow is presented, it is put on the CLIPS agenda as a

goal which needs to be accomplished. Each of the main

goals is too complicated to solve directly so there are

rules which break the goal down to smaller and smaller

subgoals. Eventually these subgoals can be directly

accomplished through one or several commands to the

experts.

The blackboard interface is actually one of the

attached functions and is not part of a standard CLIPS

environment. The blackboard interface requests messages

from the blackboard and asserts the reply, providing it

is not empty, as if it were a fact asserted by any other

rule. Each time the blackboard interface queries the

blackboard, either the program will sleep or a fact will

be asserted, depending on whether the reply was empty or

contained information. The blackboard interface is

accessed by sending a request for messages to the

blackboard as if it were any other expert. The rule which

Figure 4. Component parts of decision maker. Information
flow is in the direction indicated by the arrows. Functions,
drivers and bloackboard interface were non-standard func-
tions linked into the CLIPS system.

causes the blackboard to be queried is:

(defrule check-messages ""

(declare (salience -10))

?chk-mssg-fact <- (check-messages)

=>

(retract ?chk-mssg-fact)

(ask blackboard)

(assert (check-messages)))

There are no parameters when sending a message to the

blackboard since the only appropriate thing to do is ask

if there are any messages.

There are two sections which make the decision maker

unique to this application (see figure 4). The first

section is the interface to the blackboard. One of the

few rules which make use of the salience feature of the

CLIPS environment is the rule to check the blackboard.

Salience is the ability to prioritize triggered rules in

the agenda. In this case, checking the blackboard is

always a triggered rule, however salience is used to

assure that the "check the blackboard" rule is only fired

when there is no other pending decision. In this design,

the blackboard is only checked when no other decisions

can be made. If no goals can be accomplished, the

decision maker asks the blackboard if there are any

messages. To prevent deadlock, the blackboard will

immediately respond, whether a message exists or not, to

free the blackboard task so that it can respond when

other tasks need to post a message. If there are no

messages and no goals which can be accomplished with the

current information, it is assumed that the experts are

all busy analyzing previous requests. In this case, the

decision maker blocks for some time and then repeats the

query to the blackboard. This cycle repeats until there

is new information from the experts.

The second area that makes the decision maker unique

is the expert drivers. For each expert to be used by the

decision maker, there is an associated driver routine

which parses the messages for that particular expert. The

expert drivers are also functions attached to the CLIPS

environment, but, like the blackboard, they are accessed

by an "ask" syntax in one of the rules. The appropriate

driver is then called by the "ask" function. The primary

function of the driver is to check rule constructs

intended as commands for the experts to assure correct

syntax. This is essentially a debug problem. Since each

of the tasks is a different program, there is nothing at

compile time to prevent illegal messages from being

constructed. When all of the experts are running, it is

very difficult to determine where the failure occurred

when illegal messages are allowed to propagate through

the system. The intent of checking syntax is to prevent

badly constructed rules from causing an error in one of

the experts and allowing a quick determination that the

fault lies in the rule itself. The job of error checking

is discussed further below. The second purpose of the

expert driver is to construct a message header and

message structure from the CLIPS syntax so that message

decoding in the receiving expert can be as efficient as

possible. By structuring the messages, should the experts

be put onto individual processors, the remaining

interface kernel can be made extremely small, though this

is not of major importance in the way the system is

currently being run.

Another use of the salience feature is in the

posting of error messages. Should an error message be

posted by either one of the expert drivers or by the

expert itself, the errors are handled before any other

goals. Of course, if the error is contained in a mailbox

(or blackboard) with other messages, there is no priority

given to that message until it is returned to the

decision making section. The message simply maintains its

place in the queue as would any other message.

Reasoning that music which is easy for a human to

edit should be attempted first, the research has focused

on simple edits. Through the tests which have been run up

to this point, it is becoming evident that the earlier an

edit can be judged inappropriate due to the musical

constraints in the edit range, the quicker the response

of the system will appear. Many of the disagreements

between experts that were originally intended to be

solved by backtracking after both of the edit points had

been proposed and evaluation had discovered an error are

more efficiently solved by increasing the depth of

analysis when the edit range is first examined. Unlike a

human being, additional processing can easily be added to

the artificially intelligent editor so that more

information can be gathered in the early stages of edit

proposal. It seems that a more efficient solution lies in

pushing the backtracking to the earliest point of edit

consideration possible so that repeated access to the

musical data is minimized. When editing piano solo

passages, for example, it is common to find backtracking

in the early stages when frequency information is lacking

for the analysis of the envelope. Early attempts at the

editor allowed the problem to remain until the evaluation

stage, but the repeated analysis of the edit range was

slower than forcing a backtrack prior to the evaluation

stage. For many of the simpler forms of edits (edits

where all three implemented experts can locate a

preference edit point and attacks are quick and

consistent in style) backtracking from the evaluation

stage can be all but eliminated for problems not

involving musical form.

There are several additional functions attached to

the CLIPS environment. The only other function directly

called from a CLIPS syntax is the "make-edit" function

which produces an edit attempt file from the two source

files. The syntax of a "make-edit" request looks like:

(make-edit <output file> <sourcel file>

<edit position 1> <source2 file>

<edit position 2> <sampling rate>)

This function makes use of the "adjust header" function

and the "generate crossfade" function, both of which are

also attached to the CLIPS environment. All of the

functions attached to CLIPS are linked into CLIPS at

compile time. The actual function calls made from the

CLIPS syntax were intentionally kept to a minimum to make

the interface as clean and unobtrusive as possible.

Figure 5. Component parts of an Expert. Information
flow is in the direction indicated by the arrows.

CHAPTER 6

ARCHITECTURE OF THE EXPERT SECTIONS

The architecture of an expert section is shown in

figure 5. In order to fully prevent deadlock, each expert

is given a mailbox. The mailbox is actually the same

source code as the blackboard (essentially, the deadlock

problem is the same as for the blackboard and decision

maker). A mailbox is a message queue whose name is

determined by the task that creates it. Upon start up,

each expert task generates a mailbox where its messages

will be put. The mailbox is actually a completely

separate task just as the blackboard. In essence, the

blackboard is a mailbox for the decision maker. The

primary difference between the blackboard and a mailbox

is its use. The blackboard has messages posted by several

different expert tasks. The mailboxes are only read by

the task that created them and only written to by the

decision maker. The primary reason for the mailbox agent

(aside from deadlock) was the ability to queue messages

so that the decision maker would not be held up waiting

for an expert who was still executing the decision

maker's last request. By designing the interaction

between the decision maker and the experts with the

mailbox agent, there should be little difference in the

design as the processing becomes more parallel. Parallel

processing results as the experts' analysis sections are

moved onto signal processors.

The central routine for each expert is largely a

message parser. Each message is evaluated to determine

what functions must be executed, and in what order, to

accomplish the request received in the mailbox. As each

message is parsed, if a response is required, it is

constructed in a general buffer which will be asserted as

a fact upon receipt by the decision maker. The new fact

is posted on the blackboard. If more than one fact needs

to be asserted, it must be handled in the function

itself. This is usually not necessary. Several of the

functions gather additional information, but it is stored

in global variables and not released unless specifically

requested by the decision maker. For instance, the

spectrum expert analyzes the music to determine the

lowest frequency present to form its own opinion on edit

placement. The information is not offered to the decision

maker, however, unless it is specifically requested in

the form of a message. Whether it is quicker to gather

information while performing some other function or wait

until the information is requested depends entirely on

the expert and the information involved. The process is

generally invisible to the decision maker since the

decision maker always continues its operation after

posting each request for information instead of blocking

while waiting for that information.

Because all of the experts are running

simultaneously, it is often difficult to see what is

happening during processing. Most of this information is

of little or no use to a user, but is very beneficial in

the design stages. To that end, as each message is parsed

and each function is called within the decision maker and

experts, a notice is posted to an unused operating system

console. This console allows the designer to see the

experts at work to determine if there are any order

specific problems. The messages also serve as "mile

markers" to determine what the last thing an expert

attempted in case of expert fatalities. The order in

which the experts post messages and the contents of those

messages varies with the processing power for various

tasks and the problem being worked on. An example of this

type of output is:

Spectrum doing FFT analysis.

Spectrum analyzing FFT looking for maximums.

Spectrum looking for lowest frequency.

Spectrum comparing maximums.

Decision maker creating edited file.

Decision maker adjusting header information.

Decision maker is generating a crossfade.

Decision maker completed edit attempt.

Envelope evaluating edit.

Rhythm evaluating edit.

Spectrum evaluating edit point

Envelope accepting edit.

Rhythm accepting edit.

In this example, the production of an edit attempt can be

seen by the text from the decision maker. The analysis is

started in each of the experts and two of the experts

have responded by accepting the edit. If different

hardware is used, certain tasks may take a longer time

relative to other tasks, and the order of response from

the experts will vary.

CHAPTER 7

ENVELOPE ANALYZER EXPERT

One of the existing experts is the envelope

analyzer. Its primary responsibility is to make amplitude

judgments concerning the input sequences. In general, the

most probable points for edit are the lowest amplitude

that a note reaches prior to the amplitude increase from

the next note.

Amplitude is generally measured by peak to peak or

VU (visual unit) meters. These measure the amplitude by

keeping a running sum of the absolute value of the

samples. A very fast attack and relatively slow decay

time are maintained by allowing instant increases in the

running sum value, but subtracting a set portion of the

value each time a value lower than the current average is

obtained. Amplitude measurements allow most note ranges

to be determined during classification, since notes often

run from a time just prior to an amplitude crest to the

next amplitude crest.

Most envelope analysis methods employ a running sum

technique where the amplitude of the music is related to

the energy over time. The running sum method has definite

disadvantages, however, as do most peak to peak meter and

VU solutions. The faster the decay time is set, the more

these methods tend to follow the wave itself instead of

the envelope of the wave. This problem is especially

visible when there is a predominance of low frequencies.

If the meter is set fast enough to decay from full

amplitude with a high frequency at the rate that the ear

decays, the meter will not present a valid amplitude

picture for the lower frequencies. Many artificial low

points are obtained because the low frequencies may take

a significant amount of time to cross the zero point in

their oscillations. Instead, a model is used where the

lowest frequency to be expected is given to the expert.

Instant release times are possible if no additional

events occur within one cycle of the lowest expected

frequency.

The analysis uses a window large enough to account

for the lowest expected frequency. The analysis begins

with the last obtained peak (initially zero). Because the

algorithm will set the window to start at the point it

last found to be a peak, the window start is, by

definition, the last recorded peak. The analysis will

find the next sample larger than the start of the window.

If none is larger, the sample closest in level to the

start of the window is used. This effectively allows an

instant decay as long as there is no new maximum within

the time of one cycle of the lowest frequency.

As an example, suppose the lowest frequency in a

given piece of music is thirty hertz. First the sampling

rate is divided by thirty to determine the size of the

sliding analysis window. The window is filled with values

from the sequence in question, starting with the value

representing the beginning of the range. The absolute

value of all the values in the window is taken so that

excursions on both sides of zero are accounted for.

Starting at the beginning of the window, the values are

examined. The first time a local maximum is encountered,

its value and its location is recorded as the first peak

in an envelope recording array. The window beginning is

set to the location following this peak. The analysis

continues looking for local maximums. If a local maximum

occurs which is greater than the last one recorded, its

value and location is recorded in the next envelope

recording array location, and the window beginning is set

to the next location after that local maximum. The

process is repeated. If an analysis does not produce a

local maximum greater than the last one recorded before

reaching the end of the window, the largest local maximum

in the window is stored along with its location and the

window beginning is set to the location following that.

By using this method, both rapid attacks and rapid decays

can be tracked without the effect of waveshape tracking

occurring. The only remaining problem is when two notes

near the lowest determined frequency are near each other

and cause amplitude beating. This has not proven to be a

problem in the editing examples we have tried so far.

Music generally contains more complex information than

two sustained tones, though situations such as this may

be solved by agreement from the other two experts.

The envelope analyzer can provide answers to the

rate of change in the amplitude near the edit point. In

the evaluation stage, sudden changes in amplitude across

the edit area which would not have occurred in the

original sequence may represent problem areas which

should cause the edit to be resubmitted with the

selection parameters weighted so that the next

appropriate edit point in the range can be tried. This is

done by posting a preference containing information on

which source sequence would most likely solve the problem

and which direction the expert feels the edit should be

moved.

At this stage of research, the evaluation section

consists of two main comparisons, crest shifts and edit

point shifts. If the second crest of the second edit

point range is significantly different (determined by the

frame value currently inserted directly into the code

itself) than the second crest of the first edit point

range, the edit point will cause a notable shift in the

amplitude through the edit area. This will cause

immediate and complete rejection of the edit point

region. Since the edit cannot be adjusted to account for

this type of change, no backtracking would be helpful.

The rejection statistic is different if the amplitude is

decreasing than it is for an increase.

The second problem could cause backtracking. One

window is examined on both sides of the edit being

evaluated. If the edit point causes an envelope shift

based on the resulting maximum values from the two

windows, the edit may sound better by making the edit

slightly into the note itself. This could be accomplished

by shifting the appropriate source edit forward so that

part of the next attack would be cut off. This might

allow the increase in amplitude from the next note to

hide the envelope shift from unequal levels. Of course,

as the edit point is shifted, the rhythm will begin to be

affected. Eventually two experts will ask for the edit to

be moved in opposite directions. This will also cause the

edit to be rejected. There are other available options,

but this type of backtracking has not yet been fully

explored.

CHAPTER 8

THE SPECTRUM EXPERT

The spectrum is analyzed by taking an FFT (Fast

Fourier Transform) of the sequence of samples. This is

similar to the analysis done for envelope, although it is

more extensive. The region where most of the spectral

components are at a minimum amplitude or a spectral

change is eminent usually represents the place where the

edit point will most likely be successful. This can be

detected by looking for the high points in the spectrum

(the loudest frequencies) and determining if they are

increasing or decreasing. A spectral change will produce

a new set of frequencies which are loudest. In certain

musical sequences, variation in amplitude from the type

of instrument used may make amplitude analysis erroneous.

In cases such as this, a more appropriate edit point can

be found by looking for the area where the spectral

content suddenly changes. This can be located by the

spectrum analyzer.

In the evaluation stage, the sudden disappearances

of the certain frequencies, not representative of the

rate of the decay of specific frequencies in the

original, may indicate a reason for rejection. The degree

to which the differences are significant should be held

in the frame representing this particular case. Though

this is static in the current research, it can be made

very useful as the classification section is expanded.

As an example, the FFT window is filled with the

last values of the range, so that the final range value

is the last value of the window. An FFT is done to the

window. A maximum value locator fills an array with the

location of the maximum values of the spectrum. These

should represent the most significant frequencies for

this period of time.

The window is then shifted earlier into the music by

fifty samples. The FFT of the new window is taken. The

routine again looks for the location of maximum values.

This time the resulting maximum locations are compared to

the previous maximum locations. If any locations are

present that did not exist before a counter is

incremented. The window continues to shift and the

process continues to repeat until the counter reaches an

appropriate threshold (fifty changes). At this point, all

the frequencies have shifted and the edit point is

proposed at the location in the center of the current

window.

Current problems with the evaluation section have

been caused by two basic areas. Performing Fast Fourier

Transforms on a general purpose processors (in this case

a Intel 80386 based system) is typically very slow. The

tradeoff involved in gathering enough points to make low

frequency information accurate causes the system to be

extraordinarily slow. Resolution in the current system is

approximately 44Hz. This represents an octave in the bass

notes of a simple piano. This has made the evaluation

stage on a personal computer almost useless in terms of

making suggestions concerning the edit location and

direction of possible movement. Many of these problems

could be solved by offloading the spectrum analysis to a

Digital Signal Processor (DSP).

The second area of difficulty is again associated

with the low frequencies. Although FFT analysis is done

on windows of 1024 samples, this is only a single

wavelength at 44.1Hz. Nonlinear response effects can

easily be seen between 44.1Hz and 88.2Hz. Additions of

windowing functions such as a Hamming window can help to

reduce this problem, but at the cost of additional

analysis time. The analysis of the spectrum is already

the largest portion of processing time.

In the current implementation of the editor,

evaluations are done every 50 samples. These spectral

evaluations are compared to the evaluations neighboring

the current FFT. Spurious noises can cause the spectrum

expert to produce premature edits because they are

detected as changes in spectral information. A better

result could be achieved at the cost of memory and

processing time if the results from each FFT could be

compared to several in each direction to determine for

certain whether the spectral content has actually

shifted.

It is helpful in segmentation (a classification

stage) to subject the music to a high pass filter before

doing spectral analysis (3), but this can cause erroneous

interpretation of the edit point because the upper

partials are mostly non-existent in the areas of time we

wish to actually differentiate plausible edit locations

from incorrect choices. Problems may also arise when the

music in question has very little harmonic content. If

the fundamental is filtered out, or even greatly reduced,

the information used to determine the best choice for an

edit may no longer exist in the time range under

examination.

It is difficult with the present implementation to

distinguish when the upper partials have fallen below the

noise threshold. The spectrum is analyzed in reverse

order from the direction of real-time. By doing this, the

attack can still be correctly assumed even though it is

the noise floor and not the previous decay that causes

the spectral shift. To some degree this is not

inappropriate since it is common among human engineers to

evaluate the musical sequences in both directions (and at

several speeds) before choosing an edit point.

CHAPTER 9

THE RHYTHM EXPERT

The rhythm expert examines the length of time

between the crest of the previous wave and the edit

point. More specifically, the length of time between

crests in the original signal should be close to

multiples or divisions of two to the length of time

between the crests of the resulting signal. The change

between crest lengths can be used as a guide for

direction should adjustment to the edit point be

necessary. If the length of time between crests is quite

different from multiples or divisions by two, the

evaluation stage may concentrate on this difference as

potential reason for rejection. This is especially

significant if the original signals have a very

distinctive pattern. This information is developed to a

large extent in the process of classification, though it

is manually mapped to the input sequence in the current

examples. It would be possible to analyze only a short

section of time, one or two measures, to determine the

basic pulse rate of the music. With human performers,

some variation in the pulse rate should be expected (2)

(3), so analysis outside the immediate range of the edit

may be misleading. As with other variations, such as

amplitude, rhythmic variations must be compared to

surrounding variations to determine if the variation is

introduced solely by the edit, or is within the tolerance

of other variations in the music. For both rhythmic and

amplitude variations, the focus of the research has been

the editing of various performances of the identical

section of music. This problem is common in classical

productions. In this case, the rhythmic variation can be

compared to the variation that existed in both the

performances prior to editing. If it is not within the

deviation between the two input sequences, the edit

should be re-evaluated.

For a brief example, the edit point of the first

range is given by the other two experts. This i primarily

because no matter where the first edit point is

determined to be, the second edit point should be able to

be correctly determined base on the first edit point

position. Since we know the length of the first note

retained by position of the first edit point, and we know

the length of both ranges at the time the user selects

the second range, we can produce the location in the

second edit which will cause the resulting range length

to be within the values for the source range lengths.

Rhythm analysis is essential in classification and

would play a greater role in the editing process itself

if the form of the music is used to determine

editability. In the current implementation, it is used

primarily as confirmation of the edit selection made by

the other two experts. Rhythm has no input into the

selection of the edit point for the first sequence. Given

the placement of the first edit point, a very quick

determination of likely areas for the second edit point

can be produced by the rhythm information. If the musical

meter can be assumed invariant across the edit (as it has

been in this research), the rhythm information can be

used to determine if the next attack has been moved in

such a way as to create a shift in the meter. This area

has not yet been fully explored in this research. The

area of rhythm analysis would benefit greatly from the

addition of classification techniques to determine if the

alterations in meter are appropriate (as they sometimes

are). The sudden introduction of an unusual time

signature into a common time passage would almost

certainly be an error. In this model, that would be

considered a failure on the part of the producer choosing

the edit range, though a rhythm expert knowledgeable in

the musical form might be capable of preventing such a

mistake.

A better, or at least more reliable, method could be

developed by extracting more information concerning

segmentation. Although it is usually correct to assume

that the envelope will be at a maximum at the center of

a note crest, this can prove erroneous in certain

circumstances where the instrument does heavy modulation

to the amplitude (3). Other forms of segmentation could

be given to the rhythm expert to make the determination

of rhythm information more independent of the envelope.

By relying on the envelope, there will be cases where the

rhythm expert will fail because the envelope analysis was

incorrect. It would be better if the two experts were

more independent of each others information.

An improvement could also be achieved by analyzing

segmented crests further than the nearest crest. The

current version of the editor is misled if there was a

rhythm fluctuation in the notes being edited. This could

be improved by analyzing the sequence of notes near the

edit point to see if the fluctuation is acceptable.

In this research, the user is expected to enter the

classification information by entering the range of

samples that represent the note to be edited. This

uncouples the rhythm expert from the envelope analysis,

however, if the envelope analyzer were to determine note

crests for range constraints (in the case where the

producer pushes a button to indicate the edit note, for

example), this would again become a problem.

CHAPTER 10

ERROR HANDLING

Errors of syntax coming from the goals in the

decision maker are handled by that expert's driver in the

CLIPS environment. This prevents unnecessary message

traffic and attempts to catch the errors at the earliest

possible stage. Any errors of this type are actually

programming errors in the sense of rule design and are

therefore not correctable by the expert even if the

message were sent.

The second form of error is the error associated

with the input by the user. Sequence files that do not

exist, or note ranges not contained in the input files

are examples of this form of error. Most of these are

currently handled by the rule base system to some degree,

though the most appropriate place to handle them would be

in a classification or graphics interface stage. The

rules which must check for that sort of error become

extensive and do not add to the effectiveness of the rule

base. Some of these types of errors are handled by the

rule base itself, but others are allowed to fall into the

third category.

The third category is the errors found by the

experts in their attempts to evaluate the information.

Any expert may post an error to the blackboard. Although

it is given no special attention until it is delivered to

the decision maker, it obtains top priority upon arrival.

An error message is constructed by noting that it is an

error, who is posting the error, and what the error is.

At present, these errors are simply posted as text to the

user. In a more elaborate system, the errors could be

dealt with by the rule base system in any method

acceptable to the type of error.

The syntax necessary for an expert to post an error

to the decision maker involves asserting the follow fact

syntax:

(error <error condition> <expert registering error>)

This allows the user or designer to immediately locate

the expert having difficulty and to determine if the

rules are in error or the user has entered incorrect

information.

The error system is another example of the use of

salience. If an error is registered, it is given top

priority. If it is an error which cannot be corrected

within the abilities of the rule base, the rule base

terminates. The rule which accomplishes this type of

error management (or termination in this case) is:

(defrule error-handler ""

(declare (salience 10))

(error ?type ?by-who)

=>

(printout "Error " ?type " was registered by "

?by-who)

(exit))

The rule base simply prints the message to the user and

terminates processing.

CHAPTER 11

AN EXAMPLE

We left our example before with a goal stack whose

next goal is to produce an edit proposition for the first

sequence. This could be broken further into:

-- Obtain first sequence

-- Determine sequence sampling rate

-- Acquire area of interest from producer

-- Analyze envelope of area of interest

-- Predict edit based on envelope, etc.

We first select the "Obtain first sequence" goal. This is

done by asking the producer what musical passage will be

the first section in the completed sequence. This is

nothing but a file name. Acquisition of the sequence file

is done with Hyperception sampling software (4). A

message is then posted in the mailbox of all three

experts to set their take names to the first file name.

Once the name is confirmed, the goal is removed.

The next goal is to determine the sampling rate.

This is done by the envelope expert. A message is posted

in the envelope expert mailbox to determine the sampling

rate of the first sequence. The answer is written on the

blackboard by the envelope expert. The decision maker

reads the sampling rate and posts a message to the

spectrum analyzer that the sampling rate has been

determined at whatever number was written by the envelope

expert. The next objective is to determine the note

that is of interest to the producer. This is done by

asking the producer to enter the sample number of the

beginning of the note and the end of the note. This is

not the most effective way, but classification and

graphic issues were discussed above. A message is posted

to each of the experts informing them of the area which

will be under evaluation. Each expert will post a message

confirming that the range exists or indicating an error

if one was detected. Errors might be that the file does

not exist or the range is not contained in that file.

The next goal (assuming no expert posted information

such as an error which would alter the goals) is to

analyze the envelope of the sequence. This request is

posted in the mailbox of the envelope analyzer. When the

section has been analyzed, the envelope expert will post

a message to that effect on the blackboard. In the

meantime, the decision maker may work with the spectrum

analyzer to set the sampling rate, take name and, range

of interest.

The next goal will be to produce an edit proposal

based on envelope. If the spectrum expert has useful

information on the blackboard (unlikely at this stage),

it may be given to the envelope expert if deemed

appropriate by the decision maker. The request to produce

an edit prediction is posted in the mailbox for the

envelope expert. When the envelope expert has completed

the task, the prediction is placed on the blackboard.

While processing is begun on the first source, the

user can be queried for the second source. The second

source is checked for validity and its sampling frequency

determined. Verification of sampling frequency match must

occur before large amounts of processing time are wasted.

If the sampling frequencies are mismatched, an error

results and the user is informed. Goals for both

sequences may now exist on the goal stack simultaneously.

Phases are controlled by rules which check not only that

they satisfy a particular goal which is required, but

that the information they will need to satisfy it is

present.

This process continues until all the goals are met.

Exactly what will happen and in what order becomes harder

to predict as the process progresses since it is very

much dependant on the data contained in the sequences.

Timing is also an issue, since each of the experts, each

of the mailboxes, the blackboard, and the decision maker

are all running independent of each other. The exact

order in which various goals are approached depends on

the time at which tasks are switched in and out, and the

length of time to process each request. The decision

maker may begin working on the next goal while the

envelope expert is still processing the last request.

An example of the output from the various experts

and decision maker is shown in the section about expert

architecture (also Appendix G). In the examples, the

effects of parallel processing can be seen in the

disassociated order in which events are acknowledged.

The experts reflect the phenomenon of "listening

for..." particular aspects of the music. The engineer

might "listen for" the beginning of the note, or the

flute note (a spectrally determinable entity). The

engineer may listen to the rhythm to evaluate the edit.

In this case, the ears return information to the producer

in the way the experts post information on the

blackboard. What information is required is determined by

the decision maker just as the engineer must decide when

and why he needs to listen to the sequence again. The

decision maker will "replay" the music through his

experts just as the engineer will replay the music to

make sure of his edit. The more complicated or difficult

the edit, the more frequently the engineer will replay

the music (commonly referred to as "scrubbing"). This

effect can be seen in the actions of the decision maker

as well.

CHAPTER 12

FUTURE RESEARCH

There are several areas in which improvement should

be considered. The decision maker rules do not handle

backtracking from evaluation very well. This is partly

due to the fact that the examples causing backtracking

from the evaluation stage could be solved more

efficiently by forcing the backtracking to earlier stages

of processing. This is done by increasing the data

collection abilities of the experts during the phase of

initial edit proposition. This is analogous to a novice

human editor who frequently overlooks useful information

during the edit point selection phase only to realize its

usefulness when playing back the completed edit and

understanding his mistake. In the test edits that have

been done to this point, backtracking in the evaluation

stage could easily be solved by collecting more

information in the proposition stage. In some ways, this

indicates an additional advantage to more complete

classification and identification.

The envelope analyzing section should be improved to

collect more information concerning rate of degradation.

Secondary edit points, which are needed if backtracking

does occur (regardless of whether the backtracking is

from the evaluation stage or simple disagreement between

experts), may not be located close to the first edit

attempt. Amore complete messaging system between experts

could present information to the envelope expert asking

for any secondary edit point, or what the expected

degradation would be in a target edit area.

The envelope expert is also written to predict note

attacks based on the idea that the attack of the note

will be more rapid than its decay. This may be erroneous

if the attack is very long in relation to the decay of

the previous note, causing the envelope expert to be

unable to identify an acceptable edit point. Perhaps a

more appropriate technique would be to have several

analysis sections within the same expert evaluating the

music. The expert itself could be a weighting system to

look for consensus among the analysis techniques.

To complicate the issue of envelope analysis, the

rule base, and more directly, the edit generation section

does not allow changes to the incoming signal amplitude

as a whole. In other words, most editors used by human

beings (apart from physical editing techniques where a

magnetic tape is cut with a razor blade and taped back

together) allow the operator to increase or decrease the

level of the incoming signal. Some edits which should

otherwise be rejected may be compensated for in this

manner. Without classification techniques and additional

rhythm support, it is not possible to differentiate

between edits which need level control and edits which

are not appropriate because of their amplitude

incompatibility.

The addition of incoming signal level control falls

into a basic category of controls not available on this

version of the editor. An additional control which may

make certain rejected edits possible is the ability to

change crossfade time. In the present implementation, the

crossfade time is fixed at ten milliseconds. This is a

typical setting, but some edits which cannot be done with

this crossfade time become possible with extended

crossfade times. An example of this is an edit between

live performances where the edit is to be done in the

applause. Of course, long crossfade times complicate the

problem of rejecting an edit due to shifts in spectrum or

amplitude because crossfades of one second or more span

enough time that the music itself may be responsible for

the shift and the shift would be totally appropriate to

the musical context.

The spectrum analysis section could be improved by

examining a larger area to determine if the spectrum has

actually shifted or there is extraneous noise. The

addition of windowing functions may make information at

the lower frequencies more palatable to the analysis

section. The analysis is often fooled in low frequency

information because of the fluctuation in level due to

the sliding window phenomena.

An entire class of edits has been eliminated by

excluding speech. A class of edits similar in detection

(although quite different in classification and

representation) are those edits occurring between musical

compositions. These edits should be some of the more

simple edits to complete, but the current system does not

account for those types of problems. The primary

difficulty is understanding when the edit is of this type

so that alterations can be made to the rhythm detection

expert. In a case such as this, the whole objective may

be to change the length of time between the last crest of

the preceding passage and the first crest of the incoming

passage. The current implementation would reject this

type of edit. Complete suspension of the rhythm detection

and rejection would be an incomplete solution because

many times the crest of the note for the incoming passage

is timed so that the rhythm is maintained from the

preceding passage until the new rhythm can be

established. A similar situation occurs when the edit

point is between two notes where the note itself has

decayed into the noise floor. This problem is approached

in the current implementation by evaluating the spectrum

backwards in time (from the second crest to the first).

It is solved in the envelope analyzer by looking for the

increase in envelope slope which represents an attack.

This method has the drawback mentioned above when the

attack for a note is long in relation to the decay.

All of the above are rather minor modifications to

the existing system. There are three suggestions which

would represent major changes. The first is a study on

the quantity and types of edits being done. It is unclear

how well the current editor solves the editing needs

because it is not clear what types of edits are most

frequently attempted. This could be a difficult study to

complete because the answers received will depend largely

on the people asked. The needs in a classical music

establishment may be completely different from those in

a "jingle house" where the primary product is musical

passages less than one minute long. Many of the potential

problem areas discussed above may actually be rare

circumstances in terms of real problems and the solution

as it exists may already be quite useful.

The second area of major change is the incorporation

of the classification and identification stage. Although

useful decisions can be made without this area, it would

no doubt be of great benefit. In all commercial

circumstances, the engineer who is doing the edits for

the producer can at least identify the notes in the music

and where they start and stop. If for no other reason, a

more efficient communication between man and machine

could be developed so that a more natural interface could

be used. Trying to enter the sample number which maps to

the note for the edit is not a natural interface and is

cumbersome at best. Significant advantages could be

realized by the incorporation of rules exploiting the

information available from the classification of the

music it terms of rhythm and additional control. Form

analysis could easily identify the problem mentioned

above where the edit must take place in areas between

musical passages and not in the passages themselves.

The final area of improvement is the addition of the

learning section. In the current implementation, criteria

used to judge rejection or acceptance of the edit is put

directly into the expert code. It would be much better to

send this information to the expert based on the

preferences of the operator. A frame could be developed

which holds the criteria for rejection based on the

operator's critical nature and the type of music being

edited. This may allow even the current implementation a

wider range of operation. Other areas of preference which

could be included in the operators preferences would be

a general time shift. For any particular operator and any

particular music type, the operator may prefer the edits

to be done slightly earlier in time than the analysis

would indicate (or later in time for that matter). This

information could also be incorporated into the case

based frame system. The current implementation has an

extremely limited version of this where no actual changes

to the frame occurs and the frame is directly imbedded

into the source code. The only indication is a section

which queries the user to see if the edit agreed with the

user's expectations. This section could be greatly

expanded.

CHAPTER 13

CONCLUSION

Musical'passages can be analyzed to produce useful

decisions about the music without fully classifying the

music. Perceptual models of the human ear can be used to

extract similar information to that which an engineer

uses to produce an edit. The perceptual models extract

information driven by the needs of the decision maker

rather than the decision of classification being driven

by the perceptual information. Although classification is

very useful, it is not necessary to begin the process of

making useful decisions. Classification can be the result

of information gathering driven by a productive decision

and hence aid the decision rather than the classification

being the objective itself. The learning process changes

parameters by which editing judgments are made, but

learning does not have an effect on the method in which

editing is done in this model.

The editor is currently capable of simple edits

where there is a wide dynamic range in the notes. The

primary limitation is in the ability of the editor to

vary a sufficient number of variables to achieve more

subtle editing talents. For example, the crossfade length

is currently fixed, and it is assumed that there is no

control of amplitude possible. The parameters which

determine when an edit cannot be made are also fixed,

where a case based learning system would be a more

appropriate solution. Though there have been only a few

examples run through the editor, it would appear that the

editor is at least as efficient (though not yet as

versatile) as its human counterparts.

APPENDIX A

The Decision Maker

/**
*

GLOBALS.H
*

*
* These are the globals to the user defined functions
• in the file main.c. They belong to the functions
• that interface the decision maker to the experts
• and the blackboard.
*
**/
/*
** Directory where all data is located.
*/

char directory gca[256];

/*
** File name for output text.
*/

FILE *text out gfh; _ _

/*
** This is the information for the blackboard where the
** messages from experts are posted for use by the
** clips system.
*/

#define BLAKBORD_FILE "/editor/bin/blakbord"
#define BLAKBORD NAME "blakbord"

/*
** This is the name of the file containing the
** executable for the envelope analyzer; one of the
** experts.
*/

#define EXP ENV_ FILE "/editor/bin/exp-env"
#define EXP ENV NAME "EXP-env"

/*
** This is the name of the file containing the
** executable for the spectrum analyzer; one of the
** experts.
*/

(globals.h continued)

#define EXP FFT _ FILE "/editor/bin/exp-fft"
#define EXPIFFTNAME "EXP-fft"

/*
** This is the name of the file containing the
executable ** for the rhythm analyzer; one of the
experts.
*/

#define EXP RHY_FILE "/editor/bin/exp-rhy"
#define EXPIRHYNAME "EXP-rhy"

/*
** This number is used by the system to locate the
** running task of the experts and blackboard. It is
** used in sending and replying to messages.
*/

int blakbordgi;
int exp_env_gi;
int exp_fft_gi;
int exprhygi;

/*
** Decision makers name
*/

#define DECISION NAME "Decision"

/*
** Switches for debugging the experts
*/

/*
#define DBG ENV
#define DBG—FFT
#define DBG:RHY
#define DBG BLAKBORD
*/

_

/*
** Global message area
*/

assert mat assert gma; _ _

/**
*
* PROTOS.H
*

*
* These are the prototypes to the functions in the
* clips environment. Some of them are for functions
* define in CLIPS and used in the user defined
* functions.
*
**/
/*
** prototypes taken from the 'sysfun.c' file
*/

int print num(char * fileid, float number);

/*
** prototypes taken from the 'sysdep.c' file
*/

int init clips(void);

/*
** prototypes taken from the 'usrint.c' file
*/

int command loop(void); _

/*
** clips prototypes used in user defined functions
*/

float numget (struct test * test_ptr,
char * fun name); _

/*
** prototypes for user functions.
*/

void adjust_headers_vf (FILE **takel_fhp,
FILE **take2_fhp,
FILE **dest_fhp,
long takel_edit_l,
long take2edit1);

void make crossfade vf (int buffer1 ip[], _ _ _
int buffer2 ip[],
int dest_buTfer_ip[],
int crossfade length i);

int exit clips (void); _

/**
*
* USERDEFS.H
*

*
* These are the define values and constants used in
* user functions in the clips environment.
*
**/

/*
** These are the key letters used in command. When an
** ask command is sent, it must begin with one of
** these characters for the expert's name.
*/
#define BLAKBORD 'b'
#define ENVELOPE 'e'
#define SPECTRUM 's'
#define RHYTHM 'r'

/*
** These are the specifics for creating a HyperSignal
** file. HyperSignal is a package by Hyperception
** Inc.
*/
#define HEADER_SIZE 10
#define AMPLITUDE 0
#define FRAMESIZE 1
#define SAMPLING_FREQ_R 2
#define FFT_ORDER 3
#define NUM_DATA_R 4
#define FRAME_OVERLAP 5
#define DATA_TYPE 6
#define USER1 7
#define SAMPLING_FREQ_D 8
#define NUM DATA D 9

/*
** These the possibilities when checking the number of
** parameters in a CLIPS command.
*/
#define EXACTLY 0
#define AT_LEAST 1
#define NO MORE THAN 2 _ _

/*
** This is the size of the buffer (in integers) which
** is used to copy sources to destination when
** actually making an edit.
*/
#define XFER BUFFER SIZE 30000

/**
*
* MESSAGES.H
*

*
* These are the message structures and associated
* defines for all the expert and blackboard
* communications. This file is shared by all
* experts, blackboard, decision maker, and
* mailboxes. Also included are the defines which are
* necessary in all programs and experts and need to
* be changed in all cases at the same time. These
* defines are primarily used to set environment
* parameters in case programs are off loaded to
* other processors.
*
**/
/* COMMON DATA AREAS SHARED BETWEEN ALL PROGRAMS --- */

#define TEXT OUTPUT "$con2"
#define DATA_—DIRECTORY "/editor/data/"
#define NAME SERVER NODE 0

/* MESSAGE IDENTIFICATIONS */
#define ID EMPTY REPLY 0
#define ID:SET RANGE 1
#define ID SET—LOW FREQUENCY 2
#define ID—REQUEST—MESSAGE 3 _
#define ID EMPTY QUEUE 4
#define ID—ASSERT MESSAGE 5
#define ID—GET SARPLING RATE 6 _ _ _
#define ID SET TAKE 7
#define ID—ANALYZE 8
#define ID_—FIND EDIT 9
#define ID GET -Low FREQUENCY 10
#define ID—SET—SAMi5LING RATE 11
#define ID:EVALUATE EDIT 12
#define ID_ SET _ EDIT_—TO 13
#define ID SET TAKE NUMBER 14

#define ID TERMINATE 255
#define MAX MESSAGE LENGTH 256

(messages.h continued)

/*
** MESSAGE STRUCTURES -- All structures have an
** identification byte as the first byte in the
** message.
*/

typedef struct
{

char struct id c;
long start T:If range_1;
long end oi- /..rige 1; _ _ _

} set_range_mat;

typedef struct
{

char struct _ id_ c;
char take _ name _ca[17];

} set_take_mat;

typedef struct
{

char struct id c;
int 16w_ Trequency_i;

} set_low_frequency_mat;

typedef struct
{

char struct id _c;
long rate_1;

} sample_rate_mat;

typedef struct
{

char struct_id_c;
} id_only_mat;

typedef struct
{

char struct _ id_ c;
char assert mssg ca[MAX MESSAGE LENGTH-1]; _ _ _ _

} assert mat;

typedef struct
{

char struct _ id _c;
char take name ca[64];
long start of Eange 1;
long end oT ra-nge 1T _

} evaluate_edit_mai-; —

(messages.h continued)

typedef struct
{

char struct_id_c;
long point_1;

} set edit to mat;

/**
*
* MAIN.0
*

*
* This is the main routine for the user section of
* CLIPS. It contains a program for initializing the
* expert tasks and a program for parsing messages to
* those tasks. The parser is only responsible for
* ascertaining which expert the message is for.
* There is an additional driver for each expert used
* to parse the messages for its own expert.
*
**/

/*
NOTE : fprintf and assert strings have been
artificially split onto two or more lines in many cases
to facilitate reading. This applies to all programs
printed in the appendices.
*/

/*
** These are library files contain in the Computer
** Inovations Inc C Compiler.
*/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <magic.h>
#include <taskmsgs.h>
#include <systids.h>

/*
** This is a prototype file for CLIPS functions.
*/
#include "clips.h"

/*
** These are user defined files (see above).
*/
#include "userdefs.h"
#include "protos.h"
#include "messages.h"
#include "globals.h"

(main.c continued)

main()
{
init _clips();
cl print("wclips",
W CLIPS (V4.10 10/05/87)\n");

command loop();
exit_ clips();
}

/*
** USER FUNCTIONS DEFINED IN THIS MODULE
*/

int initialize experts (void);
int ask (void);

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
** FUNCTIONS
*/

extern int arg_num_check(char * fun_name,
int check val,
int exp_num);

extern struct values *arg_type_check
(char * fun_name,
int arg_num,
char * exp_type);

extern struct fact *assert(char * str);

/*
** EXTERNAL USER FUNCTIONS REFERENCED IN THIS MODULE
*/

extern int load_msg_blakbordif (void);
extern int load_msg_exp_env_if (void);
extern int load_msg_exp_fft_if (void);
extern int load_msg_exp_rhy_if (void);
extern int make edit (void);

(main.c continued)

/**

* inititialize_experts () starts the expert tasks
* running in the background

**/

int initialize experts () _

{
extern char directory gca[];

char timing_c = 0;
int send results i. _ , _

/*
** Start data output file.
*/

text out gfh = fopen (TEXT OUTPUT,"w");
fprintf (text out gfh,"\nStarting experts");

/*
** Initialize data directory name.
*/

strcpy (directory_gca,DATA_DIRECTORY);

/*
** Register name for decision maker.
*/

if (! (name attach (DECISION NAME,My_nid))) _ _
{

fprintf (text out_gfh,
"\nDecision maker. \n I can't attach
my name.");

assert ("error registering-name
decision-maker");

}

/*
** Start blackboard task. Make sure that the queue is
** empty. This also insures that the blackboard name
** is registered before starting the experts.
*/
#ifdef DBG BLAKBORD

fprintf (text out gfh,
"\nBlackboard manager here --- ");

fprintf (text out_gfh, "%s%s",
"\n Start black board manually",
" within 15 seconds.");

(main.c continued)

if (0 >= (blakbord_gi =
name_ locate (BLAKBORD NAME,

NAME SERVER NODE, MESSAGE LENGTH)))
{

fprintf (text_out_gfh,
"\nHi, Decision maker --");

fprintf (text_out_gfh,
"\n I can't find the blackboard.");

assert ("error finding-blackboard
decision-maker");

}
#else

if (0 >= (blakbord_gi =
createq (1,BLAKBORD_FILE,NULL)))

{
fprintf (text_out_gfh,"\n%s\n%s",

"CLIPS USER ERROR",
"I can't start the blackboard.");

assert ("error starting-blackboard
decision-maker");

}
#endif

/*
** Clear the blackboard by sending a request message
** This block this program until blackboard manager
** is running well enough to reply.
*/

assert gma.struct id c = ID REQUEST MESSAGE;
send (Elakbordgi7(vTpid *) -iassertima,

&assert_gma, sizeof(assert_mat),
sizeof(assert_mat));

/*
** Start envelope expert. This is done by creating a
** task which will run concurrently with the decision
** making section. There are two modes which it can
** be started in, manual or automatic depending on
** the DBG switch
*/
#ifdef DBG ENV

fprintf (text_out_gfh,"\n%s\n%s",
"Decision maker here --- "
"Start envelope expert in manually within 15
seconds");

sleep (15);
if (0 >= (exp_env_gi =

name locate (EXP ENV NAME,NAME SERVER NODE, _ _ _
MAX MESSAGE-LEN-dTH))) _ _

1

(main.c continued)

fprintf (text_outgfh,
"\nHi, Decision maker speaking.");

fprintf (text_out_gfh,
"\n I can't locate the manual envelope
expert.");

assert ("error
locating-manual-envelope-expert
decision-maker");

}
#else

if (0 >= (exp_env_gi =
createq (1,EXP_ENV_FILE,NULL)))

{
fprintf (text_out_gfh,

"\nCLIPS USER ERROR \n I can't start
the envelope expert");

assert ("error starting-envelope-expert
decision-maker");

} else {
/*
** Make sure expert has registered its name before
** proceeding. In this case, message contents
** will never be checked. This is for timing
** purposes.
*/

assert_gma.struct_id c = ID_REQUEST_MESSAGE;
send results i = send (exp_env_gi, _

(void *) &timing_c,&timing_c,1,1);

/*
** If the task has replied, it should have started
** the mailbox. Get the mailbox address.
*/

if (0 >= (exp_env_gi =
name locate (EXP ENV NAME, _
NAME SERVER NODE, MAX MESSAGE LENGTH)))

{
fprintf (textout_gfh,

"\nDecision maker --\n Envelope
expert died before receiving
message.");

}
}

#endif

(main.c continued)

/*
** Start spectrum expert. This is done by creating a
** task which will run concurrently with the
** decision making section. There are two modes which
** it can be started in, manual or automatic
** depending on the DBG switch
*/
#ifdef DBG FFT

fprintf (text_out_gfh,
"\nDecision maker here --- \n Start spectrum
expert in manually within 15 seconds");

sleep (15);
if (0 >= (exp_fft_gi =

name locate (EXP FFT NAME,NAME SERVER NODE, _
MAX
name_

LENGTH)))
{

fprintf (text_outgfh,
"\nHi, Decision maker speaking.");

fprintf (text_out_gfh,
"\n I can't locate the manual spectrum
expert.");

assert ("error
locating-manual-spectrum-expert
decision-maker");

}
#else

if (0 >= (exp_fft_gi =
createq (1,EXP_FFT_FILE,NULL)))

{
fprintf (text_out_gfh,

"\nCLIPS USER ERROR \n I can't start
the spectrum expert");

assert ("error starting-spectrum-expert
deCision-maker");

} else {

/*
** Make sure expert has registered its name before
** proceeding. In this case, message contents
** will never be checked. This is for timing
** purposes.
*/

assert_gma.struct_id_c = ID_REQUEST_MESSAGE;
send results i = send (exp fft gi, _ . —

(void *) &timing_c,&timing_c,1,1);

(main.c continued)

if (exp_fft_gi != send_results_i)
{

fprintf (text out gfh,
"Decision maker got invalid
starting return from spectrum
expert");

}

/*
** If the task has replied, it should have started
** the mailbox. Get the mailbox address.
*/

if (0 >= (exp_fft_gi =
name_locate (EXP_FFT_NAME,
NAME SERVER NODE, MAX MESSAGE LENGTH)))

1
fprintf (text_out_gfh,

"\decision maker --\n
Spectrum expert died before
receiving message.");

}
}

#endif

/*
** Start rhythm expert. This is done by creating a task
** which will run concurrently with the decision
** making section. There are two modes which it can
** be started in, manual or automatic depending on
** the DBG switch
*/
#ifdef DBG RHY

fprintf (text_out_gfh,
"\decision maker here --- \n Start rhythm
expert in manually within 15 seconds");

sleep (15);
if (0 >= (exp_rhy_gi =

name_locate (EXP RHY NAME, NAME_ SERVER_ NODE,
MAX MESSAGE LENGTH)))

{

fprintf (text_outgfh,
"\nHi, Decision maker speaking.");

fprintf (text_out_gfh,
"\n I can't locate the manual rhythm
expert.");

assert ("error locating-manual-rhythm-expert
decision-maker");

}

(main.c continued)

#else
if (0 >= (exp_rhy_gi =

createq (1,EXP_RHY_FILE,NULL)))
{

fprintf (text_out_gfh,
"\nCLIPS USER ERROR \n I can't start
the rhythm expert");

assert ("error starting-rhythm-expert
decision-maker");

} else {
/*
** Make sure expert has registered its name before
** proceeding. In this case, message contents
** will never be checked. This is for timing
** purposes.
*/

assert gma.struct id c = ID_ REQUEST_ MESSAGE;
send _results i = send- (exp_rhy_gi, -

-(void *) &timing c,&timing c,1,1);
if (exp_rhy_gi != send_results_i)
{

fprintf (text_out_gfh,
"Decision maker got invalid
starting return from rhythm
expert");

}

/*
** If the task has replied, it should have started
** the mailbox. Get the mailbox address.
*/

if (0 >= (exp_rhy_gi =
name_ locate

(EXP RHY NAME,NAME SERVER_ NODE,
MAX MESSAGE_ LENGTH)))

{
fprintf (text_out_gfh,

"\decision maker --\n Rhythm
expert died before receiving
message.");

}
}

#endif

assert ("initialized experts");
return (0);

}

(main.c continued)

/**

*
* This function determines which expert is being
* queried or commanded and calls his message driver.
*

**/

int ask ()
{

char task_ name ca[17];
int return value i = 0;
int

_ _
task id gi; _ _

struct values *argptr;

/*
** Check to see that there are at least two arguments.
** They are
** task (expert) to be asked -- string
** question to be asked of task -- string
** parameter list -- floats
*/

if (arg_num_check ("ask",AT_LEAST,1) == -1)
{

return (0.0);
}

/*
** If the name of the expert is not a string, return
** the value 0.0
*/

if ((arg ptr =
argitype_check("ask",1,WORD)) == NULL)

{
return (0.0);

}

/*
** Assign the argument to the name of function
*/

strcpy (task_name_ca,arg_ptr->value);

/*
** Get id of task to receive this message
*/

switch (*task name ca) _ _
{

75

(main.c continued)

case BLAKBORD :
task id gi = blakbord_gi;
if (Ioaa_msg_blakbord_if ())
{

assert ("error
loading-blackboard-message
decision-maker");

}
break;

case ENVELOPE :
task id gi = exp_env_gi;
if (Ioaamsgexpenvif ())

assert ("error
loading-envelope-
expert-message
decision-maker");

}
break;

case SPECTRUM :
task id gi = exp_fft_gi;
if (load msg exp fft if ())

assert ("error
loading-spectrum-
expert-message
decision-maker");

}
break;

case RHYTHM :
task id gi = exprhygi;
if (Ioaamsgexprhyif ())

assert ("error
loading-rhythm-expert-message
decision-maker");

}
break;

default :
assert ("error locating-target-task

decision-maker");
break;

}

return (return value i);
}

(main.c continued)

/***/
usrfuncs()
{

define function("ask","i',(int (*)()) ask,"ask");
definelfunction("initialize-experts",'P,

(int (*)())initialize experts,
"initialize-experts");

define_ function("make-edit",'i',(int (*)())
make_ edit,"make-edit");

}
/***/

exit clips () _

{
fclose (text out gfh);

}

/**
*
* MSSGBLBO.0
*

*
* This is the driver for the blackboard itself. It
* parses messages intended to query the blackboard
* to see if messages have been posted by the
* experts.
*
* load msg blakbord if () -- This routine requests _ _
* messages on the black board used in the editor. It
* uses the CLIPS line sent to "ask".
*
* format : (ask blackboard)
**/

#include <process.h>
#include <systids.h>
#include "messages.h"

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
** FUNCTIONS
*/

extern struct values *arg_type_check
(char *fun_name,
int argnum,
char * exp_type);

extern struct fact *assert(char * str);

/***/

int load msg blakbord if ()

{
extern int blakbord_gi;
extern assert mat assert gma; _ _

int return value _i = 0;
1

_ . int send results . _ I -

assert gma.struct id c = ID REQUEST MESSAGE; _ _ _ _ _
send results i = _

send (biakbord_gi,&assert gma,&assert gma,
sizeof(assert mat),sizeofTassert mat)7; _ _

if (send results i != blakbord gi) _ _ _
{

return value i = 1; _ _
}

(mssgblbo.c continued)

else if (assert_gma.struct_id_c ==
ID EMPTY QUEUE)

{
sleep (3);

} else {
assert (assert_gma.assert_mssg_ca);

}
return (return value i);

/**
*
* MSSGENVE.0
*

*
* load_msg_envelope_if () -- This sends commands and
* questions to the envelope expert. It takes
* messages sent through the "ask routine and
* structures a command to the envelope expert task.
*
* It would be more object-oriented to include this
* section in the expert's code, however, it is more
* efficient to detect errors at the place they
* occur. This could be thought of as a device driver
* from the standpoint of the clips environment where
* the expert is the device and this is its prime
* interface.
*
* format : (ask envelope <command>)
*
* returns :
* 0 -- successful
* 1 -- command is not a word
* 2 -- invalid parameter for command
* 3 -- invalid command
* 4 -- envelope expert mailbox does not exist
*
**/

#include <stdio.h>
#include <string.h>
#include <process.h>
#include <systids.h>
#include "clips.h"
#include "constdef.h"
#include "messages.h"

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
** FUNCTIONS
*/

extern struct values *arg_type_check
(char * fun_name,
int arg_num,
char * exp_type);

extern struct fact *assert(char * str);

(mssgenve.c continued)

/***/
int load msg exp env if () _ _

{

extern int exp_env_gi;
extern assert mat assert gma;

char command ca[256];
int send results i;
set_range_mat *set range nip;
set take mat *set take map;
set_low_frequency_mat— *set—low Yrequency_map;
evaluate edit mat *evallat edit map;
id_only_mat *id only map;
struct values *arg_ptri,*arg_ptr2;

/*
** Get command from the call from CLIPS
*/

if ((arg_ptrl =
arg_type_check("ask",2,WORD)) == NULL)

{
return (1);

}

/*
** Load messages.
*/

strcpy (command_ca,arg_ptr1->value);

/*
** Load "sampling rate command"
*/
if (0 == strcmp (command ca,"sampling-rate"))
{

id only_map = (id_only_mat *) &assert_gma;
id—only map->struct id _c =

ID_ GET_ SAMPLING RATE;
}

/*
** Load "set range" command.
*/
else if (0 == strcmp (command ca,"set-range"))
{

set_range_map = (set_range_mat *)
&assert gma;

set range map->struct id c = ID SET RANGE;

(mssgenve.c continued)

if ((argptrl =
arg_type_check ("ask",3,NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-range-start
envelope-analyzer");

return (2);
} else {

set range map->start of range _1 = _ _ _
(long) arg_ptrl-:>iValue;

= if ((arg_ptr2
arg_type_check
("ask",4,NUMBER)) == NULL)

{
assert ("error

invalid-number-for-range-end
envelope-analyzer");

return (2);
} else {

set range map->end of range 1 = _ _
(long) arg_ptr2->ivalue;

}
}

}

/*
** Load "evaluate" command.
*/
else if (0 == strcmp (command_ca,"evaluate"))
{

evaluate edit_map = _
(evaluate edit mat *) &assert_gma;

evaluate edit_ iap->aruct _ id_ c =
ID_ EVALUATE_ EDIT;

if ((arg_ptrl =
arg_type_check ("ask",3,WORD)) == NULL)

{
assert ("error

invalid-take-name-for-evaluation
envelope-analyzer");

return (2);
} else {

strcpy (evaluate edit map->take_name_ca,
arg_ptr1->value);

(mssgenve.c continued)

if ((arg_ptr2 =
arg_type_check
("ask",4,NUMBER)) == NULL)

{
assert ("error

invalid-number-for-start-point
envelope-analyzer");

return (2);
}
evaluate_edit_map->startof_range_l =

(long) arg_ptr2->ivalue;
= if ((arg_ptr2

arg_type_check
("ask",5,NUMBER)) == NULL)

{
assert ("error

invalid-number-for-end-point
envelope-analyzer");

return (2);
}
evaluate_edit_map->end_ofrange_l =

(long) arg_ptr2->ivalue;
}

}

/*
** Load "set take" command
*/
else if (0 == strcmp (command_ca,"set-take"))
{

if ((arg_ptrl =
arg_type_check ("ask", 3, WORD)) == NULL)

{
assert ("error invalid-name-for-

take-file envelope-analyzer");
return (2);

}
set_take_map = (set_take_mat *) &assert_gma;
set_takemap->struct_idc = ID_SETTAKE;
strcpy (set_take_map->take_name_ca,

arg_ptrl->value);
}

(mssgenve.c continued)

/*
** Load "set take number" command
*/
else if (0 == strcmp (command ca,

"set-take-number"))
{

if ((arg_ptrl =
arg_type_check ("ask", 3, WORD)) == NULL)

{
assert ("error

invalid-name-for-take-number
envelope-analyzer");

return (2);
}
settake_map = (set take_mat *) &assert_gma;
set_ take map->strucE id c =

ID -s-ET TAKE NUMBER;
strcpy (setitakeimap->take_name_ca,

arg_ptrl->value);
}
/*
** Load analyze command.
*/
else if (0 == strcmp (command ca,"analyze"))
{

id only_ map = (id only mat *) &assert gma;
id-onlymap -> struct Id c = ID ANALYZE; _ _

1
/*
** Load set low frequency command.
*/
else if (0 == strcmp (command _ca,

"set-low-frequency"))
{

set low frequency map = _
(set low frequency_mat *) &assert gma; _ _ _

set low frequency_ map -> struct id c = _ _ _ _
ID_ SET_ LOW FREQUENCY;

if ((arg_ptrl =
arg_type_check ("ask",3,NUMBER)) ==
NULE)

{
assert ("error

invalid-value-for-low-frequency
envelope-analyzer");

return (2);
}
set low frequency map -> low frequency_i = _ _ , _

arg_ptrl -> ivalue;
}

(mssgenve.c continued)

/*
** Load find edit command.
*/
else if (0 == strcmp (command_ca,"find-edit"))
{

id_only_map = (id_only_mat *) &assert_gma;
id only_map -> struct _ id_ c = ID FIND EDIT;

}
/*
** Print an error if message was not legal.
*/
else
{

assert ("error illegal-command
envelope-analyzer");

return (3);
}

/*
** Send message containing command and appropriate
** parameters to envelope expert task.
*/

send results i =
send (exp_env_gi,&assert_gma,&assert gma,
sizeof(assert mat),sizeof(assert mat));

/*
** Check return from expert to see if there was a
** problem.
*/

if (send results i != exp env gi) _
{

assert ("error sending-message-to-envelope
decision-maker");

return (4);
}

return (0);
}

/**
*
* MSSGRHYT.0
*

*
* load_msg_rhythm_if () -- This sends commands and
* questions to the rhythm expert. It takes messages
* sent through the "ask routine and structures a
* command to the rhythm expert task.
*
* It would be more object-oriented to include this
* section in the expert's code, however, it is more
* efficient to detect errors at the place they
* occur. This could be thought of as a device driver
* from the standpoint of the clips environment where
* the expert is the device and this is its prime
* interface.
*
* format : (ask exp rhy <command> <parameters> ...)
*
* returns :
* 0 -- successful
* 1 -- command is not a word
* 2 -- invalid parameter for command
* 3 -- invalid command
* 4 -- rhythm expert mailbox does not
* exist
*
**/

#include <stdio.h>
#include <string.h>
#include <process.h>
#include <systids.h>
#include "clips.h"
#include "constdef.h"
#include "messages.h"

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
** FUNCTIONS
*/

extern struct values *arg_type_check
(char * fun name,
int argnum,
char * exp_type);

extern struct fact *assert(char * str);

(mssgrhyt.c continued)

/***/

int loadmsgexprhyif ()

{
extern int exp_rhy_gi;
extern assert mat assert gma; _

char commandca[256];
int send results i' _ I -

set_range_mat *set range map;
set take mat *set take map;
id -6nly_mat *id_ 475nly _iap; _
evaluate edit mat *evaluate edit map; _
set_editito mat *set editto rap; _ _ _
struct values *argptrl,*arg_ptr2;

/*
** Get command from the call from CLIPS
*/

if ((arg_ptrl =
arg_type_check("ask",2,WORD)) == NULL)

{
return (1);

}

/*
** Load messages.
*/

strcpy (commandca,argptr1->value);

/*
** Load "set range" command.
*/
if (0 == strcmp (command_ca,"set-range"))
{

set range map = (set range mat *) _ _ _ _
&assert_gma;

set rangemap->struct_id_c = ID_SET_RANGE;
if T(arg_ptr1 =

arg type_check ("ask",3,NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-range-start
rhythm-analyzer");

return (2);
} else {

set range map->start of range_l = _
(long) arg ptrl->ivalue;

(mssgrhyt.c continued)

if ((arg_ptr2 =
arg_type_check
("ask",4,NUMBER)) == NULL)

{
assert ("error

invalid-number-for-range-end
rhythm-analyzer");

return (2);
} else {

set_ range_map->end_of range_l =
(long) arg_ptr2->ivalue;

}
}

}

/*
** Load "set take" command
*/
else if (0 == strcmp (command_ca,

"set-take-number"))
{

if ((arg_ptrl =
arg_type_check ("ask",3,WORD)) == NULL)

{
assert ("error invalid-name-for-

take-file rhythm-analyzer");
return (2);

}
set_take_map = (set take_mat *) &assert_gma;
set _ take map->strucE id c =

ID --ET TAKE NUMBER;
strcpy (setitakelmap->take_name_ca,

arg_ptrl->value);
}

/*
** Load "set edit to" command
*/
else if (0 == strcmp (command_ca,"set-edit-to"))
{

if ((argptrl =
arg_type_check ("ask",3,NUMBER)) ==
NULL)

{
assert ("error

invalid-value-for-set-edit-to
rhythm-analyzer");

return (2);
}

(mssgrhyt.c continued)

set edit_ to_ map = _
(seE eait to mat *) &assert gma;

set edit_Eo mal7)->aruct id c = - __ _
ID ET—EDIT TO;

set edit to map-5point 1 = _ _ _
(long) arg_ptri->Tvalue;

}

/*
** Load "find edit" command
*/
else if (0 == strcmp (command ca,"find-edit"))
{ -

id only map = (id only_mat *) &assert gma;
id_only_map-- -> st-iuct _ id _ c = ID_ FIND_ EDIT;

}

/*
** Load "evaluate edit" command
*/
else if (0 == strcmp (command ca,"evaluate"))
{ -

evaluate edit_ map = _ _
(evaluate edit mat *) &assert_gma;

evaluate edit map -> struct _ id_ c =
ID_

evaluate_ edit_
EDIT;

if ((arg_ptr1 =
arg_type_check ("ask", 3, WORD)) == NULL)

{
assert ("error invalid-name-for-edit

rhythm-analyzer");
return (2);

}
strcpy (evaluate_edit_map -> take_name_ca,

argptrl->value);
evaluate edit map->start ofrange_l =

(long) arg_ptrl->ivalue;
if ((arg_ptr2 =

arg_type_check ("ask", 4, NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-edit-start
rhythm-analyzer");

return (2);
}
evaluate_edit_map->start of_range_l =

(long) arg_ptr2->ivlue;

(mssgrhyt.c continued)

if ((arg_ptr2 =
arg_type_check ("ask",5,NUMBER)) ==
NULL)

{
assert ("error invalid-number-for-

edit-end rhythm-analyzer");
return (2);

}
evaluate_editmap->end_ofrange_l =

(long) arg_ptr2->ivalue;
}

/*
** Print an error if message was not legal.
*/
else
{

assert ("error illegal-command
rhythm-analyzer");

return (3);
}

/*
** Send message containing command and appropriate
** parameters to spectrum expert task.
*/

send results i =
send (exp_rhy_gi,&assert gma,&assert gma,
sizeof(assert mat),sizeol-(assert mat));

/*
** Check return from expert to see if there was a
** problem.
*/

if (send results i != exp rhy gi) _ _
{

assert ("error
sending-message-to-rhythm-analyzer
decision-maker");

return (4);
}

return (0);

/**
*
* MSSGSPEC.0
*

*
* load msg spectrum if () -- This sends commands and - -..- * questions to the spectrum expert. It takes
* messages sent through the "ask routine and
* structures a command to the spectrum expert task.
*
* It would be more object-oriented to include this
* section in the expert's code, however, it is more
* efficient to detect errors at the place they
* occur. This could be thought of as a device driver
* from the standpoint of the clips environment where
* the expert is the device and this is its prime
* interface.
*
* format : (ask spectrum <command>)
*
* returns :
* 0 -- successful
* 1 -- command is not a word
* 2 -- invalid parameter for command
* 3 -- invalid command
* 4 -- spectrum expert mailbox does not exist
*
**/

#include <stdio.h>
#include <string.h>
#include <process.h>
#include <systids.h>
#include "clips.h"
#include "constdef.h"
#include "messages.h"

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
** FUNCTIONS
*/

extern struct values *arg_type_check
(char * fun_name,
int arg_num,
char * exp_type);

extern struct fact *assert(char * strl:

(mssgspec.c continued)

/***/

int load msg exp fft if () _ _ _

{
extern int exp_fft_gi;
extern assert mat assert gma;

char command_ca[256];
int send_results_i;
set_range mat *set_range_map;
settake_iat *settake_map;
id only mat *id only map;
sample rate mat *sample rate map;
evaluaEe_edit_mat *evaluate edit map;
struct values *argptr1,*arg_ptr2;

/*
** Get command from the call from CLIPS
*/

if ((arg_ptrl =
arg_type_check("ask",2,WORD)) == NULL)

{
return (1);

}

/*
** Load messages.
*/

strcpy (commandca,argptr1->value);

/*
** Load "sampling rate command"
*/
if (0 == strcmp (command_ca,"set-sample-rate"))
{

sample_rate_map =
(sample_rate_mat *) &assert_gma;

sample rate map->struct id c =
ID SET SAMPLING RATE;—

if ((arg_ptrl =
arg type_check ("ask",3,NUMBER)) ==
NULL-)

{
assert ("error

invalid-number-for-sampling-rate
spectrum-analyzer");

return (2);

(mssgspec.c continued)

sample rate_map->rate 1 =
(long) arg_ptr1-5ivalue;

}

/*
** Load "set range" command.
*/
else if (0 == strcmp (command_ca,"set-range"))
{

set range_map = (set range_mat *)
&assert_gma;

set range_map->struct_id_c = ID_SET_RANGE;
if ((arg_ptrl =

arg type_check ("ask", 3, NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-range-start
spectrum-analyzer");

return (2);
} else {

set range map->start of range _1 =
(long) argptrl-:>iValue;

if ((arg_ptr2 =
arg_type_check
("ask",4,NUMBER)) == NULL)

{
assert ("error

invalid-number-for-range-end
spectrum-analyzer");

return (2);
} else {

set range map->end of range _1 =
(long) arg_pti.2-5ivalue;

}
}

}

/*
** Load "evaluate" command.
*/
else if (0 == strcmp (command_ca,"evaluate"))
{

evaluate edit map =
(evaluate edit mat *) &assert_gma;

evaluate edit iap->itruct id c = _ _
ID EVALUATE EDIT;

(mssgspec.c continued)

if ((arg_ptrl =
arg_type_check ("ask", 3, WORD)) == NULL)

{
assert ("error

invalid-name-for-output-file
spectrum-analyzer");

return (2);
}
strcpy (evaluateedit_map->take_name_ca,

argptrl->value);
if ((argptr2 =

arg_type_check ("ask",4,NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-range-start
spectrum-analyzer");

return (2);
}
evaluate_edit_map->startof_range_l =

(long) arg_ptr2->ivalue;
if ((argptr2 =

arg__type_check ("ask",5,NUMBER)) ==
NULL)

{
assert ("error

invalid-number-for-range-end
spectrum-analyzer");

return (2);
}
evaluate_edit_map->end_of_range_l =

(long) arg_ptr2 -> ivalue;
}
/*
** Load "set take" command
*/
else if (0 == strcmp (command_ca,"set-take"))
{

if ((arg_ptrl =
arg_type_check ("ask",3,WORD)) == NULL)

{
assert ("error invalid-name-for-

take-file spectrum-analyzer");
return (2);

}
set_take_map = (set_take_mat *) &assertgma;
set_takemap->structidc = ID_SET_TAKE;
strcpy (set_take_map->take_name_ca,

arg_ptrl->value);
}

(mssgspec.c continued)

/*
** Load "find edit" command
*/
else if (0 == strcmp (command ca,"find-edit"))
{ —

id_only_map = (id_only_mat *) &assert_gma;
id_only_map -> struct _ id_ c = ID FIND EDIT;

}
/*
** Load "get low frequency" command
*/
else if (0 == strcmp

(command_ca,"get-low-frequency"))
{

id_only_map = (id_only_mat *) &assert_gma;
id_only_map -> struct id c =

ID_ GET_ LOW_ FREQUENCY;
}

/*
** Print an error if message was not legal.
*/
else
{

assert ("error illegal-command
spectrum-analyzer");

return (3);
}

/*
** Send message containing command and appropriate
** parameters to spectrum expert task.
*/

send results i =
send (exp_fft_gi,&assert gma,&assert gma,
sizeof(assert mat),sizeol-(assert mat));

/*
** Check return from expert to see if there was a
** problem.
*/

if (send results i != exp fft gi) _ _
{

assert ("error sending-message-to-spectrum
decision-maker");

return (4);
}

return (0);
}

/**
*

MAKKEEDIT.0
*

*
* It is the purpose of this program to construct an
• output file from the edit points and source files.
• It calls the functions adjust_header_vf and
• crossfade vf to assist in generating the output
• file. It does not necessarily mean the output of
• this process is a usable edit. It only generates
• attempts to be tested.
*
**/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "constdef.h"
#include "structde.h"
#include "messages.h"
#include "globals.h"
#include "protos.h"
#include "userdefs.h"

int make edit ()

{
extern int arg_num_check(char * fun name,

int check val,
int exp num);

extern struct values *arg_type_check
(char * fun name,
int arg_num,
char * exp_type);

extern struct fact *assert(char * str);

extern char directory_gca[];
extern FILE *text out gfh;

char destination_ca[17];
char takel_ca[17];
char take2 ca[17];
char file_namel_ca[256];
char file name2 ca[256];
char destination name ca[256];
int *bufferl ip;
int *buffer2 ip;
int buffer2 length i;
int *dest buffer ip- ,
int crossfade lengthi;

(makeedit.c continued)

long sampling_rate_1;
long takel edit 1; _ _
long take2 edit 1;
long read iiositIonl 1* _
long read_position2__ 1 1;
FILE *takel_fhp;
FILE *take2 fhp;
FILE *dest fhp; _

struct values *argptr;

fprintf (text out_gfh,
"\decision maker creating edited file.");

/*
** Check to see if argument count is correct. Arguments
** are:
** target file name -- string
** source 1 file name -- string
** source 1 edit point -- float
** source 2 file name -- string
** source 2 edit point -- float
** sampling rate -- float
*/

if (arg_num_check ("make-edit",EXACTLY,6) == -1)
{

return (0.0);
}

/*
** Get destination file name. Check that it is a
** string.
*/

if ((arg_ptr =
arg_type_check ("make-edit",1,WORD)) == NULL)

{
return (0.0);

}
strcpy (destination_ca,arg_ptr->value);

(makeedit.c continued)

/*
** Get the take name for the first take.
*/

if ((arg_ptr =
arg_type_check ("make-edit",2,WORD)) == NULL)

{
return (0.0);

}
strcpy (takel ca,arg_ptr->value);

/* -
** Get the point in the file at which to make the edit
** for the outgoing sequence.
*/

if ((arg_ptr =
arg_type_check ("make-edit",3,NUMBER)) ==
NULL)

{
return (0.0);

}
takel edit 1 = arg ptr->ivalue;

/*
** Get the take name for the second take.
*/

if ((arg_ptr =
arg_type_check ("make-edit",4,WORD)) == NULL)

{
return (0.0);

}
strcpy (take2_ca,arg_ptr->value);

/*
** Get the point in the file at which to make the edit
** for the incoming sequence.
*/

if ((arg_ptr =
arg_type_check ("make-edit",5,NUMBER)) ==
NULE)

{
return (0.0);

}
take2 edit 1 = arg ptr->ivalue;

(makeedit.c continued)

/*
** Get the sampling rate for the two sequences.
*/

if ((arg_ptr =
arg_type_check ("make-edit",6,NUMBER)) ==
NULL)

{
return (0.0);

}
sampling_rate_l = argptr->ivalue;

/*
** Get some memory to do the transfer in.
*/

bufferl_ip = (int *) calloc
(XFER_BUFFER_SIZE,sizeof (int));

buffer2_ip = (int *) calloc
(XFER_BUFFER_SIZE,sizeof (int));

dest buffer ip = (int *) calloc (XFER BUFFER SIZE, _
—sizeof (int));

/*
** Open the source file for the outgoing take for
** reading.
*1

strcpy (file_namel_ca,directory_gca);
strcat (file_namel_ca,takel_ca);
takel fhp = fopen (file namel ca,"r");

/*
** Open the source file for the incoming take for
** reading.
*/

strcpy (file_name2_ca,directory_gca);
strcat (file_name2ca,take2_ca);
take2 fhp = fopen (file name2 ca,"r"); _

/*
** Open the destination file for the completed edit for
** writing.
*/

strcpy (destinationnameca,directory_gca);
strcat (destination_name_ca,destination_ca);
dest_fhp = fopen (destination_name_ca,"w");

(makeedit.c continued)

/*
** Adjust header information for output file.
*/

adjust_headers_vf (&take1 fhp, &take2 fhp,
&dest ?hp, takel _ e_1,
take2 edit 1);

read_positionl_l = HEADER _SIZE;
read_position2_1 = HEADER_SIZE;

/*
** Copy the first part of the source file to the
** destination file.
*/

while ((read_position1_1 + XFER_BUFFER_SIZE) <
(take1 edit 1 - (sampling rate 1 / 100)))

{
fread ((void *) buffer1 ip, sizeof (int),

XFER BUFFER SIZE, Eake1 fhp);
fwrite ((void *)—buffer1_ip, sizeof (int),

XFER BUFFER SIZE, dest fhp);
readposirEion11—+= XFER BUFFER SIZE;

1
/*
** Copy remaining section up to crossfade region.
*/

crossfade length_i = (int) (sampling_rate_l /
100);

fread ((void *) buffer1 ip, sizeof (int),
(int) (takel edit I -
(long) crossfade length i -
read_position1 l), takei_fhp);

fwrite ((void *) buTfer1_ip, sizeof (int),
(int) (takel edit _1 -
(long) crossfade_length_i -
read_position1_1), dest_fhp);

/*
** Load crossfade buffers.
*/

fread ((void *) buffer1_ip, sizeof (int),
crossfade length i, takel fhp);

fseek (take2 fhp,((take2 edit _1 i + HEADER_ SIZE) *
sizeof (int)),SEEK SET);

fread ((void *) buffer2lip, sizeof (int),
crossfade_length_i, take2_fhp);

(makeedit.c continued)

/*
** Generate the crossfade.
*/

make crossfade vf (bufferl ip, buffer2 ip,
dest buffer ip, crossfade length I);

fwrite ((void *)—destbuffer rip-, sizeof- (int),
crossfade_ length_ i, desE_ fhp);

/*
** Copy the remainder of the second file to destination
** to finish up.
*/

while (buffer2 length i =
fread ((void *) Euffer2 ip, sizeof (int),

XFER_ BUFFER_ SIZE, Eake2 _fhp))
{

fwrite ((void *) buffer2_ip, sizeof (int),
buffer2 length i, dest fhp); _ _ _

}

/*
** Close all affected files, free the memory, and exit.
*/

free (bufferl_ip);
free (buffer2 ip);
free (dest buffer ip);
fclose (takel fhp);
fclose (take2_fhp);
fclose (dest hp);
fprintf (text out_gfh,"\decision maker completed

edit attempt.");
return (0);

}

/**
*
* ADJUSTHDR.0
*

*
* It is the purpose of this program to construct an
* output header with information appropriate for the
* HyperSignal software, so that it can be played
* back.
*
**/

#include <stdio.h>
#include "userdefs.h"

void adjust _headers_vf (FILE **takel_fhp,
FILE **take2 fhp,
FILE **dest_Thp,
long take1 edit_l,
long take2ledit_1)

{
extern FILE *text out gfh; _ _

int header' ia[HEADER_SIZE],
header2:ia[HEADER SIZE],
dest _ header _ ia[HEADER_ SIZE];

long dest num_data 1;
long num_aata_take-2-_1;

fprintf (text out_gfh,
"\decision maker adjusting header
information.");

/*
** get headers from existing source files.
*/

fread ((void *) headerl ia, sizeof (int),
HEADER SIZE,*takel—fhp);

fread ((void *) header2—ia, sizeof (int),
HEADER_SIZE,*take2:fhp);

(adjusthdr.c continued)

/*
** Take whichever amplitude is larger.
*/

if (header1 ia[AMPLITUDE] > header2 ia[AMPLITUDE])
{

dest header ia[AMPLITUDE] =
header' ia[AMPLITUDE];

else {
dest header ia[AMPLITUDE] =

header-2- ia[AMPLITUDE];
}

/*
** It is assumed for this research that the frame sizes
** are equal.
*/

dest header ia[FRAMESIZE] = headerl ia[FRAMESIZE];

/*
** To make the edit, both sampling frequencies are
** guaranteed to be the same.
*/

dest header ia[SAMPLING FREQ R] =
header' ia[SAMPLIN FREQ R];

dest header Ia[SAMPLING T'REQ B] =
header' ia[SAMPLIN FREQ_D];

/*
** FFT order is not used for these experiments.
*/

dest header ia[FFT ORDER] = headerl ia[FFT ORDER];

/*
** Frame overlap, data type, and user defined areas are
** not used in this research.
*/

dest header ia[FRAME OVERLAP] =
header): ia[FRAME- OVERLAP];

dest header Ia[DATA TYPE] = headerl ia[DATA TYPE];

dest header ia[USER1] = header1 ia[USER1];

/*
** To determine the number of data elements used by the
** outgoing source, take the current edit position
** and subtract the header length.
*/

dest num data 1 = take' edit 1 - HEADER SIZE;

(adjusthdr.c continued)

/*
** Determine the number of data points in the second
** file.
*/

num_ data take2 1 =
(long) ((long) header2 ia[NUM DATA D] *
(long) 16384 + (long) Header2lia[NUM_DATA_R]
+ (long) HEADER SIZE);

num data take2 1 -= Eake2 edit 1; 1

/*

** Determine the number of data points in the new file.
*/

dest num data 1 += num data take2 1* 1

/*

** Load header with new data length.
*/

dest header ia[NUM DATA D] =
—(int) Tdest niim data 1 / 16384);

dest_header ia[NUM DATA RT =
(int) Tdest niim data 1 % 16384); _ _ _

/*
** Write header to output file.
*/

fwrite ((void *) dest_headeria, sizeof (int),
HEADER SIZE, *dest fhp); _ _

return;
}

/**
*
* CROSSFAD.0
*

*
* This program takes the two input buffers and
* generates an amplitude decrease in buffer one
* while producing an equivalent amplitude increase
* in buffer two. This causes the two input files to
* switch gradually (crossfade).
*
**/

#include <stdio.h>

void make crossfade vf (int bufferl ip[], _ _ _
int buffer2 ip[],
int dest_buYfer_ip[],
int crossfade length i)

{
extern FILE *text out gfh; _ _

int index_i;
float multlf,mult2f,factor_f;

fprintf (text out_gfh,
"\decision maker is generating a
crossfade.");

/*
** Determine a smooth cross fade between incoming and
** outgoing files. This method does not account for
** logarithmic effect of amplitude.
*/

factor _f = 1.0 / (float) crossfade _ length_i;
multi Y = 1.0;
mult2—f = 0.0;
for (index_i = 0; index_i < crossfade length_i;

indec_i++, mult1 -= factor_f,—
mult2 _ f += factor _f)

{
buffer1_ip[index_i] =

(int) ((float) bufferl_ip[index_i] *
multi_f);

buffer2_ip[index_i] =
(int) ((float) buffer2_ip[index_i] *
mult2 f);

dest _ buffeP ip[index i] =
bufferi ip[inde)7c_i] +
buffer2lip[index_i];

}

(crossfad.c continued)

return;
}

; AI DIGITAL AUDIO EDITOR
; MAIN RULES
;
I
.**

; This section sets up the experts and their mailboxes
; (agents).
.**

; Initialization.

(defrule start-experts ""
?start-fact <- (initial-fact)

=>
(retract ?start-fact)
(initialize-experts)
(assert (check-messages))
(assert (goal plan-edit))
(assert (goal execute-edit))
(assert (goal learn-from-edit)))

; If there is nothing else to do, the program checks
; for messages to determine if any information has
; been returned by an expert.
(defrule check-messages ""

(declare (salience -10))
?chk-mssg-fact <- (check-messages)

=>
(retract ?chk-mssg-fact)
(ask blackboard)
(assert (check-messages)))

(rules continued)

; This rule handles program termination if one of the
; experts signals a low level error. It preempts all
; normal processing and terminates after printing a
; message.

(defrule error-handler ""
(declare (salience 10))
(error ?type ?by-who)

=>
(printout "Error " ?type " was registered by "

?by-who)
(exit))

.**
1

; This section is used for planning an edit.
; Information must be obtained from the user about
; the source files for the two audio streams which
; will be cut and linked together for the edit.
;**

; if the goal is to plan an edit, we need :
; 2 source files.
; a destination file.
; a sample rate for each of the files.
; a range of samples within the files that
; represents the crest of the note which
; will be the note before the edit to the
; crest of the note which will be after
; the edit.
(defrule get-source-info ""

(goal plan-edit)
=>

(assert (goal get second sampling-frequency))
(assert (goal get first sampling-frequency))
(assert (goal get second range))
(assert (goal get first range))
(assert (goal get output take))
(assert (goal get second take))
(assert (goal get first take)))

(rules continued)

; Ask user for information. This section could be
; replaced with a graphic section.
(defrule get-take ""

?old-goal <- (goal get ?number take)
=>

(printout "What is the name of the file for the "
?number " take? ")

(bind ?answer (read))
(assert (?number take-is ?answer))
(retract ?old-goal))

(defrule get-sampling-frequency ""
?old-goal <- (goal get ?number sampling-frequency)
(?number take-is ?name)

=>
(ask envelope set-take-number ?number)
(ask envelope set-take ?name)
(ask envelope sampling-rate)
(retract ?old-goal))

(defrule same-take-sampling-rates ""
(first take-is ?name)
(second take-is ?name)
?have-goal <- (goal get second sampling-frequency)

=>
(retract ?have-goal)
(assert (have sampling-rates)))

(defrule different-take-sampling-rates uu
(first take-is ?namel)
(second take-is ?name2&-?namel)
(?namel sampling-rate-is ?rate)
(?name2 sampling-rate-is ?rate)

=>
(assert (have sampling-rates)))

(rules continued)

(defrule sample-rate-error ""
?old-first-take <- (first take-is ?namel)
?old-second-take <- (second take-is

?name2&-?namel)
?old-ratel <- (?namel sampling-rate-is ?ratel)
?old-rate2 <- (?name2 sampling-rate-is

?rate2&-?ratel)
=>

(printout "Sampling rates do not match" crlf)
(retract ?old-first-take)
(retract ?old-second-take)
(retract ?old-ratel)
(retract ?old-rate2)
(assert (goal get second take))
(assert (goal get first take)))

(defrule change-fft-sampling-rate ""
(have sampling-rates)
(?name sampling-rate-is ?rate)
?fl <- (spectrum sampling-rate-is ?rate2&-?rate)

=>
(retract ?fl)
(ask spectrum set-sample-rate ?rate))

(defrule set-fft-sampling-rate ""
(have sampling-rates)
(?name sampling-rate-is ?rate)
(not (spectrum sampling-rate-is ?rate))

=>
(ask spectrum set-sample-rate ?rate))

(defrule get-range ""
?old-goal <- (goal get ?number range)

=>
(printout

"What is the start of the last note before
the edit " crlf " from the " ?number " take?
tt)

(bind ?start (read))
(printout "What is the start of the first note

after the edit " crlf " from the " ?number "
take? ")

(bind ?end (read))
(assert (?number range-is ?start ?end))
(retract ?old-goal))

(rules continued)

(defrule range-error ""
?old-range <- (?number range-is ?start ?end&:

(<= ?end ?start))
=>

(printout "start of note is after end of note"
crlf)

(retract ?old-range)
(assert (goal get ?number range)))

(defrule end-plan-edit ""
?end-phase <- (goal plan-edit)
(or (have sampling-rates)

(and (?takel sampling-rate-is ?rate)
(?take2 sampling-rate-is ?rate)))

(output take-is ?outtake)
(first range-is ?startl ?endl)
(second range-is ?start2 ?end2)

=>
(retract ?end-phase)
(assert (edit planned)))

; This section is used to execute the edit. It can be
; thought of as the main control loop.

(defrule do-an-edit ""
(goal execute-edit)
(edit planned)

=>
(assert (goal get edit-point))
(assert (goal make-edit))
(assert (goal evaluate edit-point)))

(defrule get-first-edit-point ""
(goal execute-edit)
(goal get edit-point)

=>
(assert (goal get first edit-point)))

(defrule erase-get-edit-point-goal ""
?fl <- (goal get ?take edit-point)
(?take edit-point-is ?place)

=>
(retract ?f1))

(rules continued)

(defrule get-second-edit-point ""
(goal execute-edit)
(goal get edit-point)
(first edit-point-is ?place)

=>
(assert (goal get second edit-point)))

(defrule remove-get-second-edit-point ""
?f1 <- (goal get second edit-point)
(second edit-point-is ?point)

=>
(retract ?f1))

(defrule have-edits ""
?f1 <- (goal get edit-point)
?f2 <- (first edit-point-is ?pointl)
?f3 <- (second edit-point-is ?point2)

=>
(retract ?f1)
(retract ?f2)
(retract ?f3)
(assert (edit-points-at ?pointl ?point2)))

(defrule make-edit ""
?fl <- (goal make-edit)
(output take-is ?output)
(first take-is ?namel)
(second take-is ?name2)
(edit-points-at ?pointl ?point2)
(?namel sampling-rate-is ?rate)

=>
(make-edit ?output ?namel ?pointl ?name2 ?point2

?rate)
(assert (output edit-is ?pointl))
(retract ?f1))

(defrule evaluate-edit ""
(goal evaluate edit-point)
(output take-is ?output)
(output edit-is ?point)
(edit-points-at ?pointl ?point2)

=>
(ask envelope evaluate ?output ?point ?point)
(ask spectrum evaluate ?output ?point ?point)
(ask rhythm evaluate ?output ?pointl ?point2))

(rules continued)

;
; This section is used for getting the initial attempt
; at an edit. This is done before any information
; has been gathered about the points which should be
; edited.

(defrule set-defaults ""
(goal get ?take edit-point)
(?take take-is ?name)
(?name sampling-rate-is ?rate)
(?take range-is ?start ?end)

=>
(ask envelope set-take-number ?take)
(ask envelope set-take ?name)
(assert (set envelope set-low-frequency 50))
(assert (set envelope set-range ?start ?end))
(ask spectrum set-take ?name)
(assert (set spectrum set-range ?start ?end))
(ask rhythm set-take-number ?take)
(assert (set rhythm set-range ?start ?end)))

(defrule set-range ""
?fl <- (set ?expert set-range ?start ?stop)
(not (?expert range-is ?anystart ?anystop))

=>
(retract ?f1)
(ask ?expert set-range ?start ?stop))

(defrule change-range ""
?fl <- (set ?expert set-range ?start ?stop)
?f2 <- (?expert range-is ?anystart ?anystop)

=>
(retract ?fl)
(retract ?f2)
(ask ?expert set-range ?start ?stop))

(defrule set-low-frequency ""
?f1 <- (set envelope set-low-frequency ?value)
(not (envelope low-frequency-is ?other_value))

=>
(retract ?f1)
(ask envelope set-low-frequency ?value))

(defrule change-low-frequency ""
?f1 <- (set envelope set-low-frequency ?value)
?f2 <- (envelope low-frequency-is ?other_value)

-...>
(retract ?f1)
(retract ?f2)
(ask envelope set-low-frequency ?value))

(rules continued)

(defrule exp-env-analyze ""
(envelope low-frequency-is ?freq)
(envelope range-is ?start ?stop)
(envelope take-is ?name)
(have sampling-rates)

=>
(ask envelope analyze))

(defrule get-env-edit ""
(goal get ?take edit-point)
(envelope take-is ?name)
(have sampling-rates)
(envelope range-is ?start ?stop)
(?take range-is ?start ?stop)
(envelope analyzed ?start ?stop)

=>
(ask envelope find-edit))

(defrule tell-first-edit-to-rhythm ""
(first take-is ?name)
(first range-is ?start ?stop)
(envelope ?namel ?start ?stop edit-at ?place)
(not (rhythm ?take ?anystart ?anystop edit-at

?anyplace))
=>

(ask rhythm set-edit-to ?place))

(defrule change-first-edit-to-rhythm ""
(first take-is ?name)
(first range-is ?start ?stop)
?f1 <- (rhythm first ?start ?stop edit-at ?place)
(envelope ?name ?start ?stop edit-at

?place2&-?place)
=>

(retract ?f1))

(defrule get-first-rhythm-edit-point ""
(first edit-point-is ?place)

=>
(ask rhythm find-edit))

(defrule get-fft-edit ""
(goal get ?take edit-point)
(spectrum take-is ?name)
(have sampling-rates)
(spectrum range-is ?start ?stop)
(?take range-is ?start ?stop)

=>
(ask spectrum find-edit))

(rules continued)

; This section is used when there is a disagreement
; between experts. First an attempt is made to
; gather information from the individual experts and
; use that information to re-evaluate their choices.

; Because the rhythm expert does not read files, we
; substitute the take name for the take number for
; the rhythm expert returns.
(defrule rhythm-expert-adjustment ""

(?take take-is ?name)
?f1 <- (rhythm ?take ?start ?stop edit-at ?place)

=>
(retract ?f1)
(assert (rhythm ?name ?start ?stop edit-at

?place)))

(defrule minor-deviation ""
(goal get ?take edit-point)
(?take take-is ?name)
(?name sampling-rate-is ?rate)
(?take range-is ?start ?stop)
?f1 <- (?expertl ?name ?start ?stop edit-at

?expl-place)
?f2 <- (?expert2&-?expertl ?name ?start ?stop

edit-at ?exp2-place&:
(<= (abs (- ?expl-place ?exp2-place))

(/ ?rate 100)))
?f3 <- (?expert3&-?expertl&--?expert2 ?name ?start

?stop edit-at ?exp3-place&:
(and (<= (abs

(- ?expl-place ?exp3-place))
(/ ?rate 100))

(<= (abs (- ?exp2-place ?exp3-place))
(/ ?rate 100))))

=>
(retract ?f1)
(retract ?f2)
(retract ?f3)
(bind ?center-point (/ (+ ?expl-place ?exp2-place)

2))
(printout "Agreement has been reached on edit

point placement" crlf)
(assert (?take edit-point-is ?center-point)))

(rules continued)

(defrule no-spectrum-low-freq ""
?f1 <- (envelope low-frequency-is ?freq)
?f2 <- (envelope analyzed ?start ?stop)
(?name sampling-rate-is ?rate)
?f3 <- (envelope ?name ?start ?stop edit-at

?env-place)
?f4 <- (rhythm ?name ?start ?stop edit-at

?env-place)
(spectrum ?name ?start ?stop edit-at ?fft-place&:

(> (abs (- ?env-place ?fft-place))
(/ ?rate 100)))

(not (spectrum low-frequency-is ?freq))
=>

(retract ?f1)
(retract ?f2)
(retract ?f3)
(retract ?f4)
(printout "Backtracking because of disagreement.

Trying for frequency." crlf)
(ask spectrum get-low-frequency))

(defrule spectrum-low-freq-to-envelope ""
(spectrum low-frequency-is ?number)
(not (envelope low-frequency-is ?number))

=>
(ask envelope set-low-frequency ?number))

(defrule shift-earlier-is-preferred ""
(?take name-is ?name)
(?name sampling-rate-is ?rate)
?f1 <- (?expertl ?name ?start ?stop edit-at

?expl-place)
(?expert2 ?name ?start ?stop edit-at ?exp2-place&:

(> (abs (- ?expl-place ?exp2-place))
(/ ?rate 100)))

(test (> ?expl-place ?exp2-place))
(?expert3 ?name ?start ?stop edit-at ?exp3-place&:

(<= (abs (- ?exp3-place ?exp2-place))
(/ ?rate 100)))

=>
(retract ?f1)
(assert (?expertl should-be-earlier ?take)))

(rules continued)

(defrule shift-later-is-preferred ""
(?take name-is ?name)
(?name sampling-rate-is ?rate)
?fl <- (?expertl ?name ?start ?stop edit-at

?expl-place)
(?expert2 ?name ?start ?stop edit-at ?exp2-place&:

(> (abs (- ?expl-place ?exp2-place))
(/ ?rate 100)))

(test (< ?expl-place ?exp2-place))
(?expert3 ?name ?start ?stop edit-at ?exp3-place&:

(<= (abs (- ?exp3-place ?exp2-place))
(/ ?rate 100)))

=>
(retract ?f1)
(assert (?expertl should-be-later ?take)))

; Rules need to be added to this section to reset the
; take information for the expert to ask for a later
; or earlier edit point. It has not been included,
; because it was not used in the example and is
; still largely untested.

(defrule abort-on-loop-back-earlier ""
(declare (salience -5))
(?expertl should-be-earlier ?take)

=>
(assert (goal reject-edit)))

(defrule abort-on-loop-back-later ""
(declare (salience -5))
(?expertl should-be-later ?take)

=>
(assert (goal reject-edit)))

(rules continued)

; This section is used to evaluate the edit. To
; simplify the experiments, the acceptability
; parameters have been hard-coded into the experts
; themselves. An acceptability frame section could
; be added to this to inform the experts as to what
; is considered acceptable.

(defrule a-ok ""
?f1 <- (goal evaluate edit-point)
?f2 <- (envelope accepts edit)
?f3 <- (spectrum accepts edit)
?f4 <- (rhythm accepts edit)

=>
(retract ?f1)
(retract ?f2)
(retract ?f3)
(retract ?f4)
(assert (goal accept-edit)))

; This section alters edit based on response from the
; experts to evaluation. This area requires a good
; deal of expansion to handle more general cases.

(defrule shift-point-earlier ""
(?expertl prefers-earlier ?take)
(?expert2 prefers-earlier:accepts ?take:edit)
(?expert3 prefers-earlier:accepts ?take edit)

=>
(assert (?expert2 should-be-earlier ?take))
(assert (?expert3 should-be-earlier ?take)))

(defrule shift-point-later ""
(?expertl prefers-later ?take)
(?expert2 prefers-later:accepts ?take:edit)
(?expert3 prefers-later:accepts ?take edit)

=>
(assert (?expert2 should-be-later ?take))
(assert (?expert3 should-be-later ?take)))

(rules continued)

; This section accepts edits. It asks the user if he
; agrees with the edit that was done.

(defrule accept-edit-point
?fl <- (goal execute-edit)
?f2 <- (goal accept-edit)

=>
(retract ?f1)
(retract ?f2)
(printout "Do you approve of this edit? (y/n)"

crlf)
(bind ?response (read))
(assert (goal get-another-point-from-user

?response)))

(defrule get-another ""
(goal get-another-point-from-user n)

=>
(printout "Could you find a better point? (y/n)"

crlf)
(bind ?response (read))
(assert (goal examine-response ?response)))

(defrule chose-another ""
?f1 <- (goal get-another-point-from-user n)
?f2 <- (goal examine-response y)

=>
(retract ?f1)
(retract ?f2)
(assert (edit-succeeded user-reports another)))

(defrule should-have-failed ""
?fl <- (goal get-another-point-from-user n)
?f2 <- (goal examine-response n)

=>
(retract ?fl)
(retract ?f2)
(assert (edit-succeeded user-reports n)))

(defrule good-job ""
?fl <- (goal get-another-point-from-user y)

=>
(retract ?f1)
(assert (edit-succeeded user-reports y)))

(rules continued)

; This section rejects edits. It asks the user if he
; agrees with the rejection decision.

(defrule reject-edit ""
?f1 <- (goal evaluate edit-point)
?f2 <- (?expert rejects edit ?reason)

=>
(printout "Edit rejected by " ?expert " expert

because " ?reason crlf)
(retract ?f1)
(retract ?f2)
(assert (goal reject-edit)))

(defrule prefer-earlier-and-later ""
?f1 <- (goal evaluate edit-point)
(?expertl prefers-earlier ?take)
(?expert2 prefers-later ?take)

=>
(retract ?f1)
(assert (goal reject-edit)))

(defrule rejected-edit ""
?fl <- (goal reject-edit)
?f2 <- (goal execute-edit)

=>
(retract ?f1)
(retract ?f2)
(printout

"The editor could not accomplish an
acceptable edit here." crlf "Were you able to
complete an acceptable edit(y/n)?")

(bind ?success (read))
(assert (edit-failed user-reports ?success)))

(rules continued)

; This section would trigger learning functions based
; on the users input. At present, it merely asks the
; user if he agrees with the output given by the
; editor and comments on what should be done.

;If we failed, but the user succeeds, we must relax the
; constraints that caused our failure.
(defrule failed-user-succeeds ""

?f1 <- (goal learn-from-edit)
?f2 <- (edit-failed user-reports y)

=>
(retract ?f1)
(retract ?f2)
(printout "Either I'm too picky or you're very

talented." crlf)
(assert (goal cleanup edit-facts)))

;If we succeeded and the user agrees, pat ourselves on
; the back. We need to strengthen our current
; settings (make them harder to change)
(defrule success-user-success ""

?f1 <- (goal learn-from-edit)
?f2 <- (edit-succeeded user-reports y)

=>
(retract ?fl)
(retract ?f2)
(printout "Am I good or what?" crlf)
(assert (goal cleanup edit-facts)))

;If we failed and the user did too, console him and
; strengthen our current settings.
(defrule failed-user-failed ""

?f1 <- (goal learn-from-edit)
?f2 <- (edit-failed user-reports n)

=>
(retract ?fl)
(retract ?f2)
(printout "Some things just were not meant to be."

crlf)
(assert (goal cleanup edit-facts)))

(rules continued)

;If we succeeded and the user failed, apologize and
; tighten the constraints.
(defrule success-user-failed ""

?fl <- (goal learn-from-edit)
?f2 <- (edit-succeeded user-reports n)

=>
(retract ?f1)
(retract ?f2)
(printout "What was I thinking to propose such a

bogus edit." crlf " Can you ever forgive
me?")

(assert (goal cleanup edit-facts)))

;If we succeeded but the user prefers another edit,
; examine what is different and alter the
; constraints.
(defrule success-user-picks-another ""

?fl <- (goal learn-from-edit)
?f2 <- (edit-succeeded user-reports another)

=>
(retract ?f1)
(retract ?f2)
(printout "I'm still learning, I'll get it right

next time." crlf)
(assert (goal cleanup edit-facts)))

; This section is used to clean up after an edit and
; prepare to do a new edit.

(defrule remove-takes ""
(goal cleanup edit-facts)
?f1 <- (?take take-is ?name)

=>
(retract ?f1))

(defrule remove-ranges ""
(goal cleanup edit-facts)
?fl <- (?take range-is ?start ?stop)

=>
(retract ?f1))

(defrule remove-edit-planned ""
(goal cleanup edit-facts)
?f1 <- (edit planned)

=>
(retract ?f1))

(rules continued)

(defrule remove-sampling-rates ""
(goal cleanup edit-facts)
?f1 <- (?take sampling-rate-is ?value)

=>
(retract ?f1))

(defrule remove-edit-at ""
(goal cleanup edit-facts)
?f1 <- (?expert ?take ?start ?stop edit-at ?place)

=>
(retract ?f1))

(defrule remove-low-frequency ""
(goal cleanup edit-facts)
?f1 <- (?take low-frequency-is ?freq)

=>
(retract ?f1))

(defrule remove-edit-points ""
(goal cleanup edit-facts)
?fl <- (edit-points-at ?pointl ?point2)

=>
(retract ?f1))

(defrule remove-edit ""
(goal cleanup edit-facts)
?f1 <- (?take edit-is ?place)

=>
(retract ?f1))

(defrule remove-envelope-analyzed ""
(goal cleanup edit-facts)
?f1 <- (?expert analyzed ?start ?stop)

=>
(retract ?f1))

(defrule remove-sampling-rate-match ""
(goal cleanup edit-facts)
?f1 <- (have sampling-rates)

=>
(retract ?fl))

(rules continued)

; This section allows the editing process to be
; terminated or restarted after the completion of an
; edit.

(defrule ask-about-start-again ""
(declare (salience -5))
?f1 <- (goal cleanup edit-facts)

=>
(retract ?f1)
(printout "Do you want to do another edit? (y/n)"

crlf)
(bind ?answer (read))
(assert (user said ?answer)))

(defrule terminate ""
?f1 <- (user said n)

=>
(exit))

(defrule start-again ""
?f1 <- (user said y)

=>
(retract ?f1)
(assert (goal plan-edit))
(assert (goal execute-edit))
(assert (goal learn-from-edit)))

APPENDIX B

The Envelope Expert

/**
*

EXP-ENV.H
*

*
* These are the defines for the envelope analyzer
• section of the digital audio editor.
*
**/

#define ENVELOPE NAME "EXP-env"
#define MAILBOX

ENVELOPE_
"/editor/bin/mailbox"

#define BLAKBORD NAME "blakbord"

#define TRUE 1
#define FALSE 0

#define YES 1
#define NO 0

#define BACKGROUND 1
#define POLLING RATE 2

#define UP 1
#define DOWN 0

#define SAMPLE_RATE_MSBS 8
#define SAMPLE RATE LSBS 2

/**
*

GLOBALS.H
*

*
* These are the global variable declarations for the
• envelope analyzing expert for the digital audio
• editor.
*
**/

char incoming_msg_gca[MAX_MESSAGE_LENGTH];
char directory_name_gca[256];
char direction_gc = DOWN;
char take name gca[17];
char error message gca[255];

124

(globals.h continued)

int highest freq_gi = 20000;
int lowest Yreg_gi = 100;
int crest maximum gi[2];
int take number gi;
int terminate gi = FALSE;
int *result gia;

unsigned msg_from gu;
unsigned mailbox c:Idress_gu;
unsigned blakbord_gu;
unsigned array_length_gu;
unsigned array_minimum_gu;
unsigned array_min_place_gu;

long range_start gl = 0;
long range end = 0;
long *result place gla;
long sampling_rate_gl = 0;

set_range_mat *set_range_gmap;
set_take mat *set_take gmap;
set_low_frequency_mat *set low_ frequency gmap;
id only mat id only gma;
evaluate edit mat *eValuaEe edit gmap;
assert mat assert gma;

FILE *text out gfp;

/**
*

EXP-ENV.0
*
/**
*
* PURPOSE : This is the main routine. Its job is to
• parse individual messages to the envelope
• analyzing expert and call the appropriate
• functions to perform the task requested in the
• message.
*
• PARAMETERS : none
*
• RETURNS : zero
*
**/
#include <string.h>
#include <stdio.h>
#include <process.h>
#include <magic.h>

(exp-env.c continued)

#include <systids.h>
#include <stdlib.h>
#include "exp-env.h"
#include "/clips/clips/include/messages.h"
#include "globals.h"
#include "protos.h"

main ()

{
extern long lowest_freq_gi;

char timing_c = 0;
int assert message i = FALSE;
int send results i;
int message from 1;
long edit _at 1;

/*
** Start text area.
*/

text _ out _gfp = fopen (TEXT OUTPUT,"w");

/*
** Start a mailbox with my name so that messages and
** requests can be received.
*/

mailbox address gu = createq
(BACKGROUN5,MAILBOXPROG,ENVELOPE_NAME,NULL);

send (mailboxaddressgu,&timingc,&timing_c,1,1);

/*
** Locate other mailboxes.
*/

if (! (blakbord gu = name locate
(BLAKBORD NAME,NAME SERVER NODE,
MAX MESSAGE_ LENGTH)))

{
fprintf (text_out_gfp,

"\nEnvelope expert can't find the
blackboard.");

exit (1);
}

/*
** Tell Decision maker I am ready.
*/

message_from_i = receive (0,&timing_c,1);
reply (message_from_i,&timing_c,1);

(exp-env.c continued)

/*
** Set up request message.
*/

id_ only_gma.struct _ id_ c = ID_REQUEST_MESSAGE;
/*
** Set up data locations
*/

data_

strcpy (directory_name_gca,DATA_DIRECTORY);
/*
** Take messages off of the queue and execute them.
*/

while (! terminate_gi)
{

send (mailbox_address_gu,&id only_gma,
incoming msg_gca, sizeof (id_only_mat),
sizeof (incoming_msg_gca));

switch (incoming_msg_gca[0])
{

case ID TERMINATE :
terminate_gi = TRUE;
break;

case ID SET RANGE :
sef_range_gmap = (set_range_mat *)

incomingmsg_gca;
range_start gl =

set_range_gmap ->
start of _range_1; _

rangeendgl =
set range gmap ->
end of_range_1;

sprintf (assert_gma.assert mssg_ca,
"envelope range-is %ld %ld",
range_start_gl,range_end_g1);

assert message_i = TRUE;
fprintf (text_out_gfp,

"\nEnvelope setting range to
%ld %ld.", range_start_gl,
range_end_g1);

break;
case ID GET SAMPLING_ RATE :

if (0 --' get_ sample_ rate _lf())
{

sprintf
(assertgma.assert_mssg_ca,

"%s sampling-rate-is
%ld", take_name gca,
sampling_rate_gI);

} else {

(exp-env.c continued)

strcpy
(assert_gma.
assert mssg_ca,
error _Eessage_gca);

}
fprintf (text out_gfp,

"\nEnvelope got sampling rate
of %ld.", sampling_rate_g1);

assert_message_i = TRUE;
break;

case ID SET TAKE :
set_ take gmap =

(set take mat *)
incoming isggca;

strcpy (takeEame_gca,
set take_gmap->take_name ca);

sprintf (assert gma.assert_msig_ca,
"envelope take-is
%s",take_name_gca);

assert message =_i TRUE;
fprintf (text out gfp,

"\nEnvelope setting take to
%s.", take _name_gca);

break;
case ID SET TAKE NUMBER :

set_ take gmap =
(set take mat *)
incoiing_Esg_gca;

if (0 == strcmp
(set take_gmap->take_name_ca,
"first"))

{
take_number_gi = 0;

} else {
take number gi = 1; _ _

}
break;

case ID SET LOW FREQUENCY :
set_ low fr&Dency_gmap =

(set low_frequency_mat *)
incoiingmsg_gca;

lowest freqgi =
set low frequency_gmap ->
low_frequency_i;

fprintf (text_out_gfp,
"\nEnvelope setting lowest
frequency to %d.",
lowest freq_gi);

(exp-env.c continued)

sprintf (assert gma.assert_mssg_ca,
"envelope Tow-frequency-is
%d", lowestfreg_gi);

assert_message_i= TRUE;
break;

case ID EVALUATE EDIT :
evaluate edit gmap =

(evaluate edit mat *)
incoming_isg_g-Ca;

strcpy (assertgma.assert_mssg_ca,
directory_name_gca);

strcat (assert_gma.assert mssg_ca,
evaluate edit gmap
take name ca);

I evaluate -edit_-D-oint cf
(assert_gma.assert_mssg_ca,
evaluate_edit_gmap ->
start_of_range 1);

assert_message_i = TRUE;
break;

case ID EMPTY REPLY :
sleep (POLLING_ RATE);
break;

case ID_ANALYZE :
if (! analyze_range_if ())
{

sprintf
(assert_gma.
assert mssgca,
"envelope analyzed %ld
%ld", range start_gl,
range_end_gl);

assert message i = TRUE;
}
break;

case ID FIND EDIT :
if-(! (edit_ at _1 =

find edit-1f ()))
{

sprintf
(assert_gma.
assertmssg_ca,
"envelope
no-possible-edit-
in-range");

} else {

130

(exp-env.c continued)

sprintf
(assert gma.
assert issg_ca,
"envelope %s %ld %ld
edit-at %ld",
take name_gca,
range start gl,
range_end_gi, edit_at_1);

}
assert message_i = TRUE;
break;-

default :
fprintf (text_out_gfp,

"\nERROR -- Envelope analyzer
received illegal message.");

break;
}
if (assert message i) _ _
{

assert gma.struct id c =
15 ASSERT MESSAGE;-

send reults i= _
send (bIakbord gu, &assert_gma,
&assert_gma, sizeof(assert_mat),
sizeof(assert_mat));

assert _ message _ = i FALSE;
}

}
fclose (text_out_gfp);
return (0);

}

131

/**
*
* ANALYZER.0
*

*
* PURPOSE : This routine analyzes the envelope
* producing is the main routine. Its job is to parse
* individual messages to the envelope analyzing
* expert and call the appropriate functions to
* perform the task requested in the message.
*
**/
/*
** WARNING : THIS ROUTINE HAS MULTIPLE RETURNS.
** This routine returns under error conditions.
*/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "exp-env.h"
#include "protos.

int analyze_range_if ()

{
extern char directory_name_gca[];
extern char direction_gc;
extern char take_name_gca[17];
extern int highest freqgi;
extern int lowest _Yreg_gi;
extern int take number gi;
extern int *result gia;
extern unsigned array_length_gu;
extern long range start gl;
extern long range end gi;
extern long *result_ place _gla;
extern long sampling_rate_gl;

char done_c = FALSE;
char file name_ca[256];
char found new max_c = FALSE;
int second_maR- i;
int frame_starE_i;
int window_size_i;
int *input_buffer_ia;
int last_read_i;
int bufferptri;

unsigned int array needed_u;
long read_Yrom_position_l;
long array_pointer_1;

132

(analyzer.c continued)

long second_max_place_1;
long window_start1;
long backup_one_window_i;
FILE *source file fp;

if (range_start_gl == 0)
{

return (1);
}

if (range_end_gl == 0)
{

return (2);
}

if (sampling_rate_gl == 0)
{

return (3);
}

/*
** Calculate the array which will be generated in the
** analysis process.
** NOTE : This system cannot handle note separations
** of more than 1.4 seconds at 44100 sampling rate.
*/

array_needed_u =
((range_end_gl - range_start_gl) /
(sampling_rate_gl / highest_freg_gi));

if (array_needed_u > 64000)
{

return (5);
}

/*
** If an array exists, get rid of it.
*/

if (result_gia)
{

free (result gia);
free (result_place_gla);

}

133

(analyzer.c continued)

/*
** Try to acquire an array the appropriate size array
** for the storage of the results.
*/

if (! (result_gia =
(int *) calloc (array_needed_u,
sizeof (int))))

{
return (6);

}
if (! (result_place_gla =

(long *) calloc (array_needed_u,
sizeof (long))))

{
return (7);

}
window size i = sampling_ / lowest freq_gi; _ _ _

if (! (input_buffer_ia =
(int *) calloc (window_size_i,sizeof (int))))

{
return (8);

}

/*
** Set up directory name and structure.
*/

strcpy (file_name_ca,directory_name_gca);
strcat (file name_ca,take name_gca);

Canalyzer.c continued)

/*
** If the file cannot be opened set an error condition
** to the decision maker.
*/

if (! (source file fp = fopen (file name ca,"r"))) _ _ _ _

{
return (9);

}

/*
** If the file is open, seek the position for the start
** of the range.
*/

fseek (source_filefp,
(read_ from_ position 1 =
range_star-E_gl * 2L),SEEK_SET);

134

(analyzer.c continued)

/*
** Fill array while analyzing read material.
*/

array_pointer 1 = 0;
frame start i—= -1;
resulE_gia[array_pointer_1] = 0;
last read i = 0;
secoEd maTc i = 0;
bufferiptri = window_size_i;

/*
** While we are not done, read a full frame or whatever
** remains of a frame.
*/

while (((range_endgl * 2L) >=
read from_ position_ 1)
&& (! done _c))

{

/*
** Examine the remaining part of the array. If a
** new maximum is found, stop and store new max
** and set window start to new max. Otherwise,
** continue to process until entire window is
** processed saving secondary max. Save
** secondary max and start new window at
** secondary max.
*/

while ((! found_new max_c) &&
(buffer_ptr—i != frame start i) &&
(buffer_ptrii < windowisize_I))

{
found new max_c = look_for_maximums_cf

(buffer_ptr_i++,input_buffer_ia,
&secondmaxi, &last_read_i,
&second max place 1,
array_pointer_l,
&read from position 1); _ _ _

}

135

(analyzer.c continued)

/*
** If we found a new max, move the window to the
** new maximum.
*/

if (found new max c) _ _ _
{

frame start i = buffer_ ptr _i - 1;
seconamaxI = 0;
second_max_place_l = 0;
found new max _c = 0;
resulEgfg[arraypointer 1 + 1] =

result_gia[array_poInter_1];
array_pointer_1++;

/*
** If not a new max, but we finished the buffer,
** save the secondary.
*/

} else if (buffer_ptr_i == frame_start_i)
{

frame start i =
((window_size_i + buffer_ptr_i) -
((read_from_position 1 -
second max_place_1) 7
sizeof-(int)))
% window size_i;

result_gia[ar-iay_pointer_1] =
second_max_i;

result_place_gla[array_pointer_1] =
second_max_place 1;

result_gia[array_poinEer 1 + 1] =
result gia[array_pointer 1];

if (frame sEart i > buffer_ptr_i)
{

backup_one window 1 = (long)
(-2L (long) window size i *
(long) sizeof (int));

fseek (source_file_fp,
backup one window_l,
SEEK CUR);-

window st-grt_l =
fEell (source file_fp);

if (! (window size-i =
fread ((void T)
input_buffer ia, sizeof (int),
window size
source-file-fp)))

{
done_c = TRUE;

136

(analyzer.c continued)

}
read _from 1 = _ _

second max- place_ 1 + 2; -1- buffer_ptr 1 = frame start i + 1; _ _
array_poiner 1++;
second_max_i -- 0;
second max_place 1 = 0;
direction gc = DOWN;

} else if (buffer_ptr_i == window_size_i)
{

window start 1 = ftell (source file fp); _ _ _ _

if (! (window size i =
fread ((void input_buffer_ia,
sizeof (int), window_size_i,
source file fp))) _ _

{
done_c = TRUE;

} else {
buffer_ptr_i = 0;

}
}

}
array_length_gu = array_pointer_l - 1;

return (0);
}

137

/**
*

FINDEDIT.0
*

*
* PURPOSE : To analyze the envelope produced by the
• analyzer to determine an appropriate edit point
• and extract rate of degradation information.
*

#include <stdio.h>
#include "exp-env.h"

long find edit if (void)

{
extern int *result_gia;
extern int take number_gi;
extern int crest_maximumgi[];
extern unsigned array_length_gu;
extern unsigned array_minimum_gu;
extern unsigned array min place gu;
extern long *resuIt_piacegTa;
extern FILE *text out gfp; _ _

int done_i;
int attack_started_i;
unsigned count_u;
long return value 1 = 0;
double average change rate d;
double current ratel_U;
double current rate2 d;

fprintf (text out_gfp,"\nEnvelope expert searching
for edit.");

/*
** Find minimum value in the array.
*/

arrayminimum_gu = (unsigned) 65534;
for (count = _u 0; count_u <= array_length_gu;

count u++)
{

if (resultgia[countu] < array minimum gu)

array_minimumgu = result_gia[count_u];
array_min_place_gu = count_u;

}

}

138

(findedit.c continued)

/*
** Find maximum value for second crest.
*/

crest_maximum_gi[take number_gi] = 0;
for (count_u = array_Tength gu / 2;

count_u <= array_lengtH_gu; count u++)
{

if (resultgia[count_u] >
crest_maximum gi[take number_gi])

{
crest maximum gi[take number_gi] =

result_gIa[count_u];
}

}
fprintf (text out gfp,

"\nEnvelope Expert saving maximum crest value
of %d for take %d.",
crest_maximumgi[take_number_gi],
take number gi);

/*
** Find the place where the slope begins to increase.
** This is defined as the point where the slope
** becomes greater than the average rate of increase.
** This detects sudden changes in amplitude to
** classify them as note attacks.
*/

done i = FALSE;
count_u = array length gu; _ _
average_change rate _d =

(double) (resuit_gia[array_length_gu] -
array minimumgu) /
(double) ((result place gla[array_length_gu]
result_place_gla[0]) / 2);

attack started i = FALSE;
while ((count_u >= 2) &&

(! done i))
{

current rate1 d = (double)
(result_gia[count_u] -
result_gia[count_u - 1]) /
(double) (result place gla[count u]
result_place_gla[count_u - 1]);

current rate2 d = (double)
(result4ia[count_u] -
result gia[count u - 2]) /
(double) (resulf_place_gla[count_u] -
result place gla[count u - 2]);

139

(findedit.c continued)

if ((! attack started i) && _
(average change -iate _ d <
current _ -iatel _dT)

{
attack started_i = TRUE;

} else if ((attack started i) &&
(average_change rate_U >
current rate1 cif &&
(average_change rate d > _
current _ rate2 _d))

{
done i = TRUE;
return value 1 = _ _

result_place_gla[count_u - 1] / 2;
}
count _u--;

}
if ((! count u) && (! done i)) _ _
{

return value 1 = 0; _ _
}
return (return value 1); _ _

}

140

/**
*
* GETSRATE.0
*

*
* Purpose: to recover the sampling rate information
* from an Hyperception type file of audio samples.
*
**/

#include <stdio.h>
#include <string.h>
#include "/clips/clips/include/messages.h"
#include "getsrate.h"

long get_sample_rate_lf ()

{
extern char take_name_gca[];
extern char errormessage_gca[];
extern long sampling_rategl;
extern FILE *text out gfp; _ _

int srate_i;
char take_file_name_ca[256];
FILE *take file fh;

strcpy (take_file_name_ca,DATA_DIRECTORY);
strcat (take_file_name_ca,take_name_gca);
if (! (take_file_fh =

fopen (take_file_name_ca,"r")))
{

strcpy (errormessage_gca,"error
invalid-file-name envelope-expert");

return (-1L);
}
if (f seek (take file fh,SAMPLE_ RATE_ MSBS *

sizeof (inE),SEK_SET))
{

strcpy (error_messagegca,"error
invalid-file-length envelope-expert");

return (-2L);
}
fread ((void *) &srate _i, sizeof (int), 1,

take_filefh);
sampling_rate_gl = (long) srate_i;
if (f seek (take_file_fh,

SAMPLE RATE LSBS * sizeof (int), SEEK_SET))

141

(getsrate.c continued)

strcpy (error_message_gca,"error
invalid-file-length envelope-expert");

return (-3L);
}
sampling_rate_gl *= 32767;
fread ((void *) &srate_i, sizeof (int), 1,

take_filefh);
sampling rate_gl += (long) srate_i;
fclose (Eake_filefh);
return (sampling_rate_g1);

}

142

/**
*
* EVALUATE.0
*

*
* This section evaluates edits in terms of amplitudes.
* Only sufficient methods have been applied for the
* examples. Methods of improvement include:
* Checking the value of the change against the
* value of the next attack which would have occurred
* had there been no edit.
* Comparison of envelope immediately preceding
* and following the edit. If the amplitude drops
* suddenly because of the edit, the incoming edit
* can be made later (preferred) or the outgoing edit
* can be made earlier. If either shift is
* inappropriate, the next pass will produce a
* "prefer-earlier" by one expert and a
* "prefer-later" by another, thus rejecting the
* edit.
*
**/

#include <stdlib.h>
#include <stdio.h>

char *evaluate _ edit_point _cf (char * results_cp,
long point1_1)

{
extern int crest maximum_ gi[];
extern long sampling_

rate_gl;
extern FILE *text out gfp; _ _

int *buffer in ip, *buffer out ip;
int allowable Flecrease_ampIituae i = 5;
int allowable:increase amplitude—i = 30;
int allowable decrease—in attack—i = 5;
int allowable:increaselinlattack—i = 30;
int inputmax_i = 0, output_max_i = 0;
int idx i;
long buffer_ length needed_1;
FILE *outpuf_file_TP;

fprintf (text_out_gfp,
"\nEnvelope evaluating edit.");

143

(evaluate.c continued)

/*
** All these evaluations should use a case frame
** parameter. In this case, it is hard coded to be 5%
** for the purpose of this research.
*/

if ((crest_maximum_gi[0] > crest maximum_gi[1]) &&
((long) allowable_decrease i_n_attack_i <

((100L * (long) (crest_maximum_gi[0] -
crest_maximum_gi[1])) /
(long) crest_maximum_gi[0])))

{
sprintf (results_cp,"envelope rejects edit

next-attack-amplitude-decrease");
fprintf (text_out_gfp,"\nEnvelope rejecting

edit because of attack amplitude
decrease.");

}

/*
** Allowable increase in amplitude has been limited to
** 30 percent.
*/

else if ((crest_maximumgi[1] >
crest_maximum_gi[0]) && ((long)
allowable_increase_in_attack_i <
((100L * (long) (crestmaximumgi[1] -
crestmaximum_gi[0])) /
(long) crest_maximum_gi[1])))

{
sprintf (results_cp,"envelope rejects edit

next-attack-amplitude-increase");
fprintf (text_out_gfp,"\nEnvelope rejecting

edit because of attack amplitude
increase.");

}

/*
** Check amplitudes immediately before and after the
** edit point.
*/

/*
NOTE : This section is still untested and not used in
the examples.

else {
buffer length needed _1 = (float) (((float) _ — sampling_rate_gT) / ((float) 100.0));

144

(evaluate.c continued)

buffer in_ip =
(int *) calloc
((int) buffer_length_needed_l,
sizeof (int));

buffer out_ip = (int *) calloc ((int)
buffer_ length_needed_l,
n sizeof (int))

output file_fp = fopen (resultscp,"r");
fseek Toutput filefp,(pointl 1 -

(long) bUffer — length_neeUed _ 1),
SEEK SET);

fread ((void *) buffer in_ip,
(int) buffer_lenga needed 1,
sizeof (int), output file_Tp);

fread ((void *) buffer out_ip,
(int) buffer_length needed 1,
sizeof (int), outpuE_filejp);

fclose (output_file_fp);
for (idx i = 0; idx i <

buffer length Eeeded 1. idx i++) _ / _ _ _
{

if (input_max_i < buffer_in_ip[idx_i])
{

input_max_i = buff er_in_ip[idx_i];
}
if (outputmaxi < bufferoutip[idxi])
{

output_max_i =
buffer out ip[idx i]; _ _ _

}
}
if (output_max_i < (input max i *

allowable_ decrease _ ampliEude _i))
{

sprintf (results_cp,"envelope
prefers-later second");

}
else if (output maxi > (input max i *

allowable_ Incrase _ amplitUde _I))
{

sprintf (resultscp,"envelope
prefers-later first");

}
*1

145

(evaluate.c continued)

/*
** If there is no known reason to reject the edit,
** accept it.
*/

else {
fprintf (text_out_gfp,"\nEnvelope accepting

edit.");
sprintf (results_cp,"envelope accepts edit");

}
return (results_cp);

}

APPENDIX C

The Spectrum Expert

/**
*

EXP-FFT.H
*

*
* These are the defines for the envelope analyzer

section of the digital audio editor.
*
**/

#define SPECTRUM NAME "EXP-fft"
#define MAILBOX

SPECTRUM_
"/editor/bin/mailbox"

#define BLAKBORD NAME "blakbord"

#define TRUE 1
#define FALSE 0

#define YES 1
#define NO 0

#define BACKGROUND 1
#define POLLING RATE 2

#define WINDOW SIZE 2048
#define DELTA -S-IZE 50
#define NUMBER MAXES 10

147

/**
*

GLOBALS.H
*

*
* These are the global variable declarations for the
• envelope analyzing expert for the digital audio
• editor.
*
**/

char incomingmsg_gca[MAX MESSAGE_ LENGTH];
char directory_name gca[256];
char take name gca[17];
char error message gca[255];

int highest frequency gi = 10000;
int lowest_ Treguency_gi = 100;
int terminate gi = FALSE;
int *result_gia;

unsigned msg from_gu;
unsigned mailbox address gu•
unsigned blakbora gu;

long range_start_gl = 0;
long range end_gl = 0;
long samplIng_rate gl = 0;
long window size_gi = 100;

float harmonicseparationgf;

sample rate mat *sample rate gmap;
set_range_mat *set range gmap;
set_take_mat *set take gmap;
id only_mat id only gma;
assert mat assert gma;

FILE *text out gfp;

148

/**
*
* PROTOS.H
*

*
* These are the prototypes for functions used by the
* spectrum analyzer
*
**/

int compare_maxes_if (float old_maxes_fa[][],
float new maxes fa[][]);

long find_edit_lf (void);

void find maxes of (float * data, float maxes[][]);

void FFTCalc (realtype *xreal, realtype *yimag,
int numdat);

long get_sample_rate_lf (void);

149

/**
*
* EXP-FFT.0
*

*
* PURPOSE : This is the main routine. Its job is to
* parse individual messages to the envelope
* analyzing expert and call the appropriate
* functions to perform the task requested in the
* message.
*
* PARAMETERS : none
*
* RETURNS : zero
*
**/
#include <string.h>
#include <stdio.h>
#include <process.h>
#include <magic.h>
#include <systids.h>
#include <stdlib.h>
#include "exp-fft.h"
#include "/clips/clips/include/messages.h"
#include "globals.h"
#include "realtype.h"
#include "protos.h"

main 0

{
char timing_c = 0;
int assert _ message i = FALSE; _
int send results i; _ _
int message_from_i;
long edit 1;

/*
** Start an output for text.
*/

text out gfp = fopen (TEXT OUTPUT,"w"); _ _ _

/*
** Start a mailbox with my name so that messages and
** requests can be received.
*/

mailbox address gu = _
createq (BACKGROUND, MAILBOX PROG,
SPECTRUM_NAME, NULL);

send (mailbox_ address_gu,&timing_c,&timing_c,1,1);

150

(exp-fft.c continued)

/*
** Locate other mailboxes.
*/

if (! (blakbord_gu =
name locate (BLAKBORD NAME,NAME SERVER NODE,
MAX_
name_

LENGTH)))
{

fprintf (text out gfp,"\nSpectrum expert
can't find the blackboard.");

exit (1);
}

/*
** Tell decision maker that I am ready.
*/

message_from_i = receive (0,&timing_c,1);
reply (message_from_i,&timing_c,1);

/*
** Set up request message.
*/

id only_gma.struct_ id c = ID_REQUEST_MESSAGE; _

/*
** Set up data locations
*/ —

strcpy (directory_name_gca,DATA_DIRECTORY);

/*
** Take messages off of the queue and execute them.
*/

while (! terminate_gi)
{

send (mailbox_address_gu, &id only_gma,
incoming msg_gca, sizeof (id_only_mat),
sizeof (incoming_msg gca));

switch (incoming_msg_gcaji])
{

case ID TERMINATE :
terminate_gi = TRUE;
break;

case ID SET RANGE :
fprintf (text_out_gfp,"\nSpectrum

setting range.");
set — range_gmap = (set range_mat *)

incoming msg_gca;
range_startgl. = set range_gmap ->

start of range I; _ _
range_end_gl = set range_gmap ->

end _ of _range_i;

151

(exp-fft.c continued)

sprintf (assert_gma.assert mssg ca,
"spectrum range-is %ld %ld",
range start_gl,range_end_g1);

assert_message_i = TRUE;
break;

case ID SET SAMPLING RATE :
fprintf (text oUt_gfp,

"\nSpectrum getting sampling
rate.");

sample rate_gmap =
(ample_rate_mat *)
incomingmsggca;

sampling rate_gl =
samile_rate_gmap -> rate_l;

sprintf (assert_gma.assert mssg_ca,
"spectrum sampling-rate-is
%id", sampling_rate_g1);
harmonic separation gf =
(float) T(float) WINDOW_SIZE *
(float) (1.0 / (float)
sampling_rate_g1));

assert_message_i = TRUE;
break;

case ID_SET TAKE :
fprintf (text_out_gfp,

"\nSpectrum setting take.");
set take _ gmap = (set take mat *)

i _ ncoming_msg_gca;
strcpy (take_namegca,

set take_gmap->take_name_ca);
sprintf (assert gma.assert_mssg_ca,

"spectrum Eake-is %s",
take_name_gca);

assert_message_i = TRUE;
break;

case ID_FINDEDIT :
fprintf (text out gfp,

"\nSpectrum 'searching for an
edit.");

if (edit _1 = find edit lf ())
{

sprintf
(assert gma.
assertmssgca,
"spectrum %s %ld %ld
edit-at %ld",
take name gca,
range_start gl,
range_end_gI, edit_1);

} else {

152

(exp-fft.c continued)

sprintf
(assert_gma.
assert_mssg_ca,
"spectrum
no-possible-
edit-in-range");

}
assert_message_i = TRUE;
break;

case ID GET LOW_FREQUENCY :
fprintf (text_out_gfp,

"\nSpectrum posting lowest
frequency.");

sprintf (assert gma.assert mssg_ca,
"spectrum low-frequency-is
%d", lowest_frequency_gi);

assert_message_i = TRUE;
break;

case ID EVALUATE EDIT :
/*
** This section is not working properly. Edits are
** automatically accepted by the spectrum analysis at
** this time.
*1

fprintf (text_out_gfp,
"\nSpectrum evaluating edit
point");

fprintf (text_out gfp,
"\nSpectrum accepting edit.");

sprintf (assert_gma.assert mssg_ca,
"spectrum accepts edit");

assert message_i = TRUE;
break;-

case ID_EMPTY_REPLY :
sleep (POLLING_ RATE);
break;

default :
fprintf (text out gfp,

"\nERROR -- Spectrum analyzer
received illegal message.");

break;
}
if (assert_message_i)
{

assert gma.struct id c =
I5_ASSERT ME-s-SA-dE;

send _ results i-= send (blakbord gu / _
&assert gma, &assert_gma,
sizeof(issert_mat),
sizeof(assert mat)); _

153

(exp-fft.c continued)

assert _ message _i = FALSE;
}

}
return (0);

}

154

/**
*

COMPMAXS.0
*

*

* Purpose: This routine compares the maximum values
• placed in the arrays to see how many of the values
• are common to both arrays, the values do not have
• to be in any specific order for this comparison.
• As long as the value exists in both arrays, it is
• considered to be a common value.
*
**/

#include <stdio.h>
#include "exp-fft.h"

int compare maxes if (
float ola_maxes_fa[NUMBER MAXES][2],
float new maxes fa[NUMBER—MAXES][2])

{
extern FILE *text out gfp;

int return value i = 0;
int old i —new iT _ / _ I

int max not found i• _ _ /_

fprintf (text out_gfp,
"\nSpectrum comparing maximums.");

for (old_i = 0; old_i < NUMBER MAXES; old i++)
{

new i = 0;
max not found i = 1;
while ((new i—< NUMBER MAXES) &&

(max_ not _found ia
{

if ((old maxes fa[old i][1] >
new maxes fa[new i][1] - 2) &&
(01a maxes fa[ola i][1] <
new coaxes fa[new I][1] + 2))

{
max_ not _found i = 0;

}
new i++;

}
if (max not _found i)
{

return value i++;
}

}

155

(compmaxs.c continued)

return (return value i); _ _
}

156

/**
*

FINDMAXS.0
*

*
* Purpose: This routine takes an FFT and produces an
• array of the top NUMBER MAXES maximum values and
• their frequencies to be used for comparison and
• low frequency information.
*
**/
#include <math.h>
#include <stdio.h>
#include "exp-fft.h"

void find maxes vf (float * data fp,
float maxes_Tp[NUMBERMAXES][2])

{
extern int lowest_frequencygi;
extern long sampling_rate_gl;
extern float harmonic separation_gf;
extern FILE *text _ ouE_ gfp;

int count_i;
int index_i;
int revers_i;
int not max i; _ _
int new frequency_i;

fprintf (text_out_gfp,
"\nSpectrum analyzing FFT looking for
maximums.");

for (count i = 0; count_i < NUMBER MAXES;
count—i++)

{
maxes_fp [count_i][0] = 0.0;

}
for (count_i = 0; count_i < (WINDOW SIZE / 2);

counti++)
{

indexi = 0;
not max i = 1;
while ((index i < NUMBER MAXES) &&

(not max i)) _ _
{

if (fabs(data_fp[count_i]) >
maxes_fp[index_i][0])

{
not —max i = 0; revers i = NUMBER MAXES - 1;

157

(findmaxs.c continued)

while (revers i > index i)
{

maxes fp[revers_i][0] =
iaxes_fp[revers i-l][0];

maxes_fp[revers_i][1] =
maxesfp[revers_i-l][1];

revers _i--;
}
maxes fp[index i][0] =

Tabs(datalfp[count_i]);
maxes_fp[index_i][1] = count_i;

}
index i++;

}

}
fprintf (text out_gfp,

"\nSpectrum looking for lowest frequency.");
new frequency_i = 22000;
for (count i = 0; count_i < NUMBER_MAXES;

count—i++)
{

if (new frequency_i >
maes_fp[count_i][1] /
harmonic separation gf)

{
new frequency i =

maxes_ fp[count_i][1] /
harmonic separation gf;

}

}
if (lowest frequency gi < new frequency_i)
{

fprintf (text_out_gfp,
"\nSpectrum found higher lowest
frequency = %d.", new frequencyi);

lowest frequency_gi = new Trequency_i;
}
return;

}

158

/**
*

FINDEDIT.0
*

*
* The function "FFTCalc" and the include file
• "realtype.h" are taken from "Software for Science,
• Engineering and Industry" rev? Quinn-Curtis
• 21 Highland Circle
• Needham, MA 02194 USA

*
* Purpose: This routine locates the point in time where
• there have been as many high points in the
• spectrum change as there are high points recorded.
• This represents the place where a completely new
• set of spectral components exists and hence is the
• beginning of a new note.
*
**/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "exp-fft.h"
#include "realtype.h"
#include "protos.h"

long find_edit_lf ()

{

extern char take name gca[];
extern char directory_name_gca[];
extern long range_start gl;
extern long range_end_gi;
extern FILE *text out gfp; _ _

char file name ca[256]; _
int *data_ip;
int i;
int changedmaxes i;
long current - location 1;
long return v- alue 1. I

float *realjp,*imag_fp;
float top_ maxes_fa[NUMBER_MAXES][2];
float las_maxes_fa[NUMBER MAXES][2];
FILE *data fhp;

strcpy (file_name_ca,directory_name_gca);
strcat (file name ca,take name gca);

159

(findedit.c continued)

data fhp = fopen (file_ name ca,"r");
current location _1 =

range_end_gT - (WINDOW_SIZE / 2);
changed_maxes i = 0;
data_ip = (int *) calloc (WINDOW_SIZE,

sizeof (int));
real_fp = (float *) calloc

(WINDOW SIZE,sizeof (float));
imag_fp = (float *) calloc

(WINDOW SIZE,sizeof (float));
fseek (data Yhp,current_location 1,SEEK_SET);
fread ((void *) data_ip, WINDOW_SIZE,

sizeof (int), data fhp);
for (i = 0; i < WINDOW_SIZE; i++)
{

real_fp[i] -
(float) ((float) data_ip[i])/32767.0;

imag_fp[i] = 0.0;
}
fprintf (text_out gfp,

"\nSpectrum doing FFT analysis.");
FFTCalc (real_fp, imag_fp, WINDOW_SIZE);
find maxesvf (realfp,last maxes fa);
while ((changed maxes i < NUMBER_RAXES) &&

(current _location 1 >= range start gl))
{

current location_l -= DELTA SIZE;
fseek (data fhp,current_locaion 1,SEEK_SET);
fread ((void *) data_ip, WINDOW_SIZE,-

sizeof (int), data fhp);
for (i = 0; i < WINDOW_SIZE;- i++)
{

real_fp[i] = (float)
((float) data_ip[i])/32767.0;

imag_fp[i] = 0.0;
}
fprintf (text_out gfp,

"\nSpectrum doing FFT analysis.");
FFTCalc (real_fp, imag_fp, WINDOW_SIZE);
find_maxes_vf (real_fp,top_maxes a);
changed_maxes_i += compare_maxesif

(last_maxes_fa,top maxes_fa);
memcpy (last maxes_fa, Eop maxes_fa,

sizeof Ttop_maxes_faa;
}
if (current_location_l < range_start_gl)
{

return value 1 = 0;
} else {

160

(findedit.c continued)

return_value_l =
current location _1 + (WINDOW SIZE / 2); _ _ (WINDOW_ SIZE

free (data_ip);
free (realfp);
free (imag_fp);
fclose (data_fhp);
return (return_value_1);

}

APPENDIX D

The Rhythm Expert

/**
*

EXP-RHY.H
*

*
* These are the defines for the rhythm analyzer section

of the digital audio editor.
*
**/

#define RHYTHM_ NAME "EXP-rhy"
#define MAILBOX PROG "/editor/bin/mailbox"
#define BLAKBORD NAME "blakbord"

#define TRUE 1
#define FALSE 0

#define YES 1
#define NO 0

#define BACKGROUND 1
#define POLLING RATE 2

#define FIRST "first"
#define SECOND "second"

162

/**
*
* GLOBALS.H
*

*
* These are the global variable declarations for the
* rhythm analyzing expert for the digital audio
* editor.
*
**/

/*
** Space to hold a generic incoming message.
*/
char incoming_msg_gca[MAX_MESSAGE_LENGTH];

/*
** The name of the current take that is being operated
** on. All functions in which a take name is assumed
** are applied to this name.
*/
char take name gca[17];

/*
** Flag to stop message parsing loop.
*/
int terminategi = FALSE;

/*
** Addresses to other tasks.
*/
unsigned msg from_gu;
unsigned mailbox address_gu;
unsigned blakbora_gu;

/*
** The range array for each of the two source edit
** points.
*/
long range start gl[2];
long rangeendgi[2];

/*
** An array for the two edit points.
*/
long edit_ point _gl[2];

163

(globals.h continued)

/*
** Message structures to use as templates for incoming
** messages and hold data for outgoing messages.
*/

set_range_mat *set range gmap; _ range_ gmap;
take mat *set take gmap; _ _

id only mat id only_gma; _ _
assert mat assert gma;
set edit to mat *set edit to gmap;
evaluate edit mat *evaivate—editgmap; _ _

/*
** All non-user text messages, trace messages, timing
** messages, debug messages are sent to this file.
*/

FILE *text out gfp; _ _

164

/**
*
* PROTOS.H
*

*
* These are the function prototypes for the rhythm
* analyzing expert.
*
**/

char *evaluate edit_point _ cf (char * results cp, _
long edit_pointl_l,
long edit_point2_1);

long find _ edit _lf (void);

165

/**
*
* EXP-RHY.0
*

*
* PURPOSE : This is the main routine. Its job is to
* parse individual messages to the rhythm analyzing
* expert and call the appropriate functions to
* perform the task requested in the message.
*
* PARAMETERS : none
*
* RETURNS : zero
*
**/
#include <string.h>
#include <stdio.h>
#include <process.h>
#include <magic.h>
#include <systids.h>
#include <stdlib.h>

#include "exp-rhy.h"
#include "/clips/clips/include/messages.h"
#include "globals.h"
#include "protos.h"

main ()

{
char timing_c = 0;
int assert _ message i = FALSE; _
int send results i; _ _
int message_from i;
int take number 3.• _ / _

/*
** Start an output for text.
*/

text out gfp = fopen (TEXT OUTPUT,"w"); _ _ _

/*
** Start a mailbox with my name so that messages and
** requests can be received. The send is used for
** timing to insure that the mailbox is running and
** has registered its name before this program will
** unblock
*/

mailbox address gu = _ _
createq (BACKGROUND, MAILBOX_ PROG,

RHYTHM NAME, NULL);

166

(exp-rhy.c continued)

send (mailbox address_gu,&timing_c,&timing_c,1,1);

/*
** Locate other mailboxes.
*/

if (! (blakbord gu = name locate (BLAKBORD NAME,
NAME SERVER NODE, MAX MESSAGE LENGTH)))

{
fprintf (text out gfp,

"\nSpectrum expert can't find the
blackboard.");

exit (1);
}

/*
** Tell decision maker that I am ready.
*/

message_from_i = receive (0,&timing_c,1);
reply (messagefromi,&timingc,1);

/*
** Set up request message.
*/

id only gma.struct id c = ID REQUEST MESSAGE; _ _

/*
** Take messages off of the queue and execute them.
*/

while (! terminate_gi)
{

send (mailbox_address_gu, &id only_gma,
incoming msg gca, sizeof-(id_only_mat),
sizeof (incoming msg gca));

switch (incoming_msg_gca0j)
{

case ID TERMINATE :
terminate_gi- = TRUE;
break;

case ID SET RANGE :
set_ range gmap = (set range mat *) . incoming_msg gca;
rangestartgl[take_number_i] =

set_range_gmap ->
start of range 1;

range_end_41[Eake_number_i] =
set_range_gmap ->
end of range 1; _

167

(exp-rhy.c continued)

sprintf (assert_gma.assert mssg_ca,
"rhythm range-is %ld Tld",
range_start gl[take_number_i],
range_end_gi[take number_i]);

assert message i = TRUE;
(text Zut_gfp,

"\nRhythm setting range to %ld
%ld.",
range start gl[take number_i],
range_end_gi[take_nUmber_i]);

break;
case ID SET TAKE NUMBER :

set_ take gmap = (set take mat *)
i

_ _ _
ncoming_msg_gca;

strcpy (take_name_gca,
set_take_gmap->take_name_ca);

if (0 == strcmp (take
—
 name_gca,

FIRST))
{

take number_i = 0;
} else if (0 == strcmp

(take_name_gca, SECOND))
{

take number i = 1; _ _
} else {

sprintf
(assert gma.
assert_mssg_ca,
"error
invalid-take-number
rhythm-expert");

}
assert message_i = TRUE;
fprintf (text_out gfp,

"\nRhythm setting take to %s
take.", take name_gca); _

break;
case ID SET EDIT TO :

set_ edit to-gmap =
(seE eait to mat *)
incoiingisgigca;

edit_point_g1[0] =
set edittogmap -> point 1;

sprintf Tassert_gma.assert mssg_ca,
"rhythm %s %ld %ld edit-at
%ld", take name_gca,
range_starE gl[0],
range end gI[0],
edit_poinEg1[0]);

assert message i = TRUE; _ _

168

(exp-rhy.c continued)

fprintf (text_out gfp,
"\nRhythm setting edit from
source 1 to %ld",
edit_point_g1[0]);

break;
case ID FIND EDIT :

if—(finTi_edit_lf ())
{

sprintf
(assert _gma.
assert mssg ca,
"rhythm %s %ld %ld
edit-at %ld",
take _name_gca,
range_start gl[1],
range_end gT[1],
edit_point_g1[1]);

} else {
sprintf

(assert _gma.
assert_mssg_ca,
"rhythm
no-possible-edit-
in-range");

}
assert _ message _i = TRUE;
break;

case ID EVALUATE EDIT :
evaluate_ edit _gmap =

(evaluate edit mat *)
incoming_msg_gca;

evaluate edit_point cf _ _
(assert_gma.assert _mssg_ca,
evaluate edit gmap ->
start_ofirange_1,
evaluate_edit gmap ->
end_of_range_i);

assert message_i = TRUE;
break;

case ID EMPTY REPLY :
sleep (POLLING_RATE);
break;

default :
fprintf (text out gfp,

"\nERROR--- Rhythm analyzer
received illegal message.");

break;
}

169

(exp-rhy.c continued)

if (assert message i) _ _
{

assert gma.struct id c =
IBASSERT MESAUE;

send results i—= _
send (bIakbord gu, &assert_gma,
&assert_gma, sizeof(assert_mat),
sizeof(assert_mat));

assert _ message _ = i FALSE;
}

}
return (0);

}

170

/**
*
* EVALUATE.0
*

*
* Purpose: This routine evaluates a completed edit to
* make sure that the new second crest is within the
* crossfade time of the place the old second crest
* occupied.
*
**/

#include <stdlib.h>
#include <stdio.h>

char *evaluate _ edit_point _cf (char * results_cp,
long point1_1,
long point21)

{
extern char take_name_gca[];
extern long range_start gl[];
extern long range_end g-i[];
extern long edit poinE_gl[];
extern FILE *text out gfp; _ _

long total_range_length_l;
long distance_to_next_beat1_1;
long distance_to next_beat2_1;
long percentageaift1;

fprintf (text_out_gfp,
"\nRhythm evaluating edit.");

total range length 1 = _ _
rangeendgl[d] - range_start_g1[0];

distance to next beat1 1 = _ _
range_end_gI[0] - pointl_1;

distance to next beat2 1 = _ _ .
range_end (JIM - point2_1;

percentage shift _1 =
(100 -4; labs-
(distance to_next beatl 1 -
distance_Eo_next Beat21)) /
total range length 1; _ _ _

171

(evaluate.c continued)

/*
** The percentage of shift should be a variable
** parameter based on the case frame. It is hard
** coded here to 5%.
*/

if (percentage_shift_l < 5)
{

fprintf (text_out_gfp,
"\nRhythm accepting edit.");

sprintf (results_cp,"rhythm accepts edit");
} else {

if (distance to next beatl 1 >
distance to next beat2- 1)

{
fprintf (text_outgfp,

"\nRhythm requesting first source
edit be later.");

sprintf (results cp,
"rhythm prefers-later first");

} else {
fprintf (text_out_gfp,

"\nRhythm requesting first source
edit be earlier.");

sprintf (results cp,
"rhythm prefers-earlier first");

}
}
return (results_cp);

}

172

/**
*
* FINDEDIT.0
*

*
* This routine predicts the edit point for the second
* source based on the edit point for the first
* source. This assures that there is another attack
* at the same point after the edit as the next
* attack was before the edit was performed.
*
**/

long find edit lf () _ _

{
extern long range_start gl[];
extern long range_end (II[];
extern long edit_poinE_gl[];

long return_value_l = -1L;

return value 1 = range end gl[1] -
(range_end gl[0] - edit point_g1[0]);

edit_point gl[1] = return_vaTue_1;
return (return_ value_ 1);

}

APPENDIX E

The Blackboard

I**
*

BLAKBORD.H
*
**/

#define BLACKBOARD NAME "blakbord"

struct linked list at
{

char struct id_ c;
char name ca[255];
struct linked list at *nextap;

typedef struct linked list at an element at;
typedef an element at *link_ap;

/**
*

GLOBALS.H
*
**/

unsigned sender_gu;

linkap list top ap = NULL;
link_ap list botEom ap = NULL;

id only_mat empty_reply_gma;

FILE *text out gfp;

/**
*

PROTOS.H
*
**/

void add message_ to _queue vf (link ap new message ap);

void post_a_message_vf (void);

173

174

/**
*

BLAKBORD.0
*

*
* Purpose: This program acts as a generic message queue
• holding messages from the various attached experts
• to the decision making program. Any message not a
• request for information is considered new
• information and is therefore placed on the queue.
*
**/

#include <systids.h>
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include "blakbord.h"
#include "/clips/clips/include/messages.h"
#include "globals.h"
#include "protos.h"

main ()

{
extern FILE *text out gfp;

link_ap new message ap;

/*
** Start text area.
*/

text out gfp = fopen (TEXT OUTPUT,"w"); _

/*
** Attach name so that other experts can send to the
** blackboard.
*/

if (! name attach (BLACKBOARD NAME,
NAME
name_

NODE))
{

fprintf (text_out_gfp,
"\nBLACKBOARD -- I can't attach my
name");

exit (1);
}

175

(blakbord.c continued)

/*
** Main loop -- receive messages and reply to them. If
** it is a new assert, add it to the queue. If it is
** a request for messages from the decision maker,
** reply with the next message.
*/

while (1)
{

/*
** Make a place to hold the incoming message.
*/

if (! (new message ap =
(link_ap) calloc
(1,sizeof(an_element_at))))

{
fprintf (text out gfp,

"\nBLACKT3-0AR5 ERROR -- ");
fprintf (text_out_gfp,

"\n I can't get memory to
accept new message.");

exit (1);
}

/*
** Block until a new message is available.
*/

sendergu = receive (0,
(void *) new message_ap,
MAX MESSAGE LENGTH);

/*
** Check message ID to see if the message is a
** request from the decision maker for any ready
** asserts.
*/

if (new_message_ap->struct_id_c ==
ID REQUEST_ MESSAGE) _ _

{
post_a_message_vf ();

/*
** If it is not a request for a message, it must
** be a message. Add it to the queue.
*/

} else {
add_ message to queue of _

(new message ap);
}

}

176

(blakbord.c continued)

fclose (text_out_gfp);

return (0);
}

177

/**
*
* ADDMESSG.0
*
**/

#include <stddef.h>
#include <systids.h>
#include "blakbord.h"
#include "/clips/clips/include/messages.h"

void add_message_to_queue vf (link_ap new message_ap) _ _

{
extern unsigned sender_gu;
extern link_ap list_top ap;
extern linkap list_ bot7Eom_ / ap•
extern id_ only_ mat empty_reply_gma;

new message ap -> next_ap = NULL;
if (list_ top ap) _
{

list_bottom_ap->next_ap = new_message_ap;
} else {

list top ap = new message ap; _ _ _ _
}
list bottom ap = new_message_ap;
reply (sendergu,&empty reply_gma,

sizeof (id only mat));
return;

}

178

/**
*

SENDMSSG.0
*
**/

#include <stdlib.h>
#include <systids.h>
#include "blakbord.h"
#include "/clips/clips/include/messages.h"

post_a_message_vf ()

{
extern unsigned sender_gu;
extern link_ap list_top_ap;
extern link_ap list bottom ap•
extern id only mat empty_reply_gma;

link_ap released_mssg_ap;

if (list_top_ap)
{

reply (sender_gu,
(void *) list top ap,
MAX_MESSAGE_LNGT171);

released_mssg_ap = list_top_ap;
list top_ap = list_top_ap -> next_ap;
if (! list top_ap) _
{

list bottom ap = NULL;
}
free (released mssg ap);

} else {
empty_reply_gma.structid_c = ID_EMPTY_QUEUE;
reply (sender gu,&empty_reply_gma,

sizeof (Id only mat));
}

return;
}

APPENDIX F

The Mailboxes

/**
*
* MAILBOX.H
*
**/

#define BLACKBOARD NAME "blakbord"

struct linked list at _ _
{

char struct id c;
char name ci[25];
struct linked list at *nex-f. ap; _ _

1;

typedef struct linked list at an element at; _ an _ at;
an element at *link -gp; _ _

/**
*
* GLOBALS.H
*
**/

unsigned sender_gu;

link_ap list top ap = NULL;
link_ap list_— om_ ap = NULL;

id only mat empty_replygma;

FILE *text out gfp;

/**
*
* PROTOS.H
*
**I

void add_ message_ to queue vf (link_ap new message ap); _ _ _ _ _ _

void post a message of (void);

179

180

/**
*

MAILBOX.0
*

*
* Purpose: This program serves as a general message
• queue for the expert that spawned it. Its first
• argument contains the name of the expert for which
• it should receive messages. The messages can be
• from anyone, though the current implementation
• should only be sending messages to the experts
• from the decision maker.
*
**/

#include <systids.h>
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include "mailbox.h"
#include "/clips/clips/include/messages.h"
#include "globals.h"
#include "protos.h"

main (int argc, char **argv)

{
extern FILE *text out gfp; _ _

char timing_c = 0;
int message_from_i;
link ap new message ap;

/*
** Start text area.
*/

text_ out gfp = fopen (TEXT OUTPUT,"w");

/*
** Check parameters.
*/

if (argc != 2)
{

fprintf (text_out_gfp,
"\nMailbox error. Wrong parameter
count.");

exit (1);
}

181

(mailbox.c continued)

/*
** Attach name so that other tasks can send to the
** mailbox.
*/

if (! name attach (argv[1],NAME SERVER NODE)) _ _ _
{

fprintf (text out_gfp,
"\nMAILBOX -- I can't attach the name
%s.", argv[1]);

exit (1);
}

/*
** Tell generating task that I am ready.
*/

message_from i = receive (0,
(void *) &timing_c,sizeof (char));

reply (message_from_i,&timing_c,1);

/*
** Main loop -- receive messages and reply to them. If
** it is a new assert add it to the queue. If it is a
** request for messages from the decision maker,
** reply with the next message.
*/

while (1)
{

/*
** Make a place to hold the incoming message.
*/

if 0 (new message_ap = (link ap) calloc
(1,siieof(an_element_at))))

{
fprintf (text out gfp,

"\nBLACKBOARD ERROR -- ");
fprintf (text out_gfp,

"\n Y can't get memory to
accept new message.");

exit (1);
}

/*
** Block until a new message is available.
*/

sender_gu = receive (0,(void *)
new message ap, MAX MESSAGE LENGTH); _ _

182

(mailbox.c continued)

/*
** Check message ID to see if the message is a
** request for any ready messages.
*/

if (new_message_ap->struct_id_c ==
ID REQUEST MESSAGE) _ _

{
post_a_message_vf ();

/*
** If it is not a request for a message, it must
** be a message. Add it to the queue.
*/

} else {
add message to queue of _ _
(new message ap);

}
}
fclose (text out gfp); _ _

return (0);
}

183

/**
*
* ADDMESSG.0
*
**/

#include <stddef.h>
#include <systids.h>
#include "mailbox.h"
#include "/clips/clips/include/messages.h"

void add message_to_queue vf (link_ap new_message_ap) _ _

{
extern unsigned sender_gu;
extern link ap list top ap;
extern link_ap list_ botEom_ r ay.
extern id _ only _mat empty_reply_gma;

new_message_ap -> next_ap = NULL;
if (list_ top ap)
{

list_bottom_ap->next_ap = new_message_ap;
} else {

list top ap = new message ap;
1
listbottom_ap = new_message_ap;
reply (sendergu,&empty reply_gma,

sizeof (id only mat)); _ _

return;
}

184

/**
*
* REMVMSSG.0
*
**/

#include <stdio.h>
#include <stdlib.h>
#include <systids.h>
#include "mailbox.h"
#include "/clips/clips/include/messages.h"

post_a_message_vf ()

{
extern unsigned sender_gu;
extern link_ap list top ap;
extern link ap list bottom _ap; _
extern id only_mat empty_reply_gma;
extern FILE *text out gfp; _ _

link ap released mssg_ap; _ _

if (list_top_ap)
{

reply (sender_gu,
(void *) list_top_ap,
MAX_MESSAGE_LENGTH);

released_mssg_ap = list top ap;
list top= ap list_top_ap -> next_ap;
if (T list top ap) _ top_ ap)

list_ bottom_ ap = NULL;
}
free (released mssg ap);

} else {
reply (sender gu,&empty reply_gma,

sizeof (Id _ only _maE));
}

return;
}

APPENDIX G

Text Output Files

NOTE: Screens have been altered to conform to printing
requirements.

The following is a copy of the user screen as seen when
the example edits are executed:

CLIPS (V4.10 10/05/87)
CLIPS> (load "rules.c")

CLIPS> (reset)
CLIPS> (run)
What is the name of the file for the first take?
herw.tim
What is the name of the file for the second take?
herw.tim
What is the name of the file for the output take?
tryl.tim
What is the start of the last note before the edit

from the first take? 44310
What is the start of the first note after the edit

from the first take? 57950
What is the start of the last note before the edit

from the second take? 88600
What is the start of the first note after the edit

from the second take? 96210
Backtracking because of disagreement. Trying for

frequency.
Agreement has been reached on edit point placement
Agreement has been reached on edit point placement
Do you approve of this edit? (y/n)
y
Am I good or what?
Do you want to do another edit? (y/n)
y
What is the name of the file for the first take?
herw.tim
What is the name of the file for the second take?
herw.tim
What is the name of the file for the output take?
try2.tim
What is the start of the last note before the edit

from the first take? 363000
What is the start of the first note after the edit

from the first take? 377000
What is the start of the last note before the edit

from the second take? 418600

185

186

(user screen continued)

What is the start of the first note after the edit
from the second take? 423800

Backtracking because of disagreement. Trying for
frequency.

Agreement has been reached on edit point placement
Agreement has been reached on edit point placement
Do you approve of this edit? (y/n)
y
Am I good or what?
Do you want to do another edit? (y/n)
y
What is the name of the file for the first take?
herw.tim
What is the name of the file for the second take?
herw.tim
What is the name of the file for the output take?
try3.tim
What is the start of the last note before the edit

from the first take? 363000
What is the start of the first note after the edit

from the first take? 377000
What is the start of the last note before the edit

from the second take? 393600
What is the start of the first note after the edit

from the second take? 408800
Backtracking because of disagreement. Trying for

frequency.
Agreement has been reached on edit point placement
Agreement has been reached on edit point placement
Edit rejected by envelope expert because

next-attack-amplitude-decrease
The editor could not accomplish an acceptable edit

here.
Were you able to complete an acceptable edit(y/n)?n
Some things just were not meant to be.
Do you want to do another edit? (y/n)

187

The following is a copy of the debug screen while
the three example edits are performed on an Intel 386
33MHz machine without a math co-processor. Note that
the examples were done with a math co-processor on a
25MHz machine. This will alter the order in which the
tasks are completed and hence the order in which the
messages appear. Note also that the screen format has
been changed to conform to printing standards.

Login:
Starting experts
Envelope setting take to herw.tim.
Envelope got sampling rate of 44100.
Envelope setting take to herw.tim.
Envelope setting range to 44310 57950.
Envelope setting lowest frequency to 50.
Spectrum getting sampling rate.
Spectrum setting take.
Spectrum setting range.
Rhythm setting take to first take.
Rhythm setting range to 44310 57950.
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum found higher lowest frequency = 279.
Spectrum doing FFT analysis.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 1473 for

take 0.
Rhythm setting edit from source 1 to 55903
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum posting lowest frequency.

188

(debug screen continued)

Envelope setting lowest frequency to 279.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 1473 for

take 0.
Rhythm setting edit from source 1 to 57529
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum found higher lowest frequency = 322.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 1916 for

take 1.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum found higher lowest frequency = 409.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.

189

(debug screen continued)

Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Decision maker creating edited file.
Decision maker adjusting header information.
Decision maker is generating a crossfade.
Decision maker completed edit attempt.
Envelope evaluating edit.
Rhythm evaluating edit.
Spectrum evaluating edit point
Envelope accepting edit.
Rhythm accepting edit.
Spectrum accepting edit.
Envelope setting take to herw.tim.
Envelope got sampling rate of 44100.
Rhythm setting take to first take.
Spectrum getting sampling rate.
Rhythm setting range to 363000 377000.
Spectrum setting take.
Spectrum setting range.
Envelope setting take to herw.tim.
Envelope setting range to 363000 377000.
Envelope setting lowest frequency to 50.
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 2470 for

take 0.
Spectrum analyzing FFT looking for maximums.
Rhythm setting edit from source 1 to 375625
Spectrum looking for lowest frequency.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.

(debug screen continued)

Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum posting lowest frequency.
Envelope setting lowest frequency to 409.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 2470 for

take 0.
Rhythm setting edit from source 1 to 376724
Spectrum setting take.
Spectrum setting range.
Envelope setting take to herw.tim.
Envelope setting range to 418600 423800.
Envelope setting lowest frequency to 50.
Envelope setting lowest frequency to 409.
Rhythm setting take to second take.
Rhythm setting range to 418600 423800.
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum found higher lowest frequency = 473.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 2363 for

take 1.
Decision maker creating edited file.
Decision maker adjusting header information.

(debug screen continued)

Decision maker is generating a crossfade.
Decision maker completed edit attempt.
Rhythm evaluating edit.
Rhythm accepting edit.
Spectrum evaluating edit point
Envelope evaluating edit.
Spectrum accepting edit.
Envelope accepting edit.
Envelope setting take to herw.tim.
Envelope got sampling rate of 44100.
Rhythm setting take to first take.
Rhythm setting range to 363000 377000.
Spectrum getting sampling rate.
Spectrum setting take.
Spectrum setting range.
Envelope setting take to herw.tim.
Envelope setting range to 363000 377000.
Envelope setting lowest frequency to 50.
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 2470 for

take 0.
Spectrum looking for lowest frequency.
Spectrum doing FFT analysis.
Rhythm setting edit from source 1 to 375625
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum posting lowest frequency.
Envelope setting lowest frequency to 473.
Envelope expert searching for edit.

(debug screen continued)

Envelope Expert saving maximum crest value of 2470 for
take 0.

Rhythm setting edit from source 1 to 376724
Rhythm setting take to second take.
Rhythm setting range to 393600 408800.
Envelope setting take to herw.tim.
Envelope setting range to 393600 408800.
Envelope setting lowest frequency to 50.
Envelope setting lowest frequency to 473.
Spectrum setting take.
Spectrum setting range.
Spectrum searching for an edit.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Envelope expert searching for edit.
Envelope Expert saving maximum crest value of 1381 for

take 1.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Spectrum doing FFT analysis.
Spectrum analyzing FFT looking for maximums.
Spectrum looking for lowest frequency.
Spectrum comparing maximums.
Decision maker creating edited file.
Decision maker adjusting header information.
Decision maker is generating a crossfade.
Decision maker completed edit attempt.
Envelope evaluating edit.
Envelope rejecting edit because of attack amplitude

decrease.
Rhythm evaluating edit.

(debug screen continued)

Rhythm accepting edit.
Spectrum evaluating edit point
Spectrum accepting edit.

BIBLIOGRAPHY

1. Balaban, Mira "The TTS language for music
description" International Journal of Man-Machine
Studies 28 (1985): 505-523

2. Chafe, Chris and Mont-Reynaud, Bernard and Rush,
Loren "Toward an Intelligent Editor of Digital Audio:
Recognition of Musical Constructs" Computer Music
Journal 6 (1982): 30-41

3. Foster, Scott and Schloss, W. Andrew and Rockmore
"Toward an Intelligent Editor of Digital Audio: Signal
Processing Methods" Computer Music Journal 6 (1982):
42-5

4. Giarratano, Joseph and Riley, Gary "Expert Systems"
(1989) PWS-KENT Publishing Co.

5. Gordon, John W. "System Architectures for Computer
Music" Computing Surveys 17-2 (1985): 191-233

6. Hendler, James and Tate, Austin and Drummond, Mark
"AI Planning: Systems and Techniques" AI Magazine
(1990): 61-77

7. Hyperception "Hypersignal User's Manual" (1986)
Hyperception, Dallas, TX

8. Kolodner, Janet L. "Extending Problem Solver
Capabilities Through Case-Based Inference" Proceedings
of the Fourth Annual International Machine Learning
Workshop (1987)

9. Loy, Gareth and Abbot, Curtis "Programming Languages
for Computer Music Synthesis, Performance, and
Composition" Computing Surveys 17-2 (1985): 235-265

10. Parks, T. W. and Burrus, C. S. "DFT/FFT and
Convolution Algorithms Theory and Implementation"
(1985) John Wiley and Sons Publishing Inc.

11. Pennycook, Bruce W. "Computer-Music Interfaces: A
Survey" Computing Surveys 17-2 (1985): 267-289

12. Roads, Curtis "Research in Music and Artificial
Intelligence" Computing Surveys 17-2 (1985): 163-190

13 Quinn-Curtis "Science/Engineering/Graphics Tools
Revision 7.0 Manual" (1990) Quinn-Curtis, Needham, MA

	Editing digital audio using a perceptual model
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright
	Approval Page
	VITA/Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Survey of Current Literature
	Chapter 3: The process of making an Edit
	Chapter 4: System Architecture
	Chapter 5: Architecture of the Decision making section
	Chapter 6: Architecture of the Expert Sections
	Chapter 7: Envelope Analyzer Expert
	Chapter 8: The Spectrum Expert
	Chapter 9: The Rhythm Expert
	Chapter 10: Error Handling
	Chapter 11: An Example
	Chapter 12: Future Research
	Chapter 13: Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Bibliography

