New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

12-31-1991

Editing digital audio using a perceptual model

J. Mark Goode
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Cf Part of the Computer Sciences Commons

Recommended Citation
Goode, J. Mark, "Editing digital audio using a perceptual model" (1991). Theses. 2488.
https://digitalcommons.njit.edu/theses/2488

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2488?utm_source=digitalcommons.njit.edu%2Ftheses%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
Editing Digital Audio Using a Perceptual Model

by
J. Mark Goode

In this paper we describe an intelligent system used
to aid an audio recording producer in the selection of
edit points in a musical sequence. It is possible to make
meaningful recommendations concerning auditory input data
without the ability to fully classify that data or
interpret all outside goals. Perceptual modeling of the
auditory input can allow sufficient reasoning ability for
an intelligent system to be of use editing digital audio.
To create a perceptual model, the information which can
be extracted by the ear is embodied in several expert
sections which communicate with a rule based decision
maker via a blackboard. The envelope expert "listens" for
the changes in amplitude. The spectrum expert examines
spectral changes. The rhythm expert examines the
distances between note crests. This paper is intended to
describe the architecture and discuss its use in the

creation of an intelligent editing system.

EDITING DIGITAL AUDIO USING A PERCEPTUAL MODEL

by
J. Mark Goode

A Thesis
Submitted to the Faculty of the Graduate Division of
the
New Jersey Institute of Technology in Partial
Fulfillment of the Requirements for the Degree of
Master of Science
Department of Computer Science
December 1991

Copyright 1991 by J. Mark Goode

ALL RIGHTS RESERVED

APPROVAL PAGE
Editing Digital Audio Using a Perceptual Model

by
J. Mark Goode

Dr. Bonnie MacKellar, Thegt® Advisor
Professor of Compute¥ Science, NJIT

BIOGRAPHICAL SKETCH

Author: J. Mark Goode

Degree: Bachelor of Music 1in Music
Technology

Date: December 1991

Date of Birth:

Place of Birth:

Undergraduate Education:

Engineering

Bachelor of Music in Music Engineering Technology,
University of Miami, Coral Gables, Florida,

1983

Major: Computer Science

Presentations and Publications:

"db Test Report: Goldline 30" db The Sound

Engineering Magazine 17-2 (1983)

"db Test Report: The Shure AMS Automatic Mixer" db

The Sound Engineering Magazine 17-6 (1983)

iv

This thesis is dedicated to

Mrs. Marie Goode

Acknowledgement

The author wishes to acknowledge the effort of Dr.
Bonnie MacKellar for her supervision and support under
unfavorable, to say the least, working conditions of long
distance mail.

Additional thanks go to Audio Animation, Inc. for
the use of their equipment and facilities.

The author appreciates the suggestions and help
concerning the mathematical analysis from David Landau
and Gilad Keren from Audio Animation, Inc.

A special thanks is given to Dr. James Geller for
his help in finding such a patient advisor in both music

and computer science.

vi

TABLE OF CONTENTS

Page
1. INTRODUCTION ceeecconen P e s e scesssss e e 1
2. SURVEY OF CURRENT LITERATURE¢0ccoceccansannse 4
3. THE PROCESS OF MAKING AN EDIT ..¢ccceecccevcancscs 6
4. SYSTEM ARCHITECTURE¢.ctcceecceaccccscscnnnsans 12
5. ARCHITECTURE OF THE DECISION MAKING SECTION 20
6. ARCHITECTURE OF THE EXPERT SECTIONccceenees 26
7. THE ENVELOPE EXPERTttt eueeocnensossonensane 30
8. THE SPECTRUM EXPERT Cecec s escesasesecrenane 35
9. THE RHYTHM EXPERT .. ¢ttt eeetnnsssenasoocnccanse 39
10. ERROR HANDLING .. vt etneceecreacssanesasosonsosaes 43
11. AN EXAMPLE . .4ttt e eeeesorsocnsosassscansssccsssacase 46
12, FUTURE RESEARCH .. .4 :ccteeeceeccnscccacosscccocccess 50
13. CONCLUSION .ttt veesescsosscascanssacsossansacssaans 57
APPENDIX A The Decision Makerc.ceeeceeencacas 59
APPENDIX B The Envelope EXpertceeeececsvanse 124
APPENDIX C The Spectrum Expertccciieuecees 146
APPENDIX D The Rhythm EXperteeeeeeeeeenenn. 161
APPENDIX E The Blackboardcceeceeeeecccecsans 173
APPENDIX F The MailbOXeScveeeessocecososocaaness 179
APPENDIX G Text Output Filescevieeocccennens 185
BIBLIOGRAPHY ...t .iteeccoesscsoscacssacsssascssansass 194

vii

CHAPTER 1
INTRODUCTION

An edit is the selection of a specific point in two
digital audio sequences where the first part of the first
sequence will be joined to the second part of the second
sequence. The process of editing two audio sources is
primarily difficult because there is no fixed definition
of what constitutes an acceptable edit. An acceptable
edit for the purpose of this paper is one in which the
audible change resulting solely from the edit is not
distinguishable from the changes in the music itself.
Though musical form does influence the acceptability of
an edit, it is not considered in this paper. It is
possible to expand this architecture to include musical
form in the decisions, but that is future research. The
application is further restricted to include only music,
so that we can use the patterns which naturally develop
in musical passages to add constraints to our search
space. This is only partially helpful because there is no
fixed definition for music. We therefore define music to
be only audio sequences which can be represented using
conventional music notation, i.e. a staff with notes and
a determinable time and key signature. This limits the
search space by eliminating the problem of lyrics, speech
recognition, and decisions based on other arbitrary

sounds.

2

Editing two musical sequences to form a single
output sequence, even after selecting the notes in the
music which will border the Jjunction point, usually
requires many minutes of repeatedly listening to the same
passage. After several attempts at the edit, an
acceptable compromise between various attributes may be
achieved and the edit is retained. Edits may also be
rejected after this effort. A vast majority of commercial
recordings are subjected to this treatment. It is time
consuming and expensive. By allowing an artificially
intelligent assistant to listen to the music and make
edit propositions, that time may be substantially
reduced.

The process of editing music can still become a non-
trivial issue if outside goals are left to the system. It
is beyond the scope of this research to consider the
purpose of editing music at all, but the general reasons
might be to produce a sequence that is longer, shorter,
or contains different performances than the sequence or
sequences originally recorded. In effect, these purposes
represent outside goals which cannot be fully determined
by the musical information itself. We alleviate this
problem by considering all outside goals to be determined
by an outside entity, in this case the producer, while we

concentrate on modeling the job of the engineer.

3

Though the external goals are considered to be a
problem left to the producer, it should be noted that in
a practical situation, the engineer is usually culturally
educated similarly to the producer. The engineer and
producer typically practice within the same musical
culture, i.e. both might be oriented to classical music,
or rap. This commonality of education can cause the
engineer to make practical decisions that we will
consider the domain of the producer. In practice, our
model is roughly equivalent to an American engineer who
is totally naive in the ways of far eastern culture
editing a tape of Japanese folk music.

The editing process is additionally difficult to
automate because it has traditionally been considered an
area where musical intuition and artistic talent have
been a necessary prerequisite. By using perceptual models
of the human ear, and a rule based system to represent
the guidelines used by an engineer, we can make
relatively good attempts at edits in an effort to assist

the producer in his objectives.

CHAPTER 2
SURVEY OF CURRENT LITERATURE

There are two forms of editing music. One form is
occurring more and more frequently as technology allows
the composer himself to generate a larger and larger
percentage of the final musical piece using synthesizers
(9) and computer generated music (5). In this form, the
information to be edited 1is the instructions for
producing the music, i.e. the synthesizer command
sequence. This is a far simpler form of editing for two
main reasons. First, production rules for an expert
system generated for this purpose would be concerned with
musical form and could be used in the second form of
editing which will be discussed in a moment. This is
necessarily true because there 1is nothing to be
classified or identified at a lower level (the music does
not exist as a performance yet). Second, the sequence
production system (sequencer) is limited, by definition,
to the set of sounds and representations that it can
produce, therefore, nothing foreign to the music needs to
be considered. These systems are common and there is a
wide body of information (5) (11) (12) for the
commercially available systems. There have also been the
development of languages specifically designed for the

expression of music and its form within a computer system

(1) (9)-

5

The second form of editing is much more difficult

and the research has been more 1limited. Existing
performances must be edited. This may be necessary
because the various parts were produced at different
locations or at different times. For commercial record
album releases, different length versions of the same
sequence may be necessary for release on different media.
In any case, the decision is made by the producer to edit
the music with some particular goal in mind. Form rules
could be used if the music is first identified and
classified. This involves establishing the location of
significant musical events in the sequence and producing
a notation on which the rules can be applied (2). Most of
the available literature is primarily concerned with this
identification and classification of musical landmarks to
produce a mapping between the location in the sequence
and the musical event. Signal processing techniques have
focused on the identification of these constructs and the
production of the mapping system (3). The primary goals
of previous research has ©been the process of
transcription, or creating a representation of the music
in a manner in which the computer can retain information
about the musical form. Although this is a tremendous aid
in terms of communicating with the human operator to
obtain the human’s intent, it is not essential to produce

helpful assistance to the operator.

Facing page 6

flanning Edit
—P Choosing Edit Point in Source Sequence 1
Choosing Edit Point in Source Sequence 2 —
Production of Edit File
—M Evaluation of Edit Point

Learn from Achievements and Mistakes

Figure 1. Logical flow of edit process

CHAPTER 3
THE PROCESS OF MAKING AN EDIT

The process of making an edit is shown in figure 1.
The edit can be considered the joining of two source
sequences at a specified time in each one to produce an
output sequence containing the first part of the first
sequence and the second part of the second sequence. The
two source sequences may be the same sequence. In the
case where the source sequences are the same sequence,
the output sequence can effectively have duplicated or
omitted information.

The first step is to determine which sequences will
be used. This implies that the sequences exist as files
in a storage medium. The files get to the storage medium
by the process of recording. Recording, for the purposes
of this research, is merely the sampling of the input
audio at a specific rate (a compact disk is audio sampled
at 44100 times per second) and conversion of the audio to
a number representing the deviation of the air pressure
from the non-excited norm. The sequence of these samples
is then placed in a storage medium, typically a hard
disk, for later reproduction.

After the sequences are determined, the approximate
time in each sequence where the edit should be performed
is determined. It is this stage where classification is

most helpful. Classification of the music, in its

7
simplest form, may be nothing more than the determination
of the start and end of various notes. In a more
complicated form, it may be the complete construction of
a musical score. The segmentation process could provide
additional information on musical style which might be
used to aid and further constrain the possible edit
choices.

In order to obtain an interface with the producer to
establish his editing needs, a human engineer, for
example, would at least be able to determine that there
are notes and discuss the location of potential edits in
terms of these notes. To allow an interface between the
producer and the automated engineer without the
segmentation ability, the range of samples representing
the individual notes is manually input into the editing
system. This method tends to be cumbersome, but the
interface to the producer is not the primary issue.

With human producers and engineers, there is verbal
communication to indicate the note that the producer
intends to edit around. The interface between engineer,
producer, and editing machine, becomes especially blurred
in this domain. Traditionally, the engineer and producer
are presented with some representation of the musical
samples. This is usually an envelope plot of the musical
wave form. The degree to which this representation can be

abstracted depends primarily on the ability to classify.

8
As we have said, we assume that an engineer can at least
determine notes, and we should represent the music to the
producer in the form of classical mnusic notation.
Although a complete score does not need to be produced
(in fact, the engineer may make his edits without ever
hearing the sequences in their entirety), the area around
the edit should be represented by a score. This again
falls into the area of classification and is avoided in
this model. Instead we take the sample which is at the
beginning of the note and the sample at the end of the
note to represent the range of the note. A more
acceptable method of acquiring the producer’s intent
would be some form of graphical representation, but that
is not the primary interest of this research. It should
be noted that the addition of classification is necessary
if the form of the music is to be considered in the
choice of an edit point.

After determination of the input sources and the
range in each input sequence where the edit is most
desirable, the engineer would listen to the music to try
to get a better idea of the structure of the music around
the edit range. After picking a possible sample where the
edit would take place, the second sequence is auditioned.
The most probable point of success is determined for the
second sequence and a complete resulting sequence can be

proposed. There are several attributes which each

9
sequence should have to make the final choice for
possible edit the most probable to succeed. Such
attributes might be a minimum in the envelope of the
signal, or an area in which the spectrum contains the
least energy. Timing and rhythm are also considerations
in choosing a potential edit.

After each sequence has been heard and the most
likely point for a successful edit has been selected, the
edited sequence is produced and evaluated. The evaluation
may look for several areas of failure, again using the
same type of information extraction as when the source
points were selected. A sudden Jjump in amplitude
attributable to the edit would make the edit
unacceptable. A sudden change in the spectral response of
the music which is not representative of the attack of a
note might also be a reason for rejection. Additionally,
the tempo of the music and the rhythm through the edit
area cannot be degraded by the edit itself. There are
other things which may be cause for rejection of the
edit. It is essential in the design of the system, that
new criteria and analysis procedures can be easily
adapted to the architecture of the editing system.

If the edit passes the evaluation stage, it is
presented to the producer as the best solution to the
edit that the engineer can produce. The producer has the

final say 1in the edits acceptability, because the

10
producer is the only one who has the knowledge as to
whether the edit meets the criteria for external goals.
If the edit does not pass the evaluation stage, potential
adjustments are identified, and the original sequences
are reauditioned in light of the new information obtained
in the joining. The process of edit proposition and
evaluation is repeated until either the edit passes the
evaluation stage and is presented to the producer or the
adjustments are not fruitful and the requested range is
categorically rejected as not musically editable. This is
a tedious process requiring various lengths of the
engineers time depending on the difficulty of the edit.
Automated assistance would more guickly eliminate non-
productive avenues and aid in selecting a beneficial
approach. As the assistance is improved a more complete
solution might be obtained.

If the edit was rejected and the producer is able to
find an edit in that range which he considers acceptable,
it is necessary to determine if the evaluation criteria
employed by the engineer was too restrictive or the edit
is an exception to normal criteria due to external goals.
There is also the possibility that the producer will
reject an edit that the engineer has proposed as
acceptable. In this case, the evaluation criteria may not
be restrictive enough. The other possibility which would

cause this is the inability of the model to extract the

11
information that the producer is using to reject the
edit.

This is a learning stage which is closely coupled to
the classification stage. It may be necessary to vary the
criteria used in evaluation depending on the style of the
music and the tastes of the producer. This learning stage
involves case based reasoning. It may be that adjustments
to the evaluation criteria would correct the false
rejection or false acceptance. Due to external goals and
varying classifications, changes in evaluation parameters
may never make the correct decision for certain cases. In
other words, it is not possible for any human being to
foretell all artistic decisions that another human being
may make. Even if our editing system is perfect in its
ability to model a human being, human engineers sometimes
make decisions which are unacceptable to the producers
that they work with, so we should expect a certain degree

of failure.

Facing page 12

Other Mail-
Experts box
Rhythm Mail-
Expert box

Figure 2.

Mail- Envelope
box Expert
\\\\Blackboari///
Rule Base
CLIPS System
Mail- Spectrum
box Expert

The blackboard interface to the expert tasks.

Information flow is in the direction indicated by the

arrows.

CHAPTER 4
SYSTEM ARCHITECTURE

The basic system architecture is shown in figure 2.
The entire system is written in a real-time operating
system which allows tasks to be prioritized. The time-
slice features of the operating system allow the system
to be later divided among many processors without
changing the general architecture and philosophy of the
solution. Additionally, slow processes will not block the
decision maker from continuing to process results from
other tasks. The implementation of the solution must be
modular so that if new evaluation techniques are
identified, they can easily be incorporated into the
existing architecture. The decision maker is a set of
rules written in CLIPS (4). These rules represent the
ability of the human to "listen for" specific qualities
of the music and make decisions based on what is heard.
To model the ears, the information is gathered by three
experts, though this is a somewhat arbitrary number.
Though loudness, spectral content, and rhythm is
sufficient for many edits, more experts could be added to
increase the abilities of the system. The rules embody
the knowledge of when information should be gathered and
what significance that knowledge has to the solution.

This knowledge is encapsulated in the CLIPS rule

base. CLIPS consists of a set of production rules, a set

12

13
of facts, and an agenda. If the current facts match the
"jf" section of a rule, the rule is considered to be
triggered. Triggered rules are placed on the agenda. As
the facts are changed, several rules may be triggered at
the same time. After the completion of the analysis of
the facts to determine triggered rules, the first
triggered rule in the agenda is fired and the procedures
dictated by the "then" section of the rule are executed.
This may be instructions to assert new facts, which adds
new facts to the fact list, or retract existing facts by
removing them from the fact list. After each rule is
fired, the facts are examined to see if new rules have
been triggered or triggered rules should be removed from
the agenda.

For the purpose of performing an edit, an objective
we wish to achieve is termed a goal. In this model, the
agenda is used as a goal stack where rules evaluate
recovered data (facts) and determine if a goal has been
met, a goal has transformed into a new goal, or remaining
goals must be broken into smaller goals.

As an example, we start with the goal "produce an
edit" on the goal stack (agenda). This goal is not
directly achievable, but could be achieved if we achieve
the goals:

-- Select edit point in first sequence

-- Select edit point in second sequence

14
-- Join sequences
-- Evaluate edit.
These goals are placed on the goal stack. An example of
this type of rule would be:
(defrule get-source-info ""

(goal plan-edit)

(assert (goal get second sampling-frequency))

(assert (goal get first sampling-frequency))

(assert (goal get second range))

(assert (goal get first range))

(assert (goal get output take))

(assert (goal get second take))

(assert (goal get first take)))
In this rule, taken from Appendix A, we see that the goal
is to plan an edit. In order to plan an edit, we must
acquire some information. We post the goals of acquiring
each piece of information in the facts.

Eventually goals reach a low level where the intent
of the goal must be directly performed. A rule of this
type would look like this:

(defrule get-env-edit ""

(goal get ?take edit-point)
(envelope take-is ?name)
(have sampling-rates)

(envelope range~is ?start ?stop)

15
(?take range-is ?start ?stop)

(envelope analyzed ?start 7?stop)

(ask envelope find-edit))

In this case, our goal is to get an edit point proposal.
If we have all the necessary information, we can ask the
envelope expert (a dedicated program discussed later)
what that type of analysis would lead us to expect for
editing location. The "ask" function is a function
attached to CLIPS which will cause the command
immediately following the expert’s name to be placed in
the mailbox of the expert immediately following the
"ask". The "ask" syntax is as follows:

(ask <expert name> <command> <parameter>)

The mailbox is a separate child program of the expert in
question and is discussed in the section about the expert
architecture.

The process of evaluating goals is repeated until
each objective is either achieved or broken into smaller
goals. When the goal stack is empty, the edit has been
achieved (if it was possible). This is the manner in
which the decision maker decides how to issue commands to
the various experts. This example will be continued after
the discussion about the various experts.

The entire area of classification and identification

of input sequences and ranges for edit points is reduced

16
to a goal in the agenda. Ideally, a full system would use
some graphical interface to obtain the necessary
information from the producer. Perhaps a method more
appropriate to this model would be to play the sequence
for the producer and have him indicate the approximate
time where the edit should occur (by pushing a button,
for example). It can be argued that the engineer should
be able to extract the information where the note
indicated begins and ends based on the same type of
techniques used to determine the edit point. Indeed, it
is a rather simple procedure to determine the start of
the notes, however, this is again encroaching on the
problem of classification and segmentation (2) (3). The
text method that is currently used in this research is
cumbersome at best, but does allow the information to be
entered.

To accomplish the edit proposal and evaluation
stages, a blackboard expert system is used. This is
represented in the decision making section by several
goals in the rules. The first goal is to determine an
edit point for the first sequence. This is then broken
into several additional goals that require communication
with the individual experts and the extraction of
information about the musical sequences they are
evaluating. The information that the experts extract is

then placed on the blackboard where it is interpreted by

17
the decision maker. There is no reason that any one
expert cannot access information from any other expert,
but the present design has the experts only communicating
with the decision maker. The decision maker gathers the
information from the experts and determines which goals
have been met and how events should proceed.

Each of the decision maker and the experts is an
individual task. This is to allow the experts to be off-
loaded to signal processors as the system expands. For
the sake of cost, the signal processing is currently
being done on the same computer with the decision maker.
The system allows priorities to be assigned to the
various tasks so that certain tasks are considered more
important than others and are therefore done first. The
decision maker could be given priority over the experts
and the experts over the blackboard, but all the tasks
are currently being run in a time-sharing fashion.

The blackboard is a child process of CLIPS generated
when the function "initialize experts" is called from
within a CLIPS rule. The "initialize experts" function is
another function attached to the CLIPS environment. The
function generates a child process for each expert and a
child process for the blackboard. Each expert child
spawns an additional child process representing the

mailbox for that expert.

Facing page 18

reply with messages Blackboard

empty reply

end messages

send requests

Decision Maker Expert

send requests

send messages

empty reply

\N) reply with
Mailbox messages

Figure 3. Communication paths between experts and
decision maker. Messages are never initiated by the
blackboard or mailbox. Handshaking occurs both direc-
tions, but information only travels counter-clockwise,
preventing deadlock.

18

The architecture as shown in figure 2 is subject to
deadlock if information and messages are allowed to
travel in the same direction. If the blackboard is trying
to send information to the decision maker, who is trying
to send information to an expert, who 1is posting
information on the blackboard, the system will stop. For
this reason, the blackboard is never allowed to send
messages. The blackboard only replies to received
messages. The messages can be instructions to place
information on the blackboard or to read information that
has been posted there. In the case where the message is
an instruction to read the blackboard, the actual
movement of information is contained in the reply to that
request, allowing the information to move opposite to the
direction the message was moving (figure 3). Although
there is no security on the system (any task can read the
blackboard if it sends the appropriate request) the
blackboard is only read by the decision maker. The
blackboard is implemented as a message queue.

It is the blackboard expert system which models the
perception of the engineer as he edits and is the focus
of this research. The evaluation parameters have been set
into a single frame and coded directly into the routines.
If the classification and learning stages were expanded,
additional frames could be added to allow a case based

reasoning ability. This would allow some flexibility in

19
the editor to adapt to the producer who is using the
editor and the type of music being edited. The case based
reasoning section requires a substantial expenditure of
time to produce cases and has not been practical at this
point.

A small model of the learning stage is represented
by a phase (goal) in the rule based system. The learning
stage would need a great deal of expansion to be
practical, and, as mentioned before, even the human
counterpart we are trying to model cannot expect complete

success.

CHAPTER 5
ARCHITECTURE OF THE DECISION MAKING SECTION

The decision making section 1is constructed of
various rules which generally follow the 1logical
progression of an edit shown in figure 1 by using a
series of goals or phases. As each section of the logical
flow is presented, it is put on the CLIPS agenda as a
goal which needs to be accomplished. Each of the main
goals is too complicated to solve directly so there are
rules which break the goal down to smaller and smaller
subgoals. Eventually these subgoals can be directly
accomplished through one or several commands to the
experts.

The blackboard interface is actually one of the
attached functions and is not part of a standard CLIPS
environment. The blackboard interface requests messages
from the blackboard and asserts the reply, providing it
is not empty, as if it were a fact asserted by any other
rule. Each time the blackboard interface queries the
blackboard, either the program will sleep or a fact will
be asserted, depending on whether the reply was empty or
contained information. The blackboard interface is
accessed by sending a request for messages to the

blackboard as if it were any other expert. The rule which

20

Blackboard

Facing page 21

Blackboard Interface

Rule Base

Functions
Envelope Rhythm Spectrum
Driver Driver Driver
Envelope Rhythm Spectrum
Expert Expert Expert

¢

l

!

Figure 4. Component parts of decision maker.

flow is in the direction indicated by the arrows.
drivers and bloackboard interface were non-~standard func-

tions linked into the CLIPS system.

Information

Functions,

21
causes the blackboard to be queried is:
(defrule check-messages ""
(declare (salience -10))

?chk-mssg-fact <- (check-messages)

(retract ?chk-mssg-fact)

(ask blackboard)

(assert (check—-messages)))
There are no parameters when sending a message to the
blackboard since the only appropriate thing to do is ask
if there are any messages.

There are two sections which make the decision maker
unique to this application (see figure 4). The first
section is the interface to the blackboard. One of the
few rules which make use of the salience feature of the
CLIPS environment is the rule to check the blackboard.
Salience is the ability to prioritize triggered rules in
the agenda. In this case, checking the blackboard is
always a triggered rule, however salience is used to
assure that the "check the blackboard" rule is only fired
when there is no other pending decision. In this design,
the blackboard is only checked when no other decisions
can be made. If no goals can be accomplished, the
decision maker asks the blackboard if there are any
messages. To prevent deadlock, the blackboard will

immediately respond, whether a message exists or not, to

22
free the blackboard task so that it can respond when
other tasks need to post a message. If there are no
messages and no goals which can be accomplished with the
current information, it is assumed that the experts are
all busy analyzing previous requests. In this case, the
decision maker blocks for some time and then repeats the
query to the blackboard. This cycle repeats until there
is new information from the experts.

The second area that makes the decision maker unique
is the expert drivers. For each expert to be used by the
decision maker, there is an associated driver routine
which parses the messages for that particular expert. The
expert drivers are also functions attached to the CLIPS
environment, but, like the blackboard, they are accessed
by an "ask" syntax in one of the rules. The appropriate
driver is then called by the "ask" function. The primary
function of the driver is to check rule constructs
intended as commands for the experts to assure correct
syntax. This is essentially a debug problem. Since each
of the tasks is a different program, there is nothing at
compile time to prevent illegal messages from being
constructed. When all of the experts are running, it is
very difficult to determine where the failure occurred
when illegal messages are allowed to propagate through
the system. The intent of checking syntax is to prevent

badly constructed rules from causing an error in one of

23
the experts and allowing a quick determination that the
fault lies in the rule itself. The job of error checking
is discussed further below. The second purpose of the
expert driver is to construct a message header and
message structure from the CLIPS syntax so that message
decoding in the receiving expert can be as efficient as
possible. By structuring the messages, should the experts
be put onto individual processors, the remaining
interface kernel can be made extremely small, though this
is not of major importance in the way the system is
currently being run.

Another use of the salience feature 1is 1in the
posting of error messages. Should an error message be
posted by either one of the expert drivers or by the
expert itself, the errors are handled before any other
goals. Of course, if the error is contained in a mailbox
(or blackboard) with other messages, there is no priority
given to that message until it is returned to the
decision making section. The message simply maintains its
place in the queue as would any other message.

Reasoning that music which is easy for a human to
edit should be attempted first, the research has focused
on simple edits. Through the tests which have been run up
to this point, it is becoming evident that the earlier an
edit can be judged inappropriate due to the musical

constraints in the edit range, the quicker the response

24
of the system will appear. Many of the disagreements
between experts that were originally intended to be
solved by backtracking after both of the edit points had
been proposed and evaluation had discovered an error are
more efficiently solved by increasing the depth of
analysis when the edit range is first examined. Unlike a
human being, additional processing can easily be added to
the artificially intelligent editor so that more
information can be gathered in the early stages of edit
proposal. It seems that a more efficient solution lies in
pushing the backtracking to the earliest point of edit
consideration possible so that repeated access to the
musical data is minimized. When editing piano solo
passages, for example, it is common to find backtracking
in the early stages when frequency information is lacking
for the analysis of the envelope. Early attempts at the
editor allowed the problem to remain until the evaluation
stage, but the repeated analysis of the edit range was
slower than forcing a backtrack prior to the evaluation
stage. For many of the simpler forms of edits (edits
where all three implemented experts can locate a
preference edit point and attacks are gquick and
consistent in style) backtracking from the evaluation
stage can be all but eliminated for problems not

involving musical form.

25
There are several additional functions attached to
the CLIPS environment. The only other function directly
called from a CLIPS syntax is the "make-edit" function
which produces an edit attempt file from the two source
files. The syntax of a "make-edit" request looks 1like:
(make-edit <output file> <sourcel file>
<edit position 1> <source2 file>
<edit position 2> <sampling rate>)
This function makes use of the "adjust header" function
and the "generate crossfade" function, both of which are
also attached to the CLIPS environment. All of the
functions attached to CLIPS are linked into CLIPS at
compile time. The actual function calls made from the
CLIPS syntax were intentionally kept to a minimum to make

the interface as clean and unobtrusive as possible.

Facing page 26

From Decision Maker

‘Mailbox

Parser

Analysis Prediction Evaluation Query
System

Blackboard Interface

Blackboard

To Decision Maker

Figure 5. Component parts of an Expert. Information
flow is in the direction indicated by the arrows.

CHAPTER 6
ARCHITECTURE OF THE EXPERT SECTIONS

The architecture of an expert section is shown in
figure 5. In order to fully prevent deadlock, each expert
is given a mailbox. The mailbox is actually the same
source code as the blackboard (essentially, the deadlock
problem is the same as for the blackboard and decision
maker). A mailbox is a message gqueue whose name is
determined by the task that creates it. Upon start up,
each expert task generates a mailbox where its messages
will be put. The mailbox is actually a completely
separate task just as the blackboard. In essence, the
blackboard is a mailbox for the decision maker. The
primary difference between the blackboard and a mailbox
is its use. The blackboard has messages posted by several
different expert tasks. The mailboxes are only read by
the task that created them and only written to by the
decision maker. The primary reason for the mailbox agent
(aside from deadlock) was the ability to queue messages
so that the decision maker would not be held up waiting
for an expert who was still executing the decision
maker’s last request. By designing the interaction
between the decision maker and the experts with the
mailbox agent, there should be little difference in the

design as the processing becomes more parallel. Parallel

26

27
processing results as the experts’ analysis sections are
moved onto signal processors.

The central routine for each expert is largely a
message parser. Each message is evaluated to determine
what functions must be executed, and in what order, to
accomplish the request received in the mailbox. As each
message is parsed, if a response is required, it is
constructed in a general buffer which will be asserted as
a fact upon receipt by the decision maker. The new fact
is posted on the blackboard. If more than one fact needs
to be asserted, it must be handled in the function
itself. This is usually not necessary. Several of the
functions gather additional information, but it is stored
in global variables and not released unless specifically
requested by the decision maker. For instance, the
spectrum expert analyzes the music to determine the
lowest frequency present to form its own opinion on edit
placement. The information is not offered to the decision
maker, however, unless it is specifically requested in
the form of a message. Whether it is quicker to gather
information while performing some other function or wait
until the information is requested depends entirely on
the expert and the information involved. The process is
generally invisible to the decision maker since the

decision maker always continues its operation after

28
posting each request for information instead of blocking
while waiting for that information.

Because all of the experts are running
simultaneously, it is often difficult to see what is
happening during processing. Most of this information is
of little or no use to a user, but is very beneficial in
the design stages. To that end, as each message is parsed
and each function is called within the decision maker and
experts, a notice is posted to an unused operating system
console. This console allows the designer to see the
experts at work to determine if there are any order
specific problems. The messages also serve as "mile
markers" to determine what the last thing an expert
attempted in case of expert fatalities. The order in
which the experts post messages and the contents of those
messages varies with the processing power for various
tasks and the problem being worked on. An example of this
type of output is:

Spectrum doing FFT analysis.

Spectrum analyzing FFT looking for maximums.

Spectrum looking for lowest frequency.

Spectrum comparing maximums.

Decision maker creating edited file.

Decision maker adjusting header information.

Decision maker is generating a crossfade.

Decision maker completed edit attempt.

29

Envelope evaluating edit.

Rhythm evaluating edit.

Spectrum evaluating edit point

Envelope accepting edit.

Rhythm accepting edit.
In this example, the production of an edit attempt can be
seen by the text from the decision maker. The analysis is
started in each of the experts and two of the experts
have responded by accepting the edit. If different
hardware is used, certain tasks may take a longer time
relative to other tasks, and the order of response from

the experts will vary.

CHAPTER 7
ENVELOPE ANALYZER EXPERT

One of the existing experts is the envelope
analyzer. Its primary responsibility is to make amplitude
judgments concerning the input sequences. In general, the
most probable points for edit are the lowest amplitude
that a note reaches prior to the amplitude increase from
the next note.

Amplitude is generally measured by peak to peak or
VU (visual unit) meters. These measure the amplitude by
keeping a running sum of the absolute value of the
samples. A very fast attack and relatively slow decay
time are maintained by allowing instant increases in the
running sum value, but subtracting a set portion of the
value each time a value lower than the current average is
obtained. Amplitude measurements allow most note ranges
to be determined during classification, since notes often
run from a time just prior to an amplitude crest to the
next amplitude crest.

Most envelope analysis methods employ a running sum
technique where the amplitude of the music is related to
the energy over time. The running sum method has definite
disadvantages, however, as do most peak to peak meter and
VU solutions. The faster the decay time is set, the more
these methods tend to follow the wave itself instead of

the envelope of the wave. This problem is especially

30

31
visible when there is a predominance of low frequencies.
If the meter 1is set fast enough to decay from full
amplitude with a high frequency at the rate that the ear
decays, the meter will not present a valid amplitude
picture for the lower frequencies. Many artificial low
points are obtained because the low frequencies may take
a significant amount of time to cross the zero point in
their oscillations. Instead, a model is used where the
lowest frequency to be expected is given to the expert.
Instant release times are possible if no additional
events occur within one cycle of the lowest expected
frequency.

The analysis uses a window large enough to account
for the lowest expected frequency. The analysis begins
with the last obtained peak (initially zero). Because the
algorithm will set the window to start at the point it
last found to be a peak, the window start is, by
definition, the last recorded peak. The analysis will
find the next sample larger than the start of the window.
If none is larger, the sample closest in level to the
start of the window is used. This effectively allows an
instant decay as long as there is no new maximum within
the time of one cycle of the lowest frequency.

As an example, suppose the lowest frequency in a
given piece of music is thirty hertz. First the sampling

rate is divided by thirty to determine the size of the

32
sliding analysis window. The window is filled with values
from the sequence in question, starting with the value
representing the beginning of the range. The absolute
value of all the values in the window is taken so that
excursions on both sides of zero are accounted for.
Starting at the beginning of the window, the values are
examined. The first time a local maximum is encountered,
its value and its location is recorded as the first peak
in an envelope recording array. The window beginning is
set to the location following this peak. The analysis
continues looking for local maximums. If a local maximum
occurs which is greater than the last one recorded, its
value and location is recorded in the next envelope
recording array location, and the window beginning is set
to the next 1location after that 1local maximum. The
process is repeated. If an analysis does not produce a
local maximum greater than the last one recorded before
reaching the end of the window, the largest local maximum
in the window is stored along with its location and the
window beginning is set to the location following that.
By using this method, both rapid attacks and rapid decays
can be tracked without the effect of waveshape tracking
occurring. The only remaining problem is when two notes
near the lowest determined frequency are near each other
and cause amplitude beating. This has not proven to be a

problem in the editing examples we have tried so far.

33
Music generally contains more complex information than
two sustained tones, though situations such as this may
be solved by agreement from the other two experts.

The envelope analyzer can provide answers to the
rate of change in the amplitude near the edit point. In
the evaluation stage, sudden changes in amplitude across
the edit area which would not have occurred in the
original sequence may represent problem areas which
should cause the edit to be resubmitted with the
selection parameters weighted so that the next
appropriate edit point in the range can be tried. This is
done by posting a preference containing information on
which source sequence would most likely solve the problem
and which direction the expert feels the edit should be
moved.

At this stage of research, the evaluation section
consists of two main comparisons, crest shifts and edit
point shifts. If the second crest of the second edit
point range is significantly different (determined by the
frame value currently inserted directly into the code
itself) than the second crest of the first edit point
range, the edit point will cause a notable shift in the
amplitude through the edit area. This will cause
immediate and complete rejection of the edit point
region. Since the edit cannot be adjusted to account for

this type of change, no backtracking would be helpful.

34
The rejection statistic is different if the amplitude is
decreasing than it is for an increase.

The second problem could cause backtracking. One
window 1is examined on both sides of the edit being
evaluated. If the edit point causes an envelope shift
based on the resulting maximum values from the two
windows, the edit may sound better by making the edit
slightly into the note itself. This could be accomplished
by shifting the appropriate source edit forward so that
part of the next attack would be cut off. This might
allow the increase in amplitude from the next note to
hide the envelope shift from unequal levels. Of course,
as the edit point is shifted, the rhythm will begin to be
affected. Eventually two experts will ask for the edit to
be moved in opposite directions. This will also cause the
edit to be rejected. There are other available options,
but this type of backtracking has not yet been fully

explored.

CHAPTER 8
THE SPECTRUM EXPERT

The spectrum is analyzed by taking an FFT (Fast
Fourier Transform) of the sequence of samples. This is
similar to the analysis done for envelope, although it is
more extensive. The region where most of the spectral
components are at a minimum amplitude or a spectral
change is eminent usually represents the place where the
edit point will most likely be successful. This can be
detected by looking for the high points in the spectrum
(the loudest frequencies) and determining if they are
increasing or decreasing. A spectral change will produce
a new set of frequencies which are loudest. In certain
musical sequences, variation in amplitude from the type
of instrument used may make amplitude analysis erroneous.
In cases such as this, a more appropriate edit point can
be found by 1looking for the area where the spectral
content suddenly changes. This can be located by the
spectrum analyzer.

In the evaluation stage, the sudden disappearances
of the certain frequencies, not representative of the
rate of the decay of specific frequencies in the
original, may indicate a reason for rejection. The degree
to which the differences are significant should be held

in the frame representing this particular case. Though

35

36
this is static in the current research, it can be made
very useful as the classification section is expanded.

As an example, the FFT window is filled with the
last values of the range, so that the final range value
is the last value of the window. An FFT is done to the
window. A maximum value locator fills an array with the
location of the maximum values of the spectrum. These
should represent the most significant frequencies for
this period of time.

The window is then shifted earlier into the music by
fifty samples. The FFT of the new window is taken. The
routine again looks for the location of maximum values.
This time the resulting maximum locations are compared to
the previous maximum locations. If any locations are
present that did not exist before a counter is
incremented. The window continues to shift and the
process continues to repeat until the counter reaches an
appropriate threshold (fifty changes). At this point, all
the frequencies have shifted and the edit point is
proposed at the location in the center of the current
window.

Current problems with the evaluation section have
been caused by two basic areas. Performing Fast Fourier
Transforms on a general purpose processors (in this case
a Intel 80386 based system) is typically very slow. The

tradeoff involved in gathering enough points to make low

37
frequency information accurate causes the system to be
extraordinarily slow. Resolution in the current system is
approximately 44Hz. This represents an octave in the bass
notes of a simple piano. This has made the evaluation
stage on a personal computer almost useless in terms of
making suggestions concerning the edit 1location and
direction of possible movement. Many of these problems
could be solved by offloading the spectrum analysis to a
Digital Signal Processor (DSP).

The second area of difficulty is again associated
with the low frequencies. Although FFT analysis is done
on windows of 1024 samples, this is only a single
wavelength at 44.1Hz. Nonlinear response effects can
easily be seen between 44.1Hz and 88.2Hz. Additions of
windowing functions such as a Hamming window can help to
reduce this problem, but at the cost of additional
analysis time. The analysis of the spectrum is already
the largest portion of processing time.

In the current implementation of the editor,
evaluations are done every 50 samples. These spectral
evaluations are compared to the evaluations neighbor.ing
the current FFT. Spurious noises can cause the spectrum
expert to produce premature edits because they are
detected as changes in spectral information. A better
result could be achieved at the cost of memory and

processing time if the results from each FFT could be

38
compared to several in each direction to determine for
certain whether the spectral content has actually
shifted.

It is helpful in segmentation (a classification
stage) to subject the music to a high pass filter before
doing spectral analysis (3), but this can cause erroneous
interpretation of the edit point because the upper
partials are mostly non-existent in the areas of time we
wish to actually differentiate plausible edit locations
from incorrect choices. Problems may also arise when the
music in question has very little harmonic content. If
the fundamental is filtered out, or even greatly reduced,
the information used to determine the best choice for an
edit may no 1longer exist in the time range under
examination.

It is difficult with the present implementation to
distinguish when the upper partials have fallen below the
noise threshold. The spectrum is analyzed in reverse
order from the direction of real-time. By doing this, the
attack can still be correctly assumed even though it is
the noise floor and not the previous decay that causes
the spectral shift. To some degree this 1is not
inappropriate since it is common among human engineers to
evaluate the musical sequences in both directions (and at

several speeds) before choosing an edit point.

CHAPTER 9
THE RHYTHM EXPERT

The rhythm expert examines the 1length of time
between the crest of the previous wave and the edit
point. More specifically, the length of time between
crests 1in the original signal should be <close to
multiples or divisions of two to the length of time
between the crests of the resulting signal. The change
between crest lengths can be used as a guide for
direction should adjustment to the edit point be
necessary. If the length of time between crests is quite
different from multiples or divisions by two, the
evaluation stage may concentrate on this difference as
potential reason for rejection. This 1is especially
significant if the original signals have a very
distinctive pattern. This information is developed to a
large extent in the process of classification, though it
is manually mapped to the input sequence in the current
examples. It would be possible to analyze only a short
section of time, one or two measures, to determine the
basic pulse rate of the music. With human performers,
some variation in the pulse rate should be expected (2)
(3), so analysis outside the immediate range of the edit
may be misleading. As with other variations, such as
amplitude, rhythmic variations must be compared to

surrounding variations to determine if the variation is

39

40
introduced solely by the edit, or is within the tolerance
of other variations in the music. For both rhythmic and
amplitude variations, the focus of the research has been
the editing of various performances of the identical
section of music. This problem is common in classical
productions. In this case, the rhythmic variation can be
compared to the variation that existed in both the
performances prior to editing. If it is not within the
deviation between the two input sequences, the edit
should be re-evaluated.

For a brief example, the edit point of the first
range is given by the other two experts. This i primarily
because no matter where the first edit point is
determined to be, the second edit point should be able to
be correctly determined base on the first edit point
position. Since we know the length of the first note
retained by position of the first edit point, and we know
the length of both ranges at the time the user selects
the second range, we can produce the location in the
second edit which will cause the resulting range length
to be within the values for the source range lengths.

Rhythm analysis is essential in classification and
would play a greater role in the editing process itself
if the form of the music is used to determine
editability. In the current implementation, it is used

primarily as confirmation of the edit selection made by

41
the other two experts. Rhythm has no input into the
selection of the edit point for the first sequence. Given
the placement of the first edit point, a very quick
determination of likely areas for the second edit point
can be produced by the rhythm information. If the musical
meter can be assumed invariant across the edit (as it has
been in this research), the rhythm information can be
used to determine if the next attack has been moved in
such a way as to create a shift in the meter. This area
has not yet been fully explored in this research. The
area of rhythm analysis would benefit greatly from the
addition of classification techniques to determine if the
alterations in meter are appropriate (as they sometimes
are). The sudden introduction of an unusual time
signature into a common time passage would almost
certainly be an error. In this model, that would be
considered a failure on the part of the producer choosing
the edit range, though a rhythm expert knowledgeable in
the musical form might be capable of preventing such a
mistake.

A better, or at least more reliable, method could be
developed by extracting more information concerning
segmentation. Although it is usually correct to assume
that the envelope will be at a maximum at the center of
a note crest, this can prove erroneous in certain

circumstances where the instrument does heavy modulation

42
to the amplitude (3). Other forms of segmentation could
be given to the rhythm expert to make the determination
of rhythm information more independent of the envelope.
By relying on the envelope, there will be cases where the
rhythm expert will fail because the envelope analysis was
incorrect. It would be better if the two experts were
more independent of each others information.

An improvement could also be achieved by analyzing
segmented crests further than the nearest crest. The
current version of the editor is misled if there was a
rhythm fluctuation in the notes being edited. This could
be improved by analyzing the sequence of notes near the
edit point to see if the fluctuation is acceptable.

In this research, the user is expected to enter the
classification information by entering the range of
samples that represent the note to be edited. This
uncouples the rhythm expert from the envelope analysis,
however, if the envelope analyzer were to determine note
crests for range constraints (in the case where the
producer pushes a button to indicate the edit note, for

example), this would again become a problemn.

CHAPTER 10
ERROR HANDLING

Errors of syntax coming from the goals in the
decision maker are handled by that expert’s driver in the
CLIPS environment. This prevents unnecessary messade
traffic and attempts to catch the errors at the earliest
possible stage. Any errors of this type are actually
programming errors in the sense of rule design and are
therefore not correctable by the expert even if the
message were sent.

The second form of error is the error associated
with the input by the user. Sequence files that do not
exist, or note ranges not contained in the input files
are examples of this form of error. Most of these are
currently handled by the rule base system to some degree,
though the most appropriate place to handle them would be
in a classification or graphics interface stage. The
rules which must check for that sort of error become
extensive and do not add to the effectiveness of the rule
base. Some of these types of errors are handled by the
rule base itself, but others are allowed to fall into the
third category.

The third category 1is the errors found by the
experts in their attempts to evaluate the information.
Any expert may post an error to the blackboard. Although

it is given no special attention until it is delivered to

43

44
the decision maker, it obtains top priority upon arrival.
An error message is constructed by noting that it is an
error, who is posting the error, and what the error is.
At present, these errors are simply posted as text to the
user. In a more elaborate system, the errors could be
dealt with by the rule base system in any method
acceptable to the type of error.

The syntax necessary for an expert to post an error
to the decision maker involves asserting the follow fact
syntax:

(error <error condition> <expert registering error>)
This allows the user or designer to immediately locate
the expert having difficulty and to determine if the
rules are in error or the user has entered incorrect
information.

The error system is another example of the use of
salience. If an error is registered, it is given top
priority. If it is an error which cannot be corrected
within the abilities of the rule base, the rule base
terminates. The rule which accomplishes this type of
error management (or termination in this case) is:

(defrule error-handler ""

(declare (salience 10))

(error ?type ?by-who)

45
(printout "Error " ?type " was registered by "
?by-who)
(exit))
The rule base simply prints the message to the user and

terminates processing.

CHAPTER 11
AN EXAMPLE

We left our example before with a goal stack whose
next goal is to produce an edit proposition for the first
sequence. This could be broken further into:

~-—- Obtain first sequence

-—- Determine sequence sampling rate

-- Acquire area of interest from producer

-- Analyze envelope of area of interest

-- Predict edit based on envelope, etc.
We first select the "Obtain first sequence" goal. This is
done by asking the producer what musical passage will be
the first section in the completed sequence. This is
nothing but a file name. Acquisition of the sequence file
is done with Hyperception sampling software (4). A
message 1is then posted in the mailbox of all three
experts to set their take names to the first file name.
Once the name 1is confirmed, the goal is removed.

The next goal is to determine the sampling rate.
This is done by the envelope expert. A message is posted
in the envelope expert mailbox to determine the sampling
rate of the first sequence. The answer is written on the
blackboard by the envelope expert. The decision maker
reads the sampling rate and posts a message to the
spectrum analyzer that the sampling rate has been

determined at whatever number was written by the envelope

46

47
expert. The next objective is to determine the note
that is of interest to the producer. This is done by
asking the producer to enter the sample number of the
beginning of the note and the end of the note. This is
not the most effective way, but classification and
graphic issues were discussed above. A message is posted
to each of the experts informing them of the area which
will be under evaluation. Each expert will post a message
confirming that the range exists or indicating an error
if one was detected. Errors might be that the file does
not exist or the range is not contained in that file.

The next goal (assuming no expert posted information
such as an error which would alter the goals) is to
analyze the envelope of the sequence. This request is
posted in the mailbox of the envelope analyzer. When the
section has been analyzed, the envelope expert will post
a message to that effect on the blackboard. In the
meantime, the decision maker may work with the spectrum
analyzer to set the sampling rate, take name and, range
of interest.

The next goal will be to produce an edit proposal
based on envelope. If the spectrum expert has useful
information on the blackboard (unlikely at this stage),
it may be given to the envelope expert if deemed
appropriate by the decision maker. The request to produce

an edit prediction is posted in the mailbox for the

48
envelope expert. When the envelope expert has completed
the task, the prediction is placed on the blackboard.

While processing is begun on the first source, the
user can be queried for the second source. The second
source is checked for validity and its sampling frequency
determined. Verification of sampling frequency match must
occur before large amounts of processing time are wasted.
If the sampling frequencies are mis-matched, an error
results and the user is informed. Goals for both
sequences may now exist on the goal stack simultaneously.
Phases are controlled by rules which check not only that
they satisfy a particular goal which is required, but
that the information they will need to satisfy it is
present.

This process continues until all the goals are met.
Exactly what will happen and in what order becomes harder
to predict as the process progresses since it is very
much dependant on the data contained in the sequences.
Timing is also an issue, since each of the experts, each
of the mailboxes, the blackboard, and the decision maker
are all running independent of each other. The exact
order in which various goals are approached depends on
the time at which tasks are switched in and out, and the
length of time to process each request. The decision
maker may begin working on the next goal while the

envelope expert is still processing the last request.

49
An example of the output from the various experts
and decision maker is shown in the section about expert
architecture (also Appendix G). In the examples, the
effects of parallel processing can be seen in the
disassociated order in which events are acknowledged.
The experts reflect the phenomenon of "listening
for..." particular aspects of the music. The engineer
might "listen for" the beginning of the note, or the
flute note (a spectrally determinable entity). The
engineer may listen to the rhythm to evaluate the edit.
In this case, the ears return information to the producer
in the way the experts post information on the
blackboard. What information is required is determined by
the decision maker just as the engineer must decide when
and why he needs to listen to the sequence again. The
decision maker will "replay" the music through his
experts just as the engineer will replay the music to
make sure of his edit. The more complicated or difficult
the edit, the more frequently the engineer will replay
the music (commonly referred to as "scrubbing"). This
effect can be seen in the actions of the decision maker

as well.

CHAPTER 12
FUTURE RESEARCH

There are several areas in which improvement should
be considered. The decision maker rules do not handle
backtracking from evaluation very well. This is partly
due to the fact that the examples causing backtracking
from the evaluation stage <could be solved more
efficiently by forcing the backtracking to earlier stages
of processing. This 1is done by increasing the data
collection abilities of the experts during the phase of
initial edit proposition. This is analogous to a novice
human editor who frequently overlooks useful information
during the edit point selection phase only to realize its
usefulness when playing back the completed edit and
understanding his mistake. In the test edits that have
been done to this point, backtracking in the evaluation
stage could easily be solved by collecting more
information in the proposition stage. In some ways, this
indicates an additional advantage to more complete
classification and identification.

The envelope analyzing section should be improved to
collect more information concerning rate of degradation.
Secondary edit points, which are needed if backtracking
does occur (regardless of whether the backtracking is
from the evaluation stage or simple disagreement between

experts), may not be located close to the first edit

50

51
attempt. A more complete messaging system between experts
could present information to the envelope expert asking
for any secondary edit point, or what the expected
degradation would be in a target edit area.

The envelope expert is also written to predict note
attacks based on the idea that the attack of the note
will be more rapid than its decay. This may be erroneous
if the attack is very long in relation to the decay of
the previous note, causing the envelope expert to be
unable to identify an acceptable edit point. Perhaps a
more appropriate technique would be to have several
analysis sections within the same expert evaluating the
music. The expert itself could be a weighting system to
look for consensus among the analysis techniques.

To complicate the issue of envelope analysis, the
rule base, and more directly, the edit generation section
does not allow changes to the incoming signal amplitude
as a whole. In other words, most editors used by human
beings (apart from physical editing techniques where a
magnetic tape is cut with a razor blade and taped back
together) allow the operator to increase or decrease the
level of the incoming signal. Some edits which should
otherwise be rejected may be compensated for in this
manner. Without classification techniques and additional
rhythm support, it 1is not possible to differentiate

between edits which need level control and edits which

52
are not appropriate Dbecause of their amplitude
incompatibility.

The addition of incoming signal level control falls
into a basic category of controls not available on this
version of the editor. An additional control which may
make certain rejected edits possible is the ability to
change crossfade time. In the present implementation, the
crossfade time is fixed at ten milliseconds. This is a
typical setting, but some edits which cannot be done with
this crossfade time become possible with extended
crossfade times. An example of this is an edit between
live performances where the edit is to be done in the
applause. Of course, long crossfade times complicate the
problem of rejecting an edit due to shifts in spectrum or
amplitude because crossfades of one second or more span
enough time that the music itself may be responsible for
the shift and the shift would be totally appropriate to
the musical context.

The spectrum analysis section could be improved by
examining a larger area to determine if the spectrum has
actually shifted or there 1is extraneous noise. The
addition of windowing functions may make information at
the lower frequencies more palatable to the analysis
section. The analysis is often fooled in low frequency
information because of the fluctuation in level due to

the sliding window phenomena.

53

An entire class of edits has been eliminated by
excluding speech. A class of edits similar in detection
(although quite different in <classification and
representation) are those edits occurring between musical
compositions. These edits should be some of the more
simple edits to complete, but the current system does not
account for those types of problems. The primary
difficulty is understanding when the edit is of this type
so that alterations can be made to the rhythm detection
expert. In a case such as this, the whole objective may
be to change the length of time between the last crest of
the preceding passage and the first crest of the incoming
passage. The current implementation would reject this
type of edit. Complete suspension of the rhythm detection
and rejection would be an incomplete solution because
many times the crest of the note for the incoming passage
is timed so that the rhythm is maintained from the
preceding passage until the new rhythm can be
established. A similar situation occurs when the edit
point is between two notes where the note itself has
decayed into the noise floor. This problem is approached
in the current implementation by evaluating the spectrum
backwards in time (from the second crest to the first).
It is solved in the envelope analyzer by looking for the

increase in envelope slope which represents an attack.

54
This method has the drawback mentioned above when the
attack for a note is long in relation to the decay.

All of the above are rather minor modifications to
the existing system. There are three suggestions which
would represent major changes. The first is a study on
the quantity and types of edits being done. It is unclear
how well the current editor solves the editing needs
because it is not clear what types of edits are most
frequently attempted. This could be a difficult study to
complete because the answers received will depend largely
on the people asked. The needs in a classical music
establishment may be completely different from those in
a "jingle house" where the primary product is musical
passages less than one minute long. Many of the potential
problem areas discussed above may actually be rare
circumstances in terms of real problems and the solution
as it exists may already be quite useful.

The second area of major change is the incorporation
of the classification and identification stage. Although
useful decisions can be made without this area, it would
no doubt be of great benefit. In all commercial
circumstances, the engineer who is doing the edits for
the producer can at least identify the notes in the music
and where they start and stop. If for no other reason, a
more efficient communication between man and machine

could be developed so that a more natural interface could

55
be used. Trying to enter the sample number which maps to
the note for the edit is not a natural interface and is
cumbersome at best. Significant advantages could be
realized by the incorporation of rules exploiting the
information available from the classification of the
music it terms of rhythm and additional control. Form
analysis could easily identify the problem mentioned
above where the edit must take place in areas between
musical passages and not in the passages themselves.

The final area of improvement is the addition of the
learning section. In the current implementation, criteria
used to judge rejection or acceptance of the edit is put
directly into the expert code. It would be much better to
send this information to the expert based on the
preferences of the operator. A frame could be developed
which holds the criteria for rejection based on the
operator’s critical nature and the type of music being
edited. This may allow even the current implementation a
wider range of operation. Other areas of preference which
could be included in the operators preferences would be
a general time shift. For any particular operator and any
particular music type, the operator may prefer the edits
to be done slightly earlier in time than the analysis
would indicate (or later in time for that matter). This
information could also be incorporated into the case

based frame system. The current implementation has an

56
extremely limited version of this where no actual changes
to the frame occurs and the frame is directly imbedded
into the source code. The only indication is a section
which queries the user to see if the edit agreed with the
user’s expectations. This section could be greatly

expanded.

CHAPTER 13
CONCLUSION

Musical 'passages can be analyzed to produce useful
decisions about the music without fully classifying the
music. Perceptual models of the human ear can be used to
extract similar information to that which an engineer
uses to produce an edit. The perceptual models extract
information driven by the needs of the decision maker
rather than the decision of classification being driven
by the perceptual information. Although classification is
very useful, it is not necessary to begin the process of
making useful decisions. Classification can be the result
of information gathering driven by a productive decision
and hence aid the decision rather than the classification
being the objective itself. The learning process changes
parameters by which editing judgments are made, but
learning does not have an effect on the method in which
editing is done in this model.

The editor is currently capable of simple edits
where there is a wide dynamic range in the notes. The
primary limitation is in the ability of the editor to
vary a sufficient number of variables to achieve more
subtle editing talents. For example, the crossfade length
is currently fixed, and it is assumed that there is no
control of amplitude possible. The parameters which

determine when an edit cannot be made are also fixed,

57

58

where a case based learning system would be a more
appropriate solution. Though there have been only a few
examples run through the editor, it would appear that the
editor is at 1least as efficient (though not yet as

versatile) as its human counterparts.

APPENDIX A
The Decision Maker

/**
*

* GLOBALS.H
*
kkkkkkhkkkkhkhkkkkkhkkkkhkhhkkkhkhhhkkkhhkhkkkhkkkkkkhkkkkhkkkkkkkkk
*

* These are the globals to the user defined functions
* in the file main.c. They belong to the functions
* that interface the decision maker to the experts

* and the blackboard.

*
**/
/%

** Directory where all data is located.

*/

char directory gca[256];

/%

** File name for output text.

*/

FILE *text out gfh;

/%

** This is the information for the blackboard where the
%k messages from experts are posted for use by the
*% clips system.

*/

#define BLAKBORD FILE "/editor/bin/blakbord"
#define BLAKBORD NAME "blakbord"

/%

** This is the name of the file containing the
* % executable for the envelope analyzer; one of the

* % experts.

*/

#define EXP_ENV_FILE "/editor/bin/exp-env"
#define EXP_ENV_NAME "EXP-env"

/*

** This is the name of the file containing the
* % executable for the spectrum analyzer; one of the
* % experts.

*/

59

60

(globals.h continued)

#define EXP FFT_FILE "/editor/bin/exp-fft"
#define EXP_FFT NAME "EXP-fft"
[*

*% This is the name of the file containing the
executable ** for the rhythm analyzer; one of the

experts.

*/

#define EXP_RHY FILE "/editor/bin/exp-rhy"
#define EXP_RHY NAME "EXP-rhy"

/*

** This number is used by the system to locate the
* % running task of the experts and blackboard. It is
%% used in sending and replying to messages.

*/

int blakbord gi;

int exp env gi;

int exp fft gij;

int exp rhy gi;

/*

% Decision makers name

*/

#define DECISION NAME "Decision"
/%

*% Switches for debugging the experts
*/

/*

#define DBG_ENV
#define DBG_FFT
#define DBG RHY
#define DBG BLAKBORD

*/

/*
** Global message area

*/

assert mat assert gma;

61

/**
*

* PROTOS.H
*
kkkkkhkkhkhkkkhkhkhkhkdhkhkhkrthhkhkhkhkhkhkhkdkrhkhkhhhkhkkhhkhhkhkkhkhhkhkhkkhkkkhkkdk
*
* These are the prototypes to the functions in the
* clips environment. Some of them are for functions
* define in CLIPS and used in the user defined
* functions.
*
Khkkkkkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkhkkkhhhrhkkkkkhk /
/%
*% prototypes taken from the ’‘sysfun.c’ file
*/
int print num(char * fileid, float number);
] *
*% prototypes taken from the ’sysdep.c’ file
*/
int init_clips(void);
/*

*% prototypes taken from the ’‘usrint.c’ file
*/

int command_ loop(void);

/*
*% clips prototypes used in user defined functions
*/
float numget (struct test * test ptr,
char * fun_name) ;

/*

** prototypes for user functions.

*/

void adjust headers vf (FILE **takel fhp,

FILE **take2 fhp,
FILE **dest fhp,
long takel edit 1,
long take2 edit 1);

void make crossfade vf (int bufferl ip[],
int buffer2 ip[],
int dest_buffer ip[],
int crossfade length 1i);

int exit clips (void);

62

/**
*

* USERDEFS.H

*
khkkhkkkkkkhkhkkhkhkhkhhkhkhhhhhkhkkhkrhhhkhhkhkhkkkhhkhkhkkhhkhhkkhkkhkkkhk
%*

* These are the define values and constants used in

* user functions in the clips environment.
*

**/
/*

** These are the key letters used in command. When an
*% ask command is sent, it must begin with one of

* %k these characters for the expert’s name.

*/
#define BLAKBORD b’
#define ENVELOPE re’
#define SPECTRUM s’
#define RHYTHM ry/
] *

** These are the specifics for creating a HyperSignal
*% file. HyperSignal is a package by Hyperception

* % Inc.

*/

#define HEADER SIZE
#define AMPLITUDE
#define FRAMESIZE
#define SAMPLING FREQ R
#define FFT_ORDER
#define NUM_DATA R
#define FRAME OVERLAP
#define DATA TYPE
#define USER1

#define SAMPLING FREQ D
#define NUM _DATA D

/%
*#% These the possibilities when checking the number of
* % parameters in a CLIPS command.

o

VWO NOBWNROR

*/
#define EXACTLY 0
#define AT LEAST 1
#define NO_MORE _THAN 2
/*

** This is the size of the buffer (in integers) which
*% is used to copy sources to destination when

* % actually making an edit.

*/

#define XFER_BUFFER_SIZE 30000

63

/**

*
*
*

MESSAGES.H

khkkkkkkkkkhkhhhkkhkhhhkhkhkhkhhhhhhhhkkhkhhhkhkhhkhkhkhhkikhhkdhhhkhhkidk

*

% ¥ ¥ ¥ ¥ ¥ X ¥ F

*

experts,
mailboxes.

These are the message structures and associated
defines for all the expert and blackboard
communications. This file is shared by all

blackboard, decision maker, and

Also included are the defines which are

necessary in all programs and experts and need to

be changed in all cases at the same time. These
defines are primarily used to set environment
parameters in case programs are off loaded to
other processors.

**/

/* COMMON DATA AREAS SHARED BETWEEN ALL PROGRAMS --- */
#define TEXT OUTPUT "Scon2"
#define DATA DIRECTORY "/editor/data/"
#define NAME SERVER NODE 0

/* MESSAGE IDENTIFICATIONS */

#define ID EMPTY REPLY 0
#define ID SET RANGE 1
#define ID SET LOW FREQUENCY 2
#define ID REQUEST MESSAGE 3
#define ID_EMPTY QUEUE 4
#define ID ASSERT MESSAGE 5
#define ID GET SAMPLING RATE 6
#define ID SET TAKE 7
#define ID ANALYZE 8
#define ID FIND EDIT 9
#define ID GET LOW_FREQUENCY 10
#define ID SET SAMPLING RATE 11
#define ID EVALUATE EDIT 12
#define ID SET EDIT TO 13
#define ID SET TAKE NUMBER 14
#define ID_TERMINATE 255
#define MAX MESSAGE LENGTH 256

/*
* %
*%

* %

*/

(messages.h continued)

MESSAGE STRUCTURES -- All structures have an
identification byte as the first byte in the
message.

typedef struct

{

char struct_id_c;
long start of range_1;
long end_of range 1;

} set _range mat;

typedef struct

{

char struct id c;

char take name ca[17];

} set_take mat;

typedef struct

{

char struct_id _c;

int low_frequency ij;

} set_low_frequency mat;

typedef struct

{

char struct _id c;

long rate 1;

} sample rate mat;

typedef struct

{

char struct_id c;

} id_only mat;

typedef struct

{

char struct_id _c;
char assert mssg ca[MAX MESSAGE LENGTH-1];

} assert mat;

typedef struct

{

char struct id c;

char take name ca[64];
long start_of range 1;
long end_of range 1;

} evaluate edit mat;

64

(messages.h

typedef struct

{
char struct_id c;
long point 1;

} set _edit to mat;

continued)

65

66

/**
*

* MAIN.C

*
khkkhkhkkkkhkhkhkkhkhkhkhkhkdhhkhkhkhkhkkkhkhkhkhkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkk

This is the main routine for the user section of
CLIPS. It contains a program for initializing the
expert tasks and a program for parsing messages to
those tasks. The parser is only responsible for
ascertaining which expert the message is for.
There is an additional driver for each expert used
to parse the messages for its own expert.

¥ %k ¥ ¥ ¥ ¥ %

*
kkhkkkkhkkhkhhkkhhhhhhkhhhddhhdddhhkhdhkhhhhkhdkhdkhhhkhhkkkk /
/%

NOTE : fprintf and assert strings have been
artificially split onto two or more lines in many cases
to facilitate reading. This applies to all programs
printed in the appendices.

*/
/*

*% These are library files contain in the Computer
* % Inovations Inc C Compiler.

*/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <magic.h>
#include <taskmsgs.h>
#include <systids.h>

/%
** This is a prototype file for CLIPS functions.
*/

#include "clips.h"

/*

** These are user defined files (see above).
*/

#include "userdefs.h"

#include "protos.h"

#include "messages.h"

#include "globals.h"

67
(main.c continued)

main()
{
init clips();
cl print("wclips",
" CLIPS (V4.10 10/05/87)\n");
command_loop() ;
exit clips();

}
/%
*% USER FUNCTIONS DEFINED IN THIS MODULE
*/
int initialize experts (void);
int ask (void);
/*

*% EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
%% FUNCTIONS

*/

extern int arg num check(char * fun name,
int check val,
int exp num);
extern struct values *arg type check
(char * fun name,
int arg num,
char * exp type);
extern struct fact *assert(char * str);

/*
%% EXTERNAL USER FUNCTIONS REFERENCED IN THIS MODULE
*/

extern int 1load msg_blakbord_if (void);
extern int load msg_exp_env_if (void);
extern int load msg exp fft if (void);
extern int load msg exp rhy if (void);

extern int make edit (void);

68

(main.c continued)

/**
khkkhkkkkhkkhkhhkhkkhkhkhkhkhkhhhhkhkkhkhkhhkhkhhkhkkhhhhkkhhhhkhkkhhhkhkikkhkk
* inititialize experts () starts the expert tasks

* running in the background
kkhkhkhkkkkkhkkhkhkhkhkkhkkhkkhkhkhkhkhkhkhhhkhhkhhkhhhhkhkhkkkhkkhkkkhkhkkkkkk

**/
int initialize experts ()

{

extern char directory gcal[];

char timing ¢ = 0;
int send results i;

/*
% Start data output file.
*/
text out gfh = fopen (TEXT_OUTPUT,"w");
fprintf (text out gfh,"\nStarting experts");
/*
** Initialize data directory name.
*/
strcpy (directory gca,DATA DIRECTORY) ;
/%
** Register name for decision maker.
*/
if (! (name_attach (DECISION NAME,My nid)))
{
fprintf (text out_gfh,
"\nDecision maker. \n I can’t attach
my name.");
assert ("error registering-name
decision-maker");
}
/*

** Start blackboard task. Make sure that the queue is
*% empty. This also insures that the blackboard name
* % is registered before starting the experts.
*/
#ifdef DBG_ BLAKBORD

fprintf (text out gfh,

"\nBlackboard manager here --- ");
fprintf (text out _gfh, "%s%s",
"\n Start black board manually",

" within 15 seconds.");

69
(main.c continued)
if (0 >= (blakbord gi =

name locate (BLAKBORD_NAME,
" NAME SERVER_NODE,MAX MESSAGE_LENGTH)))

{
fprintf (text out gfh,
"\nHi, Decision maker --");
fprintf (text out gfh,
"\n I can’‘t find the blackboard.");
assert ("error finding-blackboard
decision-maker");
}
#else

if (0 >= (blakbord gi =
createq (1,BLAKBORD FILE,NULL)))

{
fprintf (text out gfh,"\n%¥s\nzs",
"CLIPS USER ERROR"
"I can’t start the blackboard.");
assert ("error starting-blackboard
decision-maker") ;
}
#endif

/*
Clear the blackboard by sending a request message
*% This block this program until blackboard manager

*% is running well enough to reply.

*/
assert_gma.struct_ id c = ID REQUEST MESSAGE;
send (blakbord gi, (void *) &assert _gma,
&assert gma, sizeof (assert mat),
sizeof (assert mat));
/*

*% Start envelope expert. This is done by creating a
* % task which will run concurrently with the decision
*% making section. There are two modes which it can
*% be started in, manual or automatic depending on
* % the DBG switch
*/
#ifdef DBG_ENV
fprintf (text out gfh,"\n%s\n%s",
"Decision maker here --- "
"Start envelope expert in manually within 15
seconds") ;
sleep (15);
if (0 >= (exp env _gi =
name_locate (EXP ENV_NAME, NAME SERVER_NODE,
"MAX_ MESSAGE LENGTH)))

70
(main.c continued)

fprintf (text out gfh,
"\nHi, Decision maker speaking.");
fprintf (text out gfh,
"\n T can’t locate the manual envelope
expert.");
assert ("error
locating-manual-envelope-expert
decision-maker") ;
}
#else
if (0 >= (exp env gi =
createq (1,EXP_ENV_FILE,NULL)))

{
fprintf (text out gfh,
"\nCLIPS USER ERROR \n I can’t start
the envelope expert");
assert ("error starting-envelope-expert
decision-maker") ;
} else {
/*

*% Make sure expert has registered its name before
* % proceeding. In this case, message contents

* % will never be checked. This is for timing

* % purposes.

*/
assert gma.struct id ¢ = ID REQUEST MESSAGE;
send results i = send (exp_env_gi,
(void *) &timing c,&timing c¢,1,1);
/*

** If the task has replied, it should have started
* % the mailbox. Get the mailbox address.

*/
if (0 >= (exp _env _gi =
name_locate (EXP ENV NAME,
NAME_SERVER NODE, MAX_MESSAGE_LENGTH)))
{
fprintf (text out_gfh,
"\nDecision maker --\n Envelope
expert died before receiving
message.");
}
}

#endif

/*

71

(main.c continued)

** Start spectrum expert. This is done by creating a

* % task which will run concurrently with the

%% decision making section. There are two modes which
*% it can be started in, manual or automatic

*% depending on the DBG switch

*/

#ifdef DBG_FFT
fprintf (text out gfh,

"\nDecision maker here --- \n Start spectrum
expert in manually within 15 seconds");

sleep (15);
if (0 >= (exp fft gi =

}

#else

name locate (EXP FFT NAME,NAME SERVER NODE,
MAX | MESSAGE LENGTH)))

fprintf (text out gfh,
"\nHi, Decision maker speaking.");
fprintf (text out gfh,
"\n I can’t locate the manual spectrum
expert.");
assert ("error
locating-manual-spectrum-expert
decision-maker") ;

if (0 >= (exp fft gi =

createq (1,EXP_FFT_ FILE,NULL)))

{
fprintf (text out gfh,
"\nCLIPS USER ERROR \n I can’t start
the spectrum expert");
assert ("error starting-spectrum-expert
deéision-maker") ;
} else {
/*
% Make sure expert has registered its name before
*% proceeding. In this case, message contents
%% will never be checked. This is for timing
* % purposes.
*/

assert gma.struct id ¢ = ID REQUEST MESSAGE;
send results i = send (exp fft _gi,
(void *) &timing c, &tlmlng c,1,1);

72
(main.c continued)

if (exp fft gi != send results_i)
{
fprintf (text out_gfh,
"Decision maker got invalid
starting return from spectrum
expert") ;

/%
% If the task has replied, it should have started
%% the mailbox. Get the mailbox address.
*/
if (0 >= (exp fft gi =
name_locate (EXP FFT NAME,
NAME SERVER_NODE, MAX MESSAGE LENGTH)))

{
fprintf (text_ out gfh,
"\decision maker --\n
Spectrum expert died before
receiving message.");
}
}
#endif
/%
*% Start rhythm expert. This is done by creating a task
*% which will run concurrently with the decision
*% making section. There are two modes which it can
* % be started in, manual or automatic depending on
* %k the DBG switch
*/

#ifdef DBG RHY

fprintf (text out_gfh,
"\de0151on maker here --- \n Start rhythm
expert in manually within 15 seconds");
sleep (15);
if (0 >= (exp_rhy gi =
name locate (EXP_RHY NAME,NAME SERVER NODE,
MAX MESSAGE LENGTH)))

fprintf (text out gfh,
"\nHi, Decision maker speaking.");
fprintf (text out_gfh,
"\n I can’t locate the manual rhythm
expert.");
assert ("error locating-manual-rhythm-expert
decision-maker") ;

73
(main.c continued)
#else

if (0 >= (exp rhy gi =
createq (1,EXP_RHY FILE,NULL)))

{
fprintf (text_out gfh,
"\nCLIPS USER ERROR \n I can’t start
the rhythm expert");
assert ("error starting-rhythm-expert
decision-maker") ;
} else {
/*

** Make sure expert has registered its name before
* % proceeding. In this case, message contents
* % will never be checked. This is for timing
*% purposes.
*/
assert gma.struct_id c = ID_REQUEST_ MESSAGE;
send results i = send (exp rhy gi,
(void *) &timing c,&timing ¢,1,1);
if (exp rhy gi != send _results_i)
{
fprintf (text out gfh,
"Decision maker got invalid
starting return from rhythm
expert") ;

/%
** If the task has replied, it should have started
*% the mailbox. Get the mailbox address.

*/
if (0 >= (exp rhy gi =
name_locate
(EXP_RHY_NAME,NAME_SERVER_NODE,
MAX MESSAGE LENGTH)))
{
fprintf (text out gfh,
"\decision maker --\n Rhythm
expert died before receiving
message.");
}
}
#endif

assert ("initialized experts");
return (0);

74

(main.c continued)

/**
khkkkhkkkkkhkkhkkhkkhkhhhkkkhkhkkhkkhkhhkkkkhkhkhkhkhkhkhhkhhkkhkhkhkkhkkhhkkk
*

* This function determines which expert is being

* queried or commanded and calls his message driver.
*

khkhkkhhkhhhdhhhkhkkhkhkhhhhhhkhhhhhkhkkdhkhkhhhhkhkhkhkhkhkhkkhkhkhhkhkhkkhixk
**/

int ask ()

{
char task _name ca[l7];
int return_value i = 0;
int task id gi;

struct values *arg ptr;

/*
** Check to see that there are at least two arguments.
* % They are

*% task (expert) to be asked -- string
*% question to be asked of task -- string
%% parameter list -—- floats
*/
if (arg_num_check ("ask",AT LEAST,1l) == -1)
{

return (0.0);

}
/*

** If the name of the expert is not a string, return
*% the value 0.0

*/
if ((arg_ptr =
arg type check("ask",1,WORD)) == NULL)
{
return (0.0);
}
/*

** Assign the argument to the name of function
*/

strcpy (task name ca,arg_ptr->value);

/%
** Get id of task to receive this message
*/

switch (*task name_ ca)

{

(main.c continued)

case BLAKBORD :
task id gi = blakbord gi;

if (Toad msg blakbord if ())

{
assert ("error
loading-blackboard-message
decision-maker");
}
break;

case ENVELOPE :
task_id _gi = exp env_gi;
if (load_msg_exp_env_if ())

{
assert ("error
loading-envelope-
expert-message
decision-maker") ;
}
break;

case SPECTRUM
task id gi = exp_fft gi;
if (load msg exp fft_if ())

{
assert ("error
loading-spectrum-
expert-message
decision-maker");
}
break;

case RHYTHM :
task id gi = exp rhy gi;
if (load_msg _exp rhy if ())

75

loading-rhythm-expert-message

{
assert ("error
decision-maker");
}
break;
default :

assert ("error locating-target-task

decision-maker") ;
break;

}

return (return value i);

76
(main.c continued)

/***/
usrfuncs()

{
define function("ask",’i’, (int (*)()) ask,"ask");
define function("initialize-experts",’i’,
(int (*)())initialize experts,
"initialize-experts");
define function("make-edit",’i’, (int (*)())
make edit, "make-edit");
}

/***/
exit clips ()

{

}

fclose (text out gfh);

77

/**
*

* MSSGBLBO.C

*
khkkkkdkkhkkhkhkkhkdkhkkhhkhkdkkhkhkhhkkhkhkhkhkhkhhkhkhkhkkhkhkhkkkkhkhkkhkkhkkkk

This is the driver for the blackboard itself. It
parses messages intended to query the blackboard
to see if messages have been posted by the
experts.

load msg blakbord if () -- This routine requests
messages on the black board used in the editor. It
uses the CLIPS line sent to "ask".

Ok % X ¥ ¥ X ¥ X ¥ %

format : (ask blackboard)
**/

#include <process.h>
#include <systids.h>
#include "messages.h"

/*
** EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
*% FUNCTIONS
*/
extern struct values #*arg_ type check
(char *fun name,
int arg num,
char * exp type);
extern struct fact *assert(char * str);

/***/

int load msg blakbord if ()

{ .
extern int blakbord gi;
extern assert mat assert gma;
int return _value_ i = 0;
int send_results_i;

assert gma.struct id c = ID_REQUEST MESSAGE;
send results i =
send (blakbord gi,&assert gma, &assert gma,
sizeof (assert mat),sizeof(assert mat));
if (send results_i != blakbord gi)

{
}

return_value_ i = 1;

(mssgblbo.c continued)

else if (assert_gma.struct_id c ==
ID EMPTY QUEUE)

{

sleep (3);
} else {

assert (assert gma.assert_mssg_ca);
}

return (return value i);

78

79

[HErEhkkkrkk gk hhkhkhhkhhhkhkkkhkhhhhhhhhhhhkhhrhhhhhkhhkk
*

* MSSGENVE.C

*
khkhkkhhhhhkhkhhhhhhhhhdkhdhhhhhhhdkhhkdhhkhrkhkkhkkrhkhkhkkkhkx

*

load msg envelope if () -- This sends commands and
questions to the envelope expert. It takes
messages sent through the "ask routine and
structures a command to the envelope expert task.

It would be more object-oriented to include this
section in the expert’s code, however, it is more
efficient to detect errors at the place they
occur. This could be thought of as a device driver
from the standpoint of the clips environment where
the expert is the device and this is its prime

interface.
format : (ask envelope <command>)
returns :
0 —-- successful
1 -- command is not a word
2 —-- invalid parameter for command
3 -- invalid command
4 -- envelope expert mailbox does not exist

% % X % F N ok ¥ Ok ¥ ¥ ¥ X N ¥ ¥ N ¥ F ¥ ¥ F

**/

#include <stdio.h>
#include <string.h>
#include <process.h>
#include <systids.h>
#include "clips.h"
#include "constdef.h"
#include "messages.h"

/*
*% EXTERNAL CLIPS FUNCTIONS REFERENCED IN USER
* % FUNCTIONS
*/
extern struct values *arg_type check
(char * fun_ name,
int arg num,
char * exp type);
extern struct fact *assert(char * str);

(mssgenve.c continued)

80

/***/

int load msg _exp env_if ()
{ k3
extern int exp_env_gi;
extern assert _mat assert_gma;
char command_ca([256];
int send_results i;
set range mat *set _range map;
set take mat *set_take map;
set low frequency mat *set low _frequency map;
evaluate edit _mat *evaluate edit _map;
id only_mat *1d_on1y_map,
struct values *arg ptril,*arg ptr2;
/*

** Get command from the call from CLIPS
*/
if ((arg_ptrl =

arg_type check("ask",2,WORD)) == NULL)
{
return (1);
}
/*
** Load messages.
*/
strcpy (command_ca,arg ptril->value);
/*
** Load "sampling rate command"
*/
if (0 == strcmp (command ca,"sampling-rate"))
{
id only map = (id_only mat *) &assert gma;
id only map->struct id c =
ID GET SAMPLING RATE'
}
/*
** TLoad "set range" command.
*/
else if (0 == strcmp (command ca,"set-range"))
{

set _range map = (set_range mat ¥*)
&assert gma;

set range map->struct id c = ID SET RANGE;

81
(mssgenve.c continued)

if ((arg ptrl =
arg_type check ("ask",3,NUMBER)) ==
NULL)

assert ("error
invalid-number-for-range-start
envelope-analyzer");

return (2);

} else {

set_range_ map->start of range 1 =
(long) arg ptrl->ivalu