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Abstract 

Title of thesis : Deconvolution Applications in Arterial Dynamics. 

Shanthi Ganesan 

Dr.Peter Engler 

Dr.Swamy Laxminarayan 

Dr.David Kristol 

This thesis deals with the computation of the Arterial Impulse Response Function 

by deconvolving aortic pressure and flow signals in time domain. Several methods 

have been developed in the past to obtain a solution for the convolution integral. 

These are (1) Transform method, and (2) Numerical Approximation methods : 

a. Conventional method b. Relaxation methods. 

These methods have been applied in the past to the RC network model and it 

was found to work well. In this thesis, the methods are applied to data from more 

realistic models and also on data obtained from dogs. The model considered is a 

3-element Windkessel model. Studies were conducted in two situations in dogs -

one under control situation which is to be compared with the Windkessel model 

and then under occlusion conditions, with aortic occlusion and occlusion of both 

carotid arteries. 

The parameters of interest in this study of the arterial system in time domain 

are the total arterial compliance and wave reflections. Reflection studies are made 

from the impulse response function of the dogs under occlusion conditions. 



DECONVOLUTION APPLICATIONS IN 
ARTERIAL DYNAMICS 

by 

Shant hi Ganesan 

Thesis submitted to the Faculty of the Graduate School of 

the New Jersey Institute of Technology in partial fulfilment of 

the requirements for the degree of 

Master of Science in Biomedical Engineering 

1991 



APPROVAL SHEET 

Title of Thesis: Deconvolution Applications in Arterial Dynamics. 

Candidate: Shanthi Ganesan 
Master of Science in Biomedical Engineering, 1991. 

Thesis and Abstract Approved by the Examining Committee: 

I.- 
Prof. Peter Engler Date 
Associate Professor, Dept. of Electrical Engineering, 
NJIT, Newark. 

Prof. David Bristol Date 
Director, Dept. of Biomedical Engineering, 
NJIT, Newark. 

Prof. Swamy Laxminarayan Date 
Program Director of Academic Research Computing 
UMDNJ, Newark. 

New Jersey Institute of Technology, Newark, New Jersey. 



VITA 

Name: 

Permanent Address : 

Degree to be conferred : Master of Science, 1991 
Biomedical Engineering 

Date of Birth : 

Place of Birth : 

Collegiate Institutes Dates Degree 
Attended 

New Jersey Institute Sep '89 - Dec '91 Master of Science 
Of Technology in Biomedical Engg. 
Newark, NJ 07102. 

College of Engineering Oct '84 - May '88 Bachelor of Science 
Madras, India. in Electrical Engineering 

Positions Held Date 

Resident Clinical Engineer Jan '90 - May '90 
UMDNJ 
Newark, NJ. 

Biomedical Trainee Jan '89 - April '89 
KJ Hospital, 
Madras, India. 



ACKNOWLEDGEMENT 

I thank Dr.Swamy at UMDNJ for all the help he has rendered to me and all 

the valuable advice he has given for the successful completion of my thesis. I would 

like to extend my thanks and appreciation to Dr.Engler and Dr.Kristol at NJIT 

for the support and encouragement they offered me all the way. I cannot forget 

the cooperation and the wonderful help rendered by the staff at the Academic 

Computing Center at UMDNJ and I duly thank them. Finally, I would like to 

thank my parents, sisters and my good friends for their continuous prayers and 

encouragement throughout my stay here at NJIT. 



TABLE OF CONTENTS 

1. INTRODUCTION 1 

2.REVIEW OF MATHEMATICAL MODELS 9 

2.1 TRANSFORM METHOD 9 

2.2 DIRECT METHODS 10 

2.2.1 CONVENTIONAL METHOD 11 

2.2.2 ITERATIVE METHODS 12 

JACOBI'S METHOD 13 

GAUSS-SEIDAL METHOD 13 

RELAXATION METHOD 14 

2.3 RELAXATION METHOD 14 

3.MODEL STUDIES 14 

3.1 WINDKESSEL MODEL 16 

3.2 PARAMETERS OF INTEREST 18 

3.3 RESULTS 20 

3.3.1 IRF CALCULATION BY 
TRANSFORM METHOD 20 

WITHOUT FILTER 21 

WITH DOLPH-CHEBYSHEV FILTER 21 

3.3.2 IRF CALCULATION BY DIRECT 

CONVENTIONAL METHOD 22 

GAUSS-SEIDAL METHOD 22 

RELAXATION METHOD 22 

4.ANIMAL STUDIES 31 

4.1 CONTROL SITUATION 31 

4.2 RESULTS 32 

4.2.1 IRF CALCULATION BY TRANSFORM METHOD 32 



4.2.2 CALCULATION BY DIRECT METHODS 33 

CONVENTIONAL METHODS 33 

GAUSS-SEIDAL METHOD 34 

OVER RELAXATION METHOD 34 

UNDER RELAXATION METHOD 34 

4.3 OCCLUSION CONDITIONS 37 

REFLECTION PHENOMENA 37 

4.4 RESULTS 39 

4.4.1 IRF CALCULATION BY TRANSFORM METHOD 39 

4.4.2 IRF CALCULATION BY DIRECT METHODS 40 

CONVENTIONAL METHOD 40 

GAUSS-SEIDAL METHOD 40 

OVER RELAXATION METHODS 41 

UNDER RELAXATION METHODS 41 

4.4.3 REFLECTION CALCULATIONS 42 

5.DISCUSSION OF RESULTS 44 

5.1 WINDKESSEL MODEL 45 

5.2 DOGS UNDER CONTROL CONDITIONS 49 

5.3 DOGS UNDER OCCLUSION CONDITIONS 51 

6.BIBLIOGRAPHY 53 



Chapter 1 

Introduction 

The heart is a pulsatile, 4-chamber pump composed of two atria and two ventricles. 

The atria pump blood to the ventricles and the ventricles supply the main force that 

propels blood through the peripheral circulatory system. 

The most important feature of the circulation is that it is a continuous circuit 

Blood flows with almost no resistance in the larger vessels but in the smaller vessels, 

like arterioles and capillaries, considerable resistance exists. To cause blood to flow 

through these small "resistance" vessels, the heart pumps blood into the arteries un-

der high pressure - a systolic pressure of 120 mm Hg. The function of the arterial 

system is to transport blood from the left ventricle to the peripheries. 

The large arteries, the aorta in particular, acts as a so-called "Windkessel" [13] 

[14]. The Windkessel theory is invoked to explain various circulatory phenomena. 

The volume of blood ejected during systole distends the proximal portion of the aor-

ta and its branches and the elastic energy thus stored in the walls of these vessels is 

reconverted to energy of flow as the walls recoil in diastole. There is a gradual decline 

of arterial pressure which would not be seen if the vessels were rigid tubes: in a rigid 

tube, the pressure would fall abruptly when the pressure at the input to the tube is 



abruptly removed. The pressure-flow relationships measured in the ascending aorta 

offers a very useful means of characterizing the entire arterial tree [1] [25]. 

Although most physiologic systems are non-linear, assumptions of linearity are 

often made within certain constraints. The overall properties of the arterial system 

are non-linear but they are often considered linear, with some justification, over the 

range of pulse pressure [1] [5]. Such linear approximations not only facilitate mathe-

matical analysis of the system but also provide practical answers. 

Since the arterial system is assumed to he linear, linear systems analysis concept-

s can he applied to characterize the system. Fourier analysis has been applied to 

characterize the system [21]. The arterial system can he characterized either in the 

freqeuncy domain by means of its Frequency Response Function (Input Impedance) 

or in time domain by means of its Time Response Function (Impulse Response Func-

tion). The input impedance and the impulse response function are Fourier transform 

pairs of each other [25]. 

If p(t) and f(t) are respectively the pressure drop and flow through the system. 

the system function can be described by the convolution integral in time domain. as 

given below, 

h(t) is the impulse response function. 

Fourier transforming to frequency domain yields 



The concept of input impedance has proved to be extremely useful in the past in 

characterizing the systemic circulation [2]. Considerable work has been done in the 

past in characterizing the arterial system by the systemic input impedance [2] [4] [5]. 

The input impedance can be calculated by Fourier transforming the measured pres-

sure and flow time histories. The ratio of the modulii of Fourier spectra of pressure 

and flow yields the modulus of impedance and the difference in phase between those 

of pressure and flow gives the phase informtion. 

The input impedance has the following characteristics. The input impedance at 

0 Hz (which is the ratio of mean pressure to mean flow) is the peripheral resistance. 

At higher frequencies, it approaches the characteristic impedance of the aorta The 

presence of small minima and maxima in the input impedance is related to wave re-

flections in the arterial system [33]. Input impedance drops from a value at 0 Hz which 

is dependent on the peripheral resistance, to a constant value at higher frequencies 

which is dependent on the capacitive and inductive properties of the aorta, with steep-

ness of the fall dependent on capacitive properties (distensibility) of the aorta. The 

input impedance is a frequency-dependent quantity, not a time-dependent quantity. 

In estimating the input impedance by Fourier analysis, the frequency of the phase 

and modulus spectra is dependent on the heart rate. Only those frequencies that are 

multiples of the heart rate will contain valid information about the impedance. The 

first 10 to 20 harmonics are used for computing the input impedance, because the 

presence of noise at higher frequencies will make the impedance meaningless at these 

frequencies. 



The Impulse Response Function of the arterial system is the time domain de-

scription of the system. Both representations are equivalent, but one is in frequency 

domain (Input Impedance) and the other is in time domain (Impulse Response Func-

tion). 

The impulse response function is the response resulting from a flow that is a unit 

impulse function (infinitely short in duration and infinitely high in amplitude with 

unit area) [3] [6]. In the case of the arterial system, application of these excitations is 

not desirable, though this method of estimating impulse response function has been 

examined before [3]. So, we make use of the heart as a pump and resort to deter-

mining h(t) from the measured pressure drop p(t) and flow f(t) through the arterial 

system. 

Impulse response function computations have been recently studied [3] [6] [23] 

[31]. The Impulse response function has clinical significance and can he used in the 

derivation of the transfer function of a diseased segment of the artery. Since the im-

pulse response function (IRF) is computed from pressures and flows with repetition 

frequency of the heart rate, it is not the result of a single impulse of flow hut is repeat-

ed with the heart rate. The arterial system characterization in time domain is easily 

merged with the time domain characterizations of the left ventricle for the study of 

LV-SA (left ventricle/Systemic arterial system) interactions [7] [23]. It also appears 

conceptually easier that the IRF is a single graph whereas the input impedance con-

sists of 2 sub-plots - the modulus and phase spectrum. 

The impulse response function emphasizes arterial compliance. For the case of a 

Windkessel model which mimics the arterial system under control conditions [4] [14], 



the impulse response function (for a periodic excitation of the model with period T) 

is given by: 

The model consists of a resistance R, (equal to the characteristic impedance of the 

arterial system), Rp  (representing the peripheral resistance of the arterial system) 

and a capacitor C (representing the total arterial compliance). b(t) is the Dirac Delta 

function and 7 is the time constant given by T = Rp.C. 

The therotical IRF of the Windkessel model consists of a delta function and an 

exponentially decaying function with time constant T. When pressure-flow relations 

in the arterial system can he approximated with the Windkessel model. the total ar-

terial compliance can be obtained by estimating the height of the exponential decay 

in the impulse response function, extrapolated to time zero [6]. The decay time of this 

exponential is the same as that of the diastolic part of aortic presure tracing. Also. a 

reflection site manifests itself as a peak in the IRF. The information on reflections is 

therefore directly apparent. The major reflection points in the arterial system can be 

located in time domain analysis. The pattern in time domain analysis becomes less 

complicated if we match the source to the characteristic impedance of the ascending 

aorta. This analysis is called time domain reflectometry [27]. 

The impulse response function can be computed either directly by deconvolving 

the pressure and flow time histories or indirectly by Fourier transforming the input 

impedance. This indirect method of computing the IRF of the arterial system has 

been investigated perviously [6]. The limitation of this indirect transform process for 

obtaining the IRF from the input impedance, is that the transformation involves an 

infinite integral , the evaluation of which requires a knowledge of the input impedance 



for all frequencies upto oo. The amplitudes of the harmonics of pressure and flow 

decrease with frequency and will gradually disappear in the noise after the 10th  to 

20th  harmonic. For these frequencies the impedance cannot be calculated. But the 

input impedance at higher frequencies approaches the characteristic impedance of 

the aorta and does not reach zero values. If this truncated impedance is transformed, 

its effects are reflected as oscillations that are superimposed on the actual impulse 

response function. So, before transformation of the impedance data to time domain 

can be performed, the Dolph- Chebyshev filter was used to minimize the truncation 

effects. 

The procedure for calculating the IRF by the direct method involves finding an 

acceptable solution to the convolution integral, ie. eq. 1.1. This is a very complex is-

sue and requires numerical approximation methods. Numerical techniques have been 

applied in the past and used as an analytical tool in the study of biological systems 

[9] [10]. A number of algorithms have been developed in the past to compute the IRF 

using numerical approximation methods [8]. 

These numerical methods include 

1. Conventional method. 

2. Iterative methods 

a. Jacobi's method. 

b. Relaxation methods 

c. Modified or Epsilon method. 

In the past, these methods have been applied on simple R-C network models only 

[8] and they have been found to work fairly accurately on these simple models. It 



was found that these methods were sensitive to the start point of deconvolution, the 

sampling rate and the relaxation parameter, a in the case of the relaxation methods. 

The start point plays a critical role in the accurate estimation of the IRF as the input 

value at t = 0 can never be zero. The sample rate should also be chosen such that 

the sampling interval is not large as it will increase the error in the IRF. To acquire 

meaningful IRF's, these parameters have to he chosen properly. 

The objective of the proposed work is to extend these numerical analysis methods 

to compute the impulse response function of more realistic models which mimic the 

real-life situation. The 3-element Windkessel model serves as a good model of the 

arterial system under control conditions. Data generated from this model are ana-

lyzed and the various deconvolution procedures are applied to this data to compute 

the IRF of the windkessel model. A proper choice of start point, sample rate and the 

relaxation parameter a have to be made in order to get meaningful impulse response 

functions. 

Then the numerical methods are applied to the pressure and flow measurements 

obtained in the dog. Impulse response functions are computed for the following 

situations. 

1. Control animal. 

2. Occlusions of the aorta at the level of the diaphragm. 

3. Occlusion of both carotid arteries. 

Reflection studies are made from the impulse response functions of the dog under 

occlusion conditions. 



These studies are performed with particular emphasis on the effects of sample rate, 

the start point and the relaxation parameter a on the computation of the impulse 

response function. 



Chapter 2 

Review of Mathematical Methods 

The work done in the thesis utilizes several mathematical methods already developed 

in a previous study [8]. This chapter briefly reviews these various methodologies. 

The impulse response function can be calculated either directly by deconvolving 

the equation 

or by inverse fourier transforming the input impedance into its time domain coun-

terpart. 

The input impedance and impulse response function are Fourier transfoim pairs 

of each other. 

2.1 Transform method 

The indirect or transform method of computing the impulse response function has 

been investigated previously [6]. This method of computing the Impulse response 

function has a major problem. The above equation shows that the input impedance 

values should be known for all frequencies upto infinity, while in practice, only a lim- 



ited number of harmonics can be calculated. It is not possible to compute H(jw) for 

frequencies above 40 Hz. This is because above this frequency range, noise in the data 

makes it meaningless to compute H(jw). The input impedance has to be truncated at 

some finite frequency. If the input impedance reached steady-state zero values at the 

cut-off frequency, then the inverse transformation would yield meaningful results. But 

in the case of the arterial system, the input impedance approaches the characteristic 

impedance at higher frequencies and does not reach zero values. The transformation 

of the truncated input impedance at some cut-off frequency implies the presence of 

a mathematical window. The effects of such a window or filter appear as oscillations 

superimposed on the actual impulse response function. Therefore, before transforma-

tion of the input impedance data, some form of frequency domain smoothing has to 

be applied. The Dolph-Chebyshev filter [29] has been used to minimize the effects of 

truncation in order to get meaningful results [6]. 

Though this method of using a filter is a good solution under control conditions, 

it may not be efficient when reflections are present Reflections manifest themselves 

as peaks in the impulse response function. But when frequency domain smoothing is 

applied, important information may be lost. This is specially true when the amplitude 

of these reflection peaks are small compared to the initial delta function in the IRF 

plot. 

2.2 Direct methods 

The more efficient way of calculating the IRF would be the straight-forward method 

of subjecting the measured pressure and flow data to a deconvolution procedure. 

However, the procedure of deconvolution is very complex. This method is very sen-

sitive to the presence of noise in the data and the initial value of the excitation time 



history is critical in the computational procedures. Various numerical approximation 

methods have been developed in the past for deconvolution with emphasis on the 

arterial system [8]. In the following section, the various deconvolution procedures are 

described and the method which yielded the best results is described in greater detail. 

The direct method of computing the impulse response function involves the decon-

volution procedure. Numerical methods have to be applied to solve the convolution 

integral. 

where h(t) is the impulse response function, p(t) is the pressure drop across the ar-

terial system and f(t) is the flow through the system. Our objective is to calculate 

h(t), by deconvolution, knowing f(t) and p(t). 

The various methods used are :- 

1. Conventional method 

2. Iterative methods. 

2.2.1 Conventional method 

In the Conventional method, the Convolution integral is expressed as a discrete sum-

mation. 



Writing this in matrix form and solving for the impulse response function vector 

H, we get the general form 

where F is the flow matrix, P is the pressure matrix and H is the impulse response 

function matrix. The conventional method is highly sensitive to errors present in the 

data points [8] [9]. The sampling interval At has also a very significant influence. 

Increasing the sampling interval will increase the error in the IRF The input value 

at t = 0 is also an important factor. In the case of the arterial system the initial 

aortic flow values are 0 or near-zero values. So, the start point of deconvolution plays 

a critical role in the estimation of the impulse response function. 

2.2.2 Iterative methods 

Iterative procedures can be applied to solve equations of the type F x El = P The 

iterative methods are numerical methods that start from any initial guess Ho  and can 

produce an improved approximation Hk+i from the previous approximation Hk that 

can be terminated at will. 



and H is the impulse response function matrix. We can split the matrix F into M 

and N such that F = M-N. 

Therefore eq. 2.7 can he written as 

A successful splitting satisfies two different requirements. 

a. The new vector Hk+1  should be easy to compute. Hence M should be a simple 

and invertible matrix. 

b. The sequence Hk  should converge to the true solution H. The choice of M is 

crucial in numerical analysis [11] [12]. 

Jacobi's method 

The Jacobi's method is an example of "simultaneous displacements". At the end of 

each iteration, we replace all the elements of Hk  simultaneously with the elements of 

Hk+1. This method is also very sensitive to the start point of deconvolution. 

Gauss-Seidal method 

A better method would be to start using each component of the new vector Hk+1  as 

soon as it is computed ie. Hk+1  takes the place of H k  at a time. Thus H k  can be 

destroyed as fast as Hk+1  is created. This requires only half as much storage. If we 

use the computed values as soon as we have calculated them , we have a method of 

successive displacements referrred to as the Gauss-seidal method [12] [28]. 



Relaxation methods 

The method used for numerical approximation should be such that it converges to 

the true solution quickly. To make it converge even faster than the Jacobi and Gauss-

seidal method, we introduce a relaxation factor a to move closer to the solution. This 

factor is called the relaxation parameter. 

The parameter that plays a critical role in this method is the relaxation parameter 

a. When a = 1, this method reduces to the Gauss-Seidal method. If a > 1, it is 

called succesive over-relaxation and if a < 1, it is called under-relaxation. 

2.3 Relaxation method 

This numerical method for solving the convolution integral is found to be very useful. 

The IRF is dependent on the value of the relaxation parameter a. This a plays a 

critical role in the convergence of the deconvolution solution. Depending on the value 

of a, it reduces to either the Gauss-Seidal method or the under-relaxation or the 

over-relaxation method. The relaxation method has been applied to the excitation 

and response data generated by the RC network model [8]. The parameters that were 

found to influence the accuracy of the impulse response function computed by the 

relaxation methods are 

1. The relaxation parameter 

2. The start point 



3. The number of iterations 

The relaxation parameter a has a very strong influence in the accurate estimation 

of the IRF. As the value of a is varied, it gives grossly different results. It was found 

that the under-relaxation method with values of a between 0.1 - 0.5 gave best results 

for the RC network model. Over-relaxation method resulted in totally incongruous 

IRF's [8]. 

The start point was also an important factor in the accurate estimation of the 

impulse response function. In the case of the arterial system. the initial value of the 

input time history assumes zero or near-zero values. But this method requires the 

initial flow value to be a non-zero value. The effect of selecting the next non-zero 

value as the start point can give rise to serious errors in the computation of the IRF, 

especially if noise is present in the data. 

The number of iterations does not affect the solution after it has converged. It is 

variable only to a point where the final solution is reached. 

So, this relaxation method has been used to compute the IRF of the systemic 

arterial tree of the dog from the measured pressure and flow data, after careful checks 

of the method on a model of the arterial tree. 

The methods described above have been applied to the excitation and response 

data from the Windkessel model, the pressure and flow data from dogs, both under 

control conditions and under occlusion conditions and are reported in the subsequent 

chapters. 



Chapter 3 

Model Studies 

3.1 Windkessel model 

Linear mechanical and electrical models are so often used in circulatory physiology 

When properly used, such models are important to the understanding and quantifica-

tion of the cardiovascular system. The chosen model must be one minimally necessary 

to describe system behavior. There should he a one-to-one correspondence between 

various model elements and system components. 

The Windkessel model is an electrical model of the arterial system under control 

conditions. Using this model , we can simulate the functions of the arterial tree under 

normal conditions. This model is a good approximation of the input impedance of the 

systemic arterial tree under control conditions [13]. The original Windkessel model 

formulated by Frank, was modified by Westerhof who combined the original wind-

kessel model and the characteristic impedance of the aorta [14]. The electrical circuit 

is given in figure (1). The 3-element Windkessel model consists of a resistor R, (equal 

to the characteristic impedance of the aorta) in series with a parallel arrangement of 

another resistor Rp  (equal to the peripheral resistance of the arterial system) and a 

capacitor C (total arterial compliance). 



The values of the components used in this model are Rp  = 20K, C = 60,uF and 

R, = 1.2K. The time constant for this model is given by T = Rp.0 = 1.2 secs. 

The excitation (input) f(t) and the response (output) p(t) time histories are given in 

figure (2). 

The input impedance for this model as a function of frequency is 

The input impedance calculated for the windkessel model by inverse Fourier trans-

forming the pressure and flow time values can he seen in figure (3). 

The impulse response function of the model can be obtained by the transformation 

of eq. 3.1 to time domain. 

So, 

From eq. 3.3, it can be seen that the theoretical impulse response function of 

the 3-element windkessel model consists of a delta function 6(0 and an exponentially 

decaying function with time constant T. The impulse response function shows an ini-

tial sharp peak and then an exponential decay. The height of the exponential decay 

extrapolated to time 0 (using T and r.) gives total arterial compliance C [6]. 



3.2 Parameters of interest 

The various parameters that are of interest in the study of arterial hemodynamics 

are peripheral resistance, characteristic impedance, arterial compliance and arterial 

reflections [1] [18] [30] [32]. 

Impedance is the measure of the opposition to the flow presented by a system. 

Impedance cannot be defined as "instantaneous impedance" because it is a frequency-

dependent quantity [18]. At any one time, pressure depends not only on flow at the 

same instant but also on flow at previous instants. Input impedance is the ratio of 

pressure and flow at a particular arterial site which may be regarded as input to all 

the vascular tree beyond this site. 

Characteristic impedance is the ratio of pressure to flow in an artery when not 

influenced by wave reflections which would be an artery of infinite length. Periph-

eral resistance is the input impedance of the arterial tree at 0 Hz Characteristic 

impedance is the input impedance at frequencies higher than 5 Hz where fluctuations 

caused by reflections have settled [30]. 

Arterial Compliance can be defined as the ratio of the increase in volume to the 

increase in pressure. It gives a measure of the total quantity of blood that can be 

stored in a given portion of the circulation. The greater the compliance of the arte-

rial system, the lower will be the rise in pressure for a given stroke volume of blood 

pumped into the arteries. 

Various techniques are available for computing the total arterial compliance. In 



the past, compliance has been estimated by analyzing the arterial pressure waveform 

in which the diastolic pressure decays with a time constant that is a product of total 

arterial resistance and compliance [15] [16]. Almost all existing methods of estimating 

compliance assume that the arterial pressure-volume relationships is linear ie. com-

pliance is constant and not pressure-dependent. 

When the pressure-flow relations in the arterial system can be approximated with 

a windkessel model, it has been shown that the exponential portion of the impulse 

response function can be utilized in estimating the total arterial compliance [6]. S-

ince the impulse response function and the input impedance are Fourier transform 

pairs, the arterial compliance can be determined from the impedance function. The 

concept of frequency response vector diagrams was used to estimate compliance from 

the frequency-dependent input impedance [17]. 

Reflected waves are present whenever there is a change in the characteristic 

impedance of the flow pathway. Since this occurs at almost every point of branching 

in the vascular tree, reflected waves exist to some extent throughout the circulation. 

Possible reflecting sites include branching points, areas of alteration in arterial disten-

sibility and high-resistance arterioles. The existence of wave reflections is determined 

by various observations [18] [26] [27]. 

1. The shapes of the pressure and flow waves measured in the ascending aorta are 

different. 

2. During ventricular ejection, the aortic pressure may continue to increase while the 

flow is decreasing. 

3. The amplitude of the pressure pulse increases as it travels towards the periphery. 



When reflected waves are present, the observed pressures are a combination of 

incident and reflected waves and also for flow. Pressure and flow waves contain both 

incident and reflected components. The presence of arterial wave reflections may be 

inferred from characteristic alterations in the pressure pulse as it propogates along 

the aorta. Both the magnitude and timing of the reflected waves are important in 

assessing potential physiologic significance. Since a reflected pressure wave adds to 

the forward wave, a wave returning during systole would decrease ventricular after-

load. Reflected flow waves however, subtract from the forward flow pulse. Therefore, 

a wave returning during systole diminishes forward flow and is disadvantageous to 

ventricular ejection [18] [27]. 

The two descriptions of the arterial system, Input Impedance and Impulse re-

sponse function are equivalent characterizations of the system. They contain the 

same information since they are derived from the same signals, pressure and flow. 

However, each characterization emphasizes different aspects of the arterial tree. The 

frequency domain characterization emphasizes the peripheral resistance and charac-

teristic impedance. The time domain characterization emphasizes arterial compliance 

and reflections. Arterial reflections show up as distinct peaks in the IRF [3] [6]. 

3.3 Results 

3.3.1 IRF calculation by transform method 

As the input impedance and the impulse response function are Fourier transform 

pairs of each other, we can obtain the IRF by inverse Fourier transforming the input 

impedance which is given by 



The limitation of the Fourier transform process for obtaining the impulse response 

function from the input impedance is that the transformation involves an infinite 

integral the evaluation of which requires a knowledge of H(jw) for all values of w upto 

infinity. Truncation of H(jw) is valid provided the values of H(jw) have reached steady-

state zero values at the cut-off frequency. However the impedance values at higher 

frequencies approximate the characteristic impedance and never reaches zero values. 

Transformation of such a function implies the presence of a mathematical window, 

the effects of which are manifested as oscillations superimposed on the resulting IRF. 

In order to eliminate these truncation effects, the approach taken is to filter the higher 

harmonics so that the amplitudes at these higher harmonics taper off to negligible 

values. The filter that was used to smoothen the IRF was the Dolph-Chebyshev 

filter, based on the Chebyshev polynomial [6] [28] [29]. The IRF of a Windkessel 

model computed by the transform method is illustrated in Fig (4). 

Without filter 

The impulse response function is computed by inverse Fourier transforming the input 

impedance. The input impedance is first computed by using the "pressure" and 

"flow" values from the Windkessel model. The input impedance is truncated to a 

finite number of frequencies before transformation. The oscillations superimposed on 

the IRF are seen in Fig (4). 

With Dolph-Chebyshev filter 

Before transformation of the input impedance data to the time domain can be per-

formed, a suitable filter was chosen to minimize the effects of truncation. A Dolph-

Chebyshev filter was used as a filter. As shown in earlier works [6], this has proved 



to be very effective in eliminating the spurious oscillations. The filter effects are 

illustrated in Fig (4). 

3.3.2 IRF calculation by direct methods 

Conventional method 

The Conventional method was first employed to compute the impulse response func-

tion. The start point of deconvolution had to be carefully selected since the initial 

values of flow are 0 or nearly 0. 

The start point of deconvolution was first described in terms of the heart period T. 

In the windkessel model, the heart period was 0.99 secs. Initially the start point was 

set to correspond to a time point of t = 0.4 secs located in the rising segment of the 

systolic part of the pressure waveform. The IRF did not exhibit an exponential decay. 

Various other start points were considered but no improvements were achieved. An 

example of the computed results is shown in Fig (5a) k. Fig (51)). 

Gauss-Seidal method 

The Windkessel data were then analyzed using the Gauss-Seidal method. The com-

puted IRF did not resemble realistic results. This is illustrated in Fig (5c) k: Fig 

(5d). 

Relaxation method 

Relaxation method is an iterative procedure. This method introduces a relaxation 

parameter a to control the stability of the iterative solution of the deconvolution 

Proper choice of a is the key to the successful application of the method. 



When a > 1, ie. over-relaxation, it was not possible to retrieve the IRF from the 

"pressure" and "flow" data from the windkessel model as can be seen in Fig (6). 

The Under-relaxation method was next tried with the relaxation parameter a < 1. 

The relaxation parameter was first chosen to be = 0.01. The impulse response func-

tion was computed when deconvolution was initiated at different start times. The 

IRF plots are shown in Fig (7a). The impulse response function is composed of an 

initial peak followed by an exponential decay. The compliance value was calculated 

by extrapolating the exponential part of the IRF to time t = 0. 

Then the relaxation parameter was varied from 0.02 to 0.09 and the impulse 

response functions were computed for different start times. The compliance was 

estimated from the plots for the different parameters and the results are tabulated. 

The impulse response function plots are shown in Fig (7) S Fig (8). The tabulated 

results are shown in the next page. 



Table 3.1: Under-relaxation method. Sample rate - 100 samples/sec. 
Model Compliance = 60 uF 

1 I 
Alpha 

I 
Start time 

secs 

I 
Compliance 

( x10-6) gm-l.cm4.sec2  

0.01 0.4 very high 
0.45 
0.5 308 

0.02 0.40 222 
0.45 216 
0.5 160 

0.04 0.50 86 
0.52 65 
0.53 56 

0.05 0.50 117 
0.51 62 
0.52 54 

0.06 0.49 68 
0.50 62 
0.51 54 

0.07 0.48 66.3 
0.49 60 
0.50 56 

0.08 0.47 66 
0.48 60 
0.49 50 

0.09 0.46 66 
0.47 61 24 

0.48 56 



It was seen that the value of alpha plays a very important part in the accurate 

estimation of the IRF. Values of a greater than 0.05 gave meaningful results. The IRF 

plot manifested an initial peak as expected followed by an exponential decay. The 

best results in terms of a and start point are tabulated as follows. The compliance 

of the Windkessel model (Fig 1) was 60 ( x10-6) gm-1.cm4.sec2. 

Table 3.2: Results 

Alpha 
1 

Start time 
secs 

Compliance 
( x10-6) gm-1.cm4.sec2  

0.05 0.51 62 

0.06 0.50 62 

0.07 0.49 60 

0.08 0.48 60 

0.09 0.47 61 

The relationship between a and start time is shown in Fig (14a). It was found that 

as alpha was increased from 0.01 to 0.09, the start times of deconvolution at which 

the impulse response function plots gave good estimates of compliance (in accordance 

with the model value) was found to decrease. 



Calculation of the IRF is very dependent on the start time . Small variations in 

the start time resulted in large changes in the impulse response function. Start times, 

approximately about 0.47 - 0.5 secs gave exact values of compliance in accordance 

with the capacitor element in the model, C = 60 ( x10-6) gm-1.cm4.sec2. 

The start time can be described physically with respect to pressure and flow 

data values in time domain. The flow values are very critical in computing the IRF 

since the initial values of flow are 0 or nearly 0. ie, at the beginning of the heart pe-

riod, the flow is not much but rises to a peak towards the middle of the heart period T. 

The pressure and flow values exhibit characteristic shapes. Ascending aortic flow 

is essentially zero throughout the later stages of diastole. When the aortic valve open-

s, a rapid increase in flow is observed that reaches a peak prior to the midpoint of 

the period of ejection and then rapidly decreases to the point where the aortic valve 

closes. A brief period of backflow followed by several low-magnitude oscillations, is 

present during early diastole. Aortic blood pressure rises rapidly at the onset of ejec-

tion as blood moves into the aorta from the left ventricle and peak pressure is attained 

shortly after peak flow occurs. Pressure then decreases rapidly until the aortic valve 

closes, at which time a deflection called a dicrotic notch is recorded. During diastole 

the aortic pressure continues to decrease as blood continues to move from the aorta 

into the peripheral vasculature. 

The sample rate is another factor which has an effect on the computation of the 

IRF. "Pressure" and "flow" data values from the windkessel model were interpolated 

using the software "SIGNA" to obtain a sample rate of 256 samples/sec. 



The Impulse Response Function was computed by the direct methods. The Con-

ventional method was first tried with this new sample rate of 256 samples/sec. The 

computed IRF is shown in Fig (9a). This method was not successful in extracting 

the IRF from the excitation and response data. 

The Gauss-Seidal method and the Over-relaxation method were also tried as il-

lustrated in Fig (9b) & Fig (10). These methods of deconvolution also proved futile 

in recovering the IRF. 

The Under-Relaxation method was next tried with the relaxation parameter a 

set to be = 0.01. The Impulse Response Function plots obtained using this method 

is shown in Fig (11a). The data of Figs (11 - 13) was computed at a sample rate 

of 256 samples/sec. The plot follows a negative exponential curve after the initial 

peak. The start point or start time of deconvolution is a very important parameter 

in the accurate estimation of the IRF. As the start time is varied from 0.54 - 0.55 

secs, there is a shift in the IRF plot, though the curves follow a general pattern. The 

compliance values were estimated by extrapolating the exponential decay to time zero 

for all the three cases. It was found that when the start time was equal to 0.55 secs 

(which corresponds to a start point of deconvolution of 141 samples), the estimated 

compliance from the IRF plot was found to be 58 ( x10-6) gm'. cm4.sec2 ). The 

value closely agrees with the value of the capacitore in the Windkessel model - C = 

60 ( x 10-6) gm-l.cm4  .sect. It was observed that the values of estimated compliance 

decreased as the start times were increased. 

Then the Under-Relaxation method was repeated with a = 0.02. Start time t = 

0.51 secs corresponding to a start point of 132 samples gave a good estimate of the 



The relaxation parameter a was then made equal to 0.03 and the start times of 

0.48 secs, 0.49 secs & 0.5 secs were considered. When the start time was made equal to 

0.49 secs, the IRF plot gave a good estimate of compliance. This is shown in Fig (11c). 

As the values of a are increased from 0.01 to 0.03, the start times of deconvolution 

at which the impulse response function curves gave good estimates of compliance were 

found to decrease. The results are tabulated in Table 3.3: 

Table 3.3 Under-Relaxation method. Sample rate = 256 /sec. 

1 
Alpha Start time Compliance 

secs ( x 10-6) gm-l.cm4.sec2  

0.01 0.545 64.28 
0.55 58.4 

_ . 

0.02 0.51 62.7 
0.515 59.3 
0.52 56 

0.03 0.48 63.96 
0.49 60 
0.50 53.94 

0.04 0.45 67.2 
0.46 62.6 
0.47 58.8 



Table 3.3 Under-Relaxation method. Sample rate = 256/sec. 

I I I I 
Alpha Start time Compliance 

secs ( x 10') gm' .cm4.sec2  

0.05 0.44 65 
0.45 61.3 
0.46 55.5 

0.06 0.44 60.3 
0.45 57 

0.07 0.43 62 
0.44 57.3 

0.08 0.41 64 
0.42 60.3 

0.09 0.41 63.9 
0.42 59 

The relaxation parameter was then made equal to 0.1 and the impulse response 

function was computed for different start times of deconvolution. The IRF plots 

are shown in Fig (13b). It was seen that the plots had an initial peak followed by 

an exponential decay. The compliance was computed from the plots by extrapolat-

ing the exponential decay to time zero. A start time of t = 0.41 secs gave good results. 

The relationship between a and the start time of deconvolution is seen in Fig (1413). 



As was the case when the sample rate was 100 samples/sec, as a was increased, the 

start times of deconvolution at which the IRF plots gave good estimates of compliance 

was found to decrease. 



Chapter 4 

Animal Studies 

The deconvolution methods are now applied to flow and pressure measurements made 

in dogs. The experimental protocols for obtaining the pressure and flow data under 

various physiological conditions are detailed in [6]. Studies were conducted in two sit-

uations. The first situation is the control condition. This situation is to be compared 

with the Windkessel model. The second situation is under occlusion condition when 

the aorta and the carotid arteries are occluded. Reflection studies are made during 

these occlusion conditions. 

4.1 Control Situation 

The impulse response function of the arterial system of a dog were computed and 

analyzed using the deconvolution methods. Three different heart rates were consid-

ered. The three cases were labelled as doghrl, doghr2 & doghr3. The heart rates 

were respectively 32 beats/min, 85 beats/min & 129 beats/min and all the data were 

sampled at 200 samples/sec. The flow and pressure waveforms measured in the aorta 

of the dog with heart rate 85 beats/min are shown in Fig (15). 



Table 4.1: Hemodynamic Parameters. 

I 
Dog 

I I 
Rp  

(x 103) gm.cm-4.sec-2  

I 
C 

( x 10-6) gm-1.cm4.sec2  

I 
T 

secs 

Doghrl 8.8087 364 2.941 

Doghr2 7.446 312 2.324 

Doghr3 7.542 307.6 2.32 

4.2 Results 

The arterial impulse response function was computed using all the methods discussed 

in the previous sections. 

4.2.1 IRF calculation by transform method 

In the transform method, the input impedance of the arterial system of the clog un-

der different heart rate conditions were first calculated by subjecting the flow and 

pressure time data to Fourier transformation. The modulus and phase of the input 

impedance for the three cases considered are shown in Fig (16). The peripheral re-

sistance, Rp  was calculated from the input impedance plot by using the value of the 

input impedance at 0 Hz. The arterial compliance was calculated by fitting an ex-

ponential to the diastolic portion of the pressure curve From the decay time of the 

exponential portion of the diastolic pressure tracing, the time constant T was found. 

From a knowledge of T and Rp, the total arterial compliance is given by C = r/Rp. 



The impulse response function was then calculated by inverse Fourier transforming 

the input impedance using the method designed in [6]. One of the great drawbacks 

of the transform method arises from the fact that the input impedance is an infi-

nite function. The values of input impedance at higher frequencies approaches the 

characteristic impedance of the aorta and never reaches steady zero values. The data 

therefore needs to be truncated at some finite frequency, a process which obviously 

gives rise to large oscillations superimposed on the computed IRF. This is illustrated 

in Fig (17). In order to eliminate these oscillations, the method requires some form 

of frequency domain smoothing. A smoothing function that has shown to be very ef-

fective in eliminating the oscillations is the modified version of the Dolph-Chebyshev 

function as shown in [6]. The effect of using these filters in computing the IRF is 

illustrated in Fig (17a), (17b) & (17c). The total arterial compliance was estimated 

from the impulse response function plot by extrapolating the exponential decay to 

time zero (after correction of the periodic excitation T). 

4.2.2 IRF calculation by direct methods 

The emphasis of the work done in this thesis is on the application of direct methods 

of evaluating the arterial impulse response function. Several methods have been in-

vestigated starting from the basic conventional approach of deconvolution of pressure 

and flow time histories. 

Conventional method 

In the Conventional method, the pressure and flow data were subjected to a direct 

deconvolution procedure using eq. 2.6. One of the critical aspects of this method is 

the appropriate choice of the starting point for initiating the deconvolution process. 



As flow values are near-zero during the initial part of the curve, several start points 

were chosen beginning from the first non-zero values. None of these choices provided 

a satisfactory impulse response function. Examples of computed IRF's for the three 

cases for start times oft = 0.2 secs, 0.225 secs & 0.25 secs are illustrated in Fig (18a), 

(18b) & (18c). 

Gauss Seidal method 

Mathematical procedures for computing the IRF using Numerical analysis methods 

are detailed in previous sections. By varying the relaxation parameter the system of 

equations can be made to provide stability to the solutions of equations. When the 

relaxation parameter is kept unity, the procedure becomes the Gauss-Seidal method. 

This method was applied to compute the IRF of the arterial system of the dog 

data. The initial start times were again varied to determine if an optimum value 

existed. However, it was not possibe to derive meaningful impulse response functions 

from the pressure and flow time histories using this method. Fig (19) illustrates the 

computed impulse response functions for various start times. 

Over-Relaxation method 

The relaxation procedures described in chapter 2 were then applied by chosing the 

relaxation parameter a to he greater than 1, thus making the system over-relaxed. 

Neither the various start times nor the increase in a were able to provide meaningful 

estimates of the IRF. The results are shown in Fig (20) (S.: Fig (21). 



Under-Relaxation method 

In contrast to the Over-relaxation methods, the under-relaxation procedure assumes 

values for a to be less then unity. This method was then used to compute the IRF 

from the flow and pressure values. The relaxation parameter was first chosen to be 

0.01. The start times were varied between 0.3 - 0.325 secs. The IRF plot is shown in 

Fig (22a). The compliance value was estimated by extrapolating the exponential part 

to time zero (after correction of the periodic excitation T). The compliance of the 

arterial system of doghrl was first computed from the diastolic pressure decay and 

the time constant r and is found to be 364 ( x10')gm-l.cm4.sec2 . The compliance 

value which closely matched this actual compliance value was when the start time of 

deconvolution was chosen to be 0.33 secs. This corresponded to a start point of the 

66th sample. It was observed that as the start times were increased, the values of 

compliance decreases. 

The same relaxation parameter of 0.01 was then used to compute the IRF of 

the arterial system of doghr2. Different start times were used to compute the IRF. 

When deconvolution was initiated at 0.32 secs, the compliance estimated from the 

IRF plot matched closely with the total arterial compliance estimated from the di-

astolic pressure decay, as shown in Fig (23a). Again, a was taken to be 0.01 and 

the under-relaxation method was used to compute the impulse response function of 

doghr3. 

Then, the relaxation parameter was changed to 0.02 & 0.03. The impulse response 

functions of doghrl, doghr2 and doghr3 were computed. The IRF plots are seen in 

Figs (22), (23) & (24). 



Table 4.2: Under-Relaxation method 

I I I I I I 
Dog Alpha Start time Estimated Compliance Compliance estimated from 

secs ( x 10-6) gm-l.cm4.sec2  exponential fit method 

Doghrl 0.01 0.325 433 
0.33 358 
0.335 331 

0.02 0.29 414 364 
0.295 377 
0.3 352 

0.03 0.285 340 
0.29 313 
0.3 264 

Doghr2 0.01 0.31 497 
0.32 350 
0.325 283 

0.02 0.3 378 312 
0.305 326 
0.31 293 

0.03 0.295 331 
0.3 327 

Doghr3 0.01 0.275 339 
0.28 307 
0.29 290 

0.02 0.25 560 307 
0.26 307 
0.265 284 

0.03 0.24 367 
0.245 360 
0.25 242 



The results indicated that a relationship seemed to exist between a and the times 

at which deconvolution was initiated. It was seen that as the relaxation parameter a 

was increased, the optimum start times yielding good estimates of compliance were 

found to decrease. This was observed for all three cases. 

This is illustrated in Fig (25). 

4.3 Occlusion conditions 

Reflection Phenomena 

In cardiovascular dynamics, it is well known that the pressure and flow waves are 

not purely waves travelling outwards from the heart, but they include a number of 

selections from bifurcations. All waves generated by the heart are partially reflected 

at many bifurcations [18]. 

The presence of wave reflection within the arterial system is demonstrated by two 

phenomena, (1) the amplification of pressure waves in some large arteries, particu-

larly the aorta, (2) the different shapes of pressure and flow in the ascending aorta. 

The viscous properties of fluid would make the amplitude of pressure waves diminish 

continuously as they travel out into the arterial tree [18]. But the pressure pulse 

increases in amplitude along the aorta. This means that reinforcement by reflected 

waves in the distal aorta outweighs viscous damping. The shape of the aortic flow 

pulse indicates the presence of reflections, because in their absence, the waveforms of 

pressure and flow would be almost identical. But the waveforms of pressure and flow 



are quite different as can be seen in Fig (15). Sustained pressure during ejection and 

diastole are due to reflected waves from the periphery [24]. 

Reflections are generated in a vascular system whenever there is a "mismatching" 

of impedances. Impedance is a frequency-dependent quantity determined by the ra-

tio of pressure to flow. Significant changes of impedance can occur in the course of 

normal physiological adjustments of the circulation. 

In as much as the input impedance and the impulse response function are equiv-

alent descriptions, some aspects of the system are enhanced better by one than the 

other. The reflection phenomenon is a characteristic that is seen as peaks in the input 

impedance [2] [18] [30]. The IRF is capable of bringing out the reflections better than 

the input impedance can. However, computation of the impulse response function by 

the inverse transformation and using the frequency domain filtering procedure tends 

to obscure the reflection peaks due to mathematical smoothing. Direct deconvolution 

methods are therefore most preferable if it can be achieved. In order to study these 

reflection pheneomena, impulse response functions were computed for the following 

situations. 

(1) When aorta was occluded at the level of the diaphragm and 

(2) During occlusion of both carotid arteries. 



The hemodynamic parameters of the dogs, under occlusion conditions are in the 

table below: 

Table 4.3. Hemodynamic Parameters 

I 
Dog 

I 
RP  

( x103) gm.cm'.sec-2 

I 
C 

( x 10-6) gm-1.  cm4.sec2 
T 

secs 

Dog4 
(Aortic occlusion) 

10.8 210 2.63 

Dog5 
(Occlusion of 

carotid arteries) 

9.676 322 3.125 

During aortic occlusions there are changes in flow and pressure patterns (Fig 26a). 

The most striking change occured in the systolic part of the pressure tracing which 

became biphasic [33]. The peripheral resistance during the occlusions is increased 

compared with the control situations. 

The flow and pressure patterns in dog5, ie. with occlusion of both carotid arteries 

is shown in Fig (26b). 

4.4 Results 

4.4.1 IRF calculation by Transform method 

The input impedance of dog4 is shown in Fig (27). The modulus seems to have a 

minimum. The maxima and minima can he seen in Fig (27). The impulse response 



function, computed by inverse Fourier transforming the input impedance, after filter-

ing with Dolph-Chebyshev filter is shown in Fig (28a). From the IRF plot, the total 

arterial compliance was estimated by extrapolating the exponential decay to time zero. 

The input impedance for the dog5 (ie. occlusion of both carotid arteries) is in 

Fig (29). The modulus is found to decrease less rapidly with frequency but, a mini-

mum, as in the case of aortic occlusions is not easily distingiushed. The phase at low 

frequencies is slightly more negative when both carotids are occluded, but the phase 

first increases monotonically and then assumes a constant value, as in the control 

situation. The impulse response function is computed from the input impedance by 

inverse Fourier transformation. The input impedance is transformed first, without 

filtering and then with filtering. The plots are shown in Fig (28b). 

4.4.2 IRF calculations by Direct methods 

Conventional method 

The impulse response function of the arterial system of the dog with occlusion of 

both carotid arteries was computed by the Conventional method. The start times'of 

deconvolution were varied from 0.18 - 0.20 secs. But this method was not successful 

in recovering the IRF from the input and output time data. This is illustrated in Fig 

(30a) & (30b). 

Gauss-Seidal method 

The Gauss-seidal method was then applied to the flow and pressure data from dog5 

also did not generate meaningful IRF. This is illustrated in Fig (31b). 



Over-relaxation method 

The relaxation parameter was varied between 1.1 & 1.5. Different start times were 

chosen but it resulted in highly distorted IRF's for dog5. This is shown in Fig (32). 

Under-relaxation method 

As in previous applications, the data were evaluated by considering the relaxation 

parameter to be 0.01, thus reducing to an Under-relaxation method. This method 

was applied to the was applied to the flow and pressure data from dogs (ie. the dog 

with occluded carotid arteries). The relaxation parameter was set to be 0.01 as seen 

in Fig (33a). The start times was initially set to be 0.21 secs. Start times prior to 

0.21 secs gave very high estimates of compliance from the IRF plot. Start time of 

deconvolution = 0.215 secs ( equal to a start point of 43 samples) resulted in a IRF 

plot which resulted in a good estimate of compliance which closely agreed with the 

total arterial compliance computed from the diastolic pressure waveform. 

a was then made to be 0.02 and deconvolution was applied to compute the IRF 

of the arterial system of dog5. This is illustrated in Fig (33h). Start time of decon-

volution of t = 0.195 secs yielded a meaningful IRF plot. The estimated compliance 

from the plot was found to be 338 ( x10-6) gm-1.crn1.sec2. The total arterial compli-

ance for dog5 as determined from the diastolic pressure waveform was 322 ( x10-6 ) 

gm-l .cm 4.sec2. 

The results are tabulated as follows: 



Table 4.4 Under-relaxation method 

I 
Dog 

I 
Alpha 

I 
Start time 

secs 

I 
Compliance 

( x 10') gm'.cm4.sec2  

I 
Compliance estimated from 

exponential fit method 

Dog5 0.01 

0.02 

0.21 
0.215 

0.18 
0.19 
0.195 

516 
326 

533 
397 
338 

322 

The relaxation parameter was varied from 0.03 - 0.09 hut it resulted in highly-

distorted and meaningless impulse response functions for both the dogs. 

It was observed once again that there exists a relationship between alpha and the 

start time as seen in the other 3 dogs. As a was increased. the optimum start times 

of deconvolution yeilding good estimates of compliance were found to decrease as can 

be seen in Fig (34). 

4.4.3 Reflection Calculations 

Reflection calculations can be made from the input impedance though the impulse 

response function shows reflections quite clearly [6]. Location and amount of reflection 

can be obtained from the input impedance as follows [26] : at the lowest frequency 

where the modulus of the impedance is minimal, one-quarter of the wave-length is 

equal to the length of the system [18]. From the pulse wave velocity and this first 

minimum, 



1 = Cgmin (4.1) 

where 1 is the effective length, c is the phase velocity and f, 1n  is the lowest frequency 

where the modulus is a minimum or the phase crosses zero [35]. Similar relations 

hold for the other minima and maxima of the modulus of the impedance and also for 

the phase crossings. 

Reflection studies can be made from the impulse response function [6]. The im-

pulse response function consists of a series of equidistant peaks. The time interval(AT) 

between peaks is related to the effective length 1 by 

1 = AT*c/2 (4.2) 

Reflection studies were conducted for the dogs under occlusion conditions and the 

reflection computations made from the input impedance and the impulse response 

function were in agreement. 



Chapter 5 

Discussion of results 

This thesis deals with characterization of arterial system in time domain by applying 

deconvolution techniques to measured pressure and flow data. Various mathemati-

cal methods were investigated to compute the impulse response function directly by 

deconvolving the the input and output time histories. The data utilized for evaluat-

ing the deconvolution techniques consisted of aortic flow and pressure signals derived 

from (1) a 3-element Windkessel model of the arterial system, (2) a control dog (3) a 

dog with occlusion of the aorta and (4) a dog during occlusion of both carotid arteries. 

The computed impulse response function of the Windkessel model and of the ar-

terial system of the dogs are compared with the appropriate information derived from 

the input impedance of the arterial system. The input impedance and the impulse 

response function are equivalent representations but some features of the system are 

emphasized more clearly by one description than by the other. The input impedance 

is a frequency domain characterization and characterizes the peripheral resistance 

and characteristic impedance of the aorta. The Impulse response function is the time 

domain characterization, emphasizes total arterial compliance and shows reflections 

more clearly. Hence, the two parameters of interest in this study of the arterial system 

in time domain are the arterial compliance and wave reflections. 



The various mathematical methods investigated in computing the IRF are 

(1) Conventional method - by direct numerical evaluation of the convolution integral. 

(2) Numerical approximation methods - by using iterative procedures including the 

relaxation methods. 

The parameters that were found to critically influence the successful application 

of these methods are the start time of deconvolution, the sample rate and in the case 

of the iterative methods, a relaxation parameter o. 

5.1 Windkessel model 

The data of a 3-element Windkessel model provide the basis for testing the mathe-

matical methods. The deconvolution procedures applied to the input and output time 

histories of the Windkessel model yielded results in conformation with the analytical 

components described by eq. 1.3. 

The analytical impulse response function clearly contains a negative exponential 

function as given by the equation. The compliance value could be estimated from 

the impulse response function plot by extrapolating the exponential decay to time 

zero. The results of the IRF using the transform method illustrated in Fig (4) reveal 

these components. The computed value of the total arterial compliance agree with 

the model paramter of the Windkessel. 

Although the transform method is effective in computing the IRF, the method 

requires the impedance function to be subjected to a frequency domain filter in order 



to eliminate the truncation effects. The Dolph-Chebyshev function [6] used in this 

method is shown to be an appropriate function. However, it is important to un-

derstand that while the smoothing function is effective in control situations, it may 

pose problems in extracting the IRF in the presence of any reflection phenomena. It 

is therefore more desirable to develop methods for direct evaluation of the IRF by 

deconvolving the pressure and flow signals. 

In an effort to obtain the impulse response function by direct deconvolution, the 

Windkessel model data were subjected to direct numerical evaluation procedures. The 

results are presented in Fig (5a). The application of the deconvolution procedure is 

severely hampered by the negligibly small flow values. Division by a small flow value 

will give rise to large errors in the impulse response function. So, the start times of 

deconvolution procedures were varied, an example of which is shown when t was set 

to 0.4 secs. The method, however, did not yield meaningful IRF. 

In the next set of procedures, various numerical approximation methods were used. 

Of particular interest are the relaxation methods, in which a relaxation parameter o 

was introduced to control the stability of the iterative solution of the deconvolution 

algorithm. Proper choice of a is the key to successful application of this method. II 

a < 1, the system is considered under-relaxed and if a > 1, the system is said to he 

over-relaxed. If a = 1, it reduces to the Gauss-Seidal method. 

The Over-relaxation method was applied to the data from the Windkessel model. 

It was found that the method is very sensitive to the noise present in the data It 

was not possible to derive meaningful impulse response functions using this method. 

In spite of varying the value of the relaxation parameter and the start times for de- 



convolution, the impulse response function showed spurious oscillations. 

When the relaxation parameter was set equal to 1.0, reducing to the Gauss-Seidal 

method, the derived impulse response function did not follow an exponential decay 

as can be seen in Fig (5c) & Fig (5d). Varying the start times did not seem to he 

effective in producing the desired IRF. 

The Under-relaxation method was next considered with the relaxation parameter 

a varied between 0.01 and 0.05. Various start points were chosen, examples of which 

are given in Fig (7). At t = 0.4 secs corresponding to a point in the rising segment of 

the systolic pressure waveform, the flow values were at the peak. Earlier start times 

with very small flow values (nearly zero) resulted in incongruous impulse response 

functions. The compliance value was estimated from the IRF plot by extrapolating 

the exponential part to time zero. 

When a = 0.04 and when deconvolution was initiated at 0.52 secs, the IRF plot 

yeilded a value of compliance which closely approximated the model parameter. 

Various values of the relaxation parameter were investigated to obtain better es-

timates of the compliance. a was varied from 0.05 to 0.09 resulting in reliable plots 

with good estimates of compliance. This is indicated in Fig (8) and in table (3.1). It 

can be observed in Fig (8) that for a = 0.05, as the start times were increased from 

0.50 secs to 0.52 secs, the impulse response function gave lower estimates of compli-

ance. This is given in Table 3.1. If the start time was increased above 0.55 secs, it 

resulted in a very low estimate of compliance. Similarly, decreasing the start time to 

approximately 0.45 secs resulted in very high estimates of compliance in the range 



of 1000 ( x 10-6) gm-1. cm4.sec2. This observation held true for a between 0.06 S.-, 0.09. 

The start time of deconvolution proved to be a very important factor in the accu-

rate estimation of the compliance. It was observed that as the value of the relaxation 

parameter was increased, the times at which deconvolution was initiated to yield a 

good value of compliance, were found to decrease. This is illustrated in Fig (14a). It 

is obvious the influence of start time is critical in the relaxation procedure. 

The input and output data from the Windkessel model were sampled at 256 sam-

ples/sec. Then, the Under-relaxation method was investigated. The earlier analysis 

was done at 100 samples/sec. 

The Under-relaxation method proved to be effective in extracting the impulse re-

sponse function. When a was set equal to 0.01, the IRF exhibited an initial peak 

followed by an exponential decay as expected. The value of the compliance estimated 

from the plot closely matched the model parameter C = 60 ( x10-6 ) gm-1.cm4.sec2  

when the deconvolution procedure was activated at t = 0.55 secs which corresponded 

to a start point of 141 samples. 

Values of a between 0.02 to 0.09 gave good IRF plots with good estimates of 

compliance. This is tabulated in Table 3.3. As before, as the value of the relaxation 

parameter was increased, the optimum start times yielding reasonable estimates of 

compliance was found to decrease. This is illustrated in Fig (14b). There seems to 

be a nearly linear relationship between a and the start time as seen before with the 

sample rate of 100 samples/sec. 



Also, for a particular value of a, when the start times of deconvolution were 

increased, the compliance values computed from the IRF plots decreased as could he 

observed in Table 3.3. 

5.2 Dogs under control conditions 

The heart rates for the dog under control conditions was set equal to 32 beats/min. 

85 beats/min & 129 beats/min with the data sampled at 200 samples/sec with the 

three cases labelled as doghrl, doghr2 & doghr3. 

The input impedance of the arterial system of the dog computed by Fourier trans-

forming the flow and pressure data measured in the dog is illustrated in Fig (16). The 

corresponding impulse response functions calculated by the transform method can be 

seen in Fig (17). Total arterial compliance found by an extrapolation of the expo-

nential decay to zero time (after correction of the periodic excitation T) was found 

to match closely with the compliance calculated from the diastolic pressure decay. 

Then the various deconvolution methods were applied to the pressure and flow da-

ta from the dog under different heart rates. The Conventional method, Gauss-Seidal 

method & Over-relaxation method were found to be very sensitive to the noise in the 

flow and pressure data and it was not possible to derive meaningful impulse response 

functions as is evident in Fig (18), Fig (19), Fig (20) & Fig (21). The results did not 

improve for varying the start times of deconvolution. 

Only the Under-relaxation method seemed to be the most effective in extracting 

the impulse response function. Values of a equal to 0.01. 0.02 & 0.03 resulted in im-

pulse response functions which has an initial peak, gradually following the expected 



negative exponential curve. This is illustrated in Fig (22), Fig (23) & Fig (24). The 

start times were varied and the impulse response functions were computed. It was 

seen that with values of a ranging from 0.01 to 0.03 and with start times between 

0.3 secs to 0.32 secs, the IRF computed by the Under-relaxation method gave good 

estimates of compliance in accordance with the value estimated from the diastolic 

pressure decay. 

For doghr3, values of a between 0.01 and 0.03 and with start times of decon-

volution between 0.24 secs and 0.28 secs, the IRF plot gave reliable estimates of 

compliance. 

When deconvolution was initiated between 0.3 secs & 0.32 secs and with a be-

tween 0.01 to 0.03, the IRF of the arterial system of doghrl computed by the Under-

relaxation method gave accurate estimates of compliance. 

It was observed that these start times correspond to a time segment in the pres-

sure waveform just after the systolic peak pressure is reached - Fig (15). For all the 

three cases considered, with the relaxation parameter between 0.01 to 0.03 and with 

start times which coincide with that part of pressure wave just after the peak, the 

computed IRF gave good estimates of compliance. 

The Under-relaxation method was not effective in extracting the impulse response 

function from the flow and pressure data when the relaxation parameter a was in-

creased above 0.03 for all the three subjects. It resulted in distorted impulse response 

functions. 



Another interesting observation was that similar to the Windkessel model, as the 

values of the relaxation parameter was ioncreased, the times at which deconvolution 

is initiated was found to decrease. This is illustrated in Fig (25). 

Although the impulse response function of the dogs follow the Windkessel pattern, 

some oscillations are noticable and they suggest the presence of reflection sites in the 

system. From the knowledge of the phase velocity of the control dog [6] [33] and the 

location of the first peak in the impulse response function (computed with o = 0.01 

and start time = 0.32 secs), the location of the reflection point closest to the heart is 

calculated to be 13 cms. (See eq. 4.2). 

Since the impulse response function and the input impedance contain the same in-

formation, the location of the reflection point closest to the heart was calculated from 

the input impedance of the arterial system of doghr2 A minimum in the modulus of 

the impedance was noted at 6 Hz and using eq. 4.1, the location of the reflection site 

was calculated to be 17 cms. 

The reflection site calculated from the input impedance and the impulse response 

function of the arterial system of doghrl Sz. doghr3 were found to match. 

5.3 Dogs under occlusion conditions 

Two dogs were considered :- 

(1) Dog with aortic occlusion - Dog4. 

(2) Dog with occlusion of both carotid arteries - Dog5. 

The heart rate for dog4 is 137 beats/min and that for dog5 is 151 beats/min. First 



the impulse response function of the arterial system of dog4 & dog5 were computed 

by the transform method by inverse Fourier transforming the input impedance of 

dog4 & dog5 as illustrated in Fig (27). The compliance estimated from the IRF plots 

coincided with the compliance values calculated from the diastolic pressure decay. 

Then the various deconvolution procedures were investigated to compute the im-

pulse response function from the measured pressure and flow data of dog5. The 

Conventional, Gauss-Seidal and the Over-relaxation method resulted in highly dis-

torted and meaningless impulse response functions due to noise effects. 

The Under-relaxation method was then applied to the flow and pressure data 

from dog5. When a was equal to 0.01 & 0.02, with start times of deconvolution 

in the range 0.195 secs - 0.215 secs, this method gave rise to meaningful IRF plot-

s. The compliance values calculated from the plots matched with the compliance 

value estimated from the diastolic pressure decay. But values of o greater than 0.02 

did not give rise to the expected impulse response function with an exponential decay. 

Reflection calculations were recorded for dog5. Reflection computations in time 

domain (ie. from the Impulse Response Function) and in frequency domain (ie. Input 

Impedance) were compared and found to coincide. Reflections were seen much better 

in the impulse response function. 
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FIG (1) 



FIG (1) 



FIG (2) 

Flow and pressure waveforms obtained from a 3-element Windkessel model 

- Fig (1). 

Model parameters are as follows: 

Peripheral Resistance : Rp  --= 20K, 

Characteristic Impedance : R, = 1.2K 

Capacitance : C = 60ttF. 
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FIG (3) 

Input Impedance of the 3-element Windkessel model. 

(Top : Modulus & bottom : Phase in degrees). 
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FIG (4) 

Impulse response function of the Windkessel model obtained from the In- 

put Impedance, without filtering and with filtering before transformation 

to time domain. 

The Dolph-Chebyshev filter was chosen to be the filter. 

Filter parameters are as follows : 

Ripple factor = 100, 

No. of harmonics = 12. 



FIG (4) 



FIG (5) 

Fig (5a) & Fig (5b) - Impulse response function of the Windkessel model 

computed by the Conventional method. Sample rate = 100 samples/sec. 

A critical aspect of computing the impulse response function is the appro-

priate choice of the start point. 

The following start times were used in computing the IRF. 

t = 0.4 secs, 0.45 secs, 0.50 secs & 0.55 secs. 

Fig (5c) & Fig (5d) - Impulse response function of the Windkessel model 

computed by the Gauss-Seidal method. Start times were varied from 0.40 

secs to 0.55 secs. 





FIG (6) 

The Over-Relaxation method was used to calculate the IRF. Alpha was 

chosen to be = 1.1. 

Fig (6a) - IRF when deconvolution was initiated at time t = 0.4 secs and 

time t = 0.5 secs. 

Then the relaxation parameter was taken to be = 1.5. 

Fig (6b) - IRF when deconvolution was initiated at time t = 0.4 secs and 

time t = 0.5 secs. 





FIG (7) 

Impulse response functions computed using the Under-relaxation method. 

The relaxation parameter a was varied from 0.01 - 0.04. 

a = 0.01 - Fig (7a). 

a = 0.02 - Fig (7b). 

a = 0.04 - Fig (7c). 

a = 0.05 - Fig (7d). 

Different start times were chosen. The compliance value was estimated 

from the IRF plots by extrapolating the exponential decay to time zero. 





FIG (8) 

The relaxation parameter was varied from 0.06 - 0.09 at different start 

times and the impulse response functions were computed for each case. 

a = 0.06 - Fig (8a). 

a = 0.07 - Fig (8b). 

a = 0.08 - Fig (8c). 

a = 0.09 - Fig (8d). 





FIG (9) 

Fig (9a) & (9b) - Input and output data from the Windkessel model sam-

pled at 256 samples/sec were subjected to the Conventional method. Start 

times were varied from 0.4 secs - 0.55 secs. 

Fig (9c) & (9d) - Impulse response function of the Windkessel model com-

puted by the Gauss-Seidal method at various start times. 





FIG (10) 

Over-relaxation method was used to compute the IRF. It gave rise to mean-

ingless impulse response functions. 





FIG (11) 

The Under-relaxation method was used to compute the impulse response 

function when the input and output time histories from the Windkessel 

model were sampled at 256 samples/sec. 

The relaxation parameter was varied from 0.01 - 0.04 at different start 

times. 

a = 0.01 - Fig (11a). 

a = 0.02 - Fig (11b). 

a = 0.03 - Fig (11c). 

a = 0.04 - Fig (11d). 





FIG (12) 

Deconvolution was performed by the Under-relaxation method with the 

relaxation parameter a = 0.05, 0.06, 0.07 & 0.08. The corresponding IRF 

plots are seen in Figs (12a), (12b), (12c) & (12d). 





FIG (13) 

The relaxation parameter was changed to 0.09 and 0.1 and the impulse 

response function was computed by the Under-relaxation method. This 

can be seen in Fig (13a) Sz., (13b) respectively. 





FIG (14) 

Relationship between Alpha and Start time of deconvolution. 

It was seen that as a increases, the optimum start times of deconvolution 

yeilding reliable estimates of compliance were found to decrease. 

Fig (14a) shows the relationship between a and start time when the sample 

rate was 100/sec. 

Fig (14b) shows the relationship between a and start time when the sample 

rate was increased to 256 samples/sec. 





FIG (15) 

Flow and pressure waveforms measured in dogl. The calculated hemo- 

dynamic parameters are 

Peripheral Resistance : Ri, = 7.446 (x103) gm.cm-4.sec-1, 

Capacitance : C = 312 (x10-6) gm-l.cm4.sec2 





FIG (16) 

Input Impedance of the arterial system computed from the pressure and 

flow data in doghrl, doghr2 & doghr3. 

(Top : Modulus & Bottom : Phase in degrees) 





FIG (17) 

The impulse response function of the arterial system of doghr2 computed 

by the transform method - Fig (17a). 

The impulse response function of the arterial system of doghr3 - Fig (17b), 

computed by transform method. 

The IRF of the arterial system of doghrl, computed by inverse Fourier 

transformation of the input impedance - Fig (17c). 





FIG (18) 

Fig (18a) - The Impulse Response Function plots of the arterial system 

of doghrl computed by Conventional method. The deconvolution was ini-

tiated at times t = 0.225 secs, 0.2 secs & 0.25 secs. 

It was seen that this method resulted in incongruous IRF's. 

Fig (18b) - Conventional method was used to compute the IRF of the 

arterial system of doghr2. It was computed for the following start times. 

t = 0.2 secs 

t = 0.225 secs 

t = 0.25 secs 

Fig (18c) - The IRF of the arterial system of doghr3 computed by the 

Conventional method. 





FIG (19) 

The relaxation parameter was taken to be a = 1.0 which reduces to the 

Gauss-Seidal method. This method was used to compute the IRF of the 

arterial system of doghrl - Fig (19a). 

The Gauss-Seidal method was used to compute the IRF of the arterial sys-

tem of doghr2 - Fig (19b). 

Using the Gauss-Seidal method, the impulse response function of the arte-

rial system of doghr3 was calculated - Fig (19c). 

This method proved futile in recovering the IRF from the flow and pressure 

data. for all three cases. 





FIG (20) 

The Over-relaxation method was then tried for all three cases under control 

conditions. 

Fig (20a) - IRF plots of the arterial system of doghrl. The relaxation pa-

rameter taken to be 1.1 and different start times were tried. But it resulted 

in distorted IRF's. 

Fig (20b) - The relaxation parameter was changed to 1.5 and deconvolution 

was initiated at the same start times. 

Fig (20c) - IRF of the arterial system of doghr2 computed by the over-

relaxation method with a = 1.1. 

Fig (20d) - IRF of the arterial system of doghr2 computed by the over-

relaxation method with the relaxation parameter a = 1.5. 





FIG (21) 

IRF of the arterial system of doghr3 computed by the Over-relaxation 

method with a = 1.1 & 1.5. 





FIG (22) 

Fig (22a) - IRF of the arterial system of doghrl. a = 0.01. 

Fig (22b) - IRF of the arterial system of doghrl. a = 0.02. 

Fig (22c) - IRF of the arterial system of doghrl. a = 0.03. 
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The Under-Relaxation method was used to compute the IRF of the ar-

terial system of doghr2. 

Fig (23a) - The relaxation parameter a was taken to be 0.01. Different start 

times were investigated. The compliance value was estimated from the IRF 

plots. The compliance value which closely approximated the arterial com-

pliance of doghr2 was obtained when the start time of deconvolution was 

0.32 secs. 

Fig (23b) - The IRF of the arterial system of doghr2 was computed by 

the Under-relaxation method with a = 0.02. The start times of deconvolu-

tion used to compute the IRF are t = 0.3 secs, t = 0.305 secs and t = 0.31 

secs. 

The compliance values were estimated from the plots. 

Fig (23c) - The value of a was set to be 0.03 and the impulse response 



function of the arterial system of doghr2 was computed at various start 

times. 





FIG (24) 

The Under-Relaxation method was used to compute the arterial system 

of doghr3 with the relaxation parameter = 0.01 - Fig (24a). The start 

times considered were t = 0.275 secs , 0.28 secs & 0.29 secs. 

The compliance values were estimated from the IRF plots. When deconvo-

lution was initiated at 0.28 secs which corresponded to a start point of 56 

samples, estimated compliance best approximated the total arterial com-

pliance of doghr3. 

The Under-relaxation method with a = 0.02 was used to compute the 

IRF of the arterial system of doghr3 - Fig (24b). The start time of decon-

volution set to be 0.26 secs gave best results in terms of compliance. 

The IRF of the arterial system of doghr3 computed when the relaxation 

parameter was = 0.03 - Fig (24c). The compliance values were estimated 

from the plots by extrapolating the exponential part of the IRF to time 





FIG (25) 

Relationship of the relaxation parameter alpha with the start time of de- 

convolution. As a is increased, the optimum start times of deconvolution 

were found to decrease for all three cases. 

Fig (25a)- Doghrl 

Fig (25b) - Doghr2 

Fig (25c) - Doghr3 





FIG (26) 

Fig (26a) - Flow and Pressure waveforms in dog4. The calculated hemody- 

namic parameters for this dog are 

Peripheral resistance : Rp  = 10.8 ( x103) gm.cm-4.sec-2. 

Capacitance : C = 210 (x10') gm-i.cm4.sec.2. 

Fig (26b) - Flow and pressure measured in dog5 - with occlusion of both 

carotid arteries. The hemodynamic parameters are 

Peripheral Resistance : Rp  = 9.696 ( x103) gm-i.cm4.sec2 . 

Capacitance : C = 322 (x10-6) gm-l.cm4.sec2. 





FIG (27) 

Input impedance of the arterial system of dog4. 

(Top : Modulus 8:: Bottom : Phase in degrees). 





FIG (28) 

Fig (28a) - Impulse response function of the arterial system of dog4 corn-

puted by the transform method. 

Fig (28b) - IRF of the arterial system of dog5 computed by the transform 

method. 





FIG (29) 

Input Impedance of the arterial system of dog5 obtained from the pres- 

sure and flow data. 

(Top : Modulus & Bottom : Phase in degrees). 





FIG (30) 

Fig (30a) & Fig (30b) - IRF of the arterial system of dog5 calculated using 

the Conventional method. 





FIG (31) 

Fig (31a) - The Gauss-Seidal method was used to calculate the IRF of 

the arterial system of dog5. The relaxation parameter a = 1.0. 

Fig (31b) - The Over-relaxation method was used to compute the IRF of 

dog5. The relaxation parameter was chosen to be 1.1 & 1.5. Different start 

times were tried. 





FIG (32) 

The Under-relaxation method with a equal to 0.01 was applied to the data 

from dog5. 

Fig (32a) - Start time = 0.21 secs. 

Fig (32b) - Start time = 0.215 secs. 





FIG (33) 

The Under-relaxation method was applied to the flow and pressure data of 

dog5 with the relaxation parameter set to be 0.02. 

Fig (33a) - The start time was set to be 0.18 secs. 

Fig (33b) - The start time was equal to 0.19 secs. 

Fig (33c) - The start time was set equal to 0.195 secs which gave best 

estimates of compliance. 





FIG (34) 

Relationship between a and the start time for dog5. 
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