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ABSTRACT 

Title of thesis: Development of techniques of artificial intelligence 
in identifying the different machined surfaces 

Yi-Ching Chou, Master of Science in Manufacturing Engineering, Jan. 1991 

Thesis directed by: Dr. Nouri Levy 
Associate Professor 
Department of Mechanical and Industrial Engineering 

This thesis deals with the identification of different machined surfaces with 

artificial inteligence techniques. There are five kinds of machining operations: grind-

ing, turning, milling, EDM and waterjet which determine the characteristics of re-

sulting surfaces. Topology of various specimens is measured using the surfanylizer. 

Twenty one parameters are extracted from the measurements to describe the char-

acteristics. In this thesis, we develop neural and expert systems that recoginize and 

classify surfaces according to the machining methods. 
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Chapter 1 

INTRODUCTION 

In industry, there are various machining methods resulting in different fin-

ished surfaces which can be controlled or designed to meet specific requirements. 

Frequently. finished surfaces which are produced by different machining methods 

cannot be distinguished easily and need very experienced experts for proper identi-

fication of the method of machining used. 

The American National Standard ANSI B46.1-1978 has provided a set of sur-

face quantitative parameters derived from specific measurements to descirbe surface 

texture[1]. By means of these parameters, machined surfaces can be described. But 

there is no standard procedure that can determine how surface texture is related 

to the method of machining. The difficulty in identifying the different machined 

surfaces is that the value of the parpmeters describing the surfaces often overlap. 

Therefore, it is necessary to devise methods to integrate all parameters and extricate 

the patterns that characterize each machining method. 

In artificial intelligence field, there are two particular techniques, neural net-

work and expert system. Neural networks embody gestalt functions such as the 

understanding of images, pictures, and graphic information. Expert systems are 

typified by logical functions such as rules, concepts, and calculations[2]. Knowledge 

incoporated in an expert system is made explicit in the form of rules which are based 

on human expertise. Unlike traditional expert systems, neural networks generate 



their own rules by learning from being shown examples. 

In this thesis, we use profilometer probe to measure 25 profiles on each ma-

chined specimen. The obtained signal is amplified and then sent to a microprocessor 

where A/D conversion, digital filtering and some signal treatment are clone. The 

data is then transmitted to an IBM—PC for data analysis and storage. After cal-

culation, each reading will be represented by 21 parameters. Then, we try to use 

neural network and expert system techniques to build identification systems which 

will identify the method of machining of an examined surface. The neural network 

learning is achieved through backpropargation method. The expert system will 

adopt rules which are based on statistical properties of the parameters. Finally, we 

use some readings in a test set to evaluate their performance. 



Chapter 2 

NEURAL NETWORK AND 
EXPERT SYSTEM 

In this chapter, we describe the background of two artificial intelligence tech-

niques, neural network and expert system. 

2.1 What is a Neural Network? 

Neural Network is composed of a number of very simple processing elements 

that communicate through a rich set of interconnections with variable weights or 

strengths. These simple processing elements, are called neurodes. 

Real neurodes, such as those in the human brain, are extremely complicated 

devices, with a myriad of parts, subsystems, and control mechanisms. They use 

a variety of electrochemical pathways to communicate each other. Each neurode 

receives a large number of individual input signals that together constitute an input 

pattern. This input pattern causes the neurode to reach some level of activity. If the 

activity is strong enough, the neurode, like its biological analog, generates a signal. 

Output signal transmits over the neurode's interconnects to other neurodes or to 

the outside world. For all intents and purposes, the neurodes computes a mapping, 

or a function that associates a given level of input stimulus to a particular level 

of output activity. This overall mapping is usually called the transfer function for 

neurodes. 



Figure 2.1 shows a basic neurode. The inputs are combined into a signed 

signal value in the box labeled signed Weighted Sum of Inputs. This result is 

the Total Input. The Total Input is run through another function known as the 

Activation Function. The network generally takes the activation function to he 

the identity mapping, so that the neurode's total input and activation values are 

identical. 

Next, the activation value is passed through a function called the Neuron 

Transfer Function, which produces the neuron's output. The interesting behaviors 

of neural network are substantially dependent on the character of the neuron transfer 

function. By means of transfer function, the critical factor which determines the 

nature of the activity patterns is called Synapse Weight[3]. 

Learning in a neural network consists of changing the value of these weights. 

The learning laws, which dictate by how much and in which directions the weights 

will be changed are the most important in a designer's tool box. In application, we 

implement backpropagatzon network to the identification system. Backward error 

propagation is the most successful learning law in many fields. In next subsection, 

it will be described in detail. 

2.1.1 Features of Backpropagation Systems 

Backpropagation is a supervised learning scheme by which a layered feed for-

ward network, and the error generated by network's output will produce another 

information to feed back to the input layer immediately. For this important fea-

ture, hierarchical structure and nonlinear transfer function are essential. At the 

minimum, the network must be composed of three layers: input layer, middle layer, 

and output layer. The input layer accepts pattern from the outside world, the out-

put layer presents the network's response back to the outside world, and the middle 

layer inter-connects with them. 



Figure 2.1: The internal representation of neurodes. 



The middle layer is also called hidden layer which creates a map relating each 

input pattern to a unique output response. The higher the interlayer connectivity , 

the better the ability of network to build a representation or a model of the input 

data[4]. Figure 2.2. shows a simple neural network architecture. 

The input, activation, and output functions of a neurode can usually combined 

into one function, the neurode transfer function. The learning rule corresponds to 

gradient minimization of the average of error E(this average is computed over all 

input vectors in a specific training set). 

n 
E = E(D, - R2 )2 (2 1) 

i=i 

n = number of training facts 

D = Desire output 

R = Real output from network 

The difficulty is to get the minimum error. First, let us see how to calculate 

the error. The weighted output error is propagated from each neurode in the output 

layer back to the neurodes of the middle layer. The weights used to compute these 

errors are those on the interconnects between the various neurodes. Thus, each 

middle-layer neurode can calculate exactly how big a contributation it made to 

the error of each neurode in the output layer. This means that an output neurode 

with a large weight from a particular neurode in the middle layer can probably 

"blame" much of its output error on input signals from that particular middle-layer 

neurodes. Thus a large weight and large error in the output layer will generate a 

large contributation to that middle-layer neurode's own error. If a middle-layer 

neurode has a large weight that produce a large output error on interconnection 

with output-layer neurode, the next step is to generate a large weight change for 

that middle-layer neurode even if the middle--layer neurode had generated a very 



Figure 2.2: Example of a neural network architecture. 



small or even zero output. 

To use derivative of neurode activation function with the address on weight 

change will cause the maximum change. The derivative of a function can be thought 

of as the slope of the function at each point along its curve. A negative slope means 

that the function decreases in value as the value of its variable increases. It is why 

we choose the negative derivative of neurode active function. 

In computer simulation, using numerical analysis to calculate the derative of 

function is time consuming. The best way is to find the exact form of derative 

function. Sigmoid function own this properties[5]. 

NET = X2W2  + • • • + X„1/17, (2.2) 

OUT = 
1 

(2.3) 1 + c-NET 

OUT' = OUT2 x e-NET (2.4) 

X = input vector 

W = weight of neuron 

OUT = output of neuron from sigmod transferfunction 

OUT' = the derivative of OUT 

Moreover, the derivative , or slope, of sigmoid curve is shaped like a bell, with 

the largest values in the middle range of summed inputs and very small values at 

both extremes, as shown in Figure 2.3. 

Multiplying the error correction by this bell—shaped derivative function en-

sures us that the weights on the neurode we are considering will change on slightly 

as the summed input approaches either very low or very high values. Because of the 

two advantages, we know that choosing sigmod not only prevent unfairly blamming 

mid—layers neurodes for errors in the output layer, but also ensure the stability of 

the network as a whole. For each mid—layer neurode, we must propagate the error 



Figure 2.3: Sigmoid function, transferfunction of back propergation network. 



from the output layer back to it, compute the sum of the weighted errors, multiply it 

by the derivative of the sigmoid function, and then use this computed error value in 

the delta rule to modify the weights. When these computations have been made for 

all of the mid—layer neurodes, this particular iteration of the network is completed. 

2.1.2 Building a Neural Network for Surface Identification 

The network will learn to recognize surfaces by learning to associate readings 

from samples with the machining method they represent. Using surface assessment 

method based on ANSI standard, we collect readings which are tranformed into 21 

parameters to adequately characterize the machined surfaces. Then we choose a 

set of readings as the training set. Another set of readings is used for testing the 

performance of the network after training. 

2.2 What is an Expert System? 

An expert system, also called Knowledge—Based System [KBS], is a computer 

software that uses knowledge and inference procedure to solve specific classes of 

problems. 

Expert Systems have been implemented to solve problems, ranging from med-

ical diagnosis to trouble shooting generator, locomotives, and telephone networks. 

Rule—based systems use simple if—then rules to express the domain knowledge, and 

rule interpreter that links together such rules into a complex and long chain of in-

ference. Much of the knowledge in expert system is heuristic in nature, and consists 

of rules of thumb[6]. 

All expertise is built up of small, modular chunks of knowledge which include 

facts and rules, and the overall intelligent behavior emerges from the combination 

of many chunks. 

Each rule has the form: 



IF < list of premises > THEN < conclusion >. 

For example: 

If it is raining, then the ground is wet. 

The performance level of an expert system primarily depends on a function 

of the rule size and quality of the knowledge base that it processes. 

Figure 2.4 shows the most important modules that makes up a general rule—

based expert system. 

2.2.1 Use of Expert System 

An expert system is a knowledge—based program that provides "expert qual-

ity" solutions to problems in a specific domain. Generally, its knowledge is extracted 

from human experts in the domain and it attempts to emulate their methodology 

and performance. 

Knowledge from countless fields can be used in an expert system. The main 

criterian for determining whether or not a subject is the answer to this question: 

Can knowledge on this subject be translated? If answer is yes, this subject is 

suitable to be used in an expert system[7]. 

In the nomenclature common to the artificial intelligence literature, these 

three components of problem—solving systems are known as: 

1. The database. 

2. The operators or production rules. 

3. The control strategies[8]. 

Expert systems do not simulate human mental architecture in detail, like 

neural network. They are practical programs that use heuristic strategies developed 

by humans to solve specific classes of problems. 



Figure 2.4: Architecture of a typical expert system. 



2.2.2 Expert System Technology 

Heuristics 

Heuristics are criteria, methods, or principles for deciding which among sev-

eral alternatives courses of action promises to be the most effective in order to 

achieve some goal. They represent compromises between two requirements: the 

need to make such criteria simple and , at the same time , the desire to see them 

discriminate correctly between good and bad choices[8]. 

It is the nature of good heuristics both that they provides a simple means of 

indication which among several courses of a action is to he prefered, and that they 

are not necessarily guaranteed to identify the most effective course of action, but 

do so sufficiently often[9]. 

The time required to find out an exact solution always takes a long time for 

some problem. Heuristics play an efective role in such problems by indicating a way 

to reduce the number of evaluation and to obtain solutions within reasonable time 

constraints. 

Probability—Based Heuristics 

Probability is a language for quantifying the unpredictability of our environ-

ment. Probabilistic modles specify a set of possible instances of the environment 

together with their associated degree of likelihood[8]. 

Because the ultimate test for the success of heuristic methods is that they work 

well "most of the time", and because probability theory is our principal formalism 

for quantifying concepts such as "most of the time", it is not only natural that prob-

abilistic models should provide a formal ground for quantitatively evaluating the 

performance of heuristic methods. More over, it is equally natural that probabilistic 

model, whenever available, be consulted in the process of devising heuristic meth-

ods, or in selecting the parameters that govern these methods, so as to guarantee 

that only a small fraction of problem will escape an adequate treatment. 



Using Uncertainty and Certainty Measures 

First, consider the rule as follow: 

IF 

Student is sick. 

THEN 

Student would not be present in class. 

Clearly, this rule is heuristic in nature. For the converse of the above rule is 

an implication: 

IF 

Student would not be present in class. 

THEN 

Student is sick. 

This is an example of abductive reasoning. Formally, abduction states that: from P 

—> Q, it is possible to infer P by Q[10]. 

Abduction is an unsound rule of inference, meaning that the conclusion is not 

necessarily true for every interpretation in which the premises are true. Like this 

example, it is possible that student have traffic problems, sleep too late, etc. 

Although abduction is unsound, it is often essentional to solving problems. 

Such as this problem, Modus pones cannot be applied and rule must be used in an 

abductive fashion. Measuring uncertainty is adapted in this situation. 

Uncertainty results from the use of abductive inference as well as from at-

tempts to reason with missing or unreliable data. To get around this problems, we 

can attatch some measure of confidence to the conclusion. 

Confidence factor 

Confidence factor is the degree of confidence one has in a fact or relation-

ship. As used in artificial intelligence, it contrasts with probabilities, which is the 



likelihood than an event will occur[11]. 

Certain theory makes some simple assumption for creating confidence mea-

sures and has some equally simple rules for combining these confidence as the pro-

gram moves toward its conclusion. 

When experts put together the rule base, they must agree on a CF to go with 

each rule. This CF reflects their confidence in the rule's relibility. Certainty mea-

sures may be adjusted to tune the system performance, although slight variations 

in the confidence measure tend to have little effect on the overall running of the 

system. 

2.2.3 Building an Expert System for Surface Identification 

First, we analyse all numeric value of the parameters which are collected by 

measuring the surface topography. Second, we incoperate the observations in two 

rules. Confidence factors are calculated and are associated with the conclusions 

of each rule. By the combination of confidence factors ,the expert system can 

successfully identify different machined surfaces. 

In chapter 6, we will describe how to build the identification expert system 

in detail. 



Chapter 3 

MEASUREMENT APPARATUS 
AND MEASUREMENT 
PROCEDURE 

3.1 Apparatus 

The measurement system is composed of three major units: 

1. Daedal moving table control unit. 

2. Surfanaylizer-4000 unit. 

3. Dell computer unit. 

As shown in Figure 3.1. When the probe of a profilmeter traces through the 

specimen surface, the signal is received and amplified. The signal is then processed 

through a microprocessor, A/D converter and digital filter. The processed data are 

then transmitted to PC and stored on a data file. 

3.2 Measurements Errors 

Measurements errors should be minimized by taking the following precautions[12]: 

• Surface to be measured should be free of any material that would interfere 

with the measurement. 



Figure 3.1: Measuring system 



• Before measuring, any flaw should be avoided. 

• In each reading of per profile, due to the signal procession delay, the front 

multi—hundred points data should be truncated. 

• Because the signal analysis is subjected to the limitations of low and high 

precision voltmeter, the precision should be timely changed according to a 

different range of roughness. 

3.3 Measurement Procedure 

Based on the measuring system, surfaces can be analysed systematically by 

three methods: single profile method, multi-parallel profile method, and random 

process method. A general typology of solid surfaces and the analysis method are 

described in figue 3.2. 

From G.Y. Zhou's work[13], we know EDM, waterjet and grinding machined 

surfaces belong to isotropic surfaces. Shaping, milling, and turning machined sur-

faces are classified as determinstic ones. So we adopts multi—parallel profile method, 

is indicated in Figure 3.2. 

As shown in Figure 3.1, the specimen is mounted on table, using stepping 

motor controller to move specimen from one profile to another profile. The process 

requires two steps: First, the probe should go back to the original point, as shown 

in Figure 3.3. Second, each profile will have definite span with near ones. The 

position control is accomplished by two position sensors, daedal positioning table 

and control unit. 

For each specimen, all test data will be recorded into one file. The more 

details of testing steps are as follows: 

• Clear specimen surface. 

• Mount it on table. 



Figure 3.2: The classification of solid surfaces 



Figure 3.3: The track of stylus 



• Turn on surfanaylizer (amplifier, microprocessor and recorder). 

• set up environment. 

• Turn on stepping motor controller and stylus controller (daedal moving table 

controller). 

• Turn on profilemeter (drive unit and return control). 

• Turn on PC (dell computer center command system, monitor and printer). 

• Execute test program. 

• Operate 25 readings for each specimen. 

• Exchange specimen and repeat execuation of measurement program. 

3.4 Measurement Environment Setup 

To measure a solid surface, a common method is to move a sharp—pointed 

stylus over the surface and to translate its motion perpendicular to the surface into 

a meter reading proportional to the roughness average. Some procedures should be 

carefully followed in order to obtain accurate results: 

1. To ensure that stylus follows exactly the contour of the surface being mea-

sured, a force is needed to push it against the surface. Values of stylus force 

have been specified which will enable roughness measurement to be made ac-

curately on materials. For soft material, it is a special case. But here, all test 

materials belong to hard ones. 

2. During the testing, a sufficient length of surface must be traversed to ensure 

that the full reading characteristic of the surface is obtained. Besides, the 

front 400 sample points are deleted to ensure the data, to be accurate. 



3. Because the roughness reading may vary depending on the location of the 

sampling profile on the surface, 25 measurements per specimen are processed 

in order to get adequate measurements. 

4. In general, surface will contain irregularities with a large range of widths. 

Instruments are designed to respond only to irregularities with a large range 

of width. When irregularities of small width tend to he important, more 

significant values will be obtained when a small cutoff value is used[12]. 

According to those notes, the environment setups are as follow: 

• Cutoff = 0.8 mm. 

• Drive speed = 0.25 mm/s. 

• Sampling length = 5, Cutoff = 1, Profile = 1. 

• Travel length = 4 mm. 

• Sampling points of whole length = 3000 for one profile. 

• Measure 25 profile. Then, points x profile = 3000 x 25 = 75,000. 

• Sampling points interval = 1.25 µm(0.25mm/s), 12.5µm(2.5m/s) 

• Profile span = 40µ m (motor moves 80 steps) 

• Measuring area =4 x 1mm2 

• Motor steps = 10,000/rev 

• Linear motion table resolution: 5µm 

Figure 2.4 shows the sampling grid for measuring specimen. 



Figure 3.4: Sampling grid for multi-profile method. 



Chapter 4 

GENERATION AND 
PRE-PROCESSING OF DATA 

In this chapter, detail specifications of surface characteristics are described. 

For more detail, please see ASME standard committee B46—Classification and Des-

ignation of Surface Quantities. The descriptions of the specimens used from different 

machining methods, are shown in Appendix A. 

Twenty one parameters, shown below, are calculated from each measurement 

and are used to describe the surface. 

P0: Roughness Average 

P1: Root—Mean—Square(rms) Roughness 

P2: Ten—Point Height . The average distance between the five highest 

peaks and the five deepest valleys within the sampling measured from a line parallel 

to the mean line and not crossing the profile. 

P3: Maximum Peak—to—Valley Roughness Height . 

This is the distance between two line parallel to the mean line that contacts the 

extreme upper and lower points on the profile within the roughness sampling length. 

P4: Maximum Peak—to—Meanline Depth Roughness. 

P5: Maximum Valley—to—Meanline Height Roughness. 

P6: Skewness. A measure of symmetry of the profile about a mean line , 

offer a convenient way to illustrate load carrying capacity, porosity, and character- 



istics of nonconventional machining process. 

P7: Kurtosis. A measure of the ADF sharpness. In addition, it quanti-

tatively describes the randomness of a profile's shape relative to that of perfectly 

random surface which has a kurtosis of 3. 

P8: Mean Wavelength. 

P9: Average of total sum of each two nearby points' slope. 

P10, P11, P12: A reference line is drawn parallel to the mean line and at a 

preselected or predetermined distance from it to intersect the profile in one or more 

subtended lengths. The sequences are 25%, 50%, and 75% of the distance between 

mean line. 

P13: The peak value number which over least-square line. 

P14: Density of peaks on profile. 

P15: Mean curvature of peak points. 

P16: Wave band width. 

P17: Second power spectral density( PSD) moment. 

P18: Fourth PSD moment. 

P19: Density of summit on profile. 

P20: Number of peaks on the whole measuring length. 

4.1 Pre-Processing of Data 

4.1.1 Measurements 

There are twenty-one parameters in each measurement. Twenty-five mea-

surements are made on each specimen. The parameters can be viewed as the com-

ponents of a 21-dimension vector. 

As shown in table 4.1, specifications of readings are follows: 



4.1.2 Filtering of Extreme Measurements and Treatment 
of Raw Data 

Processed measurements yields the values of 21 parameters. For further ma-

nipulation, the 21 parameters can be conveniently considered as components of a 

vector representing a surface measurement. 

We can, therefore, evaluate the closeness of two measurements by dot multi-

plication of the vectors representing them. After dividing the dot product by the 

lengths of the two vectors, the cosine of the angle between the two vectors is calcu-

lated. For parallel vectors, i.e. simillar measurements, the vectors would be parallel 

and the cosine of the angle between them is equal to unity. 

The measurements viewed as vectors are further processed as follows: 

• Calculate the average vector from the 25 vectors which correspond to to the 

number of measurements per sample.. 

• Obtain the dot product of each of the vectors by the average vector. 

• Divide each dot product by the length of the two vectors. 

• Filter the extreme vectors, the average of the readings which are within con-

fidence interval is the mean vector. 

According to statistics, when sampling number is small, and data histogram 

shows as bell shape, this population can be classified as t—distribution. In ad-

dtion, because average value sometimes is different from the mean value for whole 

distributation, the confidence (1-a%) interval is decided by the following equation. 

s s 
X — ta /2  < it < X + '1,12

Niii, 
(4.1) 

\Ai  

Where 

X : average of samples. 



s : standard deviation of samples. 

n: sample number, n < 30. 

n-1: degree of freedom. 

a: confidence. 

Figure 4.2, for example, show the angles between each measurement (from 1 

to 25) and the confidence interval. The vectors within confidence interval insures 

that the mean reading will be located in the interval with 99% confidence. We 

also call these mean vectors "representative vectors" or "representative readings". 

Later, these vectors will be treated as our neural network training sets and expert 

system database. 

4.2 Data Preparation 

4.2.1 Testing Set 

As described in the last section, readings among confidence interval are used 

to calculate the mean vector with 99% confidence. In our identification procedure, 

the confidence readings will be treated as testing set. The number of confidence 

readings in the testing set shown in table 4.2. 

4.2.2 Constructing Learning Set of Network and Database 
of Expert system 

For network: 

The set of the vectors of specimens is treated as training set #1. Three more 

training sets are used with some modifications to set #1, as explained in chapter 5. 

All data will be scaled before being input to network, because backproparga-

tion network use sigmoid transfer function. For more detailed description, please 

see chapter 5. 

For expert system: 



Figure 4.1: Listing of confidence readings and extreme readings for specimen grind-
ing #1. 



For the expert system, the data is composed of parameters' ranges, standard 

deviation of each parameter, and the average of vectors. Please see chapter 6. 



Machining Method NO. of Specimens Total NO. of Measurement 
Grinding 6 150 
Turning 5 125 
Milling 5 125 
EDM 5 125 
Waterjet 9 225 

Table 4.1: Specifications of measurement. 

Machining NO. of Samples NO. OF CONFIDENCE READING 
Grinding 6 65 
Turning 5 65 
Milling 5 53 
EDM 5 44 
Waterjet 9 79 
TOTAL 30 306 

Table 4.2: Number of confidence readings for specimens 



Chapter 5 

APPLICATION OF 
BACKPROPAGATION 
NETWORK 

In this chapter, we use BRAINMAKERR[14] software to simulate the back-

propergation network. The following details are necessary to build up the identifi-

cation network. 

5.1 Input Layer 

The input layer of the network receives input from the outside world and 

send output off to the hidden layer. Two items are required to input data into the 

network, one is an input layer of neurons, and the other is an encoding scheme. 

The function of the encoding algorithm is to take input data and convert it into 

a form which is suitable for presenting to the network. The input encoding turns 

raw data into a sequence of numeric values that the network can understand. The 

input encodings for a neural network can be either local or distributed in nature[14]. 

We choose the former. Each input neuron represents one component of the repre-

sentative vector. This is equivalent to one measurement parameter. As shown in 

Table 5.2, the input feature is for grinding sample #1. 



5.2 Output Layer 

The output layer of the network sends the output to the outside world. By 

looking at the output of this layer we can tell what solution the network has arrived 

at, for any particular input. Like inputs, the outputs of a network can be either 

local or distributed. We still use the local, i.e. each neuron corresponds to one ma-

chining methods. An example of such an local output set is our network, in which 

the output of the network consists of 14 numbers. An input vector is represented by 

an output vector. Turning sample #1 input test vector might result in the following 

output: 

0.02 grinding + 0.00 milling + 0.88 turning + 0.1 EDM + 0.00 Waterjet + 0.99#1. 

The numbers indicate the degree of "confidence " that the input vector represents 

the corresponding machining. In this case, the network is indicating than the ma-

chining method is turning with a confidence of 0.88. 

5.3 Hidden Layer 

A hidden layer is composed of neurons which may be connected to neurons 

in other layers, or perhaps to each other, but which do not interact directly with 

the environment. The hidden layer recodes the input into a form that captures 

the correlations in the training set. This allows the network to generalize in a 

natural way from previously learned facts to new, or noisy inputs. The correlational 

information is stored in the connection matrix between the input and hidden layers. 

The output of the hidden layer is decoded into a meaningful form by the matrix 

between the hidden and output layers. 

How many hidden neurons should we implement to the network? Histograms 

of weight matrix are useful for checking on the mental health of network[14]. If the 

histograms resemble bell shaped curves, the network own a lot of spare capacity. 



If the histograms are split into disconnected segments, the reason is using a very 

small number of neurons and the histogram are hard to interpret. There is no hard 

and fast rule. We have to watch the network and find out how the histograms 

looks for our specific configuration. There is one general rule: as more and more 

connections piles up at -8, the network is getting more and more hopeless. As shown 

in figure 4.1, we list some histograms of different hidden neuron numbers. From 

top to bottem, they represent distribution of weight matrix which neuron number 

are 40, 60 and 90. The left ones present histogram of connection matrix between 

input layer and hidden layer. The right ones are about histogram between hidden 

layer and output layer. Table 5.1. lists the performance and convergence iterations 

of network using training set #1 with different hidden neuron number. It is obvious 

that network using less hidden neuron number may has lower rate of accuracy, and 

the hidden neuron number does not affect the iteration number of convergence. 

hidden neuron no. performance of network steps 
40 78 % 12720 
50 85 % 11250 
60 84 % 11730 
70 88 % 11920 
80 90 % 13960 
90 90 % 11640 
100 91 % 12270 

Table 5.1: Performance and iterations of network using different hidden neuron 
number 

5.4 Data type, Precision, Renormalization 

We choose 21 numerical parameters to represent machined surface character-

istics. The parameters' values are input in double precision. The software BRAIN-

MAKER accepts numerical values in the range of 10 x e+308 and —10 x e-308. The 

data is normalized so that all parameters values are scaled to fall in the range of 0 



Figure 5.1: Histogram of weight matrix with different neuron number. From top to 
bottem, the number are 40, 60 and 90. 



to 1. The scaling is done as follows: 

Input to neuron = (C - Min.)/(Max.- Min.) 

Where 

C = input value from real world 

Min. and Max. = From data collection, the minimum and maximum values of C 

5.5 Learning parameters 

• Learning rate: 

We already mentioned that the optimum goal is to move the weight vector 

(W) in a direction so that the value of function (F) will be smaller at the new 

value Obviously, the best approach would be to move in the W direction in 

which F is decreasing most rapidly. Thus, a reasonable learning law is 

W:e. = Woad — a x V(F(W)) (5.1) 

Where 

W.  : weight vector 

F(W): mean square error function 

a: learning rate 

V: gradient 

In generally, if a > 0, we often choose 1 as learning rate. With high learn-

ing rates, W„,, sometimes "zooms" past the solution. When using learning 

rate smaller than 1, it slows down training, and does not help convergence. 

• Training tolerance 

If any individual neuron in the network is incorrect, the network is con-

sidered to have gotten this fact wrong, and training will continue. For ex-

ample, 0.7 is the correct answer for a certain fact, a training tolerance of 0.1 



means that any output from 0.6 to 0.8 is consider correct. We use default 

value of 0.1. 

5.6 Ordering of the Input Vectors 

Neural network learns most effectively when the training facts are in 

random order[14]. Convergence could be slowed if input vectors represent-

ing different machining methods are not randomly presented to the network 

during training. 

5.7 Training and Testing Sets 

To check the network performance, there are two methods. One way 

is to be sure that training sets are large enough and to show that further 

increasing the size of training set does not affect performance. Another way is 

to test the performance of the network on both the training and testing sets 

and show that the network predicts correctly the machining methods most of 

the time. 

The first thing is to check the amount of available data to see if it is 

enough or not. Too little data causes failure of neurocomputing to generalize. 

We use four training sets. Two set consist only 30 representative vectors. The 

other two include both representative vectors and extra 93 readings which are 

within the confidence interval. 

We know that neural network can generalize from the training set ex-

amples to the entire problem environment. Since a real-world input vector 

is assumed to lie close to the training set examples, the output of the well-

trained network should be reasonably related to the outputs it would give for 

the similar examples in the training set. If the input is far away from any 



training examples, then the output of the network cannot be expected to be 

meaningful. 

Too many training facts would cause the training time to be unnec-

essary long. The other disatvantage is the phenomenon of "overtraining"—

when simillar or same training vectors appear repeatedly which leads to poor 

performance of the network when presented with new input. 

5.8 Description of Identification Network 

This network will evaluate various machined surfaces which are gener-

ated by various machining methods. The networks give an output expressed 

in output neuron activations which can be interpreted in terms of machining 

methods and the number of sample. Examples: "measurement belongs to 

turning sample #1", or "measurement belongs to waterjet sample #9", and 

so on. High single neuron activation will mean high confidence, and vise versa. 

Constructing training set. The first thing we need to do is to list the 

training set. Here is a single input vector, followed by the corresponding 

desired output. 

facts 

I PO P1 P2 ... P20 

D 1 0 0 0 0 1 0 0 0 0 0 0 0 

This fact is about the description of grinding sample #2. PO to P20 input 

and D represents desired output. Note that we do not label I or D in the real 

training facts files. In order for the neural network software to recognize the 

input data, we must enter each fact serially as shown in Table 5.2. 

Part of a training set is shown in Figure 5.2. 



Figure 5.2: Part of training set #1 of identification network. 



Constructing testing set The network's performance is measured using two 

different data set: training set and testing set. The training set is a seperate 

body of data from the testing set. While the training set is used directly for 

training of the network, the testing set is used only for the evaluation of its 

performance. 

We mentioned earlier the phenomenon of "overtraining". In fact, as the train-

ing set becomes larger, the error estimated by using the test set typically 

decreases for a while, then begins to increase again. If we were somehow able 

to increase the size of the training set to the point where further increase in 

size would not change the error values, then this could be taken as evidence 

that the error reaches a minimum. 

Part of the test set #1 are listed in Figure 5.3. 

Specifications for the network 

This specification of the neural network consists in specifying the number of 

input, hidden and output neurons. 

The networks have input layers of 21 or 22 inputs. one hidden layers of 100 

or 120 processing elements, and 14 processing elements in the output layer. 

Detail description are given in Figure 5.4 and Table 5.2. 



Figure 5.3. I'm t of the test set 



Figure 5.4: Specification of network. 



Desire Output Example (grinding sample #2) 
grinding 1 
turning 0 
milling 0 
EDM 0 

waterjet 0 
sample #1 0 
sample #2 1 
sample #3 0 
sample #4 0 
sample #5 0 
sample #6 0 
sample #7 0 
sample #8 0 
sample #9 0 

Table 5.2: Series of desired output for grinding sample #2. 

Training set # I H 0 NO. of Training Facts 
1 21 100 14 30 
2 22 100 14 30 
3 21 120 14 123 
4 22 120 14 123 

Table 5.3: Specification table of network (I: no. of input neuron, H: no. of hidden 
neurons, 0: no. of output neurons.) 



Chapter 6 

DESCRIPTION OF THE 
EXPERT SYSTEM FOR 
IDENTIFICATION 

6.1 Data Analysis 

TThe first step to build an expert system is to analyes the existing 

knowledge. Figure 6.1 shows the ranges for the Roughness Average for for 

the various machining methods. Appendix B, shows the ranges for each of the 

other 20 parameters for the various machining methods. From those figures, 

it is clear that most parameters' ranges overlap. In these figures, the X—axis 

indicates the magnitude of the parameters. The Y—axis shows the machining 

methods. 

6.2 Parallel and Sequential Procedure 

The problem of overlapping parameters requires an expert system which 

can evaluate all the possibilities. When a specimen is presented, how much 

information an expert system should receive in order to make a decision will 

be an important factor to make us decide which of the above of procedures 

will be adopted. 



Figure 6.1: Ranges of the parameter 0 



There are two major decision procedures: parallel and sequential, as shown 

in Figure6.12. 

Below are their definitions: 

— Parallel decision procedure — The system will get in all the information 

on a subject and then make a decision. 

— Sequential decision procedure — The system is always guided by the last 

piece of information received. 

In general, a parallel procedure will make decisions which are as good and 

usually better than a sequential procedure[15]. No doubt that identification 

expert system needs all information to make the best judgement. Our system 

will use parallel decision procedure. 

6.3 Adding Rules 

The expert system will process the specimen data and will output 

the likelihood that the specimen is generated from each possible machining 

method. The highest likelihood will be used to identify the machining method. 

Let RESULT [j] represents the value of the combined confidence factor for 

machining method j. (j=1 represents grinding, j=2 represents turning, etc.) 

The selected machining method m will maximize the value of RESULT [j], so 

that 

RESULT[m] > RESULT[z], 

for all i in. 

The system consists of two rules: 



Figure 6.2: Parallel and sequential procedures 



Rule 1 

IF 

LOCALMIN [j][i] < P[i] < LOCALMAX [j][i] 

THEN 

CF1 [j][i] = 1 

ELSE 

CF1 [j][i] = -1 

Rule 2 

IF 

MEAN[j][i] — 3 x STDEV[j][i] < P[i] < MEANDJ[i] + 3 x STDEV[j][i] 

THEN 

CF2 [j][i] = relative probability of P [i] with MEAN [j][i] 

ELSE 

CF2 [j][i] = -1 

Combine Rule 1 and Rule 2: 

FOR j=1 to 5 

FOR i=1 to 21 

RESULT [j] = RESULT [j] + CF1 [j][i] + CF2 [j][i]; 

END 

END 

The First Rule 

To calculate RESULT [j], for a given input vector, we consider the min-

imum and maximum of each parameter for different machining methods. We 

use LOCALMIN [j][i] and LOCALMAX [j][i] (i=1 to 21, for parameters. j=1 

to 5, for five kinds of machining methods) to represent them. By observing 



all parameters' ranges, the first rule will contribute to RESULT [j]. 

First rule is based on the theory of uniform distributation (A random 

variable having distribution in this family arises by choosing a number from 

some bounded interval in such a way that all numbers are equally likely to 

be chosen)[16]. Rule 1 tests if a given parameters of the input measurement 

falls within the range of the corresponding parameter of each of the machining 

methods. Thus, if an input parameters falls within the range for a machining 

method m, the confidence factor RESULT [m] is increased by unity. If not, 

the confidence factor is reduced by the same amount. 

The Second Rule 

This rule is a typical abduction heuristic, also based on probability the-

orem. In this rule, we made two assumptions: 

1. There exists a seperate and unique mean value MEAN [j][i] of each pa-

rameter for every machinning methods. For example: grinding (j = 1), 

the P [i] (i=1 to 21) would be near MEAN[1][i] and far away from MEAN 

[2][i], MEAN [3][i],etc. 

2. Random variable P[i], belong to family of normal distribution. 

Rule 2 calculates the distance between an input parameter from the 

mean value of the corresponding parameters which are related to various 

methods of machining. The distance is converted into an estimate of the 

probability that the input parameter belongs to one of the various methods 

of machining. 

A normal distributation has the famous "bell shape" [17]. To calculate 

the confidence factor of P[i] in normal distributation, there are two methods. 

The first way is numerical analysis, integrates the area under "bell shape" 



curve excluded the area between P[i] and MEAN Hi]. The other is to use 

relative probability. For probability of MEAN [j][i] equal one, the relative 

probability of P[i] is 

_x2  
e Y 

Where 

X = P[i] — MEAN[j][i] 

Y = 2 x STDEV[j][i]2  

The system picks the highest value of RESULT [j] and deduces that j is the 

machining method that generated the specimen. 

After testing, we found that the identification rate is up to 94%. 



Chapter 7 

RESULTS AND DISCUSSION 
ON USING 
BACKPROPAGATION 
NETWORK 

7.1 Identification Results of Network 

Description of the Training Sets 

We constructed four learning sets : 

1. Set #1 : 30 representative vectors which are average of all vectors within 

the confidence interval. 

2. Set #2 : 30 representative vectors, with vector length added as the 

twenty—second parameter for each fact. 

3. Set #3 : 30 representative vectors and 93 vectors which are randomly 

selected from 306 confidence readings. 

4. Set #4 : Same as set #3 but adding length of vector to each training 

fact. 

Testing Sets 



1. Set #1 and set #2 : Include all 306 vectors to test the network perfor-

mance which were trained by training set #1 and #2. 

2. Set #3 and set #4 : These are to test the networks which are trained by 

the training set #3 and # 4. 

part of the results of testing the network performance using the test 

set are shown in Table 7.1 to Table 7.5. The rest of the tables are shown 

is Appendix C. In the tables, the first column of the table lists the reading 

number. The second column lists the degree between the testing reading and 

representative reading. From the third to sixth columns, the results from the 

various network which use different training sets are shown. 

In these tables, T represents the reading which is included in the training 

set. The results are prsented in a simple form. For example: : 99e + 94#1. It 

means : the network has 99% confidence that the specimen is from grinding 

and 94% confidence that the specimen is simillar to sample#1. 

1. Table 7.1 presents the results of network identification of grinding sample 

#1. We 

2. Table 7.2 presents the results about turning sample #2. 

When turning specimens were being measured, because of their round 

shape, hand—adjustment of span was used instead of using positioning 

table. The precision become lower and the confidence interval become 

wider. Fewer readings will be filtered. Twenty—two readings are included 

into the testing set for turning sample #2. We also can see some miss-

classification occured. 

3. Table 7.3 presents the results about milling sample #1. See the testing 

result about reading #1. Using training set #3 and #4 can help decrease 

miss—classification. 



4. Table 7.4 and 7.5 present the identification results about EDM sample 

#2 and waterjet sample #1. 

7.2 Discussion 

To judge what kind of training set is the fittest one, we have to evaluate 

network performance. As shown in Figure 31 to Figure 33, M represents 

the number of error miss—classification of machining methods, S represents 

the number of miss—identification about sample number( for example: sample 

#1, sample #5, etc.). 

Table 34 shows the conclusion. We can see that using training set #1 

and #2, the accuracy are about 91%. For network useing set #3, the rate is 

up to 99%. 

Note that network in identifying different operations works well. It al-

ways higher than 94%. If it uses training set 3, it is up to 99%. 

The results shows that using backpropagation network can successfully 

identify machined surfaces which are produced by different methods: grinding, 

turning, milling, EDM or waterjet. However, for telling the difference of the 

specific machining condition of each specimen, only 85.9% accurcy could be 

reached when network uses learning sets #3. 



Grinding #1 
(Readings) 

Degree (vec. 
analysis) 

Rep. Vector 
(30) 

Rep. Vector 
+ Vector 
Length 

30 rep. 
Vector + 93 
Facts 

123 Vectors 
+ Length 

1 0.65 99g+99#1 99g+99#1 99g+14#1+ 99g+34#1+ 
20#3 51#3 

2 0.19 99g+99#1 99g+97#1 99g+97#1 99g+93#1 
3 0.45 99g+99#1 99g+98#1 99g+97#1 99$+95#1 
4 0.37 99g+99#1+ •99g+98#1 99g+93#1+ 99g+85#1 

23#2 20#3 
5 0.24 99g+99#1+ 99g+98#1 99g+88#1 99g+87#1 

21#2 
6 0.06 99g+7#4 99g+12#2 '99g+78#1 99g+98#1 
7 0.15 99g+97#1+ 99g+99#1 99g+89#1 99g+65#1 

17#3 
8 0.13 99g+97#1+ 99g+98#1 99g+37#1 99g+37#1 

12#3 
9 . 0.61 99g+99#4 99g+95#2+ T T 

91#4 
10 0.09 99g+99#1 99g+98#1 99g+98#1 99g+38#1+ 

44#3 

Table 7.1: Identification results about grinding sample #1. 



Turning #2 
(Readings) 

Angle 
(vec. 
Analysis) 

Rep. 
Vector 
 (30) 

Rep. Vector+ 
Vector 
Length 

30 Rep. 
Vector+ 93 
Facts -- 

123 Vector+ 
Length , 

1 6.64 2t+99#1+ 87t+3641+ T T 
30#2 89#2 

2  5.92 12t+1341 98t+5942+ T T 
+91#2 42#3 

3 6.59 —99#1 99t+9941+ ' 9t+99#2 99t+99#2 
62#2 

4 7..0 90t+99#1 99t+99#1+ T T 
79#2 

5 6.60 96t+95#4 3).t+84e+ T T 
93#1 

6 2.62 54t+6742 79 t+16w+ Ot+08#2 99t+75#2 
+36#4 95#2 

7 5.00 98t+1141+ 83t+7742 99t+10#1 09t+5#1+ 
85#2 3#2 

8 4.67 91t+39w+ 94t+93#2 99t+99#2 99t+97#2 
97#2 

9 g.46 ' 99w+50#2 99w+99#2 ' T T 
10 5.7 99w+11#3 99w+79# T T 
11 4.16 '75t+9941+ ' 97t+50e+ 99t+91#2 45t+30#1+ 

14#6 96#2 84#2 
12 7.97 98t+55#1+ 88t+1.1#2+ T T 

98#4 86#4 
13 3.72 93t+1041+ 99t+85#2 9Ct+91#2 99t+56#2 

.. 92#2 
' 14 3,03 32t+30#2+ 85t+9542+ 99t+99#2 99t+99#2 

28#4 88#4 
15 4.41 55e+28w+ 5t+33w+ 09t+97#2 99t+98#2 

99#9 8142+ 90#4 ', 
16 6.95 85w+83#3+ 9942+9543 T T 

97#8 
17 `5.29 ' 41w+8242+ 8642+802 99t+99#2 90t4§#2 

_ 99#8 
18 8.64 70t+9943 ' 98t+55#2 T T 

+72#7 
19 4.130 61t+38#2+ 63t+7242+ 99t+945#2 99t+93#2 

99#3 99#3 
2b 3.95 99t+3941+ 56t+99#2+9 99t+95#2 99t+21#1+ 

7544 8#4 96#2 
21 5.35 76t+99#3 77t+71#4 95t+13#3 99t+43#2+ 

89#3 
22 9.15 31t49#1+1 94t+46#1+ T T 

7#2 97#2 

Table 7,2: Identification results about turning sample #2. 



Milling #1 
(Readings) 

Degree(Vec. 
Analysis) 1 

Rep. 1  
V ector(30) 

L 

Ps ep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
gth 

1 1.32 i 3 1 t+39# 1 +7 1 .54 t+28m+98 'Mtn+ 1 gt+174 1 St+90m+16 
I 944 #1 #1 #1+90#4 

2 1.38 99m+96#1+ 3 lt-00m4-08 99m+94u1 09m+18#4 
69#2 #1 

T T —134 1 cy)m+99# 1 - - 99m+99#1 
4 1.75 99m+99#1 99m+9'941 ' 44m+9$#3 99m+00#1 .3......,-- 1.30 25+99m+99 99m+99#1 99m+66#1 21 t+99m+13 

# 1 #4 
6' 2.62 99m+99#3 68g+61m+9 T T 

9#3 
I 2.23  99m+98# f 99m401 T  t 
g 0799 99m+85#1+ y  99 m7327-7155-99m+90#1 99m+9#1+7 

62#4  #1  8#4 
0.82 99m+99#1 99m+98#1 - 99m+9/41 99m+76#1 

iö 1.96 99m+93#1  99m+79#1 T-  't 

Table 7.3: Identification results about milling sample #1. 



lablvi #.2 
(Readings) 

t)egree(Vec. 
Analysis) 

Rep 
Vector(30) 

Rep,Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123Vectors+ 
Length 

99e44#14 
9#2 

99e+10#1+9 
6,12 

3 t+9e+g1 2 99e+78#1+8 
8#2 

1.56 9)e+964#1+9 I  24 tlYtrir — T T 
9#6 

1 :n 99e+27 i+8 98e+91d W  00e+00#2 :-e+ #2 
 2#2  

M4542 9gE4g2;71-99e+76#2+2 e+ 5#2 
6#4 0#3 

99e+ # 99e+ 1 e+ e+ 
6#7 (143 

1. 99e+32W1+4 99e-41024 122t.44064-t t4 90e+85#2 
0#4 9#4 2+73#3 

1.04 88e44#1+0 68e+A#1+0 1' I. 
6#3 4#3 

Table 7.4: Identification results about EDM sample #1. 



*aterjet if 
(Readings) 

Degree(Vec. 
Analysis) 

P. gip. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

 30 Rep. 
Vector+93 
Facts 

123 
 

Vectors+Len 
h 

1.11 is.v.4-4.4,1T-4:-  
94#3 

9w+2112+ 
90143  

99w+1111 u Ow+0042 

2 L48 ..-Ww+89#3+ 
1418 . 

99w+99*4+ 
1817  

99w+1 i 41 99w+fit I +4t 

0.64 11 w+491 f+ 
99#6 

-§'§w+901 f 9W+9 N1 90v/4W 

4 b. - -09 w+164 i + 
5318 

09w+19#$ '99w+95/8 99w+99#8 

-' c-  . f N 99 w+Olif -DO - w+91#1 IA w+431I + 

-1'
1818 

 

0§w+OI +1 
0/8 

6 Li. 36e+6w+Dg# 
1+9716 

' 97w-43/f "1' 

7 - 6.146' 99w+91#1+ 
9915 

90w-4-5113 9w+36418(  99w+608 

6 1,4y 15w+9841+ 
83#6 

-OD w+9;11 I 1' 

9 1.86 59w+98-g+999w+9941 
916 , 

T -T 

16 1.4-6 99v,4484"1 99w-f-0#1 99w+11111 99w+11ti1 
71  TO 09 w+2414 "0.0w+1191-47 

6601 
14  T 

.. ....._ . 

Table 7.5: identification results about waterjet sample #1. 



rir!iitiOarnpie # 3 4 1 5 6 
-4  Total No. aleadinas 1T5---fr—Tir—  4ir1 —  Tr 

Miss-classification 
(Using training 

set #1) 
0 0 0 0 0 0 

Miss-claSsffication 
(Using training 

set #2) 
0 0 ' 0 0 0 0 

Miss-classification 
(Using training 

set #3) 
0 0 0 0 0 0 

Miss-classification 
(Using training 

set #4)  
0 0 0 0 0 0 

TurnimSarnple # 2 4 
Td-4-,5-- 

w. 
 — TOTATNo7oT 

42E1J:t2rgs_r_,___ 
if--  -Jr—  Tr—  

Miss-c assi ication 
(Using training 

set #1) 
1 5 2 

.11•0* 

1 

00.1.001Mallel..1 

0 

Miss-ciaSsification 
(Using training 

set #2) 
0 0 4 0 

Miss-c assi ication 
(Using training 

set #3) 
0 0 0 

... 
0 

_„  
0 

. iss-ClassificaiiOn 
(Using training 

set #4) 
1 0 0 1 

- 
0 

- 

Table 7.6: Miss-classification of grinding and turning specimens. 



Millin Sam le # 1 2 " 3 4 5 
Tot al No. o Readings 10 9 13 16 11 
1.4iss-classification 
(Using training 

set #1)  
1 1 0 0 0 

Miss-claisification 
(Using training 

set #2) 
0 1 0 0 1 

Miss-classification 
(Using training 

set #3) 
0 0 0 0 0 

Miss-classification 
(Using training 

set #4) 
0 1 

,... 
0 0 0 

-EOM Simple # 1 2 
Total Ne. of Readings 7.--67-----1r 16 
Miss-classification 
(Using training 

set #1) 

M1ss-classification 

0 0 0 3 2 

(Using training 
set #2) 

0 1 

\ 

0 

'. 

2 

.. 

5 
— 

Miss-classification 
(Using training 

set #3) 
'Miss-classitication 

 
0 0 0 0 2 

(Using training 
set #4) 

0 0 1 0 0 

Table 7.7: Miss-classification of milling and EDM specimens. 



Waterl ample # 
—ThiaiNb of Readin:s 11 10 11 

iss-classi ication 
(Using training 

set #1) 
0 0 0 0 0 0 0 3 0 

'Miss-classification 
(Using training 

set #2) 
0 0 0 0 0 1 1 0 0 

Miss-classification 
(Using training 

set #3) 
0 0 

i 
i 
1 0 
I 

0 0 0 0 0 0 

Miss-classification 
(Using training 

set #4) 
0 

-I-  

0 i 0 
1 

0 0 1 

. 
 

1 0 0 

Table 7.8: Miss-classification of waterjet specimens. 



Miss- 
Classificat 
ion 

- 

Grind. Turn. - Mill. EDM Water- 
jet 

-Total Accuracy 

'set #1 

set #2 

6 

0 

4 . -.2-  

5 

- 

 2 

5 

8 

3 

2 

1'9 

15 

91% 

95% 

'set #3 

' set #4 - 

0 

6. ' 

- 6 

/ 

0 

1 . 

2 0 

'2. . 

.2 ' 

6 . 

004A 

97. i % 

Table 7.9: Conclusion table of accuracy 



Chapter 8 

CHOOSING PROPER 
PARAMETERS IN USING 
IDENTIFICATION EXPERT 
SYSTEM 

As metioned in chapter 6, the parallel decision expert system is built to 

identify different machined surfaces. The accuracy is approximately 93.5% ( 20 

error estimation in 306 testing facts). But it still can be inscreased by selecting 

useful parameters and filtering out variables that have weak classificatory 

power. 

First, we have to inspect the population of each parameter. In chapter 6, we 

know that the expert system needs to consider the local minimum and local 

maximum, as well as mean value and standard deviation for different machin-

ing methods. It is reasonable to assume that parameters whose distributations 

are steep, i.e. with small standard deviations, would be more useful as classifi-

catory variables, than parameters with large standard deviation. In statistics, 

the property of the steepness is known as kurtosis. Figure 8.1 lists all MEAN 

[j][i] and Figure 8.2 lists the kurtosis. The parameters are 6, 7, 8, 15, 17, 18, 

20. Using these parameters only to calculate the total confidence level, the 

rate of success is raised from 93% to 98%. 



i MEAN 1 i=1 ' i=2 i.,-,! i=5 !1=6 i=7 
Lan p0 

* 
r.)..1 . ,-, i p4 i  P5  p6 

'' '' 1-0:5  -0.704 * 
. 

' 808 . * " - .5 1 L-2.646 12.364 -0.333 

'iT=1 urn. 4.379 5.405 72 006 • ' - 74 .1113.904 14.4-69 ' 0-.047 
.j.72 
Mill. 4.771 5.598 -1 '6612 -. 107 -14.803 12.104 I.:0.183 
j=3 

18.897 1r,  I  K-fiti'S  EDM 2.349 3.022 
j =4  --. Water- 3.150 13.947 3.524' (. S-0-------7ITT6. S.71 -omfa----  
15_17,15 I 
mEAN-.1;4--"IT. ' 1 1 1 i=12 i=11-----  17---14--  : = 1 0 
Ul[i] 
Grind. 
j=1  

P7   I.  
4.016 

1)8 
23.766 

p9  
,:).160 

1 1  ' pll .12 .P13 ..,...   
0 ( 77 . 0.633' 0.968 354.42--- ! 

Turn. 2.734 ! 100.26 n).322 0,107 ' 0.498 0.896 68.136 
j=2  

laKI-ff. 2.424 : 124.88 -I 2r)0 10 584 281 10. - 
0.903 ' 51.049 

P=3 EDM 3.444 67.182 9.271 ! (1  ( 69 0.498 0.938 114.62 
1 

Water- Y. 61T 
jet j=5 j=5 

"76:14.4 
; 
o . r5T 122 Car' WI' r' 

, 1=18 i=19 , i=20 i=21 -- MEAN i=15 1=16 i=17 
UT] . . 1,14 , , _ R15 p16 _ _,J,  , p18 19 20 

-d. Grin 0.119 0.089 7.207 0 028 i 0.011 0.018 446.56 
j=1-  1 
1 Turn 0.093 0.250 , 1015:452 0. 9 0.018  
1.i.72 I 
I Mill. i 0.0n 0.210 I 9f.'275-4-.  -701-9-  001'5 • 0.009 7130.94 
[1=3,1 

 --- '701-  EDivi.60 
; c; 0716-1 4-1711/1-  - • 0 062 ' 

i 

-0.616 - 4.6(T8-  ' - M6.94 - 

- 
 Fet jj=5 

ater-  --6-  
1 1 

40.637 7 0 100 -4-0.026 7 [ 301.51' 

Figure S.1: Mean[i][j] 
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Figure 8.2: Kurtosis[i][j] 



Chapter 9 

CONCLUSIONS AND 
FUTURE WORK 

9.1 CONCLUSION 

1. In identification network, adding vector length as the 22th can increase 

rate of convergence during training by 20%. Although the network con-

verged more fast, we did not gain any improvement in accuracy when 

using training set #4. Vector of lenghth is not an important parameters 

for network in identifying different machined surfaces. 

2. Even where all parameters overlap, the network as well as expert systems 

are able to learn and recoginize new input and be able to classify correctly. 

3. An advantage of Neural Network versus Expert Systems, is that while 

in expert system, we have to assume a certain populatuion distriburion 

(normal is our case), the neural network outp erformed the expert system 

without any statistical assumption. 

4. In expert system, choosing only parameters 6, 7, 8,15, 17, 18 and 20 

to construct the testing set and knowledge base, the accuracy of perfor-

mance increased by 4% comparing with using total 21 parameters. 



9.2 FUTURE WORK 

The backpropergation networks are useful for identifying different 

machined surfaces future work can continue towards improving the robustness 

of the system to noise, and to improve it performance. 

— Introducing noise into the data and try to see how the number of hidden 

neurons increases to keep the same accuracy. 

— Discover method or methods using Neural Network technology to sin-

gle out the input variables that are most relevant to the classificatory 

performance of the network. 

— Exploring the impact of choosing more than one layer of hidden neurons 

on the performance of network for classificatory tasks. 



Appendix A 

SPECIFICATIONS AND 
MEASURING RESULTS OF 
SPECIMENS 

All of the representative vectors and machining for all samples are listed 

on following tables: 
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Table A.1: Representative vectors of grinding specimens. 



MachininErmess:  
Grinding # 

Grinding  
Cross Feed 

Material: C.R.S.1010 
Depth of Grind Grinding Wheel 

(inch) . (inch) used 
No. 1 0,005 0:0002 Norton 39C60-18VK 

Grit is 60 (Medium) 
Silicon Carbide 

No. 2 0.010 0.0005 Norton 39C60-18VK 
Grit me 60 (Medium) 
Silicon Carbide 

No. 3 0.015 0.001 Norton 39C60-I8VK 
Grit a. 60 (Medium) 
Silicon Carbide 

No. 4 0.005 0.0002 Norton 39C100-18VK 
Grit let 100 (Fine) 
Silicon Carbide ' 

No. 5 0,010 0.0005 Norton 390100-18VK 
Grit I. 100 (Fine) 
Silicon Carbide 

No. 6 0.015 0.001 Norton 390100.18VK 
Grit at 100 (Fine) 
Silicon Carbide 

Cooling used: None 
,Length: 2.5 inch, Width: 2.5 inch, Heigth: 1 inch 

Table A,2: Machining conidition of grinding specimens. 



T
able A

.3: R
e present ative

 vectors
 of turning

 s pecim
ens. 

run -  
(kg N 

PO PI P2 P3 P4 PS P6 1 I 8 
I 

11 I I P 14 P 15 i P to 1,  i7 r is Fp i9-1-1,20 

No. 1 6.991 8.595 41.87 
4 

42.11 
1 

-19.29 22.81 
a  1

0.206 2.573 14(1.6 
0  

0.365 i 0.099 0A04 0.624 40.50 702 
0 

inso 179.9 
9 

0.0-i. rifirrW, TAO 
2 

No. 2 6.135 7.595 40.00 
9 

40.46 
6 

49.62 20.64 '-a.263 
3 

2.806 125-.6 
8 

0.368 1 0.1657 0A95 0.892 46.i8 liairr 
1 

-6.-nr Izi:nr-  
3 

6:103-  TOR-  Tfiltic ;1::::i;:r 
5 

No. 3 4.459 .3300 28.58 
6 

28.97 
7 

-14.61 14.36 
8 

-0.052 2.722 103.0 
6 

0.336 i 0.113 0_511 (TOT -36.71 liff§-15.34i-  
4 

TUT 
6 

17430 0.617 baiiii-  ..-433 
0 

No. 4 2.137 2.613 14.48 
6 

14.74 
2 

-7357 7.3114 I 0.137 2.715 70_22 
0 

0.235 0.097 0.486 0.916 85.00 0.093 
0 

0.149 68.60 
0 

0.035 0.012 0.0i0 331.7 
o 

No. 5 2.172 ' 2.701 S5.27 1 
4

5.57 -8.440 7.134 41.1391 2.836 63.57 0.266 I 0.122 
, 
030 10.949

0 
110.2 0.093 351.8

6  
0.149 

_0
40 .78 0.082 0.021 0.010 



Machining Process:  Turning  Material: CRS. 1010 
Turning # Feed Depth of Cut 

222a...............alyi...0  
Spindel Speed 

No.1 
*A.... . 

0.012 0.025 1115 
No. 2 I 0.010 0.020 660 
No. 3 0.008 0.015 325 
No. 4  
No. 5 

0.006 
0.002 

0.010 
0.015 

210  
80 

Cooling used: None 
Length: 2.5 inch 1Diameter: 2 inch  

Table A.4: Machining condition of turning specimens. 



T
able A

.5: R
epresent ativ

e
 vectors

 of  m
illing

 specim
ens. 

NtiUm PO PI P2 P3 1s4`P5  P6 P S 10 1 II P12 P13 TIT TIT FTC irlf p Tr P19 PZ0 

io. I 

No.--1----3.5416-  

2324 2.882 

1.24C 

15.82 
4 
-K-24  
5 

16.05 
0 
-11-07 
3- 

-8.643 

-10.27 

-15.95 

1 

 5 

7.206 

' 10.30-  

11.52 
6 

-0.367 

0.032-  
_ 
-0358 

. 
2 936 

-2.272 

8 t 75 I 0 221 
2 " I . 
98.92 0.271r 
8 

0.133 

0.136-  

"6.253 

j 0.216 

0.628 

T490 

0.931 

0.873 

78.19 
9 
-6-or 
5 

0.103 0.145 99.58 
1 

0.036 0.01 0.012 388.8 
0 
i-tror- 
8 
231-73-  
2 

0.091 
^ 

0.229 128.5 
3 

0.046 0.015 0.01 

$ 
No. 3 

No. 4 

4.856 

6.234 

5.865 

7.471 

2728 
6 
34.82 
7 

i 27.47 
1 1 

Z466 

10 

1511 
4 

0.242 

0.311 

0.651 

0.579 

0.917 

0.908 

3738 
4 
41.20 

0.079 0.206 

0.218 

0.254 
 5 

255A 
4 
238.8 

268.8 

0.033 

0.066 

0.065 

0.006 0.007 

0.084 0.018 0.006 3163 
0 

No. 5 6.892 8.030 34 87 305.32 -19.66 15.64 
1 

-0.113 
, 

2.084 140.7 0.360 0.261 0.570 
07 

0.889 3
3
7.90 ' 0.082 0.017 0.008 309.9 

1 ' 



Machining Process: Milling Material: CRS. 1010 
Milling # Feed Depth of Cut Spindel Speed 

.t (inch/Min.) • (inch)  (RPM) 
No. 1 . 7(5/8)  0.005 1115 
No. 2 4.1.3/8.) 0.010 ••4 660 
No. 3 ?(9/16) 0.015 325 
No. 4   115/81 . 0.020 210 
No. 5 7L5/1 61 0.025 80 

Tool used: End Mill, 3 Flute, 1(1/4).  Dia. 
Cooling used: None 
jr..2.9.91.1?...t.  2.5 inch _IV i.V2i...?....§....19oh  I Heigth: 1.0 inch  

Table A.6: Machining condition of turning specimens. 



T
able A

.7: R
epresentative

 vecto
rs of  E

D
M

 sp
ecim

ens. 

laAM 
# 

PO P1 P2 P3 P4 irr P6 P7 P8 ' PT-15T6-MT1711193  . .P.T4 Fri 

4.201-  

176 , 

-65":"4-2 

P17 1$^'  

-6:511-1-6-.6a-4-533' 

fir 

No. 2 4.554 5.899 35.67 
3 

35.94 
1 

.16.31 19.62 
9 

0.554 3,956 114.t10.32 
7 

I 0.045 0.34o 0.946 56.28 
6 

0 
7 

0.082 
7 

No. 3 2.616 3.345 18.97 
7 

19.19 
1 

4012 

- 

8372 . -0.163-  3.002 70.60 
9 

0.291 0.140 0.651 0.960 96.66 
7 

laill 0.172 29.67 
9 

0.070 i.013 

0.01$ 

0.005 

0,110 

263.0 
0 

No. 4 1.723 2.256 14 6 
7 

15.00 
6 

-7.345 7.661 0.147 3.376 55.60 
7 

0.251 'TNT 0.462 0.944 123.7 
5 

0.094 on 3,4 
5 

No. 5 1.434 1.818 12.68 
5 

13.10 
5 

-6.869 6.237 -0.123 3.489 46.80 
9 

0.248 0.060 0.577 0.962 149.8 
5 

- # 1. 
g 

A 4 # . # # -46. 
0 

No. 6 1.445 1.83d 1238 
4 

13.09 
c 3 

-6355 6.739 0.078 3.397 47.99 
2 

0.245 0.045 0.460 0.918 144.6 
0 

011 1  T.33-  
3 

re l-  I -533.4 
0 



EDM #4 Cut #1 EDM #5 Cut #1 Cut #2 
,
Cut-Servo 1 0 Cut-Servo 10 10 
Capacitor 2.5 mfd capactor 2.5 mfd . .5 mfd t 

ap Volts 55% Gap Volts 55% 55% 
Pole Volts 1 05 Pole Volts 1 05 105 
Amps 4 Amps 4 4 
On off 6 / 3 On/off 6 / 3 6 / 3 
Wire-type/dia Zn /0. o 1 Wire-type/dia Zn/o.ol Zn/o.ol 
Tens. Feed 1 400qm s/ Tens./Feed 1400qms/ 1400qms/ 

85mm/sec 85mm/sec 85mm/sec 
Times 72 Times 7 2 26 
Cut type Rough I Cut type Roue Skim 

EDM #6 Cut # 1 Cut # 2 Cut # 3 Cut # 4 Cut # 5 
Cut-Servo 1 0 1 0 1 0 10 10 

apacitor 2.5 mfd .5 mfd .2 mfd 06 mfd 01 
Gap Volts 55% 55% 55% 55% 55% 

'Pole VOlti - 105 1.05 105 105 105 
Amps 4 2 2 1 1 
On of 6 / 2 6 / 3 6 / 3 4 / 3 4 / 3 
Wire- Zn/o.ol Zn/o.ol Zn/o.ol Zn/o.ol Zn/o.ol 
type/dia 
Tens./Feed 1400qms/ 1400qms/ 1400qms/ 1400qms/ 1400qms/ 

85mm/sec 85mm/sec 85mm/sec 85mm/sec 85mm/sec 
Times  Q 34 29 13 28 24 
Cut type .  Rough Skim Skim Skim Skim 

„ 
Machlthiflocess: EDM  LElectrode Material: Graphite 
EDM# Rough Metal/ Peak Mod. Vol. Feed Freq. Duty Amps Misc. Details 

/Fin. Graph Curr. 1/2 Cyc. 
No. 2 Finish Graph N 1 60 2 3 10 10 36 µS on /4 µS 

off 
Finish - 200 
ilinch 

No.3 Finish Graph N 1 60 2 9 10 2-3 9 µS on /1 RS 
off 
Finish - 60 

• q - , , .. µinch 

Table A.8: Machining condition of EDM specimens. 



T
able

 A
.9:
 

R
epresentative

 vectors
 of w

aterje
t specim

ens. 

Wter. 
jct N 

P 0 1)T i2 2 P3 P4 P5 EP6 P7 P8 1 
1 

P 9 h10 P11 I P12 P13 I P14 i r15 P 16 ,, P 17 1 P 11   iiiirprg 

No. 1 2.999 3.774 22.77 
4 

23.16 -11.63 11.53 
1 

-0.006 3.083 

- T.R63 

64.94 
9  
-7.2.116 

1 0.365 
I  

0363 

0.077 

0. ar 
0.496 

'cl.z..3-4--07§33 
I 0.932 

.-90.33 

101.1 
8 _  

0.073 

0.077 

I 0.261 

0.253 

1 29.73 
I 9 

41.45 

0.1027.021 

0.012 0.024 

r0.006 

0.007 
 5 
I 27574-- 

240.3 
No.1-5559 4.208 22.41 

 2  
23.06 
5 

-12.94 10.12 
g 

-0.368' 
2 3 4 

I 
3 

r-No. 3 3.617 4.502 26.10 I 26.6r -15.91 10.74 .0.468 ...3.121r '-iiir..61-3-' 0.351 -UM Tf720 I 0.961 13:33-  0.082 i 0.196 1-33711 0.103 0.028 (Lai 310.9 
7 I 1 1 9 3 

1 

orio-..0.2i6 0.2,6 
I 9 
..),,.15" 

7 
-0.106ft  im.0 0.00 

 2  
261-.1 
1 No. 4 3.028 3.793 24.12 24.66 -1335 11.31 -0.215 3.247 65.08 

8 
10.366 0.099 0.607 0.954 1023 

3 

No. 5 2.991 3.712 
4 
20.72 

4 
21.22 11.07 

2 
10.15 
3 

.0.039 i".816 67.69 - 0344 El 13 0.543 0.932 106.2 
9 

0.1ir I 0.235 67.68 . 
8 

- I 
'11.109 I 0.058 0.0TC -ire;:r 

7 

1,-77-6-  2.657 
 7 

3308 19.03 
3 

19.44 
6 

-11.09 8355 -0.266 2.946 68,89 
2  

0301 0.156 0.662 

4 

.955 99.50 

84.16 

0.078 

p  0.072 

I 0.145 

0.265 

3-534 
7 
41.43 

0.076 

0.088 

10.018 (1.41u7 

0.006 

90.t 
0 
270.0 No. 7 3.409 4.209 23.94 24.61 

8 
.13.067136 

0 
-0.024 i.737 77.91 

1 
0339 0.114 0.557 0.942 

6 7 
1
.
0.018 

o 

ilo. 8 3-15:4-5 
 5 

3.928 27.11 27.93 -14.04 13.89 0.014 3.595 65.84 0375 0.033 0.512 0.947 101.0 0.074 0336 I 3055-  -0.110 1 0.04 0.046r."7479 
4 / 3 0 1 4 I 1 

No. 9 3.243 4.087 25.39 25;95 -14.90 11.06 -0.287 3.301 72.85 0352 0.143 0.678 0.969 93.71 0.078 1 0.189 39.89 0.103 0.025 0.007 295.2 
6 6 1 - 2 4 7 9 



Specimen Materila Pressure 
(psi) 

Orifice 
(in) 

Nozzle 
(in) 

Cut speed -- 
(in/mm) 

Stand off 
(mm) 

thickness - 
_ n 

Abrasive 2k Rate 

"NVJ #1 

WJ #3 

Steel 
tee 

 titanium 

48000 

50007-4  

 .01 
.01  
.01 

.03 .3 

.131 

.03 
.6 
1 

1.5 
- 1.5 

1. 
2. 

#8 Garnet 3 
#8 Garnet .5 
1 arnet 

WI #4 Titanium 50000 .01 .03 4 1.5 .8 #12kGamet .5 
WJ #5 ;is steci SOZZO 1 .03 1 1.5 5 #8 Garnet .5 
WJ 116 Stainless steel 50000 1 ;01 .03  1. ' .3 #8 Garnet „I 

Table A.10: Machining condition of waterjet specimens. 



Appendix B 

RANGES OF PARAMETERS 

Figure 1 to figure 10 show the ranges of parameters for the various 

machining methods. In figures, the Y-axis shows the machining methods : 1. 

grinding, 2. turning, 3. milling, 4. EDM, 5. waterjet. 



Figure B.I: Ranges of the parameter 1 and 2 



Figure B.2: Ranges of the parameter 3 and 4 



Figure B.3: Ranges of the parameter 5 and 6 



Figure B.4: Ranges of the parameter 7 and 8 



Figure B.5: Ranges of the parameter 9 and 10 



Figure B.6: Ranges of the parameter 11 and 12 



Figure B.7: Ranges of the parameter 13 and 14 



Figure B.8: Ranges of the parameter 15 and 16 



Figure B.9: Ranges of the parameter 17 and 18 



Figure B.10: Ranges of the parameter 19 and 20 



Appendix C 

RESULTS ON USING 
BACKPROPAGATION 
NETWORK 

Identification results about testing sets are list following. Note that all 

results are displayed in simplified way. It have been described in chapter 7. 



Grinding #2 
(Readings) 

Degree (vec. 
analysis) 

Rep. Vectors 
(30) 

Rep. Vector 
+ Vector 
length 

30 rep. 
Vectors +93 
Facts 

123 vectors 
+ Length 

1 0.76 99g+99#2 99g+99#2 99g+17#3 99g+26#1+ 
83#2 

2 0.25 99g+99#2 99g+97#2 99g+98#2 99g+88#2 
3 0.31 99g+97#2 99g+99#2 99g+99#2 99g+98#2 
4 0.29 99g+19#1+9 

9#2 
99g+15#1+9 
9#2 

99g+99#2 99g+16#1+7 
4#2 

5 0.40 99g+19#1+9 
9#2 

99g+19#1+9 
8#2 

T T 

6 0.33 99g+ 9#2 99g+99#2 99g+99#2 99g+93#2 
7 0.14 99g+31#1+9 

7#2 
99g+35#1+9 
4#2 

99g+99#2 99g+97#2 

8 0.18 99g+98#2 99g+99#2 99g+99#2 99g+98#2 
9 0.47 99g+18#1+9 

8#2 
99g+24#1+9 
5#2 

T T 

10 0.16 99g+47#1+9 
6-#2 

99g+60#1+8 
0#2 

99g+99#2 99g+98#2 

11 ' 0.09 99g+27#1+9 
6#2 

99g+43#1+8 
6#2 

99g+99#2 99g+99#2 

Table C.1: Identification results about grinding sample #2. 



Grinding #3 
(Readings) 

Degree (vec. 
analysis) 

Rep. Vectors 
(30) 

Rep. Vector 
+ Vector 
Length 

30 rep. + 
Vectors + 93 
Facts 

123 Facts + 
Length 

1 0.62 93g+99#2 99g+99#2+ 
86#4 

99g+99#3+ 
13#3 

99g+98#2+ 
14#3 

2 0.42 43g+99#2 99g+99#2+ 
59#4 

99g+99#3 99g+92#3 

3 0.76 76g+99#2 99g+99#2+9 
7#4 

99g+58#2+ 
99#3 

99g+73#3 
+ 40#2 

4 0.54 67g+99#2 99g+99#2+ 
15#4 

99g+97#2+ 
94#3 

99g+50#2 
+ 84#3 

5 0.88 68g+99#2 99g+99#2 T T 
6 0.18 99g+99#1+1 

1#2 
99g+98#1 99g+96#1 99g+93#1 ' 

7 0.72 99g+99e+ 
99#4+99#6 

99g+95#4+ 
98#6 

T T 

8 0.56 99g+34#1+ 
99#3 

99g+98#1 99g+27#1 
+86#3 

99g+50#1 v  
+43#3 

9 0.91 99g+99m+ 
99#3 

99g+99#3 T T 

10 0.75 99g+60m+ 
99#3 

99g+99#3 99g+99#3 99g+92#3 

11 0.22 99g+99m+9 
9#3 

99g+99#3 99g+90#3 99g+99#3 

12 0.64 99g+99m+ 
#3 

99g+99#3 99g+90#3 99g+99#3 

13 0.86 99g+99#3 99g+97#3 T T 
14 0.33 99g+99#3 99g+99#3 99g+99#3 99g+99#3 

Table C.2: Identification results about grinding sample #3. 



Grinding #4 
(Readings) 

Deg. 
(Vector 
analysis) 

Rep.-  Vector I 
(30) 

Rep. Vec. 
+Vector 
length 

30 Rep. Vec. 
+ 93 
Facts 

123 Vectors 
+ Length 

1 0.2 -- 99g+99#4 
+11#6 

99g+07#4+5 
2#6 

99g+46#2 
+95#4 

99g+06#4 
+ 11#2 

2 0.2 99g+98#4 99g+95#4 
+52#6 

9.9g+98#4 90g+05#4 

3 0.08 99g+99#4 
 I 5#6 

99g+96#4+ 99g+Og#4 99g+05#4 

4 0.11 99g+99#4 W'P99g+4.7#4+ 
15#6 

90g+99#4 —09g+96#4 

5 0.40 99.09#4 99 +06#4 99g+99#4 09g+96#4 
"T"----6708.   "g0g+95#4 99g+9-5#4 99g+99#4 99g+94#4 
'' 0.73 90g+04  99 94#4 1 T 
I 6.36 99g+99#4 99g+STig  .91-1-98-#4 99g+83#4+ - 

10#5 
9 0.31 99g+99#4 99g+65#4+ 

24#5 
99g+98#4 9g+70#4+ 

21#5 
10 0.04 991+-944mm•  99i+43#4+2 

6#5 
99g+36#2+ 
`97#4 

99g+59#4 
+17#5 

Table C.3: Identification results about grinding sample #4. 



Crincring#5 
(Readings) 

Deg. 
(Vector 
analysis) 

Rep. Vector 
(30) 

Rep. Vec  
+Vector 
length  

30 Rep. Vec. 
+ 93 Facts 

 123 Vectors 
+ Length 

1 0.76 99g+16#3+ 
99#5  

99g+9g#5 99g+96#5 99g+99#5 

0.26 —'998Tne+ 
99#5 

99g+ #5 T T 

3 0.69 99g+53#3+ 
97#5  

-0g+60#5 99g+90#5 09g+99#5 

4 0.76 99g+99#5 99g+99#5 T T 
5 1.08 99g+99#5 99g+13#1+ 

99#5 
99g+98#5 99g+99#5 

6 0.50 
 21#6 
99g+99#5+ 09g+99#5 99g+95#5 99g+99#5 

""— "():6 99i+4ge+ 
99#5 

—64+34e+ 
99#5+ 
12#6 

99g+95#5 99g+79#5 

8 6.37 - '99g+99#5 
_ 

'99g+10#1+ 
.. 97#5 

99g+29#5 
+17#6 

99g+77#5 

Table C.4: Identification results about grinding sample #5. 



Grinding 
#6 
(Readings) 

Degree 
(Vec. 
Analysis) 

Rep. 
Vector (30) 

Rep.Vector 
+Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+ 
Length 

1 0.30 99g+99#6 99g+93#2+ 
99#6 

99g+99#6 99g+99#6 

2 0.48 99g+99#6 99g+99#6 9+99#6 99g+99#6 
3 0.52 99g+99#6 99g+76#2+ 

99#6 
99g+99#6 99g+99#6 

4 0.81 99g+99#6 99gt99#6 T T 
5 1.27 99g+99#6 99g+99#6 T T 
6 0.60 99g+99#6 99g+31#1 

+99#6 
99g+99#6 '99g+97#6 

7 0.21 99g+99#6 99g+99#6 99g+99#6 99g+99#6 
8 0.27 „.... 99g±99#6 99g+96#6 99+99#6  99+99#6 .., 
9 --0:go---  99g+-22e+9-9" -§9g+991#6 

#6 
99g+991F6 99g+17#5+ 

99#6 
10 0.51 998+22e+99 

#6 
99g+12#1+ 
99#6 

99g+99#6 99g+99#6 

11 • ' 0.98 99g+75e+75 
#5+98#6 

73g+98e+70 
#6 

T T 

12 0.75 99g+49e+99 
#5+33#6 

538+46e+99 
 #5 

99g+95#6 99g+98#5+ 
67#6 

Table C.5: Identification results about grinding sample #6. 



Turning #1 
(Readings) 

Angle 
(vec. 
Analysis) 

Rep. Vector 
(30) 

Rep. Vector+ 
Vector 
Length 

30 
Rep.Vector+ 
93 Facts 

123 Vector+ 
Length 

1 4.31 32t+23e+ 
99#1 

99t+99#1+ 
17#2 

99t+99#1 99t+63#1 

2 4.03 58t+99#1+ 
38#4 

99t+99#1+ 
13#2 

T T 

3 3.87 86e+99#1+ 
17#6 

99t+99#1+ 
30#2  

T T 

4 4,99 61t+98#1+ 
52#4 

98t+99#1 T T 

5 3.85 99t+76#2 
+ 14#3 

99t+45#2+ 
18#3 

99t+11#1+2 
0#2 

99t+63#2 

6 2.77 98t+99#1 99t+99#1 96t+99#1 99t+90#1 

7 2.13 98t+99#1 99t+99#1 9614-99#1 99g+99#1 
+ 23#2 

8 4.84 99t+88#1+5 
2#2 

99t+99#1 T T 

9 1.34 99e+99#1+ 
57#6 ' 

99t+99#1+ 
43#2 

99t+99#1 99g+99#1 
+11#2 

10 1.97 55t+52#2+ 
15#3 

17t+81#2 97t+79#1+1 
4#2 

99t+13#2 

11 3.58 93t+99#1 99t+99#1+ , 97t+74#1 
22#2 +11#2 

99t+79#1 
+47#2 

12 3.15 68t+99#1+ 
11#4 

98t+99#1+ 
21#2 

99t+99#1 99t+98#1 

Table C.6: Identification results of turning sample #1. 



Turning #3 
(readings) 

Angle 
(Vec. 
Analysis) 

Rep. Vector 
(30) 

Rep. Vector+ 
Vector 
Length 

30 Rep. 
Vector+ 93 
Facts 

123 Vector+ 
Length 

1 4,2 81t+98#3 6t+99m+ 
96#3 

T T 

2 4.23 92t+44#2+ 
83#3 

94t+29#2+ ' 
87#3 

T T 

3 3.75 37 t+95 w+ 
23#5 

62m+97w+ 
28#3 

10t+33w+ 
92#3 

90t+61w+ 
95#3 

4 3.53 98t+18#4 74 t+16w+ 
15#7 

98t+98#3 94t+96#3 

5 3.41 98t+91#3 97t+96#3 T T 
6 3.52 98t+85#4 89t+74#4 T T 

7 2.36 78t+97e+ 
45#5 

98t+92e+ 
51#2 

92t+54#2+ 
94#3 

6t+99e+ 
99#3 

8 1.44 20t+61e+ 
98#1 

99t+33#1 
+91#2 

99t+53#2 7t+63#3 

9 2.97 74t+84e+ 
88#1 

98t+12#1+6 
2#2 

97t+24#2 9t+51e+ 9#3 

10 . 0.88 47t+49#3 93t+71#2+ 
63#3 

99t+56#2 
+ 85#3 

9t+84#3 

11 3.08 98t+12#1 
+89#3 

95t+85m+ 
92#3 

99t+97#3 99t+98#3 

12 2.00 52m+98#2+ 
83#2 

99m+98#2+ 
98#3 

99t+90#2+ 
80#3 

90t+58m+ 
82#2+63#3 

13 S.14 60# +99#3 99m+86#2+ 
99#3 

T T 

14 3.63 92w+99#3 99m+85#2+ 
99#3 

T T 

Table C.7: Identification results of turning sample #3. 



Turning #4 
(Readings) 

Angle 
(Vec. 
Analysis) 

Rep. Vector 
(30) 

Rep. Vector+ 
Vector 
Length 

30Rep. - 
Vector 
+ 93 Facts 

123 Vector+ 
Length 

1 0.93 99t+99#4 96t+75e+ 
72#4 

94t+99#4 88t+99#4 

2 0.50 90t+40#2+ 
97#4 

97t+96#4 86t+99#4 57t+9#4 

3 1.03 99t+99#4 98t+91#4 ' 89t+99#4 96t+99#4 
4 0.78 8e+99#4 87t+99#6 98t+93#6 - 

+39#4  

99e+99#4 

5 0.74 57t+55#2+ 
69#6 

95t+82#4 49t+99#4 45t+96#4 

6 1.21 74t+8#4+ 
6#6 

38t+23#1+ 
27#6 

T T 

7 1.13 94t+93#4 75t+26#1 99t+98#4 91+33m+ 
99#4 

8 0.39 55t+71#6 99t+99#1 82t+84#4 87t+96#4 
9 1.06 97t+96#4 92t+83#4 94t+99#4 96t+99#4 
10 1.05 74t+27e+ 

93#4 
15t+89e+ 
3#3+4#5 

99t+99#4 77t+99#4 

Table C.8: Identification results of turning sample #4. 



Turning #5 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

 30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
gth 

1 0.52 92t+95#5+1 
6#6 

62t+75#5+3 
8#6 

 94t+74#5 94t+745 

-2-----0777 ---S6i;55w+79—  
#5 

22w+39#6+ 
20#5 

78t+40w+93 
#5 

$4t+90#5 

3 0.80 47t+14e+68 
w 

' 37t+24e+27# 
6+10#5 

T T 

7-- ---- ----56---- 
w+99#5 

787-17F+ITT37f4Fe711/1gli-7-0-#5 91t+99#5 

, 
0.3 t+4 w+ 

#5 
5t+ #5+ 

4#6 
1 t+ # 

W . 
t+ # 

6 0.80 ' 94t+96#5+1 
9#6 

91t+95#5 T 
_ 

 T 

7 0,71 96t+96#5 71t+90#5+2 
5#6 

97t+945 
.. 

96t+99#5 

Table C.9: Identification results of turning sample #5. 



Is/Iiilmg if2 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 

h 
1 0.86 99m+62#2 99m+12#2 Wm+ - 99m+5 :1+ 

#3 
2.1 99m+39#5+ 

48#6  
'•m+12# • •m+2# +• 

#4 
• • 

1.57 - 99m+01#2+ 
74#5 

• •m+••# 52t+••# ' 
5#3 

m+ t+ 
#3+97#2 __ 

732---  17670731 - 4:21-  
0#4 

07-̂1-17111:4z5 
#1+58#2 

T T 

5 2.46 '7t+49#2+2 
7#4 

9 t+ •m+ 2 
#2 

..t+•7# • t+ # +• 
4#3 

6 . 2.22 24t+24m+94 
#4 

99m+11#6 99m+8#1+7 
#2 

99m+244i + 
74#4 

7 1.20 41m+93#2 99m+95#2 86m+99#2 99m+97#2+ 
28#3 

8 3.39 9#1+21#6 97t+ m+ 
#1+77#2 Mill • 0.54 "m+••#2 "t+•• "inT+"# + 

87#3 
'1111+"# 
87#3 

Table C.10: Identification results of milling sample #2. 



Milling #3 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. - 
Vector+93 
Facts 

123 
Vectors+Len 
8gth 

1 Q  4.01 — 99m+99#3 99m+99#3 99m+21#2 9m+9743 
2  3:06 99m+99#3 ' 99m+99#3 99m+19#1 99m+97#3 
3 .14 W Ti 89m+99#3 99m+99#3 99m+30#3 09m+99#3 
4 3.29 99m+98#3 99m+94#3 99m+98#3 99m+92#3 
5  4.22 99m+99#3 99m+99#3 T . T 

` 1.97 991i17070-"Wril-TOTir . 9m+99#3 99m+99#3 
7  3.29 '  99m+99#3 99m+66#3 T T 
8 2.01 99m+99#3 99M+99#199m+99#3 99m+98#3 

"9 4,52 99m+56#1+ 
35#3 

99m+99#1+ 
32#3 

T lt 

10 5.41 99n-i+99#3 99m+99#3 T ' T 
11 '------n — -4 t'g7.77---. "1-55-#1 + 

98#4 
99m+38#1+ 
16#4 

99m+99#3 99m+99#3+ 
50#3 

12 1.76 -gDm+79#4 4- 99-in+75#4 W  9rri-i70# 99m+99#4-
13#3 

13 /41 99m+9943 99m+99#3 '§9m+90#3 99m+743 

Table C.11: Identification results of milling sample #3. 



Milling #4 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

36kep. 
Vector+93 
Facts 

123 
Vectors+Len 
igth 

1 2.04 99m+96#4 99m+86#4 99m4-98#4 99m+99#4 
-2 '4.34 ' 97m+99#4 99m+97#4  T ' T ' 
3 2.05 98m+98#4 99m+62#4 99m+99#4 99m+99#4 
4 '6.03 ' 99m+73#1+ 

 69#5 
99m+62#4 T T 

5 5.01 99m+95#4+ 
56#3 

99m+70#3+ 
20#4 

T T 

6 0.83 99m+91#4+ 
42#6 

99M+77#3 9m+95#4 99m+99#4 

' 7 2.44 99m+44#4+ 
73#5 

mm  

99m+15#4+ 
 15#2 

99m+9945 ' 99m+99#3+ 
51#4+88#5 ' 

8 2.01 9m4Fir4 '99m+92#4 99m+98#5 99m+22#3+ 
98#4 

9 2.66 99m+70#5+ 
10#4 

99m+57#3 0-n+17#4+ 
10#5 

9.9iii+13#3 

\TO 4.92 99m+89#4+ 
99#1 

97t+99m+71 
#1 

T T 

Table C.12: Identification results of milling sample #4. 



Milling #5 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
:th 

3.65 8 m+98#5 66t4-09m+9g 
#1+97#5 

T T 

.17 "m+' #5 09m+7 # m+' •#5 • •m+••#5 
1.66 99m+99#5 99m+73#5 99m+99#5 62t+99m+27 

#5 
4 2.86 99m+99#3 99m+99#3 99m+99#5 99m+94#3+ 

19#4 
..1 9•m+••#2+ 

34#5 
• m+•4# 9'm+41# + 

15#5 
•m+•4# + 

99#5 
4.4 • •m+71#4+ 

37#5 
• sm+4 • 
38#4 

-7.  

.68 •m+70#4+ 
69#5  

• •m+:5# ••m+•5#5 ••m+ 4# + 
76#5 

2.53 9fm+96#4+ 
43#5 

9•11170#4 08m+95#5 at+ m+• 5 
#4+63#5 

.19 V§iiili:§75#1+ 
99#5 

99m+88#1+ 
99#5 

':m+•5#5 • •m+4#• 

.4 99m+99#5 g§m+• *# T 
11 3.02 99m+99#5 99m+99#5 

Table C.13: Identification results of milling sample #5. 



EDM #3 - 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 Vectors 
+Length 

1 1.24 92e+59w+45 
#3 

17e+g6w+32 
#4 

T T 

2 1.09 99e+97#3 99e+94#3 95e+94#3 99e+78#3 
7--  1.07 24e+11w+99 

#3 
32e+15w+98 
#3 

69e+42#3 25e+95#3+9 
4#6 

4 0.95 99e+99#3 83e+99#3+2 
0#6 

99e+98#3+6 
6#6 

91e+12#3+1 
9#4 /..5 

0.80 T  37t+53e+96# 
6 

39e+77#1+3 
2#6 

16e+85#6 91e+12i0+1 
9#4 

6 1.28 — 85e+53w+99 
#3 

75e+48w+99 
#3 ..., 

T T 

Table C.14: Identification results of EDM sample #3. 



EDM #4 - 
(Readings) 

Degree (Vec. - 
analysis) 

Rep. Vector 
(30) 

Rep. 
Vector+Vect 
or Lenh 

30 Rep. 
Vector +93 

123 Vectors 
+ Length 

1 0.77 241+95e+90.  
5+11#4 

21i7g
t 
 Mrt 1.8e-.  

5 

Facts 
 T T 

'2 '4-6 . 44 99e+94#4+2 
5#6 

99e+9g#4 99e+48#4+6 
8#5  

99e48#4+5 
4#5 

1-----0.91 
 9+98#5 

-Wit WI- 7# 
5 

§̂9e+64#4+5 
9#5 

99e+59#4+1 
9#5 

' 4" '475117 "9 470476 —63-e--IFF at+sr"0e+80#4+6 
3#6 5#6 

9-0e+86#4+5 
8#6 

. e+ #6 1 t+ # 
7#6 

t+ e+ 
4 

21t+1 + 
#5 

6 6.97 98e+62#4+4 
3#5 

99e+93#4+2 .  
5#5 

21t+96e+S0# 
4+76#5 

- 17t+81e+5/3# ' 
4+95#5 

7 '0.59 99e+94#4+8 
9#6 

99e+82#4+2 
6#6 

99e+98#6+3 
0#4 

99e+68#4+3 
5#1 

8 0.99 72t+92e+94# 
4 

34t+98e+85# 
4 

T T 

Table C.15: Identification results of EDM sample #4. 



EDM #5 
(Readings) 

Degree (Vec. 
Analysis) 

Rep. Vector 
(30) 

Rep. Vector 
+ Vector 
Length 

30 Rep. 
Vector + 93 
Facts 

123 VEctors 
+ Length 

1 1.10 72g+76e 
+65#5 

78e+68#1+4 
6#5 

94e+93#5+8 
3#6 

58e+97#5 

2 0.44 82g+62t+99 
#5 

10g+12t+99 
#5 

84e+99#5 79e+99#5 

3 0.54 94g+52e+97 
#3+45#5 

80g+18#3 90e+90#5 99e+71#5+5 
4#6 

4 1.21 81g+19e+99 
#5 

10g+10t+99 
#5 

T T . 

5 0.97 98e+98#4+1 
7#5 

99e+73#4+3 
6#5 

99e+81#6 99e+53#4 

6 1.12 96e+99#5 99e+99#5 99e+82#5+5 
5#6 

99e+94#5+2 
0#6 

7 1.06 99e+27#5+3 
8#6 

99e+74#4 T T 

8 0.89 80e+99#6 46e+51#1+5 
5#6 

99e+26#5+7 
0#6 

95e+37#6+1 
3#5 

9 1.06 99e+48#4+9 
1#5 

99e+83#4 99e+90#5 99e+92#5 

10 0.68 45g+12e+99 
#6 

54e+91#6 90e+79#6 32e+37#5+2 
5#6 

11 0.46 95e+99#5 16t+86e+99# 
5 

99e+97#5 99e+63#5+2 
1#6 

12 0.77 97e+99#5 98e+10#1+9 
9#5 

99e+99#5 99e+99#5 

13 0.94 99e+91#5 99e+87#4+7 
8#5 

99e+98#5 99e+42#4+9 
0#5 

Table C.16: Identification results of EDM sample #5. 



EDM #6 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. ' 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

' 1-n 
Vectors+Len 
sth 

1 1.2 —61119—#1+ 
99#6 

99g+99#2+ 
99#6  

 T T 

2 0.81 10t+ + 
98#5 

99 'e+97#5  
96#6 

99e414#5+ 
70#6  

0.39 99e+99#4 99e+89#4 9ce+99#6 - 99e+17#4+ 
80#6  

4 4.-(1. ff .  '849+32e+ 
97#5 

" 9e+5g+97#5 84g+59#5+ 
30#6 

99e+6o#5+ 
30#6 

.5 5g+ #1+ 
99#6 

g+ # 
99#6 

g+ # + 
76#4 

e+ # 

- 6 6.27 
... 

49g+51e+ 
99#6 

13g+39#1+ 
95#6 

98e+99#6 95e+73#6 

7 0.27 49g+51e+ 
99#6 

13g+39#1+ 
95#6 

98e+99#6 99e+99#6 

8 ' 6.33 33g+70e+ 
99#6 

95g+99#6 99e+98#6 99g+92#6 

9 0.72 99e+41#3+ 
90#5 

99e+75#5—  T T 

10 0.37 99e+99#4+ 
55#6 

99e+97#4 99e+46#6 '99e+72#4+ 
28#1 

Table C.17: Identification results of EDM sample #6. 



Waterjet 4 
(Readings) 

Degree(Vec: 
Analysis) 

Rep. ' 1  
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep.' 
Vector+93 
Facts 

123 Vectors+‘ 
Length 

1 0.97 

6.86 

0.40 

1.15 W~W 99w+47#1+ 

99w+38#1+ 
90#2 

9w-1-88#2+ 
12#6 

-99w+78#2 

99w+75#2 

99w+46#2+ 
55#6 
-99w—+-95#2 

99w+97#2+ 
26#3 

- 00w+96#2 .? 

99w+68#2 

w+7 

T —T 

99w+90#2 

3 99w+72#2+ 
50#6 

97#2 

99w+97#2 

u 1.45 99w+0# vw+99#3 T T 
6 

4.  
1.11 99w+78#7+ --09w+91#4 

29#9  
99w+13#4+ 
85#9 

99w+58#3+ 
79#9 

Table C.18: Identification results of waterjet sample #2. 



Waterjet #3 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Leith 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
gth 

1 1.78 99w+66#4+99w+84#4 
71#9 

T T 

1.16 99w+99#3 99w+99#3 99w+99#3 99w+99#3 
3 2.08 99w+94#3+ 

52#9 
99w+85#3 T T 

4 1.54 99w+99#3+ 
11#6 

99w+99#3 99w-1-0#3 09 w+61#+ 
47#3 

5 1.46 99w+99#3+ 
19#6 

99w+99#3 m  99w+960 99w+96#) 

6 TM1.88T  99w+99#1+ 
12#6 

99w+99#3 T T 

7 0.83 91m+99w+ 
20#6 

99w+99#3+ 
99m 

99w+90#3 99w+97#3 

8 1.11 -99V-i-3IIi2;7* 
16#9 

V9 w+ 1# + 
33#9  

w+ # 
58#9 

w+ 

9 E-6-6-  99w+74#2+ 
87#3 

-ow+74#2+ 
76#3 

T T 

10 0.38 9~W9-4-3—  99w+91#3+ 
14#9 

99w+89#3+ 
64#7 

99w+99#3 

11 p  1.86 87w+38t+ 
85#6+57#5 

99w+47#1+ 
34#2 

99w+62#2+ 
35#3 

99w+17#1 

12 1.04 99w+43#2-i--99w+71#2+ 
19#4 ,27#4 

99w+96#3+ 
96#5 

99w+97#3 

Table C.19: Identification results of waterjet sample #3. 



Waterjet #4 
(Readings) 

Degree(Vec. 
Analysis) 

TN—  

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 . 
Vectors+Len 
gth 

1 09w+74#4 .0-0W+ #1.76--- /- 
42#4 

w+0$#1 99w+20#4 

2 f .31 99w+20#4+ 
96#7 

Nw+16#+ 
75#7 

97w+85#2 99w+5#4 

3 6:66' 

1.21 

94w+29#6 

-09w+98#3 

-09w+99#1 

.-§9w+81W3 

99 w+97#1 + 
15#7 

99w+63#4 

4 99w+51#4 90w+45#4+ ' 
76#9 

1.76 90w+67#4 09w+45#3+ 
52#4 

92w+99#4+ 
14#8 

99W+05#4+ 
96#8 

6 
r"------  

1.57 
I .Y6---71e7-Vgcc+90 

99w+99#3 

#1+29#8 

99w+99#3 T T 
00w+10#1+ 

 88#8 
-05w+98#8 99w+99#8 

1 T  1.45 99w+ #4 4.  Ow+15#T-37  
34#2 

T T 

9 1.58 99w+67#1+ 
65#4 

-0.0w+41#4 99 w+76#4 99w+64#4 

Table C.20: Identification results of waterjet sample #4. 



. Waterjet #5 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

36 Rep. 
Vector+93 
Facts 

-1n 
Vectors+Len 

th 
1 4"1.31 99w+54#1+ 

99#5 
99w+67#1+ 
99#5 

98w+ #5 99w+ #5 

2 0.59 99w+99#5 4 99 w+29#2+ 
91#5 

99w+99#5 99w+1,#3+ 
99#5 

3 1.67 99w+99#5 50w+45#1+ 
99#5 

T T 

4 1.21 ---* 99w+12#2+ 
99#5 

—0-9w+44*/+ 4 

99#5 
1' I' 

... 

3 l . 39 96w+91#1+ 
75#5+99#6 

99w+78#1+ 
78#5 

99t+7ow+99 
#5+84#3 

99w+99#5 

6 '0.91 ' 99w+99#5 99w+51#4+ 
97#5 

98w+99#5 99w+99#5 

7 ' 0.44 99w+99#5 .99w+94#5 99w+99#5 99w+44#3+ . 
98#5 

Table C.21: Identification results of waterjet sample #5. 



• Waterjet #6 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vectori: 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
0th 

1 Ell—  42e+79w+ * 
52#6+20#3 

17e+79w+70 
#6 

T T 

2 1.07 68w+15e+ 
50#6+55#3 

15e+64w+52 ' 
#6  

99w+02#6 84w+18#5+ 
71#6 

3 1.28 .§9w+99#3+ 
59#6 

99w+96#3+ 
37#6 

T T 

4 W0.76 99w+g1 #6+ 
57#3 

99 w+20#SI: 
92#6  

55e+27#5 99w+10#3+ 
78#6 

5 1.21 90e+98#6 3e+16w-F5 
#6 

97w+06#6 97e+3w+23# 
4 

6 1.26 92w+69#5+ 
98#6 

99w+77#6 T T 

1 0.52 
.. 

99w+5#3+ 
85#6 

99w+96#6 99w+$9#6 0w+64#6+ 
10#3 

8 0.74 83w+75#6+ — 
38#9 

99w+69#6 99w+$9#6 Ow+15#61- 
10#2 

9 1.20 38w+40#3+ 
94#5 

54w+77#6 99w+03#6 f$w+5040+ 
98#6 

lo 1.25 99w+930+ 
95#6 

99w+93#3+ 
77#6  

T -I• 

Table C.22: Identification results of waterjet sample #6. 



Waterjet #7 
(Readings) 

- Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

 Rep.Vector+ 
Vector 
Length 

36 Rep. 
Vector+93 
facls__gth_______ 

123 
Vectors+Len 

1 —TN—  99 w+54#7 4-99 w+22#2+ 
54#7 

-9Wv-il 
 89#7 
Wv74T4 T7 T—  + 

2 2.17 0 w+05#1 *****0 w+83#1+ 
8#7 

-T T 

—3-----  0.54 96w+33#2-7 
14#7 

90w+47#3 99w+4#2+ 
61#8 

09w+25#7+ 
98#8 

7 1.44 31w+68.#1+ 
17#7 

w+ 675Y#1+ 
74#7 

T T 

5 0.99 99w+66#3+ 
42#7 

95e+1 4w+02 
#7 

`83w+61#7  09e+20w+25 
#7 

6 • . 1.74 99w+86#3+ 
55#6 

99w+94#3+ 
55#6 

T 
_ 
 T 

Table C.23: Identification results of waterjet sample #7. 



Waterjet #8 
(Readings) 

Degree(Vec. 
Analysis) 

Rep. 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 

th 
1.54 §9w+93)41+ 

93#8 
9w-48#4+ 

38#9 
1)4;;w+9.6#8+ 
67#9 

91  w7 ---#: + 
70#9 

1. w+77 + 
95#8 

9w+64#4+ 
89#8 

r  09 w+0#8 u  09w+99A+ 
81#9 

1.1.28 24#1+12#6 99w+gb#1 T T 
4 1.64 62#1+47#6 ' 09 w+03#1 9qw+$4ig-  - gs-w+91#8- 
5 1. 7 9 w+ #1+ 

16#8 
w+ 5#1+ 

32#8 
T 

b . 0.0 95w+99#8 98w+0 - #8 95w+99#8 49w440#8 
7 1.41 99 w+71#7-7"..0W7g4T4 

84#8 
T T 

8 0.68 99w+9844+ 
81#9 

99w+94#3+ 
73+9 

99w+81#1+ 
39#9 

99w+42#4+ 
66#9 

—§•§71-Tglir-  .9'9w+54#1+ 
33#8 

 99w+97#1+ 
78#8 

99w+72#8 

10 1.67 99w+99418 .39w+62#4+ 
99#8 

•T T 

11 1.01 99e+99#8 99w+9W+ 
61#4 

99-w+97#+ 
70#9  

90w+99#8 

Table C.24: Identification results of waterjet sample #8. 



Waterjet #9 * 
(Readings) 

Degree(Vec, 
Analysis) 

-Rep. - 
Vector(30) 

Rep.Vector+ 
Vector 
Length 

30 Rep. 
Vector+93 
Facts 

123 
Vectors+Len 
.gth 

1 1.08 99w+99#3 9-9w49#3 9w+65#3+ 
48#_9 _ . ......„_. 

99w+88#3+ 
32#6 

2 - 1.48 99w+22#2+ 
11#3 

99w-i-61#2 T T 

1.55 w+ 
9#3 

T 

4 U.94 -9-9-7v+77#4 9-9w+83#1+ 
10#7 

99 w+99#1 "--09w+35-217-4- - 
21#7+2#1 

1.4 w+51# + 
99#9 

w+ #4+ 
99#9 

w+ 4# w+ # + 
55#9 

6 
,. 

1.16 49w+5#4+ 
89#9 

97w+89#4+ 
79#9 

99w+84#9 
....
1

5#7+41#9 
99w+36#1+ 

7 1.33 99w+96#4+ 
31#9 

'99w+93#4+ 
32#7 

T 
. 

Table C.25: Identification results of waterjet sample #9. 
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