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ABSTRACT - 

Title of Thesis: Comparative Analysis of Single and Double Dwell Acquisition Systems 

Gurinder Singh Ahluwalia, Master of Science in Electrical Engineering, 1990 

Thesis directed by: Professor Joseph Frank 

Single and double dwell pseudonoise (PN) acquisition systems are described, 

explained and analyzed. These systems are designed to synchronize a locally generated PN 
 

signal with a received PN signal of unknown phase in the presence of noise. The mean, 

variance and an approximate probability distribution function (PDF) of the acquisition time 

for the single and double dwell PN acquisition schemes is developed. Intuitively, the 

double dwell acquisition system should be superior to the single dwell system because of 

the ability to quickly dismiss incorrect cells and further verify probable hits. It is shown 

analytically that this is in fact true and that a double dwell system greatly reduces (36%) the 

expected acquisition time over a single dwell system. 

The generating functions for both acquisition schemes are found via signal -flow 

diagrams. In order to compare the two systems, it is necessary to evaluate the effect of the 

penalty, K (false alarm penalty), which is done via state-transition diagrams. The mean 

and variance for both schemes are found in terms of: probability of detection, probability of 

false alarm, false alarm penalty and dwell times. Finally, a general expression for the PDF 

is found for both acquisition systems. 

It is shown that the double dwell acquisition scheme can significantly reduce the 

expected acquisition time from that obtained with a single dwell system. 
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Preface 

The main objective of this work is to provide a quantitative comparison 

between two PN acquisition schemes. The two schemes that are analyzed are 

the single and double dwell acquisition systems. 

The material on the single dwell system is a compilation and simplification 

of works that have been published by DiCarlo and Weber, and Holmes and 

Chen[1,7]. The background material as well as the section on lock-detector 

analysis can be found in both journals and textbooks. However, here it is writ-

ten in a tutorial manner so that it can be easily understood and it provides the 

background for understanding the analysis of the double dwell system. In order 

to make the desired comparison, it was necessary to analyze the double dwell 

scheme using signal flow techniques and the reduction of the generating func-

tion. In the double dwell analysis, a close approximation of the pdf of the ac-

quisition time is derived as well as the mean and variance of the time to 

acquistion. The pdf of the acquisition time for the double dwell system is a new 

result that has not been previously published. 

In the concluding chapter, the results that were derived are presented. In 

order to make a useful quantitative comparison, two specific examples are 

analyzed numerically. In both cases, the results are shown graphically and it 

becomes apparent that the double dwell is superior to the single dwell. Finally, 

some insight is given pertaining to the results. 



Table of Contents 

I Binary Phase Shift Keying Spread Spectrum System 1 
1.1 Data and PN Code Modulation/Demodulation 2 
1.2 Synchronization 5 

1.2.1 Acquisition 6 
1.2.2 Tracking 7 

1.3 Carrier Recovery 9 
1.3.1 Phase-Locked Loop 9 
1.3.2 Squaring Loop 11 

II Mathematical Foundation of Direct Sequence 
Spread Spectrum Systems 13 
2.1 Introduction 13 
2.2 Characteristics of a Random Binary Sequence 13 
2.3 PN Sequences 17 

2.3.1 Maximal-length Sequences 17 
2.3.2 Spreading Code: Autocorrelation Function 18 
2.3.3 Spreading Code: Power Spectral Density 21 

2.4 Product of a PN Code with a Delayed Replica 23 
2.4.1 Spectral Analysis a 24 

2.5 Signal-Flow and State-Transition Diagrams 30 
2.6 Application of the Z-Transform 34 
2.7 Absorbing Markov Chains 38 

2.7.1 Mean Time to Absorption 41 

III Direct Sequence PN Code Acquisition Schemes 44 
3.1 Introduction 44 

3.1.1 Single-Dwell Model Description 46 
3.1.2 Analysis of Single-Dwell Acquisition 47 

3.2 Lock-Detector Analysis 54 
3.2.1 Evaluation of the Penalty: K 56 

3.3 Double-Dwell Acquisition Scheme 57 
3.3.1 Model Descrition 57 
3.3.2 System Analysis 59 
3.3.3 Acquisition Parameters 62 

IV Conclusions 71 
4.1 System Comparisons 71 
4.2 Recommendation for Future Work 76 

Appendices 77 
Appendix A 77 
Appendix B-1 79 
Appendix B-2 81 
Appendix B-3 82 

Selected Bibliography 83 



Chapter 1  

Binary Phase Shift Keying 

Spread Spectrum System 

A spread spectrum communication system transmits information over a 

bandwidth which is much larger than that of the message signal. It is this 

spreading effect that gives rise to the name spread spectrum. 

The motivation for reliable spread spectrum communication systems 

is manyfold but can perhaps be summarized as follows. The sender wishes to 

transmit in such a way as to provide unintended receivers with as low probability 

of intercept (LPI) as is possible. Also, it is usually desirable that the receiver 

achieve a certain level of immunity from various forms of jamming. Finally, 

the system may be required to operate in a multiple-access environment. This 

can be achieved by using spreading codes with low cross-correlations so that an 

unintended receiver will detect the transmission only as noise and the intended 

receiver will be able to recover the signal by a "despreading" process. 

In order to achieve the characteristics mentioned above, one must be willing 

to "pay the price." In this case, a much larger transmission bandwidth than 

would ordinarily be required to transmit the message and a great deal of com-

plexity in the transmitter/receiver. A less obvious tradeoff is the time required 

to achieve code synchronization so that the data may be demodulated. 

A typical binary phase shift keying (BPSK) spread spectrum system is shown 

in Figure 1.1. This chapter will discuss various aspects of the transmitter/receiver 

system in order to prepare the reader for the detailed analysis that follows. First, 

data and spreading code modulation/demodulation is analyzed. Second, the 

concept of synchronization is introduced and discussed by separating the topics 



of acquisition and tracking. The former will be investigated in detail in Chapter 

3. Finally, in this chapter, a carrier recovery technique is reviewed for the sake 

of completeness. 

Figure 1.1 (a) PN encoded spread spectrum transmitter and 

(b) coherent receiver 

1.1 Data and PN Code Modulation/ 

Demodulation 

The BPSK data and pseudonoise (PN) code modulator is shown in Figure 

1.2. Consider the phase-modulated signal x p,z(t) which is an ordinary BPSK 

signal which can be represented as 



or equivalently, 

x p,i(t) = -‘,.--Pdk  sin coot (1.2) 

nTb < t < (n + 1)Tb, n = integer 

where P = power of carrier signal 

wo = carrier frequency 

Tb = data bit duration 

dk  = 1 or —1 corresponding to '1' or '0' respectively 

Figure 1.2 BPSK DS spread spectrum transmitter 

It will be assumed throughout that the "message" bits (dk ) are statistically in-

dependent and take on the values ±1 with equal probability. 

The BPSK modulated signal is then "spread" by the PN sequence as illus-

trated in Figure 1.2. Analytically, 

xt(t) = xpn,(t)c(t) (1.3) 

where c(t) ±1. The method of generation of the PN sequence is discussed in 

detail in Chapter 2. It is common for the rate of the PN sequence (chip rate) to 

be several orders of magnitude greater than that of the data. The chip duration, 



Tc, is defined as: 
pr, 

N 
Tb 

' 
— (1.4) 

where N is defined as the processing gain and its effect on the spectrum of the 

signal is discussed in section 2.3.2. 

Rewriting Eq. (1.3), 

st(t) = c.expin(t) 

= c/ N/TP sin(wot + dor/2) (1.5) 

.eTc  < t < (1+1)Tc, = integer 

Equivalently, 

st(t) = ViPsin(coot dkck N+pr/2) 

dkekN+I'VET sin coot (1.6) 
• 

where kTb +.eTc  < t < kTb + + 1)21 

k = 0,1,2,...N — 1 

N =integer 

For the purpose of discussion, define 

d(t) = dk kTb < t < (k +1)Tb 

c(t) = ci .eTc  < t < (1 + 1)71c  for all integers ka (1.7) 

Therefore, rewriting equation (1.6), 

xt(t) = d(t)c(t)fiTsincoot (1.8) 

Assuming the local PN sequence is synchronized with the received sequence 

and neglecting the effects of noise and phase ambiguity in the carrier, the receiver 



shown in Figure 1.3 will be able to demodulate the carrier. Analytically, 

yi,,,(t) = yr(t) c(t) 

= d(t) c2  (t)-17P sin wot (1.9) 

Note that 

c2(t) = 1 for all t (1.10) 

thereby Eq. (1.9) can be simplified to 

yp,,(t) = d(t) 2P (1.11) 

and d(t) can be easily recovered by a standard BPSK demodulator. 

Figure 1.3 Coherent BPSK receiver 

1.2 Synchronization 
In the previous section, it was assumed that the received and locally gen-

erated PN sequences were synchronized and the effect of noise was neglected. 

Normally, synchronization must be achieved at the receiver by first acquiring the 

phase of the PN sequence and once acquired, it must be tracked to within at 

least (1/2)Tc. This whole operation must be done in the presence of noise, in the 

following analysis additive white Gaussian noise (AWGN) is assumed. In this 

section, the problem of acquisition will be briefly discussed; two possible acqui-

sition schemes and their performance is analyzed in detail in chapter 3. This 

section is concluded with an analysis of a noncoherent code tracking circuit. 



1.2.1 Acquisition 
Various strategies to acquire the phase of the spreading code can be imple-

mented. However, in low signal-to-noise applications, serial search techniques 

outperform the others[1] and it is this technique that is analyzed, specifically, 

single dwell and multiple dwell schemes are investigated in chapter 3. 

In order to analytically describe the performance of the single and multiple 

dwell schemes, it is necessary to understand signal flow graph techniques (section 

2.3). It is also desirable to evaluate the penalty for false-lock which can be 

facilitated through the use of Absorbing Markov Chains (section 2.4). In the 

remainder of this section, the intent is to give the reader motivation for what 

follows in Chapter 3. 

Assuming no a priori information about the received PN code phase, the 

probability that the current search will yield the correct cell is 1/q where q is 

the number of cells (the number of chips in one period of the PN sequence). It 

is assumed that the search is advanced in increments of TT, the chip duration. 

With some thought, it can be shown that if a hit does not occur in the first k — 1 

cells then 

1  
P(kth  cell hit | no hit in k —1 cells) = 

q — (k —1) 

1 
(1.12) 

q — k + 1 

Due to noise considerations, it is possible (with probability PFA)  that the 

acquisition system may detect a hit when in fact a miss should have been de-

tected. In order to model the acquisition system properly, if the receiver does 

incorrectly detect a hit, a penalty should be imposed to represent the time lost 

due to false-lock. The representation and analysis of this penalty is studied in 

Section 3.2.1. Even more detrimental to the performance of the system is if the 



system fails to detect a hit. For if this happens, the entire sequential search has 

to be repeated since none of the remaining cells can yield a true hit. When the 

code phase is acquired to within (1/2)T, the tracking circuit is activated. 

1.2.2 Tracking 
Once the signal is acquired to within one-half of a code chip, it is the function 

of the code tracking loop to insure that the locally generated PN sequence remains 

synchronized with the received PN sequence. 

Assuming the received signal is in the presence of AWGN, n(t), it can be 

represented as 

yr(t) = .\5Pd(t — T) c(t — T) sin(wot + 9) + n(t) (1.13) 

where T represents the transmission delay and 9 is the random carrier phase. 

From Figure 1.4, the received signal is despread in two different channels. In this 
 

particular case, the channels have a code phase difference of one code chip, Tc. 

It is shown in Appendix A-1 that the error signal can be approximated by 

2P e 
e, r--...-1 — 

T 
(1.14) 

, 

where e = T — T. 

From Eq. (1.14) and Figure 1.4, the operation of the tracking circuit is 

explained (qualitatively) in the remainder of this section. 

For the sake of discussion, assume that T <T which implies that e > 0. This 

means that the estimated delay, T, is too short and must be increased. From 

Figure 1.4 it can be seen that the late channel contains some compensation for 

local PN sequence while the early channel causes the sequence phase difference 

to be even greater. Due to the greater correlation in the late channel, the output 

of the summer will be positive. This will cause the voltage-controlled clock 



to increase the delay thereby providing continuous tracking of the received PN 

sequence. Notice in Figure (1.14) the multiplier and bandpass filter act as a 

correlator. If c(t — T) and c(t — T) are closely correlated then the output of the 

Figure 1.4 Full-time early-late noncoherent code tracking loop 

multiplier will collapse into the data modulated carrier at fo  . Since J--- <<  -1- the Td Tc ,  

signal will be despread enough so that the change in the dc output of the lowpass 

filter (cutoff frequency, f H  should be much lower than fo  ) will be detectable. The 

above described process will enable the signal going to the carrier recovery circuit 

to be 

ypm(t) = yr(t) c(t — Y') 

= ..\/F'd(t — T) sin(wot + 0) assuming i" = T (1.15) 

Having the received code and locally generated code synchronized, the signal 



must be carrier demodulated. In order to do this, it is necessary to recover the 

carrier and this is discussed in the next section. 

1.3 Carrier Recovery 

As in the case of synchronization of PN sequences, it is imperative for the 

receiver to recover the carrier phase. This recovery of phase can be accomplished 

by means of a squaring loop[2] such as that shown in Figure 1.5. Since the 

squaring loop employs a phase-locked loop (PLL), the latter will be discussed in 

the next section in order to obtain a better understanding of the recovery circuit. 

Figure 1.5 Squaring-Loop for carrier recovery. 

1.3.1 Phase-Locked Loop 

The device shown in Figure 1.6, a phase-locked loop, allows for the recovery 

of the phase of the received carrier. In the following analysis, the received signal 

is assumed noiseless with a carrier frequency fo  and phase 0. The received 

signal is multiplied by the output of the voltage-controlled oscillator (VCO). The 

VCO output (estimated carrier frequency) varies linearly with the applied input 

voltage, e(t). The operation of the VCO can be characterized by the following 

d 
—
dt

9(t) = ki  e(t) + k2 (1.16) 



In order to analyze the PLL for phase recovery, the phase error is defined as 

q(t) = 6(t) — b(t) (1.17) 

differentiating with respect to time yields, 

Figure 1.6 Block diagram of a phase-locked loop. 
a 

kt) = e(1) — doverdtO(t) (1.18) 

From the linearized model of the PLL shown in Figure 1.7 and Eq. (1.16), 

the above equation can be rewritten as follows 

t 
~(t) = e(t) — C I h(t — 7)0(7)dy (1.19) 

o 

The linearization is justifiable when the phase error is small enough so that 

sin 0 •:-...- 0. Taking the Laplace transform of Eq. (1.19) yields, 

sO(s) = sO(s) — CH(s)0(s) (1.20) 

where H(s) is the transfer function of the loop filter. Substituting the transform 

of Eq. (1.17) into Eq. (1.20) allows the transfer function of the phase to be 

found. With algebraic manipulation, 

0(s) C H(s)  
(1.21) 

0(s) — s -I- C H(s) 



Essentially, the phase-locked loop acts as a narrowband filter, tracking the 

frequency of the received signal. It requires that a spectral line be present at that 

frequency. Thus, a qualitative description in the next section of a squaring-loop 

will show how this can be accomplished. 

Figure 1.7 Linearized model of phase-locked loop shown in Figure 1.6 

1.3.2 Squaring Loop 

Recall Eq. (1.15) which describes an ideally synchronized PN sequence. 

This synchronized signal is ready to be data demodulated with an appropriate 

carrier. Notice in Figure 1.5 that the despread signal is band-pass filtered. This 

is done because once the PN sequence is synchronized, the signal recomposes 

itself to an ordinary BPSK bandpass signal. The filter should therefore have a 

center frequency of fo and a bandwidth of 2Bd  where Bd  is the bandwidth of 

the baseband data signal d(t). This carrier must be recovered and a qualitative 

explanation is given here. 

Rewriting Eq. (1.15), 

ypm(t) = ViPd(t — T) sin(wot + 0) (1.22) 

it can be seen that if the frequency, fo  and phase, 0 can be tracked then it will be 

possible to accurately demodulate the signal. Since the data modulation scheme 



is BPSK, passing the signal through a squaring circuit shown in Figure 1.5 yields 

yp2m(t) = P[1 + cos(2coo t + 20)] (1.23) 

Eq. 1.23 contains a spectral line at 2f0  and can be tracked using the PLL 

described in the previous section. From this PLL, fo  and θ  can be estimated. 

It should be pointed out that the divide by two circuit of Figure 1.5 causes a 

phase ambiguity (±7r) in the output. This phase ambiguity problem is present 

in all phase modulation schemes and can be overcome by special encoding (such 

as differential encoding). 



Chapter 2 

Mathematical Foundation of Direct 

Sequence Spread Spectrum Systems 

This chapter introduces and fully explains the various mathematical con-

cepts and analytical tools necessary for the evaluation of different code acquisi-

tion techniques. Most of the techniques that are needed are explained here and 

used as a basis for the analysis that is carried out in the next chapter. 

2.1 Introduction 

When designing a spread spectrum system, it would be most desirable from 

the point of view of security to have a spreading code that consisted of a purely 

random binary sequence. However, this would require that both the transmitter 

and receiver have an infinite storage for the sequence. Due to this impossibility, 
 

a pseudorandom (PN) sequence is selected that has certain properties. These 

properties will be examined in section 2.3 after discussing the characteristics of 

a purely random binary sequence in section 2.2. 

The remainder of this chapter deals with signal-flow graphs and absorbing 

Markov chains. They are explained in detail and used to aid in the analysis 

and determination of the performance of the acquisition systems presented in 

chapter 3. 

2.2 Characteristics of a Random Binary 

Sequence 

Before discussing PN sequences, it is useful to first investigate and determine 

certain characteristics of a random binary wave as shown in Figure 2.1. The 

symbols 1 and 0 are represented by +A and -A volts respectively. 



Figure 2.1 Random binary sequence with random starting phase. 

Since the binary wave (sequence) is random, and 

P(x(t) = LA) = P(x(t) = A) = —
1 

(2.1) 
2 

it follows that E[x(t)] = 0 and x(t) = 0 where E[] represents ensemble averaging 

and the overbar indicates time averaging. The autocorrelation is found from 

Rx(ti,t2) = E[x(ti)x(t2)] (2.2) 

and can be divided into two regions. If It1 — t2 I > T where T is the duration of 

one bit, then the two samples are independent and Eq. (2.2) becomes 

Rx(t1,t2 ) = E[x(ti)] E[x(t2 )] 
(2.3) 

=0 

If however Iti  — t21 < T the analysis is not as simple since the samples are not 

necessarily independent. One can note that when t1  — t2  = 0, Rz(0) = A2  is the 

maximum. If the condition that |t1  — t2) < T — td and t1  = 0 is imposed, then it 

follows that 

E[x(ti )x(t2)] = { A2 if Iti  — t21 < T — td (2.4) 
0 otherwise 



Averaging this result over possible values of td  yields 

where ft, is the probability density function of the starting phase and is defined 

as 

Using Eq. (2.6) and the fact that td  = T — |ti — t2 | in Eq. (2.5) results in, 

Since the autocorrelation depends only on the difference of t1  and t2 , Eq. (2.7) 

can be rewritten as 

where T = Iti - t21. This relation, plotted in Figure 2.2, could also have been 

derived using the Weiner-Khintchine relation. In fact, this relation will be used 

to derive and sketch the power spectral density (PSD) of the random binary 

wave. 



Figure 2.2 Autocorrelation of the random binary sequence shown in Fig. 2.1 

The Fourier transform pair 

are considered the Weiner-Khintchine relations. From Eq. (2.9) it can be seen 

that if the autocorrelation function is transformable then the transform (with 

respect to τ) is the PSD of that function. In this case, from Eq. (2.8) and (2.9), 

the transform is directly found to be 

where A is the amplitude and T is the duration of the random binary pulse (see 

Figure 2.3). 



Figure 2.3 PSD of the random binary sequence of Fig. 2.1 

2.3 PN Sequences 

As explained in the introduction, since it is not possible to use a purely 

random binary sequence as a spreading code, some suboptimal sequence must 
 

be used. This sequence will have some noiselike properties but will also possess 

other properties which are discussed in this section. 

2.3.1 Maximal-length Sequences 

A linear maximal sequence is a shift register sequence having the largest 

possible period for a specific register length. The period is given by 

N 2' — 1 (2.12) 

where m is the number of stages. For example, in Figure 2.4, m = 3 and N = 7. 

Assuming the initial state of the sequence to be Ro  = 1, R1  = 0, R2  = 0 yields 

the following output sequence: 

0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 

where the first period is shown slightly separated from the rest for the sake of 

clarity. The adder shown in Figure 2.4 is a modulo-2 (exclusive or) adder and 



also notice that the initial state of the registers can be anything but the all zero 

sequence. Using this simple example, the following properties of m-sequences 

can be seen (see Appendix B-1): 

I A maximal sequence has one more 1 than 0. 

II The sum (modulo-2) of two phase-shifted versions of an m-sequence yields 

the same sequence but shifted. 

III The discrete autocorrelation of an m-sequence is two-valued. 

Figure 2.4 Three-stage maximal-length sequence generator 

2.3.2 Spreading Code: Autocorrelation Function 

Having shown some of the properties of maximal length sequences, the au-

tocorrelation function and power spectral density of the sequences will be cal-

culated. This knowledge together with the other sections of this chapter will 

facilitate the analysis of the acquisition schemes. 

Recall, the autocorrelation function for a deterministic signal is given by 

1 IT 
Rc(r) = —

T 
c(t) c(t 7-) dt (2.13) 

where c(t) is defined by Eq. (1.7) and is rewritten as 

c(t) = E cep(t — tTc) (2.14) 
t=-00 



where p(t) is a unit pulse whose amplitude is unity and duration is from t = 0 

until t = Tc  and ct  is either ±1. Substituting-Eq. (2.14) into (2.13) yields 

R,(r) = 11 Ec°  czP(t — iTo) E c3 p(t — jTc  -I- r)dt (2.15) 
0  

This can be rewritten as 

1 00 fT 

T 
Rc(7) = — N--  Ci E c3 p(t — iTc)P(t — iTc + r)dt (2.16) 

z—, o 2=—co 3=—co 

In Eq. (2.16), T can take on any value. Define 

T i  = 7 — nT, (2.17) 

where n is an integer such that jr11 < T,. Rewriting Eq. (2.16) with T 1  yields 

1 x--. T 

T 
Rc(T 1) = — _, c, E c2+7,81 p(t — iTc)p(t — (j — n)Tc  + T')dt (2.18) 

o 

where Ti  is a function of r and n. In 'Eq. (2.18) it can be seen that the integrand 

is nonzero only when the pulses overlap. Analytically, only when j = i + n and 

when j = i + n + 1 do the pulses overlap. Using Eq. (2.18) with this and the 

fact that T = NTc, the double summation reduces into the following two single 

summation terms. 

CO (z-F1)Tc —r' 
Rc(T

1  
i) = E cz Ci-Fn p(t — iTc)p(t — iT, + ri)dt (2.19) 

2=—00 
NTc f2Tc  

CO 

s 

1 

-F 
(2+1)Tc 

+ — E czCz+n1 p(t — iTc)p(t — (i + 1)T, + r')dt 
2=-00 NTc • I ( z+1)Tc —r' 

Substituting 77 = t — iT into the integrals simplifies the result to 

1 --, 
TC 

/ T° —ri  
Rc(T 1) = — 2_, czei+n I P(Op(77+ Ti)dri  

z__00 0 

1 x--• iTc 

+ 7 2 c2ci-Fn+i j P(74(77 —21+ T I )C177 (2.20) 
Tc —r' z=—co 



From Appendix (B-1), using Eq. (B-2) for PN sequences, 

Tc—r Rc(r1) = rc(n) r7.1, I p(77)p(77 + 71)thl 
-Lc 0 (2.21) 

+ rc (n + 1)—/-7-7 /11 P(OP(77 — Tc + 71)thi 
- I. c Tr' 

where 7•c(n) is the discrete two-valued autocorrelation function of c(t). Since p(t) 

is a known pulse, the integral yields 

1 
Rc(7') = rc(n)[T, (Tc — TJ )] (2.22) 

where Ti  and n are defined in Eq. (2.17). Using Eq. (B-3) and Eq. (2.22), it is 

possible to divide the autocorrelation function into two regions. When 0 < |'d < 

Tc  then Eq. (2.22) reduces to , 

IZc(r) = r,(0)11 — I -T-11 + rc(i) I T,- | 

+Tc
1 

=1—
N  

IT! (2.23) 
N 

and when Tc  < 171 < (N —1)11 then 

.Rc(r) = rc(k)(1 — L-7-11 ) + rc(k + 1) 71 (2.24) Tc Tc  

where k and k +1 are not integer multiples of N and r' = T — kTc  which insures 

W| > Tc. Substituting the values of the discrete autocorrelation function into 

Eq. (2.24) yields 

, , 
Rc(r) = — 

N  
— 0. — 

1
— + — 
Tc
1 

Tc 

W| 
) 

1 
= -- 

N 
(2.25) 

These results, Eq. (2.23) and (2.25) are plotted for c(t) in Figure 2.5. 



Figure 2.5 Autocorrelation function of a maximal-length sequence. 

2.3.3 Spreading Code: Power Spectral Density 

In order to find the power spectral density (PSD) of the spreading code c(t), 

the Wiener-Khinchine relation can be used as follows 

But Ro(τ) is periodic therefore the following transform pair will aid in the analysis 

where g(t) = gp(t) = lic(t) for —To/2 < t < T0 /2 in this case and To  = NT,. 

Note that in the above equation, G(f) is the Fourier transform of g(t). There-

fore, it is necessary to evaluate the transform of g(t). In this case, the Fourier 

transform (with respect to T.) of R,(7) — T0/2 < r < T0/2 is needed. From the 

basic transform relationship 

it is possible to find S„ (the PSD of one period of the autocorrelation function) 

as follows. 



Notice that in Eq. (2.29) the limits have been reduced from Eq. (2.26). This 

is because Rc,. (r) is one period of the autocorrelation function centered at the 

origin. Substituting Eq. (2.23) and (2.25) into Eq. (2.29) yields 

This can be simplified (see Appendix (B-2)) yielding, 

 

Recall that Eq. (2.31) is the PSD of a non-periodic function and only when 

Eq. (2.27) is used does the result apply to the periodic (autocorrelation) function. 

Substitution yields, 

which can be reduced (see Appendix B-3) to 

Upon inspection of Eq. (2.33) it can be seen that the spectrum is discrete which 

follows from the fact that the function is periodic and the dc term is +1/N2 The 

latter can be obtained from Eq. (2.33) by setting n = 0. Eq. (2.33) is plotted in 

Figure 2.6 



Figure 2.6 Power spectral density of c(t). 

2.4 Product of a PN Code with a Delayed Replica 

In order to detect when the received and locally generated spreading codes 

are synchronized, the receiver must be able to detect a change in the spectral 
 

content of the "despread signal." This idea will become clearer as the spectrum 

characteristics are developed and explained in the following section. 

There are four distinct cases which can arise during the synchronization 

process. First, if the received and locally generated codes are exactly synchro-

nized (e = 0). Second, if the delay (difference in code phase) is less than one 

code chip (lel < Tc). Third, if the delay is exactly a multiple of a code chip 

(lel = kTe  where k = 1,2, ...N — 1) and finally, if the phase difference is greater 

than one chip but less than a period so that Tc  < lel < (N — 1)Tc  where NTc 

is the period of the spreading code. These different phase delays are analyzed 

below by keeping the analysis as independent of the value of e as is possible and 

then the results are discussed for different e and are illustrated in Figure 2.12. 



2.4.1 Spectral Analysis 

If the received and locally generated spreading codes are represented by c(t) 

and c(t + e) respectively, then the autocorrelation of the product is 

This calculation is difficult if done directly. In figure 2.7, by 

Figure 2.7 Product of maximal-length sequences (see Ref. 3) 

following [8], where 

the autocorrelation is written as 

where b(t, e) can be written as the sum of p(t, e) and q(t , e) and both are periodic 

with period Tc  and NTc  respectively. These functions are shown in Figure 2.8 

and the autocorrelation calculation follows. 



Figure 2.8 Decomposition of the product of m-sequences (see Ref. 3) 

Rewriting Eq. (2.35b) using the following, 

 
yields 

where p(t , e) is just a binary pulse with period 21 and duration of 11 — e and 

q(t , e) is a three-valued function, with period N11, such that Eq. (2.36) will hold. 

This relation is shown in Figure 2.8. The right-hand side terms of Eq. (2.37) 

can be found by using a combination of graphical as well as analytical means. 

Evaluating Rp(r, e), the autocorrelation of a periodic pulse with duration T1 — e, 

from Figure 2.8 yields, 



and for Tc/2 < lei < Tc, 

These autocorrelations are plotted in Figure 2.9. Notice for lel < Td2, there is 

a constant term of 1 — 2(lel/Tc) which is represented by Ro le) in Eq. (2.38a). 

Figure 2.9 Autocorrelation of p(t, e) (a) lel < T, 

(b) Tc/2 < lel < Tc  (see Ref. 8) 

Similarly, the autocorrelation Rq(7, e) is found by inspection of Figure 2.8 

and is plotted in Figure 2.10. Notice that q(7-, e) is just a phase-shifted version 

of the spreading code with a shorter duration. This reduced duration causes the 

autocorrelation to be slightly different from the function plotted in Figure 2.5. 

As with Rp(r, e) the autocorrelation function can be explicitly written for the 

two regions as: 



for lel < Tc/2 and 

for 21/2 < lel < Tc. Having found the autocorrelation of p(t , e) and q(t, e) only 

the cross-correlation remains to have a complete "picture" of the autocorrelation 

function of the product of the PN sequences (Rb(T, e)). 

Figure 2.10 Autocorrrelation of q(t, e) (a) lel 5_ Tc 

(b) T,./2 < lel < T, (see Ref. 81 



From the definition of the cross-correlation function, 

If the substitution of A = t + T is made, 

then it is seen that the right-hand side is just the cross-correlation Rqp( —r , e) so 

that 

As with the autocorrelation, the cross-correlation Rpq(T, e) can be found directly 

from Figure 2.8 and is shown in Figure 2.11. 

Figure 2.11 Cross-correlation: (a) let < Tc 

(b) Tc /2 < 161 < 2', (see Ref. 8) 

Having found the four terms of Eq. (2.37), it is Possible, with the aid of the 

Weiner-Khintchine relation, to find the power spectrum of the product of the 



spreading codes (c(t) and c(t + e)). Using Eq. (2.27) with the results obtained 

above, the transform of Rb(T, e) is obtained and when simplified yields, 

In Figure 2.12, Eq. (2.43) is plotted for different values of lel < Tc. Notice 

when e = 0, the sequence are in perfect synchronization and the power spectrum 

is just a single line at f = 0. This is intuitively correct since c2(t) = 1 is just a dc 

signal. Also in the figure, the spectrum is discrete and the spacing is dependent 
 

on E. In fact, the synchronization process will exploit this characteristic. 

Figure 2.12 PSD of b(t, e) for various lel < Td2 

If e = kT, then the product b(t, e) will have the same spectrum as c(t). 

This can be obtained from section 2.3.1 which states that the modulo-2 sum 

or equivalently, the product of two identical but phase-delayed maximal-length 

sequences is the same sequence but shifted [3]. 

Finally, for displacements of kT, < e < (k +1)Tc, the power spectral density 



becomes 

2.5 Signal-Flow and State-Transition Diagrams 

In order to facilitate the evaluation of the acquisition system described in 

the next chapter, it is useful to understand the basic methods of fignal-flow and 

state-transition diagrams. 

A signal-flow diagram is a graphic representation of a set of linear equations. 

It allows for rapid simplification using standard reduction methods or Mason's 

theorems [4,5]. In this section, several terms that are used in signal-flow diagrams 
 

are defined. Then an abbreviated list of signal-flow simplifications is presented 

and discussed. Finally, Mason's theorem is presented and an example is given to 

illustrate the power of this theorem. 

Figure 2.13 An example of a signal-flow diagram. 

The following definitions refer to Figure 2.13 for illustration. A source (x1 ) 

is a node having only outgoing branches. Similarly, a sink has only incom-

ing branches (x6). A path is a group of branches connected in one direction 



(ab, fc, g). A path that originates from a source and terminates in a sink is the 

path gain (abcde, kde, kdgch),where the product of the coefficients is considered 

the gain (x1  -4 x2  : path gain = a). A feedback loop originates and terminates 

at the same node (x3  ---). x4  —> x5  --+ x3). The product of the branches that form 

the feedback loop is considered the loop gain (cdg). 

Having presented the fundamental terms used in signal-flow theory, it is 

appropriate to show (Figure 2.14) some of the basic reduction techniques[6]. 

Figure 2.14 Reduction of the signal-flow diagram. 

Although this technique is straightforward, for complicated or large systems it 

can become tedious. Mason's theorem, a more powerful technique is available 

which (almost by inspection) simplifies the signal-flow diagram into two nodes 

connected by a single branch. Using Mason's theorem[4,5], the general expression 

for signal-flow graph transfer function, H, is given by 

where 6. --,-. 1 — E Ti - -F. E T2 - • • • + (-i)m  E 71,,. 

Ti = gain of each closed loop in the graph 



T2 = product of the loop gain of any two nontouching closed loops 

Tn, = product of the loop gain of any m nontouching closed loops 

H3 = gain of the jth forward path 

03 = value of A remaining when the path producing 1/3  is removed 

A proof of this gain formula can be found in Reference 5. Here, an example is 

given to illustrate the application of Eq. (2.45). 

From Figure (2.15), 

0= 1— T33 —  T34 T45 T53 

T1 = T12 T23 T34 T45 T56 T67 

T2 = T12 T24 T45 T56 T67 

T3 = T12 T24 T46 T67 
a 

T4 = T12 T23 T34 T46 T67 

A 1 = 1 

A2 =  1 — T33 

03 = 1 — T33 

04= 1 

Substituting the above values into Eq. (2.45) we obtain 

H101 -I- H202 + H303 + H404  H (2.46) 
A 

The technique just discussed is used widely in control theory but can also 

be applied to various problems as long as they are well defined. In this case, 

the technique will be used to allow for the simplification of the state-transition 

diagram shown in Fig. 2.16. 

Substituting the above values into Eq. (2.45) we obtain 

H101 + H202  -I- H303 + H404  H — (2.46) 
0 



The technique just discussed is used widely in control theory but can also 

be applied to various problems as long as they are well defined. In this case, 

the technique will be used to allow for the simplification of the state-transition 

diagram. 

Figure 2.15 (a) Signal-flow example (b) reduced equivalent 

Consider the following discrete three-state process: 

P(x3 /xi ) = 0 P(x3/x2) = 9/16 P(x3 /x3 ) = 1 (2.47a) 

P(x2 /xi) = 1/4 P(x2/x2) = 0 P(x2/x3 ) = 0 (2.47b) 

P(xi/xi) = 3/4 P(xi/x2) = 7/16 P(xi /x3 ) = 0 (2.47c) 

This process is shown in Figure 2.16 as a state-transition diagram where the 

branches are labelled with the corresponding transition probabilities. From the 

above stated probabilities or Figure 2.16, the probability of the next state in 

terms of the previous state can be found as follows: 



Figure 2.16 State transition diagram for the above described example 

Psi(k + 1) = P(xi/xi)Px, (k) + P (xi / x2) Px 2 (k) + P (x 1 / x3) Px,(k) (2.48) 

23s2(k + 1) = P(x2I xi)Pxi (k) -{-  P(X2 I X2) PX2(k) + P (x2  / x 3 ) px3(k) (2.49) 

Px,(k + 1) = P(x3I xi)Px1 (k)d-  P(x31x2) Px 2(k) + P(x31x3)px3(k) (2.50) 

Since Eqs. (2.48-50) are linear, constant coefficient difference equations, it 

is possible and useful to take the Z-transform of them and work in the transform 

domain. However the results can only be useful if the transformed equation 

(state-transition diagram) and the original equations (state-transition diagrams) 

produce the same Markov chain. It is shown in [7] that this is in fact the case 

and it is therefore analytically proper to work in the transform domain. 

2.6 Application of the Z-Transform 
The Z-transform of the discrete probability function p23  (k) is 

Notice that the series converges for Izi < 1. If Eq. (2.51) is differentiated with 

respect to z, and evaluated for z = 1, 



it can be noticed that this is just the mean number of steps to go from state i to 

j in the process. This can be rewritten as  

where the overbar represents the mean and it is assumed that one step equals one 

unit of time. Similarly, the variance (43 ) of the time required to go from state 

i to state j is found as follows. Taking the random variable T23 , the variance is 

just 

However E[71,23] can be found by fitst differentiating Eq. (2.51) twice (w.r.t. z) 

and simplifying: 

Rearranging this equation and realizing that it can be written as follows 

and substituting this into Eq. (2.54) yields, 

Having found both the mean and variance of the time required to move from 

state i to state j, it would also be informative to know the probability of the 



"system" going from one particular state to another at a specified time or during 

a specified period of time. From [6], 

This equation can also be used to find the probability that the system is in some 

specified state by taking into account the different state possibilities. These 

concepts are made clearer with the following example. If the Z-transform of 

Figure 2.16 is taken, the following flow-graph is generated: 

Figure 2.17 Example of a transformed flow-graph. 

In Figure 2.17, x3  is known as the absorbing state. Once this state is reached, 

the system will forever remain there. States x1, x2  are transient states. Notice 

that x1  is preceded by 8(n) and a unity branch. This takes the initial condition 

(px,1 (0) = 1) into account. Using Mason's gain formula, explained in the previous 

section, the mean time for the system to go from state x1  to x3  can be found by 



first finding the transfer function of Figure 2.17 (b). 

substituting this into Eq. (2.52) and (2.53) yields 

It is also useful to find the variance of the mean time the system will take to 

reach its absorbing state. Using Eq. (2.55), 

Evaluating this at z = 1 and substituting this results along with T13 into 

Eq. (2.57) yields 

Another statistic which can be obtained from Figure 2.17a is the cumulative 

probability that the system has reached the absorbing state. This can also be 

found by using 

Notice that Eq. (2.62) would require that all transition probabilities be calcu-

lated. This tedious but correct computation can be avoided by, once again, using 



Mason's gain formula (Eq. 2.45) on Figure 2.17a: 

yielding, 

where a partial fraction expansion has been utilized. Expanding this result into 

series form produces, 

From Eq. (2.64), the cumulative distribution function of the process described 

by the system shown in Figure 2.17a can be obtained by inspection. 

Notice from the equation as well as the diagram that p33(k) = 0 for k = 0, 1 and 

that p33(k) -- 1 as k --> oo. 

2.7 Absorbing Markov Chains 

The following section exemplifies a method to evaluate the performance of 

lock-detectors. Lock-detectors indicate when a synchronization scheme is in/out 

of lock. The time required for this indication directly affects the performance 

(time) to acquire the code. The behavior of lock detectors can be modeled 

accurately by the use of Markov Chains. 



A stochastic process X?, taking on values in a countable set is called a Markov 

chain with stationary transition probabilities if and only if 

P[X,2+1  = i |Xn = i ; A] = P [Xn-Fi = i IXn = i] (2.66) 

where A is any other set of values for Xk for k =1 to n — 1. Since the equation 

represents a one-step transition, it can be written as 

.73,3  = P[Xn+1 = i | Xn = i ] (2.67) 

Notice that the transition probability, pia , is not time dependent, meaning 

Eq. (2.67) holds for all n. Also, the initial state of the system must be specified. 

In this case, assume that the system is known to start in some fixed state, say 

X0  = i, then 

pi = P[X0  = i] =1 (2.68) 

and 
 

pj = P[X0 = j] = 0 for i 0 i (2.69) 

Returning to the transition probability in Eq. (2.67), it can be noticed that 

pzi > 0 for all i, j and E3 pz3  = 1 for all i. In fact, it is these restrictions 

which must be satisfied in order for pi3  to be the 1-step transition probabilities 

of a stationary Markov Chain. In order to explicitly show that the transition 

probability is for 1 time step, it will be denoted as p,(39 = 23,3  and for an n-step 

transition, 

) pi(3 = P[Xn = i 1 XO = ii (2.70) 

Obviously n > 1 so that 



where 1),(3°) = 8,3  (5 is the Kronecker delta). 

The different states of the Markov chain. can be classified into two distinct 

categories, transient and recurrent states. Transient states, as the name indicates, 

are only temporary in the sense that eventually the system will forever leave these 

states. The latter, recurrent states, are the absorbing states of the system. In 

other words, once these recurrent states are reached, the system does not leave 

from them. These ideas are clarified in the following example. 

Assume a 4-state Markov Chain as in Figure 2.18. The transition probabil-

ities . v„ can be out into matrix form as follows: 

Figure 2.18 A 4-state absorbing Markov Chain 

Notice for both the transition matrix as well as the state transition diagram that 

state 4 is an absorbing state. Assume that P[X1  = 1] = 1, meaning that the 

state 1 is the starting point, then from Eq. (2.72), 

PH = q P12 = P P13 = 0 p14  = 0 (2.73) 

It is also desirable to find the 2-step, 3-step and k-step transition probabilities 

of the system. Qualitatively, the 2-step transition probability can be found by 



describing the various scenarios. Since the system starts in state X1, after 1 unit 

of time the system is in state 1 or 2 with probability q,P respectively. After the 

2nd unit of time if the system was in state 1 then the probability of remaining 

there is q and if it was in state 2 , the probability of returning to state 1 is q. So, 

(2) pii  = q • qd-p• q. This 2-step transition probability could have been calculated 

by squaring M as follows: 

This can similarly be repeated for any number of steps. In the next section, the 

mean time to reach the absorbing state will be calculated. 

2.7.1 Mean Time to Absorption 

In order to utilize the power of matrices, it is necessary to put the transition 
 

matrix into canonical form. The canonical matrix can be partitioned into four 

submatrices. The upper-left matrix is the grouping of the persistent states and 

is therefore by definitio n an identity matrix. It also follows that the upper right 

matrix will be the zero matrix. The lower-left matrix indicates the transition 

probability from a transient to an absorbing state and finally the lower-right 

matrix indicates the transient transitional probabilities. Consider the 4-state 

Markov chain described earlier, 

would be rewritten as 



In order to make this example more tractable, let p = 7/8 and q = 1/8. Substi- 

tuting these values into Eq. (2.76), - 

From [6], the fundamental matrix, N, can be found as follows: 

N = [I — Q]-1  

where Q is the lower-right matrix of the canonical matrix discussed above and 

N = {nz3} represents the number of steps spent in state j starting from state i 

(before being absorbed). From Eq. (2.77), 

substituting into Eq. (2.78) and with some matrix calculations, 

From this matrix (Eq. 2.80), assuming unity dwell times, the mean number of 

times spent in state 1 starting in state 1 is 456/73  before being absorbed. Sim-

ilarly for state 2 starting from state 1 is 64/72  and state 3 is 8/7. Using this 

information, the number of time units spent in transient states before being ab-

sorbed is found to be (approximately) 3.77 by adding the elements of the first 

row. The usefulness and motivation for the absorption time is discussed in the 

next chapter. Here, it suffices to say that it aids in giving a measure of the overall 

performance of the system. 



Having found the mean time in a transient state, the obvious question that 

follows is: What is the variance? In [6], a theorem for the variance of an equal 

dwell system is presented and a corollary to that is 

where 01 represents the variance of the mean time to be absorbed starting in state 

i, Ti2 and (NT)Z 2 represent the squaring of each element in the corresponding 

vector and [T] is a matrix representing the T vector (elements of the vector are 

along the main diagonal of the matrix and zeroes elsewhere). Continuing with 

the example, 

The methods described in this and previous sections will be used in the next 

chapter to understand, evaluate ark' predict the performance of two different 

acquisition schemes. 



Chapter 3 
Direct Sequence PN Code 
Acquisition Schemes 

In this chapter single and double-dwell schemes are evaluated and results com-

pared. Although the single-dwell scheme is advantageous from a hardware complexity 

point of view, it may be desirable to invest in the more elaborate double dwell scheme in 

order to improve system performance. 

The single-dwell acquisition scheme, shown in Fig. 3.1, was first analyzed by 

Holmes and Chen [7] where an expression for the mean and variance of the time to 

acquire the code was derived. This was done using the generating function that is first 

found from the signal flow diagram. In fact, DiCarlo and Weber [1] continued with 

the analysis and found the cumulative distribution function (CDF) of the number of 

steps to acquire the received PN code. 

DiCarlo and Weber [10] worked with the results of Holmes and Chen and extended 

the results for a general multiple-dwell scheme. They present a generalized solution 

for the mean number of steps to acquire and an approximation for the variance. 

Perhaps due to the unwieldy nature of the expressions and the general nature of their 

presentation, an expression for the CDF is not derived. In order to make the results 

tractable, a double-dwell scheme is presented and analyzed in the latter part of this 

chapter and an approximate probability distribution function (PDF) is derived for 

the case of the double-dwell. 

The performance results of both schemes are compared in Chapter 4 where the analysis 

of the preceding chapters is summarized and the marked improvement of the double dwell 

over the single dwell acquisition system is shown. 



Figure 3.1 Block diagram of a single-dwell PN code acquisition system. 

Figure 3.2 Signal Flow equivalent of a single-dwell PN code acquisition process. 



3.1.1. Single-Dwell Model Description 
Consider the PN acquisition system shown in Fig. 3.1. It can be seen that the 

system is a single-dwell (integration) type whose output is either above or below a 

certain threshold. There are four different situations that can occur during normal 

operation of the acquisition system. Assuming the correct cell is being tested, the 

output of the integrator at the end of the dwell time should be above the threshold. 

However, due to timing error and noise the integrator output at the end of the dwell 

time could be below the threshold resulting in a missed detection. The probability of 

this missed detection occurring is 1— PD  where PD  is the probability of detection. It 

is also possible that when an incorrect cell is being searched the acquisition circuit can 

detect a false hit. This false alarm probability is Pfa  and the probability of correctly 

dismissing the cell is 1 — Pia. 

In order to understand the acquisition process quantitatively, refer to the equiva-

lent signal flow diagram in Fig. 3.2. In the analysis, the cells are numbered from 1 
 

to q where q is the number of dwells and not necessarily the code length (i.e. if there 

are two dwells per code chip then the number of chips is q/2). Recall 

Ph  =  
1 

(3.1) 
q — k + 1 

where Pk is the probability that the kth cell is a hit given that cells 1 thru k —1 were 

misses (assuming uniform a priori distribution of the correct cell to be 1/q). 

Starting from node 1 in the signal-flow graph, the a priori probability of the 

correct ccell being evaluated is Pi  = 1/q. Assuming the first cell is correct, moving 

upwards in the graph, the cell will be detected with probability PD . This detection 

process requires one unit of dwell time so it is represented as /33z. Once this branch 

is traversed, the acquisition process is complete. If, after traversing branch Pi, the 

cell is not detected then the system will move to node 2 where one of two events 

may occur. This second (incorrect) cell may be dismissed after one unit of dwell, 

(1 — Pfa)z, or it may be incorrectly detected as a hit in which case an additional K 

units of dwell time will be required to detect the false alarm. An explanation of why 



K units of dwell time are attributed to the false-lock detection process is given in the 

next section. After reaching node 3, the process is repeated until the system returns 

to the correct cell. Again, the system will "acquire" the signal with probability PD. 

If the first cell is assumed incorrect, the system would move along the branch 

labelled 1 — Pi  and again one of two events would occur. The system could dismiss 

the first cell with probability 1 — Pfa  but this dismissal would require the evaluation 

(a single-dwell) of the cell, consuming one unit of time, hence the branch labelled 

(1 — Pf a).Z. It is also possible, with probability Pfa, that the system falsely detects a 

hit and this false detection would require one unit and the detection of the false alarm 

another K units, hence the branch PfazK+1. This falso alarm penalty is discussed in 

the next section. Upon reaching node 2, the system would again move in a horizontal 

direction until the correct cell is reached and only then move upwards in the signal-

flow diagram of Fig. 3.2. 

 

3.1.2. Analysis of Single Dwell Acquisition 
In order to derive the transfer function of the single-flow graph in Fig. 3.2, it is 

helpful to first reduce the different sections individually. In Fig. 3.3, the "loops" have 

to be simplified by addition of the branches entering the nodes and are relabelled 

with 

= p f 
a
zK +1 ( + 1 p f 

a
)z A(z) (3.2) 

From Fig. 3.3 it can be noticed that the "loops" are basically feedback loops. Armed 

with the signal-flow theory presented in the previous chapter, the simplification finally 

results in Fig. 3.4 where 

and 



Figure 3.3 Partially reduced single-dwell signal flow graph. 

Figure 3.4 Reduced single-dwell signal flow graph. 



From Fig. 3.4, the generating function, otherwise known as the transfer function can 

be found by inspection to be 

P(z) = 131(z) + Cl(z)B2(z) + Ci(z)C2(z)B3(Z) + . . . 

. . . + Ci(z)C2(z) . . . Cq_1(z)Bq(z) (3.5) 

This can be simplified by using Eqs. (3.3) and (3.4) as follows: 

Ppz  P(z) = 
1— (1 — PD)z Aq-1(z) [P1 + (1— Pi)A(z)P2  + (1— P1)(1 — P2)A2(z)P3  + . .. 

. . . + (1 — P1)(1 — P2) .. . (1 — Pq_i )Aq-1(z)] (3.6) 

Using Eq. (3.1) directly in this expression yields 

Ppz ri q — 1 1 
+ q 

— 1 q — 2 1  P(z) = A(z)  24.2(z) + . . . 1 — (1 — PD)z Aq--1(z) [(I + q q — 1 q q — 1 q — 2 

q— 1 q — 2 2 1 _ i 
...+ 

 q q — 
1 

 6
... -i. • 2AAq 1(z) (3.7) 

When this is reduced, a common factor of 1/q remains so the series can be rewritten 

as 
PD z I q q-1 

 P(z) =  E As (z) (3.8) 1 — (1 — PD)z Aq-1(z) i=0  

This represents the generating function of the acquisition system and from this equa-

tion the mean acquisition time can be derived (as explained in the previous chapter). 

In this case, since P(1) = 1, taking the natural logarithm first will yield the same 

results. Therefore, 
a P. az  In P(z) (3.9) 

z.i. 
substituting Eq. (3.8) into Eq. (3.9) yields 

-1 
P. ° [1n. P.DzIg 

+ In A=(z)) (3.10) 
az 1 — (1— PD)z Aq-1(z) i.o 

The first term of this equation is differentiated and when evaluated at z = 1 yields, 

1 + 1  ,PD  [1 + (q — 1)(1 + K.Pfa)] (18t  term) (3.11a) PD 



and the second term can also easily be reduced by using the fact that Ai(z)1z=1  = 1 

for all i yields, 
(q-1)(1-{-K Pia) 

(2
„d 

term) (3.11b) 
2 

combining these terms and simplifying yields the result 

2 + (2 — PD)(q —1)(1 + K Pia) 
1.1 =  TD (3.12) 

2PD  

This result was first derived by Holmes and Chen [7] and later confirmed by DiCarlo 

and Weber [10]. Notice that the mean time to acquisition has been written in terms 

of the unit dwell time, TD. This has been done so that the result is completely in 

terms of the system's parameters. 

Notice that Eq. (3.12) can be checked for certain conditions; assume PD = 1 and 

Pf. = 0 (ideal) then an acquisition time of 

= q + 1  
2 TD 

(3.13) 

which is correct when the a priori probability distribution is 1/q. Under normal 

circumstances, q> 1 and Eq. (3.12) can be approximated by 

(2 — PD)(1 K Pfa)q = TD (3.14) 
2PD  

The variance of the acquisition time can also be found with the use of Eq. (2.54). 

Again, since P(z)lz.i = 1, the variance is reduced to 

32 a 32 
0-3, = ln(P(z)) In P(z)] = — ln(P(z)) 11 (3.15) 

az z=i 

The first term of Eq. (3.15) can be evaluated in the same manner as done for the 

mean and is shown in [7] which results in 

a2Tacq 12 
1 

PD 
1

231 
[(1 KPfa)2q2 — — — 

P
) 6qK(K i)Pfa  • 2PD(1 PD) 

D 

+6q(1 KPfa)(4 - 2PD  — P/23) + 1 
p2 • TD (3.16) 

4  D 

where q >> 1 has been assumed. In Eq. (3.16), the first term is dominant if 



K(K +1)Pfc, < q hence 

( 1 r 1 ) 2 
4acq ''' 'd  (1 + KPia)2 q2 U — 1 /3  + n TD 

(3.17) 

This can also be checked for the ideal case where Pfa  = 0 and Pd = 1, 

2 q
2
TD  

Cr T '''''''' (3.18) 
"q 12 

which is the variance of a random variable with uniform distribution. 

Having found both the mean and the variance of the time for acquisition, it would 

be desirable to find the actual probability distribution function so that the probability 

of acquiring the signal by a certain time can be calculated. This performance criteria 

was the motivation of DiCarlo and Weber [10] and the results are derived here and 

it is shown that the mean  time [7] can be derived from this probability distribution 

function. 

Recall the generating function, P(z), from Eq. (3.8). If it is possible to write the 

equation in the form of 

P(z)=Epazd (3.19) 
a.° 

then it is possible to extract the probability distribution function of successful acqui-

sition which is just the coefficient of z1. With this in mind,  from Eq. (3.8), 

PD Z I q 
q-1 

P(z) = Ai(z) (3.20) 
1 - (1 - PD)z A4-1(z) i.0  

where A(z) = PfazK+1  + (1 - Pfa)z. Using the series expansion, 

1 . 

1- (1 - PD)z Ag-1(z) 3...o 
 = E [ ( 1 - PD)z A4-1(z)11 (3.21) 

and also recall that A(z) is of the form 

A(z) = (x + y) (3.22) 

where x = PfazK+1  and y = (1 - Pia)z. From this, 

i 

Ai(z) = (x + y)i = E Xhyi—h (3.23) 
h=0 h 



Substitution of Eq. (3.21) into (3.20) yields 

In Eq. (3.24), Ai( _1)(z) • Ai(z) = Ai(q-1)±i(z) and this can be rewritten using Eq. 

(3.23) which results in 

Equation (3.25) can be simplifed by combining like terms, 

In Eq. (3.26), the indices j, i, and h can be understood by noticing their effect on the 

exponent of z. The outermost index, j, represents the number of times the entire q 

cells were unsuccessfully searched. If j = 0 then it is the first pass and j = 1 implies 

that no successful synchronization occurred on the first pass, etc. The middle index, 

i, represents the cell number being checked during the jai  pass. Finally, the innermost 

index, h, from the exponent of z, indicates the number of false alarms. 

From this point, DiCarlo and Weber [10] assume that the system is to synchronize 

during the first pass (by the qth cell) in order to justify setting j = 0. This assumption 

is consistent with the fact that multiple passes will yield unacceptable acquisition 

times. This is quite accurate when PD  is close to 1, which reduces Eq. (3.26) to 



• 

It is also reasonable to assume that the penalty for false-lockAto be less than the 

number of cells to be searched (K < q); otherwise the occurrence of even one false 

alarm would yield unacceptably long acquisition times. In this case, there are distinct 

ranges in which the exponent, r, can fall, The exponent, r, is the integral number 

of unit dwells which represents a particular moment in time (e.g. r = 1 implies i = 1 
costticl. Imply k+ I 

but r = K 1 or h = 1 and i = 1). The only way that a signal detection (otherwise 

known as a hit) can occur in the first range, 1 < r < K, is if no false alarms occur 

(h = 0). In the second region, K 1 < r < 2K, there are two possibilities. It 

may be that h = 0 and K 1 < i < 2K which implies no false alarms, or h = 1 

and 1 < i < K which indicates one false alarm. Similarly, in the third region there 

are three possibilities: 0, 1 or 2 false alarms. These regions can be defined up to q 

(since j = 0 was established earlier). The generating function will now be analyzed 

quantitatively starting with the region 

where direct substitution into Eq. (3.27) has been applied. Similarly, for the second 

region, 

K-I-1 <r< 2K 

[ 2K-1 K-1 (i 
P(z) = p ___p E (1  _ pfayzi+i 4_ E 

pf a(i _ pf a
y zi+K+1 i = 0,h = 0,1 

q i=K i=0 1 

(3.29) 

From Eq. (3.19), it is seen that the probability distribution function of a hit at the 

jth cell is just the coefficient of the term zj. So, once Eqs. (3.28) and (3.29) are 

rewritten, they will yield the probability coefficients pi. Rewriting Eq. (3.28), 



and for 0 < j < K Eq. (3.29) becomes, 

where the second term has been multiplied by a step function so that Eq. (3.29) 

could be written in such a way that pi  is readily identified to be [1], 

for K < j < 2K. In Eq. (3.33) the first and second terms represent the possibilities 

of zero and one false alarm, respectively. Since the purpose of this section is to create 

a framework for the double-dwell system, for j > 2K, the reader is referred to [1]. 

3.2. Lock-Detector Analysis 
Lock detectors are used in PN acquisition systems to verify code synchronization 

and to dismiss false-locks. The lock detector requires a finite amount of time to 

accomplish these tasks. In fact, the mean time to indicate false-lock is the "penalty" 

assigned to a false alarm. Figure 3.5 represents the detection process of a single-

dwell acquisition scheme. In order to modify the system into a double-dwell scheme, 

another integrator after the comparator would be needed to retest under a longer 

dwell (of course, another decision device) as in Fig. 3.7. A three-count lock-detector 

is shown in Fig. 3.6 and can be used in both the single and double-dwell systems. 

Therefore the following analysis is independent of which acquisition scheme is used 

and the results hold for both the single and double-dwell schemes which are discussed 

in this chapter. 



Figure 3.5 Single-dwell detection process 

Figure 3.6 3-count lock detector state transition diagram 



3.2.1. Evaluation of the Penalty: K 
In order to analyze Fig. 3.6, the theory of absorbing Markov chains, as discussed 

in the previous chapter, will be used to help find the mean time to detect false-lock, 

Pfl. The state transition matrix is given by 

where p = Prob (hit) and q = Prob (no hit) in the false-lock mode. As in Eq. (2.76), 

this can be rewritten in canonical form as 

Using Eq. (2.78), the fundamental matrix is 

To find the mean time spent in states 1, 2 and 3 before being absorbed, simply add 

the elements of the first row and this yields the result which has been proven by 

Holmes [6] in general to be 

where an n-count detector with equal (lock-detector) dwells of duration TLDD  is as-

sumed. In the case of Eq. (3.37), 



In order to make the analysis more tractable, it is assumed that TLDD  is a multiple of 

TD  (TD2  for double-dwell) so that it is possible to rewrite Eq. (3.39) as 

= KTD (3.40) 

where K = (1+ q+ q2)1q3  and TLDD  has been (reasonably) assumed. Equation (3.40) 

indicates that a false alarm will cause the system acquisition process to be delayed 

by K dwells which is referred to as the false-alarm penalty. This "penalty" is one of 

the parameters needed in order to calculate the mean acquisition time of the code 

acquisition system. 

3.3. Double-Dwell Acquisition Scheme 
Having evaluated the performance of a single-dwell system, it is noticed that there 

is not much freedom inherent in the system. The natural extension of a single-dwell 

scheme is the double-dwell. The purpose of this section is to find the generating 

function of the double-dwell system which will lead to the mean and variance of 

the acquisition time. As in the single-dwell system, it is much desired to find the 

probability distribution function. With this motivation, a close approximation is 

derived and the results are presented and compared with known special cases. 

3.3.1. Model Description 
Implementation of a double-dwell acquisition system is shown in Fig. 3.7. The 

analysis of this system will follow that of the single-dwell, in which the generating 

function is first found. This section will only deal with the description of the system 

and the analysis follows in the next section. 

Notice that Fig. 3.7 is only a generalization of the single-dwell system. The first 

integration period is to search (TD1) and quickly dismiss incorrect code phases. Once 

the first threshold, 51, is exceeded, the second integration is used to insure that the 

code phase is in fact in synchronization with the received code. The system can be 



Figure 3.7 Double-dwell PN code acquisition system.  

Figure 3.8 Double-dwell detection/verification process 



correctly throught of as a two-stage process. In the first stage, if there is a remote 

possibility that the correct cell is being searched then the system will advance to the 

second stage. This implies that both the probability of false alarm and probability 

of detection are high for the first stage. It is possible however that some of the 

local code phases will have a low correlation with the received code so that they 

may be (quickly) dismissed by the first stage. If the system does reach the second 

stage, a more accurate (longer) dwell is needed so that the false alarm probability is 

reduced and at the same time the probability of detection is kept high. If the second 

integrator output is above the prespecified threshold then the system will advance to 

the verification mode s keca h in R-1.3. S. 

The verification mode is the operation of the lock-detector which is discussed in the 

previous section. The resulting idea is that the detector can be modelled as a system 

where it requires K units (average) of dwell (TD2) to detect a false alarm. These K 

units of dwell are termed the false alarm penalty and is used in the evaluation of the 

double-dwell system discussed here. 

3.3.2. System Analysis 
In order to derive the acquisition statistics of the double-dwell scheme, it is nec-

essary to find the generating function. As for the single-dwell case, a signal-flow 

diagram must first be constructed to model the double-dwell process. 

The double-dwell signal-flow graph is just an extension of Fig. 3.2 which represents 

the single-dwell system. In Fig. 3.9 the double-dwell process is represented in a signal-

flow diagram where the dwell times Ti  and r2  are represented by zl  and z2  respectively. 

In Fig. 3.9a, assuming the first cell is correct, then the system will traverse the first 

vertical path, P1. If the system locks onto the correct cell, then the branch Od will be 

traversed. It is also possible that this correct cell is missed, which is represented by 

Ad. This miss could occur if the first dwell is below the threshold (1 — Pdi )zi or it is 

possible that the miss occurs on the second dwell, Pa, zi  (1 — Pc0z2. 



Figure 3.9 Signal-Flow representation of the double-dwell scheme. 



If the second, rather than the first, cell is assumed to be correct the system would 

travel along the branch labelled 1 — P1  and at this point the system should dismiss 

the first cell. A relatively quick dismissal can occur, represented as Af  , in two ways: 

If the first threshold is not exceeded or if the second threshold is not exceeded. It 

is also possible that a false alarm situation arises due to both the first and second 

dwells exceding their thresholds and this is represented by Of. Notice that a penalty 

of K units has been assigned to the second false alarm. The justification of this 

penalty is discussed in the previous section. Once the second node is reached, the 

same procedure is repeated until the correct cell is detected (represented by node F) 

and only then will the system properly lock. 

As in the case of the single-dwell process, it is desirable to write the trans-

fer/generating function in the form of Eq. (3.20) so that it will be possible to even-

tually find the probability distrubtion function of the acquisition process. 

From Fig. 3.9, using the same techniques as in Section 3.1, it is possible to reduce 

the generating function to 
 

where A(z) = Af + . In the next section, Eq. (3.41) is derived from a diagram 

that is equivalent with Fig. 3.9 but leads to the generating function. Notice 

the similarity of Eq. (3.41) with (3.8). In order to make the analysis similar to the 

single-dwell, it is necessary to define the detection probabilities as 

where Od and Ad are the probabilities of detection and missed detection, respectively 

(including the time weighting). Similarly, Of and Af are the probabilities of a false 



alarm and correct dismissal, respectively (including the time penalty for false lock). 

In order to reduce the system to a single-dwell, set Pdi  = P1, = 1 and absorb the delay 

zi  (dwell-time) into the second dwell z2. This would cause the system's performance 

to be equivalent to the single-dwell system. Returning to the double-dwell case, it is 

desirable to find the mean time to acquisition. 

3.3.3. Acquisition Parameters 
For the double-dwell system, the acquisition time, Ta, is given by 

Ta  = XiTi 4- x2-1-2 (3.46) 

where xi  and x2  represent the number of dwells of duration Ti  and 72, respectively. 

In order to find the mean acquisition time, we take the ensemble average a 

E[Ta] = E[xi]E[Ti] + E[x2]E[T2] (3.47) 

Since the dwell times are fixed, Eq. (3.47) reduces to 

E[Ta] = E[xi]Ti  + E[x2]T2 (3.48) 

In order to find E[xi], the method presented in Section 3.1.2 will be followed closely. 

Equation (3.9) can be generalized to apply in this case as 

8 P (z) 

az 
E[xi ] =  , (3.49a) 

i Z_1 

and 
) 

z2

(z 
E[x2] = 

as 
(3.49b) 

z=1 
Substituting Eq. (3.41) into Eq. (3.49a), 



Applying the results of [10] for the double dwell case yields, 

Similarly, using Eq. (3.41) in (3.49b) yields, 

Again, using the results of [10] we note that the first term of Eq. (3.52) becomes 

and the second term simplifies as follows: 

Substituting (3.53) into Eq. (3.52) yields 

Therefore, combining the results of Eq. (3.51) and (3.54), the mean time for acquisi-

tion, assuming q > 1, is 

Having found the mean time to acquisition for the double-dwell case, an approxima-

tion of the variance of acquisition time can be found using the following definition 

[13], 



However, since P(z)l z,.1  = 1, the following [7] formula also applies 

Using the sufficient condition [10], 
- E4Eral 

 

it is found that 

Substituting Eqs. (3.55) and (3.59) into Eq. (3.57) yields 

where E[Ta] is given by Eq. (3.55). This simplifies to 

0.2  s'-1 q2  ( 
1  
— 

2 
[Ti (KPi Pi1)72]2 (3.61) 

3 Pd 

2 

Pd 
( „ -pDX K ) 

where only terms containing quadratic q were kept. 2.t)  

As done previously for the single-dwell acquisition system, it is desirable to find 

the probability distribution function. Once the pdf is found, the time required to 

achieve a specific level of certainty can be computed. 



Figure 3.10 Partially reduced double-dwell signal flow graph 

Figure 3.11 Reduced signal-flow graph fo double-dwell acquisition scheme 



The single-dwell can be viewed as a simplified version of the double-dwell scheme, 

hence the motivation for simplifying Fig. 3.9. Figure 3.10 is a straightforward com-

bination of the branches on the flow graph, making use of the fact that all locked 

(finished) nodes are common. Upon eliminating the feedback loops, the result is Fig. 

3.11. 

From Fig. 3.11, the generating function, otherwise known as the transfer function 

is found (by inspection) to be: 

Just as Eq. (3.7) was simplifed and rewritten, the same is done with Eq. (3.62), 

In order to find the approximate pdf from the generating function, Eqs. (3.23), 

(3.42)-(3.45) are employed below to make the equation more understandable from an 
cif ii.'st...) 

applications point, It will then be possible to make approximations to arrive at a 

compact solution to the pdf for a double-dwell acquisition scheme. 



Equation (3.64) is an explicit expansion of the generating function and will allow 

for reasonable assumptions to be made concerning the double dwell scheme. First, 

the equation must be rewritten with all z terms grouped together so that the effect 



of the indices on the time can be understood. 

Equation (3.65) is similar to the generating function of the single-dwell which is 

represented by Eq. (3.26). In order to understand some of the indices of summation, 

it is useful to notice their effect on zl  ana z2. As in the single-dwell, the outermost 

index, j, represents the number of times the entire q cells were unsuccessfully searched. 
 

As an example, j = 0 implies it is the first pass and j = 1 means that no successful 

synchronization occurred on the first pass. Just as DiCarlo and Weber assumed the 

single-dwell system to synchronize during the first pass, the same is done for the 

double-dwell justifying j = 0. It is important to notice that i = 0 is forced because i 

ranges from 0 to j; the same is also true for I and p. Taking the above into account 

yields, 

The generating function is now analyzed starting with the first region, 

For 1 < r < K (hi. = h2  = 0) 



Therefore, the pdf is, 

For the second region, there are numerous cases. For the purpose of illustration, three 

different cases are shown. 

For K +1 < r < 2K 

I. hi. = h2  = 0 

Therefore, the pdf is, 

Therefore, the pdf is, 

III. hi. = 1, h2  = 1 

Therefore, the pdf is, 

The above equations are examples to show the specific nature of different possi-

bilities. It is for this reason only a small number of cases are shown and it should be 

noted for a particular case, all possibilities would have to be worked out. 



Having found a general expression for the PDF of the double-dwell acquisition 

system, it is useful to compare the performance of the single and double-dwell acqui-

sition schemes. This comparison and discussion about the advantages of each system 

is carried out in the next and final chapter. 



Chapter 4 
Conclusions 
4.1 System Comparisons 

In this final chapter, a comparison of the single and double dwell acquisition 

schemes is made. It is shown that a definite time advantage is gained by investing in 

the double-dwell acquisition system. 

Eq. (3.14) and (3.17) represent the mean and variance of the time to acquire the PN 

sequence using a single dwell system. After normalization, these equations become 

Similarly, for the double dwell scheme, Eq. (3.55) and (3.61) represent the mean and 

variance , respectively. After normalization, 



Notice that in Eq. (4.3) if 'ciand Pfa  = 1 then the equation is identical with the 

equation which represents the mean time to acquisition for the single dwell scheme. 

Now, the results from the previous chapter will be utilized to assess the 

performance of the single and double dwell PN code acquisition schemes. In order to 

evaluate the two schemes, the following approximation for the false-alarm probability 

[10] is used 

1 r''  where Q(x)= a  J„e—x2,2 ca, is the area under the Gaussian tail. 

In order to make a fair comparison between the two schemes, the signal to noise 

ratio (SNR) should be kept constant. In PN acquisition schemes, it is not rare for the 
e 

SNR to be less than -10dB. For this comparison, SNR=-20 dB and a false alarm 

penalty of K=10t2 is first assumed. For both the single and double dwell schemes, 

with this example, one may draw the incorrect conclusion that a minimization of the 

acquisition time can be achieved by arbitrarily increasing the false-alarm rate. This is 

shown incorrect by repeating the process with a penalty of K=100r2. In Figure 4.2, an 

increase in mean acquisition time is shown by increasing the false alarm rate from 

Pfa=10-2  to Pfa=10-3. 

Before comparing the two systems, it is useful to understand the method in which 

the parameters were calculated. In Table 4.1, the first entry, Pd is the desired detection 

probability. Recall in chapter 3, it is assumed that detection will occur on first pass. In 

order to be consistent with this, the detection probability must be very close or equal to 

1. (For the purpose of system comparison, Pd =0.99 to Pd =0.9999). The second and 

third column entries vary from Pfa =10-2 to Pfa  =10-4. The fourth and fifth columns are 

determined from the previous entries using Eq. (4.5). Notice that the dwell time 



-11 T4,, F-P2  rri  /6 rz  /A tc.a. /ii. A (5--f 4r  A 

0.99 1.00E-02 - 4451 - 2 4 9 8 1497 
0.99 1.00E-03 - 5987 - 3 0 8 5 1849 
0.99 1.00E-04 - 7453 - - 3 8 0 6 2282 
0.99 1.00E-01 1.00E-01 2683 2683 1642 985 
0.99 1.00E-01 1.00E-02 , 2683 4451 1 6 1 8 917 
0.99 1.00E-02 1.00E-02 4451 4451 2 2 9 6 1300 
0.999 1.00E-02 - 5983 - 3 2 9 7 1911 
0.999 1.00E-03 - 7746 - 3 91 9 2272 
0.999 1.00E-04 - 9402 - 4715 2878 
0.999 1.00E-01 1.00E-01 3897 3897 2343 1 430 
0.999 1.00E-01 1.00E-02 3897 5983 2282 1318 
0.999 1.00E-02 1.00E-02 5983 5983 3 0 3 0 1747 

0.9999 1.00E-02 - 7445 - 4 0 9 5 2365 
0.9999 1.00E-03 - 9398 - 4747 2742 
0.9999 1.00E-04 - 11214 - 5 6 1 4 3242 
0.9999 1.00E-01 1.00E-01 5092 5092 3 0 5 6 1 869 
0.9999 1.00E-01 1.00E-02 5092 7445 2 9 5 6 1710 
0.9999 1.00E-02 1.00E-02 7445 7445 3 7 6 4 2174 

Table 4.1 Single vs. Double Dwell Acquisition Parameters and Statistics (K=1012). 

11 ?-P, -Ph 1-de 'r /o I;..1.4e cs'y /i. A 
0.99 1.00E-02 - 4451 - 4541 2723 
0.99 1.00E-03 - 5987 - 3359 _ 2014 
0.99 1.00E-04 - 7453 - 3840 2302 
0.99 1.00E-01 1.00E-01 2683 2683 2874 1723 
0.99 1.00E-01 1.00E-02 2683 4451 1822 1 031 
0.99 1.00E-02 1.00E-02 4451 4451 2316 1311 

0.999 1.00E-02 - 5983 - 5995 3475 
0.999 1.00E-03 - 7746 - 4269 2474 
0.999 1.00E-04 - 9402 - 4757 2904 
0.999 1.00E-01 1.00E-01 3897 3897 4100 I 2503 
0.999 1.00E-01 1.00E-02 3897 5983 2 5 5 2 1470 
0.999 1.00E-02 1.00E-02 5983 5983 3057 1 763 

0.9999 1.00E-02 - 7445 - 7446 4301 
0.9999 1.00E-03 - 9398 - 5170 2986 
0.9999 1.00E-04 - 11214 - 5 6 6 4 3271 
0.9999 1.00E-01 1.00E-01 5092 5092 5348 _ 3270 
0.9999 1.00E-01 1.00E-02 5092 7445 3 2 91 1899 
0.9999 1.00E-02 1.00E-02 7445 7445 3797 2193 

Table 4.2 Single vs. Double Dwell Acquisition Parameters and Statistics (K=10012). 



Figure 4.1 Mean Single vs. Double.Dwell Acquisition Times (K=10r2). 

Figure 4.2 Mean Single vs. Double Dwell Acquisition Times (K=10012). 



cannot be written explicitly in terms of Pfa and Pd. This inability is the reason that a 

computer is needed to numerically calculate the optimal value false alarm rate needed to 

obtain the optimal (minimum) acquisition time. Finally, the mean and variance columns 

are determined from the calculated data using Eq. (4.1-2) and (4.3-4) for the single and 

double dwell schemes, respectively. By changing the penalty for false-lock, Table 4.2 

is generated. Armed with these tables, an understanding and comparison of the two 

systems is possible. 

Refering to Fig. 4.1, notice three entries for the same probability of detection. 

These entries differ in the acceptable false alarm rate. The probability of false alarm, 

Pfa, for the first second and third entries is Pfa=10-2, 10-3, 10-4, respectively. This 

method allows for the straight-forward comparison of different system configurations. 

The only parameter that is changed in,Fig. 4.2 is the false-lock penalty, K. In this 

case, contrary to intuition, it is clearly more useful to design the double dwell system 

with Pd=0.9999 and Pfa=10-4  than Pd=0.9999 and Pfa=10-2, the former yielding an 

acquisition time of 71% of the latter. By reducing the number of penalties, which is 

now K=100T2, the system is able to spend less time in false-locks thereby reducing the 

overall acquisition time. 

It is apparent from Table 4.1-2 that the double dwell scheme requires an average of 

only 64% of the time required for acquisition using the single dwell scheme. This 

significant reduction in acquisition time is accompanied by a decrease in the variance as 

well. These performance improvements come at the expense of hardware complexity 

and depending on the application, the increase in capital may be justified. 

Assuming the initial cost of the system is not the primary criteria on which system 

design is selected, it may be worthwhile to investigate a triple-dwell scheme. The 

analysis to find the system's statistics will directly follow the material presented in this 

work but will be quite tedious. 



It is interesting to note, in addition to the reduced acquisition time, the double-dwell 

system lends itself to an adaptive process. Based on the percentage of false alarms in 

the first and second dwells, the system could vary the duration of the dwells thereby 

optimizing the system with respect to the false-alarm rate. 

In conclusion, it is apparent that the double dwell acquisition scheme is clearly 

superior to the single dwell scheme in terms of the mean time to acquisition. This 

superiority comes at the expense of hardware complexity and cost. Since PN 

acquisition schemes are largely used for military communications, the increased cost is 

easily justified by the benefits of a fast acquisition system. 

4.2 Recommendations for Future Work 

It would be interesting to construct a detailed simulation model of the single and 

double dwell acquisition systems. With such a simulated system, the acquisition time 

could be determined for large numbers ( a few thousand) of independent trial runs with 

random initial phases and additive noise. From this data, one could obtain an estimate 

of the mean, variance and pdf of the acquisition time. These values could be compared 

to the theoretical values to indicate the effect the assumptions had on the derivation of 

the results. 



Appendix A 

Recall Eq. (1.13) and notice that the mixer and ideal bandpass filter is a 

correlator. Taking yr(t) and correlating it with the "late" PN code, c(t—ii —Tc/2), 

YL (t) = 2P d(t — T) E[c(t — T) c(t — T — Tc /2)] sin(wot 61) + nf(t) (A.1) 

where nf(t) is the bandpass filtered noise. We can rewrite Eq. (A.1) using the 

fact that 

Rc(T — T — Tc/2) = E[c(t — T) c(t — T — Tc/2)] (A.2) 

yielding 

(t) = 2P d(t — T) Rc(T — -15  — Tc/2) sin(wot + 19) nf(t) (A.3) 

From this, it is possible to find Cfl-, one of the inputs to the summer, in Figure 1.4. 
• 

Upon squaring Eq. (A.3) and only retaining terms that pass through the lowpass 

filter, yields 

e-Ef" = Pd2(t — T) R2c  (t — T — Tc/2) n2f (t) (A.4) 

and similarly for the early channel, 

CEF  = Pd2(t — T) R2c  (t — T + Td2) n11(0 (A.5) 

where we have denoted the noise term as n'f? (t) to distinguish between the noise 

components of the different channels. Subtracting Eq. (A.5) from Eq. (A.4) yields 

the error signal, 

ee  = 6,+ — 6, 

= Pd2(t — T)[Fc2 (t — T + 2 .112) — R2c  (t — T + Tc /2)] 

n2f (t) — (t) (A.6) 



using the fact that d2(t — T) =1 and letting N(t) = n2f(t) — n7 (t) simplifies the 

_ result to 

e, = P[R2,(t — T.' — Tc/2) — R2,(t — f + Td2)] + N(t) (A.7) 

For maximal length sequences, the autocorrelation difference in Eq. (A.7) can be 

simplified by using the autocorrelation function explicitly. The autocorrelation 

function of c(t) is 
r 1 

N 
Rc(r) = 1 — 

T,  
—(1 + —) (A.8) 

where N is the period of the sequence. Using Eq. (A.8), the error signal equation 

can be simplified by using the fact that e = T — T. Assuming the period of the 

PN sequence is large, 71-7- < 1, the second term of Eq. (A.8) can be neglected so 

that Eq. (A.7) reduces to 
. 

rl  r  2e , 
e, = /---L—J (A.9) 

T, 



Appendix B 

Appendix B.1  

The following three properties will be illustrated below: 

I. A maximal sequence has one more 1 than 0. 

II. The sum (modulo-2) of two phase-shifted versions of an m-sequence yields 

the same sequence but shifted. 

III. The discrete autocorrelation of an m-sequence is two-valued. 

The seven bit binary number 

0011101 

has four ones and three zeros and is therefore consistent with the first mentioned 

property. The second property is exemplified by shifting the sequence two bits 

and adding (modulo-2)  
0011101 

1110100  

1101001 

It is noticed that the sum is shifted left from the original sequence by three bits 

but remains unaltered. The third stated property can be illustrated by recalling 

that the ones and zeros are represented by ±1 so that 

original sequence ck : 0011101 ---). —1 — 1 1 1 1 — 1 1 

sequence shifted by k : 0011101 --> —1 — 1 1 1 1 — 1 1 

product of these sequences: 1— 1 1 1— 1— 1 — 1 

R(kTd ) = E[c(t)c(t — kTd)] = --
1 
7 



where k = ±1, ±2, ±3, ... 

These two equations can be written succinctly (since they cover different regions) 

as 

This can be written in a more general form using the following definition for the 

discrete autocorrelation function: 

where N is the period of the sequence. In the example, the amplitude of unity 
, 

is used and N = 7 therefore Eq. (B.2) reduces to 



Appendix B.2 

The PSD of one period of the autocorrelation function of a maximal-length 

sequence can be simplified as follows: Recall Eq. (2.30), 

Substituting To = NT, and simplifying yields 



Appendix B.3 

In order to write the spectral density for the maximal-length sequence in a 

simplified form, Eq. (2.31), 

must be substituted into Eq. (2.32) yielding, 

Notice that the first term on the right-hand side can be reduced since it is only 

nonzero at f = 0 and the second term is kept in the same form so that the 

envelope of the discrete spectra can easily be seen. Eq. (B.7) can be simplified 

to 
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