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ABSTRACT 

Title of Thesis: ESTIMATING 3-D MOTION AND STRUCTURE PA-

RAMETERS OF A RIGID PLANAR OBJECT BY ES-
TABLISHING LANDMARK CORRESPONDENCES 

Herman Agustiawan, Master of Science in Electrical Engineering, 1990 

Thesis directed by: Dr. Nirwan Ansari, Assistant Professor 

The application of a landmark based approach in recognizing 3-D rigid pla-

nar objects[3] along with two different motion and structure estimation algorithm 

[21][23] have been studied to perform motion and structure estimation tasks of 

moving objects. The recognition algorithm is based on a sphericity value derived 

from affine transformation that maps feature points in the object under observation 

from first to second view in the 2-D image space. The motion and structure esti-

mation algorithm is based on a unique mapping given four or more feature point 

correspondences. 

More than ten experiments have been done including small and large rigid mo-

tions. From all numerical experiments that have been tried, the recognition al-

gorithm can handle the landmark matching tasks well if the object follows only 

small rigid motions. The algorithm, without too much destroying the sequential 

order of the original landmarks, is also capable of detecting the correct matches of 

landmarks when missing and some extraneous landmarks in the second view (after 



motion), are taken into account. The algorithm, however, will fail to detect the 

correct matches of landmarks if the object under observation moves such that the 

normal of the object surface is almost perpendicular to the optical axis. 

When a motion is small, only a relative depth of the observed object can be 

determined. The number of solutions, aside from the scale factor for the transla-

tional vector, depend on the number of the real roots of the sixth order polynomial 

equation. In our experiment, we have found two real and four complex roots. From 

the two resulting solution only one represents the actual motion parameters. If 

the motion is large, the number of solutions is either one or two depending on the 

multiplicity of the singular values of the 3x3 real matrix consisting of the pure 

parameters obtained from the unique mapping. 

Due to the nonlinearity of the computation procedure that have been used and 

roundoff error generated by the computer, the results deviate up to 10% from the 

predefined parameters. The motion algorithm, however, is convenient, inexpensive 

and not shaken by missing or extraneous  landmarks as long as there are more than 

three landmark corresponding pairs. That is, regardless of which landmarks in the 

observed object being used, the estimated motion and structure parameters will 

remain relatively the same. 
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Chapter 1 

Introduction 

The computer vision task in determining the movement of objects from a sequence 

of images is the process of replacing the interpretation of visual data perceived by 

human. The interpretation includes the description of the environment in terms of 
 

objects, their shape, and their motion are estimated on the basis of image space 

shifts that reaches a scene. 

The fact that computer cannot be as capable as human visual system in inter-

preting moving objects leads to the need of investigation on what kinds of math-

ematical formulation are adequate and lead to a biologically plausible model of 

computation for the problem. 

Some research work on these have been done. Experiments on the ability of 

human visual system to distinguish shape from motion stimulus was demonstrated 

by Wallach and O'Connell in the 1950's[26]. Subsequently, the ability to recognize 

the human shape from the projected motion of as many as ten points such as the 

various joints like elbows, shoulders and knees was discovered by Johansson[14]. 



Meanwhile, Attneave[5] suggested that some dominant points along an object con-

tour are rich in information content and sufficient to characterize the structure of 

the object. This concept of dominant points, usually referred to as landmarks of 

the objects, was used by Bookstein[6] to study and observe the growth of biological 

objects. Thus it does not seem that the perception of the object shape should need 

an extraction of the projected trajectory of too many points. It requires only the 

knowledge of the positions of the landmarks in the image frame as shape features. 

Some commonly used features are holes, points, line, segments, curve segments or 

a combination of them. These features are obtained by preprocessing step such 

as edge detection, polygonal approximation and corner extraction[4]. Therefore, 

the interpretation of the moving object may become the correspondences problem 

of dominant points of the object which appears in a sequences of images, and the 

estimation of its motion parameters. Figure (1-1) shows the landmarks of various 

objects. 

In the past, most research work on motion estimation has mainly been concerned 

to 2-D space. This is because the interpretation of moving objects in 3-D from 2-D 

images is much more complicated than 2-D motion since rotation and translation 

in depth are difficult to analyze. In addition, as a result of rotation in space, parts 

of the moving object can disappear from view. Recently, methods of estimating 

3-D motion parameters, including 3-D rotations, of rigid bodies with different kind 

of shape have been investigated [21] [22] [27]. However, all of the above works have 

assumed that the recognition task, point matching, between two or more image 



Figure 1.1: Landmarks of Various Objects: (a). Wire Stripper, (b). Wrench, (c). 
Specialty Plier, (d). Needle-Nose Plier, (e). Wire Cutter, (f). Spacecraft, (g) Island 
of Borneo, (h). Island of Halmahera, (i). Island of Luzon, (j). Island of Mindanao, 
(k). Island of New Guinea, (1). Island of Sulawesi. 



frames are already given. 

The study described here is to estimate 3-D motion and structure parameters 

of rigid planar objects, by first establishing point correspondences on the objects at 

different image frames. Hence, probe and block algorithm [3] is used to perform the 

matching task among the points on the objects, and 3-D rigid motion are estimated 

for the case either the motion is small[21] or large[23]. A shape measure, known as 

sphericity, derived from the affine transformation[8] is used to indicate the quality of 

match among dominant points. While, in estimating the motion parameters, a set 

of so called eight-pure parameters are defined and computed for both cases. Once 

we have determined these parameters, the motion parameters can be computed by 

solving a sixth order polynomial equation if the rotation is small, and decomposing 
8 

the singular values of 3x 3 real matrix of the pure parameters if the rotation is large. 

From all numerical examples that have been tried, the number of solutions 

depends on the number of real roots of the sixth order polynomial equation, and 

only a relative depth of the object can be recovered when the motion is small. 

When the motion is large, the number of solution depends on the multiplicity of 

the singular values of the 3 x 3 real matrix of the pure parameters. If the multiplicity 

is two the motion parameters is unique aside from a scale factor for the translation 

parameters, otherwise the motion parameters are two if the singular values are all 

distinct. If there is no translation at all, the singular values are all  identical and 

the motion parameters are unique. 

In the remaining chapters, we will discuss the mathematical elements that sup- 



ports the computation methods in Chapter 2. Point matching and motion estima-

tion algorithm will be presented in Chapter 3. The computation procedures and 

experimental results will be given in Chapter 4. Finally, the conclusion of the results 

and the recommendation will be given in Chapter 5. 



Chapter 2 

Mathematical Elements 

 
2.1 Introduction 

8 

In this chapter, we will discuss the mathematical elements that support 

the computation method presented in Chapter 3. In the following section a 

shape measure, known as sphericity, derived from affine transformation is 

briefly discussed. Detailed proofs and explanation can be found in [4] and 

[8]. Rigid motion which consists of translation and rotation is presented 

subsequently. 

2.2 Affine Transformation and Sphericity 

An affine transformation is a one-to-one mapping with the equation of the 

form : 

Pi  = AP + t (2.1) 



where 

The following properties are preserved under the transformation[8] : 

• The set of all transformation is a group. 

• Collinearity and noncollinearity. 

• The betweenness-relation. 

Therefore, the resultant of two affine transformation is an affine transfor-

mation , the inverse of an affine transformation is an affine transformation; 

a point is mapped into a point, a line into a line; a mid-point of a line 

remains the mid-point of the transformed line. 

A set of values a, b, c, d, m, and n in Equation (2.1) can be uniquely 

determined if three noncollinear points 131  P2  P3  and three noncollinear 

transformed points P;,_13 ,P; are given. Substituting these points in Equa-

tion (2.1) gives : 

LX = B (2.2) 



Equation (2.2) is nonsingular, since the points are chosen to be non-

collinear, i.e, the row vectors as well as the column are linearly independent, 

thus det(L) 0 and L.' exists. 

The sphericity value (S) of an affine transformation given by Equation 

(2.1) is defined by[4] : 

where det() and tr() are the determinant and the trace of a matrix. Sub-

stituting A into Equation (2.3) gives[4]: 

2.3 Motions 

There are four types of motions : translation, rotation, reflection and shear. 

If only translation and rotation are taken collectively, it is called rigid mo-

tion. 

Motion is also a one-to-one mapping and is a subset of the affine trans-

formation. Thus it has the same properties as that of the affine transfor-

mation as follows[8] : 



• The set of all  motion is a group. 

• Motions preserve collinearity and noncollinearity. 

• Motions preserve the between relation. 

The first property implies that the inverse of any motion is a motion, and 

the resultant of any two motions is also a motion. The second property 

implies that the image of a point is a point, a line is a line. Finally, the 

last describes the relation of three points, in which one is in between the 

others. It preserves the between relation, thus the image of a triangle, a 

segment is also a triangle, a segment, respectively. 

Since the motions we are about to study are 3-D motion for rigid planar  

objects, only 3-D translations and rotations are considered here. The terms 

rotation(s) and translation(s), unless specified, always mean 3-D rotation(s) 

and translation(s). In the following subsection, we will discuss the first type 

of motions, translations. 

2.3.1 Translations 

A translation (T) is a transformation with the equation of the form : 

x =x+p; y =y+q; z =z+ r (2.5) 

where p, q, and r are arbitrary constants. Some properties that follow 

under translations can be seen by investigating Equation (2.5). Substituting 

x=x`,y=il and z = z' into Equation (2.5), it is readily seen that there 



is no fixed point under translations since the equation has no solution. 

Another property is that after translation each line has the same inclination 

as the original. To check this property, let : 

/ = ax + by cz = 0 (2.6) 

be any plane with a, b, and c are not all zero. Combining Equation (2.5) 

and (2.6) gives : 

1' = ax' + by' + cz' — ap — bq — cr = 0 (2.7) 

which has the same inclination as 1, since the coefficient x, y, and z in 

Equation (2.6) are the same as those of xi , yi , and z' in Equation (2.7). 

For the purpose of object representation that undergoes 3-D transla-

tions, it is more convenient to use vector notation. That is, for n points on 

the object Equation (2.5) can be rewritten as : 

where i = 1, 2,3, ...,n. Solving for (p q r)T  yields : 

Equation (2.5) can also be written in different form by using homoge-

neous coordinates[18] : 



Multiplying right hand side, we have: 

(X Y Z H) = ((x p) (y q) (z r) 1) (2.11) 

The transformed point is then given by: 

X 
= — p 

Y 
Y =—H =Y+q (2.12) 

z 
Z = -

H 
z+ 7' 

which is exactly the same as Equation (2.5). 

It is obvious that to produce a 3-D translation of any general point 0, 

the original coordinate (x, y, z) of the point and the amount of translation 

(Ax, Ay, Az) are needed to define T. 

2.3.2 Rotations 

A rotation about any point 0 in 2-D space is shown in figure 2.1. It is 

a mapping in which 0 is fixed, and any other point P of the object goes 

into the point P' such that OP = OP` and POP' = 0. 0 is called the 

center of rotation, and 0 is the angle of rotation. If 0 is the origin of the 

2-D Cartesian coordinate system, it is the 2-D rotation about the origin. 

In general, the 2-D rotation about an arbitrary point can be accomplished 

by first translating the center of rotation to the origin, performing the 

required rotation, and then translating the result back to the original center 

of rotation. Thus the center of rotation never changes. 



Figure 2.1: Rotation about 0 by 8 

In 3-D space the rotation about origin is meaningless, because there 

are many directions can be taken by the moving object. Thus, we need to 

define an axis of rotation before the rotation is performed. The concept in 

2-D above is also true for 3-D rotation case. That is, if the rotation occurs 

about the x axis of the Cartesian coordinate system, the x coordinates of 

the points on the object do not change likewise rotation about y and z. 

Figure 2.2 shows the 3-D rotations about x and y axes by —90° and 90°, 

respectively, from the original position. In a similar manner the rotation 

about arbitrary axis can be done by translating the object and the desired 

axis of rotation such that the rotation is done about an axis through the 

origin, and then translating the result back to the initial position. For 

example, if the axis of rotation is desired to pass through the point 0 = 



(p, q, r), then the equation of the transformation matrix is given by[18] : 

R is the rotation matrix (orthonormal), neglecting the fourth row and 

column, given by [18] : 

where n1, n2, and n3, as shown in Figure 2.3, are the direction cosine of the 

rotation axis in x, y, and z directions respectively, and θ  is the amount of 

rotation. 

If the rotation is small (θ sine), Equation (2.14) becomes : 

If the rotation occurs about one of the orthogonal axes of the coordinate 

system, then two of the direction cosine are equal to zero. For example, 

rotation about the x axis by 0° : ni  = 1, n2  = 0, and n3  = 0, Equation 

(9. 141 becomes: 



Figure 2.2: Rotation about x — axis (a) and y — axis (b) by —90° and 90° 



Figure 2.3: Direction cosine 

In a similar manner, we have : 

It is obvious that in order to define R by using Equation (2.14), we need 

to know ahead of time the (x, y, z) coordinates of the point to be rotated, 

the amount of rotation θ and the direction cosine (n1, n2 , n3) of the rotation 

axis. For any general point P p23 p3k that lies on the rotation 

axis, the direction cosine are computed by : 



2.3.3 Rigid Motions 

As mentioned in the previous section, rigid body motion can be expressed 

as a combination of translations and rotations. It can be either a rotation(s) 

by an angle 0 around an axis with directional cosine n1, n2, n3, followed by 

a translation(s) or vice-versa. In matrix form, it has the equation of the 

form :  

where R is an orthonormal rotation matrix (first type, i.e, det(R) = 1 ), 

and T is a translation vector given as in the Equation (2.14) and (2.9), 

respectively. 



Chapter 3 

Estimating Motion Parameters 
from Image Sequences 

4 
3.1 Literature Review 

In the past, most research work on motion estimation has been concerned 

with 2-D motion only. This is because the interpretation of moving object 

images in 3-D is much more complicated than 2-D motion since rotation and 

translation in depth are difficult to be analyzed. In addition, as a result of 

rotation in space, parts of moving object can disappear from view. Recently, 

methods of estimating 3-D motion parameters, including 3-D rotations, of 

rigid bodies with different kind of shape have been investigated. 

There are two ways in determining the movement of objects from a se-

quence of images[11], a direct estimation and two stage estimation. The 

direct estimation is based on the time-difference image. That is, the dis- 



placement vector of points in an image is constrained by the spatial and 

temporal gradients of the intensity distribution of the image, and is ex-

pressed as a function of several motion parameters. These parameters can 

be directly estimated by solving a system of equations. 

In the two stage estimation, the interframe correspondences, of the ap-

parent motion of the image is computed first. Then its 3-D motion pa-

rameters of the moving object in the scene are estimated based on those 

correspondences. Therefore, from the viewpoint of instantaneous motion 

analysis , the direct estimation algorithm is relatively simpler than the two 

stage estimation, since it requires only the spatial gradients of the image, 

and the solution of a set of system equations. 
 

Some Examples of previous research work using direct estimation for 

2-D case are the studies of Limb and Murphy[15][16], and Cafforio and 

Rocca[7]. Both studies investigated the movement of object in television 

images, and can be considered as parallel translations. Subsequently, Huang 

and Tsai[11] have extended the idea to 3-D motion algorithm where the 

displacement vector can be represented by the use of affine transforma-

tion. The same idea as Huang's for 2-D case has also been investigated by 

Schalkoff and Mc. Vey[19]. Their model was intended for a class of video 

targets. 

Although the direct estimation has the above advantage, it has the two 

following disadvantages compared with the two stage method. First, it is 



very difficult to get the spatial and temporal gradients with high accuracy. 

Second, the direct method needs one more constraint associated with the 

depth information of the moving object in order to estimate the motion 

parameters in the 3-D case. 

A number of research have been done to obtain a depth information 

from the moving.object. Yamamoto[27] has used some range-finder such as 

binocular vision,' and derived a linear equation and its solution to estimate 

3-D motion parameters using the direct method. Horn and Weldon[10] 

have derived an algorithm for recovering translational motion where a part 

of motion parameter related to' the depth is given. On the other hand, 

Tsai and Huang[21][23] imposed the surface of the object as a collection 
 

of planar patches, and examined its 3-D motion parameters and a relative 

depth of each patch. 

Another problem that had been seriously discussed by many researchers 

in estimating the 3-D motion parameters was the question of the uniqueness 

of the number of solutions. Regardless of the method is used, the uniqueness 

of the estimated motion parameters is, of course, independent and depends 

only on the motion characteristic of the moving object under investigation. 

In the direct estimation, for example, the uniqueness of motion interpre-

tation can be algebraically determined by examining the solution of a set 

of system equations. Yamamoto[27] considered a general aperture problem 

for direct estimation, and derived the necessary and sufficient conditions 



for the structure and surface pattern of the object such that 3-D motion 

can be uniquely determined. According to his discussion, it was shown that 

3-D motion parameters can not be uniquely determined for only eight kinds 

of objects with special geometrical structure and surface pattern. For ex-

ample, we can not uniquely determine 3-D motion parameters of the object 

patterns such as barber's pole and a simple bucket. 

In the two stage approach, in contrast, the uniqueness can only be ex-

amined when the first stage is already done, i.e, after the correspondences 

among points in the image frames are known. For example, when structure 

and surface patterns of the object can be of any form, Ullman on his classical 

book on visual motion[25] showed that at least four point correspondences 
 

over three image frames to uniquely determine 3-D motion and structure 

(plus a reflection) of the four point rigid configurations. He assumed that 

the correspondences among points are Balready given, and proposed the 

requirement that those points must be noncoplanar, otherwise the motion 

parameters can not be uniquely determined, that is, it has infinitely many 

solutions. Huang and Lee[12], derived a linear algorithm for three and four 

point correspondences over three image frames. They also showed the same 

results as Ullman's that the four point correspondences over three frames 

ensure a unique solution to motion and structure (plus a reflection) only if 

the points under observation are noncoplanar. For three point correspon-

dences their algorithm yields sixteen solutions to motion and four solutions 



to structure (two plus their reflections). If only two frames is used, they 

pointed out that no matter how large the point correspondences the motion 

parameters allow an infinite number of solutions. 

For the case where the surface pattern is restricted to special form, there 

also have been many results where the two stage method is discussed and 

applied to actual motion. For example, when the surface pattern is a curve, 

Huang and Tsai[22] pointed out that seven point correspondences over two 

image frames are sufficient to uniquely determine the 3-D motion parame-

ters, and those points should not be traversed by two planes with one plane 

containing the origin, nor by a cone containing the origin. Another result of 

their algorithm introduced a set of parameters, called essential parameters, 
 

derived from the eight image point correspondences to determine motion 

parameters up to a scale factor for the translations. 

In the planar surface, some researchers such as Tsai, Huang and Zhu[23][24], 

Longuet and Higgins[17], Subbarao and Waxman [20] worked with differ-

ent objective but they obtained the same result. That is, if only two image 

frames are considered there at most two solutions for the motion param-

eters. The number of solution can be reduced to be unique if one more 

image frame is included. 

Many results in motion analysis using the two stage method have been 

achieved within the course of time. However, no one of them has considered 

both problem of correspondences task and estimation of its motion param- 



eters at the same time, that is, all of the above works have assumed that 

the point correspondences between two or more image frames are already 

given. The study described here considers both problems and uses[3] to 

perform the correspondences problem and[21][23] to determine its motion 

parameters. 

3.2 Direct vs Two Stage Estimation 

In this section, the direct and two stage estimation algorithm which are 

taken from [27] and [21], respectively, will be presented. The purpose of 

this section is to give an illustration about the review presented above. The 

correspondences problem, probe and block algorithm[3], will be presented 

right after. Finally, this chapter will be concluded by the motion algorithm 

for a rigid planar patch. 

3.2.1 Direct Estimation 

Let (x,yB,z) be the object space coordinate, xy plane be the image of the 

camera and z axis be the optical axis. In [27], the object is orthogonally 

projected on the xy plane, and the image sequence is a function of time. 

Let 

E(x,y,t). the intensity of the image at point (x,y) and time t. 

(E„ Ey) = .24 the spatial gradient of the intensity. 

Et  = al= the temporal gradient of the intensity. 



Then from the total differential equation of E with respect to time t, 

we have : 

dE(x(t), y(t),i) = 0 (3.1) 

and 

E0u Eyv + Et  = 0 (3.2) 

where : 

(u, v) = (1-; , a) = the optical flow (orthogonal projection assumption). 

The velocity vector V, = (u, v, w) of the point P on the rigid object is 

given by : 

n=14 Xr+Vo (3.3) 

where : 

r = (x, y, z) = vector position. 

SZ = (corn , coy, wz) = the angular velocity. 

Vo  = (uo, vo, w0)= velocity vector at the origin. 

Substituting Equation (3.3) into (3.2), we get 3-D motion equation as 

follows : 

Ezuo  Eyvo  — zEywz  zEzwy  (xEy  — yEz )cez  + Et  = 0 (3.4) 

which is linear in the five unknowns uo, vo, cox, coy, and wz. Those unknowns 

can be determined only if the depth z is known. If the motion is restricted 

to the plane perpendicular to the optical axis, w = coy  = 0, 2-D motion 



can then be obtained from 3-D motion, i.e : 

Exuo + Eyvo  (xEy — yEx)coz + Et = 0 (3.5) 

If only translation is considered, co, = 0, 1-D motion equation is then given 

by : 

Ex/Lc, Eyvo  Et  = 0 (3.6) 

For n points on the image (where n is greater than the number of un-

knowns), then we have an overdetermined system of linear equations, in 

matrix form : 

Ax = b (3.7) 

where (for 3-D case) : 

/ E., Ey, E 1 Exl k1 

A = ki = (xiEY, NE.i) 

Ern Evn. EYn Exn k / 

/ uo /  
vo — Etz 

x = co b= — Et„ i = 1,2, ...5. 
wy — Et4 

EtE, 

Since Equation (3.7) is a singular system, i.e, two of the column vectors 

are linearly dependent, also we have more equations than unknowns, we 

normally do not expect a solution, x, of Ax = b to exist. Thus, we can 



reformulate the problem to seek for the vector x* that somehow minimizes 

the vector expression (Ax* — b). That is, find x* such that IlAx* — b11 is 

minimized for some vector norm 11-11-  In this case 114 denote the /2  norm. 

Multiplying both side with AT, where the superscript T stands for the 

transpose, we have : 

AT Ax* = AT b (3.8) 

The least square solution, x*, may be obtained by Gauss elimination or 

Gauss-Siedel, and can be expressed as : 

x* = (ATA) -1  AT b (3.9) 

where (AT  A)-1  exists, i.e, det (AT  A) 0 0. If (AT  A)-1  does not exist, it is 
4 

impossible to determine the solution uniquely. This is the case where the 

motion can not be uniquely determined from the image sequence. However, 

since the coefficient matrix of ATA is a function of the spatial gradient 

of the intensity, the uniqueness of the motion parameters depends on the 

geometrical property, aperture problem, of the image pattern. Therefore by 

examining the geometrical property of the image pattern, we may hope to 

obtain a solution(s) for the motion parameters. Details explanation about 

this problem is given in[27]. 

3.2.2 Two Stage Estimation 

First of all the basic motion equation for rigid planar object given in Equa-

tion (2.20) is rewritten as : 



= r12y ri3z 

yr  = r21x + T22y + r23z + Ay (3.10) 

z = r31 X + r32y r33z + Az 

where (i = 1,2,3; j = 1,2,3) is the element in the; ith row and jth 

column of R as given in Equation (2.14). Let: 

(x, y, z) = the object-space coordinates of a point P at first view 

(x ,y , z' ) = the ob ject-space coordinates of P at second view 

(X, Y) = the image-space coordinates of P at first view 

(X', Y') = the image-space coordinates of P at second view 

Then from the basic geometry shown in Figure 3.1, we obtain : 

X=fF,Y= , X' = , Y' = (3.11) 

where F is the focal length. Let the equation of a rigid planar patch be : 

ax + by + cz = 1 (3.12) 

Substituting Equation (3.11) into (3.12) and solving for z, gives : 

z =  (3.13) aX by cF 

For simplicity we select F = 1, combining Equation (3.10),(3.11) and 

(3.13) all together we have : 



Figure 3.1: Basic Geometry for Two Stage 3-D Motion Estimation 

where : 

Equation (3.14) defines a mapping from a point P = (X,Y) to P' = 

(X', 17'). Thus, if four or more corresponding point pairs are given (or ob-

tained from the first stage of this algorithm), the parameters alis, known 



as the pure parameters, can be determined by solving a set of linear equa-

tions. Once we have determined the dis, the actual motion parameters 

Ax, Ay, Az, a, b and c can be computed by using Equation (3.15). It is 

to be noted that the mapping from the space (X,Y) onto the space (X', Y.') 

in Equation (3-14) is unique given the pure parameters dis. Detail proof 

using a Lie Group of Transformation is discussed in[21J. •. 

3.3 Probe and Block Matching Algorithm 

Let (xi, yi ), (x2 , y2), (xn, Yn.) and (xis  , yl , (x2 Y;), • (x,m ) be the coor- 

dinates of a sequence of landmarks in the image spaces at first and second 

view, where n is the number of landmarks on the object at first view and 
4 

m is the number of landmarks of the same object at second view. Those 

landmarks are obtained by tracing sequentially along the object boundary, 

and projecting them from 3-D space to 2-D images. 

1 1 2 3 4 5 6 7 8 9 
1 -0.05 1 -0.04 -0.28 0.85 0.12 0.14 0.81 -0.06 0.03 
2 0.23 0.04 0.99 -0.40 -0.62 -0.61 -0.48 0.25 -0.04 
3 -0.07 -0.06 -0.45 0.99 0.21 0.24 0.99 -0.10 0.05 
4 -0.09 -0.04 -0.52 0.21 0.99 0.98 0.24 -0.09 0.05 
5 -0.08 -0.04 -0.49 0.21 0.96 0.99 0.23 -0.08 0.05 
6 -0.08 -0.05 -0.46 0.97 0.21 0.23 0.99 -0.10 0.04 
7 0.07 0.14 0.52 -0.46 -0.52 -0.62 -0.48 0.08 -0.14 

Table 3.1: Compatibility Table 



1 2 3 4 5 6 7 8 9 
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08 
3 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
4 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 
5 1.00 1.00 1.00 1.00 1.00 0.16 1.00 1.00 1.00 
6 1.00 1.00 1.00 1.00 1.00 1.00 0.21 1.00 1.00 
7 1.00 1.00  1.00 1.00 1.00 1.00 1.00 0.19 1.00 

Table 3.2: Diagonal Support Table 

Consider a simple example of a moving aircraft as shown in Figure 3.2. 

The aircraft is rotated about arbitrary axis by 10° with the direction cosine 

(cos 45, cos 60, cos 120) and then translated by (10, 20,15) from the original 

position. First of all, a table of cdmpatability between landmarks in the 

first and second view, as shown in Table 3.1, is constructed. Hence, we 

have n = 7 and m = 9. 

The row index i corresponds to the landmarks at the first view while 

the column index j corresponds to the landmarks at the second view. The 

(i,j) entry of the table is the sphericity value of the affine transformation 

mapping the ith and two adjacent landmarks to the jth and two adjacent 

landmarks. Thus the matched landmarks correspond to the sequences of 

the entries in the table that are diagonal to each other which have values 

close to each other and should include the two adjacent diagonal entries. 

The flowchart of the probe and block matching algorithm is shown in Fig-

ure (3.3). By using the fact that one landmark in the first view can not 



match to more then one landmark in the second view, the probe and block 

algorithm is summarized as follows : 

• Determine the first support entry. The (i,j) entry is said to be the 

support entry if the sample variance in entries (i — 2, j — 2), (i — 1, j — 

1), (i, j), (i + 1,j + 1), and (i + 2, j + 2) given by : 

i72, 
V(Xi) = 

Xi - 
 (3.16) 

is minimum and below a threshold, where 71-1, is the mean of those 

entries. If the entries are not of the same sign, i.e, the mapping is 

not of the same sense, then sample variance is set to 1, as shown in 

Table 3.2. In the example shown in Table 3.1, the first support entry 
• 

is (4, 5). If no such entry can be found, the procedure stops. 

• Compute the mean of the diagonal entries that are used to determine 

the first support entry mentioned in Step 1. If its value in the diagonal 

is close to the mean, that entry is considered as a possible match. 

In the example, entries (2,3), (3,4), (4,5), (5,6) and (6,7) are close 

to the mean mentioned above and considered as possible matches. 

Note that diagonal entries that are considered as possible matches 

must be consecutive and diagonal to each other, and because of the 

sequential order of the landmarks we are matching, the diagonal can 

wrap around the table. 

• Determine the possible matches of two adjacent diagonal entries. In 



the example entries (1, 2) and (7, 8) which is diagonal to entry (4, 5) 

are two adjacent entries mentioned above. 

• After determining the diagonal entries that are considered as possible 

matches from Step 2, block the region from further search. For exam-

ple, if diagonal entries (2, 3), (3, 4), ..., (7, 8) are considered as possible 

matches, regions (1 < i < n, 3 < j < 8) and (2 < i < 7,1 < j < n) are 

block from further search of matches, where n and m are the number 

of landmarks at the first and second view, respectively. If no diago-

nal entries can be considered as possible matches, block the support 

entry from further consideration. This will avoid,the infinite looping. 

In the example shown in Table 3.1, the whole region is blocked. 

• Look for another support entry in the regions that have not been 

blocked. If no such support entry can be found, the procedures stop, 

otherwise, return to Step 2. In the example shown in Table 3.1, no 

further support entry is found because the whole region is already 

blocked. 

After determining the possible matches between landmarks at the first 

and second view, we will next verify the results in the least square sense. 

Since we use affine transformation to map landmarks from the first to sec-

ond image, it's least square error should also be derived from this affine 

transformation. In the least square sense the coefficient of the affine trans-

formation is given by [3]: 



Figure 3.2: Image (a), Sihouette (b), Contour (c) and Landmarks (x) of 
an Aircraft 



Figure 3.3: The Flowchart of Probe And Block Matching Algorithm 



/ a ) Exix: / c / Exiy: 
b = Eyix: , d = 111-1 Eyiy: (3.17) 

, 
\m Exi  / \ n / \ Eyi 

where: 
/ Ex,?, Exiyi  Exi  

M = Exiyi  Ey? EN 
\ Exi  EN 

(E goes' from i = 1 to i = k). 

The above least square error does not account for the overall goodness, 

i.e., it only indicates how well a portion of landmarks in first view match to 

the corresponding landmarks in sgcond view. We need therefore to account 

for the overall goodness of match as follows : 

n — 2 
E = [1.0+ 

k — 2 
log2(  

nk 
-
- 

2 ))E (3.18) 

where : 

e'= match error (overall goodness of match) 

n= the total number of landmarks on first image (n > k) 

k= the total number of matched landmarks (k > 3) 

E = E 1 (k .scale f actor) = the normalized square error. 

e= unormalized square error. 

In the earlier example, k = n = 7 and e = 0.13, therefore e'  = E = 0.13. 

If 0 < k < 3, El  = 00 . 



3.4 Estimating 3-D Motion of a Rigid Pla-
nar Patch 

3.4.1 Small Rotation 

The basic geometry shown in Figure 3.1 is repeated here. It was shown in 

Section 3.2 that the image space coordinates of a rigid planar patch before 

and after undergoing 3-D motion are related by Equation 3.14. Hence, the 

parameters alis in Equation (3.15) are a function of the motion parameters 

and applicable for any kind of 3-D rigid planar motion. For the case where 

rotation is small, the elements of the rotation matrix in Equation (2.14) 

and in fact Equation (3.10) are replaced by those in Equation (2.15), then 

the ct'is have the equation of the forms : 

=  = 
1 + aAx 

, a2 —n
3  sin + bAx 

1 + cAz 1 ± cAz 

n2  sin 0 + cAz n3  sin + aAy 
a3  =  a4  =  

1 + cAz 1 + cAz 

1 + bAy —ni  sin 6' + cAy 
as  =  , a6  =  

1 -I- cIz 1 + ciz 

—n2  sin ± aAz ni  sine + bAz 
a7 =  a8= (3.19) 

1 + cAz 1 + cAz 

From Equation (3.19) it is obvious that Az can never be determined, 

and we can hope to determine the 4.9 to only within a relative depth. We 

therefore let 

a* = aAz , b* = bAz , c.. cAz, Ax* =, Ay* = —
Ay

, 
 

(3.20) 
Az Az 



the motion parameters now becomes : ni, n2 , n3, 0, Ax*, Ay*, a*, b* and c*, 

which are larger than the number of equations, i.e., eight. To solve Equation 

(3.19) we need one more constraint which comes from the fact that the 

square root of the sum of the squared direction cosine is always equal to 

one, another constraint is that for small rotation 0 = sin 0. Considering 

these parameters into Equation (3.19); the unknown motion parameters 

now become: 4'1,1'2, 4)3, Ax*, Ay*, a*, ti* and c. where = n,0. These 

parameters can be computed by manipulating Equation (3.19) into a form: 

.P6 Ax*6  P30x*5  P40x" P3As*3  P2/x*2  PlAx* + Po  = 0 (3.21) 

where : 
4 

P6 = WM2 - N(S M — NU) 

P5 = M(82 + N2 + M2 4UW) 

P4 = -M2(W + 5U) + U (2N2  — S2) — 3SMN 4UW 

P3 = 2m(52 + N2 
M2  + 4U2) 

P2 = (—M24U2)W + (6M2 4U2 2S2 N2)U - 3SMN 

P1 = M(S2 + N2 + M2  — 4U2  4UW) 

= M2  (a5  — al ) — S(SU SM) and 

S = az  + Ba4 

M = a3  a7  

N = as + as 

U = — 1 

W = — 1 and fiirfhermnre 



Ay* — 
—N Ax*3  + S Ax*2  — N Ax* + S 

—MAx*2  + 2E/Ax* + M 

N Ay* — W 
c* —  Ay*2 — NLy* + a5 

b* = c*(N — Ay*) + N 

a* = c*(M — Ax*) + M 

1,1  = (c* + 1)a6  — Ay*c* 

41'2 = — (e*  + 1)a3 + Ax*C*  
, 

Cb 3  = —Ax*b* + a2(c* + 1) (3.22) 

In order to solve the unknown motion parameters, we first solve Equa-

tion (3.21) for Ax* which is a sixth order polynomial equation, then the 

others are obtained from Equation (3.22). Note that the polynomial can 

have potentially six real roots which may give six solutions for the motion 

parameters. The actual roots are those that satisfy both Equation (3.21) 

and (3.22). 

3.4.2 Large Rotation 

When rotation is large, the rotation matrix is given by Equation (2.14). 

Following exactly the same procedures as in Subsection (3.2.2), the unique 

mapping given by Equation (3.14) is again valid if the pure parameters are 

replaced by : 



a1  = [n/2  + (1 — n21) cos 61  + aAx]/k 

a2  = [n1n2(1 — cos 9) — n3  sin. 8 + bAx]lk 

a3  = [n1n3(1 — cos 0) + n2  sin 8 + cix]/k 

a4  = [n1n2(1 — cos 0) + n3  sin 8 + aAy]/k 

a5  = [n22  ± (1 — n22) cos -1-bAy]lk 

a6  = n2n3[(1 — cos 8) + ni  sin 8 + cLy]k 

a7  = n1n3[(1 — tos 8) — n2  sin 8 + aLz]/k 

as  = [n2n3(1 — cos 8) + n1  sin 8 + bAz]/k (3.23) 
4 

where k, = + (1 — nD cos ± cAz. 

We shall look for the number of possible solutions for the motion pa-

rameters by decomposing the following matrix A that consists of the eight 

pure parameters ali s as follows : 

a1  a2  a3  
A = a4  a5  a6 (3.24) 

a7  as  1 

The singular value decomposition of A is given by : 

A = UAVT (3.25) 

where A is a 3x3 diagonal matrix of the singular values (A`s,i = 1,2,3) of 

A, and U,V are the 3x3 orthonormal matrices. It can be shown that : 



Figure 3.4: Transformation of Coordinate System with Matrix V 

/ \ 
kA = R Ay (a b c) (3.26) 

4,\  Az 

and from Equation (2.20) and (3.12) : 

/ 
) = kA y (3.27) 

\ z' z 

If the original coordinate systems at time ti  and t2, (x, y, z) and (x', y', z'), 

respectively, are transformed by the orthonormal matrix V in Equation 

(3.25), as shown in Figure 3.4, then we have a relation : 

x xn x xn  
Y = V ( Yn. ) Y ) = V (yn (3.28) 

zn z zn 

where (zn, yr/ zn ) and (xn yn, ) are the transformed coordinate systems. 

Substituting Equation (3.26) into (3.25) gives 



xni xn  
V yni = kAV ( yr, (3.29) 

Zn Zn  

Taking the norms of the vectors on both sides of Equation (3.29), we 

have : 

( \ xn  
(X72,'  yni zn)  VTV yin = k2  (xn  yn  zn) VT AT AV yn (3.30) 

Zn  Zn  / 

Substituting Equation (3.25) to (3.30) and replacing the expression VTV 

and UT  U by an identity matrix (U and V are both orthonormal), we obtain: 

i x 
n 
z y

n
i2 z

n
i2 k2 (A32;

1
2 

)2
2y

n
2 A3z

n
) (3.31) 

Equation (3.31) defines a relationship between the coordinates before 

and after transformation associated with the singular values of matrix A. 

Since the left hand side of Equation (3.31) defines a sphere in the (xn, yni  , zn) 

space, while the right hand side defines an ellipsoid in the (xn, yn, zn) space, 

the uniqueness of the motion parameters given the pure parameters a/is 

depends on the geometrical motion characteristics, i.e., the multiplicity of 

singular values of matrix A. 

Closed forms of the solutions including necessary and sufficient con-

ditions (NSC) for the motion parameters, with different multiplicities of 

singular values of A are as follows : 



• Multiplicity = 2, e.g., Ai  = A2  A3. 

• 
R = Ari  A PA — s) U3V3  

Ai  

/a 
T = (—

As 
— S) U3  , b = w V3. (3.32) 

Al  c 

NSC : Rotation around an axis through the origin followed by a trans-

lation along the normal direction of the object surface (unique solu-

tion). 

• Multiplicity = 1, e.g., Al  >, A2  > A3. 

/ a 0 p 
R = U 0 1 0 VT  

—313 0 sa 

T = w-1  [—/3U1  + (2-A, - sa/ U31 
A2 

(

a 
b) = w (5V1  + V3) (3.33) 

NSC : Rotation around an axis through the origin, followed by a 

translation along a direction different from the normal direction of the 

object surface (two solutions : in each of the two solutions, sgn(f3) = 

—sgn(S)). 

• Multiplicity = 3, e.g., Al  = A2 = A3. 

R = AT1  A 



T = 0 (3.34) 

NSC : Rotation around an axis through the origin only (unique solu-

tion). 

where : 

s = det(U)det(V) 

w =scale factor (constant) 

a, b and c = planar object parameters 

U3 , V3 =third column of U and V, respectively 

a? -a2 
 _ 1  . ....x2 

A3-A3 

a — A7+3.362 *  
A2(1+62) 

13 = ±-V1 — a2  

(for proof see [23]; Computer program for decomposing the singular 

values of matrix A is given in the Appendix). 



Chapter 4 

Computation Procedures And 
Experimental Results 

4.1 Computation Procedures 

More than ten different type of experiments consisting of both small and 

large motion estimations have been done. In all experiments, raw data, i.e., 

landmarks in the 3-D object space before motion, first view, are selected 

manually; whereas landmarks after motion, second view, are first computed 

by using a set of predefined motion parameters, and then varied to see the 

effects of missing and some extraneous landmarks in the second view. 

By projecting those landmarks into the 2-D image space and processing 

the two resulting views of image sequence, we intend to estimate the mo-

tion and structure of the 3-D object under observation. The computation 

procedure is summarized as follows : 



1. Select points on the observed planar object using Equation (3.12). 

These points are the feature points and referred to as the landmarks 

of the 3-D object before 3-D rigid motion (first view). 

2. Determine the amount of rotation 0, direction cosine (ni, n2 , n3) and 

the amount of translation (Ax, Ay, Az). These data are predefined 

and needed when the motion parameters have been obtained. That 

is, to check how close the estimated motion parameters compared to 

the predefined motion parameters. 

3. Compute points after motion (second view) by using Equation (2.20) 

and data from Step 2. Determine the effects of noise, missing and 

adding extraneous landmarks! 

4. Project points obtained in Step 1 and 3 into the 2-D image space. 

Now we have four collection of points, i.e., two in the 3-D object 

space (Step 1 and 3), and the other two in the 2-D image space (Step 

4). 

5. Use probe and block algorithm to perform the correspondences task 

of points obtained from Step 4. Points in the first view are associ-

ated with the model landmarks, and points in the second view are 

associated with the scene landmarks. 

6. Verify the results obtained from Step 5. Use Equation (3.18) to check 

the overall goodness of match, i.e., matching error, in least square 



sense. The higher the matching error, the worse is the match. 

7. From the matched points obtained from Step 5, compute the pure 

parameters using Equation (3.14). 

8. Compute 3-D motion parameters using Equation (3.21) and (3.22) for 

small motion, and Equation (3.32),(3.33) and (3.34) for large motion. 

Note that calculating 3-D motion parameters for large motion is done 

after decomposing the singular values of matrix A given in Equation 

(3.25). 

9. Verify the results obtained' from Step 8 and those that are predefined 

in step 2. 

The flowchart of the computation procedure is given in Figure (4.1). 

4.2 Experimental Results 

We shall present the results of four different experiments including both 

small (one) and large (three) rigid motions. In the experiments, the image 

coordinates in the second view are obtained from those in the first view after 

following a rigid motion using Equation (2.20) only. Further experimental 

results which consider the effects of missing and extraneous landmarks in 

the second view will be presented in Section (4.3). 

As mentioned in Chapter 3, when the rotation is large there are three 

cases of rigid motions that can be recovered from at least four point cor- 



Figure 4.1: Flowchart for Estimating Motion Parameters By Establishing 

Landmark Correspondences 



Figure 4.2: Landmarks of the Objet (x): (a). Before and (b).After a Small 
Rigid Motion. 

respondences. Hence, the distinction between the cases depend on the 

multiplicity of the singular values of matrix A as given in Equation (3.24), 

i.e., it depends on whether or not the translational vector coincides with 

the normal direction of the object surface. It is categorized Case 1, if the 

translational vector coincides with the normal direction of the object sur-

face, otherwise it is Case 2. If there is no translation at all, it is categorized 

Case 3. 

Table (4.1) shows the predefined motion and object parameters for both 

small and large motions, while Table (4.2) shows the estimated motion and 

structure of the 3-D object. Figure (4.2) shows the landmarks (x) of the 

object under observation before and after following a small rigid motion, 



whereas Figure (4.3) shows the landmarks before and after following a large 

rigid motion : (a) Case 1 ; (b) Case 2 ; (c) Case 3. From Table (4.1) we 

see that for both type of motions we use the same object parameters, the 

same axis of rotation which is an arbitrary axis through the origin and the 

same number of landmarks, but different rotation angle and translational 

vector. 

From Table (4.2), we see that both small  and large motion algorithm 

have their own advantages and disadvantages. In small  motion algorithm, 

all  landmarks in the first view match with those in the second view, and 

the matching error here is 0.36. This error is mainly because of the discrete 

representation of landmarks. It is smaller than those that we obtain in 

Case 1 and Case 2 for large motion, but greater than that obtained in Case 

3. The reason for that is because when the observed object undergoing 

a large movement such that the normal of the object surface almost or 

exactly perpendicular to the view axis (optical axis), the least square error 

as given by Equation (3.17) is very large. Since the matching error given by 

equation (3.18) is derived from the least square error plus a penalty term for 

incomplete matching, this error is going to be large if the least square error 

is large, i.e., the matching error will fail to determine the correct match of 

landmarks. To evaluate that the above result is true, one such numerical 

experiment is also done for the same object and motion parameters, except 

for the amount of translation. In the experiment, instead of translating the 



Figure 4.3: Landmarks of the Object: Before (a) and After a Large Rigid 
Motion : (b) Case 1 ; (c) Case 2 ; (d) Case 3. 



Parameters Small Motion Large Motion 

Rot. Angle 2° 10° (all cases) 

Dir. Cosine (cos 58°, cos 122°, cos 48°) the same (all cases) 

Trans. Vector ( 0.5 .c: 0.5 
\N , N ,  N)  

N = Va2 + b2 + c2 = ./6 

case 1). (3-, ig, 37) 
case 2). (.3  , 2 Iv , . 1v1) 

case 3). (0,0,0) 

Obj. Parameters (1,2,1) (1,2,1) 

# of Lmarks ©ti  6 6 

# of Lmarks ©t2 6 6 

Table4.1: Predefined Motion and Object Parameters 

object as long as two unit away from the initial position along the normal 

direction as in Case 1 of Table (4.1), it is translated three unit away from 

the initial position with the sank direction. Hence, the matching error is 

4.01 and only four matched landmarks from total six we can get. Therefore, 
• 

a penalty is added here to the least square error for incomplete matching. 

In contrast for Case 3, the matching error is 0.06, the reason for this is 

because the object follows a rotation around an arbitrary axis through the 

origin only (no translation). 

Although the probe and block algorithm can perform the matching task 

well if the object follows only a small rigid motion, it does not mean that 

the estimated motion parameters will be entirely dependent on how well 

the landmarks in the first view can match to those in the second view. 

That is, it still depends on the algorithm that we use to estimate these 

unknown motion parameters. For example, in small motion algorithm, Az 

in Equation (3.19) is a scale factor and can not be determined, therefore 



Parameters Small Motion. Large Motion 
Rot. Angle Sold : 

01 = 0.0147 case 1). 9.38° 
02 = -0.0147 case 2). 9.10° 
03  = 0.0185 case 3). 9.57° 

Dir. Cosine So1.2 : 
01 = 0.0087 case 1). (0.52,-0.52,0.66) 

02 = -0.0087 case 2). (0.504,-0.504,0.655) 
cb3  = 0.0123 case 3). (0.53,-0.53,0.67) 

Trans. Vector So1.1 : ' 
Ax* = 1.01 case 1). w-1(-2.1, -4.49, -2.32) 
Ay* = 1.01 case 2). w-1(0.18, 0.26, 0.38) 

Sol.2 : • case 3). w-1(0, 0, 0) 
Az* = 0.073 w = arbitrary constant 
Ay* = 0.074 

Obj. Parameters Sol.1 : 
(0.23,0.45,0.22) case 1). w(-0.42, -0.81, -0.41) 

So1.2 : case 2). w(4.54,9.30,4.29) 
(0.34,0.50,0.12) case 3). arbitrary 

# of Matched 6 6 
Landmarks 

Matching Error 0.36 case 1). 0.91 
case 2). 2.02 
case 3). 0.06 

Table 4.2: Estimated Motion and Object Parameters 



Parameters Small Motion 
Rot. Angle Sol.1 : 1.55° 

So1.2 : 1° 
Dir. Cosine Sol.1 : (0.545,-0.545,0.684) 

So1.2 : (0.5,-0.5,0.707) 
Trans. vector So1.1 : (0.202,0.202,0.20) 

So1.2 : (0.015,0.015,0.20) 
Obj. Parameters Sol.1 : (1.15,2.25,1.10) 

So1.2 : (1.7,2.5,0.6) 

Table 4.3: Solution to the Small Rigid Motion. 

the solution to the motion is a function of Az which can be computed only 

if it is assumed as a relative depth of the object. In addition, as a result 

of solving a sixth order polynomial equation, we may have at most six real 

roots which yields six solutions to the motion. In the experiment, we have 

found two real and four complex roots. From these two solutions, we have 

no way to know the actual motion parameters since we have eight equations 

with nine unknowns as given in Equation (3.22). Thus, all that we can hope 

is a multiplicity of the possible solutions which may give an infinite number 

of solutions since Az can take any value. In our experiment, however, Az is 

given and is equal to 0.2. Substituting this value into the estimated motion 

and object parameters in Table (4.2), we have two solutions to the motion 

as shown in Table (4.3). Note that Az can basically act as a scale factor for 

the translational vector which will give us an infinite number of solutions 

to the motion. 



In large rotation algorithm, on the other hand, once we have determined 

the pure parameters ai's, the unknown motion parameters can be computed 

by decomposing the singular values of a 3 x3 matrix that consists of those 

parameters. Since these parameters are obtained from a unique mapping 

given four or more point correspondences, decomposing the singular values 

of this matrix means that we are looking for the physical characterization 

of the motion in the object space as given in Equation (3.31). As a result of 

this equation, and by using the rigidity constraint of the object under obser-

vation, the number of possible solutions are never more than two because a 

plane in 3-D object space can beoriented in at most two possible directions 

in order to cut a circle in an ellipsoid as described by Equation (3.31). The 

fact above is only true if and only if the singular values Ai  (i=1,2,3) are all 

distinct (Case 2). If two of the three singular values are equal, then there 

is only one possible orientation for the object surface before motion (Case 

1). Finally, if the singular values are all identical, the motion consists of 

rotation around an axis through the origin only, i.e., Ax = Ay = Az = 0 

(Case 3). Hence the object surface can be anywhere, but the solution to 

the motion is only one. Note that, the results shown in Table (4.2) deviate 

up to 10% from the predefined motion and object parameters. This is be-

cause of the no-nlinearity of the computation procedure and roundoff error 

generated by the computer. 



4.3 Further Experimental Results 

The effects of missing and extraneous landmarks in the second view are 

evaluated. In all experiments, we use the same motion and object param-

eters and the observed object follows only a large rigid motion (Case 2) as 

shown in Table (4.4). Figure (4.4) shows the landmarks of the object before 

and after following a rigid motion : (a) missing one point; (b) adding two 

extraneous points. Hence we consider only one missing and two extraneous 

from given six landmarks. The reason is because the matching error is un-

defined when the matched landmarks are less than three. Furthermore, in 

order to be able to use the motion estimation algorithm [21] [23], we need 

at least four corresponding landmarks. We have also done, however, such 

experiments when two missing and three extraneous landmarks taken into 

account. The matching error here is undefined, i.e., the matching algorithm 

fails to detect the correct matches, and the motion and object parameters 

can not be estimated. 

From Table (4.5) we see that the estimated and object parameters are 

not shaken by missing and extraneous points to the image coordinates in 

the second view. As described in Chapter 3, the pure parameters as shown 

in Equation (3.23) are a function of motion and object parameters only. 

These parameters are resulted from a unique mapping, Equation (3.14), 

of points Pi  = (Xi, Y) to P: = (X:: , Yir ) where i = 1...n is a landmark 

location of the object under observation. Therefore, regardless of which 



Figure 4.4: Landmarks of the Object: Before (a) and After a Large Rigid 
Motion - Case 2: (b) Missing One Point ; (c) Adding Two Extraneous 
Points. 



Parameters Missing Adding 
Rot.Angle 12° dito 

Dir. Cosine (cos 45°, cos 60°, cos 120°) dito 
Obj. Parameters (1,2,1) dito 

Trans. Vector ( 2
6, 

4
6, 

2
6

) dito 
# of Lmarks @ t1  6 dito 
# of Lmarks @ t2  5 8 

Table 4.4: Predefined Motion and Object Parameters (Further Experi-
ments) 

Parameters Missing Adding 
Rot.Angle 11.12° 11.06° 

Dir. Cosine (0.71,0.52,-0.52) (0.69,0.48,-0.48) 
Obj. Parameters w(3.84,9.25,3.75) w(3.65,8.76,3.58) 

Trans. Vector cv-1(0.21,00.35,0.23) w-1(0.18,0.31,0.20) 
# of Matched 

Lmarks 5 4 
Matching Error 2.67 3.49 

Table 4.5: Estimated Motion and Object Parameters (Further Experi-
ments) 

corresponding points on the observed object being used, as long as there 

are more than three landmark corresponding pairs, the pure parameters 

and in fact the estimated and object parameters will remain relatively the 

same. Note that, because of a penalty for incomplete matching is added 

in the experiment with two extraneous points, the matching error could be 

different for both experiments, but the motion and object parameters are 

still relatively the same. 



Chapter 5 

Conclusion And 
Recommendation 

The application of a landmark based approach in recognizing 3-D rigid 

planar objects[3] along with two different motion and structure estimation 

algorithm [21][23] have been studied to perform 3-D motion and structure 

estimation tasks of moving objects. The recognition algorithm, known as 

probe and block matching algorithm, is based on sphericity value, a shape 

measure, derived from affine transformation that maps feature points of the 

observed object from first to second view in the 2-D image space. 

It is desired to have the correspondences between feature points in the 

first view, at time ti , and those that in the second view, at time J2. Once 

we have determined these correspondences, the reconstruction of the 3-

D object, i.e., object parameters, along with the motion parameters, i.e., 

rotation matrix and translational vector, are then estimated using the two 



motion and structure estimation algorithm. 

The two estimation algorithm above are based on a unique mapping 

given four or more feature point correspondences. By working with a set 

of so called pure parameters resulted from the above unique mapping, the 

structure and motion parameters of the moving object can be obtained by 

solving a sixth order polynomial equation if the motion is small, and decom-

posing the singular values of a 3 x 3 matrix consisting of those parameters if 

the motion is large. From all numerical experiments that have been tried, 

the following are the conclusion and recommendation. 

1. The probe and block algorithm can perform the landmark matching 

tasks well if the object under observation follows a rigid motion such 

that the normal of the object surface is not almost perpendicular to 

the view axis (optical as). The algorithm is also capable of detecting 

the correct matches of landmarks when missing and some extraneous 

landmarks in the second view are taken into account. If there are 

too many landmarks missing and mixing with some other extraneous 

landmarks such that the sequential order of the original landmarks is 

lost, the algorithm fails to determine the correct matches. 

2. When the rigid motion is small, only a relative depth of the object 

we can get. The number of solutions, aside from the scale factor for 

the translational vector, depend on the number of real roots of the 

sixth order polynomial equation. If the motion is large, the number 



of solutions is either one or two depending on the multiplicity of the 

singular values of the 3 x 3 real matrix of the pure parameters. 

3. The motion estimation algorithm is convenient, inexpensive and not 

shaken by missing or extraneous landmarks to the object under obser-

vation as long as there are more than three landmark corresponding 

pairs. That is, regardless of which landmarks in the object being used, 

the estimated motion and object parameters will remain relatively the 

same. 

4. Due to the nonlinearity of,the computation procedure that has been 

used and roundoff error generated by the computer, the results pre-

sented in Chapter 4 deviate tip to 10% from the predefined motion 

and object parameters. To increase the accuracy of the results is a 

matter of selecting programming package. 

5. It is difficult to evaluate the performance of the whole procedure 

of the computation, since it involves two complex algorithm which 

is, each of them, not propotionally dependent. Although the large 

motion algorithm is relatively better than the small algorithm, the 

probe and block matching algorithm will fail to determine the correct 

matches of landmarks if the object under observation moves such that 

the normal of the object surface is almost perpendicular to the optical 

axis. 



6. A challenging further study is to consider the effect of noise to the 

landmarks when the object undergoing medium movement. It is also 

necessary to determine the physical quantity for the term medium 

above. 



Appendix A 

SOLUTION TO LINEAR EQUATION AX = B 

(Programming Code in C) 



/* This program computes linear equation ax=b 
used along with LUDCMP and LUBKSB both taken 
from Numerical Recipes in C good luck...*/ 

#include <malloc.h> 
#include <stdio.h> 
*include <math.h> 
main(ac, av) 
int ac; 
char **av; 
{ 
float **a, *b, d, jj; 
int n, *indx, i, j; 
n=atoi(av[1]); 
a=matrix(1,10,1,10); 
b=vector(1,10); 
indx=ivector(1,n); 

for (i=1; i<=n; i++) 
for (j=1; j<=n; j++) 

a[i][j]=atof(av[(1-1)*n+j+1]); 
for (i=1; i<=n; i++) 

b[i]=atof(av[l+n*n+1]); 

for (1=1; i<=n; i++) { 
for (j=1; j<=n; j++) { 

printf(" s65.2f\t",a,[i][j]); 

printf(" = %5.2f\n", b[1]); 
} 

ludcmp(a,n,indx,&d); 
lubksb(a,n,indx,b); 
printf(" solution to Ax=b :\n"); 
for (i=1; i<=n; i++) 

printf("%5.3f\n", b[i]); 

} 

/********************************************/ 
• 

/* To perform LU decomposition 
copied from Numerical Recipes in C */ 

#include <math.h> 
#define TINY 1.0e-20 
void ludcmp(a,n,indx,d) 
int n, *indx; 
float **a, *d; 
{ 

int i, imax, j, k; 
float big, dum, sum, temp; 
float *vv, *vector(); 
void nrerror(), free_yector(); 
vv=vector(1,n); 
*d=1.0; 
for (i=1; i<=n;i++) { 

big=0.0; 
for (j=1;j<=n;j++) 

if ((temp=fabs(a[i][j]))>big) big=temp; 
if (big==0.0) 

nrerror("Singular matrix in routine LUDCMP"); 
vv[i]=1.0/big; 

} 
for (j=1;j<=n;j++) { 

for (1=1;1<j;i++) { 



sum=a[i] [j]; 
for(k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 

a[i] [j]=sum; 
} 

big=0.0; 
for(i=j;i<=n;i++) { 

sum=a[i][j]; 
for (k=1;k<j;k++) 

sum -= a [ i] [k] *a [k] [j] ; 
a[i][j]-sum; 
if((dum=vv[i]*fabs(sum))>=big) { 

big=dum; 
imax=i; 

} 
} 
if (j!=imax) { 

for (k=1; k<=n;k++) { 
dum=a[imax][k]; 
a[imax][k]=a[j][k]; 
a[j] [k]=dum; 

} 
*d= -(*d); 
vv[imax]=vv[j]; 

} 
indx[j]=imax; 
if(a[j] [j]==0.0) a[j]{j]=TINY; 
if (j!=n) { 

dum=1.0/{s[j][j]); 
for (i=j+1;i<=n;i++) a 

a[i][j] *= dum; 
} 

} 
free_vector(vv,l,n); 8 

} 

/*************************************************/ 

/* To perform LU backsubstitution 
Copied from Numerical Recipes in C */ 

void lubksb(a, n,indx, b) 
float **a, b[]; 
int n, *indx; 
{ 
int i, ii=0, ip, j; 
float sum; 
for (i=1; i<=n; i++) 

ip=indx[i]; 
sum=b[ip]; 
b[ip]=b[i]; 

if (ii) 
for (j=ii; j<=i-1; j++) 
sum -= sui)[i]*b{i1; 
else if (sum) ii=i; 

b[i]=sum; 
} 
for (i=n; i>=1; i--) 

sum=b[i); 
for (j=i+1; j<=n; j++) 

sum -= a[i][j]*b[j]; 
b[i]=sum/a[i] [1]; 

} 



Appendix B 

SOLUTION To THE SIXTH ORDER POLYNOMIAL EQUATION 

(Programming Code in FORTRAN) 



C THIS PROGRAM CALCULATES THE ROOTS OF A SIXTH ORDER 
C POLYNOMIAL EQUATION USING BAIRSTOWS METHOD TAKEN FROM 
C APPLIED NUMERICAL METHODS FOR DIGITAL COMPUTATIONS BY 
C M.L. JAMES, AND J.M. SMITH 

DIMENSION A(30),B(30),C(30) 
WRITE(6,2) 

2 FORMAT('1',3X,'REAL PART',3X,'IMAGINARY PART', 
*3X,'ITERATIONS'//) 
READ(5,3) UI,VI,EPSI,N 

3 FORMAT(3F3.1,I2) 

C ENTER POLYNOMIAL COEFFICIENTS: 

READ (5,4) (A (I) I=1,N) 
4 FORMAT ( 5 I 3 ) 

C SEE IF N=0,N=1,OR N IS GREATER THAN 1 

40 IF(N —1)100,5,7 
5 P=—A(1) 
Q=0. 
IT=1 
WRITE(6,6)N,P,Q,IT 

6 FORMAT(' ','X(',I2,')=',2X,F8.4,6X,F8.4,10X,I3) 
GO TO 100 

C SEE IF N=2 OR IF N IS GREATER THAN 2 
a 

7 IF(N.EQ.2) GO TO 8 
GO TO 13 

8 U=A(I) 
V=A(2) 4 

IT=1 
9 P=—U/2. 
RAD=U**2-4.*V 

C CHECK THE SIGN OF U**2-4.*V 

IF(RAD.GT.0.) GO TO 12 
RAD= —RAD 
Q=SQRT(RAD)/2. 
WRITE (6, 6)N,P,Q, IT 
N=N-1 
4=—Q 

90 WRITE(6,6)N,P,Q,IT 
10 N=N-1 

C CHECK TO SEE IF N IS GREATER THAN ZERO 

IF(N.LE.0) GO TO 100 
DO 11 I=1,N 

11 A(I)=B(I) 
GO TO 40 
12 Q=SQRT(RAD)/2. 
W=P 
Z=Q 
P=P+Q 
Q=0. 
WRITE(6,6)N,P,Q,IT 
N=N —1 
P=W—Z 
GO TO 90 

13 U=UI 
V=VI 
IT=1 



C CALCULATE THE B VALUES 
50 B(1)=A(1)—U 

B(2)=A(2)—B(1)*U—V 
DO 14 K=3r N 

14 B(K)=A(K)—B(K-1)*U—B(K-2)*V 

C CALCULATE THE C VALUES 
C(1)=B(1)—U 
C(2)=B(2)—C(1) *U—V 
M=N-1 
DO 15 K =3,M 

15 C(K)=B(K)—C(K-1)*U—C(K-2)*V 

C CALCULATE DELU AND DELV 
IF(N.GT.3) GO TO 17 
DENOM=C(N-1)—C(N-2)**2 
IF(DENOM.EQ.0.)G0 TO 30 
DELU=(B(N)—B(N-1)*C(N-2))/DENOM 

16 DELV=(C(N-1)*B(N-1)—C(N-2)*B(N))/DENOM 
GO TO 18 

17 DENOM=C (N-1) *C (N-3) —C (N-2) **2 
IF(DENOM.EQ.0.) GO TO 30 
DELU=(B(N)*C(N-3)—B(N-1)*C(N-2))/DENOM 
GO TO 16 

C CALCULATE NEW U AND V VALUES 

18 U=U+DELU a 
V=V+DELV 
SUM=ABS (DELU) +ABS (DELV) 

C STORE THE FIRST SUM CALCULATED 

IF(IT.EQ.1.) GO TO 19 
GO TO 20 

19 STORE=SUM 
GO TO 21 

20 IF(IT.EQ.50)GO TO 28 
IF(IT.GE.200)GO TO 26 

21 IF(SUM.LE.EPSI)GO TO 9 
IF(IT.EQ.100)GO TO 23 

22 IT=IT+1 
GO TO 50 

23 WRITE(6,24) 
24 FORMAT(' ',lOX,'CONVERGENCE IS SLOW') 

WRITE(6,25)U,V,DELU,DELV 
25 FORMAT(' ','U=',E14.7,3X,'V=',E14.7,3X,IDELU=r 

*,E14.7,3X,'DELV=',E14.7) 
GO TO 22 

26 WRITE(6,27) 
27 FORMAT(' ',10X,'ITERATING STOPED AFTER 200 

*ITERARTIONS') 
WRITE(6,25)U,V,DELU,DELV 
GO TO 100 

C SEE IF SUM AFTER 50 ITERATIONS 
C EXCEEDS FIRST SUM STORED 

28 IF(SUM.LT.STORE)G0 TO 21 
WRITE(6,29) 

29 FORMAT(' ',10X,'DIVERGENCE OCCURING') 
WRITE(6,25)U,V,DELU,DELV 
GO TO 100 

30 WRITE(6,31) 
31 FORMAT(' ,10X,'DENOM IS ZERO') 



GO TO 100 
100 STOP 

END 



Appendix C 

SINGULAR VALUE DECOMPOSITION 

(Programming Code in C) 



/* this program computes singular values of 
a 3x3 real matrix used along with svdcmp 
and svbksb both taken from Numerical Recipes in C */ 

# include <malloc.h> 
# include <stdio.h> 
# include <math.h> 

main (ac,av) 
int ac; 
char **av; 
{ 
double **a,*br d,jj,wmax,wmin,**u,*w,**v,*x; 
int i,j,n,*indx,k; 
n=atoi(av[1]); 
a=matrix(1,n,l,n); 
b=vector(1,n); 
u=matrix(1,n,l,n); 
w=vector(1,n); 
v=matrix(1,n,l,n); 
x=vector(1,n); 
indx=ivector(i,n); 

for(1=1;i<=n;i++) 
for  

a[i][j]=atof(av[(i-1)*n+j+1]); 

/*calculate A = U W V*/ 

printf("singular decomposition of matrix A :\n\n"); 
for(i=1;i<=n;i++) /*copy a[i][j] into u[i][j]*/ 

for(j=1;j<=n;j++) 
u[i] [i] = a[i][i]; 

svdcmp(ur n,n,w,v); 

for(i=1;i<=n;i++){ 
for  

printf("q52.2f\t",u[i][j]); 
} 

printf("%2.3f\n",w[i]); 
} 
printf("\n"); 

for(i=l;i<=n;i++){ 
for(j=1;j<=n;j++){ 

printf("5/52.2f\t",v[i][j]); 
} 
printf("\n"); 

} 

/* This is a routine for SV decomposition 
used along with svbksb both copied from 
Numerical Recipes in C */ 

#include <math.h> 
static double at,bt,ct; 
#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ?\ 
(ct=bt/at,at*seirt(1.0+ct*ct)) :\ 
(bt ? (ct=at/bt,bt*scart(1.0+ct*ct)): 0.0)) 

static double maxargl,maxarg2; 



#define MAX (a, b) (maxarg1=(a),maxarg2=(b),(maxargl) > (maxarg2) ?\ 
(maxargl) : (maxarg2)) 

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) 

void svdcmp(a,m,n,w,v) 
double **a,*w,**v; 
int m,n; 

{ 
int flag,i,its,j,jj,k,l,nm; 
double c,f,h,s,x,y,z; 
double anorm=0.0,g=0.0,scale=0.0; 
double *rv1,*vector(); 
void nrerror(),freevector(); 

if (m<n) 
nrerror("SVDCMP: You must augment A with extra zero rows"); 
rvl=vector(l,n); 

/*Housholder reduction to bidiagonal form*/ 
for (i=1;i<=n;i++) { 

1=i+1; 
rvl[i]=scale*g; 
g = s = scale = 0.0; 

if(i<=m) { 
for (k=i;k<=m;k++) scale += fabs(a[k][1]); 
if (scale) { 
for (k=i;k<=m;k++) { 

a[k] [i] 1= scale; 
s += a[k][i]*a[k][i]; 

} 

f=a[i] [i]; 
g= (-SIGN(sqrt(s),f)); 6  
h = f*g-s; 
a[i] [1] = f-g; 
if(i != n) { 

for (j=1;j<=n;j++) { 
for(s=0.0,k=i;k<=m;k++) s += a[k] [i]*a[k] [j]; 
f = s/h; 
for(k=i;k<=m;k++) a[k][j] += f*a[k][i]; 

} 
} 

for (k=i;k<=m;k++) a[k][i] *= scale; 
} 
} 
w[i] = scale*g; 

g = s = scale = 0.0; 
if(i <= m && i != n) { 
for (k=1;k<=n;k++) scale += fabs(a[i][k]); 

if (scale) { 
for (k=1;k<=n;k++) { 

a[i][k] /= scale; 
s += a[i][k]*a[i][k]; 
} 
f = a[i][1]; 
g = (-SIGN(sqrt(s),f)); 
h = f*g-s; 
a [i] [1] = f-g; 
for (k=1;k<=n;k++) rvl[k] = a[i][k]/h; 
if (i != m) { 
for (j=1;j<=m;j++) { 

for(s=0.0,k=l;k<=n;k++) s += a[j] [k]*a[i] [k]; 
for(k=l;k<=n;k++) a[j][k] += s*rvl[k]; 

} 

for (k=1;k<=n;k++) a[i][k] *= scale; 



} 
anorm=MAX(anorm,(fabs(w[i])+fabs(rvl[i]))); 
} 

/*accumulation of right-hand transformations*/ 

for (i=n;i>=1;i--) { 
if (i <n) { 

if (g) { 
for (j=1;j<=n;j++) 

v[i] [1] = (a[il[j]/a[i][1])/g; 
for (j=1;j<=n;j++) { 

for (s=0.0,k=1;k<=n;k++) s += a[i][k]*v[k][j]; 
for (k=1;k<=n;k++) v[k] [j] += s*v[k] [1]; 

1 
} 

for (j=1; j<=n;i++) v[i] [j] = v[j] [i] = 0.0; 
} 

v[i] [1] = 1.0; 
g = rvl[i]; 
1 = i; 
} 

/*Accumulation of left-hand transformation*/ 
for (i=n;i>=1;i--) { 
1 = 1+1; 
g = w[i]; 
if(i < n) 
for (j=1;j<=n;j++) a[i],[i] = 0.0; 
if(g) { 
g = 1.0/g; 
if(i != n){ 
for (j=1;j<=n;j++) { 
for (s=0.0,k=1;k<=m;k++) s += a[k] [i]*a[k] [j]; 
f=(s/a[i][i])*g; 
for (k=i;k<=m;k++) a[k] [j] += f*a[k] [i]; 

} 

for (i=i;j<=m;i++) a[j][i] *= g; 
) else { 
for (j=i;j<=m;j++) a[j][i]=0.0; 
} 
++a[i][1]; 
} 

/*diagonalization of the bidiagonal form*/ 
for (k=n;k>=1;k--) { 
for (its=1;its<=30;its++) { 
flag = 1; 
for(1=k;1>=1;1--){ 
nm = 1-1; 
if(fabs(rv1[1])+anorm==anorm) { 

flag = 0; 
break; 

} 

if(fabs(w[nm])+anorm==anorm) break; 

if(flag) { 
c = 0.0; 
s = 1.0; 
for(i=1;i<=k;i++){ 
f = s*rvl[i]; 
if(fabs(f)+anorm != anorm) { 

g = w[i1; 
h = PYTHAG(f,g); 
w[i] = h; 



h = 1.0/h; 
c = g*h; 
s = (-f*h); 
for(j=1;j<=m;j++){ 

Y =a{j]inm]; 
z a[j]fil; 
a[j] [nm] = y*c+z*s; 
a[j] [i] = z*c-y*s; 

} 
} 

} 

} 
z = w[k]; 

if(1==k) { 
if (z <0.0 ) { 

w[k] = (-z); 
for (j=1;j<=n;j++) v[j][k]=(-v[j][k]); 

break; 
} 

if (its==30) nrerror("No converegence in 30 SVDCMP iteration"); 
x = w[1]; 
nm = k-1; 
Y = w[nm]; 
g = rvl[nm]; 
h = rvi[k]; 
f = ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y); 
g = PYTHAG(f,1.0); 
f = ((x-z)*(x+z)+h*((y/(f4IGN(g,f)))-h))/x; 
c = s = 1.0; 
for(j=1;j<=nm;j++) { 
i = j+1; 
g = rvi[i]; 
Y = w[i]; 
h = s*g; 
g = c*g; 
z = PYTHAG(f,h); 
rvl[j] = z; 
c = f/z; 
s = h/z; 
f = x*c+g*s; 
g = g*c-x*s; 
h = y*s; 
y = y*c; 
for(jj=1;jj<=n;jj++) { 
x = v[ifl[j]; 
z = v[jj][i]; 
v[jj][j] = x*c+z*s; 
v[jj][i] = z*c-x*s; 
} 
z = PYTHAG(f,h); 
w[j] = z; 
if(z){ 
z = 1.0/z; 
c = f*z; 
s = h*z; 
} 
f = (c*g)+(s*y); 
x = (c*y)-(s*g); 
for(jj=1;jj<'m;jj++) { 
Y= 
z = a[jj][i]; 
a[jj][j] = y*c+z*s; 
s[ij][1] = z*c-y*s; 



rv1[1] = 0.0; 
rvl[k] = f; 

w[k] = x; 
} 

freevector(rv1,1,n); 
} 

void svbksb(u,w,v,m,n,b,x) 
float **u,w[],**v,b[],x[]; 
int m,n; 

/* Copied from Numerical Recipes in C */ 

{ 
int jj,j,i; 
float s,*tmp,*vector(); 
void free vector(); 
tmp=vectoE(1,n); 
for(j=1;j<=n;j+,+).  { /*calculate U transpose B*/ 

s=0.0; ' 
if (w[j]) { /*Nonzero result only if wj is nonzero*/ 

for (i=1;i<=m;i++) s += u[i][j]*b[i]; 
s /= w[j]; /*This is the divide by wj*/ 
} 
tmp[j]=s; 
} 
for (j=1; j<=n;j++) { /*Matrix multiply by V to get answer*/ 
s=0.0; 
for (jj=1;jj<=n;jj++) s +=v[j][jj]ftmp[jj]; 
x[j]=s; 

} 
6 free vector(tmp,l,n); 
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