
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1991

Experiments with the gap variation of interpolation search for Experiments with the gap variation of interpolation search for

semi uniform distributed alphabetic files semi uniform distributed alphabetic files

Jatin M. Bhavsar
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bhavsar, Jatin M., "Experiments with the gap variation of interpolation search for semi uniform distributed
alphabetic files" (1991). Theses. 2401.
https://digitalcommons.njit.edu/theses/2401

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2401?utm_source=digitalcommons.njit.edu%2Ftheses%2F2401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

There are various techniques for searching a data from a data base. One of them

is interpolation search. It works on uniformly distributed and sorted numerical

tables and considered to be one of the fastest methods. On an average this method

takes '1g lg n'

Burton and Lewis [BL] shows the inefficiency of interpolation sarch for an alpha-

betic table whose distribution is not known or non-uniform. They introduce GAP

variations of interpolation search to compare the inefficiency. However another ap-

proach to a non-uniform is to apply the cumulative distribution function F which

transfer a non-uniform distribution to uniform one, for which interpolation search

is the best.

In Arithmetic Coding a string of characters is mapped into the [0,1) interval

according to the probabilities of its characters using arithmetic code. We found

that this transformation, designed for data compression, is actually the cumula-

tive distritution funciton F for alphabetic tables. However the tables needed for

applying Arithmetic Coding require too much memory and only an approximated

transformation using only few tables can be applied. This transformation gave a

semi-uniform distribution and interpolation search gave higher results than '1g lg

n'. Applying then the GAP variations improved the results where, the optimum

close to 'lg lg n' accesses was obtained for the accelerated GAP variation for GAP

= 2 rather than

n

1/2 used in [BL]. An experimental analysis show GAP = 2 to be

the best function for uniformly distributed files. We analyzed the regular GAP =2

theoretically to support the experimental result.

EXPERIMENTS WITH THE GAP VARIATION OF

INTERPOLATION SEARCH FOR

SEMI UNIFORM DISTRIBUTED ALPHABETIC FILES

by

Jatin M. Bhaysar

Submitted to

The Department of Computer and Information Science of the

New Jersey Institute of Technology

in partial fulfillment of the requirement for the degree of

Master of Science in Computer and Information Science.

May 1991.

Approval Sheet

Title of Thesis: Experiments with the Gap

Variation of Interpolation Search

for semi uniform distributed

Alphabetic files

Name of candidate: Jatin M Bhaysar.

Thesis and abstract approved:

Dr. Y. Perl Date

Professor

Dept of Computer & Informaton Sc.

New Jersey Institute of Technology

VITA

Name Jatin M. Bhaysar

Permanent Address 55 Manor Dr.,Apt. 9 - 0

Newark, NJ 07106

Degree and date to be conferred : MS in CIS, May 1991

Date of birth

Place of birth

Collegiate inst. attended Dates Degree Date of Degree

N.J.I.T. 1989-1991 MS May 1991

M.S.U., India 1983-1988 BS Feb. 1988

Major : Computer Science

Contents

1 INTRODUCTION 1

2 INTERPOLATION SEARCH 4

3 THE GAP METHOD 7

4 EXPERIMENTAL RESULTS 11

5 ARITHMETIC INTERPOLATION SEARCH 61

6 EXPERIMENTAL RESULTS USING ARITHMETIC CODING 65

7 ANALYSIS FOR REGULAR INTERPOLATION 105

8 CONCLUSIONS 110

Chapter 1

INTRODUCTION

Tables with alphabetic keys play an important role in data bases. Two typical

exapmles of such keys are names and dictionary entries. For such tables fast search

procedures are required.

For a list which has a uniform random distribution, interpolation search gives

the best result. Average number of key comparisons (accesses) for a list consisting

of n keys drawn from a uniform distribution was shown by [PIA],[YYMGRG] to be

'lg lg n' using interpolation search.

Although interpolation search has excellent performance for uniformly dis-

tributed tables, it has quite a poor performance for tables for which the keys do

not have a uniform distribution but another distribution e.g. normal distribution

or Poison distribution or an unknown distirbution as is the case for alphabetic

tabls as a name list or a language dictionary. This is not suprising since applying

interpolation search for such distributions means working according to the worng

assumptions. Burton and Lewis [BL] used interpolation search on a list of 39976

names of Michigan Technological University Alumni. The results were very disap-

pointing. On an average, interpolation search required 134 accesses while the worst

case required 596 accesses.

The reason for the inefficiency of interpolation search for alphabetic tables

1

is that prediction made according to a uniform distribution assumption does not

fit the non-uniform probabilities of different characters and the interpolation search

deteriorates (partially) to a very slow sequential search.

[BL] modified interpolation search in such a way that the gap between an

interval endpoint and the probe location is always at least n^1/2, where n is interval

length. Even if we overshoot because of this, the desired key is trapped in an interval

of length .n^1/2. [BL] introduced two variations of the GAP methods. One of them is

Accelerated Gap Method and the other one is Regular Gap Method. In Accelerated

Gap Method, when ever the key is found to lie in the larger of the two subintervals

produced by a probe, the size of the gap will be doubled (from n^1/2 to 2n1/2 etc),

except the gap size is not allowed to exceed half the interval size. The gap is reset

whenever the key is found to lie in the smaller of the two subintervals produced

by the probe. In Regular Gap Method no matter what each time the same gap is

applied, i.e. the gap is not doubled even if the key is found to lie in the larger of

the two subintervals produced by a probe.

For both GAP variations we experimented with a large file and a small file

for different function of n rather than

n

1/2 used in [BL]. Our experiment show that

n

1/2 or 2

n

1/2 etc, is the optimum function for GAP.

Another approach [PIA] to apply interpolation search for non-uniform dis-

tributed file is to apply for each key the F cumulative distribution function which

transfter the file to uniform distribution and then apply interpolation search. But

how can we do this for name files for which F is not known. The solution to this

problem is to apply arithmetic coding to a string which transfters [PG] non-uniform

distribution into uniform distribution and then apply interpolation search. As we

know interpolation search gives best result for uniform distribution, we can inprove

efficiency for alphabetic tables. The arithmetic coding is based on calculating prob-

2

abilities of characters in a given string. The formula to finding arithmetic code for

any string is explained in section 5.

However due to shortage in space for tables the arithmetic coding is applied

to the strings, only approximately yielding a semi-uniform distribution for which

interpolation search requires more than lg lg n accesses. To overcome this difficulty

we tried to apply the accelerated Gap variation with different function. For GAP

= 2 we received the best results which are close enough to lg lg n accesses. To

verify this we analyze both theoretically and experimentelly the performance of the

accelerated Gap variations for uniform distirbutions. The function GAP = 2 gave

best results for experimental analysis for accelerated GAP. We analyzed the regular

GAP = 2 theoretically to support the experimental result.

3

Chapter 2

INTERPOLATION SEARCH

Interpolation search was introduced by Peterson[Pet] as a variation of binary search

for a sorted table whose keys are uniformly distributed. Suppose for example that

we search for a key x = 0.7 in a sorted table A of 1000 keys, uniformly distributed in

the interval [0.1]. (From now on whenever we refer to a table we mean a table sorted

in increasing order.) The binary search technique employes the divide and conquer

approach as it divides the table into two equal parts by accessing the median key

A(500) and continue the search similarly in the appropriate half of the table if x

<> A(500).

The interpolation search takes another approach as it accesses in this case

the A(700) key. As it is shown in [PIA] this is the expected position of the key x

= 0.7 in the table A. Furthermore this choice reflects two extra properties which

are due to the uniform distribution, which is not assumed for binary search. First,

A(700) is the most probable entry to contain the x = 0.7 key. Second, if x <>

A(700) then x has equal probability to be in each of the sides of A(700).

Formally, let (Xi <..<XN) be a sorted file of uniformly distributed keys be-

tween a and b. For technical reasons, the keys Xo=a and XN+1=b are added as the

first and the last keys of the file. Let P be the probability that a random key in the

file is less than or equal to Y ,

4

The expected and most probable location of the record is (N*P). Hence interpolation

search combines both the greedy approach and the divide and conquer approach.

The greedy approach is accessing the most probable key. The divide and conquer

approach since although the table is divided into two parts not of equal size but

by the equal probability of the required key to be in them. For another example

of the combination of the greedy approach and the divide and conquer approach

in a search technique see split trees [S][HW][Per]. Interpolation search continues to

search similarly the appropriate part of the table if x <> A(N*P). The technique

was shown to require an average of lg lg n accesses for a table of size n for which

binary search requires lg n accesses in the worst case and (lg n - 1) accesses in the

average case.

Several independent techniques were used to prove this result. In[YY] a

complicated combinatorial analysis based on double induction is used. They also

prove that interpolation search is an optimal search on the average for a uniformly

distributed table. In [PIA] we used proof techniques from Martingale Theory. Ex-

periments are reported to confirm the theoretical results. Another proof appears in

[GRG]. All those proofs are quite complicated. In [PR] we provide a simple proof of

a variation of interpolation search which requires an average of 2.4 lg lg n accesses.

In this variation interpolation search is interpreted as quadratic application of bi-

nary search yielding an intuitive understanding for the (lg lg n) performance. This

variation was the basis for Reif's[R] parallel interpolation search algorithm.

Interpolation search doesn't helps in non-uniform distributed list and it de-

teriorates to a very slow sequential search. One approach to modify interpolation

5

search for non-uniform distribution is using interpolation and binary search inter-

changably. In [PR] the idea to bound the worst case behaviour by 2 lg n is suggested

for the price of doubling average case behaviour to 2 lg lg n for uniform distribu-

tion. In [SS] Santoro and Sidney suggested a variation to switch totally to binary

search after a specified parameter of interchanging interpolation and binary search

accesses did not retrieve the desired key.

Foster[Fo] suggested to make each step a decision between a binary search

access and an interpolation search access based on a statistical test which uses the

accessed key to measure the uniformity of the distribution in the search interval.

Foster uses the alumni list of 24430 names(North Carolina at Charlotte) as the

worst example of a non-uniform distributed table. The average numbers of accesses

reported are 13.5 and 15 respectively depending on a parameter of the statistical

test.

6

Chapter 3

THE GAP METHOD

[PR] found that it is possible to reduce the search interval from n to n1/2 in average

constant time and complete the search on 0(1g lg n) average time. [BL] modified

interpolation search in such a way that the gap between an interval endpoint and the

probe location is always at least

n

1/2 , where n is interval length. Even if we overshoot

because of this, the desired key is trapped in an interval of length

n

1/2 . This alone is

not enough as interpolation search can still degenerate into a sequential search with

step size

n

1/2 , so at least O(

n

1/2) time may be required to complete the search in the

worst case. It is necessary to detect when the algorithm is bogged down in a cluster

and to increase the gap size until escape is accomplished. Therefore, whenever the

key is found to lie in the larger of the two subintervals produced by a probe, the

size of the gap will be doubled (from

n

1/2 , to 2

n

1/2 , etc.), except that the gap size is

not allowed to exceed half the interval size. The gap formula is reset whenever the

key is found to lie in the smaller of the two subintervals produced by a probe.

The search algorithm, which [BL] refers to as fast search, is given in a

FORTRAN-like language.

LOGICAL FUNCTION FIND (KEY,POSITION,LIST,SIZE)

CHARACTER*30 KEY, LIST(SIZE)

INTEGER POSITION, SIZE

7

CHARACTER*30 MINKEY, MAXKEY

INTEGER LOWER,UPPER,PROBE,GAP

REAL LDIFF, UDIFF, DIFF

DATA MINKEY/30*'A',MAXKEY/30*'Z'

LOWER=O

UPPER=SIZE+1

GAP=SQRT(FLOAT(UPPER-LOWER))

LDIFF=SUBTRACT(KEY,MINKEY)

UDIFF=SUBTRACT(MAXKEY,KEY)

WHILE(LOWER. LT. UPPER-1) DO

PROBE=LOWER+LDIFF/(LDIFF+UDIFF)*(UPPER-LOWER)+0.5

PROBE=MAX(PROBE,LOWER+GAP)

PROBE=MIN(PROBE,UPPER-GAP)

GAP=GAP*2

DIFF=SUBTRACT(KEY,LIST(PROBE))

IF (DIFF.LT.0.0) THEN

IF (PROBE.LE.(UPPER+LOWER)/2) THEN

GAP=SQRT(FLOAT(PROBE-LOWER))

UPPER=PROBE

UDIFF=-DIFF

ELSE IF (DIFF.GT.0.0) THEN

IF (PROBE.GE.(UPPER+LOWER)/2)

GAP=SQRT(FLOAT(UPPER-PROBE))

LOWER=PROBE

LDIFF=DIFF

ELSE

8

FIND=TRUE

POSITION=PROBE

RETURN

END IF

GAP=MIN(GAP,(UPPER-LOWER)/2)

END WHILE

FIND=FALSE

RETURN

END

To determine the scaled difference between two key values, [BL] describes a

function called SUBTRACT. A 64 element character set is assumed. Key values

are assumed to be character strings of length 30. The function is as follows in a

FORTRAN-like language.

REAL FUNCTION SUBTRACT(HIGH,LOW)

CHARACTER*30 HIGH,LOW

INTEGER I

SUBTRACT.°

DO 100 1=1,30

100 SUBTRACT=SUBTRACT*64+ICHAR(HIGH(I:I))-ICHAR(LOW(I:I))

RETURN

END

It is shown in [BL] that in the worst case this algorithm requires 0(1g n)2

accesses. On the other hand if the search file is uniformly distributed then the

average complexity is 0(1g lg n) as for the usual interpolation search. When applied

to the non-uniform alphabetic tables this modification improves the performance.

However it is still higher than the lg lg n performance for uniform distribution.

9

When this modified interpolation algorithm, to which [BL] call fast search

algorithm, is applied to the list of 39976 names which gave interpolation search so

much trouble, it was found that an average of 12.5 data accesses were required to

complete the search. In the worst case, 23 searches were required. On a list of

39976 uniformly distributed random values, fast search produced the desired result

using an average of 6.7 accesses.

The reason for accpeting

n

1/2 as the gap function , as we have mentioned

above, is that [PR] showed that the search interval can be reduced from n to

n1/2

in average constant time. But there was no confimation on the selection of

n

1/2, as

the gap that this gap function gives us the better results than other gap functions

. So we started doing the experimental work of finding out whether

n

1/2 , is the best

choice.

10

Chapter 4

EXPERIMENTAL RESULTS

We used for our experiment two file. The first file is the Master file containing

the alumni list of N.J.I.T. This list consists about 26,000, sorted alphabetically.

We concatenate the first name following the last name. The second file contains

4096 names taken uniformly from the Master file so that the probabilities of the

characters will be conserved.

We tried many functions for gap, e.g.

n

1/2 /lg(n), lg(n),

n

1/2 /2, 2

n

1/2 and so

on. We also tried constants like 2,3,...25 as the gap function. The purpose of doing

so was the fear of overshooting the actual key location sometimes when using the

gap method.

The results of the experiments for the small and large files are reported in

the tables below for various gaps.

For comparisons we applied the same technique for same size of files of uni-

formly distributed sorted list.

The overall results of our experiments using various functions for GAP and

using Accelerated as well as Regular gap mathods on both files are geiven below. We

also used Interpolation Search on uniformly distributed list for comparison. Then

we have given detailed distribution of some of the experiments which showed some

interesting results.

11

12

13

14

15

16

17

J

18

19

.1

20

DATA : ALPHABETIC LIST

METHOD : ACCELERATED GAP METHOD

21

ACC. GAP =

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 4 1 3
2 16 2 9
3 27 3 47
4 68 4 108
5 144 5 267
6 264 6 530
7 395 7 946
8 567 8 1504
9 661 9 2093

10 702 10 2701
11 556 11 3148
12 393 12 3356
13 203 13 3218
14 67 14 2931
15 27 15 2154
16 1 16 1298

17 680
18 407
19 145
20 50
21 4

22

ACC. GAP = lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 3
2 18 2 20

3 39 3 56

4 99 4 148

5 153 5 330

6 267 6 560

7 303 7 925

8 460 8 1386

9 515 9 1872

10 495 10 2203

11 574 11 2464
12 436 12 2606
13 304 13 2495
14 235 14 2392
15 107 15 2187

16 53 16 1856
17 28 17 1562
18 4 18 1079

19 740
20 408
21 222
22 76
23 8
24 1

23

ACC. GAP =

n

1/2 /2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 4 1 3
2 15 2 12
3 39 3 52
4 76 4 104
5 181 5 270
6 285 6 528
7 390 7 871
8 485 8 1308
9 514 9 1848

10 535 10 2198
11 518 11 2622
12 400 12 2830
13 316 13 2873
14 238 14 2647
15 62 15 2374
16 30 16 2078
17 6 17 1471
18 1 18 831

19 428
20 160
21 61
22 21
23 8
24 1

24

ACC. GAP =

n

1/2 /lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL TILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 3

2 25 2 17

3 41 3 52

4 89 4 150

5 162 5 308

6 226 6 523

7 302 7 857

8 355 8 1228

9 436 9 1666

10 454 10 1875
11 440 11 2099
12 422 12 2227

13 358 13 2276
14 317 14 2283

15 246 15 2088
16 111 16 1994
17 55 17 1675
18 29 18 1335
19 14 19 1041
20 6 20 740

Continued on the next page

25

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

21 2 21
22
23

24
25
26
27
28

514
355
160

79
27
17
9
1

26

ACC. GAP = 2,/n DATA = NON-UNI. DISTLIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 2 1 2
2 12 2 11
3 21 3 30
4 42 4 77
5 103 5 165
6 187 6 381
7 369 7 717
8 561 8 1350
9 639 9 2117

10 757 10 3058
11 629 11 3779
12 526 12 4012
13 214 13 3835
14 32 14 2919
15 1 15 1716

16 948
17 421
18 50
19 10
20 1

27

ACC. GAP = 2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 3
2 22 2 21

3 54 3 55
4 92 4 153
5 173 5 287
6 246 6 488
7 317 7 777

8 415 8 1142
9 444 9 1566

10 456 10 1799
11 431 11 2107
12 420 12 2326
13 331 13 2223
14 263 14 2239
15 219 15 2169
16 135 16 1932
17 47 17 1687
18 14 18 1338
19 6 19 1025

Continued on the next page

28

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

20 5 20
21
22
23
24
25
26
27

28

888
579
365
221
123
68
13
4
1

29

ACC. GAP = 3 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 3

2 20 2 21
3 52 3 53
4 102 4 150
5 181 5 300
6 249 6 530
7 346 7 868

8 425 8 1230
9 477 9 1632

10 460 10 1978
11 478 11 2210
12 426 12 2445
13 307 13 2435
14 208 14 2190
15 172 15 2118
16 115 16 1827
17 47 17 1641
18 19 18 1418
19 6 19 1030

20 672
21 464
22 225
23 81
24 48
25 27
26 3

30

DATA : ALPHABETIC LIST

METHOD :REGULAR GAP METHOD

REG. GAP =

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 4 1 3
2 15 2 9

3 36 3 53
4 98 4 130
5 154 5 293
6 315 6 642
7 484 7 1126
8 488 8 1796
9 521 9 2488

10 456 10 2818
11 340 11 2763
12 271 12 2456
13 209 13 1995
14 182 14 1664
15 126 15 1441
16 126 16 1259
17 103 17 1141
18 80 18 959
19 56 19 744
20 25 20 554
21 5 21 412
22 1 22 314

23 206
24 134
25 96
26 54
27 26
28 13
29 4
30 5
31 1

32

REG. GAP = lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 4
2 20 2 19
3 51 3 65
4 114 4 165
5 201 5 351

6 302 6 581
7 380 7 901
8 385 8 1161
9 415 9 1258

10 376 10 1250
11 308 11 1198
12 248 12 1120
13 183 13 1073
14 142 14 1034
15 100 15 1008
16 75 16 974
17 71 17 910
18 68 18 835
19 77 19 803
20 79 20 790
21 97 21 765
22 81 22 697
23 87 23 696
24 64 24 663
25 42 25 629
26 37 26 584
27 31 27 547
28 23 28 531
29 17 29 461
30 11 30 453
31 5 31 418

Continued on the next page

33

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 330
33 283
34 237

35 235
36 193
37 201
38 183
39 190
40 190
41 184
42 168
43 142
44 111

45 85
46 70
47 56
48 44
49 33

34

REG. GAP =

n

1/2 /2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 4 1 3
2 15 2 13
3 43 3 53
4 98 4 140
5 196 5 346
6 284 6 645
7 362 7 1054
8 430 8 1498
9 406 9 1733

10 388 10 1921
11 308 11 2015
12 251 12 1880
13 193 13 1771
14 157 14 1504
15 144 15 1392
16 115 16 1207
17 128 17 1139
18 111 18 1023
19 103 19 971
20 102 20 856
21 78 21 754
22 57 22 667
23 38 23 549
24 30 24 438
25 23 25 374
26 10 26 317
27 6 27 254
28 4 28 210
29 2 29 178
30 1 30 144
31 1 31 136

Continued on the next page

35

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 1 32 92
33 1 33 61
34 1 34 57
35 1 35 54
36 1 36 37
37 1 37 24
38 1 38 19

39 18
40 14
41 19
42 7
43 4
44 3
45 2
46 2
48 1

36

REG. GAP =

n

1/2/lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES

SEARCHES

1 5 1 5
2 19 2 18
3 57 3 66
4 107 4 166
5 187 5 319
6 217 6 525
7 270 7 733

8 316 8 869
9 323 9 966

10 305 10 980
11 279 11 1025
12 258 12 973
13 231 13 980
14 177 14 937
15 163 15 922
16 110 16 907
17 101 17 836
18 82 18 817
19 78 19 839
20 57 20 801
21 68 21 794
22 70 22 798
23 75 23 761
24 65 24 728
25 63 25 665
26 64 26 610
27 53 27 551
28 47 28 519
29 46 29 516
30 31 30 463
31 24 31 462

Continued on the next page

37

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 13 32 426
33 14 33 421
34 17 34 388
35 18 35 307
36 15 36 293
37 13 37 255
38 6 38 218
39 5 39 197
40 5 40 168
41 5 41 168
42 2 42 163
43 8 43 152
44 4 44 135
45 4 45 126
46 1 46 113
47 2 47 104
48 2 48 84
49 2 49 85

38

REG. GAP = 2

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE
ACCESSES SEARCHES ACCESSES SEARCHES

1 2 1 2
2 13 2 10
3 21 3 35
4 55 4 93
5 111 5 231

6 199 6 447
7 426 7 888

8 586 8 1536
9 647 9 2367

10 618 10 3217
11 496 11 3456
12 330 12 3237
13 253 13 2594
14 143 14 1962
15 102 15 1638
16 62 16 1269
17 22 17 1024
18 9 18 680

19 465
20 272
21 131
22 37
23 5
24 3

39

REG. GAP = 2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 6
2 21 2 22
3 65 3 53
4 93 4 150
5 150 5 270
6 200 6 411
7 249 7 558

8 256 8 662
9 252 9 683

10 227 10 670
11 211 11 644
12 170 12 628
13 153 13 636
14 139 14 604
15 130 15 598
16 127 16 587
17 121 17 533
18 123 18 555
19 114 19 557
20 102 20 575
21 91 21 565
22 94 22 526
23 84 23 512
24 95 24 479
25 79 25 462
26 68 26 433
27 62 27 424
28 58 28 407
29 52 29 423
30 53 30 409
31 46 31 424

Continued on the next page

40

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 36 32 387
33 40 33 381
34 38 34 370
35 41 35 339
36 33 36 327
37 24 37 314
38 20 38 313
39 11 39 304
40 13 40 276
41 14 41 278
42 15 42 254
43 6 43 245
44 6 44 247
45 6 45 228
46 6 46 227
47 7 47 221
48 8 48 198
49 11 49 200

41

REG. GAP = 3 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 5 1 5
2 21 2 22
3 59 3 56
4 109 4 154
5 170 5 289
6 228 6 486
7 309 7 669
8 298 8 777
9 298 9 867

10 247 10 833
11 231 11 784
12 213 12 774
13 171 13 754
14 160 14 708
15 152 15 679
16 135 16 665
17 113 17 642
18 110 18 653
19 100 19 643
20 83 20 629
21 88 21 639
22 85 22 572
23 90 23 516
24 78 24 505
25 71 25 465
26 83 26 462
27 75 27 432
28 45 28 451
29 31 29 421
30 23 30 425
31 21 31 410

Continued on the next page

42

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 27 32 390

33 19 33 390

34 16 34 367

35 18 35 360

36 19 36 351

37 14 37 306

38 13 38 278

39 14 39 289

40 10 40 269

41 10 41 268

42 5 42 255

43 10 43 210

44 7 44 178

45 5 45 184

46 5 46 193

47 1 47 198

48 187

49 178

43

DATA : UNIFORMLY DISTRIBUTED NUMBERS

METHOD : ACCELERATED GAP METHOD

44

ACC. GAP =

n

1/2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 138 1 366

2 53 2 62

3 488 3 2230

4 518 4 2740

5 1131 5 5451

6 1067 6 6807

7 610 7 5440

8 76 8 1826

9 14 9 628

10 49

45

ACC. GAP = lg(n) DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 153 1 383

2 347 2 1822

3 653 3 3571

4 1067 4 5828

5 1013 5 6598

6 623 6 4892

7 232 7 1935

8 7 8 517

9 52

10 1

46

ACC. GAP =

n

1/2 /2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 142 1 367
2 184 2 167

3 707 3 3217

4 967 4 4254
5 1168 5 7348

6 603 6 5939
7 301 7 3322

8 23 8 841

9 143
10 1

47

ACC. GAP =

n

1/2 /lg(n) DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 154 1 383
2 433 2 1572
3 957 3 4578
4 1133 4 7668
5 889 5 5944
6 453 6 3821
7 71 7 1340
8 5 8 269

9 21
10 3

48

ACC. GAP = 2

n

1/2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 138 1 361
2 33 2 37
3 222 3 591
4 285 4 1910
5 345 5 1569
6 1013 6 4530
7 1486 7 7738
8 515 8 6207

9 58 9 2596
10 59
11 1

49

ACC. GAP = 2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 158 1 388

2 571 2 3051

3 775 3 4483

4 1118 4 6736

5 983 5 6011

6 430 6 4077

7 51 7 626

8 9 8 217

9 10

50

ACC. GAP = 3 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 158 1 388
2 508 2 2833
3 581 3 3268
4 1102 4 6595
5 1151 5 6212
6 490 6 4635
7 100 7 1610
8 5 8 49

9 9

51

DATA : UNIFORMLY DISTRIBUTED NUMBERS

METHOD : REGULAR GAP METHOD

52

REG. GAP =

n

1/2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 138 1 366
2 53 2 62
3 521 3 2431
4 619 4 2843
5 1409 5 7162
6 1106 6 7688
7 240 7 4380
8 9 8 662

9 5

53

REG. GAP = lg(n) DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 153 1 383
2 427 2 2322
3 695 3 3781
4 1383 4 8068
5 1042 5 7260
6 373 6 3367
7 22 7 396

8 22

54

REG. GAP =

n

1/2 /2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 142 1 367
2 184 2 179
3 802 3 3880
4 1361 4 6429
5 1099 5 8392
6 434 6 4967
7 70 7 1238
8 3 8 139

9 8

55

REG. GAP =

n

1/2 /lg(n) DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 154 1 383
2 507 2 2166

3 1051 3 4882
4 1402 4 8742
5 768 5 6301

6 189 6 2380
7 20 7 604

8 4 8 119
9 22

56

REG. GAP = 2,/n DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 138 1 361
2 33 2 37
3 226 3 1104
4 280 4 1629
5 427 5 2150
6 1078 6 5212
7 1647 7 9197
8 266 8 5430

9 472
10 7

57

REG. GAP = 3

n

1/2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 137 1 357
2 14 2 46
3 21 3 224
4 181 4 1214
5 322 5 1139
6 657 6 2498
7 1405 7 5715
8 1356 8 10027
9 2 9 4215

10 164

58

REG. GAP = 2 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 158 1 388
2 641 2 3218
3 1144 3 6909
4 1289 4 7845
5 688 5 5472
6 162 6 1532
7 13 7 212

8 22
9 1

59

REG. GAP = 3 DATA = UNI. DISTRI. LIST

SMALL FILE LARGE-FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 158 1 388
2 565 2 3005
3 926 3 5792
4 1387 4 7739
5 879 5 6343
6 171 6 2061
7 9 7 258

8 11
9 2

60

Chapter 5

ARITHMETIC
INTERPOLATION SEARCH

As discussed in [PIA], if the distribution function is known then we can use the

property from Probability Theory that applying the cumulative distribution func-

tion F to the keys of the table according to this distribution transfers the table into

a uniformly distributed table. Thus if F is for example the cumulative distribution

function of the normal distribution then applying interpolation search to the value

F(x) of a key x in a normally distributed table will result the usual lg lg n average

performance of interpolation search. Thus the extra cost required for applying inter-

polation search for non-uniformly distributed tables, whose cumulative probability

function F is known, is computing the function F for the lg lg n accessed keys. If the

table is stored in the main memory then depending upon the function F it might be

that these extra computations require more time than the lg n accesses required for

the binary search. However if the table is stored on a disk as is the usual situation

for a large table then the computation of F is much faster than the time required

to access a key on the disk. Hence, for a non-uniform distributed large table stored

on the disk for which the distribution function is known the modified interpolation

search requires an average of lg lg n accesses to the disk.

61

The arithmetic coding when applied properly serves as a cumulative distribu-

tion function F which transfers alphabetic entries in the given table into a uniformly

distributed table as was shown in [PG].

Arithmetic coding ([WNC][L]) is a technique for data compression which

maps a string of characters to an interval [0,1). This mapping is based on the prob-

abilities of the different characters in the coded text either known in advance or

accumulated during encoding. Let us demonstrate this mapping by an example of a

ternary alphabet set {A, B, C} for which we assume the probabilities P(A) = 1/2,

P(B) = 1/8 and P(C) = 3/8. The one character strings A, B and C are mapped to

the intervals [0,0.5), [0.5,0.625) and [0.625,1) respectively. Now, every string start-

ing with the letter A is mapped into an interval contained in [0,0.5), the interval

being further reduced by the following letters. For example consider strings AA,

AB and AC. These strings starts with A so it can mapped into an interval [0,0.5).

Individual interval will depends on following letters. If following letter is A then in-

terval for AA will be first half of [0,0.5) i.e. [0,0.25). Similarly for AB [0.25,0.3125)

and for AC [0.3125,0.5). Similarly the intervals, corresponding to the strings ACA,

ACB and ACC are [0.3125,0.40625), [0.40625,0.4295875) and [0.4295875,0.5) respec-

tively. The string ACAA can be represent by [0.4295875,0.447265625). In arith-

metic coding, the expansion of the fraction, which is the end point of the interval

corresponding to a string, is sent as the code for these strings.

The theorem for Arithmetic Interpolation Search was developed by [PG].

They defined some probability terms before presenting the theorem.

Let s(i) denote the i th character in the string s, and let s(i,j) denote the

substring of s containing the characters in the position of i, i+1, ..., j of s. Thus

s(1,j) contain the prefix of j characters of s.

Let P1(a) denote the probability of the first character in a string to be 'a'.Let

62

Q1(a) denote the probability of the first character in a string to preceed 'a' in the

alphabetic order. That is

Let P(a,i,t) denote the conditional probability of a character 'a' in a position

i of a string which has a prefix t. Let Q(a,i,t) be the conditional probability of a

character preceeding 'a' (in the alphabetic order) in a position i of a string which

has prefix t. That is

Let R(t) denote the probability of a string in the file to have a prefix t of j

characters. Then

Now given the appropriate probabilities, the computation of the arithmetic

code of a string s of k characters is

We calculate separately the probabilities of the first character in each string.

For the second position in the string we calculate the probability of the character

dependent on the first character in the string. Thus for the probabilities for the

second position we need a table of k2 entries where k is the number of characters

in our alphabet. Similarly for the i-th position we shall need a table of ki entries.

This is beyond the available space resources.

Thus we decided to treat all the characters from position three and on in

the same way as follows. For each character disregarding its position we collect

63

the probabilities depending only on the previous character in the string, rather tha

depending on the whole prefix preceeding the character. This way the extra table

of dependent probabilities will require only k2 entries.

The R conditional probabilities will be also computed in a similar way by

using the same probabilities depending only on the previous character in the string

rather than the whole prefix preceeding the characters and disregarding the position

of the characters.

This way we only approximate the conditional probabilities which appear

in the formula for arithmetic coding. Nevertheless we believe this is a resonable

approximation since the distribution of the characters in the first and second po-

sition are different from those for the rest of the positions and are also the most

critical part in the computation of the arithmetic coding. The differences between

the other positions are less significant and putting them together will not be that

harmfull. We also realize that the depedency of the characters is mainly on the pre-

vious character and less on the whole precceding prefix. Hence these assumptions

seem reasonable under the space limitation encountered. However the distribution

of the keys after applying the arithmetic coding with the approximated tables is

only approximately uniform distribution. We call such a distribution a semi-uniform

distribution.

64

Chapter 6

EXPERIMENTAL RESULTS
USING ARITHMETIC CODING

After applying arithmetic coding to a string, we experimented with different func-

tions for the gap and accelerated gap for semi-uniform distributed data. Compared

to the previous results (i.e. without using arithmetic coding) we got better results.

We tried many functions for gap, e.g. 07,

n

1/2 /lg(n), lg(n),

n

1/2 / 2 and so on. We

also tried constants like 2, 3, .., 8 as the gap function.

For comparisons we used the same files to all experiments. The overall results

of our experiments using various functions for GAP and using Accelerated Gap as

well as Regular Gap methods on both files are given below. Then we have given

detailed distribution of some of the experiments which showed some interesting

results.

65

66

67

68

69

EXPERIMENTAL RESULTS ON NUMBERS
INTERPOLATION METHOD

DATA AVG ACCESSES WORST
CASE ACCESSES

4096
25600

3.438965
3.738633

8
10

70

DATA : ALPHABETIC LIST

METHOD :REGULAR GAP METHOD

71

REG. GAP =

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 38 1 116
2 58 2 192
3 253 3 592
4 528 4 1555
5 951 5 3154
6 1142 6 4818
7 717 7 5001
8 253 8 3769
9 82 9 2410

10 46 10 1411
11 16 11 882
12 5 12 515
13 3 13 325
14 2 14 223
15 1 15 144

16 107
17 75
18 50
19 39
20 28
21 22
22 19
23 19
24 15
25 14
26 11
27 11
28 10
29 10
30 9
31 7

Continued on the next page

72

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 5
33 4
34 4
35 4
36 4
37 3
38 2
39 2
40 2
41 2
42 2
43 2
44 2

45 2
46 2
47 2
48 1
49 1

73

REG. GAP = lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 201 2 421
3 359 3 1152
4 827 4 2434
5 1072 5 3563
6 832 6 3901
7 408 7 3509

8 166 8 2690
9 86 9 1888

10 48 10 1360
11 33 11 956
12 18 12 697
13 4 13 463
14 2 14 372

15 306

16 249
17 225
18 195
19 149
20 122
21 107
22 90
23 83
24 74
25 68
26 61
27 56
28 39
29 33

30 35
31 41

Continued on the next page

74

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 30

33 20

34 15

35 13

36 7

37 7

38 6
39 4

40 3

41 3
42 3

43 3
44 3

45 3
46 3
47 3
48 3
49 3

75

REG. GAP =

n

1/2 /1g(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 204 2 422

3 470 3 1142
4 869 4 2274
5 865 5 3035
6 614 6 3254
7 388 7 3003

8 231 8 2432
9 142 9 1926

10 89 10 1527
11 51 11 1183
12 36 12 928
13 24 13 722
14 15 14 559
15 12 15 450
16 8 16 373
17 6 17 348
18 4 18 275
19 4 19 221
20 3 20 187
21 4 21 171
22 3 22 154
23 3 23 140
24 5 24 122
25 4 25 110
26 1 26 93
27 1 27 76

28 49
29 39

30 33
31 25

Continued on the next page

76

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 24
33 19
34 21
35 21
36 20
37 14
38 13
39 11
40 9
41 7
42 4
43 4
44 3
45 3
46 3
47 3
48 2
49 2

77

REG. GAP = 2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 40 1 117
2 224 2 502
3 506 3 1266
4 802 4 2138
5 817 5 2817
6 631 6 2857
7 382 7 2502
8 210 8 2018
9 117 9 1533

10 72 10 1251
11 64 11 1011
12 39 12 871
13 36 13 735
14 29 14 644
15 27 15 550
16 18 16 462
17 18 17 378
18 18 18 336
19 8 19 305
20 6 20 268
21 4 21 222
22 4 22 205
23 4 23 173
24 4 24 156
25 4 25 156
26 4 26 127
27 4 27 130
28 3 28 117

29 130
30 125
31 98

Continued on the next page

78

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 102

33 70
34 74

35 70

36 74

37 58
38 62
39 55

40 67
41 57
42 44
43 43
44 42

45 38
46 28
47 25
48 23
49 18

79

REG. GAP = 3 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 225 2 509
3 454 3 1262
4 830 4 2236
5 913 5 2999
6 701 6 3210

7 376 7 2855

8 188 8 2221
9 115 9 1654

10 68 10 1259

11 38 11 1082
12 34 12 898
13 29 13 672
14 30 14 548
15 17 15 451
16 11 16 357
17 8 17 332
18 6 18 291
19 5 19 236
20 6 20 207
21 2 21 166

22 150
23 141
24 122
25 129
26 130
27 110
28 108
29 96
30 98
31 98

Continued on the next page

80

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 83
33 66
34 56

35 56
36 46

37 39
38 39
39 28

40 22

41 17

42 19

43 16
44 13

45 15
46 13
47 12

48 12
49 15

81

REG. GAP = 4 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES

SEARCHES

1 39 1 118

2 222 2 503

3 381 3 1148
4 714 4 2134

5 991 5 3138

6 819 6 3502

7 456 7 3189

8 177 8 2446
9 95 9 1746

10 61 10 1321

11 48 11 1055
12 25 12 833
13 25 13 623
14 17 14 493
15 11 15 402
16 6 16 318
17 6 17 268
18 2 18 227

19 207
20 173
21 159
22 150

23 142
24 136

25 121
26 105
27 100
28 89
29 64
30 61
31 68

Continued on the next page

82

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 54

33 45
34 35
35 25
36 21

37 19
38 22
39 15
40 19

41 15
42 19
43 20
44 15

45 15
46 13
47 13
48 11
49 9

83

REG. GAP =

n

1/2 /2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119

2 176 2 271

3 354 3 849
4 830 4 2077

5 973 5 3412

6 724 6 4022

7 441 7 3657

8 216 8 2775

9 127 9 2137

10 77 10 1540

11 42 11 1059
12 30 12 822

13 26 13 620

14 12 14 509
15 7 15 363
16 7 16 268
17 3 17 215
18 3 18 183
19 2 19 138
20 1 20 107
21 1 21 77
22 2 22 67
23 1 23 58
24 1 24 43

25 36
26 27
27 24
28 18
29 14
30 14
31 15

Continued on the next page

84

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 9

33 8

34 7

35 6

36 6

37 3

38 3

39 2

40 2

41 2

42 2

43 2

44 2

45 2

46 1

47 1

48 1

49 1

85

REG. GAP = 2

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 38 1 108

2 11 2 135

3 148 3 355
4 209 4 915
5 363 5 1726

6 845 6 3081

7 1050 7 4871

8 932 8 5633
9 433 9 4461

10 57 10 2359
11 9 11 966

12 375
13 210
14 91
15 49
16 41
17 30
18 24
19 19
20 17
21 12
22 12
23 11
24 10
25 10
26 10
27 9
28 9
29 7
30 7
31 5

Continued on the next page

86

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 4

33 4

34 4

35 3

36 3

37 3

38 1

39 1

40 1

41 1

42 1

43 1

44 1

45 1

46 1

47 1

87

DATA : ALPHABETIC LIST

METHOD : ACCELERATED GAP METHOD

B8

ACC. GAP =

n

1/2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 116
2 48 2 189
3 230 3 527
4 350 4 1266
5 767 5 2398
6 905 6 3736
7 846 7 4454
8 521 8 4411
9 250 9 3394

10 107 10 2275
11 22 11 1239
12 9 12 723
13 1 13 283

14 181
15 80
16 53
17 38
18 35
19 30
20 24
21 22
22 17
23 14
24 12
25 11
26 9
27 9
28 9
29 9
30 8
31 6

Continued on the next page

89

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 3

33 3

34 2

35 2

36 2

37 2
38 1

39 1

40 1

41 1

42 1

43 1

44 1

90

ACC. GAP = lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 120
2 183 2 370
3 299 3 992
4 652 4 2030
5 810 5 3130
6 899 6 3997
7 634 7 4001
8 362 8 3427
9 136 9 2683

10 48 10 1812
11 20 11 1170
12 9 12 712
13 2 13 391
14 1 14 232
15 1 15 149

16 91
17 59
18 36
19 24
20 21
21 19
22 15
23 14
24 12
25 11
26 11
27 10
28 9
29 8
30 8
31 5

Continued on the next page

91

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 4

33 4

34 3

35 3

36 2

37 2
38 1

39 1

40 1

41 1

42 1

43 1

44 1

45 1
46 1
47 1
48 1
49 1

92

ACC. GAP =

n

1/2 /lg(n) DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119

2 189 2 364

3 376 3 1039

4 710 4 1975

5 830 5 2939

6 756 6 3429

7 528 7 3449

8 302 8 3144

9 179 9 2546

10 89 10 2000

11 42 11 1373

12 29 12 1059

13 13 13 674

14 4 14 422

15 5 15 292

16 2 16 196

17 2 17 127

18 96

19 85
20 63
21 38
22 26
23 18
24 14
25 11
26 12
27 13

28 11
29 9

30 9
31 5

Continued on the next page

93

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 4

33 4

34 4

35 4

36 4

37 4

38 2

39 2

40 2

41 2

42 2

43 1

44 1

45 1

46 2

48 1

49 1

94

ACC. GAP = 2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 226 2 504
3 378 3 1132
4 654 4 2043
5 866 5 2898
6 805 6 3486
7 544 7 3519
8 309 8 3140
9 157 9 2509

10 55 10 1918
11 35 11 1357
12 16 12 916
13 8 13 634
14 3 14 422

15 308
16 206
17 146
18 72
19 51
20 44
21 28
22 20
23 16
24 13
25 11
26 11
27 9
28 9
29 8
30 8
31 6

Continued on the next page

95

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

32 5
33 4
34 3
35 3
36 2
37 2
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1

96

ACC. GAP = 3 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 217 2 496
3 321 3 1085
4 619 4 2045
5 884 5 2973
6 857 6 3574
7 563 7 3764
8 333 8 3254
9 156 9 2579

10 54 10 1910
11 31 11 1259
12 19 12 756
13 2 13 481

14 337
15 229
16 173
17 136
18 93

19 66
20 48
21 31
22 26
23 23
24 17
25 17

Continued on the next page

97

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

26 14

27 13

28 12

29 11

30 10
31 8
32 6

33 5

34 5

35 5
36 5

37 5

38 3
39 2
40 2
41 1
42 1

98

ACC. GAP = 4 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119

2 215 2 482

3 273 3 992

4 533 4 1890

5 827 5 2921

6 984 6 3725

7 701 7 3892

8 310 8 3414

9 152 9 2705

10 41 10 1881

11 11 11 1258

12 6 12 840

13 1 13 485

14 1 14 314

15 1 15 178

16 120
17 94

18 68

19 40

Continued on the next page

99

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

20 32
21 25
22 19
23 15
24 13
25 12
26 12
27 10
28 10
29 8
30 8
31 4
32 3
33 3
34 3
35 2
36 1
37 1

100

ACC. GAP =

n

1/2 /2 DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 39 1 119
2 92 2 213
3 293 3 718
4 571 4 1675
5 863 5 2800
6 786 6 3711
7 729 7 4046
8 366 8 3766
9 194 9 2831

10 105 10 2056
11 38 11 1373
12 13 12 831
13 3 13 512
14 2 14 281
15 1 15 201

16 111

17 76
18 48
19 36
20 27
21 23
22 16
23 14
24 12
25 12

Continued on the next page

101

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

26 11
27 11

28 11

29 10
30 9
31 7
32 6
33 6
34 4
35 3
36 3
37 3
38 2
39 3
40 1
41 1

102

ACC. GAP = DATA = NON-UNI. DISTRI. LIST

SMALL FILE LARGE FILE

ACCESSES SEARCHES ACCESSES SEARCHES

1 38 1 108

2 11 2 132

3 137 3 328
4 182 4 757
5 316 5 1411

6 728 6 2466

7 976 7 4347

8 1040 8 5293
9 492 9 4548

10 118 10 3092
11 53 11 1594
12 4 12 662

13 315
14 157
15 90
16 57
17 40
18 28
19 21
20 20
21 16
22 14
23 13
24 11
25 10

Continued on the next page

103

SMALL FILE LARGE FILE
ACCESSES SEARCHES ACCESSES SEARCHES

26 10
27 9
28 8
29 8
30 9
31 5
32 2
33 2
34 2
35 2
36 2
37 2
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1

104

Chapter 7

ANALYSIS FOR REGULAR
INTERPOLATION

It is obvious from the results of Interpolation Search on numbers that GAP =2

gives the best result among all other gap functions. To look for justification we

analyze the GAP with 2 and 3 for uniform distribution. Analysis with GAP = 2

yields result which are very close to the result obtained using regular interpolation.

As we know

Let P be the probability for any position, n denotes total number of data,

then access time for ith position can given by

The expected location for the required key is E = n • p. Interpolation

search accesses this position. The case of GAP = 2 means that if the interpolation

search has to access the key in the position 1, we will access the key in the position

2. Thus, the case is that, the expected location is n • P = 1 or P = 1/n. Thus,

in the case where interpolation search accesses location 1 the probability for the

105

required key to be in position i = 1

We have substituted n • P = 1 and P = 1/n.

for position i = 2

for position i = 3

Here we have assumed (1 — 2/n) = (1 — 1). n n

similarly we can find probability for a position

i = 4 converging to 1/24e 24e

i = 5 converging to —1- 120e

i = 6 converging to --1-- 720e

Now consider regular interpolation

For a key at position i, the number of search iteration required is i average time for

i = 1, 2, 3

106

For GAP method, using gap = 2

If we look for first element, first it will look for second element and then

checks the first element. Therefore number of search for key at position i = 2 will

be 1, but for a position i = 1 it will be 2.

For a position i = 3 it will be 3 because first it will look for second element then

fourth element and finally it will check for third element.

Average time for i = 1, 2, 3

Effect of adding next element

Adding 4 th element

For regular interpolation search

For GAP method with gap = 2

Different between gap method and interpolation is equal to 5/12 which is neg-

ligible.

Adding 5 and 6

For regular interpolation search

For GAP method with gap = 2

107

The difference is again very low. This indicates that performance of constant

gap (i.e. 2) is as good as regular interpolation search. Since for every index except

the first and last there is no difference and for these two the difference is very small.

Now analyzing regular interpolation search with gap = 3. Here finding out

number of search iteration is quite complicated. First it will look for the third

element and then depending upon required element it looks forward or backward.

If key is less than the third element then it will either go for first element or second

element. To find this, it follows regular interpolation instead of GAP method. Here

we assume that probability of looking for first element is more than second element.

Therefore number of search iteration to look for element at position one is 2 and

for position two is 3. Similarly for postion 4, 5 and 6 it is 3, 4 and 2 respectively.

for i = 1, 2, 3, 4 average access time

This result indicates greater disparity with respect to that of regular inter-

polation, thus proving that gap = 3 is not a better method. Adding 5 and 6 give

worse results.

Adding 5 and 6 average time = 1/e [1387/360].

The above analysis explains why the constant GAP function works better

for a semi-uniform distribution. The difference between average time for regular

interpolation and GAP method is very small. In GAP = 2, the average time is

108

approximately 1 which is quite resonable. In case of GAP = 3 it becomes worse

than regular interpolation.

109

Chapter 8

CONCLUSIONS

For the comparison purposes we carried out the experiments on non-uniformly dis-

tributed as well as uniformly distributed lists.

Observations about experiments on uniformly distributed lists :

• Regular gap method gives better performance than Accelerated gap method

on uniformly distributed list.

• As we went on dividing

n

1/2 by a constant e.g. 2, the performance kept on

improving. Ultimately we terminated this sequence of experiments by using

n

1/2/lg(n) as gap function which gave us better average performance than

n

1/2

• In using

n

1/2 as a gap there was one fear that we might overshoot the key

location although the search interval was getting reduced everytime. So with

this in mind we used the constant numbers as the gap function, e.g. constant

2,3,..7. Gap 2 gave us even better performance than

n

1/2 /lg(n).

• We tried several other functions and constants as well as for the gap function

. We also used interpolation search method on numbers and, as is already

proved, we got the best results of all the experiments for uniformly distributed

list.

110

Observations about experiments on non-uniformly distributed lists

Using Arithmetic Code :

• For a small file of 4096 names, using Accelerated gap = 2 gave us the best

results.

• For a samll file of 4096 names, using Regular gap = lg(n) gave us the best

results.

• For a large file of 25600 names, using Accelerated gap = lg(n) gave us the

best results.

• For a large file of 25600 names, Gap =
n

1/2 gave us better results. But the

improvement was not significant and this result was not consistent with small

file.

• In case of a small file using regular gap method for gap = constant, the results

went on improving until gap = 5 and then onwards the performance started

deteriorating.

General comments :

• For the uniformly distributed lists the interpolation search method gives the

best results. On an average it requires lg lg n accesses and in the worst

case n accesses. The average accesses of lg lg n is proven to be the optimal

performance we can get for any search technique.

• For the list of non-uniformly distributed data the Regular gap method did give

us better results when we were using gap other than

n

1/2 but the improvement

was insignificant and the results were not consistent with those of a small

file. Results were changing with the size and distribution of the files. So

111

everytime we have to find the best choice for a gap function depending upon

the particular size and distribution of the file. Therefore the generalization of

results was not possible and results were not comparable to lg lg n.

• The use of arithmetic code improves the result. Compared to the results

obtained for a non-uniform without using arithmetic coding, this results were

better. We found that it decreases the average access time and also the worst

case accesses. We got an advantage on average access and worst case accesses

using arithmetic code.

112

BIBLIOGRAPHY
[BL] Burton F.W. and Lewis G.N., A robust variation of interpolation search,

Information processing Letter 10, 1980, pp. 198-201.

[Fe] Feller, W., An introduction to probability Theory and Its Applications, Vol.

1. Wiley, New York, Third ed., 1968.

[Fo] Foster K.E., a statistically-based interpolation binary search, T.R. of Winthrop

College, SC.

[GRG] Gonnet G.H., Rogers L.D. and George J.A., An Algorithmic and Complex-

ity Analysis of Interpolation Search, Acta Information 13, 1980, pp.39-52.

[L] Langdon G.G. An introduction to arithmetic coding, IBM J Res. Dev. 28,2,

1984, pp. 135-149.

[Per] Perl Y., Optimum split trees, J. Algorithms 5, 1984, pp. 364-374.

[Pet] Peterson, W.W. Addressing for random-access storage. IBM J. Res. Dev. I

1957, 131-132.

[PG] Y. perl, L. Gabriel, Arithmetic Interpolation Search for Alphabtic Tables, to

appear in IEEE Trans. on Computer

[PIA] Perl, Y., Itai, A., and Avni, H., Interpolation Search -A Lg Lg N Search,

CACM, 21, 1978, 550-553.

[PR] Peri, Y., Reingold, E.M., Undestanding the Complexity of Interpolation

search, Information Processing Letters, 6, 1977, pp. 219-222.

[R] Reif, John H., Parallel Interpolation Search, TR-07-82

HARVARD UNIVERSITY.

113

[S] Shell B.A., Medium Split Trees : A fast lookup technique for frequently occuring

keys, CACM 21, 1978, pp.947-958.

[SS] Santoro N. and Sidney J.B., Interpolation-binary search, Information Process-

ing Letters 20, 1985, pp. 179-181.

[W] Willard D.E., Searching unindexed and nonuniformly generated files in 1g lg

n time, SIAM J. Computing 14, 1985, pp. 1013-1029.

[WNC] Witten I.H., Neal R.M. and Cleary J.G., Arithmetic coding for data com-

pression, CACM, 30, 1987, 520-540.

[YY] Yao, A.C., and Yao F.F., The complexity of searching an ordered random

table. Proc. Seventeenth Annual Symp. Foundations of Comptr. Sci., 1976,

pp. 173-177.

114

	Experiments with the gap variation of interpolation search for semi uniform distributed alphabetic files
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Vita
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Interpolation Search
	Chapter 3: The Gap Method
	Chapter 4: Experimental Results
	Chapter 5: Arithmetic Interpolation Search
	Chapter 6: Experimental Results Using Arithmetic Coding
	Chapter 7: Analysis for Regular Interpolation
	Chapter 8: Conclusions
	Bibliography

