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ABSTRACT 

Design and Implementation of Two Text Recognition Algorithms 

by 

Madhumathi Yendamuri 

This report presents two algorithms for text recognition. One is a neural-based 

orthogonal vector with pseudo-inverse approach for pattern recognition. A method 

to generate N orthogonal vectors for an N-neuron network is also presented. This 

approach converges the input to the corresponding orthogonal vector representing 

the prototype vector. This approach can restore an image to the original image and 

thus has error recovery capacility. Also, the concept of sub-networking is applied to 

this approach to enhance the memory capacity of the neural network. This concept 

drastically increases the memory capacity of the network and also causes a reduction 

of the convergence time to stable states. Another approach is to use the 

Levenshtein algorithm for string matching following the application of rules to 

recognise a given character. Both these methods are discussed and the results are 

presented. 
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CHAPTER 1 

INTRODUCTION 

There are two methods for pattern recognition --- syntactic and statistical. One of 

the syntactic approaches is string matching. This report discusses the use of 

Levenshtein distance algorithm for string matching; and also a neural-network 

based algorithm for the same. 

1.1 Levenshtein Algorithm 

Structural representation used in pattern recognition most commonly are the string, 

trees, graphs and arrays. With respect of computational complexity, strings are very 

efficient since similarity measures between strings can be computed very fast. 

However, string are limited in their representational power. At the other extreme, 

graphs are most powerful approach to structural pattern recognition. But, graph 

matching is conceptually rather complicated and expensive with respect to 

computational cost. 

Using the Levenshtein algorithm for string matching with a combination of 

recognition rules is found to yield 100% recognition rate. The experiment was 

conducted on 2600 real samples of lower and upper case characters. 

1.2 Neural-based approach 

Using the neural-based approach has yielded 86% recognition rate in the first 

implementation. Further study can be made on improving this recognition rate 

using a rule generator for character recognition. The neural-based algorithm used 

higher-order multi-valued subnetworking of Hopfield network, which is one of the 



most successful conventional neural networks. It allows the retrieval of auto-

associative patterns, given an input pattern. 

Subsequent chapters describe both the algorithm in more detail. The 

experimental results of each method are included in chapters 7 and 9. The program 

listings are included in Appendix A and B. 



CHAPTER 2 

GENERATION OF N ORTHOGONAL STATE VECTORS 

FOR N-NEURON NETWORKS 

2.1 Introduction 

Consider a network of N neurons, the state vector of the system is u, which is a tuple 

of binary states of each neuron. 

In the Hopfield-Little model[9] of associative memory, the neurons have 

binary states with threshold value assumed to be zero. The network is fully 

connected and symmetric, on which Hebb's rule applies. If the input vector is 

partially corrupted to some extent, the network can still converge to the correct 

prototype. Therefore, this kind of network can do robust pattern recognition. In 

addition, it is crucial to determine the prototypes to be stored in the network. 

In order to achieve good error recover, it is desirable that the orthogonal 

prototype vectors are equally spaced apart in terms of the Hamming Distance. 

Further, this Hamming Distance should be as large as possible. For a N-neuron 

network, the largest Hamming Distance between any two orthogonal vectors is N/2. 

A neural network constructed from such a set of prototype vectors demonstrates a 

better retrieval capability, and this, in turn, also results in higher memory capacity. 

2.2 Direct Method for N Orthogonal Vectors of N elements 

There are various approaches to find orthogonal vectors. One is to usesinusoidal 

functions and another non-sinusoidal series. Of the latter, there are some well-

known funcitons: Walsh function, Harr function and Ramemacher function. Both 

Walsh- and Harr-function can form a complete orthogonal set while Ramemacher 



function provides another set of two-level orthogonal functions which are 

incomplete but true subset of the Walsh function. In this section, a direct approach 

is discussed. 

In the recursive approach, 2N orthogonal vectors for a 2N-neuron network 

can be constructed from N orthogonal vectors of a N-neuron network and these N 

orthogonal vectors, in turn, can be constructed in a similar manner from the N/2 

orthogonal vectors of a neural network with N/2 neuron, etc. The disadvantage of 

this approach is the necessity of constructing orthogonal vectors using the recursive 

successive-doubling approach. The proposed direct approached, to be studied in 

this section, can circumvent this drawback by calculating the N elements of each of 

the N orthogonal vectors from a formula. The resulting orthogonal vectors are 

identical to those constructed using the recursive successive-doubling approach. 

The direct approach is to construct N orthogonal vectors of a N-neuron 

network based on N/2 orthogonal vectors for a N/2-neuron network. The first n/2 

orthogonal vectors of a N-neuron network are constructed in the same manner as 

that for a n/2 neuron network except that the N elements of each of the former can 

be decomposed into N/2 blocks of 

With the substitutions 1 for 

the first N/2 orthogonal vectors of N elements become N/2 orthogonal vectors of 

N/2 elements. Applying the division procedure further, the next N/2 orthogonal 



vectors of N elements can be constructed in exactly the same manner as that of N/2 

elements and it is obvious that the resulting vectors are orthogonal to each other. 



CHAPTER 3 

COMBINED ORTHOGONAL VECTOR AND PSEUDO-INVERSE 

APPROACH FOR 

CHARACTER RECOGNITION 

3.1 Introduction 

The neural network of the associative memory type is extensively applied in the field 

of classification and pattern recognition. There are two kinds of associative 

memory[4]; autoassociative and heteroassociative. Here, the former is discussed. 

In the autoassociative memory neural network system, certain number of 

binary prototype vectors are integrated into the structure of the system. Then a 

vector is input to the system for recognition. Starting from this vector, the network 

system can reach either a cycle or a fixed point. 

This chapter presents a combined orthogonal vector and pseudo-inverse 

approach to achieve robust pattern recognition. The upper and lower case letters 

of the English alphabet are used as an example to implement the proposed 

approach. The theory of the combined orthogonal vector and pseudo-inverse 

method is studied in Section 2. 

3.2 Theory of the Recognition Algorithm 

In this section, the proposed algorithm is presented. The Hamming distance 

between two binary vectors is defined. 



3.2.1 Algorithm Statement . 

The proposed algorithm is stated as follows: 

Phase I. Training Stage  

1. Generate p orthogonal vectors r(1), i = 1,..., p and assign one such vector to each 

of the p prototype vectors t(i), i = 1, ..., p. 

2. Construct matrix T whose columns are the protoype vectors. 

3. Generate the pseudo-inverse T+, of matrix T. 

4. Construct matrix R with the orthogonal vectors generated in step 1 as its columns. 

5. Construct matrix P=RT+  . 

Phase II. Recognition Stage  

1. Use matrix P as the operator to perform al =Pao is an input pattern vector to be 

recognized. 

2. Computer a2( =Pa1), ... ax  =Pax-1- 

3. Find out an orthogonal vector ri, 1 < = i < = p, whose 

Hamming distance with vector ax  is the minimum. 

4. If this Hamming distance is within the tolerance, the 

corresponding prototype is the answer to the recognition, otherwise, the input 

pattern vector is not recognized. 

3.2.2 Hamming distance 

The Hamming distance of two binary-valued vectors with elements in {1,-1} is 

defined as follows. We first EXCLUSIVE OR the two vectors, then count the 

number of 1-bits in the result. This number of 1-bits is then divided by 2 to obtain 

the Hamming distance. 

3.2.3 The Use of Pseudo-Inverse Matrix 

Given a prototype matrix T defined as follows: 

T = [t(1),t(2),...,t(P)], p < N 



where t(i),(i =1,...,p) are the N x 1 prototype vectors, 

the pseudo-inverse of matrix A is given by: 

T+ = (TTT)- ITT 

where superscript T means matrix transpose. 

3.3 Conclusions 

A neural-based orthogonal vector with pseudo-inverse approach for pattern 

recognition has been presented. A method to generate N orthogonal vectors for a 

N-neuron network is also proposed. Using approach, patterns with 20% error can 

be recognized, using English capital and lower case letters for experiment. The 

robustness of this approach is obvious. 



CHAPTER 4 

ENHANCEMENT OF MEMORY CAPACITY OF NETWORKS 

USING SUB-NETWORKING 

4.1 Concept of Subnetworking 

Subnetworking is to break a large neural network into a number of independent 

subnetworks provided that the memory pattern can be partitioned into a number of 

independent subpatterns which is often the case. There is an output neuron Ok 

connected to each neuron i of a subnetwork with synaptic weight aKi. These 

weights are such that different stable states of the subnetwork assume different 

output values. The following example illustrates how this increases the memory 

capacity. Consider a 75 neuron network. Suppose each subfeature requires 25 

neurons and there are three sub-features corresponding to three subneural 

networks. Each subnetwork has 25 neurons and an output neuron. The state of the 

network can be represented as a vector (01,02,03). For instance, (1,3,5) indicates 

a pattern consisting of the first subpattern of subnetwork 1, the third subpattern of 

subnetwork 2 and the fifth subpattern of subnetwork 3. 

If each subnetwork can store 10 patterns, then the total number of patterns 

that can be stored is 103. On the other hand, assuming the number of stored 

patterns grows linearly with the number of neurons, the 75-neuron network can 

store only 30 patterns --- much less than 1000. This idea is used in this text 

recognition process. 

4.2 Application of Subnetworking to Text Recognition 

The above concept is used to recognise a given input text character by comparing it 

with different base character sets. A subnetwork is used to compare the input 



character with each base character set. All the results of comparision are then 

compared at a higher level and the character is recognised. 

In the implementation of the algorithm, we have used 10 different sub-

networks, five for lower case and five for the upper case. So, for each input 

character, we get 1 result from each of the sub-networks. These results are further 

compared to yield the right answer. 

4.3 Advantages of Sub-networking 

Advantages of subnetworking include : 

* Faster convergence time to reach a fixed point 

* Faster learning rate 

* Amenable to VLSI implementations (because each subnetwork can be fabricated 

in a single VLSI chip.) 

There are three ways to demonstrate that the convergence time is a quadratic 

function of the number of neurons. Because each subnetwork has smaller number 

of neurons, it can therefore converge to stable states faster than the whole neural 

network. Although we discuss emmory capacity and convergence time using 

Hopfield network, the concept also applies to other types of neural networks. 

4.4 Theory 

Consider a neural network W consisting of m subnetworks 51,...,Sm; each containing 

N/m neurons, where N is the total number of neurons in W. The subnetworks are 

independent of each other in the sense that there are no synaptic connections 

between any two subnetworks, i.e., 

W{i,j} =0, i belongs to Sh, j belongs to Sk, 

h < > k,h,k =1,...,m. 



Each subnetwork has its own stable states or fixed points. Let F1 (i=1,...,m) 

be a stable state in Si, then the vector F1F2 ... Fm  is a fixed point of W. 

A network consisting of a number of independent networks has higher 

memory capacity than a fully connected network with the same number of neurons. 

Also, the convergence time of a subnetwork to a stable state from a nearby initial 

state is smaller than that of the fully connected networks. 



CHAPTER 5 

PROPERTIES OF BINARY ORDER MULTI-VALUED 

HOPFIELD NEURAL NETWORKS 

The binary order Hopfield neural network of multi-valued neurons is proposed. 

There are at least four advantages of this kind of neural network: higher memory 

capacity, direct storage of multi-valued patterns, allowance of patterns with larger 

Hamming distance, and more robust pattern recognition. Consequently, it is 

important to study the properties of such a multi-valued Hopfield network. An 

energy function is proposed, using a potential function, for synchronous and 

asynchronous operation, respectively. The convergence of this type of network, for 

both synchronous and asynchronous operation, is verified an d the upper bounds of 

convergence time are studied. The number of threshold funcitons for multi-valued 

neurons is investigated. The enhancement of memory capacity is also discussed. 

The advantages of multi-valued Hopfield networks over the conventional 

binary order networks are as follows: 

* higher memory capacity can be achieved 

* multi-valued patterns can be stored 

* patterns with larger Hamming distance can be used 

* more robust pattern recognition can be achieved 

5.1 Discussion 

It is therefore important to study the properties of such a promising neural network. 

However, the research work in this field is rare, if not seen, to the authors' 

knowledge. The convergence time and memory capacity of such networks have 

been investigated. 



Neurons of conventional neural networks have two values (k = 2), namely 1 

and -1 (or 0). Information is stored as stable states. Consider a neural network with 

N neurons and each of which can store and retrieve either 0 or 1. The vector of 

neuron values U= (U1,U2,...,UN) represents the state of the system. Each pair of 

neurons i and j are interconnected through a synaptic weight Wij. A threshold ti is 

associated with each neuron i. It changes its state according to the value of its 

potential function Pi, i = 1,..., N which is defined as 

N 

Pi = SIGMA WijUj-tj. 

j = 1 

In the remainder of this chapter, ti = 0, i = 1, ... , N. The memory capacity of 

such a network is bounded by N. The increase of this capacity can be achieved 

either by enlarging the size of network or by increasing the number of states of each 

neuron. This study is focussed on the latter. Let each neuron have k+ 1 ( =2a, 

a =1,2, ...) stable 

states; the value of the potential function of a neuron determines its state according 

to Eqn's (1) and (2), with Eqn. (2) as follows: 

Ui = 0 if P.1 < k 
9 

= Pi=v if v < = Pi < v + 1 

= k-1 if Pi > = k-1 

The information capacity of such a network of size N is N log2 (k+ 1). 

5.2 Conclusion 

We propose a binary order multi-valued Hopfield neural network. Using a 

potential function, we first define an energy function for synchronous and 

asynchronous operation, respectively. The convergence of this kind of network is 



then proved, followed by discussion of the upper bound of convergence time. The 

number of threshold functions for N (k + 1)-valued neurons has been investigated, 

using the concept of hyperplanes. The result of this investigation is used to study the 

memory capacity of the proposed neural network. It is also found that the memory 

capacity of (k+ 1)-valued prototypes in a (k+ 1)-valued binary order Hopfield 

network is independent of the value of neurons. 

Compared with conventional binary-valued Hopfield neural network, the 

proposed (k+ 1)-valued network (k > = 2) has the following features: 

* longer convergence time due to the longer radii of attraction 

* greater memory capacity with growth rate $ \log_2 (k+ 1)$ 

* storage of (k + 1)-valued patterns 

* allowance of patterns with larger Hamming distances 

* robust pattern recognition 



CHAPTER 6 

THE BASIC ALGORITHM AND ITS IMPLEMENTATION 

Step 1. Generate the matrix (64 x 64) of orthogonal vectors R using the algorithm 

described in Chapter 2. 

Step 2. Read one base character set and calculate the strings by adding up 

horizontal and vertical frequencies of l's for all 26 characters in that character set. 

Place this result into a matrix A. 

Step 3. Calculate the pseudo-inverse of the matrix A (A+ ) using the technique 

described in Chapter 3. 

Step 4. Calculate W = RA + . 

Step 5. Read input and convert it into a string as in step 2. 

Step 6. Calculate output = W x input_string. 

Step 7. Iteratively, generate outputi = W*  x output(i_i). Do it twice. 

Step 8. Compare the final output with each of the 26 orthogonal vectors used to 

represent the base character set. 

Step 9. Read another base character set. Calculate the strings by adding up 

horizontal and vertical frequencies of l's for the characters in the character set into 

matrix A. Go to step 3. 

Step 10. Use voting and averaging to decide the character which best matches the 

input character. 



CHAPTER 7 

EXPERIMENTAL RESULTS & CONCLUSIONS 

OF THE ORTHOGONAL VECTORS METHOD 

7.1 Experimental Results 

The orthogonal vectors algorithm was tested with 2600 real samples (including 

normal and boldface upper and lower case characters). The algorithm has been 

implemented in 'C' in the SUN-OS environment. A recognition rate of 86% has 

been achieved. 

7.2 Conclusions 

A neural-based orthogonal vector with pseudo-inverse approach for pattern 

recognition has been presented. A method to generate N orthogonal vectors for a 

N-neuron network is also proposed. Using this approach, patterns with 20% error 

can be recognized, using English letters (both upper and lower case) for experiment. 

The robustness of this approach is obvious. 

Also, the use of homogeneous, fully inter-connected higher-order multi-

valued Hopfield neural network with the subnetworking technique is presented. 

The orthogonal prototype vectors and the pseudo-inverse method are used to 

construct the synaptic matrix of the network. Two important properties of this kind 

of neural networks, namely convergence time and memory capacity, have also been 

studied. It is also believed that with all the features of the advanced approaches 

proposed herein, the neural network is of high memory capacity, fast convergence 

rate, with error-recovery capability. Further work can be done on ways to improve 

the recognition rate. 



CHAPTER 8 

USE OF LEVENSHTEIN DISTANCE AND RECOGNITION 

RULES FOR CHARACTER RECOGNITION 

8.1 Introduction 

This chapter proposes a hybrid method --- structural-statistic aproach by using string 

matching and use of rules to recognize a character. 

The common idea of structural matching is to compare an unknown pattern 

with a number of samples, or prototypes, aptterns using a distance or similarity 

measure. There is a well definition of the distance between unknown input string 

and prototype string, that is the Levenshtein distance, based on the cost of the edit 

operations. 

There are two phases : 

1. Learning phase 

2. Recognition phase 

Each phase involves three important steps: 

1. Histogram string generation 

2. Distance measurement 

3. Application of rules 

8.2 Structural Representation 

Strings are used to represent the input image. The frequency of l's (foreground) in 

each column and row are added and placed as a string of numbers. This string is 

compared with the strings representing the base character sets to recognise the 

correct character. Also, a set of recognition rules is used to determine the actual 

character. 



8.3 String Matching 

Syntactic and structural pattern recognition is based on discrete mathematical 

relations as the detailed descriptions of structure. The simplest structural 

description of a pattern is its representation as an ordered sequence of elementary 

components; the presence or absence of a component, and the relative positions of 

the components, characterize the pattern taken as a whole. Comparision of two 

such descriptions resemble one another. 

The distance d(x,y) between x and y can be defined, according to Levenshtein 

algorithm as d(x,y) = min (s is a sequence of edit operations which transforms x 

into y ) 

So the distance between x and y is obtained by summing up the costs of all 

elementary operations of the sequence with minimum total costs among all 

sequences which transform a string x into another string y. 

The distance between the generated string and the strings of the prototypes 

of classes are measured by teh algorithm --- the Levenshtein distance. This is a 

dynamic programming procedure, i.e. a particular breadth first searching. And it is 

an error-correcting string matching algorithm. The complexity of this algorithm is 

O(mn), with respect to both time and space, where m and n being the length of two 

strings. 

Three edit operations, namely insertion, deletion, and substitution, are 

introduced in the measurement of the Levenshtein distance. In this step, the cost of 

three operations are defined as follows: 

1. the cost of insertion : cost (a- > b) = 1; 

2. the cost of deletion : cost (a-> e) = 1; 

3. the cost of insertion : cost (e- > b) = coefficient x difference of two symbols 



8.4 Recognition Procedure 

The basic idea of structural matching, i.e. recognition, is to match two strings, an 

unknown input pattern and the prototypes, in order to find the prototype which is 

most similar to an unknown input pattern. The advantages of using string matching 

are that it is very efficient. A well-known concept from statistical decision theory, 

nearest-neighbor classification (NN - classification), is applied in this procedure. 

Using the distance measure of the Levenshtein distance to classify the unknown 

string x. 

1. Get an unknown input image and transform into a string as a pattern, to be 

compared with the prototypes of classes. Similarly, it is a histogram string 

generation procedure. Of course, the length of the string is not a constant due to 

the noise or distortion. 

2. Before executing the basic algorithm, check the length of the transformed 

string if it is within a certain range. If the length exceeding the range, the algorithm 

consider that it does not belong to a certain class of prototypes and ignore it. Then 

match with another one to avoid exhaustive calculations of the algorithm. 

Otherwise calculate the distances between unknown input string and all possible 

candidates. 

3. Repeat the above procedure for ten base sets of characters. 

4. Then, using the recognition rules, match the input string with the prototype 

which is closest to the input string. 

8.5 Recognition Rules 

For given base sets of characters, execute the recognition algorithm and generate 

matching patterns and distances for each character to be recognized. Once these 



rules are generated, for matching a character with each of the ten base sets, use 

these rules to recognise any unknown input string. 



CHAPTER 9 

EXPERIMENTAL RESULTS & CONCLUSIONS USING 

RECOGNITION RULES 

9.1 Experimental Results 

The Levenshtein algorithm was implemented in 'C' in the SUN-OS environment and 

the recognition rate was found to be 99.14%. Then, recognition rules were applied 

and the results were found to be perfect. The algorithm was implemented in 'C' in 

the SUN-OS environment. A recognition rate of 100% has been achieved. The 

algorithm was tested for 2600 real samples of characters. 

9.2 Conclusions 

In this work, error tolerance classification for character recognition is presented. 

Although the noise or distortion of character image is unavoidable, the recognition 

procedure with some knowledge, that is roughly distinguished the difference or cost 

instead of exactly difference or cost, will discard the effect of the noise and by 

judging the length of the image string to bypass obviously unneccessary calculations 

thus to reduce the executing time of the basic algorithm. The experimental result 

shows that as the performance becomes more and more satisfactory, this method is 

correctly applied in the experiment. 



APPENDIX A 

PROGRAM LISTINGS 

ORTHOGONAL VECTOR & PSEUDO-INVERSE METHOD 



#include <stdio.h> 
#include <math.h> 
#define N 8 
#define ep 0.001 
extern int makestring(); 
recog(narg,filename,argl,arg2) 
FILE *filename; 
int *argl,*narg; 
char *arg2; 
{ 
char ch; 
int *A; 
int arlen[27]; 
int inlen; 
float de,w,y; 
float ident[65]; 
int SIGMA[65][65],ORTHO[65][27]; 
int loop; 
float b[27],c[27]; 
int z[27],mini; 
int s[27]; 
int smin; 
int M[N*N+1][N*N+1],Da[N*N+1][27],Dat[27][N*N+1]; 
float InM[27][27]; 
FILE *fp1,*fp2; 
float IM[N*N+1][N*N+1]; 
int In[N*N+1]; 
float W[N*N+1][N*N+1]; 
float hfl[N*N+1],hf[N*N+1]; 
int h[N*N+1]; 
int step; 
int test,tt1,i,j,k,l,p,num; 
char ts; 
int cc[27]; 
FILE *fp,*inf; 

A = (int *) malloc(sizeof(int) *N*N*N*N); 
step=(*narg); 

/* allocate space for A */ 
fpl=fopen("data.txt","r"); 
fp2=fopen("data","w"); 
inlen=makestring(fpl,fp2); 
fclose(fp1); 
fclose(fp2); 

inf=fopen("data","r"); 
ortho(N*N,A); 

/* get the orthogonal vector */ 
cc[1]='a'; 
cc[2]='b'; 
cc[3]='c'; 
cc[4]='d'; 
cc[5]='e'; 
cc[6]='f'; 



cc[7]='g'; 
cc[8]='h'; 
cc[9]=1 1'; 
cc[10]='j'; 
cc[11]='k'; 
cc[12]='1'; 
cc[13]='m'; 
cc[14]='n'; 
cc[15]='o'; 
cc[16)='p'; 
cc[17]='q'; 
cc[18]='r'; 
cc[19]='s'; 
cc[20]='t'; 
cc[21]='u'; 
cc[22]='v'; 
cc[23]='w'; 
cc[24]='x'; 
cc[25]='y'; 
cc[26]='z'; 

/* get the 26 characters */ 

fpl=fopen(filename,"r"); 
fp2=fopen("strings.dat","w"); 
for (i=1;i<=26;i++) 

arlen[i]=makestring(fp1,fp2); 
fclose(fp1); 
fclose(fp2); 

if ((fp=fopen("strings.dat","r")) == NULL ) 
{ 
printf("error open file\n"); 
} 

/* get the 26 sample characters */ 

for(i=1;i<27;i++) 
{ 

for(j=1;j< N*N+1 ;j++) 
{ 
fscanf(fp,"%d",&Dat[i][j]); 
} 

} 
/* change the 0 value to -1 of sample characters */ 

fclose(fp); 

/* close the sample characters file "a88.dat" */ 

for(i=1;i<27;i++) 
{ 

for(j=1;j< N * N + 1;j++) 



Da[j][i] = Dat[i][j]; 
} 

/* transpose the sample matrix to Da */ 

for(i=1;i<=N*N;i++) 
{ 
for(j=1;j<=N*N;j++) 
{ 
W[i][j]=0.0; 
IM[i][j]=0.0; 
} 
} 

for(i=1;i<=26;i++) 
{ 
for(j=1;j<=26;j++) 
M[i][j]=0; 
} 

/* initial the matrix W and IM and M */ 

for(k=1; k<=26; k++) 
{ 

for(j=1; j<=26; j++) 
{ 
for(i=1; i<=64; i++) 
M[k] [j] = M[k] ii + Dz-,t71- 11- ii * Da[i][j]; 
} 

} 

/* get the value of M ( M = transpose(Da) * Da ) */ 

for (i=1; i<=26; i++) 
{ 

for (j=1; j<=26; j++) 
{ 
InM[i][j] = (float) (M[i][j]); 
} 

} 

/* transfer the integer date to float date in order for 
*/ 

/* calculate the inverse of matrix M 
*/ 

/* below is to inverse the matrix M */ 

for (j=1; j<=26; j++) 
{ 
Z[j]=j; 



} 
for (i=1; i<=26; i++) 
{ 

k=i; y = InM[i][i]; 1=i-1; p=i+1; 
for(j=p;j<=26;j++) 
{ 
w = InM[i][j]; 
if (fabs(w) > fabs(y)) 

{ 
k=j; y=w; 
} 

} 

if (fabs(y) < ep) 
{ 
printf("no inverse exists\n"); 
exit(1); 
} 
Y= 1 / Y; 
for (j=1;j<=26;j++) 

{ 
c[j]=InM[j][k]; 
InM[j][k] = InM[j][i]; 
InM[j][i] = -c[j] * y; 
b[j] = InM[i][j] * y; 
InM[i][j] = InM[i][j] * y; 
} 

InM[i][i] = y;j = z[i]; 
z[i] = z[k]; z[k] = j; 

for(k=1; k<=1; k++) 
for(j=1; j<=1; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 

for(k=1; k<=1; k++) 
for(j=p; j<=26; i++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 

for(k=p; k<=26; k++) 
for(j=1; j<=1; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 

for(k=p; k<=26; k++) 
for(j=p; j<=26; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 
} 

for(i=1; i<=26; i++) 
{ 
11: k = z[i]; 
if (k != i) 

{ 
for(j=1; j<=26; j++) 



{ 
w = InM[i][j]; 
InM[i][j] = InM[k][j]; 
InM[k][j] = w; 
} 
p = z[i]; 
z[i] = z[k]; 
z[k] = p; 
goto 11; 
} 

} 

/* got the inverse of matrix M in InM */ 

for(i=1;i<=26;i++) 
{ 

for(j=1;j<=N*N;j++) 
{ 
for(k=1;k<=26;k++) 
IM[i][j] = IM[i][j] + InM[i][k] * Dat[k][j]; 
} 

} 

/* calculate matrix IM = Da+ (psuedo inverse of Da) */ 
/* (IM = inverse((transpose(Da)*Da)*transpose(Da) */ 

for (i=1;i<N*N+1;i++) 
for (j=1;j<=26;j++) 

ORTHO[i][j]=A[(i-1)*N*N+j-1+step]; 

for (i=1;i<N*N+1;i++) 
for (j=1;j<N*N+1;j++) 

SIGMA[i][j]=0; 

/* W* = calculate sum of outer products of 26 orthogonal 
vectors in SIGMA*/ 

for (loop=1;loop<=26;loop++) 
{ 

for (i=1;i<N*N+1;i++) 
for (j=1;j<N*N+1;j++) 

SIGMA[i][j]=SIC,MA[i][j]+ORTHO[i][loop]*ORTHO[ 
j][loop]/18; 
} 

for(i=1;i<=N*N;i++) 
for(j=1;j<=N*N;j++) 

for(k=1;k<=26;k++) 
W[i][j] = W[i][j] -4- 

(float)(ORTHO[i][k])*IM[k][j]; 



/* calculate W (W = 26 orth vector * Da+) */ 

/* reading input matrix */ 
for(i=1;i<=N*N;i++) 

fscanf(inf,"%d",&h[i]); 

/* initialise hf */ 
for(1=1;i<N*N+1;i++) 

hf[i]=0.0; 

for(i=1;i<N*N+1;i++) 
for(j=1;j<N*N+1;j++) 

hf[i] = hf[i] + W[i][j]*(float)(h[j]); 

/* ITERATIONS */ 

for (i=1;i<N*N+1;i++) 
hf1[i]=0; 

for (j=1;j<=64;j++) 
for (k=1;k<=64;k++) 

hf1[j]=hfl[j]+SIGMA[j][k]*hf[k]; 
for (1=1; i<N*N+l; i++) 

hf[i]=hfl[i]; 
for (i=1;i<N*N+1;i++) 

hfl[i]=0; 

for (j=1;j<=64;j++) 
for (k=1;k<=64;k++) 

hf1[j]=hfl[j]+SIGMA[j][k]*hf[k]; 

for (i=1;i<N*N+1;i++) 
{ 
h[i]=(int)(hf[i]+0.5); 
if (h[i]<-18) 

h[i]=-18; 
if (h[i]>18) 

h[i]=18; 
} 

/* calculate hf = W * h */ 

smin=2000; mini=l; 

for(i=1;i<=26;i++) 
{ 
s[i]=0; 
for(j=1;j<=N*N;j++) 



s[i] = s[i] + abs(ORTHO[j][i] - h[j]); 
if ((inlen-arlen[i])>4) 

s[i]=2000; 
if ( smin >= s[i]) 

{ 
smin = s[i]; 
mini = i; 
} 

} 

(*arg1)=smin; 
(*arg2)=cc[mini]; 
/* print out the character according to the position 

*/ 
/* if minimal distance > smin, recognition fail 

*/ 
fclose(inf); 
} 

#include <stdio.h> 
#include <math.h> 
#define N 8 
#define ep 0.001 
extern int makestring(); 
RECOG(narg,filename,argl,arg2) 
FILE *filename; 
int *argl,*narg; 
char *arg2; 
{ 
char ch; 
int *A; 
int arlen[27]; 
int inlen; 
float de,w,y; 
float ident[65]; 
int SIGMA[65][65],ORTH0[65][27]; 
int loop; 
float b[27],c[27]; 
int z[27],mini; 
int s[27]; 
int smin; 
int M[N*N+1][N*N+1],Da[N*N+1][27],Dat[27][N*N+1]; 
float InM[27][271; 
FILE *fpl,*fp2; 
float IM[N*N+1][N*N+1]; 
int In[N*N+1]; 
float W[N*N+1][N*N+1]; 
float hfl[N*N+1],hf[N*N+1]; 
int h[N*N+1]; 
int step; 
int test,ttl,i,j,k,l,p,num; 
char ts; 
int cc[27]; 



FILE *fp,*inf; 

A = (int *) malloc(sizeof(int) *N*N*N*N); 
step=(*narg); 

/* allocate space for A */ 
fpl=fopen("data.txt","r"); 
fp2=fopen("data","w"); 
inlen=makestring(fpl,fp2); 
fclose(fp1); 
fclose(fp2); 

inf=fopen("data","r"); 
ortho(N*N,A); 

/* get the orthogonal vector */ 
cc[1]='A'; 
cc[2]='B'; 
cc[3]='C'; 
cc[4]='D'; 
cc[5]='E'; 
cc[6]='F'; 
cc[7]='C'; 
cc[8]=/1-1'; 
cc[9]='I'; 
cc[10]='J'; 
cc[11]='K'; 
cc[12]='L'; 
cc[13]='M'; 
cc[14]='N'; 
cc[15]='O'; 
cc[16]='P'; 
cc[17]='Q'; 
cc[18]='R'; 
cc[19]='S'; 
cc[20]='T'; 
cc[21]='U'; 
cc[22]='V'; 
cc[23]='W'; 
cc[24]='X'; 
cc[25]='Y'; 
cc[26]='Z'; 

/* get the 26 characters */ 

fpl=fopen(filename,"r"); 
fp2=fopen("strings.dat","w"); 
for (i=1;i<=26;i++) 

arlen[i]=makestring(fp1,fp2); 
fclose(fp1); 
fclose(fp2); 

if ((fp=fopen("strings.dat","r")) == NULL ) 
{ 
printf("error open file\n"); 



} 

/* get the 26 sample characters */ 

for(i=1;i<27;i++) 
{ 

for(j=1;j< N*N+1 ;j++) 
{ 
fscanf(fp,"%d",&Dat[i][j]); 
} 

} 
/* change the 0 value to -1 of sample characters */ 

fclose(fp); 

/* close the sample characters file "a88.dat" */ 

for(i=1;i<27;i++) 
{ 

for(j=1;j< N * N + 1;j++) 
Da[j][i] = Dat[i][j]; 

} 

/* transpose the sample matrix to Da */ 

for(i=1;i<=N*N;i++) 
{ 
for(j=1;j<=N*N;j++) 
{ 
W[i][j]=0.0; 
IM[i][j]=0.0; 
} 
} 

for(i=1;i<=26;i++) 
{ 
for(j=1;j<=26;j++) 
M[i][j]=0; 
} 

/* initial the matrix W and IM and M */ 

for(k=1; k<=26; k++) 
{ 

for(j=1; j<=26; j++) 
{ 
for(i=1; i<=64; i++) 
M[k][j] = M[k][j] + Dat[k][i] * Da[i][j]; 
} 

} 

/* get the value of M ( M = transpose(Da) * Da ) */ 



for (i=1; i<=26; i++) 
{ 

for (j=1; j<=26; j++) 
{ 
InM[i][j] = (float) (M[i][j]); 
} 

} 

/* transfer the integer date to float date in order for 
*/ 

/* calculate the inverse of matrix M 
*/ 

/* below is to inverse the matrix M */ 

for (j=1; j<=26; j++) 
{ 
z[j]=j; 
} 

for (i=1; i<=26; i++) 
{ 

k=i; y = InM[i][i]; 1=1-1; p=i+1; 
for(j=p;j<=26;j++) 
{ 
w = InM[i][j]; 
if (fabs(w) > fabs(y)) 

{ 
k=j; y=w; 
} 

} 

if (fabs(y) < ep) 
{ 
printf ("no inverse exists\n-); 
exit(1); 
} 
Y= 1 / Y; 
for (j=1;j<=26;j++) 

{ 
c[j]=InM[j][k]; 
InM[j][k] = InM[j][i]; 
InM[j][i] = -c[j] * y; 
b[j] = InM[i][j] * y; 
InM[i][j] = InM[i][j] * y; 
} 

InM[i][i] = y;j = z[i]; 
z[i] = z[k]; z[k] = j; 

for(k=1; k<=1; k++) 
for(j=1; j<=1; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 



for(k=1; k<=1; k++) 
for(j=p; j<=26; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 

for(k=p; k<=26; k++) 
for(j=1; j<=1; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 

for(k=p; k<=26; k++) 
for(j=p; j<=26; j++) 
InM[k][j] = InM[k][j] - b[j] * c[k]; 
} 

for(i=1; i<=26; i++) 
{ 
11: k = z[i]; 
if (k != i) 

{ 
for(j=1; j<=26; j++) 
i 
W = InM[i][j]; 
InM[i][j] = InM[k][j]; 
InM[k][j] = w; 
} 
p = z[i]; 
z[i] = z[k]; 
z[k] = p; 
goto 11; 
} 

} 

/* got the inverse of matrix M in InM */ 

for(i=1;i<=26;i++) 
{ 

for(j=1;j<=N*N;j++) 
{ 
for(k=1;k<=26;k++) 
IM[i][j] = IM[i][j] + InM[i][k] * Dat[k][j]; 
} 

} 

/* calculate matrix IM = Da+ (psuedo inverse of Da) */ 
/* (IM = inverse((transpose(Da)*Da)*transpose(Da) */ 

for (i=1;i<N*N+1;i++) 
for (j=1;j<=26;j++) 

ORTHO[i][j]=A[(i-1)*N*N+j-l+step]; 

for (i=1;i<N*N+1;i++) 
for (j=1;j<N*N+1;j++) 



SIGMA[i][j]=0; 

/* calculate sum of inner products of 26 orthogonal vectors 
in SIGMA*/ 

for (loop=1;loop<=26;loop++) 
{ 

for (i=1;i<N*N+1;i++) 
for (j=1;j<N*N+1;j++) 

SIGMA[i][j]=SIGMA[i][j]+ORTHO[i][loop]*ORTHO[ 
j][loop]/18; 
} 

for(i=1;i<=N*N;i++) 
for(j=1;j<=N*N;j++) 

for(k=1;k<=26;k++) 
W[i][j] = W[i][j] 

(float)(ORTHO[i][k])*IM[k][j]; 

/* calculate W (W = 26 orth vector * Da+) */ 

/* reading input matrix */ 
for(i=1;i<=N*N;i++) 

fscanf(inf,"%d",&h[i]); 

/* initialise hi A/  
for(i=1;i<N*N+1;i++) 

hf[i]=0.0; 

for(1=1;i<N*N+1;i++) 
for(j=1;j<N*N+1;j++) 

hf[i] = hf[i] + W[i][j]*(float)(h[j]); 

/* ITERATIONS */ 

for (i=1;i<N*N+1;i++) 
hf1[i]=0; 

for (j=1;j<=64;j++) 
for (k=1;k<=64;k++) 

hfl[j]=hfl[j]+SIGMA[j][k]*hf[k]; 
for (i=1;i<N*N+1;i++) 

hf[i]=hfl[i]; 
for (i=1;i<N*N+1;i++) 

hfl[i]=0; 

for (j=1;j<=64;j4-4) 
for (k=1;k<=64;k++) 

hfl[j]=hfl[j]+SIGMA[j][k]*hf[k]; 



for (i=1;i<N*N+1;i++) 
{ 
h[i]=(int)(hf[i]+0.5); 
if (h[i]<-18) 

h[i]=-18; 
if (h[i]>18) 

h[i]=18; 
} 

/* calculate hf = W * h */ 

smin=2000; mini=1; 

for(i=1;i<=26;i++) 
{ 
s[i]=0; 
for(j=1;j<=N*N;j++) 

s[i] = s[i] + abs(ORTHO[j][i] - h[j]); 
if ((inlen-arlen[i])>4) 

s[i]=2000; 
if ( smin >= s[i]) 

{ 
smin = s[i]; 
mini = i; 
} 

} 

(*arg1)=smin; 
(*arg2)=cc[mini]; 
/* print out the character according to the position 

*/ 
/* if mininal distant:,. -- —lin, recognition fail 

*/ 
fclose(inf); 
} 

main : main.c recog.o RECOG.o 
cc -g main.c recog.o RECOG.o makestring.o digit.o 

ortho.o -lm -o main 
recog.o : recog.c ortho.o makestring.o 

cc recog.c -c 
RECOG.o : RECOG.c ortho.o makestring.o 

cc RECOG.c -c 
ortho.o : ortho.c digit.o 

cc ortho.c -c 
digit.o : digit.c 

cc digit.c -c 
makestring.o : makestring.c 

cc makestring.c -c 



#include <stdio.h> 
#include <math.h> 
void ortho(n,A) 

/* Orthogonal vectors generation program 
*/ 

/* (to generate n orthogonal vector and store it in 
A) */ 

int n; 
int *A; 
{ int *B; 

int dsize = (int)( (log((float) n))/log (2.0) + 0.5); 
int i, j, k; 

B = (int *) malloc(sizeof(int)*dsize); 
for (i - 0; i < n; ... 7-1-) { 

digit(i, B, dsize); 
for (j = 0; j < n; j ++) 
{ 

A[i*n+j] = 1; 
for (k = 0; k < dsize; k ++) 
A[i*n+j] = 

(B[k]*(j*(int)pow(2.0,(double)(k+1))/n)%2)? 
-1*A[i*n+j] : l*A[i*n+j]; 

} 
} 

for (i=0;i<n*n;i++) 
A[i]=18*A[i]; 

} 

#include <stdio.h> 
void digit(i,B,size) 
int i; 
int *B; 
int size; 
{ 

int k = 0; 

for (k = 0; k < size; k ++) { 
B[k] = i > 0 ? i % 2 : 0; 
i = i / 2; 

} 
} 
#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
int makestring(filel, file2) 
FILE *filel, *file2; 

. { 
int i,j,k; 



char line[81]; 
int linestr; 
int len; 
int rowflag,colflag; 
int ctr[64]; 

for (i=1;i<=64;i++) 
ctr[i]=0; 

rowflag=l; 
i=1; 
while (rowflag) 
{ 

fgets(line,81,file1); 
if (strcmp(line,"\n")==0) 

rowflag=0; 
else 
{ 
linestr=strlen(line)-1; 
for (j=1;j<=linestr;j++) 

if (line[j]=='1') 
{ 
ctr[j]++; 
ctr[linestr+i]++; 
} 

i++; 
} 

} 
len=i+linestr; 
for (j=linestr+i;j<=64;j++) 

ctr[j]=0; 
for (i=1;i<=64;i++) 

{ 
ctr[i]=ctr[i]-18; 
fprintf(file2,"%d ",ctr[i]); 
} 

fprintf(file2,"\n"); 
return(len); 
} 



APPENDIX B 

PROGRAM LISTINGS 

LEVENSHTEIN DISTANCE AND RECOGNITION RULES 



#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
int makestring(filel, file2) 
FILE *filel, *file2; 
{ 
int i,j,k; 
char line[81]; 
int linestr; 
int len; 
int rowflag,colflag; 
int ctr[64]; 

for (i=1;i<=64;i++) 
ctr[i]=0; 

rowflag=l; 
i=1; 
while (rowflag) 
{ 

fgets(line,81,file1); 
if (strcmp(line,"\n")==0) 

rowflag=0; 
else 
f 
linestr=strlen(line)-1; 
for (j=1;j<=linestr;j++) 

if (line[j]=='1') 
{ 
ctr[jj++; 
ctr[linestr+i]++; 
} 

i++; 
} 

} 
len=i+linestr; 
for (j=linestr+i;j<=64;j++) 

ctr[j]=0; 
for (i=1;i<=64;i++) 

{ 
ctr[i]=ctr[i]-18; 
fprintf(file2,"%d ",ctr[i]); 
} 

fprintf(file2,"\n"); 
return(len); 
} 
/* Method 1 */ 
#include <stdio.h> 
#define MAXLEN 90 
#define const 0.5 
#define del 1 
#define ins 1 
extern void makestring1(); 
extern float min(); 
extern float diff(); 



recog1(filename,argl,arg2) 
FILE *filename; 
float *argl; 
char *arg2; 
{ 
int i,j,k,m; 
int cc[27]; 
FILE *fp; 
char img_str[81]; 
int img_len; 
char sam_str[27][81]; 
int sam_len[27]; 
float DELTA[MAXLEN][MAXLEN]; 
float mindis; 
int minidx; 

makestringl("data.txt","datal",1); 
fp=fopen("data1","r"); 
fgets(imgstr,81,fp); 
img_len=strlen(img_str); 
fclose(fp); 

cc[1]='a'; 
cc[2]='b'; 
cc[3]='c'; 
cc[4]='d'; 
cc[5]='e'; 
cc[6]='f'; 
cc[7]='g'; 
cc[8]='h'; 
cc[9]='i'; 
cc[10]='j'• 
cc[11]='k'; 
cc[12]='1'; 
cc[13]='m'; 
cc[14]='n'; 
cc[15]='o'; 
cc[16]='p'; 
cc[17]='q'; 
cc[18]='r'; 
cc[19]='s'; 
cc[20]='t'; 
cc[21]='u'; 
cc[22]='v'; 
cc[23]='w'; 
cc[24]='x'; 
cc[25]='y'; 
cc[26]='z'; 

for ( i=0; i<MAXLEN; i++ ) 
DELTA[0][i] = i; 

/* get the 26 characters */ 



makestringl(filename,"stringsl.dat",26); 
if ((fp=fopen("stringsl.dat","r")) == NULL ) 
{ 

printf("error open file\n"); 
} 
for ( i=1; i<=26; i++ ) 
{ 

fgets(sam_str[i],81,fp); 
sam len[i]= strlen(sam str[i]); _ _ 

} 
fclose(fp); 

mindis = 10000; 
minidx = 0; 
for( j=1; j<=26; j++ ) 
{ 

if ( abs(img len-sam len[j]) > 4 ) continue; 
for( k=1; k<img_len ; k++ ) 

for( m=1; m<sam len[j]; m++ ) 

DELTA[k][m] = min(min(DELTA[k-1][m]+ins,DELTA[k][m- 
1]+del), 

min(DELTA[k][m-1]+del, 
DELTA[k-1][m- 

1]+const*diff(imgstr,samstr,k,j,m))); 

k--; m--; 
if ( DELTA[k][m] < mindis ) 
{ 

mindis = DELTA[k][m]; 
minidx = j; 

} 
} 
(*argl) = mindis; 
(*arg2) = cc[minidx]; 
} 

/* Method 2 */ 
#include <stdio.h> 
#define MAXLEN 90 
#define const 0.5 
#define del 1 
#define ins 1 
extern void makestring2(); 
extern float min(); 
extern float diff(); 

recog2(filename,arg1,arg2) 
FILE *filename; 
float *argl; 
char *arg2; 
{ 
int i,j,k,m; 



int cc[27]; 
FILE *fp; 
char img_str[81]; 
int img_len; 
char sam_str[27][81]; 
int sam len[27); 
float D-fLTA[MAXLEN][MAXLEN]; 
float mindis; 
int minidx; 

makestring2("data.txt","data2",1); 
fp=fopen("data2","r"); 
fgets(imgstr,81,fp); 
img_len=strlen(img_str); 
fclose(fp); 

cc[1]='a'; 
cc[2]='b'; 
cc[3]='c'; 
cc[4]='d'; 
cc[5]='e'; 
cc[6]='f'; 
cc[7]='g'; 
cc[8]='h'; 
cc[9]='i'; 
cc[10]='j'; 
cc[11]='k'; 
cc[12]='1'; 
cc[13]='m'; 
cc[14]='n'; 
cc[15]='o'; 
cc[16]='p'; 
cc[17]='q'; 
cc[18]='r'; 
cc[19]='s'; 
cc[20]='t'; 
cc[21]='u'; 
cc[22]='v'; 
cc[23]='w'; 
cc[24]='x'; 
cc[25]='y'; 
cc[26]='z'; 

for ( i=0; i<MAXLEN; i++ ) 
DELTA[0][i] = i; 

/* get the 26 characters */ 

makestring2(filename,"strings2.dat",26); 
if ((fp=fopen("strings2.dat" "-")) == NULL ) 
{ 

printf("error open file\n"); 
} 

'for ( i=1; i<=26; i++ ) 



{ 
fgets(sam_str[i],81,fp); 
sam len[i]= strlen(sam str[i]); _ _ 

} 
fclose(fp); 

mindis = 10000; 
minidx = 0; 
for( j=1; j<=26; j++ ) 
-{ 

if ( abs(img_len-sam_len[j]) > 4 ) continue; 
for( k=1; k<img_len ; k++ ) 

for( m=1; m<sam_11,,,j; m++ ) 

DELTA[k][m] = min(min(DELTA[k-1][m]+ins,DELTA[k][m- 
1]+del), 

min(DELTA[k][m-1]+del, 
DELTA[k-1][m- 

1]+const*diff(imgstr,samstr,k,j,m))); 

k--; m--; 
if ( DELTA[k][m] < mindis ) 
{ 

mindis = DELTA[k][m]; 
minidx = j; 

} 
} 
(*argl) = mindis; 
(*arg2) = cc[minidx]; 
} 

/* Method 4 */ 
#include <stdio.h> 
#define MAXLEN 90 
#define const 0.5 
#define del 1 
#define ins 1 
extern void makestring3(); 
extern float min(); 
extern float diff(); 

recog3(filename,arg1,arg2) 
FILE *filename; 
float *argl; 
char *arg2; 
{ 
int i,j,k,m; 
int cc[27]; 
FILE *fp; 
char img_str[81]; 
int img_len; 
char samstr[27][81]; 
int sam_len[27]; 
float DELTA[MAXLEN][MAXLEN]; 



float mindis; 
int minidx; 

makestring3("data.txt","data3",1); 
fp=fopen("data3","r"); 
fgets(img_str,81,fp); 
img_len=strlen(img_str); 
fclose(fp); 

cc[1]='a'; 
cc[2]='b'; 
cc[3]='c'; 
cc[4]='d'; 
cc[5]='e'; 
cc[6]='f'; 
cc[7]='g'; 
cc[8]='h'; 
cc[9]='i'; 
cc[10]='j'; 
cc[11]='k'; 
cc[12]='1'; 
cc[13]='m'; 
cc[14]='n'; 
cc[15]='o'; 
cc[16]='p'; 
cc[17]='q'; 
cc[18]='r'; 
cc[19]='s'; 
cc[20]='t'; 
cc[21]='u'; 
cc[22]='v'; 
cc[23]='w'; 
cc[24]='x'; 
cc[25]='y'; 
cc[26]='z'; 

for ( i=0; i<MAXLEN; i++ ) 
DELTA[0][i] = i; 

/* get the 26 characters */ 

makestring3(filename,"stringdat",26); 
if ((fp=fopen("strings3.dat","r")) == NULL ) 
{ 

printf("error open file\n"); 
} 
for ( i=1; i<=26; i++ ) 
{ 

fgets(sam_str[i],81,fp); 
sam len[i]= strlen(sam _str[i]); 

} 
fclose(fp); 

mindis = 10000; 



minidx = 0; 
for( j=1; j<=26; j++ ) 
{ 

if ( abs(img len-sam len[j]) > 4 ) continue; 
for( k=1; k<imglen ; L , 

for( m=1; m<sam_len[j]; m++ ) 

DELTA[k][m] = min(min(DELTA[k-1][m]+ins,DELTA[k][m- 
1]+del), 

min(DELTA[k][m-1]+del, 
DELTA[k-l][m- 

1]+const*diff(imgstr,samstr,k,j,m))); 

k--; m--; 
if ( DELTA[k][m] < mindis ) 
{ 

mindis = DELTA[k][m]; 
minidx = j; 

} 
} 
(*argl) = mindis; 
(*arg2) = cc[minidx]; 
} 

/* Method 4 */ 
#include <stdio.h> 
#define MAXLEN 9C 
#define const 0.5 
#define del 1 
#define ins 1 
extern void makestring4(); 
extern float min(); 
extern float diff(); 

recog4(filename,arg1,arg2) 
FILE *filename; 
float *argl; 
char *arg2; 
{ 
int i,j,k,m; 
int cc[27]; 
FILE *fp; 
char img_str[81]; 
int img_len; 
char samstr[27][81]; 
int sam_len[27]; 
float DELTA[MAXLEN][MAXLEN]; 
float mindis; 
int minidx; 

makestring4("data.txt","data4",1); 
fp=fopen("data4","r"); 
fgets(imgstr,81,fp); 
img_len=strlen(img_str); 



fclose(fp); 

cc[1]='a'; 
cc[2]='b'; 
cc[3]='c'; 
cc[4]='d'; 
cc[5]='e'; 
cc[6]='f'; 
cc[7]='g'; 
cc[8]='h'; 
cc[9]='i'; 
cc[10]='j'; 
cc[11]='k'; 
cc[12]='1'; 
cc[13]='m'; 
cc[14]='n'; 
cc[15]='o'; 
cc[16]='p'; 
cc[17]='q'; 
cc[18]='r'; 
cc[19]='s'; 
cc[20]='t'; 
cc[21]='u'; 
cc[22]='v'; 
cc[23]='w'; 
cc[24]='x'; 
cc[25]='y'; 
cc[26]='z'; 

for ( i=0; i<MAXLEN; i++ ) 
DELTA[0][i] = i; 

/* get the 26 characters */ 

makestring4(filename,"strings4.dat",26); 
if ((fp=fopen("strings4.dat","r")) == NULL ) 
{ 

printf("error open file\n"); 
} 
for ( i=1; i<=26; i++ ) 
{ 

fgets(samstr[i],81,fp); 
sam _len[i]= strlen(sam str[i]); 

} 
fclose(fp); 

mindis = 10000; 
minidx = 0; 
for( j=1; j<=26; j++ ) 
{ 

if ( abs(img_len-sam_len[j]) > 4 ) continue; 
for( k=1; k<img_len ; k++ ) 

for( m=1; m<samlen[j]; m++ ) 



DELTA[k][m] = min(min(DELTA[k-1][m]+ins,DELTA[k][m- 
1]+del), 

min(DELTA[k][m-1]+del, 
DELTA[k-l][m- 

1]+const*diff(img_str,sam_str,k,j,m))); 

k--; m--; 
if ( DELTA[k][m] < mindis ) 
{ 

mindis = DELTA[k][m]; 
minidx = j; 

} 
} 
(*argl) = mindis; 
(*arg2) = cc[minidx]; 
} 

#include <stdio.h> 
#include <stdlib.h- 
#include <math.h> 
extern void recog1(); 
extern void recog2(); 
extern void recog3(); 
extern void recog4(); 
extern void RECOG1(); 
extern void RECOG2(); 
extern void RECOG3(); 
extern void RECOG4(); 

main() 
{ 
int i,j; 
float min dist; 
float mini dist,min2 dist,min3 dist,min4 dist; 
char res ir,chr[10]T 
char resi_chr,res2_chr,res3_chr,res4_chr; 
char avchr[10]; 
int cnt[10]; 
float dist[10],avdis[10]; 
/* Method 1 of recognition */ 
for (i=0;i<10;i++) 

dist[i]=0; 
chr[i]=' '; 

} 
recog1("lower0.txt",&dist[0],&chr[0]); 
recogl("lowerl.txt",&dist[1],&chr[1]); 
recogl("lower2.txt",&dist[2],&chr[2]); 
recogl("lower3.txt",&dist[3],&chr[3]); 
recogl("lower4.txt",&dist[4],&chr[4]); 
RECOG1("upper0.txt",&dist[5],&chr[5]); 
RECOG1("upperl.txt",&dist[6],&chr[6]); 
RECOG1("upper2.txt",&dist[7],&chr[7]); 
RECOG1("upper3.txt",&dist[8],&chr[8]); 



RECOG1("upper4.txt",&dist[9],&chr[9]); 

minl_dist=dist[0]; 
resl_chr=chr[0]; 
for (i=0;i<10;i++) 
{ 

if (dist[i]<minl_dist) 
{ 

min1_dist=dist[i]; 
resl chr=chr[i]; 

1 
} 
/* Method 2 of recognition */ 

for (i=0;i<10;i++) 
{ 

dist[i]=0; 
chr[i]=' 

} 
recog2("lower0.txt",&dist[0],&chr[0]); 
recog2("lowerl.txt",&dist[1],&chr[1]); 
recog2("lower2.txt",&dist[2],&chr[2]); 
recog2("lower3.txt",&dist[3],&chr[3]); 
recog2("lower4.txt",&dist[4],&chr[4]); 
RECOG2("upper0.txt",&dist[5],&chr[5]); 
RECOG2("upperl.txt",&dist[61 ,Fchr[6]); 
RECOG2("upper2.txt",&dist[7],&cnr[7]); 
RECOG2("upper3.txt",&dist[8],&chr[8]); 
RECOG2("upper4.txt",&dist[9],&chr[9]); 

min2_dist=dist[0]; 
res2_chr=chr[0]; 
for (i=0;i<10;i++) 
{ 

if (dist[i]<min2_dist) 
{ 

min2_dist=dist[i]; 
res2 _chr=chr[i]; 

} 
} 
/* Method 3 of recognition */ 

for (i=0;i<10;i++) 
{ 

dist[i]=0; 
chr[i]="; 

} 
recog3("lower0.txt",&dist[01,&chr[0]); 
recog3("lowerl.txt",&dist[ijr[1]); 
recog3("lower2.txt",&dist[2],&chr[2]); 
recog3("lower3.txt",&dist[3],&chr[3]); 
recog3("lower4.txt",&dist[4],&chr[4]); 
RECOG3("upper0.txt",&dist[5],&chr[5]); 
RECOG3("upperi.txt",&dist[6],&chr[6]); 



RECOG3("upper2.txt",&dist[7],&chr[7]); 
RECOG3("upper3.txt",&dist[8],&chr[8]); 
RECOG3("upper4.txt",&dist[9],&chr[9]); 

min3_dist=dist[0]; 
res3 chr=chr[0]; 
for (i=0;i<10;i++) 
{ 

if (dist[i]<min3_dist) 
{ 

mintdist=dist[i]: 
res3 _chr=chr[i]; 

} 
} 
/* Method 4 of recognition */ 

for (i=0;i<10;i++) 
{ 

dist[i]=0; 
chr[i]="; 

} 
recog4("lower0.txt",&dist[0],&chr[0]); 
recog4("lowerl.txt",&dist[1],&chr[1]); 
recog4("lower2.txt",&dist[2],&chr[2]); 
recog4("lower3.txt",&dist[3],&chr[3]); 
recog4("lower4.txt",&dist[4],&chr[4]); 
RECOG4("upper0.txt",&dist[5],&chr[5]); 
RECOG4("upperl.txt",&dist[6],&chr[6]); 
RECOG4("upper2.txt",&dist[7],&chr[7]); 
RECOG4("upper3.txt",&dist[8],&chr[8]); 
RECOG4("upper4.txt",&dist[9],&chr[9]); 

min4_dist=dist[0]; 
res4 chr=chr[0]; 
for (i=0;i<10;i++) 
{ 

if (dist[i]<min4_dist) 
{ 

min4dist=dist[i]; 
res4 _chr=chr[i]; 

} 
} 
/* Recognition of character from experimental analysis */ 
if ((resl_chr==res2_chr)&&(res1_chr != res3_chr)) 
{ 

res chr=res2 chr; 
if (mini dist < min2 dist) 
min dia=minl distj _ _ 

else 
min dist=min2 dist; _ _ 

} 
if ((resl 

—
chr==res3 chr)&&(res1_chr != res2_chr)) 

{ 
res chr=res3 chr; 



if (mint dist < min3 dist) 
min digt=min1 distT _ _ 

else 
min dist=min3 dist; _ _ 

} 
if ((res2 chr==res3 chr)&&(res2 chr != resl chr)) _ _ _ _ 
{ 

res chr=res2 chr; 
if (min2 dist < min3 dist) 
min digt=min2 dist; _ _ 

else 
min dist=min3 dist; _ _ 

} 
if ((resl chr==res2 chr)&&(res2 chr==res3 chr)) _ _ _ _ 
{ 

res chr=res2 chr; 
if T(minl_digt <= min2_dist) && (minl_dist <= 

min3 _ dist)) . 
min dist=minl dist; 

if ((ilin2 dist -Z= min3 dist) && (min2 dist <= _ _ _ 
minl _dist)) 

min dist=min2 dist; 
if ((miii3 _ dist <= min2 _ dist) && (min3 _dist <= 

minl _dist)) 
min dist=min3 dist; _ _ 

} 
if (res3 chr=='H') 
{ 
res chr='H'; 
mindist=min3 dist; _ _ 

} 
if (res2 _chr=='E') 
{ 
res chr='E'; 
min_—dist=min2 _dist; 

} 
if (resl _chr=='a') 
{ 
res chr='a'; 
min—dist=minl dist; 

} 
if ((resl chr=='b') II  (res3 chr==fbf)) _ _ 
{ 
res chr='b'; 
min_—dist=minl _dist; 

} 
if ((resl chr=='b') && (res2 chr=='h') && (res3 chr=='h')) _ _ _ 
{ 
res chr='h'; 
if (min2 dist < min3 dist) 

min digt=min2 distT _ _ 
else 

min dist=min3 dist; _ _ 
} 



if ((resl chr=='b')&&(res2 chr==fs')&&(res3 chr=='h')) _ _ _ 
{ 

res chr=i1D'; 
min—_dist=minl _dist; 

} 
if ((resl chr=='c')&&(res2 chr=='t')&&(res3 chr=='c')) 
{ 
res chr='c'; 
if (mini dist < min3 dist) 

min diit=minl distT _ _ 
else 

min dist=min3 dist; _ _ 
} 
if (rest chr=='e') 
{ res chT-='ef; 

min_—dist=minl _dist; 
} 
if 
((resl chr=='c')&&(res2 chr=='c')&&(res3 chr=='c')&&(res4 ch _ _ _ 
r=='e')) 
{ 

res chr='e'; 
min_—dist=min4 _dist; 

} 
if (resl chr==W) 
{ 
res chr='m'; 
min_—dist=minl _dist; 

} 
if (resl chr=='u') 
{ 

res chr='u'; 
min_—dist=minl _dist; 

} 
if (res3 chr==fu') 
{ 
res chr='u'; 
min_—dist=min3 _dist; 

} 
if (res2 chr=='n') 
f 
res chr='n'; 
mindist=min2 dist; _ _ 

} 
if (res2 chr=='o') 
f 
res chr='o'; 
min—_dist=min2 _dist; 

} 
if ((resl chr=='sf)&&(res2 chr=='1')&&(res3 chr=='1')) _ _ _ 
f 
res chr=fo'; 
if ((mini dist <= min2 dist) && ( min1 dist <= min3 dist)) _ _ _ 

min disE=minl dist; 



if ((min2 dist<=minl dist)&&(min2 dist<=min3 dist)) _ _ 
min disE=min2 dist; 

if ((iin3 dist<-;-minl dist)&&(min3 dist<=min2 dist)) _ _ 
min disE=min3 dist; _ _ 

} 
if ((resl 

—
chr=='u')&&(res3_chr=='u')) 

{ 
res chr='u'; 
if (mini dist < min3 dist) 
min _dit=minl dist; 

else 
min dist=min3 dist; _ _ 

} 
if (res3 chr=='w1 ) 
{ 

res chr='w'; 
min—dist=min3 dist; _ _ 

} 
if ((res2 

—
chr=='x')&&(res3_chr=='x')) 

{  
res chr='x'; 
if (min2 dist < min3 dist) 
min dia=min2 dist; _ _ 

else 
min dist=min3 dist; _ _ 

} 

printf("MIN DISTANCE = %6.1f;\tCHARACTER= 
%c\n",min dist,res chr); 
/* — 

— 

printf("MIN DISTANCE1= %6.1f;\tCHARACTER= 
%c\n",minldist,reslchr); 

printf("MIN DISTANCE2= %6.1f;\tCHARACTER= 
96c\n",min2dist,res2chr); 

printf("MIN DISTANCE3= %6.1f;\tCHARACTER= 
%c\n",min3dist,res3chr); 

printf("MIN DISTANCE4= %6.1f;\tCHARACTER= 
%c\n",min4 dist,res4 chr); 
*/ — — 

} 
/* Method 1 of makestring */ 
#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
void makestringl(filel, file2, lim) 
char *file1,*file2; 
int lim; 
{ 
FILE *fpl, *fp2; 
int i,j,k; 
char line[81]; 



int linestr; 
int rowflag,colflag; 
int ctr[81]; 
char code[81]; 
char Table[36] = { '0', '1', '2', '3', '4', '5', '6', '7', 
'8', '9', 

'a', 'bif, 'c', 'd', fe', 'f', 'g', 1 h', 
lif, 'if ,  

'k', '1', firt", 'n', 'o', 'p', 'q', 'r', 
Is', 't', 

'u', 'vf, 'w1 , 'x', 'y', 'z' 1; 

fpl=fopen(file1,"r"); 
fp2=fopen(file2,"w"); 

for (k=0;k<lim;k++) 
{ 

for (i=1;i<=81;i++) 
ctr[i]=0; 

rowflag=l; 
i=1; 
while (rowflag) 
{ 

fgets(line,81,fp1); 
if (strcmp(line,"\n")==0) 

rowflag=0; 
else 
{ 

linestr=strlen(line)-1; 
for (j=1;j<=linestr;j++) 

if (line[j-1]=='l') 
{ 

ctr[j]++; 
ctr[linestr+i]++; 

} 
i++; 

} 
} 
linestr+=i; 
for (i=1;i<linestr;lii 1  
{ 

if ( ctr[i] > 35 ) ctr[i] = 35; 
code[i]=Table[ctr[i]]; 
fprintf(fp2,"%c",code[i]); 

} 
fprintf(fp2,"\n"); 

} 
folose(fp1); 
fclose(fp2); 
} 
/* Make string for Diagonal method(Method 2) */ 
/* Left to Right direction */ 
#include <stdio.h> 
#include <ctype.h> 



#include <string.h> 
void makestrinq2(filel, file?, lim) 
char *file1,*flle2; 
int lim; 
{ 
FILE *fpl, *fp2; 
int i,j,k,index; 
char line[81]; 
int linestr; 
int rowflag,colflag; 
int ctr[81]; 
char code[81]; 
char Table[36] = { '0', '1', '2', '3', '4', '5', '6', '7', 
.8, ,9,,  

'a', 'b', 'c', 'd', 'e', 'f', 'g', gal, 
/if ,  /if ,  

'k', '1', frit', 'n', fo', Fp', 'q', 'r', 
's', rt", 

'u', 'y', 'w', 'x', 'y', 'z' }; 

fp1=fopen(file1,"r"); 
fp2=fopen(file2,"w"); 

for (k=0;k<lim;k++) 
{ 

index=0; 
for (i=1;i<=81;i++) 

ctr[i]=0; 
rowflag=l; 
while (rowflag) 
{ 

fgets(line,81,fp1); 
if ( strcmp(line,"\n") == NULL ) 

rowflag=0; 
else 
{ 

linestr=strlen(line)-1 ; 
for (j=1;j<=linestr;j++) 

if (line[j-1]=='1') 
ctr[index+j]++; 

} 
index++; 

} 
linestr+=(index-l); 

for (i=1;i<linestr;i++) 
{ 

if ( ctr[i] > 35 ) ,2tr[i] = 35; 
code[i]=Table[ctr[i]]; 
fprintf(fp2,"%c",code[i]); 

} 
fprintf(fp2,"\n"); 

} 
fclose(fpl) ; 
fclose(fp2); 



} 

/* Make string for Diagonal method(Method 3) */ 
/* Right to Left direction */ 
#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
void makestring3(filel, file2, lim) 
char *filel,*file2; 
int lim; 
{ 
FILE *fpl, *fp2; 
int i,j,k,index; 
char line[81]; 
char m; 
int n; 
int linestr; 
int rowflag,colflag; 
int ctr[81]; 
char code[81]; 
char Table[36] = { '0', '1', '2', '3', '4', '5', '6', '7', 
'8', '9', 

'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 
Fil l  ,ii,  

'k', '1', 'm', 'n', '0',  'p', 'q', 'r', 
's', It', 

'II',  Iv', /wf, fx,, ly,, /z1 1; 

fp1=fopen(file1,"r"); 
fp2=fopen(file2,"w"); 

for (k=0;k<lim;k+-r) 
{ 

index=0; 
for (i=1;i<=81;i++) 

ctr[i]=0; 
rowflag=l; 
while (rowflag) 
{ 

fgets(line,81,fp1); 
if ( strcmp(line,"\n") == NULL ) 

rowflag=0; 
else 
{ 

linestr=strlen(line)-1 ; 
n=linestr/2; 

for (j=1;j<=n;j++) 
{ 

m=line[j-1]; 
line[j-1]=line[linestr-j]; 
line[linestr-j]=m; 

} 
for (j=1;j<=linestr;j++) 

if (line ]=='1') 



ctr[index+j]++; 
} 
index++; 

} 
linestr+=(index-l); 

for (i=1;i<linestr;i++) 
{ 

if ( ctr[i] > 35 ) ctr[i] = 35; 
code[i]=Table[ctr[i]]; 
fprintf(fp2,"%c",code[i]); 

1 
fprintf(fp2,"\n"); 

} 
fclose(fp1); 
fclose(fp2); 
} 

/* Method 4 of makestring */ 
#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
void makestring4(filel, filet, lim) 
char *filel,*file2; 
int lim; 
{ 
FILE *fpl, *fp2; 
int i,j,k; 
char line[81]; 
char m; 
int n; 
int linestr; 
int rowflag,colflag; 
int ctr[81]; 
char code[81]; 
char Table[36] = { '0', '1', '2', '3', '4', '5', '6', '7', 
'8', '9', 

'a', 'b', 'c', 'd', fe', 'f', 'g', 'h', 
,if, j1,  

'I1,,  '1,,  ,. ,, '11 1 ,  'o',  fp', ,gf, f r,,  
's', 't', 

'u', 'v', 'wf 'x', 'y', 'Z' 1; 

fpl=fopen(file1,"r"); 
fp2=fopen(file2,"w"); 

for (k=0;k<lim;k++) 
{ 

for (i=1;i<=81;i++) 
ctr[i]=0; 

rowflag=l; 
i=1; 
while (rowflag) 
{ 

fgets(line,81,fp1); 



if (strcmp(line,"\n")==0) 
rowflag=0; 

else 
{ 

linestr=strlen(line)-1; 
n=linestr/2; 
for (j=1;j<=n;j++) 
{ 

m=line[j-1]; 
line[j-1]=1ine[linestr-j]; 
line[linestr-j]=m; 

} 
for (j=1;j<=linestr;j++) 

if (line[j-1]=='1') 
{ 

ctr[j]++; 
ctr[linestr+i]++; 

} 
i++; 

} 
} 
linestr+=i; 
for (i=1;i<linestr;i++) 
i 

if ( ctr[i] > 35 ) ctr[i] = 35; 
code[i]=Table[ctr[i]]; 
fprintf(fp2,"%c",code[i]); 

} 
fprintf(fp2,"\n"); 

} 
fclose(fp1); 
fclose(fp2); 
} 
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