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ABSTRACT 

Decomposition of Geometric-Shaped Structuring 
Elements and Optimization on Euclidean Distance 

Transformation Using Morphology 

by 
Hong Wu 

Mathematical morphology which is based on geometric shape, provides an 

approach to the processing and analysis of digital images. Several widely-used 

geometric-shaped structuring elements can be used to explore the shape characteristics of 

an object. In first chapter, we present a unified technique to simplify the decomposition 

of various types of big geometric-shaped structuring elements into dilations of smaller 

structuring components by the use of a mathematical transformation. Hence, the desired 

morphological erosion and dilation are equivalent to a simple inverse transformation over 

the result of operations on the transformed decomposable structuring elements. We also 

present a strategy to decompose a large cyclic cosine structuring element. The technique 

of decomposing a two-dimensional convex structuring element into one-dimensional 

ones is also developed. 

A distance transformation converts a digital binary image which consists of object 

(foreground) and non-object (background) pixels, into a gray-level image in which all 

object pixels have a value corresponding to the minimum distance from the background. 

Computing the distance from a pixel to a set of background pixels is in principle a global 

operation, that is often prohibitively costly. The Euclidean distance measurement is very 

useful in object recognition and inspection because of the metric accuracy and rotation 

invariance. However, its global operation is difficult to decompose into small neighbor-

hood operations because of the nonlinearity of Euclidean distance computation. In 

second chapterpresents three algorithms to the Euclidean distance transformation in digi-

tal images by the use of the grayscale morphological erosion with the squared Euclidean 



distance structuring element. The optimal algorithm only requires four erosions by small 

structuring components and is independent of the object size. It can be implemented in 

parallel and is very efficient in computation because only the integer is used until the last 

step of a square-root operation. 

Feature extraction and object recognition can be achieved by mathematical mor-

phology. An object is analyzed by using a set of primitive shapes. Primitive shapes are 

designed in binary templete. To detect each matching pattern, mapping of a set of tern-

pletes on the unknown object need to be performed. The templetes along with morpho-

logical operations and weights corresponding to each matching pattern are designed 

priorily and stored in database. During recognition, we get several sub-result according to 

its templetes. These results combined with their weights will produce a final matching 

probability. In third chapter, a new feature selection criterion based on mathematical 

morphology is proposed. 
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CHAPTER 1 

DECOMPOSITION OF GEOMETRIC-SHAPED STRUCTURING ELEMENTS 
USING MORPHOLOGICAL TRANSFORMATIONS ON BINARY IMAGES 

1.1 INTRODUCTION 

Mathematical morphology which is based on geometric shape, provides an approach to 

the processing and analysis of digital images [2,3,7,81 The underlying strategy is to 

understand the characteristics of an object by probing its microstructure with various 

forms which are known as structuring elements The analysis is geometric in character 

and that approaches image processing from the vantage point of human perception 

Appropriately used, morphological operations also tend to simplify image data while 

preserving their essential shape characteristics and eliminating irrelevancies. 

In gray-scale processing, two elementary morphological operations, dilation and 

erosion, are similar to the convolution operator, except addition/subtraction are substi-

tuted for multiplication and maximum/minimum for summation. Let f : F F and 

k : K E denote the gray-scale image and the gray-scale structuring element, respec- 

tively. The symbols, E, F, and K represent the Euclidean space, bounded domain for f, 

and hounded domain for k, respectively. Gray-scale dilation off by k is given by 

Gray-scale erosion of f by k is given by 

The computation of gray-scale dilation and erosion can be implemented very effi-

ciently by using the architecture of threshold decomposition of gray-scale morphology 



into binary morphology [4]. In practical applications, dilation and erosion pairs are used 

in sequence, either dilation of an image followed by erosion of the dilated result or vice 

versa. Either way, the result of iteratively applied dilations and erosions is an elimination 

of specific image details smaller than the structuring element without the global 

geometric distortion of unsuppressed features. The opening of f by k is defined as 

A oB = (A GB) ®B. (3) 

The closing of f by k is defined as 

A • B = (A B) €B. (4) 

A variety of existing image processing architectures including CELLSCAN, BIP, PICAP, 

DIP, and Cytocomputer [1,6,7], are applicable to the morphological processing. How-

ever, each stage only processes 3 x 3 neighborhoods. Implementation difficulties arise 

when the applied algorithm requires morphological operations by large-sized structuring 

elements. Hence, the techniques of decomposing big structuring elements into combined 

structures of segmented small components are extremely important. 

Another advantage of decomposing structuring elements is the reduction of calcula-

tion. For example, if we decompose a structuring element of size 

(p+q-1)x (p + q — 1) into a dilation of two smaller structuring components of 

sizes p x p and q x q, the number of calculations required in morphological operations 

will be reduced from ( p + q — 1 )2  to p2  q2. In order to satisfy 

( p + q — 1 )2 + q2  , we rearrange it as ( p —1 )( q —1 ) 1/2, that indicates 

p, q 2. In order to incorporate into the hardware architecture and to achieve the optimal 

reduction rate, we choose to decompose any sized structuring element into smaller struc-

turing components of size 3 x 3. 



An optimalization algorithm for decomposing binary morphological structuring ele-

ments was developed by Zhuang and Haralick [8]. A strategy for decomposing certain 

types (linear-sloped, convex, and concave) of gray-scale morphological structuring ele-

ments into dilations or maximum selections of small components was explored by Shih 

and Mitchell [5]. In chapter one, we present a unified technique to simplify the decom-

position of various types of big geometric-shaped structuring elements only into dilations 

of smaller structuring components. 

Chapter one is organized as follows. In Section 2, the definitions concerning the 

types of morphological structuring elements are given. In Section 3, a few mathematical 

morphology properties related to the decomposition are introduced. We present the 

decomposition technique for one-dimensional (1D) geometric-shaped structuring ele-

ments in Section 4 and for two-dimensional (2D) ones in Section 5. In Section 6, a new 

mathematical transformation that is applied on a nondecreasing cosine structuring ele-

ment to become decreasing and that creates a quite significant result is presented. In 

Section 7, a strategy dealing with the decomposition of 2D structuring elements into 1D 

elements is described. Finally, we make some conclusions. 

1.2 DEFINITIONS OF TYPES OF STRUCTURING ELEMENTS 

A few definitions related to the types of structuring elements are given in this section. 

For expressional simplicity, the definitions are described in one dimension. The exten-

sion to two dimensions is straightforward. Let the origin of a structuring element 

k (2n +1)(X) with the odd size 2n+1 be located at the central point as shown in Fig. 1, such 

that the x-coordinate of the structuring element is: x = —1, 0, 1,—, n. Let mi 

denote the slope of the line segment i. Definition 1. A structuring element k(x) is called 

eccentrically decreasing if 



Otherwise, k(x) is called eccentrically nondecreasing. 

Note that we are only interested in the morphological operations by the eccentri-

cally decreasing structuring elements because the morphological operations by a 

nondecreasing structuring element will induce nonsignificant results. Fig. 2 illustrates that the 

dilated result of a binary image f with two gray levels, zero indicating background and C 

indicating foreground, by a large cyclic cosine structuring element k (it is certainly non-

decreasing) is a constant image with the gray level of the highest value C + 1 in the cal-

culation, and the eroded result is a constant image with the gray level of the lowest value 

—1. 

Definition 2. A structuring element k(x) is called linearly-sloped if 

where c 1  and c 2  are constants. An example of a linearly-sloped structuring element with 

c 1 = c2  is shown in Fig. 1. Definition 3. A structuring element k(x) is called convex, as 

shown in Fig. 3, if 

Definition 4. A structuring element k (x) is called concave, as shown in Fig. 4, if 

When working on the 2D structuring elements, we need the following definitions: 

Definition 5. A 2D gray-scale structuring element can be viewed as a 3D geometric 



surface with its heights corresponding to the element's gray values. Mathematically, 

either a parametric or a nonparametric form can be used to represent a surface. A non-

parametric representation is either implicit or explicit. For a 3D geometric surface, an 

implicit, non-parametric form is given by 

f (x,y,z)= 0. (9) 

In this form, for each x- and y-values the multiple z-values are allowed to exist. The 

representation of a 2D gray-scale structuring element can be expressed in an explicit, 

nonparametric form of 

k(x,y) = {z z = g(x,Y), (x,y) E  geometric shape domain } (10) 

In this form, for each x- and y-values only one z-value is obtained. Hence, the 2D gray-

scale structuring element can be assigned a unique datum at each (x,y) location. Some 

often-used 2D geometric shapes are sphere, cone, ellipsoid, hyperboloid, Gaussian, 

exponential, damped sine, and damped cosine. Definition 6. A structuring element 

k (x,y) is called additively-separable if 

k(x,y)= p(x) + q(y), (11) 

where p (x) and q (y) are the functions of only x and y, respectively. 

1.3 DECOMPOSITION PROPERTIES 

The decomposition properties presented in this section can be suited for any binary (with 

two gray levels, "0" indicating background and "C" indicating foreground) or gray-

scale image f, but only limited to the decreasing gray-scale structuring elements k. Note 

that the value C must be larger enough than the height of the structuring element. 



Property I. If a structuring element k can be decomposed into sequential dilations of 

several smaller structuring components, then a dilation (or erosion) of an image f by k is 

equal to successively applied dilations (or erosions) of the previous stage output by these 

structuring components. All convex structuring elements can be decomposed using this 

technique. As shown in Fig. 3, let k1, k2,..., and kn  denote the segmented smaller 

linearly-sloped structuring components with the sizes s i , (s2  - s 1 ), ..., and (sn — sn-1), 

respectively. That is 

if k=k i  ®k2  e ... e kn , 

then f e k = (---((f e k i ) ®k2)  e ...) e lc, 

and f e k = (--((f e k1) e k2) p...)  e kn . (12) 

Property 2. If a structuring element k can be decomposed into a maximum selection over 

several structuring components, then a dilation (or erosion) of an image f by k is equal to 

finding a maximum (or minimum) of each applied dilation (or erosion) of the image by 

these structuring components. All concave structuring elements can be decomposed 

using this technique. As shown in Fig. 4, let k 1  , k2,..., and ka  denote the segmented 

structuring components with the sizes s i , s2, •-, and sn, respectively. That is 

if k= max ( k i , k2, —, k„), 

then f 9 k = max ( f s k1,  f $ k2, —, f $ lc, ) 

and f s k = min ( f 0  k 1, f e k2, --, f e lc, ). (13) 

The computational complexity increases much more for the concave decomposition 

because further decompositions are required to perform the dilations (or erosions) by the 



structuring components k2, k3, ..., k,, which have larger sizes than those in the convex 

decomposition and also an additional maximum (or minimum) operation. Property 3. 

Letf:F --4Eandk:K-->E. Let x E ( F a 3,  K)r)(F e K) be given. The relationship 

between dilation and erosion is 

f ex, k = —((f) (13'8 k), where k(x) = k(—x), reflection of k (14) 

This implies that we may calculate erosion using dilation, or vice versa. Property 4. For 

computational simplicity in decomposition, the gray-value at the origin (i.e. the highest 

value) of a decreasing structuring element can be suppressed to zero. In other words, we 

could subtract a constant P 
—> 
, which is equal to the highest value, from the structuring ele-

ment. The dilation and erosion then become 

--.> 
f e (k — P 

---> 
c)= (f e k)— P, , (15) 

—÷ -4. 
f e (k — P c )= (f e k)+ P, , . (16) 

Property 5. All the linearly-sloped and 1D convex structuring elements can be decom-

posed into dilations of smaller structuring components. For 2D convex structuring ele-

ments, if each value k(x,y) can be expressed as: k(x,y)= p (x) + q (y), i.e., 2D 

additively-separable, then it can be decomposed into dilations of smaller structuring 

components. The other types of convex and all the concave structuring elements can be 

decomposed using a maximum selection over several segmented structuring components. 

Interested readers should refer to [5] for details. 

1.4 ID GEOMETRIC-SHAPED STRUCTURING 
ELEMENTS DECOMPOSITION 

1.4.1 Semicircle, Semiellipse, Gaussian, Parabola, Semihyperbola, Cosine, and Sine 



A 1D geometric-shaped structuring element k(x) is actually the geometric curve 

f (y,y)= 0, in a 2D Euclidean space. We assign each point in the structuring element by 

the negated distance from this point to the horizontal curve tangent to the top of the curve 

in order to ensure that k(x) is decreasing An origin-centered semicircle can be 

represented implicitly by 

where 1 v r, 0 Lc v 7. and r denotes the radius. Ed (17) can he rewritten in the explicit 

form of 

Table 1. 1D Geometric-Shaped Structuring Elements 

Name 

— — - -- 

Representation Stnicturing Element 

Semiellipse 
x2 v 2 

+ = 1 
a2 h 2  

x 2-  'A 
b 1-  h 

a 2  

Gaussian y  = I e -A- 2 / 2  
-127r 

I 9-x2 / 2 1  
-V2rE Ni27T 

Parabola x2 = - 4av 
-X 2 

4a 

Semihyperhola Y
2 x2 

 = I h2 a2  

- 1/7  
x 

-h 1+ + h 
cr- 

From Definition I in Section 2, it is known that the semicircle is an eccentrically 

decreasing structuring element. For computational simplicity, a constant "-r" is added 

to suppress the v-value at the origin to zero. Hence, 

k(x)=1,/r2 -r. (19) 



Assuming that r = 3, the structuring element k (x) = '\19-x 2  - 3, is numerically expressed 

as 

k (x) = [ -3 •\.1---3 li8 --3 0 I-3 A/3--3 -3 ] . 

This is a convex structuring element because the slopes ( in, I is increasing eccentrically 

from the center. The similar method can also apply to other geometric-shaped structur-

ing elements as listed in Table 1. Note that the cosine and sine structuring elements both 

contain a combination of convex and concave components. 

1.4.2 Decomposition Strategy 

The following propositions are based on the assumption that the input image f is binary 

with two gray values: "C" indicating foreground and "0" indicating background, where 

C is a large number. The reason for setting the object points to a sufficiently large 

number is that the minimum selection in erosion or the maximum selection in dilation 

will not be affected by the object's gray value. The erosion of f by a geometric-shaped 

structuring element results in the output image reflecting the minimum distance (i.e., the 

predefined values in the structuring element) from each object pixel to all the background 

pixels. Proposition 1. A 1D eccentrically decreasing, geometric-shaped structuring ele-

ment k (x) can be represented as k (x) = g (x) + c, where k (x) 5 0, g (x) represents a 

geometric-shaped function, and c is a constant. It satisfies that for all 0 < x 1  < x 2  and 

x2  < x1  < 0, there exists g (x 1 ) > g (x 2). If a transformation III satisfies that for all 

0 < x 1  < x 2  and x2  < x1  < 0, there exits 0 T[j k (x 01] < IP II k (x 2)1], then we can 

obtain a new structuring element k*  , in which k*  (x) = -IF[ I k (x) I], where k*  (x) 5. 0. 

Let 'P-1  is the inverse transformation of T. The k*  (x) can be used in morphological ero- 

sion on a binary image f, so that the desired result (f e k)(x) is obtained by 



for all nonzero values in (f ek*  )(x). Those zeros in (f ek*  )(x) still remain zeros in (f G 

k)(x). [Proof]: Since the binary image f is represented by two values "C" and "0", we 

obtain the following according to eq. (2) 

where all z's satisfy that x + z is located within the foreground and all L''s satisfy that 

x + z' is located within background. Note that C has been selected to be large enough to 

ensure that "C — k (z)" is always greater than "0 — k (z')." Hence, we have 

Similarly, if the new transformed structuring element k *  is used for erosion, we obtain 

where all 21"s satisfy that the pixel x+z11  is located within the background. Because 

and 

for all 0 < x i  <x2  and x2  < x i  <0, we have k(x i ) > k (x 2) and k*  (x i ) > k*  (x 2). This 

ensures that each location z' in eq. (22) is the same as the location z i' in eq. (23) for the 

same input image f. Because k*  (x) = — 'Y[ 1k (x)I], we have k*  (z 1') = — 'Y[ I k(z')1]. 



Then k (z') can be obtained by I  k (z')1= T-1  [-k * (z i')]. Hence, -k (z') = 1-1-1  [-k *  (z i ')]. 

Because the transformation preserves the monotonically increasing property, we 

obtain 

Combining eqs. (22), (23), and (26), we can easily obtain the result in eq. (20). 

Q.E.D. 

Proposition 2. If k(x), lc', and k *  (x) all satisfy the conditions given in Proposition 1, 

then the k *  (x) can be used in morphological dilation on a binary image f The desired 

result (f % k)(x) can be obtained by 

for all  nonzero values in (f ER k *  )(x), where "C" represents the foreground value. Those 

zeros in (f k*  )(x), hence, remain zeros in f 9 k (x). The proof which is similar to the 

proof in Proposition 1, is skipped. Proposition 3. The result of a binary image f eroded 

by a geometric-shaped structuring element k is an inverted geometric shape of k within 

the foreground domain. As shown in Fig. 5, those slopes eccentrically from the center in 

a convex structuring element k are imi 1,1m21,  and Im3I; after erosion, its shape is 

inverted to become concave, hence the slopes eccentrically from the center become 

1"131 , 1m21,  and Imi [Proof): From eq. (22), the erosion is the minimum of negated 

values of the structuring element. The weights in the geometric-shaped structuring ele-

ment are designed as the negative of the heights counting from the point to the horizontal 

line which is tangent to the toppest location (i.e. the center) of the structuring element. 

Since k is decreasing and has values all negative except the center zero, the result of 

minimum selection will be the coordinate z in k(1) such that x +z' is located in the 



background and z' is the closest to the center of the structuring element. Hence, if we 

trace the resulting erosion curve from the boundary toward the center of an object, it is 

equivalent to trace the geometric curve of the structuring element from its center out-

wards. In other words, the erosion curve is an inverted geometric shape of the structuring 

element. 

Q.E.D. 

Proposition 4. The result of a binary image f dilated by a geometric-shaped structuring 

element k is the geometric shape of k located in the the background initiating from the 

object boundary toward background. As shown in Fig. 5, those slopes eccentrically from 

the center in a convex structuring element k are |m1|, I m 2  , andlm 3 1 ; after dilation, its 

shape starting from the edge of the object falls down by following the same sequence of 

slopes miklm2  , andlm 3 I correspondingly. The proof which is similar to the proof in 

Proposition 3, is skipped. 

Proposition 5. Morphological operations by a 1D eccentrically decreasing, geometric-

shaped structuring element k, can be implemented by the operations by a linearly-sloped 

structuring element. [Proof]: Select T = I lc-1 1 in Proposition 1. Then 

k*  (x) = - 'F'[ 1 k (x) 1] = - (k-1  I (I k (x) I) = - x, that is a linearly-sloped structuring ele-

ment. Hence, the morphological erosion and dilation can apply the eqs. (20) and (27). 

Q.E.D. 

Example 1: Let a cosine curve be y = cos (x), where 1 x15. it. We quantize the cosine 

function in intervals of —rc as the following: when x is 
4 



y is equal to 

[ -1 -0.7 0 0.7 1 0.7 0 -0.7 -1 ]. 

It is a combination of convex and concave structuring components, such that when 

—
2 
7t 
 it 1 x 15_ , is convex, and when —7r 1 x I n, it is concave. The structuring element 

2 
con- 

structed by k(x) = cos (x) - 1, can be expressed as 

k: [ -2 -1.7 -1 -0.3 0 -0.3 -1 -1.7 -2 ] . 

The mathematical transformation defined as 111[ 1 k(x)1] = 1.01k(x)1  - 1, can satisfy the 

conditions in Proposition 1. By applying k*  = - liqj k(x)I], we can obtain 

k *  : [ -99 -49 -9 -1 0 -1 -9 -49 -99 ] . 

Now, it is observed that k *  is convex. Hence, k*  can be decomposed using dilations of 

smaller structuring components, such that k *  = k 1  e k 2  e k 3  9 k4, where 

k1  = [-1 0 -1], k2  = [-8 0 -8], k3  = [-40 0 -40], and k4  = [-50 0 -50] . 

Hence, 

f e k*  = (((f e k 1) elc2) 643) °k4. (28) 

The result of f ok can be obtained by using eq. (20), such that 

f ek = T-l[f ek*  ] = logio [ ( f ek*)+ 1 ], (29) 

for all nonzero values in f ek*. Example 2: Let a parabolic structuring element be 

k (x) = x 2, where a is equal to 1. We quantize the parabolic function as the following: 
4 



when x is 

[ —4 —3 —2 —1 0 1 2 3 4 ] , 

y is equal to 

[ —16 —9 —4 —1 0 —1 —4 —9 —16 ] . 

It is clearly a convex structuring element. The mathematical transformation defined as 

1FL 1 k(x)I j =! k(x)1 1/2  , can satisfy the conditions in Proposition 1. By applying 

k*  = —ii[ I k(x) 1 ] = — x, we can obtain 

k*  : [ —4 —3 —2 —1 0 —1 —2 —3 —4 ] . 

Now, the structuring element k*  is linearly-sloped. Hence k*  can be decomposed using 

iterative dilations of a structuring component of size 3, such that k *  = k1 s k1 k 1 k 1, 

where 

k1  = [-1 0 —1] . 

Hence, 

f ek*  =(((f ek1) ek1) ek i )ek i . (30) 

The result off ek can be obtained by using eq. (32), such that 

2 

f ek=krl[f ek*  ]=(f ok*) , (31) 

for all nonzero values in f ek*. 



1.5 2D GEOMETRIC-SHAPED STRUCTURING 
ELEMENTS DECOMPOSITION 

1.5.1 Hemisphere, Hemiellipsoid, Gaussian and Elliptic Paraboloid 

A 2D geometric-shaped structuring element k (x,y) is actually the geometric surface: 

f (x,y,z) = 0 in a 3D Euclidean space. We assign each point in the structuring element by 

the negated distance from this point to the horizontal plane tangent to the top of the sur-

face in order to ensure that k (x,y) is decreasing. A hemisphere can be represented impli-

citly by 

f (
x,

y
,z) = x2 +y2 + z2 r2 = 0 , (32) 

where x I < rdy 15_ r, 0 < z S r, and r denotes the radius. Eq. (32) can be rewritten in the 

explicit form of 

z = -\/r2  — x2  — y 2  . (33) 

From Definition 1 in Section 2, it is known that the hemisphere is an eccentrically 

decreasing structuring element. For computational simplicity, a constant "—r" is added 

to suppress the z-value at the origin to zero. Hence, 

k(x,y)=1tr 2  — x 2  — y 2  — r . (34) 

The similar method can also apply to other geometric-shaped structuring elements as 

listed in Table 2. 

The presented 2D geometric-shaped structuring elements are all convex except the 

Gaussian which is combined convex and concave. Since all of them are not additively-

separable, they can be decomposed only using the maximum selection of several seg-

mented structuring components [5], such decomposition is not efficient in the calcula-

tion. In the following section, we present a strategy to decompose them into the dilations 



Table 2. 2D Geometric-Shaped Structuring Elements 

Name Representation Structuring Element 

— --- 
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of smaller structunng components 

1.5.2 Decomposition Strategy 

Pi ()position 6 A 2D eccentrically decreasing, geometric-shaped structuring element 

k (x,y) can be represented by 4 k A,y) = g ( p (x) + q (y)) + c, where g ( ) represents a 

geometric-shaped function, p (x) and q (y) are functions of only x and v. respectively, and 

c is a constant. If the function g ( ) and a transformation `I' satisfy that for all 0 < x 1 < 

and x 2  < x 1  <0, there exists g ( p (x 1 ) +q (y) ) > g ( p (x 2  ) q (y) ) and 

0 _C. I k 1 ,y)1] < ifq k (x 2,y )1], and for all 0 < y 1 < y 2  and y 2  < y 1  < 0, there exists 

g(P(x)±q(vi) )> g(P(x)+ q(y2 )) and 0...T[ik(x,y1 )1]< T[lk(x,y2 )I]. Then we 

can get a new structuring element k * , in which k * (x , y ) = —411 k (x,y) I J, where 

k x , y ) 5 0. The k *(x,y) can be used in morphological erosion and r'ilation on a binary 

image f, so that the desired result (f e k)(x,y) can be obtained by 

(le k)(x,Y)= G  k *  )(x.Y)], (35) 



for all nonzero values in (f e k*  )(x,y), and (f (I4  k)(x,y) can be obtained by 

(f ea) k)(x,y)= C - 41-1  IC - (f 4a3,  k *  )(x,y)] , (36) 

for all nonzero values in (f 63,  k*  )(x,y). The proof which is similar to the proof in Propo-

sition 1 in the 1D case, is skipped. Proposition 7. If a 2D eccentrically decreasing, 

geometric-shaped structuring element k (x,y) which satisfies that 

k (x,y) = g ( p (x) + q (y) ) + c, where g ( ) represents a geometric-shaped function, p (x) 

and q (y) are both convex and in the same sign, and c is a constant, then k can be decom-

posed using dilations of smaller structuring components through a mathematical transfor-

mation. [Proof]: Select a transformation tls = I g-1 1 in Proposition 6. Then we have 

k * (x,y)= - TI ik(x,Y) I] =- W[Ig(p(x)+ q (y) )+ c j] = -ip (x)+ q (y) + el. (37) 

Since p (x) and q (y) are convex and in the same sign, we can obtain 

k*  (x,y) = -ip (x)1- I q (y)I± c . (38) 

It is clearly that k * (x,y) is a additively-separable convex structuring element, hence it 

can be decomposed using dilations of smaller structuring components according to Pro-

perty 5 in Section 3. 

Q.E.D. 

Beside the above propositions, the Propositions 3 and 4 in Section 4B for the 1D 

case also can be applied to 2D. An example of the decomposition of a hemispheric-

shaped structuring element is given below. Example 3: A 3D hemispheric surface is 

given by placing r = 4 in eq. (33), then we have 

z ="\116 -x2  - v2  . (39) 



The hemispheric-shaped structuring element can be constructed as 

k (x,y) ="\116 -x2 -y2 -4 =-(4 -416-x2  - y2  ) . (40) 

The mathematical transformation defined as 

11[1k(x,y)1]=-((-(ik (x,y )1-4 ))2  - 16 ) 

can satisfy the conditions in Proposition 6. By applying k*  = -11[ k(x,y)1], we can 

obtain 

k *  (x,y)= -x 2  -y2  . (41) 

The new structuring element k*  is additively-separable and convex and it can be numeri-

cally represented as 

-13 -10 -9 -10 -13 
-13 -8 -5 -4 -5 -8 -13 
-10 -5 -2 -1 -2 -5 -10 

k*: -9 -4 -1 0 -1 -4 -9 
-10 -5 -2 -1 -2 -5 -10 
-13 -8 -5 -4 -5 -8 -13 

-13 -10 -9 -10 -13 

Hence, k *  can be decomposed as: k*  = k 1  e)  k2 e k3, where 

-2 -1 -2 -6 -3 -6 -5 
k1  = -1 0 -1 , k2  = -3 0 -3 , k3  = -5 0 -5 . 

-2 -1-2 -6 -3 -6 -5 

The result off ek can be obtained by using eq. (35), such that 

f ek=11-1  [fek*  1=- -\/-(fek*  )+16 +4 . (42) 



1.6 DECOMPOSITION OF A LARGE TRANSFORMED CYCLIC COSINE 
STRUCTURING ELEMENT 

In Fig. 2, we mention that a large cyclic cosine structuring element (i.e. nondecreasing) 

has no significant meaning, because its morphological operations will result in a constant 

image. However, in image processing and computer graphics, it is sometimes useful to 

form some geometric-shaped surfaces onto a xy-plane. By applying a mathematical 

transformation, the nondecreasing structuring element can be converted into a decreasing 

element. Therefore, the morphological erosion by the new transformed structuring ele-

ment followed by an inverse transformation may yield such a geometric-shaped surface. 

A 2D cyclic cosine structuring element k (x,y) is given by 

k (x,y) = cos (1x 2  +y2  ) - 1 . (43) 

When the domain of -42  + y 2  exceeds a cycle 2rt, k (x,y) will become nondecreasing. 

By applying a transformation T[ k (x,y)1] = ( cos-1( - (x,y) - 1 ) ) )2  , a new struc- 

turing element is constructed, such that k*  (x,y) = -T[ k (x,y)j] = -x2  - y2  which is 

decreasing and convex. The inverse transformed morphological erosion '1-1-1[ f e k *  ], 

as illustrated in Fig. 6, is equal to 

T-1  [ f ek* ]= -cos( ek*  )+ 1 , (44) 

where 8 is an angle which x = 8 in the cosine function represents x = 1 in k*  . In the fol-

lowing decomposition, we describe the procedure by illustrating a 17 x 17 2D cyclic 

cosine structuring element. Many large-sized 1D or 2D cyclic geometric-shaped structur-

ing elements can be obtained by applying the similar procedure. 

Since the new structuring element k*  (x,y) = -(x2  + y 2) which is symmetric to its 

center, it can be numerically expressed for simplicity by its upper-right quadrant using 



the unit 0 = —It in the cosine function as the following: 4 

-64 -65 -68 -73 -80 -89 -100 -113 -128 
-49 -50 -53 -58 -65 -74 -85 -98 -113 
-36 -37 -40 -45 -52 -61 -72 -85 -100 
-25 -26 -29 -34 -41 -50 -61 -74 -89 

16 17 20 25 32 -41 -52 -65 -80 
-9 -10 -13 -18 -25 -34 -45 -58 -73 
-4 -5 -8 -13 -20 -29 -40 -53 -68 
-1 -2 -5 -10 -17 -26 -37 -50 -65 
0 -1 -4 -9 -16 -25 -36 -49 -64 

The erosion of a binary image f by the structuring element k *  is: 

f ek*  = (((((((f oki) ek2) ek3) ek4) eks) ek6) ek7) 01(8 , (45) 

where 

-2 -1 --f, -6 -3 - -10 -5 -1 
k1  = -1 0 -1 , k2  = -3 0 -3 , k3  = -5 0 -5 , 

-10 -5 -1 -2 -1 -2 -6 -3 - 

-14 -7 -1 -18 -9 -18 -22 -11 -22 
k4  = -7 0 -7 , k 5 = -9 0 -9 , k6  = -11 0 -11 , 

-14 -7 -1 -18 -9 -18 -22 -11 -22 

-26 -13 -26 -30 -15 -3 
k7  = -13 0 -13 , and k 8  = -15 0 -15 . 

-26 -13 -26 -30 -15 -3 

Hence, 

t1'-1  [f ek*  ]= -cos Lt4 -qf ek*  +1 , (46) 

as shown in Fig. 6. 



1.7 DECOMPOSITION OF 2D STRUCTURING 
ELEMENTS INTO 1D ELEMENTS 

According to Proposition 6 in Section 5B, we observe that many 2D geometric-shaped 

structuring elements in the form of k (x,y) = g ( p (x) + q (y)) + c, can be transformed 

into k *  (x,y) which is additively-separable and convex. This kind of structuring element 

k*  (x,y) can be further decomposed into a dilation of two 1D structuring components, one 

in x-direction and the other in y-direction, and both are convex. Furthermore, these 1D 

convex structuring elements can be again decomposed into a series of dilations of size 3 

structuring subcomponents according to Property 5 in Section 3. Example 4: Let k*  (x,y) 

be 

- - 
—8 —5 —4 —5 —8 
—5 —2 —1 —2 —5 

k*  = —4 —1 0 —1 —4 . 
—5 —2 —1 —2 —5 
—8 —5 —4 —5 —8 

The k*  (x,y) can be decomposed as k *  (x,y) = k 1(x) e. k 2(y), where 

—4 
—1 

k1 (x)= [ —4 —1 0 —1 —4 ] , k2(y)= 0 . 
—1 
—4 

The k i (x) and k 2 (y) can be further decomposed into 

k i (x)= [ —1 0 —1 ] iD [ —3 0 —3 ] , 

—1 —3 
k 2(y) = 0 (}) 0 . 

—1 —3 



1.8 CONCLUSIONS 

In this chapter, we have presented a unified decomposition technique by the use of a 

mathematical transformation. The method can apply to all kinds of 1D gray-scale struc-

turing elements to decompose them into dilations of smaller structuring components. For 

2D gray-scale structuring elements, if they are constructed by a geometric function of 

two additively-separable functions of x and y individually, then the decomposition using 

dilations of smaller structuring components can be achieved. Besides, a significant new 

result of applying the transformation to a large, cyclic, nondecreasing structuring element 

converted into another kind of the decreasing element and then performing erosion to 

construct the structuring-shaped surface is developed. Finally, the strategy of decompos-

ing 2D additively-separable convex structuring elements into 1D elements is also 

developed. The decomposition into 1D structuring elements will have the advantage of 

less calculations required than the decomposition into 2D smaller structuring elements. 

These techniques allow a user to implement his morphological algorithms and architec-

tures with more freedom in choosing any kind or any size of structuring elements and in 

the achievement of real-time feasibility. 



CHAPTER 2 

OPTIMIZATION ON EUCLIDEAN DISTANCE TRANSFORMATION 

USING GRAYSCALE MORPHOLOGY 

2.1 INTRODUCTION 

A distance transformation converts a digital binary image which consists of object (fore-

ground) and non-object (background) pixels, into a gray-level image in which all object 

pixels have a value corresponding to the minimum distance from the background. Com-

puting the distance from a pixel to a set of background pixels is in principle a global 

operation It is often prohibitively costly except that the digital image is very small 

Among many types of distance measures in digital image processing, city-block and 

chessboard distances are easy to compute and they can be recursively accumulated by 

considering only a small neighborhood at a time. However, both distance measures are 

very sensitive to the orientation of the object. 

The Euclidean distance measurement is very useful in object recognition and 

inspection because of the metric accuracy and rotation invariance. However, the global 

operation is difficult to decompose into small neighborhood operations because of the 

nonlinearity of Euclidean distance computation. Hence, the algorithms concerning the 

approximation of the Euclidean distance transformation are extensively discussed 

[9,10,11,15,16,23]. 

Borgefors [2] optimized the local distances used in 3x3, 5x5, and 7x7 neighbor-

hoods by minimizing the maximum of the absolute value of the difference between her 

proposed distance transformation and the exact Euclidean distance transformation An 

accurate Euclidean distance transformation by the morphological decomposition was 

developed by Shih and Mitchell [20]. They utilized the mathematical morphology pro-

perties and decomposed the Euclidean distance transformation into successive erosions 

by small structuring components. Their computational complexity is the order of the 



object size. In this chapter we improve the decomposition strategy by analyzing the 

square of the Euclidean distance structuring element. It requires only four erosions 

without iterative operations and is independent of the object width. 

Shih, King and Pu [21] defined a new concept called back-propagation morphology, 

which is different from the traditionally defined morphology called forward morphology. 

Unlike the forward morphological operations, the back-propagation morphological 

operations intend to feed back the output at each pixel during image scanning to 

overwrite its input and to continue in the same way until all the pixels are scanned. They 

developed a two-scan algorithm using the back-propagation morphology to derive the 

root generation of a signal without recursively applying such forward morphology. The 

operation is independent of the object size and significantly saves much of the computa-

tional time as compared with the algorithms proportional to the number of iterations in 

forward morphology. 

The grayscale morphology can be defined using the concepts of surface of a set and 

the umbra of a surface [12,13,6]. Suppose a set A in Euclidean N-space (E N  is given. Let 

F and K be {x E EN-1 | for some y € E, (x,y) E A) and be the domains of the grayscale 

image f and the grayscale structuring element k, respectively. In distance transformation 

of using graysclae morphology, the image f is limited to positive integers and the struc-

turing element k to negative integers. The grayscale dilation of f by k, denoted by f egk, 

is defined as: 

(f es,k)(x,y)= sup { f (x —m,y —n ) + k(m,n) ), (1) 

for all (m,n) € K and (x —m,y —n) E F. The grayscale erosion of f by k, denoted by 

f es, k, is defined as: 

(f egk)(x,y) = inf { f (x +m,y +n) — k (m,n) ) , (2) 



for all (m, n) E K and (x+m,y+n) E F. Note that the subscript "g" indicating the grays-

cale will be dropped out, since we are only concerned with the grayscale morphological 

operations in this chapter. 

Let N (0) be the set of (4- or 8-) neighbors that precede the central pixel 0 and 

itself in a scanning sequence of the picture within the window of a structuring element. 

Then the algorithm of back-propagation dilation of f by k, denoted by f, is as follows: 

Velc)(x,y) = sup ( [ POk(A.—m,y—n) ] + k (n, n) } , (3) 

for all (ni,n) E K and (x—m,y—n) E (N nF). Then the algorithm of back-propagation 

erosion of f by k, denoted by fra, is as follows: 

(fe)(x ,y ) = inf { [ fe(x +m ,y +n) ] — k (m,n) } , (4) 

for all (m, n) E K and (x+m,y+n) E (N nF). Readers should note that the back-

propagation morphological operations are identical to sequential operations proposed 

by Rosenfeld and Pfalt: [17] if they are applied to distance transformation. 

Since the back-propagation dilation (erosion) adopts the dilated (eroded) results of 

the preceding scanned neighbors to be involved in its computation, its output inherently 

depends on the image scanning sequence. In general, an image scanning can be classi-

fied into one-dimensional (1D) and two-dimensional (2D) scans. In moving from point to 

point, we always move from a point to one of its eight neighbors. The moving direction 

is measured counterclockwise from the positive x-axis. Thus, the 1D scan can be 

separated into eight directions: 1) "L" denotes left-to-right or 0°; 2) "R" denotes right-

to-left or 180°; 3) "T" denotes top-to-bottom or 270°; 4) "B" denotes bottom-to-top or 

90°; 5) "45°"; 6)"135°"; 7)"225°"; 8)"315°." The 2D scan can have four scanning 

sequences starting from a corner pixel: 1) "LT" denotes Ieft-to-right and top-to-bottom 



(Note: this is a usual television raster scan.); 2) "RB" denotes right-to-left and bottom-

to-top; 3) "LB" denotes left-to-right and bottom-to-top; 4) "RT" denotes right-to-left 

and top-to-bottom. 

Assume a 3x3 structuring element k is denoted by 

A l  A 2 A 3 

k= A4 A5 A6 . (5) 
A7 A8 A9 

Because of the back-propagation effect with respect to the scanning direction, all 

nine elements A1, A9  actually are not used at a time in computation. The redefined 

structuring element for the back-propagation morphology must satisfy the following cri-

terion: wherever a pixel is being dealt with, all its neighbors defined within the structur-

ing element k must have already been visited before by the specified scanning sequence. 

Thus, the k in one dimension is redefined as: 

- - - - 
A 2 X 

k,=[A4 A5 X ], kg=[X A5 A6 ], kT= A5 , kB=  A5 , 
A 8 

- - - 

X x A3 A l  

k450= A 5 , k 1350= A 5 k2250= A 5 , k3150= A 5 ; (6) 
A 7 A 9 x X 

the k in two dimensions is redefined as: 

A1  A2 A3 X x X x X x Al A2 A3 

kLT=  A4 A5 x , kgg= x A5 A6 , kg= A4 A5 X , kgT= X A5 A6 , (7) 
x x x A7 A8 A9 A7 A8 A9 x X x 

where "x" means don't care or it can be defined as "—oc" according to the mathemati-

cal morphology properties [12,19,2]. 



A complete omnidirectional scanning in the image space can be achieved by using 

eight-scan in one dimension or two-scan in two dimensions. The eight-scan method 

adopts eight back-propagation morphological filters sequentially in a non-specific order 

of eight scanning directions, L, R, T, B, 45°, 135°, 225°, 315° working on the 

corresponding structuring elements kL, kR, kT,  kB, k45., k - 135°1 k 225° 5 
k 3150 , respectively. 

The two-scan method adopts two back-propagation morphological filters, the first one 

being any of the four 2D scans LT, RB, LB, RT working on its corresponding structuring 

element, and the second one being the opposite scanning sequence of the first scan and 

its scan-related structuring element. For example, the opposite scanning of LT is RB. 

In this chapter, we present three algorithms to the Euclidean distance transformation 

in digital images by the use of the grayscale morphological erosion with the squared 

Euclidean distance structuring element. The theoretical verification is provided in Sec-

tion 2. Section 3 describes a 1D decomposition algorithm for the squared Euclidean dis-

tance structuring element. Section 4 gives another 2D decomposition algorithm using 

iterative erosions. In Section 5, we present an optimal double two-scan algorithm. The 

example and computational complexity of each algorithm are also provided in each sec-

tion. 

2.2 EUCLIDEAN DISTANCE TRANSFORMATION USING THE SQUARE OF 
THE EUCLIDEAN DISTANCE STRUCTURING ELEMENT 

There are six types of distance measures discussed by Borgefors in [10]: City-block, 

Chessboard, Euclidean, Octagonal, Chamfer 3-4, and Chamfer 5-7-11. The morphologi-

cal approach to the Euclidean distance transformation presented here is a general method 

which uses a pre-defined distance structuring element to obtain the expected type of the 

distance measure. 

By defining the central point 0 of the structuring element as the origin in the 



(x, y)-coordinates, we can represent the value of each element by the negative of its dis-

tance from 0 (so that 0 is represented as 0). We select the element to be the negative of 

the related distance measures because the grayscale erosion is a minimum selection after 

subtraction. This gives a positive distance measure. 

The Euclidean distance structuring element, denoted by k(x,y) _ .qx2 + y2 , can  

be expressed as follows: 

---N/10 _3 —i10 413 418 

—AI13 —2 --X —ART 

--J2 —1 
—3 —2 —1 0 —1 —2 —3 

410 ---Vf —1 --‘17 

-- \113 

-- \11.T.  —.00 —3 --410 413 418 

The structuring element k can be decomposed using the concave decomposition 

strategy [5]. In other words, the structuring element can be decomposed into the max-

imum selection of several structuring components and thus needs more operations than 

the convex decomposition in which the structuring element can be decomposed into suc-

cessive dilations of these segmented linearly-sloped structuring components. The square 

of the Euclidean distance structuring element, denoted by k 2(x,y)= — (x2 + y2 ) is 

expressed as follows [14,5]: 

In k2  each absolute value is a square of the absolute value in k. The Euclidean dis-

tance transformation of a binary image f is to erode the binary image f by the distance 

structuring element k. Since the binary image f is represented by two values "+00" and 



"0," we have from eq. (2) 

- _ 
32 25 20 17 16 17 20 25 32 

—25 —18 —13 —10 —9 —10 —13 —18 —25 
—20 —13 —8 —5 —4 —5 —8 —13 —20 
—17 —10 —5 —2 —1 —2 —5 —10 —17 
—16 —9 —4 —1 0 —1 —4 —9 —16 
—17 —10 —5 —2 —1 —2 —5 —10 —17 
—20 —13 —8 —5 —4 —5 —8 —13 —20 
—25 —18 —13 —10 —9 —10 —13 —18 —25 

32 25 20 17 16 17 20 25 32 
L 

(f ok)(x)= min(inf{oo—k (z) |zEK and x+z EFL (8) 

inf{—k (z') 1 Z/E K and .x +LIE F}). 

That is all z' s satisfy that x + z is located within the object and all 2' 1' s satisfy that x+z' is 

located within the background. Because the differences of all k(z) and k (z') are finite, 

" 0. — k (;)" is greater than " 0 — k (z. ') " all the time. Hence, we have 

( f € k )(x)= inf {—k(1)1ZEK and x+IeF } . (9) 

Because the values in the structuring element are the negative of the distance meas-

ure from the center of the structuring element, the binary image f eroded by the distance 

structuring element k is exactly equal to the minimum distance from the object point to 

the background. 

If k2  is used as the distance structuring element, we have 

(f ek2)(x)= min( inf{00 — k 2(z 01 z i€K and x+z l eF), 

inf { —k2(zi')|zi'EK and x+z i'eF}). (10) 



Because the differences of all k 2(z) and k 2(z') are finite, "0 — k 2(z')" is always smaller 

than "0. — k2(z).'* Hence, we obtain 

( f e k2  )(x)= inf {—k2(z i ')|z i 'EK and x+z i 'EF } . (11) 

Hence, each z' in eq. (9) is the same as the z 1' in eq. (11) for the same image f That is 

z' = z 1'. Because —k(z'). 0 and —k2(z i'). 0, we have —k 2(z i')= [—k(z')]2  for all the 

object pixels. Because all the background pixels in the image f are zeros, they all satisfy 

that —k 2  (z 1') = [—k(z')]2  . Hence, we can obtain 

inf {—k(?)1z EIC and x+zEF } = -\/inf {—k2(z 1') 1 z i 'eK and x+zi'EF } , (12) 

which is always true for all the pixels in the image f. Therefore, we conclude that 

f e k = NG' e k2  . (13) 

The derived result in eq. (13) shows that when the Euclidean distance transforma-

tion is performed, the squared structuring element k2  can be used as the structuring ele-

ment in the morphological erosion. A square-root of the result obtained by k2  is exactly 

the same as the desired distance transformation by k. A structuring element k (x,y) is 

called additively-separable if k (x,y) = k 1 (x) + k 2(y). The structuring element k2  has the 

advantage that it is additively-separable and convex [5], so that it can be easily decom-

posed as dilations of small structuring components. 

2.3 1D DECOMPOSITION ALGORITHM FOR THE SQUARED 
EUCLIDEAN DISTANCE STRUCTURING ELEMENT 

The Euclidean distance structuring element can not be decomposed into the morphologi-

cal dilations of smaller structuring components, since it poses a non-additively separable 

problem in the off-axis and off-diagonal directions. However, if we square each pixel's 



value of the structuring element, i.e., k2, then it becomes convex and additively separ-

able. Because of the simple decomposition property for a convex and additively separ-

able structuring element, applying k2  to implement the Euclidean distance transforma-

tion is much faster and more efficient. After the image is eroded by the structuring ele-

ments k2, the exact Euclidean distance values can be obtained by taking a square-root on 

the eroded output. 

There are several kinds of decomposition strategy which can be applied to k2. One 

is to decompose k2  into a dilation of two ID structuring components, and the others will 

be presented in Sections 4 and 5. Assuming that the object has the size 2N x 2M , the dis-

tance structuring element must have a larger size than the object. Suppose the values 

outside the defined structuring element are considered as "—co." Thus, the dilation of a 

1D horizontal structuring element k 1(x) with a 1D vertical one k2 (y) will construct a 2D 

structuring element k (x,y). The Euclidean distance transformation (EDT) can be 

obtained by 

EDT = -\1 ( f e k2  ) ( x, y) , where k 2  (x,y) = k i (x) e k 2(y) . (14) 

The k i (x) and k2 (y) can be further decomposed as 

k1(x)=k11(x) 41)  k12(x) 49  ... (14  k IN (X ) , (15) 

k2(Y)= k210') El?  k220') E°  "' El4  k2m(Y). (16) 

Furthermore, one of the two iterative erosions in k 1 (x) and k 2(y) can be performed 

by using the two-scan back-propagation erosion. Since k i (x) = — x 2  and k 2(y) = — y 2 

are convex, we can take a square-root of them to obtain the linearly-sloped structuring 

elements [19] . That is k 1*  (x) = — x and k 2 * (y) = — y. The iterative operations of 

linearly-sloped structuring elements can be achieved by using the two-scan algorithm 



mentioned in Section 1. That is, the kl (x) and k; (y) can be separated into 

{41  (x), 142(x)} and {k210'), k22 V, respectively, according to eq. (6). Hence, 

f -042 )2  () k2  if N M 
EDT = (17) 

( f -ek2* 1 "k2.*2 2 e ki , if  N < M - 

Example 1. For expressional simplicity, the squared Euclidean distance structuring ele-

ment k 2  (x ,y ) of size 7 x 5 is given as 

—13 —8 —5 —4 —5 —8 —13 
—10 5 2 1 2 5 10 

k2(x,y) = —9 —4 —1 0 —1 —4 —9 . 
—10 5 2 1 2 5 10 
—13 —8 —5 —4 —5 —8 —13 

The k 2(x,y) can be decomposed as k 2(x,y) = k i(x) 43) k 2(y), where 

—4 
—1 

k (x) = [ —9 —4 —1 0 —1 —4 —9 ] , k2(y) = 0 . 
—1 
—4 

Since k 2  have the size 7 x 5, we obtain N = 3 and M = 2. The k 1(x) and k 2(y) can be 

further decomposed into 

k1(x) = k11(x) ki2(x) k13(x)=[-1 0 —1] [-3 0 —3] [ -5 0 —5 ] , 

—1 —3 
k2()')=k210') k22(y) = 0 s 0 . 

—1 —3 

Because N > M, the eq.(17) is applied. We have 

EDT =A1( f (x) -Gen (x) )2  ° 20') , 



where 

en  (x) = [ —1 0 x ] , 142 (x) = 1x 0 —1 1 , 

—4 
—1 —1 —3 

k2(y) = 0 = 0 e 0 . 
-1 —1 —3 
—4 

Most of the Euclidean distance transformation algorithms need iterations of calcula-

tion over all pixels' values. The number of iterations is proportional to the largest length 

or width of the object. In other words, the number of iterations is equal to the largest 

chessboard distance in the distance transformation. Here we denote it as C. 

2.3.1 1D Algorithm 

In general, the distance transformation of a 2D binary image is a 2D global operation. It 

can be separated into successive 1D grayscale morphological operations. Assuming 

A 7  ?_111 , the 1D Euclidean distance transformation algorithm is described as follows. 

(1) d = f 4A-1 0 x 1-0[ x 0 —1 ] 

(2) For i = 1, length, 1 do 

For j = 1, width, 1 do 

if ( dii > 1) then dij = di12  

—1 —3 [ —(2C-1) 
(3) e = d e 0 0 0 e — e 0 = d e 

—1 —3 —(2C-1) _ 
—(2/-1) 

* 0 , /=1,2,...,C 
—(2/-0_ - 

where " e*" denotes the iterative erosions and 1 indicates the iteration number. 

(4) For i = 1, length, 1 do 



For j = 1, width, 1 do 

if ( eij  > 1) then eta  = (e1  ) 1/2  

The final output e is the result of Euclidean distance transformation. Note that in 

the third step if the largest chessboard distance C is unknown, the iterations will stop 

until two successive outputs do not change any more. 

Example 2. Let a binary image f be of size 12x11: 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 255 255 255 255 255 255 255 255 0 0 
0 0 255 255 255 255 255 255 255 255 0 0 
0 0 255 255 255 255 255 255 255 255 0 0 

f = 0 0 255 255 255 255 255 255 0 0 0 0 , (18) 
0 0 255 255 255 255 255 255 0 0 0 0 
0 0 255 255 255 255 0 0 0 0 0 0 
0 0 255 255 255 255 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0_ 

where "255" represents the object pixel and "0" the background pixel. The result of 

exact Euclidean distance transformation should be: 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 2 2 2 2 2 2 1 0 0 
0 0 1 2 3 3 -,15 ,r2. 1 1 0 0 

EDT= 0 0 1 2 -4 -‘/5 2 1 0 0 0 0 . (19) 
0 0 1 2 -‘,T ,/f. 1 1 0 0 0 0 
0 0 1 2 2 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

In the first step by applying the back-propagation morphological erosion to f with the 



structuring element [ -1 0 x ] in the left-to-right scanning, we obtain 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 2 3 4 5 6 7 8 0 0 
0 0 1 2 3 4 5 6 7 8 0 0 
0 0 1 2 3 4 5 6 7 8 0 0 
0 0 1 2 3 4 5 6 0 0 0 0 . 
0 0 1 2 3 4 5 6 0 0 0 0 
0 0 1 2 3 4 0 0 0 0 0 0 
0 0 1 2 3 4 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

Next by applying the back-propagation morphological erosion with the structuring 

element [ x 0 -1 ] in the right-to-left scanning, we obtain 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 2 3 4 4 3 2 1 0 0 
0 0 1 2 3 4 4 3 2 1 0 0 
0 0 1 2 3 4 4 3 2 1 0 0 

d= 0 0 1 2 3 3 2 1 0 0 0 0 . 
0 0 1 2 3 3 2 1 0 0 0 0 
0 0 1 2 2 1 0 0 0 0 0 0 
0 0 1 2 2 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

In the second step by squaring each object pixel, we obtain 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 4 9 16 16 9 4 1 0 0 
0 0 1 4 9 16 16 9 4 1 0 0 
0 0 1 4 9 16 16 9 4 1 0 0 

d2 = 0 0 1 4 9 9 4 1 0 0 0 0 . 
0 0 1 4 9 9 4 1 0 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

In the third step, we perform iterative erosions by 1D structuring components of size 



3 until no further pixel value changes. After applying the forward morphological erosion 

by 

- 1 
0 , 

-1 

we have 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
O 0 1 1 1 1 1 1 1 1 0 0 
O 0 1 4 9 16 16 9 4 1 0 0 
0 0 1 4 9 10 5 2 1 1 0 0 
0 0 1 4 9 9 4 1 0 0 0 0 . 
0 0 1 4 5 2 1 1 0 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 - 

After applying the erosion by 

- 3 
0 , 

-3 

we obtain 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 4 4 4 4 4 4 1 0 0 
0 0 1 4 9 10 5 2 1 1 0 0 
0 0 1 4 8 5 4 1 0 0 0 0 . 
0 0 1 4 5 2 1 1 0 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 - 



After applying the erosion by 

r
-5- 

0  , 
—5 

we obtain 

- 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 
0 0 1 4 4 4 4 4 4 1 0 
0 0 1 4 9 9 5 2 1 1 0 

e= 0 0 1 4 8 5 4 1 0 0 0 . (20) 
0 0 1 4 5 2 1 1 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

After applying the erosion by 

—7 
0 , 

—7 

the output remains unchanged, hence the iterations stop. At last, by taking a square-root 

for each object pixel, we accomplish the Euclidean distance transformation which is the 

same as the expected result in eq. (19). 

2.3.2 Computational Complexity 

The 1D decomposition algorithm for the Euclidean distance transformation is mainly 

composed of morphological erosions and the mathematical computation such as square 

and square-root. Morphological erosions involve subtraction and minimum selection. 

Therefore, the computational complexity depends on the number of the subtraction, 

minimum selection, square, and square-root operations. Assume P is the total number of 

pixels in the object, and C is the largest chessboard distance. The computational 



complexity is computed as: 

Complexity = P [ 2 ( 2 subtraction + 1 minimum )+ 1 square 

+ C ( 3 subtraction + 1 minimum )+ 1 square —root I 

= (4P + 3CP ) subtraction + (2P + CP ) minimum + P square + P square —root 

=O ( CP ) , 

which is the order of CP . 

2.4 2D DECOMPOSITION ALGORITHM USING ITERATIVE EROSIONS 

Since the structuring element k2  is convex and additively separable, it can be decom-

posed into dilations of small structuring components. Hence, the Euclidean distance 

transformation is the iterative erosions by a set of small structuring components and then 

a square-root operation. 

2.4.1 2D Iterative Erosions Algorithm 
_ 

—(4/-2) —(2/-1) —(41-2)- 
(1) d = f e* —(21-1) 0 —(21-1) , 1 = 1, 2, ---, C 

—(4/-2) —(2/-1) —(41-2)_ 

(2) For i = 1, length, 1 do 

For j =1, width, 1 do 

if ( dii > 1) then clij = ( dy  ) 1/2  

The final output d11  is the result of the Euclidean distance transformation. 

Example 3. Let the binary image f be the same as given in eq. (18). In the first step by 

applying the erosion by 



-2 —1 —2 
—1 0 —1 , 
—2 —1 —2 _ 

we have the following: 

0 0 0 0 0 0 0 0 0 0 0 0- 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 255 255 255 255 255 255 1 0 0 
0 0 1 255 255 255 255 2 1 1 0 0 
0 0 1 255 255 255 255 1 0 0 0 0 . 
0 0 1 255 255 2 1 1 0 0 0 0 
0 0 1 255 255 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0_ 

After applying the erosion by 

—6 —3 —6 
—3 0 —3 , 
—6 —3 —6 _ 

we have 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 4 4 4 4 4 4 1 0 0 
0 0 1 4 255 255 5 2 1 1 0 0 
0 0 1 4 8 5 4 1 0 0 0 0 . 
0 0 1 4 5 2 1 1 0 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 0 0 0 

After applying the erosion by 

—10 —5 —10 
—5 0 —5 , 

—10 —5 —10 _  



we obtain the result in eq. (20) in which each object pixel is the square of the Euclidean 

Distance. 

2.4.2 Computational Complexity 

Complexity = P [ C ( 9 subtraction + 1 minimum ) + 1 square —root] 

= 9CP subtraction + CP minimum + P square —root 

= 0 ( CP ) 

Note that the above two algorithms have the same computational complexity as a parallel 

algorithm by Yamada [19] and a linear algorithm by Vincent [17]. 

2.5 OPTIMAL DOUBLE TWO-SCAN ALGORITHM 

The computational complexity of the algorithms presented so far is the order of CP . In 

other words, those algorithms consist of iterative operations, such that they depend on the 

number of iterations which is the object width. In this section, we present an optimal 

double two-scan algorithm which employs only four back-propagation morphological 

erosions to implement the Euclidean distance transformation in order to avoid the time-

consuming iterations. In the algorithm, k 1  and g 1(1) are the raster-scan structuring ele-

ments, and they are used in the image scanning left-to-right and top-to-bottom. The 

k 2  and g2(l) are the inversed raster-scan structuring elements, and they are used in the 

image scanning right-to-left and bottom-to-top. 

The structuring elements used in the first two steps are to achieve the chessboard 



distance transformation. The k 1  and k2  are given as follows: 

—I —1 —1 x x x 
k1  = —1 0 x , k2  = x 0 —1 . (21) 

x x x —1 —1 —1 _    

The structuring elements g 1(1) and g 2(1) used in the third and fourth steps are functions 

of the parameter l. That is 

—(41-2) —(21-1) —(41-2) 
g 1(0= —(2l-1) 0 x , (22) 

x x x 

x x x 
82(0= x 0 —(2/-1) . (23) 

—(4/-2) —(2/-1) —(4/-2) 

2.5.1 Double Two-scan Algorithm: 

(1) D = f -a 1 • 

(2) E = f -a 2  . 

(3) For i = 1, length, 1 do 

For j = 1, width, 1 do 

/ = Dii.  

Rif = [ f 45)g 1(1)1,j • 

(4) For i = length , 1 , —1 do 

For j = width , 1 , —1 do 

/ =Ei; 

Qi,={ R 44 2(1) Ji, j  • 

(5) For i = 1, length, 1 do 

For j = 1, width, 1 do 



if( Qi., > 1 ) Qt., =-Nra.7. 

In the third step, the image D is used as the index value 1 to obtain g 1(1) in eq. (22). 

In the fourth step, the image E is used as the index value 1 to obtain g 2(l) in eq. (23). 

The flow chart of the double two-scan algorithm is shown in Fig. 1. 

Example 4. Let the binary image f be the same as given in eq. (18). After the first step, 

we obtain 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 2 2 2 2 2 2 1 0 0 
0 0 1 2 3 3 3 3 2 1 0 0 
0 0 1 2 3 4 4 3 0 0 0 0 . 
0 0 1 2 3 4 4 1 0 0 0 0 
0 0 1 2 3 4 0 0 0 0 0 0 
0 0 1 2 3 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0_ 

After the second step, the result is 

- _ 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 2 3 3 3 3 2 1 0 0 
0 0 1 2 3 3 2 2 2 1 0 0 
0 0 1 2 3 3 2 1 1 1 0 0 
0 0 1 2 2 2 2 1 0 0 0 0 . 
0 0 1 2 2 1 1 1 0 0 0 0 
0 0 1 2 2 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 



After the third step, we obtain the result R 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 0 
0 0 1 4 4 4 4 4 4 2 0 0 
0 0 1 4 9 9 9 9 7 2 0 0 
0 0 1 4 9 16 16 14 0 0 0 0 . 
0 0 1 4 9 16 23 2 0 0 0 0 
0 0 1 4 9 16 0 0 0 0 0 0 
0 0 1 4 9 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0_ 

After the fourth step, the result is 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 0 
0 0 1 4 4 4 4 4 4 1 0 
0 0 1 4 9 9 5 2 1 1 0 
0 0 1 4 8 5 4 1 0 0 0 . 
0 0 1 4 5 2 1 1 0 0 0 
0 0 1 4 4 1 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 _ 

At last, by taking the square-root for all object pixels, the result is the Euclidean dis-

tance transformation. 

2.5.2 Computational Complexity 

The parametric structuring elements g 1(1) and g2(l) can be obtained easily using the 

table look-up. The computational complexity of this algorithm is computed as follows: 

Complexity = P [ 4 ( 5 subtraction + 1 minimum ) 

+ 2 look —up + 1 square —root ] 

= 20P subtraction + 2P look—up + 4P minimum 



+ P square —root 

= 0 ( P ) . 

Hence this algorithm can be implemented very fast by using the systolic array two-scan 

architecture [15], especially when the object size grows or the largest chessboard dis-

tance is large. 

2.6 CONCLUSIONS 

Three new techniques for the Euclidean distance transformation are proposed. They are 

based on the morphological erosion. The forward morphology and back-propagation 

morphology techniques have been used in these algorithms. Using these algorithms, we 

can obtain the exact result of the Euclidean distance measure instead of the approximated 

result proposed by others previously. The computational complexity of three algorithms 

has been analyzed in this chapter. The double two-scan algorithm has the optimal com-

putational complexity which is independent of the object size. Using the parallel pro-

cessing, we can further speed up the Euclidean distance transformation when the double 

two-scan algorithm is employed. 



CHAPTER 3 

Shape Features Extraction Using Mathematical Morphology 

And Its Application to Character Recognition 

3.1 INTRODUCTION 

Character Recognition has been a widly researched problem. There are some solutions to 

this problem which have been tested and used In particular, mathematical morphology 

can he a good approach Mathematical morphology can be used very efficiently in 

extracting the object's features by designing a set of structuring elements corresponding 

to the primitive shapes of the object. The structuring elements design gives the random-

ness and flexiblity to feature represention People use intuitive shape instead of 

mathematical denotion 

The designing of a set of suitable structuring elements is a key issue and a long-term 

research problem The set of primitive shapes in an object have different degrees of 

importance to represent the object and to distinguish from the other objects. The pixels 

m a primitive shape have also the different degrees of importance. Traditionally in tem-

plate matching, a designed mask corresponding to all pixels in the primitive shape is 

coorelated with the image to extract the locations of the matching pattern. In this 

chapter, the structuring element we use IS composed of only a few important pixels 

instead of all the pixels in the primitive shape. Hence, the structuring element is simpler 

and the morphological operation is faster. Besides, the set of structuring elements are 

independent to each other and can be operated in parallel. The result can be combined by 

a weighted sum of intermediate outputs that can be implemented using the neural net-

works approach. Thus, the application to character recognition can be performed fast 

The morphological operations used are erosion and hit-and-miss [25]. If the match-

ing of the foreground and background pixels is intended, then the hit-and-miss operation 



is used. If the matching of only foreground pixels is intended, then the erosion is adopted. 

After either operation, if an object contains the primitive shape embeded in a structuring 

element, then some points will be left in the object. 

Since the domain of objects dealt with in optical character recognition is restricted, 

all the structuring elements can be priorly designed and stored in a database with their 

indexes. Each character is linked to several indexes of structuring elements. Each index 

is accompanied with the information such as the choice of the erosion or hit-and-miss 

operation and the structuring element's weight along with a flag which is "1" or "4" 

indicateing this templete should exist in object or not. 

This chapter describes a technique of feature extraction and recognition by 

mathematical morphology. Such a technique is quick and simple. Ths second part intro-

duces recognition procedure, third part presents the recognition criterion. 

3.2 Morphological Features Selection 

There are two types of features: global and local features. The global feature is to extract 

the shape information in the whole character image. The local feature is to extract the 

shape information limited in a portion of the character image, including geometric and 

topological properties, e.g. stroke direction, length, and position. Based on the intra-

character and inter-character relationship, the importance (or unimportance) can be put 

on different weights summarized as excitatory (positive) or inhibitory (negative) weights. 

The advantages of our technique are that no need of thinning and distortion 

allowance. 

3.2.1 Intersection points 

Characters consist of strokes or curves which may intersect at certain locations. 



Considering a noisy character image, the occurrence of the center of such intersection 

points has the largest probability to exist. That is the use of those intersecting centers is 

reliable for the pattern matching purpose. If the binary character image is performed by a 

distance transformation, the center of intersection points of lines is equivalent to the 

point with the distance values which is the local maxima. Thus these centers can be used 

to design templetes. 

3.2.2 Shape information 

Shape imformation play an important role in character recognition. There are many dif-

ferent shapes, like straight line, curve, hole, point, etc. For curve, which is most compli-

cated to represent, has many kinds of location, radius, and orientation. Designing mor-

phological structuring elements to represent these, however, is not very complicated. 

This is one of the advantage of morphology. 

The number of primitive shapes is limited in a particular domain. Say, we 

want to recognize the capital and non-capital characters, we can use only about 20 prim-

itive shapes to detect features. Most of them are strokes, arcs and combination of strokes 

or arcs or both of them. Strokes include long vertical line, short vertical line, horizontal 

line, slanted line, and combination of straights, such as "I-" ,etc. Arcs are designed as 

half circle, (left or right half circle), shape to detect the upper curve, shape to detect 

lower part of characters and also some special shapes. Structuring elements are designed 

in binary templetes, for each above primitive shape, we use suitable pixels in templete to 

represent it. 

After we have choose the simple shapes, problems left is how to represent it in 

structuring elements. Since we use normalized characters as objects, the window size we 

use here is 16*16. The criterion here is these pixels for one feature in the structuring ele-

ment along with the operation can not match any other feature. That means, the pixels 



can and only can represent its own feature. In the meanwhile, the pixels should be 

minimal in order to reduce the computational complexity. For example, we have two 

kinds of vertical lines: long vertical line and short vertical line. For long vertical line, we 

use five pixels distributed equally in the vertical direction in the templete to match it, the 

operation we use is morphological erosion. For short vertical line, we use three pixels 

distributed equally in half of the window length, the operation we use is morphological 

hit-and-miss. 

Thus, structuring elements are designed to represent corresponding simple shapes in 

the objects domain. Complex shapes are formed by these simple shapes. Feature recog-

nition is to map the fixed list of simple shapes to the unknown object. Then, using the 

previous formular to combine the results and get the result. 

3.2.3 Distinguishable points 

Some characters can be matched as the same for all other structuring elements except 

their exclusive curves or exclusive points. For examples, in non-capital characters, "i" 

and "1" , the points in the upper part 

of the center column are distingusable points. In capital characters, like "I' and "J", 

"P" and "R", etc. In these cases , these distinguishable points are one of the most 

important recognition condotions for them. To recognize these characters, we design the 

structuring element containing the distinguishable parts represented by several pixels. 

For instance, to seperate "P" from "R", we design a templete having feature of the 

lower left part of "R", which is composed by an arc and a slanted line. When we do 

matching with "P", the corresponding operation is erosion, with the flag "-1"; while 

matching with "R" we perform erosion and the flag is "1". 

3.3 Recognition Procedure 



Each character can be recognized by designing a corresponding set of structuring ele-

ments. Different characters should have different sets of structuring elements. Some 

structuring elements may be applied to multiple characters. The designing criteria will be 

presented in Section ?. According to the degree of importance of the primitive shape, the 

structuring element is assigned a predefined weight, say p1 . The p, are determined by 

statistics and experiments which can be positive within a given range. 

Suppose there are totally n structuring elements K, (i = n) used in a character. 

For each structuring element, the input image is performed by a morphological erosion or 

hit-and-miss operation. If there are some pixels left in the output image, the value of flag 

is given; otherwise "0" is given. Let the value be denoted by v, for the i-th structuring 

element. Thus, the matching result of the character is computed by 

VJP1 P 
i=1 

Perform morphological erosion to unknown object using all sets of structuring ele-

ments in parallel processing, and selects the biggest probability value and its object, we 

can quickly do the recognization. 



Fig. 1. A linearly-sloped structuring element. 



Fig. 2. A binary image f with two gray levels, 0 indicating 
background and C indicating foreground, and a 
large cyclic cosine structuring element k. 



Fig. 3. A convex structuring element. 

Fig. 4. A concave structuring element. 



Fig. 5. An example of a binary image f eroded and dilated 
by a convex structuring element k 



Fig. 6. The inverse transformation of the eroded result of f 
by k * , such that k *  is the new transformed cyclic 
structuring element of k. 
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