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ABSTRACT 

Modeling, Evaluation, and Control of a 
Flexible Manufacturing Cell Using Petri Nets 

by 
Glenn Arthur Thorniley 

This thesis describes the usefulness of Petri nets in modeling, evaluating, and 

controlling a Flexible Manufacturing Cell (FMC). The basics of Petri net theory are 

explained and a specific FMC is examined. First, the FMC is modeled. The purpose 

of modeling is to facilitate the evaluation and provide a framework on which the 

control methodologies can be applied. The objective of the evaluation is to determine 

how the FMC would benefit most by replacing or adding equipment. Several ideas on 

control are combined to form a useful framework for the designing of the control net. 

With this framework the control net is developed directly from the Petri net used in 

the modeling and evaluation phases. Through the use of special symbols incorporated 

into the control net, the basic input and output requirements of the system can be 

derived from the graphical control net. 
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1 INTRODUCTION TO PETRI NETS 

1.1 History 

The fundamental idea on which current Petri net (PN) theory has been built was 

originated in 1962 by Carl Adam Petri at the University of Darmstadt, Germany. 

Petri's work was soon recognized by A.W. Holt who piloted the Information System 

Theory Project of Applied Data Research, Inc., in the United States. During the 

1970's, MIT had conducted research through their Computational Structure Group. The 

Europeans became more involved in the early 1980's by arranging workshops and 

publishing conference proceedings. By the later part of the 1980's, Petri net research 

was being conducted on a broader spectrum including Japan and Australia in addition 

to most European countries and the United States [17]. Research is currently being 

conducted at many universities including, New Jersey Institute of Technology, 

University of Illinois, Rensselaer Polytechnic Institute, Carnegie-Mellon University, 

and Duke University. 

1.2 Why Use Petri Nets? 

Petri Nets are a simple, powerful, logical tool which enables the engineer to model, 

evaluate, and control complex dynamic discrete event systems. Petri net methodology 

utilizes both a mathematical and a graphical model. A graphical representation of a 

Petri net can be constructed in a building block type manner where each newly revised 

net is developed by further detailing a previous version. After the graphical model has 

been completed, a mathematical model can be written systematically. These models are 



used to evaluate the properties and characteristics of the system under investigation. 

The graphical model can even be animated with computer software to reflect real-time 

activities or simulated activity. Although this paper addresses the use of PN's in 

flexible manufacturing, further development of Petri net theory would be beneficial in 

other areas as well. Petri nets can be utilized to represent a variety of dynamic systems 

including manufacturing, computer network, communication, and traffic systems. Petri 

nets are also adept at modeling Just-in-Time manufacturing systems [21]. They are 

particularly useful in modeling flexible manufacturing systems due to their ability to 

model: asynchronous operations, concurrence, deadlock, conflicting events, and event 

driven systems [12]. In addition, Petri nets have the ability to model all states of a 

given system with a single model using different initial markings or conditions, 

whereas Finite State Machines need often be changed drastically [12]. Unlike many 

other modeling techniques, PN's can be used from design through evaluation to 

control. This makes it possible to compile the net into control code or data for 

implementation and execution on the shop floor [26]. As the different entities of 

manufacturing systems become more and more integrated, Petri nets could become the 

universal language of manufacturing systems. The remainder of this paper pertains to 

the application of Petri nets in Flexible Manufacturing. 



2 BASIC PETRI NET THEORY 

2.1 The Graphical Model 

The graphical model is constructed with places (circles), transitions (short lines or 

boxes), arcs (arrows) and tokens (dots). These symbols are illustrated in Figure 1. 

Although these four symbols seem elementary, they can be combined to model an 

infinite variety of dynamic behavior. 

Figure 1 - Petri Net Symbols 

Places and transitions are connected alternately with arcs to form a directed graph or 

net. Tokens flow from place to place via transitions. Tokens may only follow paths 

designated by the arcs and only in the specified direction. Places can represent 

operations, buffers, or resources. Tokens, when occupying a place, signify a true 

condition. For example, a place can represent the availability of a machine (resource). 

If that place contains a token then the machine (resource) is available. Conversely, the 

absence of a token in that resource place signifies that the particular resource is not 

available. Transitions generally designate the beginning or the completion of an event. 

For example, a transition could represent the beginning of a machining process. Arcs 

connect places to transitions and vice versa. These arcs designate the logical paths in 

which the tokens can follow. An arc from a place to a transition is said to be an input 



arc for that transition. An arc from a transition to a place is called an output arc. In 

addition, arcs are assigned weights. Arc weights are assumed to be one unless they are 

labeled otherwise. If an input arc has a weight of two, then two tokens are required 

before the corresponding transition is enabled. The set of input places or pre-set for 

a transition is designated as *tj  and a set of output places or post-set is designated as 

tj•. A transition is said to be enabled if all of its input places contain the required 

number of tokens. An enabled transition may fire. This firing removes tokens (number 

determined by the input arc weight) from the input places and generates tokens 

(number determined by the output arc weight) to the output places. A detailed 

explanation of this transition firing rule can be found in [17]. For a continuous 

process, such as a machining operation, a time delay (T) is associated with each 

transition. The time delay is an amount of time that elapses from the instant a 

transition is enabled until the instant it fires. For example, if an input place to a certain 

transition represents a machining operation, then the transition designates the 

completion of the machining cycle and the corresponding time delay is the machining 

or processing time. Due to the stochastic nature of most real-life processes, the process 

times are usually random and exponentially distributed. If the time delay is random and 

exponentially distributed, the resulting firing rate, 1, is equal to the inverse of the 

expected time delay, E(T). 

λ = 1/E(τ) where T is exponentially distributed. (1) 

Finally, the initial marking, m0, is the initial set of tokens including their quantities 

and locations at system start-up. 



A Petri net model of a Flexible Manufacturing Cell (FMC) is illustrated in Figure 

2A. This FMC contains a horizontal machining center. One unit of raw material is 

machined to produce two finished parts. Once the machining operation has been 

completed and the parts are unloaded, the machine becomes available. The completion 

of the process triggers the release of more raw material. In Figure 2A, place pi  along 

with its initial marking of one token signifies that there is one unit of raw material 

which is waiting to be machined. 

Figure 2A - Petri Net of a Machining Operation 

The availability of the machine is monitored through p3. When p3  contains a token, the 

machine is available. Transition t1  represents the start of the machining process. The 

machining process can begin if and only if the machine and the raw material are both 

available. Since pi  and p3  have tokens, t1  is enabled. Firing t1  results in the net shown 

in Figure 2B. Here tokens are removed from the input places of t1, namely pi  and p3, 

and a token is generated in the output place of t1 , namely p2. At this point, t2  is 



Figure 2B - After t1  Fires 

Figure 2C - After t2  Fires 

enabled. The time delay, T, of t2  corresponds to the machining or process time. After 

this delay time, t2  fires resulting in the net shown in Figure 2C. Notice that p4  now has 

two tokens due to the output arc weight of t2. This symbolizes that two finished 

products are machined from one unit of raw material. Also notice that p3  again has a 



token meaning that the machine is available again. Finally the firing of t2  also releases 

more raw material, represented in p1. References [17] and [12] offer a detailed 

description of Petri net theory. 

2.2 The Mathematical Model 

Figure 3 - Input, Output, and Incidence Matrices 

Once the graphical model has been constructed, the mathematical model can be 

developed. This model consists of several matrices. The input matrix, I, derived from 

the Petri net of Figure 2A can be seen in Figure 3. The input matrix is an (s x n) 

matrix where s is the number of places and n is the number of transitions. In other 



words, the row number corresponds to the place number and the column number 

corresponds to the transition number. The numbers in the input matrix correspond to 

the arc weight of the input arc from a place (row) to a transition (column). For 

instance, the upper left member of the input matrix of Figure 3 designates that there 

is an input arc from pi  to t1  with an arc weight of one. Similarly, the output matrix, 

0, which is also an (s x n) matrix, is constructed from the output arcs and is also 

shown in Figure 3. The Incidence Matrix, C, describes the dynamic characteristics of 

the system and is equal to the difference between the output and input matrices, 0 - 

I. This matrix represents the change from input to output. The incidence matrix for the 

Petri net in Figure 2 is also illustrated in Figure 3. The "2" in the fourth row, second 

column of this matrix signifies that two tokens are produced in p4  upon firing t2. 

Negative numbers in the incidence matrix signify the consumption of tokens. This is 

shown by the -1 in row 2, column 2, where a token of p2  (row 2) is consumed upon 

firing t2  (column 2). The state or marking of a Petri net denotes the amount of tokens 

occupying each place and is captured in a one dimensional matrix of size s. The initial 

marking, m0, of the PN of Figure 2A can be seen in Equation (2). 

m0  = [1 0 1 0] (2) 

The above matrices are used to fully define a Petri net, Z, as shown in Equation (3) 

where P and T are the sets of places and transitions in the net, respectively. A Petri 

net is represented as a five-tuple: 

Z = (P,T,I,O,m0) (3) 



2.3 Behavioral Properties 

Properties of a PN which depend on the initial marking are called behavioral 

properties. From a manufacturing standpoint behavioral properties depend on the 

conditions at system start-up. The most useful behavioral properties for manufacturing 

applications are reachability, boundedness, liveness, reversibility, and persistence [17]. 

Reachability - The reachability set R(m0) of a Petri net, is defined as the set of all 

markings (states) which are obtainable from the initial marking, m0, through 

some firing sequence L(m0) [17]. 

Boundedness - A PN is said to be k-bounded if for any reachable marking, m, none 

of the places contain more than k tokens. A 1-bounded PN is called safe [17]. 

No place in a safe net will ever contain more than one token. 

Liveness - There are five degrees of liveness, LO - LA. They are defined with respect 

to a single transition, t, as follows [17]: 

LO "dead" if t can never be fired in any sequence, L(m0). 

L1 "potentially firable" if t can be fired at least once in some firing sequence 

L(m0). 

L2 given any positive integer n, t can be fired at least n times in some firing 

sequence L(m0). 

L3 if t appears infinitely often in some firing sequence, L(m0). 

L4 "live" if t is at least L1-live for every marking, m, in R(m0). 



The entire PN is said to be "live" if all of the transitions in the net are L4-live. 

The liveness of a PN determines how prone the net is to reaching a deadlocked 

state. A live PN is one which cannot be deadlocked. 

Reversibility - A reversible PN is one that can always return to a home state via some 

firing sequence in L(mn). The home state is usually, but not necessarily, the 

initial state [17]. 

Persistence - A PN is considered to be persistent if the firing of any enabled transition 

does not disable another previously enabled transition [17]. 

According to the above definitions the following observations can be made of 

Figure 2. The markings shown in Figures 2B and 2C are in the reachability set, 

R(m2A), where m2A  is the initial marking shown in Figure 2A. 

R(m2A) = {m2B, m2C, • • • } (4) 

The firing sequence to reach the marking of Figure 2C (m2C) from the marking of 

Figure 2A, (m2A) is: 

L(m2A) = {t1,t2} (5) 

This net is unbounded (not safe) since p4  will continually accumulate tokens. It is live 

since both transitions are L4-live. It is not reversible since there is no firing sequence 

in which m2A can be reached from m2C. This PN is persistent because t1  and t2  cannot 

be enabled simultaneously; therefore, no conflicts will arise. A bounded, live, 

reversible net is desirable in the FMS context. A bounded net guarantees that system 

will not produce product uncontrollably. A reversible system captures the cyclic 

character of a FMS. Lastly, liveness insures the system will not deadlock [26]. 



2.4 Structural Properties 

Properties which capture characteristics of a Petri net and are independent of the initial 

marking (state) are called structural properties. 

Structural Liveness - If there exists a live initial marking, a Petri net is considered to 

be structurally live [17]. 

Controllability - If every marking is in the reachability set of any other feasible 

marking then a Petri net is completely controllable [17]. 

Structural Boundedness - A Petri net is said to be structurally bounded if it is 

bounded for any finite initial marking m0  [17]. 

Conservativeness - A Petri net is said to be (partially) conservative if there exists a 

positive integer y(p) for every (some) place, p, such that the weighted sum of 

tokens, mTy = m0 Ty = a constant for every m 6 R(m0) and for any fixed 

marking m0  [17]. 

Repetitiveness - A Petri net is said to be (partially) repetitive if there exists a marking 

m0  and a firing sequence L(m0) such that every (some) transition fires infinitely 

often in L(m0) [17]. 

Consistency - A Petri net is said to be (partially) consistent if there exists a marking 

m0  and a firing sequence L(m0) returning to m0  such that every (some) transition 

appears at least once in L(m0) [17]. 

Some other important characteristics of the PN are described by p-invariants and 

t-invariants. A p-invariant is a subset of places which always share a certain number 



of tokens regardless of the firing order, given the initial marking. A t-invariant 

indicates a firing sequence through which a Petri net will return to its current marking 

or state. 

2.5 Classical Manufacturing Measures 

In addition to behavioral and structural properties, typical quantitative concerns such 

as throughput, utilization, down time, work-in-process, and lead time can be 

determined from the Petri net model. The effects of changes in resources, process 

times, and buffer sizes on these performance measures can be determined easily by 

making the appropriate changes in the model and analyzing the results. This can be 

done with the aid of computer software such as SPNP, GRAMAN, SIMAN, and 

SLAM. 



3 MODELING A FLEXIBLE MANUFACTURING CELL 

3.1 Problem Statement 

As previously mentioned, Petri nets can be used to model and evaluate Flexible 

Manufacturing Systems. In this chapter a specific Flexible Manufacturing Cell (FMC) 

will be modeled. The purpose of modeling is to facilitate the evaluation and provide 

a framework on which the control methodologies can be applied. The objective of the 

evaluation (Chapter 4) is to determine how the FMC will benefit most as a result of 

upgrading some of the existing equipment. The capital reserved for this improvement 

is only enough to replace or add two major pieces of equipment. Candidates for 

upgrading include three CNC machines and an inspection station. An additional robot 

could be added to assume half of the load of an existing robot. In Chapter 5 process 

control via Petri nets will be investigated and applied to operate the cell effectively and 

efficiently. 

3.2 Understanding the FMC 

Before a system can be modeled, the builder should have a thorough understanding of 

the systems dynamic behavior, a drawing of the cell layout, and a collection of time 

delays for any events which do not occur instantaneously. These time delays include 

process times, loading and unloading times, and inspection times. The drawing of the 

cell layout (Figure 4), shows the location of the equipment in the FMC. Machine C 

is a CNC machining center and machines A and B are CNC lathes. Parts #1, #2, and 

#3 must all be machined and inspected within the cell. Raw material #1 must be 



Figure 4 - Flexible Manufacturing Cell Layout 

processed on machine A and inspected. Raw material #2 must be processed by machine 

C, followed by machine A or machine B and then inspected. Raw material #3 must be 

processed on machine B and inspected. The robot assignments are as follows: Robot 

#1 loads machine C. Robot #2 transfers part #2 from machine C to machines A or B. 

Robot #3, if it were added, would transfer part #2 from machine C to machine B, thus 

relieving robot #2 to transfer from machine C to machine A, exclusively. The routings 

for each part along with the current and upgraded process times are contained in Table 

1. The current process times are those obtained with the presently used equipment. The 

upgraded process times are those which would be obtained should the decision be made 

to upgrade the corresponding machine or operation. The decision of whether or not to 

upgrade certain equipment will be evaluated in Section 4.5. 



Table 1 - Current and Upgraded Process Times 

Part # Process 

Current 
Process 

Time 
(min.) 

Upgraded 
Process 

Time 
(min.) 

1 1- Load w/Robot 2 .500 - 
2- Machine A 7.500 2.500 
3- Unload w/Robot 2 .700 - 
4- Inspection .750 .075 

2 1- Load w/Robot 2 .500 - 
2- Machine C 30.000 10.000 
3- Transfer w/Robot 2 .800 - 
4- Machine A or B 4.500 1.500 
5- Unload w/Robot 3 .700 - 
6- Inspection .750 .075 

3 1- Load w/ Robot 2 .500 - 
2- Machine B 13.200 4.400 
3- Unload w/ Robot 3 .700 - 
4- Inspection .750 .075 

3.3 Building a Graphical Model 

Several methods have been developed to aid in the construction of complex nets. The 

Bottom-Up Method or Modular Approach designs individual nets for the smaller 

components first, then combines these components into subsystems and finally, 

integrates the subsystems into a complete model. For example, a net representing a 

machine (such as the net in Figure 2A) would be an component. Next, this machine 

along with other components would be combined into a work cell or subsystem. 

Finally the subsystems or subnets are integrated to form a final net of the entire 

system. As will be discussed in section 4.4, having subnets can greatly reduce the 

overwhelming computational burden of evaluating the entire system simultaneously. 

Analogously the hierarchical structure of a FMS is reflected through subnets. The Top- 



Down Method, as the name suggests, starts with a simplified net of the overall system 

and works towards a complete net by adding detail and complexity with each 

refinement. A combination of these two methods is called the Hybrid Method. 

The Hybrid Method will be used to construct a Petri net for the FMC of Figure 

4. First the Top-Down Method is used. Here the entire cell is viewed as a single place 

and transition. This pair is built upon by expanding into three parallel sections 

representing the three parts. The section for each part includes a raw material place, 

and an in-process place(s). These first two steps are illustrated in Figure 5A and Figure 

5B, respectively. 

Figure 5A - Hybrid Method, Step 1 

Notice that the alternate routing through machines A or B for part #2 is reflected in 

this structure. In Figure 5C the net is expanded again by adding places representing 

inspection availability and buffers. In Figure 5D, places for loading and unloading each 

machine are added along with post-inspection buffers. At this point the skeletal 

structure of the system is intact. The Bottom-Up Method is now used to add resource 

places (Figure 5E). These include robot, machine, and inspection station availabilities. 

This leads to the creation of one and only one place for each machine, robot, and 

inspection station. These resource places are connected, via arcs, to the functions in 



Figure 5B - Hybrid Method, Step 2 

which they are required for each part. As seen in Figure 5E, a part cannot be loaded 

onto a machine unless the required robot and machine are available. In other words, 

both resource places must contain tokens. After the machine is loaded the robot 

becomes available again (a token is generated in the corresponding robot resource 

place). However, the machine is still in use; therefore, it does not become available, 

i.e. a token is not generated in its resource place, until the process is completed and 

the machine is unloaded. Similarly, a part cannot be inspected unless the inspection 

station is available. Notice that there are two arcs exiting each inspection place. These 

correspond to the acceptance or rejection of the part. If the part is rejected, more raw 



Figure 5C - Hybrid Method, Step 3 

material is immediately released to replenish the scrapped part. If a part passes the 

inspection, a token is generated in the acceptance buffer. After the Petri net is 

completed, all places and transitions are numbered. The complete Petri net is shown 

in Figure 5E. Notice there is exactly one place for each resource, i.e. robots, 

machines, inspection, or raw materials. Other places represent the status of operations 

such as loading, transferring, processing, or process complete. All transitions represent 



Figure 5D - Hybrid Method, Step 4 



Figure 5E - Hybrid Method, Step 5 (Complete Net Without Robot #3) 



either the beginning or completion of an event. The corresponding time delays and 

firing rates are in Table 2. The designations of the places and transitions are provided 

in Tables 3 and 4, respectively. Firing rates of transitions immediately following 

operation places are derived from the average time required to perform that operation. 

Firing rates for transitions immediately following resource places represent the rate at 

which the cells status is sampled. This is the time it takes the host computer to detect 

that a transition has been enabled. The status of this system is evaluated 1000 times 

each minute, resulting in a time delay of .001 min. The purpose of t28  is to 

synchronize the ratio of parts being manufactured in the cell. In this particular case, 

(1) part #1 and (2) parts #2 are required for every (1) of part #3. So, the input arcs 

to t28 are weighted 1, 2, and 1 for parts 1, 2, and 3, respectively. In addition, the 

output arcs, representing the release of more raw materials, are also weighted 1, 2, and 

1, respectively. 

3.4 Equivalent Inspection Firing Rates 

It should be noted that firing rates for the transitions associated with inspection are not 

calculated directly from taking the inverse of the inspection time delay. In Figure 5E, 

p6  represents the inspection of part #1. A token may be consumed from this place by 

firing either t6  or t7  signifying either the rejection or an acceptance of the part, 

respectively. The fact that the expected inspection time delay is .75 min. regardless of 

the outcome suggests that t6  and t7  should have equal time delays, thus having equal 

firing rates, which would result in 50% rejection and 50% acceptance. This would not 

reflect the actual 5% probability of rejection. So, to model the inspection process 



accurately, equivalent firing rates were calculated for t6  and t7. These result in an 

average time delay between the two transitions of .75 min. and also reflect the 5% 

defective probability. The inspection transition rates for parts #2 and #3 were 

calculated in the same manner. Details of these calculations are in Appendix 1. 

Table 2 - Time Delays and Firing Rates 

Transition τold  Taw 
λold 

Anew 

1 .001 - 1000.000 - 
2 .500 - 2.000 - 
3 .001 - 1000.000 - 
4 .700 - 1.428 - 
5 .001 - 1000.000 - 
6 76.900 7.690 .013 .130 
7 3.950 .395 .253 2.530 
8 .001 - 1000.000 - 
9 .500 - 2.000 - 
10 .001 - 1000.000 - 
11 .800 - 1.250 - 
12 .001 - 1000.000 - 
13 .700 - 1.428 - 
14 .001 - 1000.000 - 
15 76.900 7.690 .013 .130 
16 3.950 .395 .253 2.530 
17 .001 - 1000.000 - 
18 .800 - 1.250 - 
19 .001 - 1000.000 - 
20 .700 - 1.428 - 
21 .001 - 1000.000 - 
22 .500 - 2.000 - 

23 .001 - 1000.000 - 
24 .700 - 1.428 - 
25 .001 - 1000.000 - 
26 76.900 7.690 .013 .130 
27 3.950 .395 .253 2.530 
28 .001 - 1000.000 - 
29 30.000 10.000 .033 1.000 
30 7.500 2.500 .133 .400 
31 4.500 1.500 .222 .667 
32 4.500 1.500 .222 .667 
33 13.200 4.400 .075 .227 



Table 3 - Transition Designations 

Trans. Designation 

1 Begin loading part #1 onto mach A with robot 2. 
2 Finish loading part #1 onto machine A with robot 2 & begin processing. 
3 Begin unload part #1 from mach A with robot 4. 
4 Finish unload part #1 from mach A with robot 4. 
5 Begin inspection of part #1. 
6 Finish inspection of part #1 - Reject. 
7 Finish inspection of part #1 - Accept. 
8 Begin load part #2 onto machine C with robot 1. 
9 Finish loading part #2 onto machine C with robot 1 & begin processing. 
10 Begin transfer of part #2 from machine C to Machine A with robot 2. 
11 Finish transfer of part #2 from machine C to Machine A & begin process. 
12 Begin unload part #2 from mach A with robot 4. 
13 Finish unload part #2 from mach A with robot 4. 
14 Begin inspection of part #2. 
15 Finish inspection of part #2 - Reject. 
16 Finish inspection of part #2 - Accept. 
17 Begin transfer of part #2 from machine C to machine B with robot 2. 
18 Finish transfer of part #2 from machine C to machine B & begin process. 
19 Begin unload part #2 from machine B with robot 4. 
20 Finish unload part #2 from machine B with robot 4. 
21 Begin loading part #3 onto machine B with robot 2. 
22 Finish loading part #3 onto machine B with robot 2. 
23 Begin unload part #3 from machine B with robot 4. 
24 Finish unload part #3 from machine B with robot 4. 
25 Begin inspection of part #3. 
26 Finish inspection of part #3 - Reject. 
27 Finish inspection of part #3 - Accept. 
28 Release another set of raw materials. 
29 Finish processing part #2 on machine C. 
30 Finish processing part #1 on machine A. 
31 Finish processing part #2 on machine A. 
32 Finish processing part #2 on machine B. 
33 Finish processing part #3 on machine B. 



Table 4 - Place Designations 

Place Designation 
1 Raw material part #1 is available. 
2 Robot 2 is loading part #1 onto machine A. 
3 Part #1 is done processing on machine A. 
4 Robot 4 is unloading part #1 from machine A 
5 Buffer for part #1. 
6 Part 1 is being inspected. 
7 Buffer for accepted part #1. 
8 Raw material part 2 is available. 
9 Robot 1 is available. 
10 Robot 1 is loading part #2 onto machine C. 
11 Part #2 is done processing on machine C. 
12 Robot 2 is available. 
13 Robot 2 transferring part #2 from machine C to A. 
14 Machine A is available. 
15 Part #2 is done processing on machine A. 
16 Robot 4 is unloading part #2 from machine A. 
17 Buffer for part #2. 
18 Part #2 is being inspected. 
19 Buffer for accepted part #2. 
20 Machine C is available. 
21 Robot 2 transferring part #2 from machine C to B. 
22 Part #2 is done processing on machine B. 
23 Robot 4 is available. 
24 Robot 4 is unloading part #2 from machine B. 
25 Inspection resource available. 
26 Reserved for Robot 3 
27 Machine B is available. 
28 Raw material part #3 is available. 
29 Robot 2 is loading part #3 onto machine B. 
30 Part #3 is done processing on machine B. 
31 Robot 4 is unloading part #3 from machine B. 
32 Buffer for part #3. 
33 Part #3 is being inspected. 
34 Buffer for accepted part #3. 
35 Part #2 is processing on machine C. 
36 Part #1 is processing on machine A. 
37 Part #2 is processing on machine A. 
38 Part #2 is processing on machine B. 
39 Part #3 is processing on machine B. 



4 EVALUATION OF THE FMC 

4.1 Current vs. Upgraded Equipment 

The budget set aside to improve this manufacturing cell is enough only to purchase two 

major pieces of equipment. Choices include: upgrading machines A, B, or C, 

automating the inspection procedure, or purchasing an additional robot. Of these five 

choices, the two which best improve throughput must be determined. 

The new CNC machines are capable of processing three times faster than the 

current machines. An automated inspection is expected to be ten times faster than the 

current manual method (see Table 1). An additional robot (robot #3) would assume 

half of the duties of robot #2. The current manual inspection process reveals a defect 

probability of five percent and is not expected to change with the arrival of new 

equipment. 

4.2 Software Packages 

There are numerous software packages available for modeling and evaluating flexible 

manufacturing systems. SPNP, GRAMAN, SIMAN, SLAM, and SIMSCRIPT are 

some of the more popular packages. SIMAN, SLAM, and SIMSCRIPT are better 

suited for simulation. Whereas SPNP and GRAMAN were developed around and 

intended to be used for Petri nets. Languages such as FORTRAN, PASCAL, and C 

can be utilized; however, this requires much more programming time and should only 

be done if all existing software has been explored and found to be insufficient. A 



UNIX based version of SPNP (Stochastic Petri Net Package) has been found to be 

appropriate to model and evaluate the FMC under investigation. SPNP is written in 

C and is also available for VMS systems (VAX). 

4.3 Requirements and Terminology of SPNP 

Table 5 - SPNP Terminology 

place("p1"); establishes a place p1 . 
init("p1",1); defines initial marking of p, as 1. 
trans(" t 1 "); establishes a transition t,. 

rateval( t1",2.0); defines firing rate of t, = 2.0. 
iarc("p1","t2"); defines an input arc to t2  from p,. 
oarc("p1","t2"); defines an output arc from t2  to pi. 

miarc("p3","t5",2); defines an input arc to t5  from p3  with arc weight of 2. 
oarc("p4","t1",3); defines an output arc from t, to p4  with arc weight of 3. 

In order to run the model with the SPNP software, a source code must be written. The 

purpose of this code is to provide the necessary input and also request certain output. 

The input consists of the set of places along with their initial markings, a set of 

transitions along with their firing rates, the placement of the input and output arcs, and 

any variables that the user intends to change from run to run; such as machine process 

times. The terminology is described in Table 5. Refer to the SPNP manual for more 

information. 

4.4 Net Reduction 

The SPNP software was used to execute the Petri net model; however, due to the 

complexity of the model, calculations were extremely time consuming or impossible, 

depending on the initial marking. The model of Figure 5E was run on SPNP with a 



Figure 6 - Process Subsystem 

minimal amount of tokens and was found to have an unmanageable number of states. 

This was expected since the input and output matrices are very large (39 x 33). For 

this reason the model was split into two subsystems: a Process Subsystem (Figure 6) 

and an Inspection Subsystem (Figure 7). 



Figure 7 - Inspection Subsystem 

Figure 8 - Main net 

These subsystems have a much smaller number of states compared to the complete 

net, thus greatly reducing the computational requirements. The use of subsystems or 

subnets makes it possible to evaluate large systems. Once the subnets are constructed 

and evaluated they can be represented by a single place or transition and then 

combined to form the main net for the overall system. Figure 8 shows the process and 

inspection subsystems as single places in the main net. It is apparent what a drastic 



reduction this is when compared to the net of Figure 5E. Performance measures such 

as system throughput and subsystem utilization can be derived from the main net. 

Whereas, measures such as machine utilization and average buffer levels can be found 

from the individual subnets. As will be discussed in later sections, this subnet approach 

not only reflects the hierarchical structure of most flexible manufacturing systems, but 

it is also well suited for process control of the individual subnets as well as the main 

net. 

4.5 Results of Evaluation 

Table 6 - Results of Evaluation 

Run # Mach A Mach B Mach C Robot 3 Inspect. 

Process 
Subsys. 
Thrput. 

Inspect. 
Subsys. 
Thrput. 

Main 
Net 
Thrput. 

1 NEW NEW OLD NO MANUAL 0.0154 0.0681 0.0126 
2 NEW OLD NEW NO MANUAL 0.0335 0.0681 0.0224 
3 NEW OLD OLD NO AUTO 0.0148 0.6796 0.0145 
4 OLD NEW NEW NO MANUAL 0.0356 0.0681 0.0234 
5 OLD NEW OLD NO AUTO 0.0149 0.6796 0.0146 
6 OLD OLD NEW NO AUTO 0.0305 0.6796 0.0292 
7 NEW OLD OLD YES MANUAL 0.0148 0.0681 0.0122 
8 OLD NEW OLD YES MANUAL 0.0149 0.0681 0.0122 
9 OLD OLD NEW YES MANUAL 0.0306 0.0681 0.0211 
10 OLD OLD OLD YES AUTO 0.0144 0.6796 0.0141 

The output requested from SPNP includes machine, robot, and inspection utilizations 

as well as system throughput. Notice that throughput is the average rate at which t28  

fires. The SPNP source code for the complete system (Figure 5E), the process 

subsystem (Figure 6), and inspection subsystem (Figure 7) can be found in Appendices 

2, 3, and 4, respectively. Each subsystem was executed for all possible choices of 



Figure 9A - Results of Evaluation (Subsystems) 

upgrades. There are 10 possible combinations of upgrades when choosing 2 of the 5 

candidates. The results are shown in Table 6. Details are in Appendix 5. The 

subsystem results in Table 6 are also graphically represented in Figure 9A. 

The subsystem throughputs are equivalent to the firing rate for that subsystem. 

These throughput rates were applied to the main net (Figure 8) and SPNP was used 

to evaluate the overall throughput. The highest overall throughput rate (0.0292) was 

obtained from run #6. This indicates that the inspection station and machine C should 

be upgraded in order to maximize throughput. The throughput results for the main net 

are shown in Figure 9B. 



Figure 9B - Results of Evaluation (Main Net) 



5 CONTROL OF A FMC 

5.1 History of Control 

In the past several decades the demands placed on manufacturing control systems has 

increased dramatically. Due to the trend towards greater flexibility and the increasing 

size and complexity of manufacturing systems, the control hardware and software must 

be more reliable, efficient, and flexible. During the 1960's control was accomplished 

through mechanical relays, timers, and counters. These were bulky, slow, and 

unreliable. In 1970 the Programmable Logic Controller (PLC) was introduced. The 

PLC has several improvements over its mechanical predecessors. It is more reliable, 

easier to maintain, and reprogrammable [16]. In addition, it requires far less space and 

is much more flexible [16]. Most PLC languages are based on ladder logic and 

boolean algebra [5],[21]. Intended for more complicated applications, some PLC's 

utilize more universal languages based on graphical formalism such as state diagrams, 

GRAFCET, and algorithmic state machines. GRAFCET was developed from Petri net 

theory and is well suited for controlling concurrence. It is commonly used in industrial 

applications [21]. Although PLC's were a vast improvement over former methods, 

programs using ladder logic or procedural languages such as ASSEMBLER can 

become overwhelming for complex systems. They are difficult to interpret making 

them inflexible and hard to maintain. Programming concurrent events can be a tedious, 

if not impossible task. In an attempt to deal with concurrence, concurrent PASCAL 

has been developed. Although GRAFCET is capable of handling concurrence, it is 

only a modeling technique and cannot be executed directly [18]. During the 1980's 



Petri net theory was generally used in conjunction with PLC's [26],[25]. Today Petri 

net based controllers are usually developed around a computer such as a VAX 11/780 

[12], an IBM PC/XT [12] or even an 1NTEL 8031 microprocessor [19]. Recently 

several Petri net based control languages and controllers have been the subject of 

research and development. These include: Station Controller (SCR) [18]; Petri net 

DesCriptive Language (PNDL) [26],[25]; Petri net System Supervisor (PNSS) 

[26],[25]; Marked Flow Graph (MFG) [18]; Control net (C-net) [18],[15]; Petri net 

Controller (PNC) [11]; and the Token Player [1],[24],[19]. Petri net theory has also 

been combined with knowledge based or rule based systems [2]. 

5.2 Attributes of an Effective Control System 

A control system should have the following attributes: 

1) A controller must have the inherent ability to deal with asynchronous, 

stochastic, discrete-time events occurring concurrently as well as sequentially. The 

system controller must be equipped to resolve conflicts. 

2) A controller should share much of the methodology, terminology, and definitions 

used throughout the design and evaluation phase. This provides for a smooth 

transition from one stage to the next and provides a common language in which 

people involved in each particular phase can communicate [21]. 

3) The control scheme should be applicable to all levels of control ranging from the 

host computer at the global level to the workcell controller at the local level. This 

facilitates communication of the software at different levels [21]. 



4) A control system should have a simple, easy to understand, graphical representation 

with a solid mathematical foundation. 

5) The hardware and software should be expandable and maintainable [15]. The 

software should be flexible without being overly complex. See [21] for a discussion 

of flexibility versus optimality. 

6) The processor or computer needs to have rapid processing speed and the software 

should be efficient to allow the system to be controlled in real time. 

7) The cost of the design and implementation should be proportionally low. 

8) The control system should be arranged hierarchically. It should be decentralized to 

enable the different levels and subsystems to operate as independently as possible 

[15]. 

9) The control system should be capable of detecting faults, diagnosing them, and even 

learning from them as discussed in [8]. 

The remaining portion of this paper will describe the Control net and will 

demonstrate its use in monitoring a flexible manufacturing cell. The Control net has 

most of the attributes listed above (the exception being the ability to learn) thus 

providing a solid foundation for a control system. 

5.3 The Control Net 

The basis for the following Control net (C-net) was developed from a Petri net based 

controller presented by Tomohiro Murato et al [18]. The C-net is a bounded net which 

is designed to be as choice-free as possible. The C-net has all of the characteristics of 



the Petri net previously described for modeling and evaluation. However, several 

aspects have been added to facilitate the control function. As was described in Section 

2.2, a Petri net is defined as: 

Z = {P,T,I,O,m} (3) 

The expanded description of the C-net is as follows: 

C = {P,T,I,O,δ,φ,η,U,V,m} (6) 

The new additions are split into two groups: the process i/o functions, δ, φ , and η ; and 

the process status symbols, U and V. Definitions for the original members P,T,I,O, 

and m remain unchanged. 

The process i/o functions, as the name implies, provide an i/o interface between 

the actual system and the controller thus enabling the C-net controller to communicate 

with the system in real time. Let A represent a set of output (control) signals x, and 

let E be a set of input (observable) signals yi. Each place and transition has a particular 

set of signals associated with it and they are defined as follows: 

8(131) = xi, {xi€A, Piell (7) 

(i) (P►) = (y1,1,y1,2,-..,yi,n), {Yij EE, Pi ell (8) 

ri (9 = (yi,k, • • • ym,n), {yi,keE, teT, *ti =(pi,...,pm)} (9) 

The process status symbols, U(pj) and V(t.), monitor the progress of the activities 

occurring throughout the system. U(A) is directly dependent on 6(pi) and (p(pi). U(pi) 

is defined for each place and is set to zero until the action associated with p, has been 



completed, at which time U(p1) is set to a value other than zero (U(p,)*0). V(9 is 

dependent on 77(9 and determines whether or not transition tj  is opened or closed. If 

an input y,,k  defined by 77(;) has been detected V(;) is set to 1 (open); otherwise, V(9 

is set to 0 (closed) [18]. 

The C-net terminology refers to places as boxes and transitions as gates. With the 

additions incorporated into the C-net, our previous form of the transition firing rule 

is no longer adequate. An expanded version of this rule is called the gate firing rule 

and includes U(m) and V(9. The gate firing rule for a k-bounded C-net states that a 

gate t,ET is enabled at marking m1  if and only if, V(9=1, U(p,)*0, 1..m1(p,)_•sk, and 

Osml(ph)_(k-1) for all p,E'tj  and PhE ti.. As with the transition firing rule, the 

requirements placed upon the input and output boxes remain intact for the gate firing 

rule. One purpose of the gate firing rule is to insure that the C-net remains k-bounded. 

This is captured in 1..ai1(p,)51 and Osm1(ph)_(k-1). V(9 =1 insures that the required 

input signal defined by rAtj) has been received and the gate is open. The completion 

of the action modeled by p, is acknowledged by U(A)*O. 

5.4 C-net Symbols 

In an effort to make the graphical representation of a C-net more descriptive, several 

different box types will be used which have been developed as part of the Petri Net 

Controller (PNC) which is presented by D. Crockett et al in [11]. The five box types 

are semaphore, simple, action, switching, and macro. Figure 10 contains graphical 

representations of each type. The first type, a semaphore box, is an elementary box 



Figure 10 - C-net Symbols 

which is generally used to acknowledge that a specific condition exists. For example, 

the availability of a resource would be represented through a marked semaphore box. 

A simple box is employed to describe a relatively short procedure in which a very 

small amount of time is required to perform a task and receive the result. This may 

involve sending a message to a workstation and receiving a confirmation of its receipt. 

The third type of box is the action box which is used to represent more lengthy 

procedures such as machining processes or the robotic loading of workpieces. Notice 

the action box has two general areas: the larger open area within the square and the 

area inside of the small circle. When a token first arrives in an action box it resides 

in the larger area and the action associated with this box begins. Upon completion of 

the action, the token moves into the small circle signifying that the action has been 

completed and the token is ready to continue through the net. The switching box 

resolves conflicts or makes decisions based on the current state of the system. As with 

the action box, a token is held in the larger area within the square. The state of the 

system is evaluated and depending on the result the token moves into circle a or b 

where it is available to continue through the net. The fifth box type, a macro box, is 

used in conjunction with a subprogram or a subnet. When the larger circle within this 



box is marked, the subprogram or subnet is initialized. After the subprogram or subnet 

has been executed successfully, the token moves into the smaller circle. These five 

symbols are useful for the real time graphical representation of the C-net. 

Figure 11 - Main Net With 3 Part Families 

An example of how these new box types would be used to model the hierarchical 

structure of a flexible manufacturing system is shown in Figure 12. Here, a host 

computer executes the main C-net algorithm. Two particular macro boxes contained 

within the main net represent workcells A and B. These workcell macro boxes engage 

subnets of the individual workcells. In turn, these workcell subnets contain macro 

boxes representing the individual machines within the cell. This hierarchical structure 

distributes the computational burden between the host, workcell, and machine 

computers. 



Figure 12 - Hierarchically Structured C-net 



The FMC (Figure 4) modeled in earlier sections can be viewed as a subsystem 

within a larger Flexible Manufacturing System (FMS). The Main Control Net for the 

FMS (Figure 11) would contain three macro boxes (among other boxes) representative 

of each of the three part families. Once one of the macro boxes of the main control 

net become marked, control would be initiated in the subnet (Figure 13) representing 

the FMC. In Figure 13 these new box types have been employed to better represent 

the net of Figure 5E for control purposes. This C-net is 2-bounded. When the required 

quantities of parts 1, 2, and 3 have been processed, t28  fires and returns control to the 

main net. 

In order to expedite the defining of the process i/o functions, basic definitions have 

been developed for .5(pi) and (p(pi) as they apply to each box type. These definitions 

can be found in Table 7. In addition to a(pi) and cp (pi), a basic definition for r7(t.i) must 

be developed which is appropriate for all gates of the C-net. Since all gates have at 

least one input box and all input boxes have a minimum of two input (observable) 

signals associated with them, ri(tj) will be defined as the desired response from the 

system. For a gate following an action box the desired response would be the proper 

completion of the action. Similarly the desired response for a macro box is that the 

subnet or subprogram has been executed correctly. For all of the box types, except the 

switching box, the desired responses are yo  . The error response, yo, is not desirable. 

Therefore, ri(ti) = yi,i  where j is the gate number and i is the number of the input box. 

In the event that the gate has a switching box as an input, the desired response may 

be either yo  or yi,2  (yi,3  is the error response). If a gate tj  has two input boxes, a and 



Figure 13 - C-net for the FMC 



Table 7 - Process i/o Function Definitions 

Semaphore Box, i - 6(P) = x, -. No output required. 
T(p) = yo  -. Resource is ready. 

Y1,2 '''' Error (Resource is down). 

Simple Box, i - 6(P) = x, -.. Send message (if required). 
9)(P) = yo  -. Acknowledge receipt of message. 

y„2  -. Error 

Action Box, i - 5(1)) = x, -. Send message to start action. 
(1)(1)) = y„, -. Action completed properly. 

Yi,2 -•• Error 

Switching Box, i - 6(13i) = x, -. Evaluate current state of the system. 
(1)(P) = y„, State of system warrants choice A. 

y,,2  -. State of system warrants choice B. 
yo  -. Error 

Macro Box, i - 5(p) = x, — Execute a subnet or subprogram. 
(1)(1)) = y,1  -. Execution completed properly. 

Y1,2 '' Error 

b, then 77(9 = {ya, i , yb, i}, with *ti  = (pa,pb). These basic process i/o function 

definitions are now linked to the C-net symbols to completely describe the specific i/o 

requirements of the FMC. 



6 CONCLUSION 

6.1 Contributions 

It has been shown that Petri nets are an extremely versatile tool which are useful for 

the modeling, evaluation, and control of flexible manufacturing systems. Their simple 

yet powerful graphical representation allows manufacturing engineers to model existing 

or proposed systems. Petri nets have proven to be flexible and maintainable. The 

graphical model is easily developed via the hybrid method. Input and output matrices, 

used for mathematical analysis, are derived directly from the graphical model. The 

system characteristics and performance measures can be evaluated mathematically or 

through simulation. The model and its parameters can be altered and evaluated 

repeatedly until the results are optimal. Petri nets bridge the gap between modeling 

a system, evaluating a system, and designing a control net for that system. As a result, 

the overall development time is reduced. 

In particular this paper has made several contributions to the application of Petri 

nets for Flexible Manufacturing Systems. 

1) Thorough research has resulted in a list of attributes for an effective control system. 

2) Strong graphical C-net symbols have been combined with process i/o function 

definitions to provide a smooth transition from a model to a functional system 

controller. The Petri net is transformed into a Control net through the use of special 

C-net box symbols. Basic i/o requirements for the system are inherent in the 

Control net since they are defined for each box symbol. 



3) The original definition of a C-net [18] has been expanded to allow a structurally 

bounded rather than a strictly safe net. In addition, the definition of r7(tj) has been 

expanded to include desired responses from multiple input places, "tj. 

4) This paper has demonstrated the use of Petri nets for the complete engineering cycle 

of a Flexible Manufacturing Cell. Several ideas and methodologies have been 

combined to provide a workable framework for the modeling, evaluation and 

control phases. 

6.2 Limitations 

Two significant limitations were encountered during this research. The number of 

states which can evolve from a relatively simple model require a large amount of 

computational power. Also, in trying to incorporate flexibility into the system the 

model can become overly complex and unmanageable. 

6.3 Future Research 

Future research could involve developing a C-net software package to be used for 

design, simulation, and control of flexible manufacturing systems. A crucial first step 

would be the creation of an effective control algorithm. This software would enable 

the user to build a graphical C-net interactively on a personal computer screen and 

simulate its operation. In addition it might assist the user in defining the process i/o 

functions. Also it should be capable of controlling the system in real time through 

some i/o interface. 



APPENDIX 1 

Equivalent Firing Rates 
for Inspection Related Transitions 

P1 Probability of acceptance. 

P2 Probability of rejection. 

X1 Firing rate of inspection acceptance transition discounting probabilities. 

).2 Firing rate of inspection rejection transition discounting probabilities. 

eq11 Equivalent firing rate of acceptance transition combining inspection time delay 

T with probability of acceptance P1. 

eqX2 Equivalent firing rate of rejection transition combining inspection time delay 

T with probability of acceptance P2. 

P1 = .95 P2 = .05 T = .75 

X1 = lir = 1.333 A.2 = 1/1- = 1.333 

eq11 = P1 • (X1 + X2) = 2.533 

eqA2 = P2 • (X1 + X2) = 0.133 



APPENDIX 2 

SPNP Source Code for Complete 
System With Robot #3 



# include "user.h" 

/* Glenn Thorniley, 203-58-4911*/ 

/* Analysis of FMS with Robot #3 */ 

float S,T,U,V,MA1,MC2,MA2,MB2,MB3,IA, IR; 

parameters() 

iopt(IOP_PR_FULL_MARK, VAL_YES); 

iopt(IOP_PR_MC,VAL_YES); 

iopt(IOP_PR_RGRAPH,VAL_YES); 

iopt(IOP_PR_PROB,VAL_YES); 

S = input("Machine A Old(3) or New(1):"); 

T = input("Machine B Old(3) or New(1):"); 

U = input("Machine C Old(3) or New(1):"); 

V = input("Inspection - Automatic(10) or Manual(1):"); 

MA1 = .4/S; 

MC2 = .1/U; 

MA2 = .667/S; 

MB2 = .667/T; 

MB3 = .227/T; 

IA = .253*V; 

IR = .013*V; 



net() { 

place("p1"); init("p1",1); 

place("p2"); 

place("p3"); 

place("p4"); 

place("p5"); 

plaCe("p6"); 

place("p7"); 

plaCe("p8"); init("p8",1); 

place("p9"); init("p9",1); 

place("p10"); 

place("p11"); init("p11",1); 

place("p12"); init("p12",1); 

plaCe("p13"); 

place("p14"); init("p14",1); 

place("p15"); 

place("p16"); 

place("p17"); 

place("p18"); 

place("p19"); 

place("p20"); init("p20",1); 

place("p21"); 

place("p22"); 

place("p23"); init("p23",1); 

place("p24"); 

place("p25"); init("p25",1); 

place("p26"); init("p26",1); 



place("p27"); init("p27",1); 

place("p28"); 

place("p29"); 

place("p30"); 

place("p31"); 

place("p32"); init("p32",1); 

place("p33"); 

place("p34"); 

place("p35"); 

place("p36"); 

place("p37"); 

place("p38"); 

place("p39"); 

trans("t1"); rateval("t1",1000.0); 

trans("t2"); rateval("t2",2.0); 

trans("t3"); rateval("t3",1000.0); 

trans("t4"); rateval("t4",1.428); 

trans("t5"); rateval("t5",1000.0); 

trans("t6"); rateval("t6",IR); 

trans("t7"); rateval("t7",IA); 

trans("t8"); rateval("t8",1000.0); 

trans("t9"); rateval("t9",2.0); 

trans("t10"); ratevar t10",1000.0); 

trans("t11"); rateval("t11",1.25); 

trans("t12"); rateval("t12",1000.0); 

trans("t13"); ratevart13",1.428); 



trans("t14"); rateval("t14",1000.0); 

trans("t15"); rateval("t15",IR); 

trans("t16"); rateval("t16",IA); 

trans("t17"); rateval("t17",1000.0); 

trans("t18"); rateval("t18",1.25); 

trans("t19"); rateval("t19",1000.0); 

trans("t20"); rateval("t20",1.428); 

trans("t21"); rateval("t21",1000.0); 

trans("t22"); rateval("t22",2.0); 

trans("t23"); rateval("t23",1000.0); 

trans("t24"); rateval("t24",1.428); 

trans("t25"); rateval("t25",1000.0); 

trans("t26"); rateval("t26",IR); 

trans("t27"); rateval("t27",IA); 

trans("t28"); rateval("t28",1000.0); 

trans("t29"); rateval("t29",MC2); 

trans("t30"); rateval("t30",MA1); 

trans("t31"); rateval("t31",MA2); 

trans("t32"); rateval("t32",MB2); 

trans("t33"); rateval("t33",MB3); 

iarc("t1","p1"); iarc("t1","p12"); iarc("tl","p14"); 

oarc("t1","p2"); iarc("t2","p2"); oarc("t2","p36"); 

oarc("t2","p12"); iarc("t3","p3"); iarc("t3","p23"); 

oarc("t3","p4"); iarc("t4","p4"); oarc("t4","p5"); 

oarc("t4","p14"); oarc("t4","p23"); iarc("t5","p5"); 

iarc("t5","p25"); oarc("t5","p6"); iarc("t6","p6"); 



oarc("t6","p1"); oarc("t6","p25"); iarc("t7","p6"); 

oarc("t7","p7"); oarc("t7","p25"); iarc("t8","p8"); 

iarc("t8","p9"); iarc("t8","p20"); oarc("t8","p10"); 

iarc("t9","p10"); oarc("t9","p9"); oarc("t9","p35"); 

iarc("t10","p11"); iarc("t10","p12"); iarc("t10","p14"); 

oarc("t10","p13"); iarc("t11","p13"); oarc("t11","p12"); 

oarc("t11","p37"); oarc("t11 ","p20"); iarc("t12","p15"); 

iarc("t12","p23"); oarc("t12","p16"); iarc("t13","p16"); 

oarc("t13","p14"); oarc("t13","p17"); oarc("t13","p23"); 

iarc("t14","p17"); iarc("t14","p25"); oarc("t14","p18"); 

iarc("t15","p18"); oarc("t15","p8"); oarc("t15","p25"); 

iarc("t16","p18"); oarc("t16","p19"); oarc("t16","p25"); 

iarc("t17","p11"); iarc("t17","p26"); iarc("t17","p27"); 

oarc("t17","p21"); iarc("t18","p21"); oarc("t18","p20"); 

oarc("t18","p38"); oarc("t18","p26"); iarc("t19","p22"); 

iarc("t19","p23"); oarc("t19","p24"); iarc("t20","p24"); 

oarc("t20","p17"); oarc("t20","p23"); oarc("t20","p27"); 

iarc("t21","p26"); iarc("t21","p27"); iarc("t21","p28"); 

oarc("t21","p29"); iarc("t22","p29"); oarc("t22","p26"); 

oarc("t22","p39"); iarc("t23","p23"); iarc("t23","p30"); 

oarc("t23","p31"); iarc("t24","p31"); oarc("t24","p23"); 

oarc("t24","p27"); oarc("t24","p32"); iarc("t25","p25"); 

iarc("t25","p32"); oarc("t25","p33"); iarc("t26","p33"); 

oarc("t26","p25"); oarc("t26","p28"); iarc("t27","p33"); 

oarc("t27","p25"); oarc("t27","p34"); iarc("t28","p7"); 

rniarc("t28","p19",2); iarc("t28","p34"); oarc("t28","p1"); 

moarc("t28","p8",2); oarc("t28","p28"); iarc("t29","p35"); • 



oarc("t29","p11"); iarc("t30","p36"); oarc("t30","p3"); 

iarc("t31","p37"); oarC("t31","p15"); iarc("t32","p38"); 

oarc("t32","p22"); iarc("t33","p39"); oarc("t33","p30"); 

/*The net is defined, and the analysis will be conducted */ 

1 

/* the following lines should appear in all programs */ 

assert() {return(RESNOERR);} 

ac init() { } 

ac _reach() {fprintf(stderr,"/nThe reachibility graph has been generated/n/n");) 

/* User-defined output functions */ 

reward_type efO() {return(rate("t28"));} 

/* throughput */ 

reward_type efl() {return(mark("p10"));} 

reward_type ef2() {return(mark("p2")+mark("p13"));} 

reward_type ef3() {return(mark("p21")+mark("p29"));) 

reward_type ef4() {return(1.0-mark("p23"));) 

/* robot utilization */ 

reward_type ef5() {return(1.0-mark("p14"));) 

reward_type ef6() {return(1.0-mark("p27"));) 

reward_type ef7() {retuni(1.0-mark("p20"));) 



/* machine utilization */ 

reward_type ef8() freturn(1.0-mark("p25"));} 

/* inspection utilization */ 

/*Output*/ 

ac _final() (pr_expected("throughput = ",ef0); 

pr_expected("Robot 1 Utilization = ",efl); 

pr_expected("Robot 2 Utilization = ",ef2); 

pr_expected("Robot 3 Utilization = ",ef3); 

pr_expected("Robot 4 Utilization = ",ef4); 

pr_expected("Machine A Utilization = ",ef5); 

pr_expected("Machine B Utilization = ",ef6); 

pr_expected("Machine C Utilization = ",ef7); 

pr_expected("Inspection Utilization = ",ef8); 

pr_std_average();) 



APPENDIX 3 

SPNP Source Code for 
the Inspection Subsystem 



# include "user.h" 

/* Glenn Thorniley, 203-58-4911*/ 

/* Analysis of Inspection Subsystem */ 

float V,IA, IR; 

parameters() { 

iopt(IOP_PR_FULL_MARK, VAL_YES); 

iopt(IOP_PR_MC,VAL_YES); 

iopt(IOP_PR_RGRAPH,VAL_YES); 

iopt(IOP_PR_PROB,VAL_YES); 

V = input("Inspection - Manual(10) or Automatic(1):"); 

IA = 2.53/V; 

IR = .13/V; 

) 

net() [ 

place("p1"); init("pl",2); 

place("p6"); 

place("p7"); 

place("p8"); init("p8",4); 

place("p18"); 

place("p19"); 

place("p25"); init("p25",1); 



place("p28"); init("p28",2); 

place("p33"); 

place("p34"); 

trans("t5"); rateval("t5",1000.0); 

trans("t6"); rateval("t6",IR); 

trans("t7"); ratevart7",1A); 

trans("t14"); ratevart14",1000.0); 

trans("t15"); rateval("t15",LR); 

trans("t16"); rateval("t16",IA); 

trans("t25"); rateval("t25",1000.0); 

trans("t26"); rateval("t26",IR); 

trans("t27"); rateval("t27",IA); 

trans("t28"); rateval("t28",1000.0); 

iarc("t5","p1"); 

iarc("t5","p25"); oarc("t5","p6"); iarc("t6","p6"); 

oarc("t6","p1"); oarc("t6","p25"); iarc("t7","p6"); 

oarc("t7","p7"); oarc("t7","p25"); 

iarc("t14","p8"); iarc("t14","p25"); oarc("t14","p18"); 

iarc("t15","p18"); oarc("t15","p8"); oarc("t15","p25"); 

iarc("t16","p18"); oarc("t16","p19"); oarc("t16","p25"); 

iarc("t25","p25"); 

iarc("t25","p28"); oarc("t25","p33"); iarc("t26","p33"); 

oarc("t26","p25"); oarc("t26","p28"); iarc("t27","p33"); 

oarc("t27","p25"); oarc("t27","p34"); iarc("t28","p7"); 

miarc("t28","p19",2); iarc("t28","p34"); oarc("t28","p1"); 



moarc("t28","p8",2); oarc("t28","p28"); 

/*The net is defined, and the analysis will be conducted */ 

] 

/* the following lines should appear in all programs */ 

assert() freturn(RES_NOERR);) 

ac init() [ } 

ac _reach() {fprintf(stderr,"/nThe reachibility graph has been generated/n/n");} 

/* User-defined output functions */ 

reward_type ef00 [return(rate("t28")+(rate("t6")/2)+(rate("t15")/4)+(rate("t26")/2));) 

/* throughput */ 

reward_type efl() (return(rate("t6"));) 

reward_type ef4() {return(rate("t7"));) 

reward_type ef2() treturn(rate("t15"));) 

reward_type ef5() [return(rate("t16"));) 

reward_type ef3() freturn(rate("t26"));) 

reward_type ef6() (return(rate("t27"));) 

/* actual rejection rate */ 

reward_type ef8() freturn(1.0-mark("p25"));} 

/* inspection utilization */ 



/*Output*/ 

ac final() tpr_expected("throughput ",ef0); 

pr_expected("Reject rate of part #1 ",efl); 

pr_expected("Accept rate of part #1 ",ef4); 

pr_expected("RejeCt rate of part #2 ",ef2); 

pr_expected("Accept rate of part #2 ",ef5); 

pr_expected("Reject rate of part #3 ",ef3); 

pr_expected("Accept rate of part #3 ",ef6);  

pr_expected("Inspection Utilization ",ef8); 

pr_std_average();} 



APPENDIX 4 

SPNP Source Code for 
the Process Subsystem 

Without Robot #3 



# include "user.h" 

/* Glenn Thorniley, 203-58-4911*/ 

/* Analysis of process subsystem without Robot #3 */ 

float S ,T,X,MA1,MC2,MA2,MB2, MB3; 

parameters() [ 

iopt(IOP_PR_FULL_MARK, VAL_YES); 

iopt(IOP_PR_MC,VAL_YES); 

iopt(IOPPRRGRAPH,VALYES); 

iopt(IOP_PR_PROB,VAL_YES); 

S = input("Machine A Old(3) or New(1):"); 

T = input("Machine B Old(3) or New(1):"); 

X = input("MaChine C Old(3) or New(1):"); 

MA1 = .4/S; 

MC2 = .1/X; 

MA2 = .667/S; 

MB2 = .667/T; 

MB3 = .227/T; 
, 

) 

net() { 

place("p1"); init("p1",1); 

place("p2"); 



place("p3"); 

place("p4"); 

place("p5"); 

place("p8"); init("p8",2); 

place("p9"); init("p9",1); 

place("p10"); 

place("p11"); 

place("p12"); init("p12",1); 

place("p13"); 

place("p14"); init("p14",1); 

place("p15"); 

place("p16"); 

place( "p17 "); 

place("p20"); init("p20",1); 

place("p21"); 

place("p22"); 

plaCe( "p23 "); init("p23",1); 

place("p24"); 

place("p27"); init("p27 ",1); 

place("p28"); init("p28",1); 

place("p29"); 

place("p30"); 

plaCe("p31"); 

place("p32"); 

place("p35"); 

place("p36"); 

place("p37"); 



place("p38"); 

place("p39"); 

trans("t1"); rateval(" tl",1000.0); 

trans("t2"); rateval(" t2",2.0); 

trans("t3"); rateval("t3",1000.0); 

trans("t4"); rateval("t4",1.428); 

trans("t8"); rateval("t8",1000.0); 

trans("t9"); rateval("t9",2.0); 

trans("t10"); rateval("t10",1000.0); 

trans("t11"); ratevart11",1.25); 

trans("t12"); rateval("t12",1000.0); 

trans("t13"); rateval("t13",1.428); 

trans("t17"); rateval("t17",1000.0); 

trans("t18"); rateval("t18",1.25); 

u•ans("t19"); rateval("t19",1000.0); 

trans("t20"); rateval("t20",1.428); 

trans("t21"); rateval("t21",1000.0); 

trans("t22"); rateval("t22",2.0); 

trans("t23"); rateval("t23",1000.0); 

trans("t24"); rateval("t24",1.428); 

trans("t28"); rateval("t28",1000.0); 

trans("t29"); rateval("t29",MC2); 

trans("t30"); rateval("t30",MA1); 

trans("t31"); rateval("t31",MA2); 

trans("t32"); rateval("t32",MB2); 

trans("t33"); rateval("t33",MB3); 



iarc("t1","p1"); iarc("t1","p12"); iarc("t1","p14"); 

oarc("t1","p2"); iarc("t2","p2"); oarc("t2","p36"); 

oarc("t2","p12"); iarc("t3","p3"); iarc("t3","p23"); 

oarc("t3","p4"); iarc("t4","p4"); oarc("t4","p5"); 

oarc("t4","p14"); oarc("t4","p23"); 

iarc("t8","p8"); 

iarc("t8","p9"); iarc("t8","p20"); oarc("t8","p10"); 

iarc("t9","p10"); oarc("t9","p9"); oarc("t9","p35"); 

iarC("t10","p11"); iarc("t10","p12"); iarc("t10","p14"); 

oarc("t10","p13"); iarc("tll","p13"); oarc("tll","p12"); 

oarC("t11","p37"); oarc("t11","p20"); iarc("t12","p15"); 

iarc("t12","p23"); oarc("t12","p16"); iarc("t13","p16"); 

oarc("t13","p14"); oarc("t13","p17"); oarc("t13","p23"); 

iarc("t17","pll"); iarc("t17","p12"); iarc("t17","p27"); 

oarc("t17","p21"); iarc("t18","p21"); oarc("t18","p20"); 

oarc("t18","p38"); oarc("t18","p12"); iarc("t19","p22"); 

iarc("t19","p23"); oarc("t19","p24"); iarc("t20","p24"); 

oarc("t20","p17"); oarc("t20","p23"); oarc("t20","p27"); 

iarc("t21","p12"); iarc("t21","p27"); iarc("t21","p28"); 

oarc("t21","p29"); iarc("t22","p29"); oarc("t22","p12"); 

oarc("t22","p39"); iarc("t23","p23"); iarc("t23","p30"); 

oarc("t23","p31"); iarc("t24","p31"); oarc("t24","p23"); 

oarc("t24","p27"); oarc("t24","p32"); 

iarc("t28","p5"); 

miarc("t28","p17",2); iarc("t28","p32"); oarc("t28","p1"); 

moarc("t28","p8",2); oarc("t28","p28"); iarc("t29","p35"); • 



oarc("t29","p11"); iarc("t30","p36"); oarc("t30","p3"); 

iarc("t31","p37"); oarc("t31","p15"); iarc("t32","p38"); 

oarc("t32","p22"); iarc("t33","p39"); oarc("t33","p30"); 

/*The net is defined, and the analysis will be conducted */ 

] 

/* the following lines should appear in all programs */ 

assert() { return(RESNOERR);} 

ac init() f) 

ac _reaCh() ffprintf(stderr,"/nThe reachibility graph has been generated/n/n");) 

/* User-defined output functions */ 

reward_type ef0() freturn(rate("t28"));) 

/* throughput */ 

reward_type efl() treturn(mark("p10"));) 

reward_type ef2() freturn(mark("p2")+mark("p13")+mark("p21")+mark("p29"));) 

reward_type ef4() treturn(1.0-mark("p23"));) 

/* robot utilization */ 

reward_type ef5() (return(1.0-mark("p14"));} 

reward_type ef6() [return(1.0-mark("p27"));) 

reward_type ef7() (return(1.0-mark("p20"));) 

/* machine utilization */ 



/*Output*/ 

ac _final() [pr_expected("throughput ",ef0); 

pr_expected("Robot 1 Utilization ",ef 1); 

pr_expected("Robot 2 Utilization ",ef2); 

pr_expected("Robot 4 Utilization ",ef4); 

pr_expected("MaChine A Utilization ",ef5); 

pr_expected("Machine B Utilization ",ef6); 

pr_expected("Machine C Utilization ",ef7); 

pr_std_average();} 



APPENDIX 5 

SPNP Results 



LOW INITIAL MARKING 

INPUT: Machine A Old(3) or New(1): = 1 

INPUT: Machine B Old(3) or New(1): = 1 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = 0.0153808857286 

EXPECTED: Robot 1 Utilization = 0.0153808857286 

EXPECTED: Robot 2 Utilization = 0.0399903028944 

EXPECTED: Robot 4 Utilization = 0.0430837135255 

EXPECTED: MaChine A Utilization = 0.105935328175 

EXPECTED: Machine B Utilization = 0.131742184266 

EXPECTED: Machine C Utilization = 0.965249957578 

INPUT: Machine A Old(3) or New(1): = 1 

1NPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = 0.033523984539 

EXPECTED: Robot 1 Utilization = 0.033523984539 

EXPECTED: Robot 2 Utilization = 0.0871623598013 

EXPECTED: Robot 4 Utilization = 0.0939047185966 

EXPECTED: Machine A Utilization = 0.267211275694 

EXPECTED: Machine B Utilization = 0.60548304163 

EXPECTED: Machine C Utilization = 0.781018565647 



INPUT: Machine A Old(3) or New(1): = 1 

INPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = 0.0148311008485 

EXPECTED: Robot 1 Utilization = 0.0148311008485 

EXPECTED: Robot 2 Utilization = 0.038560862206 

EXPECTED: Robot 4 Utilization = 0.0415436998557 

EXPECTED: Machine A Utilization = 0.108750410419 

EXPECTED: MaChine B Utilization = 0.285968420606 

EXPECTED: Machine C Utilization = 0.932036107568 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(1): = 1 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = 0.0355997644126 

EXPECTED: Robot 1 Utilization = 0.0355997644126 

EXPECTED: Robot 2 Utilization = 0.0925593874728 

EXPECTED: Robot 4 Utilization = 0.0997192280466 

EXPECTED: Machine A Utilization = 0.489275868275 

EXPECTED: Machine B Utilization = 0.327518060752 

EXPECTED: Machine C Utilization = 0.839018893752 

INPUT: Machine A Old(3) or New(1): = 3 



INPUT: Machine B Old(3) or New(1): = 1 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = 0.0149488162929 

EXPECTED: Robot 1 Utilization = 0.0149488162929 

EXPECTED: Robot 2 Utilization = 0.0388669223616 

EXPECTED: Robot 4 Utilization = 0.0418734349942 

EXPECTED: Machine A Utilization = 0.213531804902 

EXPECTED: Machine B Utilization = 0.132967052135 

EXPECTED: Machine C Utilization = 0.941071239519 

1NPUT: Machine A Old(3) or New(1): = 3 

1NPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = 0.0305320799866 

EXPECTED: Robot 1 Utilization = 0.0305320799866 

EXPECTED: Robot 2 Utilization = 0.0793834079652 

EXPECTED: Robot 4 Utilization = 0.0855240335759 

EXPECTED: Machine A Utilization = 0.483125145075 

EXPECTED: Machine B Utilization = 0.592565884829 

EXPECTED: Machine C Utilization = 0.762865258787 

INPUT: Machine A Old(3) or New(1): = 1 

INPUT: Machine B Old(3) or New(1): = 3 

1NPUT: Machine C Old(3) or New(1): = 3  



EXPECTED: throughput = = 0.0148379717715 

EXPECTED: Robot 1 Utilization = = 0.0148379717715 

EXPECTED: Robot 2 Utilization = = 0.0216126580076 

EXPECTED: Robot 3 Utilization = = 0.0169660685984 

EXPECTED: Robot 4 Utilization = = 0.0415629461388 

EXPECTED: Machine A Utilization = = 0.108758870116 

EXPECTED: Machine B Utilization = = 0.286175859058 

EXPECTED: Machine C Utilization = = 0.932249554797 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(1): = 1 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = = 0.0149540230703 

EXPECTED: Robot 1 Utilization = = 0.0149540230703 

EXPECTED: Robot 2 Utilization = = 0.0185075990661 

EXPECTED: Robot 3 Utilization = = 0.0203728609166 

EXPECTED: Robot 4 Utilization = = 0.0418880198047 

EXPECTED: Machine A Utilization = = 0.2T3635509528 

EXPECTED: Machine B Utilization = = 0.132993115568 

EXPECTED: Machine C Utilization = = 0.94114634447 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = = 0.0306376646557 



EXPECTED: Robot 1 Utilization = = 0.0306376646557 

EXPECTED: Robot 2 Utilization = = 0.0441953150773 

EXPECTED: Robot 3 Utilization = = 0.0354626130275 

EXPECTED: Robot 4 Utilization = = 0.0858197889515 

EXPECTED: Machine A Utilization = = 0.484862153642 

EXPECTED: Machine B Utilization = = 0.594532795797 

EXPECTED: Machine C Utilization = = 0.763895210177 

EXPECTED: throughput = = 0.0143798216136 

EXPECTED: Robot 1 Utilization = = 0.0143798216136 

EXPECTED: Robot 2 Utilization = = 0.0197886653038 

EXPECTED: Robot 3 Utilization = = 0.0175988708916 

EXPECTED: Robot 4 Utilization = = 0.0402796123631 

EXPECTED: Machine A Utilization = = 0.220153063019 

EXPEL: TED: Machine B Utilization = = 0.285937480366 

EXPECTED: Machine C Utilization = = 0.912949295163 



HIGH INITIAL MARKING 

INPUT: Machine A Old(3) or New(1): = 1 

INPUT: Machine B Old(3) or New(1): = 1 

INPUT: MaChine C Old(3) or New(T): = 3 

EXPECTED: throughput = = 0.0159255608857 

EXPECTED: Robot 1 Utilization = = 0.0T59255608665 

EXPECTED: Robot 2 Utilization = = 0.0414064584304 

EXPECTED: Robot 4 Utilization = = 0.0446094146301 

EXPECTED: Machine A Utilization = = 0.109906268726 

EXPECTED: Machine B Utilization = = 0.136449069T21 

EXPECTED: Machine C Utilization = = 0.999968077062 

INPUT: Machine A Old(3) or New(1): = 1 

1NPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = = NaN 

EXPECTED: Robot 1 Utilization = = NaN 

EXPECTED: Robot 2 Utilization = = NaN 

EXPECTED: Robot 4 Utilization = = NaN 

EXPECTED: Machine A Utilization = = NaN 

EXPECTED: Machine B Utilization = = NaN 

EXPECTED: Machine C Utilization = = NaN 



INPUT: Machine A Old(3) or New(1): = 1 

INPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = 0.0158931062717 

EXPECTED: Robot 1 Utilization = 0.0158931733636 

EXPECTED: Robot 2 Utilization = 0.0413222663171 

EXPECTED: Robot 4 Utilization = 0.0445186515T21 

EXPECTED: Machine A Utilization = 0.118644558228 

EXPECTED: Machine B Utilization = 0.302724058355 

EXPECTED: Machine C Utilization = 0.99980055532 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(T): = 1 

INPUT: MaChine C Old(3) or New(1): = 1 

EXPECTED: throughput = NaN 

EXPECTED: Robot 1 Utilization = NaN 

EXPECTED: Robot 2 Utilization = NaN 

EXPECTED: Robot 4 Utilization = NaN 

EXPECTED: Machine A Utilization = NaN 

EXPECTED: Machine B Utilization = NaN 

EXPECTED: Machine C Utilization = NaN 

INPUT: Machine A Old(3) or New(1): = 3 



INPUT: Machine B Old(3) or New(1): = 1 

INPUT: MaChine C Old(3) or New(1): = 3 

EXPECTED: throughput = 0.0158665191804 

EXPECTED: Robot 1 Utilization = 0.0158665190803 

EXPECTED: Robot 2 Utilization = 0.04T2529507526 

EXPECTED: Robot 4 Utilization = 0.0111140335113 

EXPECTED: Machine A Utilization = 0.224146547102 

EXPECTED: Machine B Utilization = 0.142606145763 

EXPECTED: Machine C Utilization = 0.999963219362 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 1 

EXPECTED: throughput = NaN 

EXPECTED: Robot 1 Utilization = NaN 

EXPECTED: Robot 2 Utilization = NaN 

EXPECTED: Robot 4 Utilization = NaN 

EXPECTED: Machine A Utilization = NaN 

NPUT: Machine B Old(3) or New(1): = 3 

TNPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = = 0.015895312463 

EXPECTED: Robot 1 Utilization = = 0.015895377829 



EXPECTED: Robot 2 Utilization = = 0.0236782355169 

EXPECTED: Robot 3 Utilization = = 0.0176497620586 

EXPECTED: Robot 4 Utilization = = 0.0445248276866 

EXPECTED: Machine A Utilization = = 0.118649442048 

EXPECTED: Machine B Utilization = = 0.302778247778 

EXPECTED: Machine C Utilization = = 0.999804066883 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(T): = 1 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = = 0.0158687182592 

EXPECTED: Robot 1 Utilization = = 0.0158687T81678 

EXPECTED: Robot 2 Utilization = = 0.0T9284TT6768 

EXPECTED: Robot 3 Utilization = = 0.0219745515453 

EXPECTED: Robot 4 Utilization = = 0.0444501932988 

EXPECTED: Machine A Utilization = = 0.224184477505 

EXPECTED: Machine B Utilization = = 0.142617T09799 

EXPECTED: Machine C Utilization = = 0.999963416156 

1NPUT: Machine A Old(3) or New(T): = 3 

1NPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(T): = 1 

EXPECTED: throughput = = NaN 

EXPECTED: Robot 1 Utilization = = NaN 

EXPECTED: Robot 2 Utilization = = NaN 



EXPECTED: Robot 3 Utilization = = NaN 

EXPECTED: Robot 4 Utilization = = NaN 

EXPECTED: Machine A Utilization = = NaN 

EXPECTED: Machine B Utilization = = NaN 

EXPECTED: Machine C Utilization = = NaN 

INPUT: Machine A Old(3) or New(1): = 3 

INPUT: Machine B Old(3) or New(1): = 3 

INPUT: Machine C Old(3) or New(1): = 3 

EXPECTED: throughput = = 0.0T56868843794 

EXPECTED: Robot 1 Utilization = = 0.0156868838995 

EXPECTED: Robot 2 Utilization = = 0.0217322149873 

EXPECTED: Robot 3 Utilization = = 0.0190536861088 

EXPECTED: Robot 4 Utilization = = 0.0439408573187 

EXPECTED: Machine A Utilization = = 0.24T41T791994 

EXPECTED: Machine B Utilization = = 0.310999122732 

EXPECTED: Machine C Utilization = = 0.999874828192 

Inspection 



INPUT: Inspection - Manual(10) or Automatic(1): = 10 

EXPECTED: throughput = 0.0681096183864 

EXPECTED: Reject rate of part #1 = 0.0032492663644 

EXPECTED: Accept rate of part #1 = 0.0632357188129 

EXPECTED: Reject rate of part #2 = 0.00649853272994 

EXPECTED: Accept rate of part #2 = 0.126471437648 

EXPECTED: Reject rate of part #3 = 0.0032492663644 

EXPECTED: Accept rate of part #3 = 0.0632357188129 

EXPECTED: Inspection Utilization = 0.999774245428 

INPUT: Inspection - Manual(10) or Automatic(1): = 1 

EXPECTED: throughput = 0.6797T5156704 

EXPECTED: Reject rate of part #1 = 0.0324267773512 

EXPECTED: Accept rate of part #1 = 0.631074990614 

EXPECTED: Reject rate of part #2 = 0.0648535546739 

EXPECTED: Accept rate of part #2 = T.26214998068 

EXPECTED: Reject rate of part #3 = 0.0324267773512 

EXPECTED: Accept rate of part #3 = 0.631074990614 

EXPECTED: Inspection Utilization = 0.997747031799 
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