
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1-31-1992

A machine entity for a coordinate measurement machine : the A machine entity for a coordinate measurement machine : the

generic workcell project generic workcell project

Richard C. Meyer
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Meyer, Richard C., "A machine entity for a coordinate measurement machine : the generic workcell project"
(1992). Theses. 2327.
https://digitalcommons.njit.edu/theses/2327

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2327?utm_source=digitalcommons.njit.edu%2Ftheses%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

A Machine Entity for a Coordinate
Measurement Machine

The Generic Workcell Project

Submitted to
Department of Computer and Information Science

New Jersey Institute of Technology

in partial fulfillment
of

the requirements for the degree of
Master of Science

by

Richard C. Meyer

APPROVALS

Date Submitted:

Date Approved:

Approved by:

Abstract

The Center for Manufacturing Systems (CMS) department at New Jer-
sey Institute of Technology and Siemens Corporate Research located in
Princeton have agreed to jointly implement a research project in generic
workcell control architectures. This paper discusses the module, called
a Machine Entity, developed by the author that interfaces the Brown &
Sharpe Coordinate Measurement Machine located on the CMS factory
floor with the cell control software. The module has been designed in
such a manner to simplify the development of future Machine Entities,
thereby reducing the time required to integrate the CMS factory floor.

Table of Contents

1:Introduction and Background 1-1
Introduction 1-1
Problem Statement 1-1
Previous Work 1-2
Theoretical & Conceptual Foundations 1-4

Software Architecture 1-5
The message bus 1-5
The Human Interface 1-6
Other Modules 1-6

Project Description 1-7
2:System Functional Specification 2-1

Functions Performed 2-1
Input Preview 2-2
Output Preview 2-2
System Database/File Structure Preview 2-3
Message Preview 2-3

3:System Performance Requirements 3-1
Efficiency 3-1

Reliability 3-1
Description of Reliability Measures 3-1
Error/Failure Detection and Recovery 3-2

Security 3-2
Hardware Security 3-2
Software Security 3-2

Modifiability 3-2
Portability 3-3

4:System Design Overview 4-1
Equipment Configuration 4-1
Implementation Languages 4-1
Required Support Software 4-2

5:System Data Structure Specifications 5-1
User Input Specification 5-1

Identification of Input Data 5-1
Messages via Message-Queues 5-1
Results 5-2

Output Specification 5-3
Identification of Output Data 5-3
Reply Messages 5-3
CMM Commands 5-3

System Database/File Structure Specification 5-4
Identification of Database/Files 5-4
Database Creation and Update Procedure 5-5

6:Module Design Specifications 6-1
ME Module Functional Specification 6-1

Functions Performed 6-1
Module Interface Specifications 6—i

ME Module Operational Specification 6-3
Data Specification (Variable Dictionary) 6-3
Algorithm Specification (Pseudocode) 6-3

RS232—TO—AVAIL Functional Specification 6-5
Functions Performed 6-5
Module Interface Specifications 6-5

RS232—TO—AVAIL Operational Specification 6-6
Data Specification (Variable Dictionary) 6-6
Algorithm Specification (Pseudocode) 6-6

7:System Demonstration 7-1
Functions to be Demonstrated 7-1
Demonstration Setup 7-1
Description of Test Cases 7-2
Test Run Results 7-3

8: Conclusions 8-1
Summary 8-1

Problems Encountered and Solved 8-1
Suggestions for Future Extensions to Project 8-2

Enhancement Suggestions 8-2
9:Key Words, Phrases, and Acronyms 9-1

Modules of the Generic Workcell 9-1
Software Tools Developed 9-1
Machines 9-1
Other Project Related Terms 9-1

A:HI Screens A-1
B:HI ABF Code B-1
C:Machine Entity C++ Code C-1
D:Unix Shell Scripts D-1
E:Log File Example E-1

1. Introduction and Background

1.1. Introduction

The author has been working at Siemens Corporate Research (SCR) for nearly two years
assisting in the development phase of the Generic Workcell Project. The project is a
collaborative effort between NJIT and SCR. Two departments at NJIT are involved: The
Center for Manufacturing Systems (CMS), and the Computer & Information Sciences (CIS)
department.

The CMS department originated the effort with Siemens to help meet their goals of
integrating the equipment on the factory floor. The CIS department, specifically Professor
Alexander Stoyenko, became involved as the author's undergraduate and graduate project
advisor.

This paper concentrates on the authors latest project assignment: the development of a
machine interface module, called a Machine Entity, for the coordinate measurement machine
(CMM) on the CMS factory floor.

1.2. Problem Statement

The Center for Manufacturing Systems at NJIT has plans to integrate the machines on the
factory floor, including,

• a Mazak Turning Center

• a Brown and Sharpe Coordinate Measuring Machine

• a White Automated Storage and Retrieval System

• an AT&T Flexible Workstation

• a Charmille Technologies Electronic Discharge Machine

• and a Plastar Plastic Injection Molding Machine.

Reggie Cauldill, executive director of CMS, knew of the Generic Workcell Project being
developed at Siemens. An agreement was reached where NJIT would provide two students
to Siemens to assist in the implementation phase. In return, Siemens gave NJIT unrestricted
rights to the software which would be used not only for coordinating the factory floor, but
for further research and a demonstration site.

In January of this year, the port of the software from VMS to Unix began in anticipation of
installing the software at NJIT. Several months later, around July, the author concentrated
his efforts in developing a Machine Entity, a module of the Generic Workcell that interfaces
with a machine, and writing The Functional Requirements for a CMS Generic Workcell, a
document that specifies the physical layout, products, communications, and performance
objectives of the cell at NJIT[4].

Page 1-1

1.3. Previous Work

The Generic Workcell is a research project in distributed systems. Although the architecture
has been applied to factory automation for testing purposes, it is believed to be applicable
to other industries[1]. The traditional structure of workcell control systems is hierarchical,
that is, classifying things in a top-down manner, forming a tree structure composed of many
levels[12]. The benefit gained from using a hierarchical system is fast response times due
to the strong master/slave relationship between the levels. However, modifications are
difficult since making a change at one level requires knowledge of the level above as well
as below it. Experience has shown that fault tolerance is obtained in hierarchical systems
with considerable expense and complexity[10]. Papers as recent as 1984 argue that a
hierarchical workcell control system is necessary because different functions in the system
are located in different geographical areas[13].

In [13], Bjorke describes his three level hierarchy motion system. The lowest level in the
hierarchy pertains to the the functions executed on machines such as those specified in a
machine part program. The middle level pertains to functions executed in machine groups
(or workcell) such as the flow of raw materials and tools to/from machines. The highest level
pertains to functions performed in a factory unit that may contain several machine groups,
such as global transport of tools, raw materials and workpieces among machine groups.

Although the three level hierarchical motion model is a logical and natural way to approach
the integration of manufacturing cells and their subsystems, the design introduces many
complex internal dependencies. For example, the cell supervision module which feeds
control data to machines, coordinates their activity, and acts as the operator interface, is
comprised of six modules. Among these six modules, typically each module interfaces with
three other modules.

As computer hardware costs decreased, making microcomputer based networks economi-
cally feasible, the potential benefits of applying computer networking to machinery control
systems became clearer [14] and researchers began to question the relevance of hierarchically
controlled systems[8]. In [14], Duffie presents a formal approach to designing a distributed,
networked control system. Briefly stated, his approach is a top-down strategy that can be
used to decompose a complex control system into a set of more managable processes that
cooperate via a communication network.

His strategy is to first specify the requirements of the system. The second step is to partition
the system into a group of quasi-independent processes. After the system has been specified
and partitioned, the feasibility of communications between the processes is examined. If
communication is feasible, then the partitioned processes are assigned to processors based
on hardware resources and other considerations. If the allocation of processes to processors
satisfies the original system requirements, then the communication network, processor
hardware, and software are designed.

Duffie argues:
while hierarchical structures have been traditionally proposed for.. process con-
trol systems, there seems to be little justification for the strictly hierarchical
structure. A natural decomposition...is likely to result in a nearly hierarchical,
multilevel structure where communication takes place between processes without
regard to conceptual levels.... The point here is that communications, reliability,
and other consideration may result in a process structure that is different from any
preconceived functional structure.

Page 1-2

The present belief, as described in the literature [6, 8, 10, 11, 12] is that the decision making
should be located at the point of information gathering rather that in a central location. This
methodology has been termed heterarchical or non—hierarchical.

The advantages of a heterarchical system are numerous. For instance, flexibility is increased
since programs are small and are local autonomous units. Complexity is reduced since
information is localized. Reliability and fault tolerance is high since the systems is distributed
over several processors. Global information is minimized as well as the complexity of
relationships between modules. Also, the model is more readable since there are no hidden
modular interdependences that is typical in a hierarchical system[8]. Furthermore, prgram-
mers of modules need only concern themselves with the logic of the module they are
programming and the messages needed for cooperation with the rest of the system[10].

Many papers [6, 7, 8, 10, 11, 12, 13] have been written that describe workcell control
architectures that are similar to the design used in the Generic Workcell. For instance, in [6],
Histon describes his approach to building a distributed system infrastructure based on what
he calls proxies. Proxies, which provide a uniform interface to a common set of protocols,
are not unlike our Conversation Tool. The Proxy libraries which provide basic required
distributed system services such as naming, message passing, security, and monitoring/con-
trol, are similar in function to some of our modules. Also, like our design, Histon uses a
mulitcast system for interprocess communication. The Generic Workcell is unique, however,
since it supports dynamic reconfiguration in a heterogeneous environment.

To date, two prototype cells have been implemented — a Chemical Vapor Deposition Cell
in Germany and a simple robotic assembly cell in Princeton. The simple robotic assembly
cell, which is the testbed for the Unix version of the software, consists of:

• a robot with 5 degrees of freedom (Scorbot)

• a pneumatic pick and place robot with 3 degrees of freedom

• a linear table

• two conveyers

• several bar code readers

• a parts presentation station

• an assembly area

• a quality control center

The first Machine Entity was developed for the Scorbot by MT student Jaskaran Dhaliwal,
assisted by Research Scientist Paul Bruschi. His Machine Entity specification describes the
interfaces, database tables, conversations and design[5].

In his design, as shown in Figure 1-1 two processes are used to implement the Entity. The
WC (Workcell) process spends most of its time listening at the message bus waiting for a
message to arrive. When a message does arrive it stuffs a copy of the message in a piece of
memory shared by both the WC and the ME processes. The ME process spends most of its
time monitoring the machine (for results or alarms). At regular intervals, the ME polls the
shared memory to see if a message has arrived.

There are several flaws with the implementation of the design. First, although using shared
memory as a form of interprocess communication is fast and efficient, it provides no
synchronization between the processes. This must be provided separately by using
semaphores, signals or the like. With the lack of synchronization in this design we can not
guarantee that the ME has read shared memory. Second, since an operation at the machine

Page 1-3

can take from several seconds to several minutes — preventing the ME process from polling
— a buffering mechanism needs to be introduced to prevent loss of messages.

These deficiencies have been dealt with in a new implementation of the Scorbot Machine
Entity and in the implementation of the CMM Machine Entity. The changes are discussed
in detail throughout this document.

1.4. Theoretical & Conceptual Foundations

The theoretical and conceptual foundations for the Generic Workcell Controller is based on
the research done by scientists Dan Wolfson, Paul Bruschi, et. al. Their work is described
here to give the reader a better understanding on the depth of the project and to help the
reader understand what the author's project is and how it relates to the overall project.

D. Wolfson and P. Bruschi wrote in their A Reconfigurable Generic Workcell Architecture:
Fundamentally, we view manufacturing automation as a distributed activity in
which software modules cooperate to collectively control manufacturing. This
form of loosely coupled, distributed control has been termed heterarchical or
non-hierarchical to contrast it with the more traditional hierarchical control
architectures....

Based on this view, they provide a conceptual model, called the entity—server model. Entities
depict physical features such as machines or production lots, or abstractions such as
manufacturing operations[1]. The behavior and goals of an entity is described by its script.
For example, a lot entity script directs the processing of a physical lot while it is being
manufactured in the cell. Entities cooperate with other entities directly by broadcasting
messages or indirectly through the sharing of data.

Entities representing the same type of manufacturing feature are grouped together to form
an entity class[1]. All entities within a class have common properties and definition, store
similar information, maintain common representations of entity state, and utilize common
definitions of communication messages[1]. Some commonly found entity classes for
manufacturing cell are a lot class, resource class, tool class, and machine class.

Each entity class is overseen by an entity server which provides class specific services
common to that class. For example, the machine entity server provides all machine entities

Page 1-4

with recipe (part program) management functions, machine data collection, machine alarm
handling, and preventative maintenance scheduling.

Figure 1-2 shows the product(lots), tools, and resources entering the cell. Four classes are
shown: lot class, operation class, tool class, and machine class. Each class contains several
entities. For instance, the machine class has four machine entities, one for each physical
machine M1 through M4.

Figure 1-2

1.4.1 Software Architecture
Each class in the entity-server model maps to software modules collectively called a service.
Each entity in an entity class is implemented as an autonomous software module[1]. Each
entity server is implemented as one or more autonomous software modules depending upon
the complexity of the functions provided by the entity server[1].

Modules communicate via message bus, and store state information in a commercial
database.

Figure 1-3 shows several computer tasks (shown as bubbles) that are servers and entities.
The figure stresses that the system is distributed — two computers are shown, possibly one
Unix and the other VMS, each running a portion of the cell software. Note that the two
databases shown represent one physical distributed database. Also, the two message busses
shown represent one logical bus that extends across the network via ethernet.

1.4.2 The message bus
The message bus is implemented using the ISIS distributed toolkit. The ISIS system adopts
an approach based on synchronous execution, whereby every process sees the same events
in the same order[2]. ISIS also provides tools for creating and managing process groups,
group broadcasts, failure detection and recovery, and distributed execution and synchroniza-
tion [2].

A common interface to ISIS is provided for cell modules by a tool developed at Siemens
called The Conversation Tool. The tool not only provides a method for defining conversa-
tions, but also maintains the libraries that are linked with cell modules.

The message bus scheme is used since it supports dynamic reconfiguration of the cell.
Modules set filters to specify which conversations they are interested in participating in.
When a message is sent, it is delivered to all modules on the message bus. Thus, modules

Page 1-5

can join or be removed from a message bus without notifying or effecting existing bus
members.

Figure 1-3
Generic Workcell Ar-
chitecture.

1.4.3 The Human Interface
The Generic Workcell human interface is a single Ingres ABF application called HI. The HI
architecture provides two types of frames: menu frames and transaction frames. Every frame,
regardless of its type, has a unique four letter Transaction Code (TA code) associated with
it. TA codes provide the user with the ability to "jump" to a particular frame, rather than
traveling through menus and sub-menus, as well as a means of controlling user access
privileges on an individual frame basis.

Menu frames display menus that allow the user to either browse through selections or type
a TA code directly. A menu frame can take the user to another menu frame or to a transaction
frame. Transaction frames are the frames that perform specific tasks (i.e. create recipes, clear
cell alarms, start and shutdown cell modules, etc.). See appendix A for samples of the human
interface screens.

1.4.4 Other Modules
Several servers have been implemented: the Cell Alarm Server (CAS), the Equipment Recipe
Server (ERS), the Machine Server (MS), and the Lot Server (LS). There functionallity is
now briefly described.

The CAS manages alarms in the cell. The user is notified of alarms via an asynchronous
communications mechanism, called the status line server, that is a part of all HI menu
frames. After appropriate action has been taken, the user clears the alarm.

The ERS manages recipes, or part programs, in the cell for all machines. The ERS provides
functions to define recipes, upload & download recipes from/to machines, update recipe
states, and update recipes [15].

The MS provides functions common to all machines. For instance the MS module initiates
the startup sequence for each machine in the cell. It also provides other services like
individual machine shutdown and recording the state of each machine.

The LS provides services to the lot entities, the computer tasks that represent the physical
lot in the cell. In particular, the LS provides functions to create, merge and delete lot entities.

As mentioned, a Machine Entity was implemented for the Scorbot robot in the simple robotic
assembly testbed cell in Princeton. Also, various Lot Entities were created which coordinated

Page 1-6

the assembly operation performed by the robot: the building of a plane and helicopter
assembled from Lego'sTM.

1.5. Project Description

The author's project was to develop a Machine Entity (machine interface) for the Coordinate
Measurement Machine of the CMS factory floor. To achieve that end, the author coordinated
with the Computer Services department for the computer hardware needed for the project,
ported the software from Siemens, and became a proficient programmer/operator on the
CMM.

Page 1-7

Figure 2-1
Workcell Environment.
Copied from A Recon-
figurable Generic
Workcell Architecture.

2. System Functional Specification

2.1. Functions Performed

The cell control software, as a whole, controls the entire manufacturing process including,
but not limited to, scheduling, sequencing, material handling, process control, resource and
non—consumable management, and part program management. See Figure 2-1.

Each machine entity module of the control software interfaces with one machine and is
customized to utilize that machines features. The features of the CMM that are utilized by
the CMM machine entity software are:

• homing the machine — part of the initialization process of the machine; must be
done after every shutdown/power-down.

• selecting part programs —allows the user to select an existing measurement
program.

• execution of part programs — executes the previously selected measurement
program; the selecting and executing of part programs is synchronized by the
software.

• turning privileges on and off — a method of providing password protection to
certain file maintenance functions.

• part program file maintenance — including, deleting, updating, and system
backup of part programs

• shutdown of the CMM — takes the machine off line and unavailable for use.

2.2. Input Preview

As shown in Figure 2-2 there are two inputs to the machine entity: messsages and results.
The messages recieved by the ME process from the WC process are triggered by ISIS

Page 2-1

messages. ISIS messages can originate from any module in the cell, but typically for the
CMM Machine Entity, messages will be initiated by the Human Interface, Machine
Scheduler, and Lot Entity scripts.

Since the authors project was the ME portion of the machine entity, attention is given only
to the IPC mechanism used between the WC and ME in section 5-2. The following
discussion about ISIS messages is done to give the reader some insight on the functionality
of the WC.

Figure 2-2
The inputs and outputs
of the Machine Entity
module.

ISIS messages are defined and created using a software tool called The Conversation Tool,
developed by Rick Taft of Siemens. Using the tools graphical user interface, the user defines
the messages (specifically the fields of the message, their data type, and thier lengths). The
definitions are used to create C++ classes which are separately compiled and eventually
linked with the modules of the cell. For more information the reader is reffered to document
[17] written by Rick Taft.

Results include all responses generated by the CMM including results from a measurement
and alarms caused by an extraordinary event. In the current implementation, no alarms are
detected, only results are passed.

The report generated by the CMM is transferred to the cell in a results file. The Lot Entity
contolling the production of lot will be responsible for deciding if the part is accepted,
rejected, or needs rework based on the contents of the file. Also the Lot Entity will be
responsible for parsing the results file and placing the results of certain measured features
in the cell database to collects statistics.

2.3. Output Preview

As showm in Figure 2-1, there are two outputs of the machine entity module: reply messages
and CMM commands. Replies are messages which are used to indicate either success or
failure. Most modules in the cell behave in this way; they do not just send messages, but
engage in a conversation which is typically comprised of two messages: a request and a
reply.

CMM commands are the actual outputs generated by the machine entity to invoke a function
of the CMM, like engaging the homing sequence. To understand the CMM commands, it is
neccessary to understand the software supplied by Brown & Sharpe, the manufacturer of the
CMM. The software package supplied by Brown & Sharpe to create and manage recipes is

Page 2-2

called AVAIL, the Advanced Validator Interface Language. [16]. Under AVAIL, a CMM
part program (or recipe) consists of at least two distinct files. One is called the Probe
Qualification File or QUAL file. Probe Qualification tells the computer the probe diameter,
location, and the angle of the PH9 probe wrist. The computer compensates for this informa-
tion when measuring parts. The other file is called the list learn file (llf). The Ill is the main
program that controls the CMM to measure a specific part. The llf includes one or more
QUAL files. The software allows only one part program to manipulated at a time. Once the
part program is selected, all functions from the AVAIL menu effect that part program. Thus
by specifying the default part program, the llf and QUAL files are also specified. The CMM
commands generated by the machine entity to perform the functions mentioned above are
character strings that correspond to the menu selections from the AVAIL menu. For example,
the sequence EY shuts down the machine (menu selection E for shutdown, and Y to confirm).

2.4. System Database/File Structure Preview

All modules have access to a common database. The database is used to store three types of
data: static, dynamic, and historical. Static data includes configuration information. Dynamic
data includes the status of the machines in the cell and process results. These data are
selectively archived to provide a history of the cell.

The database is currently consists of 49 tables. The tables used by the ME are:

• OP_MACHINE_RECIPE

• MACHINE_RUN_RESULTS

• CONFIGURE_ACCEPT_TYPES

• MACHINE STATUS

• ALARM DESCRIPTION

• ALARMS_RECOGNIZED

2.5. Message Preview

In section 2-2, a brief introduction on creating and using conversations utilizing The
Conversation Tool was given. The following is a list of conversations that take place between
the Machine Entity and the rest of the Cell. Specifically, these conversations take place
between the cell and the WC process that was implemented by Peter Murray. They are listed
here, however, since they are sent by the WC to the ME (in a different form) via an IPC
mechanism called message queues. The cooperation of the WC and the ME processes are
discussed in deatil in a later section.

• ME_START — The ME sets its conversations appropriately and homes the
machine

• ME_START_COMPLETE — Reply.

• ME_SHUT — The ME performs a shutdown of the machine.

• ME_SHUT_COMPLETE — Reply.

Page 2-3

• SETUP_RUN — The ME performs a sequence of events to prepare for a lot,
specifically, verifies that the machine is homed, downloads the recipes, and
"sets" the part program.

• START_RUN — The ME executes the part program.

• RUN_COMPLETE — The ME notifies the cell that the execution of program X
is complete.

• CELL_ALARM — Initiated by the ME when it detects an extraordinary event.

• UPLD_ME — Instructs the ME to upload a recipe to the cell.

• DNLD_ME — Instructs the ME to download a recipe from the cell.

• ACC_TYPECOMPLETE — The ME notifies the cell that there was a change in
one of its accept types.

• UPD_ME_STATUS — The ME notifies the cell that its state has changed.

Page 2-4

3. System Performance Requirements

3.1. Efficiency

The workcell system host computer at NJIT is a Sun 4/210 running the Andrew File System
(AFS), version 3.1 under Sun OS 4.1.1 with 32 megabytes of RAM. The computer runs the
Ingres relational database, the ISIS distributed toolkit and all cell modules, including the
Equipment Recipe Server (ERS), the Cell Alarm Server (CAS), the Machine Scheduler
(MSCHED), the Machine Server (MS), the Lot Server (LS), and various Lot Entities (LE)
and Machine Entities (WC & ME).

This platform performs satisfactorily when the modules are compiled with the optimization
flag set and with the logging level set to its lowest level (i.e only fatal errors are logged).
Problems arose when the modules were compiled with debug information and the logging
level was set at high. In particular, ISIS conversations were timing out since the computer
was overloaded.

The software also performs well on a Sun Sparc 1+ with 32 megabytes of RAM and a 200
megabyte hard disk. In this configuration, however, it is necessary to setup the station as an
Ingres client and run the Ingres back end on a server. This is the preferred configuration.

3.2. Reliability

Both ISIS and Ingres play a central role in the architecture of the software. If either fails, the
cell control software will effectively stop running.

Regarding ISIS, problems of this nature have been minimized due in part to the efforts of
Rick Taft, the designer of The Conversation Tool. The tool has provided a common ISIS
communications interface that has proven to be consistent and reliable.

Problems associated with the database have been almost non existent. Ingres is a reliable,
commercial database.

3.2.1 Description of Reliability Measures
Several measures were taken to ensure the reliability of the software: a logging system,
database recovery macros, and multiple occurrences of a module to increases concurrency.

A common logging systems is used by all modules to record fatal errors, warnings, and
general notes. The logging level is set on a per module basis and can be changed while the
module is running. The log files are particularly helpful during debugging phases. See
appendix E for sample log file output.

A set of M4 macros are defined to provide a consistent database recovery mechanism. For
instance, the macro saveto() allows the programmer to define an Ingres save point that is
used to define the start of a database transaction. The macro check_and recover_to() is
placed after all database select, update and delete commands. It automatically checks for

Page 3-1

fatal errors such as deadlock and log full errors. If the user provides the expected number of
rows to be returned from the transaction, depending on the result, either the work will be
committed, rolledback, or tried again.

The issue of concurrency was addressed by Bill Nell. His project allows multiple modules
(i.e. several Cell Alarm Servers) to be running in the same cell. A biding technique is used
to decide which module will handle the incoming request.

3.2.2 Error/Failure Detection and Recovery
In addition to the logging system and database recovery macros which provide our error
detection and recover mechanism, ISIS and Ingres have their own mechanisms. For example,
ISIS provides reliable ordering and message delivery; either all modules get the message or
none do. Ingres uses a logging system for recovery.

3.3. Security

The Generic Workcell project is considered to be, by Siemens Corporate Research, con-
fidential and proprietary information. NJIT has been granted rights to the software, including
the patented entity—server model and the source code written to date. NJIT is expected to
maintain the confidentiality of the software.

3.3.1 Hardware Security
The hardware for the project is maintained and secured by the Computer Services (CS)
department at NJIT. The workstation on the factory floor is secured with metal wire
harnesses. The main computer, Spruce, is locked in a room on the second floor of the
Information Technologies building. Access to the room is controlled by the CS department.

3.3.2 Software Security
Software security is provided by password authentication procedures controlled by the
Andrew File System. Copies of the software made for backup purposes are stored in locked
file cabinet.

3.4. Modifiability

Modifiability can be addressed on two levels: the modifiability of the architecture as a whole,
and the modifiability of a single module.

Addressing the modifiability of the architecture, the goals of the project have been to provide
a cell controller that is dynamcally reconfigurable in a heterogenous environment. Theses
goals have been achieved by using a non-traditional heterarchical design as explained earlier.
For instance, the design allows a user to alter a module's behavior, and then replace it with
the existing, running version without interfering with the normal operation of the cell.

The Machine Entity module, like the rest of the modules in the Generic Workcell project, is
fully documented. The documentation is more than sufficient to allow a programmer to
modify and upgrade any module of the cell. Typically, the documents include functional
description, database interface, and ISIS interface sections, as well as pseudo code.

Page 3-2

33. Portability

The software, with modifications, has run on a MicroVAX II running VMS 5.1, and on a
Sun 4 running Sun OS 4.1.1. During the port from VMS to Unix, attempts were made not
to introduce non portable code. However, several Unix specific IPC mechanism have been
used in the Machine Entity to improve the performance and reliability. Modifications will
be needed to port back to VMS.

As for the other modules of the cell, it has been shown that modules that were compiled
under the Conversation Tool environment will port with only minor modifications. The
modifications needed are a result of the inherent minor differences in the compilers available
for the systems.

The systems in which the software can be ported to is limited to the systems in which ISIS
and Ingres are available.

Page 3-3

Figure 4-1

4. System Design Overview

4.1. Equipment Configuration

The implementation at NJIT uses a Sun 4/210 (called Spruce) running Sun OS 4.1.1 with
32 megabytes of memory, and 50 megabytes of disk storage for the cell software. Additional
storage is required for the ISIS distributed toolkit and Ask Technologies' Ingres Relational
Database version 6.3. Spruce runs all of the cell's modules as well as ISIS and Ingres.

The computer controlling the CMM is a compaq 386, with 4 megabytes of memory and a
40 megabyte hard drive running the Xenix operating system. In total, four serial ports and
2 parallel ports are available. Currently 1 parallel port is being used for an Epson LX-800
printer, and 1 serial port is connected to Spruce. The computer runs AVAIL, the measurement
software provided by the manufacturer and "RS232_to_AVAIL", a process created by the
author.

Two Sun workstations were provide by the Computer Services department for the factory
floor to develop and test the CMM machine entity. One workstation, named TRUTH, is a
Sun Sparc 1+, the other is a Sun/3. Both were connected to the network to access Spruce.
See figure 4-1.

4.2. Implementation Languages

Modules are coded using the AT&T C++ compiler, version 2.1. Two preprocessors are used:
M4 which is supplied with Sun OS and Embedded SQL supplied by Ingres. M4 is used so
it is possible to define macros which contain ESQL calls.

The "RS232_TO_AVAIL" program was coded in non-ansi C using the compiler provided
with SCO Xenix. Since the Xenix operating system installed on the compaq at NJIT does
not include the development kit (i.e. a compiler), it was necessary to compile the code at
Siemens on a similar machine and transfer the executable.

Page 4-1

4.3. Required Support Software

There are three support software packages:

• ISIS, version 2.1

• Ingres Relational Database, version 6.3 or 6.4

• Buildtool, Siemens proprietary "make" utility

Page 4-2

5. System Data Structure Specifications

5.1. User Input Specification

5.1.1 Identification of Input Data
In section 2-2, two inputs to the machine entity were identified: messages and results. This
section discusses both in detail.

5.1.2 Messages via Message-Queues
The two processes that make up a machine entity, namely, the WC and the ME, communicate
via the interprocess communincation facility called message-queues. Message-queues are a
form of shared memory, but have several distinct added advantages over ordinary shared
memory. First, it provides synchronization. Shared memory is usually used in conjuction
with a synchronization method like semaphores. Second, many messages can be be sent with
out loss of data. With shared memory, only one "message" could be sent at a time.

Two system level functions are used to access the IPC faciltiy: mqsnd() to send a message
and mqrcv() to receive a message. One of the arguments to the functions is a pointer to the
structure that defines the fields of the message. The message structure used by the WC and
ME is:

• message_id — an integer field that contains a unique number identifying the
message. For consistency, the message-queue message_id is equivalent to the
message_id of the corresponding ISIS message that triggered the event.

• filename — a string field used in a download and upload message to specify the
path and filename to be acted upon.

• recipe_id— a string field containing the corresponding id given to a file/recipe

• ack_code —an integer used in reply messages sent by the ME to the WC. The
code is either an ACK or a NACK.

• alarm_text— a string field that contains information detailing the extraordinary
event.

The following is a list of the message-queue messages that are exchanged by the WC and
ME. Instead of listing the message_id's, a meaningful tag, like ME_START, is given.

• ME_START — the ME initiates the homing sequence.

• ME_START COMPLETE — Reply.

• ME_SHUT — The ME performs a shutdown of the machine.

• ME_SHUT_COMPLETE — Reply.

• SETUP_RUN — The ME performs a sequence of events to prepare for a lot,
specifically, verifies that the machine is homed, downloads the recipes, and
"sets" the part program.

• SETUP_RUN_COMPLETE — Reply.

• START_RUN — The ME executes the part program. Results and alarms are
collected during this phase of operation.

• RUN_COMPLETE — The ME notifies the cell that the execution of program X
is complete. The results are transferred to the "cell".

• CELL_ALARM — Initiated by the ME when it detects an extraordinary event.

• UPLD_ME — Instructs the ME to upload a recipe to the cell.

• DNLD_ME — Instructs the ME to download a recipe from the cell.

• ACC_TYPE_COMPLETE — The ME notifies the cell that there was a change in
one of its accept types.

• UPD_ME_STATUS — The ME notifies the cell that its state has changed.

5.1.3 Results
The results file, created by AVAIL, is transferred from the CMM computer to the cell
computer where it is used for collecting long-term statistics and determining if the part is in
or out of tolerance. The AVAIL programmer has several report formats to choose from. A
typical report is as follows:

FEATURE ACCEPTED MEASURED UPP-TOL LOW-TOL DEVIATION OUT/TOL

CIRCLE1 2.00 1.996 0.005 -0.005 0.004 —*

C I RCLE2 2.00 1.977 0.005 -0.005 0.023 0.018

Each feature of the part that is being measured is given a name by the programmer to uniquely
identify it like circle1 and circle2. For each feature, the programmer specifies the accepted
value and the upper and lower tolerances. The measured value and deviation are calculated.
Note that the last column of the report shows that the feature called CICRLE1 is within the
specified tolerance, while the feature CICRLE2 is not.

On the CMM computer, the results file is place in a directory called:

/usr/avail/part/PART_NAME

where PART NAME is the name of the part.

After the reply message RUN_COMPLETE is sent, the file is transferred to the cell using
Kermit via the RS232 connection between Spruce, the cell computer, and the CMM
computer.

Once the file is transferred to the cell computer, the Lot Entity associated with the physical
lot (the part being measured) parses the file and places the results of ceratin features in the
cell database to collect statistics. The AVAIL programmer can speicify which features are
to be used for statistics by placing a special character, such ans an asterisk, as the first
character in the feature name in the llf. In a similar manner, the programmer can notify the
cell that a particular feature is critical and must be within tolerance for the part to be accepted.

5.2. Output Specification

5.2.1 Identification of Output Data
In section 2-3, two outputs of the machine entity were identified: reply messages and CMM
commands. This section discusses both in detail.

Page 5-2

5.2.2 Reply Messages
A reply message is sent via message-queues from the ME to the WC in response to a message.
The reply consists of a message_id and an ack_code; the other fields of the structure are not
used. The valid ack_codes are ACK (a positive one) and NACK (a negative one). The
following are the valid message_id's for replies:

• ME_START_COMPLETE: Notifies the WC wether the CMM startup sequence
was successful or not.

• ME_SHUT_COMPLETE: Notifies the WC wether the CMM shutdown
sequence was successful or not.

• SETUP_RUN_COMPLETE: Notifies the WC when the recipe download is
done.

• RUN COMPLETE: The ME notifies the cell that the execution of program X is
complete and that the results are ready to be transferred to the "cell".

5.2.3 CMM Commands
CMM commands are the outputs of the machine entity that invokes the functions of the
CMM. The commands generated by the machine entity are piped to AVAIL, the measure-
ment and control software provided by the manufacturer. The commands are actually
character strings that correspond to the menu selections of AVAIL.

The following are the sequence of characters generated by the machine entity upon recieving
a message from the WC.

• ME_START: "AY" & "\rA*"

• "A" Home Machine

o "Y" answer Yes to confirm selection

The User is notified via cell alarm to Press the Machine Start button on the machine. After
the alarm is cleared, the homing sequence continues as follows:

o "\r" A carriage return to continue the homing sequence

o "A" Select "Home all Axes"

o "*" Return to the main menu

• ME SHUT: "EY"

o "E" Initiate shutdown

o "Y" Yes to confirm shutdown

• ME_SETUP_RUN: "lfilename\rY*"

o "1" Set part program

o filename: the name of the part program

o "\r" A carriage return

o "Y" Confirm selection of part program

o "*" Return to the main menu

• ME_START_RUN: "DA"

o "D" Enter measurement sub-menu

o "A" Execute part program

Page 5-3

5.3. System Database/File Structure Specification

5.3.1 Identification of Database/Files
Machine entities use six tables in the common cell database. These tables are described
below.

OP_MACHINE_RECIPE:

Column Name Type Nulls Defaults

op_type varchar 12 no no

machine_id varchar 12 no no

recipe_id varchar 20 no no

MACHINE_RUN_RESULTS:

Column Name Type Nulls Defaults

machine_run_id integer 4 no no

param_id varchar 12 no no

value varchar 25 yes no

set_name varchar 25 yes no

instance integer 2 yes no

CONFIGURE ACCEPT TYPES

Column Name Type Nulls Defaults

machine_id varchar 12 no no

op_type varchar 12 no no

op_function varchar 80 no no

op_sequence integer 1 no no

MACHINE STATUS:

Column Name Type Nulls Defaults

machine_id varchar 12 no no

machine_run_id integer 4 yes no

recipe_id varchar 20 yes no

start time date yes no

end_time date yes no

me status varchar 16 no no

note_id integer 4 yes no

dts date no no

ALARM_DESCRIPTION:

Column Name Type Nulls Defaults

robot_alarm varchar 80 yes no

alarm_id varchar 12 yes no

description varchar 40 no no

The OP_MACHINE_RECIPE table contains the operation types for every machine/recipe
pair. The list of valid operation types is listed in the PARAMETER_STRING_VALUES
table. For example, the recipes that are run on the CMM must have operation types measure
and complex, or the cell will complain. The MACHINE_RUN RESULTS table is used to
store the parsed output of the results file. The CONFIGURE_ACCEPT_TYPES table
specifies the function (process) to change accept types for each machine/operation type pair.
An entry is appended to the MACHINE_STATUS table every time the machine's status
changes. The ALARM_DESCRIPTION table is used to map the alarms generated by a
machine to an alarm identifer.

5.3.2 Database Creation and Update Procedure
The database at NJIT is a copy of the database installed at Siemens. Since Ingres was updated
to version 6.4 at Siemens and NJIT is using version 6.3, the "copydb" command at Siemens
could not be used. Instead, using the Ingres network utility, netu, a virtual database named
siemens was defined at NJIT to point to the database on kong.siemens.com. This allowed
the 6.3 version of the software to be run against the 6.4 database at Siemens. For example,
to query the releases database at Siemens from a workstation at NJIT, one would simply
type:

sql siemens::releases

The first step in creating the Ingres database is to setup up the system catalogs by typing:

createdb releases

After the database is created, SQL scripts for the two owners, namely, CELL and
RELEASES, are created by typing:

copydb -ucell -c siemens::releases

my copy.out copy-cell.out

my copy.in copy-cell.in

and,

copydb -u releases -c siemens:: releases

my copy.out copy-rel.out

my copy.in copy-rel.in

Next, the human interface ABF application is coppied by typing:

Page 5-5

copyapp out siemens::releases hi

my iicopyapp.tmp copyapp-hi.in

Now that all the SQL scripts are created, the out scripts are run first to copy the database to
ascii text files. Then the in scripts are run to extract the information contained in the text
files into the new database. The seqence of commands is as follows:

/* run out scripts */

sql siemens:ieleases < copy-rel.out

sql siemens::releases <copy-cell.out

/* run in scripts */

copyapp in -q releases copyapp-hi.in

sql releases <copy-rel.in > RESULTS-REL

sql releases <copy-cell.in > RESULTS-CELL

The output of the SQL interpreter is redirected to the files RESULTS-REL and RESULTS-
CELL so they can be easily scanned for errors. All the above files are in

cell/releases/db.

6. Module Design Specifications

A typical machine entity is comprised of two modules: a WC module and a ME module.
The CMM machine entity has an additional module, named RS232_TO_AVAIL, that is
specifically designed for the CMM.

This section defines the functional and operational specifications of the ME and
RS232_TO_AVAIL modules. The WC module is discussed by its developer, Peter Murray,
in his thesis.

6.1. ME Module Functional Specification

6.1.1 Functions Performed
The ME module performs the following functions:

• Message queue setup

• Send & receive messages

• Serial port setup

• Send & receive via serial port

• Control loop — message queue & serial port polling

6.1.2 Module Interface Specifications
Each of the above functions are implemented as one or more C language functions. Their
functional interface is described here.

Message Queue Setup

A function to setup message queues has been defined and is accessible by both the WC and
the ME. If successful, the function returns an integer that is the handle to the queue. If a fatal
error occurs (i.e. the system calls to create a message queue failed), the functions exits and
logs the error. The argument to the function is the name of the process in which the queue
is to be shared. The protocol used to setup the queue is as follows:

• The WC process uses its process id as a key in the system calls to setup the
queue

• The ME process is given the WC's process name on the command line which is
used to get the WC's process id. By using the same key, the queue is established
between them.

int init_mq(char *process_name)

Message Queue Receive

Two functions are used to read the queue; one is a blocking read, the other polls. Both return
an integer that indicates either a message was received, no message was received, or an error
condition. The arguments to both functions are

• msgid: the handle to the queue returned by init_mq()

Page 6-1

• TO_ME or FROM_ME: indicates the direction of the message, and

• wc_me_message: the contents of the message.

int mq_read_nowait(int msgid, int TOME, (char *)wc_me_message)
int mq_read_wait(int msgid, int FROM_ME, (char *)wc_me_message)

Message Queue Send

The function used to send a message queue behaves in a similar fashion and takes the same
arguments as the read functions. The prototype is as follows:

int mq_send(int msgid, int FROM_ME, (char *)wc_me_message)
Serial Port Initialization

The following function initializes the RS232 port to raw mode. It returns a void; any error
condition that can occur is fatal and therefore will exit immediately. The arguments to the
function are:

• channel: a pointer to an integer (a file descriptor) that is the handle to the RS232
port.

• savetty: a pointer to the termio structure that contains the port configuration
information before the port was set to raw mode. Used to restore the original
port configuration.

void termchan(int *channel, struct termio *savetty)

Serial Port Read

The function term_read() polls the RS232 port. Term_read() returns an integer that repre-
sents either a time-out (i.e. no data to be read), an error or a normal condition. The arguments
are

• channel: a handle to the open and configured RS232 port.

• time_out: the time, in les of a second, to poll the port.

• buf_length: the number of bytes read

• buf: a char array containing the data read.

int term_read(int *channel, int time_out, int *buf_length, char *buf)

Serial Port Send

The function used by the ME to send data to the RS232_TO_AVAIL process is cwrite().
The function returns a void; if an error occurs it is logged and the function continues. The
arguments to the function are:

• channel: the handle to the port returned by termchan()

• a literal string: the contents to be sent.

Control Loop

The control loop, which is placed in main(), polls the RS232 port and the message queue
approximately every 2 seconds. Main() returns an integer in which no significance is placed.
One command line argument is expected: the name of the WC process which is used for
message queue initialization. When a message is received via message queue, a correspond-
ing message is sent to the RS232 module. See section 6-2-2.

• argv [2]: the process name of the WC

Page 6-2

int main(int argc, char *argv[]);

6.2. ME Module Operational Specification

6.2.1 Data Specification (Variable Dictionary)

• struct WC_ME_MSG wc_me_message — holds the contents of a message queue
message. The fields of the structure are defined below.

• int msgid — the handle returned during message queue initialization

• int ACK — imdicates a positive result

• int NACK — indicates a negative result

• int TO_ME — specifies direction of message is from WC to the ME

• int FROM_ME — specifies direction of message is from ME to WC

• int IS_NO_MESSAGE — indicates that no message was read from the queue

• int channe1 — the file descriptor corresponding to the RS232 port

• int msg_id — a field of wc_me_message; valid id's are discussed in a later
section.

• char* file_name — a field of wc_me_message

• char* recipe_id — a field of wc_me_message

• int ack_code — a field of wc_me_message

• char* alarm_text — a field of wc_me_message

• long status — the return value of term_read(); either NORMAL, TIMEOUT, or
ERROR.

• char* resultfile — specifies where the result file is placed

• FILE** result_fp — the file pointer to the results file

• char ch — used by read() to contain the one character read in.

• char* buf temp — buffer that is built from concatenating the characters read in
one at a time

• int length_buf — length of the temporary buffer buf_temp.

6.2.2 Algorithm Specification (Pseudocode)
ME Control Loop

msgid = init_mq(process_name); /* message queues */
setup_rs232_port(); /* calls termchan() */
forever

{
while (message_queue_read_nowait() == NOMESSAGE)

poll_rs232_port();

/* got a message from message queue */
switch(message_id)
{

case STARTUP:
r startup procedure */

case SHUTDOWN:
/* shutdown procedure */

case SETUP RUN:
/* download recipe */

case START RUN:
/* execute recipe */

default:
r error, log message received */
/* end of switch */

}/* end of forever */

6.3. RS232-TO-AVAIL Functional Specification

6.3.1 Functions Performed
The RS232_TO_AVAIL module performs the following functions:

• Launches AVAIL as a child process and establishes a pipe in which commands
are passed

• Initializes the serial port

• Control Loop — listens at port and sends commands

6.3.2 Module Interface Specifications
Each of the above functions are implemented as one or more C language functions. Their
functional interface is described here.

Launch AVAIL

The function set_pipe0 in RS232_TO_AVAIL, launches AVAIL as a child process and
redirects its standard input to a Unix pipe. The pipe is used to transfer the commands received
from the serial port to AVAIL. The function has no arguments and returns void.

void set_pipe(void)
Serial Port Initialization

The function set terminal() initializes serial port 2A to raw mode. Read()'s are blocking and
are satisfied after 1 character is read. The arguments are:

• size: the MIN number of characters to be read; currently set to 1

• time: the intercharacter timer; currently set to 0

void set_terminal(int size, int time)
Serial Port Send

One function is used to send data through the pipe to AVAIL and to the ME via the serial
port. The arguments are:

• direction: the handle to either the pipe or the serial port

• buffer: the contents to be sent

Page 6-4

void output(int direction, char *buffer)
Control Loop

The control loop is placed in a function called listen(). Listen() performs a blocking read on
the serial port. When a command is read, the corresponding AVAIL menu string is generated
and sent.

6.4. RS232-TO-AVAIL Operational Specification

6.4.1 Data Specification (Variable Dictionary)

• int DATA_OUT - alias for the handle to the pipe

• int PORT OUT - alias for the handle to the serial port

• int ERR_OUT - specifies the device in which error messages are written

• int TRUE - used for loops

• int FALSE - used for loops

• int fd - the file descriptor (handle) for the serial port

• char buffer[] - buffer to hold data from serial port

• char err_buf[] - the error buffer

• int fd[2] - the file descriptor (handle) for the pipe to AVAIL

6.4.2 Algorithm Specification (Pseudocode)
Listen()

forever

{
read(fd, buffer, 1); /* read rs232 port, blocking */
if (!strcmp{buffer, "DOWNLOAD"))

/* invoke kermit for file transfer */
else if (!strcmp(buffer, "UPLOAD"))

/* invoke kermit for file transfer */
else if (!strcmp(buffer, "DOWNLOAD"))

/* invoke kermit for file transfer */
else if (!strcmp(buffer, "SETUPRUN"))

output(DATA_OUT, buffer);
else if (!strcmp(buffer, "STARTRUN"))

{
output(DATA_OUT, buffer);
/* determine if part is good or bad */
if (AVAIL report file exists)

output(PORT OUT, "FAIL");
else

output(PORT OUT, "PASS");

}
}1* end of forever */

Page 6-5

7. System Demonstration

7.1. Functions to be Demonstrated

In section 2-1 the following functions of the CMM were described:

• homing the machine — part of the initialization process of the machine; must be
done after every shutdown/power-down.

• selecting part programs — allows the user to select an existing measurement
program.

• execution of part programs — executes the previously selected measurement
program; the selecting and executing of part programs is synchronized by the
software.

• turning privileges on and off — a method of providing password protection to
certain file maintenance functions.

• part program file maintenance — including, deleting, updating, and system
backup of part programs

• shutdown of the CMM — takes the machine off line and unavailable for use.

All of the above functions have been implemented and tested as of December 12, 1991, in
anticipation of the demonstration for the Chief Executive Officer of Siemens Corporate
Research in January of 1992. The next sections describe and justify the test cases performed
in preparation for the demonstration.

7.2. Demonstration Setup

The cell software startup procedure begins by verifying that both ISIS and Ingres are running
on Spruce. ISIS can be started by any user who as access to the cell account. Ingres, however,
can only be started by the superuser.

After Ingres and ISIS are running, the cell software is started using a Unix C-shell script1
called start.csh. The start script starts the cell modules and sets their logging level. Each
module upon startup joins a common ISIS group (message bus), initializes its communica-
tion filters for the startup conversation, and connects to the cell database. The last module
started is the Human Interface (HI) module.

To shutdown the cell software, a C-shell script called stop.csh is provided. The script sends
a user-defined signal to each of the cell modules. In response to the signal, the modules run
a signal handler that will allow the process to die gracefully (i.e. delete shared memory that
would otherwise stay allocated until explicitly deleted or until the system was rebooted).

1 See Appendix D for the listings of shell scripts.

Page 7-1

Another script of interest is called dbclean.csh. This script deletes remnant data from the
database after, for instance, the cell software malfunctions. The script is intended to be a
debugging tool only.

7.3. Description of Test Cases

The first function to be implemented and tested was the homing sequence. The reason is two
fold. First, the machine must be homed before any other function will work. Second, the
homing sequence is the most complicated: it uses the Cell Alarm Server, Human Interface
(including the status line server mechanism), and the Machine Entity Modules, making it an
attractive, thorough test case.

The function was tested by starting the cell as described above, and then initiating the
sequence at the Human Interface2 as follows. At the opening HI screen, the TA code STRT
was entered to jump to the "Start Cell Modules" frame. The startup sequence was started by
pressing key R5. The entire cell was started, including the CAS, ERS, LSR, MSCHED, and
MS modules.

The MS (Machine Server) module, upon receiving a startup message, sends a secondary
startup messages to the Machine Entities listed in the "Machine Entity Startup" frame. The
WC, upon receiving a startup message from the MS, initiates the homing sequence.

During the CMM homing sequence, an alarm is forced to notify the user to press the machine
start button located on the CMM console. The user is notified via the status line server, an
asynchronous communications mechanism, located at the bottom of most HI frames. When
the alarm is cleared by the user at the HI frame "Clear Alarm", a message is broadcast by
the CAS. The WC responds to the message and sends the final set of commands to the ME.
The success of the test is obvious; the machine moves to home position.

The functions select part program, turn privileges on, and execute part program were tested
using a Lot Entity script. The procedure went as follows. A work order was defined using
the "Work Order Entry" screen. The product called "test" was selected since that was
previously set up to run the CMM Lot Entity script. The script was introduced to the cell by
selecting Run(L2) in the "Work Order Status" frame. When any Lot Entity is first introduced
to the cell it registers with LSR, the Lot Server, and then waits for what is called an Import.
The Import request is displayed on the status line server and is also listed in the "Dispatch
List".

When the lot was imported using the "Import Lot" frame, the lot script continued its
execution. The script successfully completed, which includes being scheduled by the
Machine Scheduler module for the machine, selecting a part program (hard coded in the
script for testing purposes), and executing the part program.

2 The Human Interface screens referred to are in Appendix A, and are placed in the order in which they
are referenced.

Page 7-2

7.4. Test Run Results

The results show that it is possible to develop a Machine Entity for the cell in a relatively
short period of time. Further, it has been shown that a sizable portion of the Machine Entity
code is reusable even for unrelated machines, thus making it feasible to provide a generic
RS232 based Machine Entity.

The results also reveal a problem with the cell software. In several of the tests conducted,
the log files reported that conversations were being aborted by ISIS because either all the
modules did not receive it, or because all of the modules that were interested in the
conversation were not able to reply in the specified amount of time. As a result of the
time-outs, the database contained data inconsistent with the actual state of the machine. The
actual cause of the problem has not been found. We suspect its either a database deadlock
(which would effectively stop the module from receiving or replying to messages) or system
overload.

Page 7-3

8. Conclusions

8.1. Summary

The installation of the Generic Workcell software at New Jersey Institute of Technology
signifies the end of the author's two year participation in the project. The project will
continue, however, under the direction of Professor Alexander Stoyenko of the Computer
Science department and Reggie Cauldill, director of the Center for Manufacturing Systems.

The implementations of the Generic Workcell at Siemens, NJIT, and Germany have proven
that the entity server mode1 and the software architecture used is generic. It is hoped by the
Siemens research scientists to have the opportunity to evaluate the mode1 and software
architecture in a variety of non-factory automation related areas such as Patient Monitoring
and Medical Systems.

8.2. Problems Encountered and Solved

Two types of problems were encountered: those that were related to the computer system
hardware and those that were related to the Generic Workcell software.

Computer system problems occurred because several of our requests were either unable to
be fulfilled, delayed, or they were done incorrectly. For example, the AT+T version 2.2 of
the C++ compiler was requested, but a different version was installed. The installation of
Ingres 6.3 was delayed since only version 6.1 had been installed at NJIT to date. Hardware
malfunctions (specifically repeaters) made the network unreachable for several days. The
installation of the Andrew File System made the system unavailable for two weeks, and in
the process, the Generic Workcell platform was moved to a different computer. Also, the
original goal was to have a workstation on the factory floor that would be the cell computer.
This was not provided since a workstation could not be found with the needed resources.

The solutions (or "patches") to the above problems sometimes cascaded into larger, unfor-
seeable problems. For example, since Spruce, rather than Truth had to be used as the cell
computer, the serial connection for the Machine Entity was 100 feet as opposed to 5 feet.

Only minor problems were encountered with the cell software. For instance, there was a
compatibility problem in three of the Ingres ABF frames. The programmer used constructs
that were introduced in version 6.4 and not available in 6.3. The code was modified to use
only version 6.3 constructs. The Ingres version difference also caused problems during the
porting of the database. The solution is explained in detail in section 5-3.

These problems were eventually overcome, and the platform used to develop and test the
CMM Machine Entity was stabilized.

Page 8-1

8.3. Suggestions for Future Extensions to Project

The original goals1 of the Generic Workcell Project were to

• provide a generic system architecture and software toolbox to develop specific
workcells rapidly

• Allow for independent or cooperative operation among workcells

• Design a flexible and exstensible workcell system:

o support the reconfiguration (addition and removal) of equipment

o support changes and additions to the manufacturing function with few
modifications to software

o Enhance the quality of the product

The Generic Workcell software installed at NJIT provides the CMS department with the
opportunity to meet these goals in a relatively short period of time; several years ahead of
their original schedule to integrate the factory floor. To achieve full integration of the factory
floor, the following needs to be accomplished:

• Machine Entities for the Automatic Storage and Retrieval System, the Mazak
Turning Center, the Charmille Technologies EDM, and the AT+T Flexible
Workstation need to be written. The current implementation of the CMM
Machine Entity will assist in the development since it was designed in a modular
fashion (i.e. the CMM specific code is easily separated, leaving a generic RS232
machine interface).

• A document specifying the purpose of the Cell, including transport systems,
identification systems, operator work areas, descriptions of the products and
manufacturing process plans.

• The development of the Lot Entity Scripts to perform the tasks outlined in the
functional requirements document.

By tending to these immediate needs, the factory floor will be integrated in a short period
of time, and as a side effect, the persons responsible will become proficient in the design of
the workcell and would (should) ultimately be responsible for continuing the research
aspects of the project.

8.3.1 Enhancement Suggestions
The benefits of C++ is not being used in the modules. Unfortunately, C++ has merely been
used as a better C, no objects other than those provided by the Conversation Tool exists.
Clearly, the nature of the project and the software architecture will benefit using the Object
Oriented paradigm.

The current implementations of the project use the Ingres Relational Database. This may not
be practical since the cost of Ingres is high. Research needs to be done to provide an cost
effective alternative to Ingres, making the project more marketable.

1 Taken from presentation slides authored by Paul J. Bruschi & Dan Wolfson

Page 8-2

9. Key Words, Phrases, and Acronyms

9.0.1 Modules of the Generic Workcell

• HI — Human Interface to the Generic Workcell

• ERS — Equipment Recipe Sever

• LS —Lot Server

• MSCHED — Machine Scheduler

• CAS — Cell Alarm Server

• MS — Machine Server

• WC & ME — Machine Entity

9.0.2 Software Tools Developed

• The Conversation Tool — (Ctool) a software tool that provides a common ISIS
interface across cell modules

• The Conversation Monitor — (CMON) a software tool that captures ISIS
messages; used during debugging of modules

9.0.3 Machines

• CMM — Coordinate Measurement Machine

• MAZAK — Mazak Turning Center

• FWS — AT&T Flexible Work Station

9.0.4 Other Project Related Terms

• GWC —Generic Workcell

• SCR — Siemens Corporate Research, Inc., Princeton

• CMS — Center for Manufacturing Systems at NJIT

• Recipe — a synonym for part program

• Ingres — A commercial relational database

• ISIS — Message bus communications software, public domain

• Lot Script — a computer task that coordinates the manufacturing processes of a lot

• Lot Entity — the computer representation of a lot; associated with one or more lot
scripts.

• Machine Entity — an interface between a machine and the cell control software

• Hierarchical Control Architecture —the traditional method for control
architectures; centralized control with complex interrelationships explicitly
programmed into the system

• Heterarchical Contol Architecture (non-hierarchical) — the architecture used in
this project; distributed control achieved using independent processes

Page 9-1

Works Cited

1) Wolfson, D. and P. Bruschi. A Reconfigurable Generic Workcell Architecture. Siemens
Corporate Research. July 9,1990.

2) Mullender, S. Distributed Systems. ACM Press, New York, New York. 1989.

3) Wolfson, D. and P. Bruschi. A Generic Workcell Controller. New Jersey Institute of
Technology Symposium on Advanced Manufacturing. May 1990.

4) Stoyenko, A. and R. Meyer, et.al. Functional Requirements for a CMS Generic Workcell.
New Jersey Institute of Technology, department of Computer and Information Sciences.
June, 1991.

5) Dhaliwal, J and P. Bruschi. Generic Workcell Machine Entity Specification. Siemens
Corporate Research. Version 1. January, 1991.

6) Histon, B. Distributed System Infrastructure for a Prolific Manufacturing Enterprise.
IEEE Publications, Nov., 1991.

7) Rana, S. and S.K. Taneja. A Distributed Architecture for Automated Manufacturing
Systems. The International Journal of Advanced Manufacturing Technology, Vol. 3,1988.

8) Duffie, N. and R. Piper. Non-hierarchical Control of a Flexible Manufacturing Cell.
Robotics & Computer Integrated Manufacturing, Vol. 3, No. 2, pp. 175-179,1987.

9) Ingres Corporation, ABF and Windows 4GL Reference Manual. 1991

10) Duffie, N., Chitturi, R., and J. Mou. Fault-tolerant Heterarchical Control of
Heterogeneous Manufacturing System Entities. Volume 7, No. 4., pp. 325-327,1988.

11) Duffie, N. A., R.S. Piper, B.J. Humphrey and J.P Hartwick Jr. Hierarchical and
Non-Hierarchical Manufacturing Cell control with Dynamic Part-Oriented Scheduling.
North American Manufacturing Research Conference, pp. 504-507,1986.

12) Hatvany, J. Intelligence and Cooperation in Heterarchic Manufacturing Systems. 16th
CIRP International Seminar on Manufacturing Systems. Tokyo 1984.

13) Bjorke, 0. Towards Inte grated Manufacturing Systems—Manufacturing Cells and their
Subsystems. Robotics and Computer Integrated Manufacturing. Vol. 1, No. 1, pp. 3-19,
1984.

14) Duffie, N. A. An Approach to the Design of Distributed Machinery Control Systems.
IEEE Transactions on Industry Applications, Vol. IA-18, No. 4, July/August 1982.

15) Meyer, R. and P. Bruschi. Generic Workcell Cell Equipment Recipe Server Specifica-
tion. Siemens Corporate Research. Version 2.0.

16) Brown and Sharpe, Inc. Advanced Validator Interface Language Reference Manual.

17) Taft, Rick. Generic Work Cell Conversation Tool Specification. Siemens Corporate
Research. Version 2.0.

A. HI Screens

• Introduction Screen

• Start Cell Modules Screen

• Machine Entity Startup Screen

• Dispatch List

• Work Order Main Menu

• Work Order Entry Screen

• Work Order Status Screen

• Dispatch List (showing a lot waiting for import)

• Import Lot Screen

• Transaction Code Entry Screen

• Transaction Code Menu Definition Screen

• Machine Status Screen

B. HI ABF Code

• Work Order Status

• Work Order Entry

• Product Entry

/*
Copyright 1990, Siemens Corporate Research, Inc.
All Rights Reserved

Form: work order status

Purpose: Allows the user to view and change the status
of a work_order.
When the work_order is changed from Waiting to Running,-
the lot script(s) is/are spawnded off and executed.

*/

initialize(
err = integer,
change = integer,
reply = char(1),
m = vchar(80), /* message */
selected_status = varchar(100),
datarows = integer,
on_table = integer,
lot_id = integer,

/* Status Line Server variables */
tmp = varchar(49),
subj = varchar,
what to do = varchar
) =

Start the Status Line Server */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err = 0 then
set_forms field work order_status (reverse (sls_data) 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field work order_status (reverse (sls_data) 1,

blink (sls_data) = 1);
sls_data := tmp;

endif;
/* End of Status Line Server */

inittable work_list read;

work_list = select work_order_key, cust_name, due_time, status
from work_order_detail;

err = callproc ing err();
if err != 0 then return;endif;

commit;

current view = 'ALL';

resume field work_list.work_order_key;

on timeout = [
/* Status Line Server update every 10 seconds */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -I then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err = 0 then
set_forms field work_order_status (reverse (sls_data) 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field work_order_status (reverse (sls_data) = 1,

blink (sls_data) = 1);
sls_data := tmp;

endif;
set_forms frs (timeout = 10);
/* End of Status Line Server */

/* refresh listing of work orders*/
work_list = select work_order_key, cust_name, due_time, status

from work_order_detail;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

'Zoom

'Run

= [
/* display cust info, and products ordered ...*/
callframe work order_entry (work_order_entry.p wo_key =

:work_list.workorder_key) with style = fullscreen;

/* redisplay data in table -- (could have deleted an order) */
work_list = select work_order_key, cust_name, due_time, status
from work_order_detail;

err = callproc ing_err ();
if err != 0 then return;endif;

commit;

= [
if :work_list.status != 'NEW' then

message 'Work order must have status "NEW" to "RUN"';
sleep 2;

else
/* start scripts */
err = callproc execute_lot(:work_list.work_order_key);
if err = -1 then

message 'Lot execution failed';
sleep 2;
exit;

endif;

/* update db and screen */
update work_order_detail

set status = 'RUNNING'
where work_order_key = :work_list.work_order_key;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

work list.status = 'RUNNING';

message 'The lot(s) are now RUNNING and awaiting IMPORT'
with style = popup;

endif;
F

'Ship ' =
if :work_list.status != 'COMPLETED' then

message 'Work order must have status "COMPLETED" to "SHIP
sleep 2;

else
/* update db and screen */
update work_order_detail
set status =
where work_oder_key = :work list.work order_key;

err = caliproc ing_err();
if err != 0 then return;endif;

commit;

work list.status = 'SHIPPED';

/* TO DO: set up a rule to transfer data to
hist table and remove from primary tables */

endif;

'Select View ' =

/* user gets to view work orders by status selected */

/* clear table */
inquire_forms field work_order_status (on_table = table);
if :on table = 0 then

message 'Cursor must be in table field';
resume;

endif;

inquire_forms table work_order_status(datarows = datarows);

while datarows != 0 do
deleterow work_list[datarows];
datarows = datarows - 1;

endwhile;

/* display menu and update table appropriately */
/* display submenu begin

'New ' =
selected_status = 'status = "NEW"';
current_view = 'NEW';
endloop;

'Running ' =
selected_status = 'status = "RUNNING"';
current_view = 'RUNNING';
endloop;

1

'Completed ' =
selected_status = 'status = "COMPLETED'";
current view = 'COMPLETED';
endloop;

1

'Shiped ' = [
selected status = 'status = "SHIPPED'";
current view = 'SHIPPED';
endloop;

'ALL ' =
selected_status = 'status like "%"';
current_view = 'ALL';
endloop;

end;
k/

work list = select work_order_key, cust_name, due_time, status
from work order_detail
where :selected status;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

'Back ', key frskey3 =
set_forms frs(timeout = 0);
inquire_forms form(change=change);
if :change = 0 then

return;
else

reply := prompt 'Really quit(y/n)? ';
if :reply = 'y' or :reply = 'Y' then

return;
else

set_forms frs(timeout = 10);
resume;

endif;
endif;

I

/*
Copyright 1990, Siemens Corporate Research, Inc.
All Rights Reserved

*/

/*
Form: work_order_entry

Purpose: Creates a work order that consists of customer info and
products ordered by the customer. The work order initiates
lot entities (specified by the products ordered).

*/

initialize(
err = integer,
change = integer,
reply = char(1),
m = vchar(80), /* message */
datarows = integer,
table name = varchar(20),
on_table = integer,
item_to_move = varchar(16) not null,
wo_key = integer not null,
p_wo_key = integer not null, /* passed in for Zoom */

/* Status Line Server variables */
tmp = varchar(49),
subj = varchar,
what_to_do = varchar
) =

/* Start the Status Line Server */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err = 0 then
set_forms field work_order_entry (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field work_order_entry (reverse (sls_data) = 1,

blink (sls_data) = 1);
sls_data := tmp;

endif;
/* End of Status Line Server */

inittable product_list read;
inittable selected list read;

if p_wo_key !=0 then
/* ******** ZOOM mode ********* */
/* frame called with work_order_key */
/* display approprite data (not editable) */

set_forms form (mode = 'read'); /* no editing allowed */
work_order_key = :p_wo_key;

work_order_entry = select cust name, start_time, status, due_time
from work_order_detail

where work_order_key = :work_order_key;

work_order_entry = select address, city, state, zip
from customers
where cust name = :cust_name;

selected_list = select item = product_id
from work_order
where work_order_key = :work_order_key;

err = callproc ing_err();
if err != 0 then return;endif;
commit;

display submenu begin
'Delete ' =

reply = prompt 'Really delete entire Work Order?
style - popup;

if :reply = 'Y' or :reply = 'y' then
delete from work order_ detail
where work_order_key = :work_order_key;

err = callproc ing_err();
if err != 0 then return;endif;

repeated delete from work order
where work : _order_key = work order_ key;

err = callproc ing_err();
if err != 0 then return;endif;

commit;
message 'Work Order deleted';
sleep 2;

endif;

return;

'Back ', key frskey3 =
return;

end;

else
/* get ready for user to enter new work order */

product_list = select product_id, description
from products;

err = callproc ing_err();
if err != 0 then returniendif;

commit;

start_time = date('now');

wo_key = get_new max value(type = 'WORK_ORDER');

with

if :wo_key < 0 then
message 'Fatal Error: unable to get work_order key';
sleep 2;
exit;

else
work_order_key = wo_key;

endif;

endif;

set_forms frs (timeout = 10);
resume field cust_name;

1

on timeout = [
/* Status Line Server update every 10 seconds */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
caliproc messg(m = :m);

elseif err = 0 then
set_forms field work_order_entry (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field work_order_entry (reverse (sls_data) = 1,

blink (sls_data) = 1);
sls data := tmp;

endif;
set_forms frs (timeout = 10);
/* End of Status Line Server */

'Save ' [
validate;

unloadtable selected_list

if selected_ list._ state = 2 then
insert into work order

(work_order_key, product_id)
values (:work_order_key, :selected_list.item)

endif
1;

insert into work_order_detail
(work_order_key, cust_name, start_time, due_time, status)
values (:work_order_key, :cust_name, :start_time, :due_time, :status);

message 'Work Order Saved';
sleep 2;

return;

'Select Customer' - [
cust name := callframe customer_list with style = popup;

work_order_entry = select address, city, state, zip
from customers
where cust name = :custname;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

Product '
inquire_forms field work_order_entry(on_table = table);
if :on table = 1 then
inquire_forms table work_order_entry

(table name = name, datarows = datarows);
if :datarows = 0 then

message 'No more products available';
sleep 2;

elseif :table_name = 'product_list' then
item_to_move = product_list.product_id;
deleterow product_list;
insertrow selected_list[0](item = :item_to_move);

elseif :table_name = 'selected_list' then
item_to_move = selected_list.item;
deleterow selected_list;
insertrow product_list[0](product_id = :item_to_move)

endif;
endif;

'Back ', key frskey3 = [
set_forms frs(timeout = 0);
inquire_forms form(change=change);
if :change = 0 then

return;
else

reply := prompt 'Really quit(y/n)? ';
if :reply = 'y' or :reply = 'Y' then

return;
else

set_forms frs(timeout = 10);
resume;

endif;
endif;

/*
Copyright 1990, Siemens Corporate Research, Inc.
All Rights Reserved

*/
/*

Form: product_entry

*/

initialize(
err = integer,
change = integer,
on_table = integer,
reply = char(1),
m = vchar(80), /* message */

/* Status Line Server variables */
tmp = varchar(49),
subj = varchar,
what_to_do = varchar
)

/* Start the Status Line Server */
set_forms frs (timeout = 0);
eir = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err = 0 then
set_forms field product_entry (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls data := null;

elseif err = 1 then
set_forms field product_entry (reverse (sls_data) = 1,

blink (sls_data) = 1);
sls_data := tmp;

endif;
/* End of Status Line Server */

inittable product_list read;

product_list = select product_id
from products;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

set_forms frs (timeout = 10);

resume field product_list.product_id;

on timeout = [
/* Status Line Server update every 10 seconds */
set_forms frs (timeout = 0);
err - callproc read sls(byref(:tmp));

if err = -1 then
m = 'Error reading status line info. Check error log.'
callproc messg(m = :m);

elseif err = 0 then
set_forms field product_entry (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field product_entry (reverse (sls_data) = 1,

bl ink (sls_data) = 1);
sls_data := tmp;

endif;
set forms frs (timeout = 10);
/* End of Status Line Server */

product list = select product_id
from products;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

'Zoom' =
[
set_forms frs (timeout = 0);
inquire_forms field product_entry (on_table = table);
if :on_table = 0 then

message 'Cursor must be in table field to Zoom';
sleep 2;

else
product_entry = select product_id, description, function

from products
where product_id = :product_list.product_id;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

set forms field product entry (displayonly(product_id) = 1);

/* display submenu begin
'Update ' = [

validate;

update products
set product_id = :product_id, description :description,

function = :function
where product_id = :product_id;

err = callproc ing_err();
if err != 0 then return;endif;
commit;

endloop;

'Delete ' [
reply = prompt 'Really delete? ' with style = popup;
if :reply = 'Y' or :reply = 'y' then
delete from products where product id :product_id;

err = callproc ing_err ();
if err != 0 then return;endif;
commit;

product_list = select product_id
from products;

err = callproc ing_err();
if err 0 then return;endif;
commit;

endif;
endloop;

'Back ', key frskey3
enffloop;

end;

clear field productid, description, function; */
set_forms field product_entry (displayonly(product_id) = 0);
set_forms frs (timeout = 10);
resume field product_list.product_id;

endif;

1

'Add'
validate;

inquire forms field product_entry (on_table = table);
if :on table = 1 then

message 'Enter data in fields, then select Add';
sleep 2;

else
insert into products
(product_id, description, function)
values(:product_id, :description, :function);

err = callproc ing_err ();
if err != 0 then return;endif;

commit;

product_list = select product_id
from products;

err = callproc ing_err();
if err != 0 then return;endif;

commit;

clear field product_id, description, function;
resume field product_list.product_id;

endif;

'Back ', key frskey3 = [
set_forms frs(timeout = 0);
inquire_forms form(change=change);
if :change = 0 then

return;
else

reply := prompt 'Really quit(y/n)? ';
if :reply = 'y' or :reply = 'Y' then

return;
else

set_forms frs(timeout = 10);
resume;

endif;
endii;

C. Machine Entity C++ Code

• ME_1NTERFACE.0 — Main Program

• FILE.0 — Supportive Routines

• TERMINAL.0 — RS232 Specific Routines

• RS232_TO_AVAIL — CMM Specific Process

status set by reading from the termi
length of response */
converted reply from machine */

reply from machine */
msg buffer */

/******.A***
* *

*
* • 11kCHINE ENITITY PROGRAMM FOR COMUN [CATION TO ROBOT

* "meinterface.c"
*p*************************k*********************************/

#include
#include
#include
#include
#include
#include
#include
#incude

<stdio.h>
<stdlib.h>
<string.h>
"me messages.h"
"shared_mem_struct.h"
"logs.h"
"cmm.h"
"vms.h"

#define TRUE 1
#define NOT TRUE -1
#define ACK 0
#define NACK -1

//
// prototypes
//
void cwrite(int, char *);
void stuff_msg(int, char *, char *, int, char *);
extern "C" write(int, char *, int);
extern void kill mq_sm(int = 0);
extern int init_mq(char*);
extern int mq_read_nowalt(int msgid, long msg_type, char *msg_text);
extern int mq_readwait(int msgid, long msg_type, char *msg_text);
extern int mq send(int msgid, long msg_type, char *msg_text);
extern int setup port(int *channel,char *buf);
extern void LOGS(char*,char*,char* = "%s",LOG MSG TYPE = note);
extern void robot response(int msgid, int *channel ptr, char *buf, FILE **result
extern int term read(int *, int, int *, char

WC_ME BUFFER wc_me_message;

/* the name of the WC process is passed as a command line argument
** so message queues can be set up
*/
main(int argc, char *argy[])

*)

int channel;
int num;
static int msgid;
int tstat = SS$_NORMAL;
int response_length;
int response_ack;
char response_buf[125];
char buffer[BUFSIZE];

FILE *result fp;

char process[20];
strcpy(process, argv[l]);

msgid = init_mq((char *)&process);

/* setup port for communication with machine */

/* note: param buffer not- currently used */
if (ACK != setup_port(&channel,(char *)&buffer))

kill mq_sm();

while (TRUE)

while (mq_read_nowait(msgid,TO_ME,(char *)&wc_me_message) == IS_NOMESSAGE)
{
robotresponse(otsgid, &channel, (char *)&buffer, &result_fp);

switch(wcme_message.message_id)

case ME START:

cwrite(channel, "AY!");

/* notify user to Press Machine Start button */
stuff_msg(CELL_ALAR, "NULL", "NULL", ACK, "Press MS");

if (mq_send(msgid, FROM ME, (char *)&wc_me_message) == ERROR_MSG)
{

LOGS("cmm_me", "mq_send failed while sending alarm");
exit(1);

1

/* wait for response from user */
if (mq_read_ait(msgid, TO_ME, (char *)&wc_me_message) == ERROR_MSG)
[

LOGS("cmm_me", "mq read failed: was waiting for ME_START_WAIT\n");
exit(1);

1

if (wc_me_message.message_id == ME_START_WAIT)

/* got user response -- finish sending commands to CMM */
cwrite(channel, "\rAC!");
cwrite(channel, "*!");

/* Send ACK */
stuffmsg(ME_START,"NULL", "NULL", ACK, "NULL");

if (mq send(msgid, FROM ME, (char *)&wc me message) == ERROR_MSG)

LOGS("cmm_me", "mq_send failed while sending alarm");
exit(1);

else

/* got something we didn't expect */
sprintf(line, "Got an unexpected message: id = %d", wc_me_message.
LOGS("cmm_me", line);

break;
case ME SHUT:

cwrite(channel, "EY!");

/* send shutdown complete message */
stuff_msg(ME_SHUT, "NULL", "NULL", ACK, "NULL");
if (mq send(msgid, FROM_ME, (char ,*)&wc_me_message) == ERROR_MSG)

LOGS("cmm_me", "mq_send failed while sending shutdown complete");
exit(1);

1

break;
case SETUP_RUN:
/* select part */
/* filename field contains part name */
cwrite(channel, " SETUP_RUN_!");
cwrite(channel, "1!");
cwrite(channel, wc_me_message.file_name);
cwrite(channel, "\r!");
cwrite(channel, "Y!");

stuff_msg(SETUP RUN, "NULL", "NULL", ACK, "NULL");
if (mq_send(msgid, FROM ME, (char *)&wc me message) == ERROR_MSG)

LOGS("cmmme", "mq send failed while sending setup_run complete")
exit(1);

break;
case START_RUN:
/* execute recipe */
/* note: order is important! CMM command first, then
** send start_run_ flag
*/
cwrite(channel, "DA!");

cwrite(channel, "_START_RUN_!");

stuff_msg(START_RUN, "NULL", "NULL", ACK, "NULL");
if (mq send(msgid, FROM ME, (char *)&wcmemessage) == ERROR_MSG)

LOGS("crnmme", "mq_send failed while sending start complete");
exit(1);

1

break;
default:
sprintfOine, "Unkown message from cmm we #%d", wc_me_message.message_
LOGS("cmm_me", line, "%s", warning);
break;

1

/* eo while */

void cwrite(int channel, char *command)

int i,lgth,num;

lgth = strlen(command);

for (i=0 ; i < lgth ; ii+)

if ((num = write(channel, command, 1)) < 0)

sprintf(line, "Write to port failed. Num written = %d", num);
LOGS("cmm me", line);

1
command++;
/* eo for */

/* stuff message structure with data to be sent
** if sending a simple ack, only the message_id need be supplied
*/
void stuff msg(int msg_id,

char *file_name,
char *recipe_id,
int ack_code,
char *alarm_text)

wc_me_message.message_id = msg_id;
strcpy(wc_me message.file_name, file_name);
strcpy(wc_me_message.recipe_id, recipe_id);
wc_me_message.ack_code = ack_code;
strcpy(wc_me_message.alarm_text, alarm_text);

/******A***
* *

COMMON SUBROUTINES
"FILE.C"

******k****************w*****************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "me messages.h"
#include "shred_mem_struct.h"
#include "vms.h"
#include "logs.h"
#include "cmm.h"

#define TRUE
#define FALSE 0
#define ACK 0
#define NACK -1

extern WCME_BUFFER wc memessage;
extern void LOGS(char*,char*,char* = "%s",LOG MSG_TYPE = note);
extern int mq_send(int msgid,long msg_type,cha-r *msg_text);
extern int term read(int *channel ptr,int time_out,int *buf_length,char *buf);
extern void stuff_msg(int, char *, char *, int, char *);

/* buf is the msg FROM the robot */
void robot_response(int msgid, int *channel ptr, char *buf, FILE **result_fp)

int buf_length; /* out var */
int time_out = 20; /* in */
long status;

char *result file = "/afs/cad/usr/class/cell/releases/results/cmmresults.res"

status = termread(channel_ptr, time_out, &buf_length, buf);

/* printf("Buffer from CMM: (%s)", buf); */

if ((status == SS$_TIMEOUT) 11 (status == SS$_NORMAL))

if (buf_length == 0)
[
/* no message from CMM */
return;

/* the determination if the part passed or failed was determined by the so
** on the compq. We simply translate it here to a parameter (PASS) and a v
** (either YES or NO) which will be put in the DB by the WC.
*/

if (((*result_fp) = fopen(result_file, "w")) == NULL)

LOGS("cmm_me, file.m4", "Error opening reLlult file", "%s", error);
1

else
f
if ((strcmp(buf, "PASS")) == 0)

LOGS("cmmme", "Got PASS from CMM");
fprintf(*result_fp, "%s %s\n", "PASS", "YES");

/* notify WC that run is complete */
stuff_msg(RUN COMPL, result_file, "NULL", ACK, "NULL");
if (mq_send(msgid, FROM24E, (char *)&wc_me_message) == ERROR MSG)

LOGS("cm[mme, file.m4",
"mq_send failed while sending RUN_COMPLETE", "%s", error)

exit(1);
}

else
if ((strcmp(buf, "FAIL")) == 0)

LOGS("cmmme", "Got FAIL from CMM");
fprintf(*result_fp, "%s %s\n", "PASS", "NO");

/* notify WC that run is complete */
stuff_msg(RUN COMPL, result_file, "NULL", ACK, "NULL");
if (mq_send(msgid, FROM ME, (char *)&wc me message) == ERROR MSG

LOGS("cmmme, file.m4",
"mq_send failed while sending RUN_COMPLETE", "%s", erro

exit(1);
1

else
LOGS("cmmme, file.m4",

"Got something from CMM but it wasn't a PASS or FAIL!");

fclose(*result_fp);
return;

1
else
[

sprintf(line,"Error, status returned is not TIMEOUT or NORMAL");
LOGS("robot_response",line,"%s",error);
return;

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <termio.h>
#include <signal.h>
#include <sys/fcnticom.h>
#include "vms.h"
#include "cmm.h"

// LOW_BOUND is the ascii char one less than a space.
#define LOW_BOUND 31
#define FLUSH_Q 1 /* flush output queue only */

int return_value;

extern "C" int ioctl(int, int, struct termio *);

extern void kill mq_sm(int = 0);

/* uses ioctl() for compatibility with Xenix. */
int term read(int *channel_ptr,

int time_out,
int *buf_length,
char *buf)

int chan;
chan = *channel_ptr;

char ch = 1 \01 ;

char buf_temp[BUF SIZE];
buf_temp[0] = 1 \07;
int length_buf = 0;

int err = 0;
return_value = SS$ NORMAL;
static struct termio tty;

/* set the timeout */
if (ioctl(chan, TCGETA, &tty) == -1)
[

perror("ioctl, TCGETA:");
kill_mq_sm();

}

tty.c_cc[5] = time_out;

if (ioctl(chan, TCSETA, &tty) == -1)

perror("ioctl, TCSETA:");
kill_mq_sm();

do
[

err = read(chan, &ch, 1);
,/* printf("err: %d, buf_temp: (%s)\n",err, buf temp); */
if (err < 0)

return_value = SS$_ERROR;
perror("terminal: read:");

if (err == 0)
return_value = SS$_TIMEOUT;

else

if ((int)ch > LOW_BOUND)
buf_temp[length_buf++] = ch;

1
} while ((return_value == SS$_NORMAL) && (length_buf < BUF_SIZE));

/* printf("length_buf: %d, buf_temp: (%s)\n",length_buf, buf_temp); */

strncpy(buf, buf_temp, strlen(buf_temp));

(*buf_length) = length_buf;
return(return_value);

1

/*
deassign_chan routine is here so that all VMS system calls
are in this one file.

*/,
void deassign_chan(int *channel_ptr, struct termio *savtty)

int chan;

chan = *channel ptr;

if (ioctl(chan, TCFLSH, (struct termio *)FLUSH_Q) -1)
perror("ioctl, flush");

close(chan);
return;

/* assign a channel to ttal */
void termchan(int *channel ptr, struct termio *savtty)

char dst[10];
strcpy (dst, "/dev/ttya");
int chan;
static struct termio tty;

chan = open(dst, O_RDWR);
if (-1 == chan)

perror(dst);
kill mq_sm();

1

/* set terminal to raw mode */
if (ioctl(chan , TCGETA, &tty) == -1)

perror("ioctl, tcgeta");
killmq_sm();

(*savtty) = tty;

tty.c_iflag &= :(BRKINT I ISTRIP 1 INLCR 1 ICRNL 1 IUCLC 1 IXON);
tty.c_oflag &= (OPOST ONLCR);
/* tty.c_oflag 1= (CRO NLO 1 TABO 1 BSO 1 FF0); */
tty.c_lflag (ISIG I ICANON 1 ECHO);
tty.c_cflag 1= CS8;
/* tty.c_cflag &= (LOBLK); */
tty.c_cc[4] = 0; /* set up for NON-BLOCKING reads */
tty.c_cc[5] = 20; /* time out = 2 secs */

if (ioctl(chan, TCSETA, &tty) == -1)
[

perror("ioctl, tcseta");
kill mq_sm();

(*channel ptr) = chan;

void send(int *channel ptr, char *buff)

/* removed */

/*
This module is for communicating with the CMM and the ME on the cell side.
It was done in the quick and dirty manner so it is not prity.

Written on or about Dec 3 1991
by

Peter Murray & Rich Meyer
or Rich Meyer & Peter Murray
depending on you point of view...

The module reads in the serial port checking for the Up/Down load
commands. It it is the U/D command it takes the appropiat action.
Everything else is passed on to SUP/Avail...

This program is written to be run on the Xenix side.
*/
#include <stdio.h>
#include <stdlib.h>
#include <termio.h>
#include <fcntl.h>

/*
Description of the file descriptors:
DATA OUT = rs232 to sup commands to avail (usually 1, stdout)
PORT_

_
= line to Rachine Entity (usually fd)

PORT IN = line to Machine Entity (usually fd)
ERR—oUT = errors incurred by this program (usually 2, stderr) */

#define DATA_OUT 1
#define PORT_OUT fd
#define PORT IN fd
#define ERR OUT stderr

/* following must match size in ME interface */
#define BUF_SIZE 125
#define ERR SIZE 100

#define TRUE 1
#define FALSE !TRUE

/* GLOBAL's */
int fd; /* the fd for tty2a */
char buffer[BUF SIZE];
char err_buf[ERK SIZE];
int flag;

main()
[

set pipe();

if ((fd = open("/dev/tty2a", O_RDWR)) < 0)

perror("open /dev/tty2a:");
exit(1);

1

set_terminal(1, 0, TRUE); /* 10 = 1 sec */

listen();

setpipe()

int fd[2];
int pid;
int fd_out;

if (pipe(fd) == -1)

perror("pipe: ");
exit(1);

1

if ((pid = fork()) >0)

/* the parent */
/* redirect std out */
close(1);
dup(fd[1]);
close(fd[0]);
close(fd[1]);

else if (pid == 0)

/* the child */
/* redirect std input */
close(0);
dup(fd[0]);
close(1);

if ((fd_out = open("outfile", OWRONLY I O_CREAT I O_TRUNC)) <

perror("open outfile:");
exit(1);

1

dup(fd out);
close(fd[0]);
close(fd[1]);

/* execl("/afs/cad/usr/class/cell/releases/src/cmm/get", "get",
(char *) 0); */

if (execl("/usr/super/xeq/sup", "sup", (char *) 0) <0)
perror("execl:");

1
else if (pid < 0)

perror("fork() error:");
exit(1);

1

set terminal(size, time, flag)

int size;
int time;
int flag;
[

struct termio tty;

fprintf(ERR_OUT, "Terminal set, min = %d, time = %d\n", size, time); -

/* modify tty structure/settings to raw mode*/
if (ioctl(fd, TCGETA, &tty) <0)
[

perror("ioctl, TCGETA:");
exit(1);

}

tty.c_iflag &= - _(IGNBRKIINLCRIIGNPARIPARMRKIINPCKIICRNLIIUCLCIISTRIPIIGNCRIIXO
tty.c_oflag &= _(OPOSTIOLCUCIONLCRIOCRNLIONOCRIONLRETIOFILLIOFDEL);
tty.c_cflag &= (PARODDICSTOPB);
tty.c_cflag I= iPARENBICS8IHUPCLICREADICLOCAL) ;
tty.c_lflag &= (ISIGIICANONIECHOIXCASEIECHOEIECHOKIECHONLINOFLSH);

tty.c_cc[4] = size;
tty.c_cc[5] = time; /* 10 = 1 sec */

if (ioctl(fd, TCSETA, &tty) <0)
[
perror("ioctl, TCSETAF:");
exit(1);

1
1

/*
This function listens to the RS232 port...It assumes all entries are
finished with a ! char.

*/
listen()
(
char tbuf[BUF SIZE + 30];
char tname[BUF_SIZE];
char tpath[BUF_SIZE];
FILE *fp;

do /* forever */
[

file_input(buffer); /* read rs232 port */
fprintf(ERR_OUT, "do:buffer read: (%s)\n", buffer);

if (!strcmp(buffer,"_DOWNLD_!"))
[

/* download */
system("kermit ilbr /dev/tty2a 9600");
system("tar -xvf /usr/avail/part/*.tar");

I
else if (!strcmp(buffer,"_UPLD_!"))
[

/* upload */
strcpy(tname,(buffer+6));
strcpy(tpath,"/usr/avail/part/");

/* tar -cvf /usr/avail/part/tname/tname.tar /usr/avail/part/tname/STAR */

strcat(tbuf,"tal -cvf ");
strcat(tbuf,tpath);
strcat(tbuf,tname);
strcat(tbuf,"/");
strcat(tbuf,tname);
strcat(tbuf,".tar /usr/avail/part/");
strcat(tbuf,tname);
strcat(tbuf,"/*");
fprintf(ERR_OUT, "tbuf tar: %s\n", tbuf);
system(tbuf);

/* kermit ilbs /dev/tty2a 9600 /usr/avail/part/tname/tname.tar */
strepy(tbuf,"kermit ilbs /dev/tty2a 9600");
strcat(tbuf,tpath);
strcat(tbuf,tname);
strcat(tbuf,".tar");
fprintf(FRR OUT, "tbuf kermit. %s\n", tbuf);
system(tbuf);

j
else if (!strcmp(buffer,"_SETUP_RUN_!"))
f

file_input(buffer);
output(DATA OUT, buffer);
if (strcmp(Buffer,"1!"))

fprintf(ERR_OUT,"unexpected input...");
file_input(buffer);
output(DATA OUT, buffer);
strncpy(tname,buffer,(strlen(buffer)-l)); /* save the part name */
fprintf(ERR_OUT,"Part name: %s\n",tname);

1
else if (!strcmp(buffer,"_START_RUN_!"))
[

strcpy(tpath,"/usr/avail/part/");
strncat(tpath, tname, (strlen(tname)-1));
strcat(tpath,"/");
strcat(tpath,"RESULTS");
fprintf(ERR_OUT,"Looking for: %s\n",tpath);
while(1)
[

if ((fp = fopen(tpath, "r")) != NULL)
[

if (fread(buffer,80,1,fp) > 1)
output(PORT_OUT,"FAIL!"); /* to the workcell */

else
output(PORT_OUT,"PASS!"); /* to the workcell */

break;
1
sleep(1);
fprintf(ERR_OUT,"Wating for: %s file to be created.\n",tpath);

j
)
else

output(DATA OUT, buffer);
] while(1);

I
file_input(buffer)
char *buffer;
[
char rbuf[4];
int nuin;

int buf_count = 0;

strcpy(buffer,)

do
[

if ((num = read(PORT_IN, rbuf, 1)) < 0)

fprintf(ERR_OUT, "num read: %d\n", num);

rbuf[1] = '\0';
strcat(buffer,rbuf);
fprintf(ERROUT, "buffer read: (%s)\n", buffer);
buf_count++;

} while ((rbuf[0] != '!') && (buf_count < BUF_SIZE));

output(direction, buffer)
int direction;
char *buffer;

int num;

/* pass it on to the sup */
if ((num = write(direction, buffer, (strlen(buffer)-1))) < 0)

fprintf(ERR_OUT, "num write: %d\n", num);
return -1;

fprintf(ERR OUT, "num write: %d, (%s)\n", num, buffer);

D. Unix Shell Scripts

• Generic Workcell Module Start Script

• CMM Start Script

• ERS Start Script

• Generic Workcell Module Shutdown Script

echo "Starting the cell."
/bin/cas.csh
echo "Started cas"
/bin/ers.csh
echo "Started ers"
/bin/ms.csh
echo "Started ms"
/bin/lsr.csh
echo "Started lsr"
/bin/msched.csh
echo "Started msched"
/bin/scorbot.csh
#echo "Started SCORBOT"
/bin/dummyl.csh
echo "Started DUMMY1"
/bin/cmm.csh
echo "Started CMM"
-/bin/hi.csh

/bin/setport.csh&
setenv ERROR_LOG /logs/cmm.log
_/bIn/cmmwc&
/bin/cmmme cmm wc&

(sleep 10;loglev "cmm wc" "note")&
(sleep 10;loglev "cmmme" "note")&

setenv ERROR LOG -/logs/ers.log . /brn/ers&
(sleep 10;loglev "ers" "also_warnings")&

kall.csh -15 cmm_dummywc cmm we cmm_me cat lsr msched ers cas ms wcn men wc_int
ipcs I awk '{if (($1 == "q" IT $1 == umu 11 $1 == "s") && $5 == "cell") \

printf("iperm -%s %d\n",$142)}' > .clean.up.shmem
chmod 777 .clean.up.shmem
.clean.up.shmem
/bin/rm .clean.up.shmem

E. Log File Example

• Sample CMM Log File

----= -===
From mq_send
Date Wed Dec 11 17:38:26 1991
User cell
Term /dev/tty
PID 16625

Note:
msg_type = 2 message_id = 222

file name = (gwcl)
recipe id = (gwcl) ack code = 0
alarir text = (NULL)

From int Conversation:: send (Message& msg, int last)

Date Wed Dec 11 17:38:58 1991
User cell
Term /dev/tty
PID 16625

Note:
Group: UPD ME ST (239)

Message: UpdaIejE_Status (407)
Delay: 0 secs
Sender: 3/0:16625.0

msg_name = "Update ME_Status"
machine id = "cmm_wc 1-
machine run_id = 76
recipe id = "gwcl"
startIime = II

end time = II II

me_status = "Setup"

From Conversation tool
Date Wed Dec 11 17:49:18 1991
User cell
Term /dev/tty
PID 16625

Note:
NOTE: receive- User cmm_wc is signed on

Buffer:
Ox1/7de8, 0x177de8, qlength = 1)

CELL, 254, 440, <11, 553653023, 16625>)

Filters:
CELL: 217 234 241 244 245

Current Convs:

---=- -

	A machine entity for a coordinate measurement machine : the generic workcell project
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Page
	Abstract
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction and Background
	Chapter 2: System Functional Specification
	Chapter 3: System Performance Requirements
	Chapter 4: System Design Overview
	Chapter 5: System Data Structure Specifications
	Chapter 6: Module Design Specifications
	Chapter 7: System Demonstration
	Chapter 8: Conclusions
	Chapter 9: Key Words, Phrases, and Acronyms
	Works Cited
	Appendix A: HI Screens
	Appendix B: HI ABF Code
	Appendix C: Machine Entity C++ Code
	Appendix D: Unix Shell Scripts
	Appendix E: Log File Example

