New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

5-31-1955

Heat transfer characteristics of non-Newtonian suspensions

Foster C. Franks Newark College of Engineering

Salvador Faust Rinaldi Newark College of Engineering

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Franks, Foster C. and Rinaldi, Salvador Faust, "Heat transfer characteristics of non-Newtonian suspensions" (1955). *Theses.* 2319. https://digitalcommons.njit.edu/theses/2319

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

HEAT TRANSFER CHARACTERISTICS

OF

NON-NEWTONIAN SUSPENSIONS

A THESIS

SUBMITTED TO THE FACULTY OF THE

DEPARTMENT OF CHEMICAL ENGINEERING

OF

THE NEWARK COLLEGE OF ENGINEERING

BY FOSTER FRANKS B.S. CH.E. SALVADOR F. RINALDI, B.S. CH.E.

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING.

NEWARK, NEW JERSEY

NAY, 1955

APPROVAL OF THESIS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

,

DR. JEROME J. SALABONE (Advisor)

.

~.

.

NEWARK, NEW JERSEY

MAY, 1955

TABLE OF CONTENTS

.

.

.

SUBJECT												PAGE
Approval Of Thesis	٠	٠	•	*	•	•	,	٠	٠	ŧ	•	I
Acknowledgement	•	٠		*		٠	٠	٠	•	٠	*	III
List Of Figures	-	•	٠	*	*	٠	٠	•	٠	•	٠	IV
List Of Tables	٠	٠	٠		*	٠	٠	*	٠	*	٠	v
Abstract	*	٠	•		٠	٠	*	٠	•	٠	٠	1
Introduction	•	٠	٠	•	*	*	*	۴	٠	*	-	3
Theory		*	*	٩	*	٠	٠	•	*	٠	*	5
Critical Review Of Pertinent Work									*	٠	٠	9
Description Of Apparatus								*	٠	٠	14	
Experimental Procee	ħu	re							*	٠	•	23
Experimental Result	:8								*	٠	٠	32
Correlation									٠		•	43
Discussion Of Resul	Lts	3							٠	•	٠	58
Summary - Conclusio	m									*	•	65
List Of Symbols And Units								•	٠	٠	67	
References									•	٠	٠	70
Appendix									٠	٠	٠	72
Sample Calculations	3										•	73

II

.

ACKNOWLEDGEMENT

The authors wish to express their sincere appreciation to Dr. J. J. Salamone for his assistance, guidance, and interest in carrying this project to a successful conclusion.

The authors also gratefully acknowledge the efforts and help of Mr. William Furmadge, who assisted in the modifications and improvements made to the herein described apparatus.

LIST OF FIGURES

FIGURE

.

PAGE

1	Schematic Of Apparatus	17
2	Plot Of Density vs. Weight Fraction Data .	19, 20
3	Heat Transfer Data For Water ,	21
4	Calibration Of Pipeline Viscometer .	22
5	Plot Viscosity vs. Flow Rate - Atomite .	36
6	Plot Viscosity vs. Flow Rate - Snowflake .	37
7	Plot Viscosity vs. Flow Rate - No. 1 White	38
8	Plot Viscosity vs. Flow Rate - Iron Oxide	39
9	Correlation Of Heat Transfer Data Water Suspensions - Data Of Franks - Rinaldi	49
10	Correlation Of Heat Transfer Data Water Suspensions - Data Of Salamone, Binder - Pollara, Franks - Rinaldi	57

IV

LIST OF TABLES

PAGE

TABLE

.

I	Physical Properties Of Materials And Suppliers	18
11	Observed Data And Calculated Results For Water	27
III	Observed Data For Suspensions .	28, 29, 30
IV	Additional Viscosity Data	31
V	Calculated Results For Suspensions	40, 41
VI	Additional Rerun Data For Viscosity Calculated	42
VII	Correlated Results	47, 48
VIII	Correlated Data Of Salamone, Binder - Pollara, Franks - Rinaldi	50
IX	List Of Runs Used In Correlation	77

•

V

ABSTRACT

A dimensionless equation resembling the Dittus-Boelter equation with modified exponents and additional dimension-

less groups has been developed by J. J. Salamone, (12)

 $\frac{hO}{K_{f}} = Z \left(\frac{DV_{0}P_{0}}{U_{0}} \right)^{2} \left(\frac{C_{f}M_{0}}{K_{f}} \right)^{4} \left(\frac{D}{D_{c}} \right)^{2} \left(\frac{C_{s}}{C_{f}} \right)^{4} \frac{K_{s}}{K_{f}} \right)^{n}$

Salamone investigated the range of Reynolds number between 50,000 and 200,000. The results of the correlated data gave the following exponents for equation: (1)

 $\frac{hO}{K_{\perp}} = .131 \left(\frac{DV_{3}P_{3}}{U_{3}} \right)^{-62} \left(\frac{C_{3}}{C_{1}} \right)^{-35} \left(\frac{C_{1}U_{3}}{K_{2}} \right)^{-12} \left(\frac{D}{D_{3}} \right)^{-05} \left(\frac{K_{3}}{K_{1}} \right)^{-05} (2)$

Binder and Pollara (19) investigated the lower turbulent region of Reynolds numbers ranging from 10,000 - 70,000 to determine the validity of Salamone's equation in this area. In correlating their data, Binder and Pollara gave the following equation:

 $\frac{hD}{Kc} = .346 \left[\frac{DV_0 P_0}{H_0} \right] \left[\frac{C_F M_0}{Kc} \right] \left[\frac{D}{D_0} \right] \left[\frac{C_0}{C_4} \right] \left[\frac{K_0}{Kc} \right] (3)$

Using the same equipment constructed by Binder and Pollara and collaborators, an additional amount of data was collected and correlations drawn therefrom by the authors of this thesis. The prime intent of this thesis was to check the magnitude of the constant and exponents of Salamone's equation. It was found from the data obtained in this report, that the magnitude of the constant Z and the exponents

gave the following equation: $\frac{hD}{Kf} = .0131 \left(\frac{DV_BP_B}{M_B} \right)^{\cdot 80} \left(\frac{C_FM_B}{Kf} \right)^{\cdot 79} \left(\frac{D}{D_s} \right)^{\cdot 106} \left(\frac{C_s}{C_f} \right)^{\cdot 42} \left(\frac{K_s}{Kf} \right)^{\cdot 05}$ (4)

The data for equation (4) was obtained at the values of Reynolds number from 50,000 to 200,000.

INTRODUCTION

The purpose of this investigation was to collect sufficient data to be incorporated in evaluating the constant Z and the exponents in the equation developed by J. J. Salamone. (12) His investigation was undertaken as a result of a hypothesis formed from fragmentary data on suspensions of finely divided solid particles of high thermal conductivity, using water as a suspending medium. From the data, it was inferred that higher film coefficients could be obtained from water containing particles of high thermal conductivity than from water alone.

Salamone (12) investigated the turbulent range of Reynolds number 50,000 - 200,000 and correlated his data by selecting a few runs of essentially constant viscosity to obtain the exponents of the various groups.

Binder and Pollara (19) investigated the 10,000 - 70,000 Reynolds number range and correlated their data in the same manner as J. J. Salamone.

In the present investigation, Reynolds numbers of 50,000 - 200,000 were investigated. A small part of the data was obtained below 50,000. This method for correlating the data was not the same as that used by J. J. Salamone, and Binder and Pollara. The method employed is of a statistical nature and average results are obtained. In this manner use was made of all the observed data. It was felt that this method would produce a correlation that is representative of all the data rather than of a few selected values.

THEORY

In developing the empirical relationship of Nusselt number, Reynolds number, Prandtl number, and the groups relating the physical properties of the individual components of the slurry, it was assumed that the film coefficient was a function of the following:

O = Pipe Diameter
X = Weight Fraction
 Thermal conductivity of the dispersion
Ky = Medium
O_{5} = Average particle diameter
 = Particle Shape
C_{5} = Specific heat of particle
Gy = Specific heat of dispersion medium
P = Density of solid
P = Density of dispersion medium
M_{B} = Apparent bulk viscosity of the suspension
V = Velocity, based on bulk density

Weight fraction, density of the solid and dispersion medium may be represented in the form of a bulk density. Then assuming spherical shaped particles, and the equation to be of an exponential type, the following expression may be written:

 $h = Z \left(D^{a} V_{B}^{b} P_{B}^{e} \mathcal{U}_{B}^{f} K_{f}^{g} C_{f}^{i} C_{s} D_{s}^{r}, K_{s}^{n} \right)$

And by dimensional analysis, the following equation was derived:

 $\frac{hD}{H_2} = \frac{1}{L} \left(\frac{DV_3P_3}{H_2} \right)^6 \frac{K_F}{H_2} \left(\frac{K_5}{H_2} \right)^6 \frac{D_5}{C_f} \left(\frac{C_5}{C_f} \right)^7$ The unknown constants were evaluated by experimental data yielding the following equation of J. J. Salamons: (12) $\frac{h}{M_{B}} = \frac{131}{M_{B}} \frac{DV_{B}\Gamma_{B}}{M_{B}} \frac{K_{F}}{M_{B}} \frac{K_{F}}{M_{B}} \frac{K_{S}}{M_{B}} \frac{D}{D_{S}} \frac{C_{S}}{C_{F}}$ Multiplying both sides by $\frac{\mu_B Cf}{\kappa_A}$ and rearranging to give: $\frac{hO}{K_{B}} = .131 \left(\frac{DV_{B}P_{B}}{M_{B}} \right)^{-6} \left(\frac{D}{D_{c}} \right)^{-05} \left(\frac{C_{5}}{C_{P}} \right)^{-35} \left(\frac{C_{f}M_{B}}{V_{I}} \right)^{-12} \left(\frac{K_{5}}{V_{I}} \right)^{-6}$ As may be seen from the above equation, the specific

heat of the solid and of the fluid, along with the effect of the Reynolds number are of major importance. The group $\left(\frac{O}{O_5}\right)^{.05}$ becomes significant when very small particles are used as the suspended solid.

In observing the Reynolds number and the Prandtl number, the overall effect of bulk viscosity is only to the one tenth power.

The method of determining bulk viscosity of the suspensions at the average temperature of the heat section was the same as adopted by J. J. Salamone. It has been found that liquids generally are Newtonian or non-Newtonian. For Newtonian fluids, the ratio between shearing stress and rate of shearing strain is the same for all rates of shearing strain.

For a non-Newtonian liquid, the slope is not constant and hence depends on the rate of flow of the fluid.

Since it has been shown by previous investigators that the suspensions used by the authors of this report were of the non-Newtonian and pseudoplastic type, the method adopted to determine viscosity was by way of the pipeline viscometer, where pressure drop across a known length of pipe was noted as a measure of stress on the fluid at known rate of flow. The well-known Fanning friction equation was used to calculate friction factor:

 $\frac{\Delta P}{P} = \int \frac{LV^2}{D^2 g_c}$

Water was used to calibrate the pipeline viscometer and a Von Karman plot was made of the friction factor versus Reynolds number, Fig. 4.

 $\frac{1}{\sqrt{f}} = 2\log Re \sqrt{f} - 0.8$

If the density, pressure drop, and weight rate of flow of a suspension are known, the apparent viscosity may be estimated from the corresponding Reynolds number. In this

investigation, viscosities were found to be essentially constant from a Reynolds number of 75,000 to 200,000 with the exception of iron oxide slurry. The magnitude of the viscosity for the suspension was always greater than the dispersion medium. Appreciable changes in viscosity were noted below 75,000 Reynolds number.

CRITICAL REVIEW OF PERTINENT WORK

A relatively meager amount of data on heat transfer to suspensions can be found in the literature. Hoopes et al (6) correlated data on the cooling of Filter Cel suspensions with the Dittus-Boelter equation.

At high Reynolds number Mac Laren and Stair (7) correlated their data on heating of Filter Cel (silica), but due to the baked deposit formed on the heated section of the exchanger from the silica suspension, correlation at low Reynolds numbers was not obtained.

Shandling (14) attempted to measure the film coefficients of heat transfer of aluminum-water slurries. No correlation was obtained due to the reaction taken place between aluminum and water. Abnormally high film coefficients could result from such an investigation since aluminum in a finely divided state reacts readily with water. Possibly if the slurry were aged a long period of time a protective oxide layer would form on the particles and enable one to investigate aluminum in water slurries, provided the specific heat and conductivity of the aluminum particle in this state were known. Shandling's results did give an indication that film coefficients of heat transfer with this material would be much higher than for water alone.

Film coefficient heat transfer characteristics of chalk-water slurries were investigated by Bonilla et al (3). The data was obtained for concentrations up to 21%. Correlation with the Dittus-Boelter equation showed a deviation within 10%. Thermal conductivity of slurries, water being the suspending medium was obtained from weighted averages of individual properties of the solid and liquid; the bulk viscosity was computed from the Hastchek (3) relationship:

$$\mathcal{U}_{B} = \frac{\mathcal{U}_{W}}{(1 - \phi''_{3})} \qquad \begin{array}{l} \mathcal{U}_{W} = \text{viscosity of water} \\ \phi = \text{volume fraction of solid} \\ \text{in suspension} \\ \mathcal{U}_{B} = \text{bulk viscosity} \end{array}$$

A plot of the ratio between Nusselt number and the Prandtl number raised to the one-third power $\binom{N_U/P_r''_3}{P_r''_3}$ versus Reynolds number, with percent solids as the parameter, showed that the value of $\binom{N_U/P_r''_3}{P_r''_3}$ decreased with increasing solid concentration. The relationship,

 $\begin{pmatrix} N_{\nu} \\ P_{r}''_{3} \end{pmatrix} = \begin{pmatrix} N_{\nu} \\ P_{r}''_{3} \end{pmatrix} - 555 \chi$

where x is the weight fraction of the solid, was found to hold approximately up to the slurry concentrations under investigation.

Orr and Dallavalle (10) investigated various suspensions

of powdered solids in ethylene glycol. The data correlated fairly well using the Dittus-Boelter equation as modified by Sieder and Tate (13).

 $\left(\frac{hD}{K_B}\right) = .027 \left(\frac{DVP}{M_B}\right)^{.8} \left(\frac{CM}{K_B}\right)^{''3} \left(\frac{M_B}{M_S}\right)^{.14}$

where

$$\mathcal{U}_{\mathcal{B}} = \frac{\mathcal{U}}{\left(1 - \frac{\Phi}{\Phi}\right)^{1.8}}$$

 $\mathcal{M}_{\mathcal{B}}^{=}$ bulk viscosity $\mathcal{M} =$ viscosity of liquid

 ϕ = volume fraction of solid suspension

 $\phi' =$ volume fraction of the solid in a sedimented bed

$$K_{B} = K_{F} - \frac{2K_{F} + K_{S} - 2\phi(K_{F} - K_{S})}{2K_{F} + K_{S} + \phi(K_{F} - K_{S})}$$

- K_{B} = thermal conductivity of the suspension
- K_{F} = thermal conductivity of the suspending medium
- K_5 = thermal conductivity of the solid
- ϕ = the volume fraction of the solid

The equation above is the thermal analogy to electrical conductivity as developed by Maxwell.

Film coefficients of heat transfer for fluids contain-

ing no solids but of the non-Newtonian classification were correlated by Chu et al (5) using a viscosity correction factor added to the Nusselt and Prandtl number relation. The assumption in the above correlation is that the pseudoplastic viscosity may be regarded as some measure of its deviation from simple Newtonian behavior. It is a reasonable inference that the degree of pseudoplasticity may also be a measure of the difference between the observed coefficient of heat transfer for the pseudoplastic fluid and the value of the heat transfer coefficient predicted for a simple Newtonian fluid of similar viscosity by the already established relations.

J. J. Salamone (12) investigated a variety of particles suspended in water. A new equation was derived by dimensional analysis and experimental data used to calculate the constant and exponents of the dimensionless ratios representing individual properties of the components of the suspension. Viscosity, velocity, and density were measured as bulk properties at the conditions of heat transfer.

An alternate method for predicting film coefficients of heat transfer was followed which consisted of calculating an effective conductivity to be substituted in the present Dittus-Boelter equation. This effective conductivity was found to be a linear function of the surface area of the suspended particles.

Effective conductivity was calculated from a calibration curve based on N_{ν}/ρ . 4 versus Reynolds number for water. All data was taken above 50,000 Reynolds number to minimize settling of the particles.

Binder and Pollara (19) constructed similar equipment as used by J. J. Salamone with added improvements. The lower turbulent region of Reynolds number 10,000 to 70,000 was investigated in order to obtain better accuracy in the constant and the exponents of the dimensionless groups. A relationship of effective conductivity with Reynolds number was shown to approach a limiting value above a Reynolds number of 50,000.

DESCRIPTION OF APPARATUS*

- "A schematic diagram of the apparatus which is similar to that constructed by Bonilla (3) and Salamone (12) was assembled for the purpose of obtaining the data for this investigation as shown in Figure 1.
- "The slurry was prepared and stored in a 55 gallon drum provided with a "Lightening' motor-driven agitator. An Allis-Chalmers pump of adequate capacity transported the slurry from the storage tank, through a by-pass, which was installed to insure positive rate control and thorough mixing by recycling slurry back into the tank, and then through the system back to the tank.
- "The circulatory system consisted of a heat transfer section for transfer measurements, two cooling sections consisting of a concentric pipe heat exchanger located after the heating section which kept the slurry in the viscometer (which came after the cooling exchanger) at the average temperature of the slurry in the heating section; the second section consisted of 100 ft. of close wound $\frac{1}{2}$ " copper tubing in the slurry storage tank which maintained the slurry feeding the system at isothermal conditions.
- "All lines in contact with the slurry were 85-15 brass, except as noted above.
- "The heat transfer section contained a 1" I.P.S. brass pipe inside a $1\frac{1}{2}$ wrought iron pipe which in turn was surrounded by a 24" wrought iron pipe. Steam was circulated through both annular spaces. the outer serving as a guard heater. Iron tees and bushings located at the ends of the $2\frac{1}{2}$ " and $1\frac{1}{4}$ " pipe provided the inlet and outlet for the steam in both annular sections. Sealing of the outer annulus was accomplished by screwing $2\frac{1}{2}$ x 12" reducing bushings into the 22" tees and inserting the 14" pipe which was then welded to the bushings. Sealing of the inner annuli was accomplished with the aid of reducing bushings, close nipples, and unions which were turned down inside and packing added to serve as a packing gland at each end. Air vents were provided at each end of the inner annulus.

*Binder-Pollara (19)

"Heating of the slurry was accomplished in the $\frac{1}{2}$ " pipe by steam flowing in the inner annulus counter current to experimental solution over a length of 8 ft.. Provision was made for collecting and weighing the condensate obtained from the inner annulus. The 12 ft. length of the inner $\frac{1}{2}$ " pipe provided for a calming section of approximately 2 ft. at each end. Each end was connected to a 1" tee containing a thermometer well in which oil was used as a heat transfer medium. The thermometers used to record the inlet and outlet slurry temperatures were graduated in $1/10^{\circ}$ C and ranged from -1° to 101°C. Brass flanges with rubber gaskets were installed between the ends of the 2" pipe and the thermometer well tees to minimize and effects due to heat conduction between the heating section and the rest of the apparatus.

"The thermocouples were installed in the $\frac{1}{2}$ " brass pipe in the following manner: Three grooves were cut into the pipe wall at either end with the aid of a milling machine. Four of these were made 18"long, two commencing approximately 12" from either end of the g" brass pipe. The third commencing at the same point as the others on both ends was extended over to the center of the 2" pipe. The grooves were wide enough to accommodate a set of copper-constantan thermocouple wires No.22 gauge. The thermocouple junction was positioned into the groove and the latter filled with molten solder. The solder was smooth and polished with emery cloth until the surface was uniformly circular. The thermocouple wire was snugly positioned along the length of the grooves and some litharge cement with glycerin was used to fill the remaining volume within the grooves. The entire pipe surface was polished smooth with fine emery paper. In all, six copper-constantan thermocouple junctions were attached to the outer surface at the top and bottom near the ends and the center of the inner annulus. A drawing of the thermocouple installation is shown in Figure 1.

"The wires for three of the thermocouples at each end were taped to the $\frac{1}{2}$ " inner brass pipe and surrounded with individual strands of plastic translucent tubing for protection. This provision was made for the length of wire extending from the $\frac{1}{2}$ " pipe out to a terminal block adjacent to a rotary selector switch. In addition to the use of a strand of plastic tubing for each set of thermocouple wires, a larger size of plastic tubing was used to contain all three of the individual thermocouples at each end.

- "The thermocouple wires, contained within the plastic tubing, were connected to a terminal block and from this point connected through a rotary switch to a Leeds Northrup portable precision potentiometer. An ice bath was used as a reference junction.
- "The heating section was completely insulated with 85% magnesia pipe insulation and aluminum foil. The cooler was a double pipe type heat exchanger consisting of 1" brass I.P.S. pipe inside a 2" standard iron pipe. Cold water was circulated counter-currently to the slurry through the annular space.
- "The viscometer consisted of an insulated 2" I.P.S. brass pipe with pressure taps spaced 6 ft. apart. A 2 ft. long calming section proceeded the pressure drop section. Approximately 30 in. beyond the pressure drop section provision was made for a tee containing a thermometer well. A tetrabromoethane manometer was used to determine pressure drop data. Traps were installed just after the pressure traps to prevent slurry particles from reaching the manometer lines. Lines to and from the traps were made of transparent Excelon plastic tubing. This provision enabled viewing air or solid material which occasionally found its way into the manometer lines. The manometer was so built that the traps and transparent lines could be conveniently flushed with water. This was done before all readings to remove sediment and air from the lines and traps,
- "The pipe returning to the slurry tank was provided with a set of quick opening valves to conveniently allow diverting the slurry into a weighing tank for flow rate measurements. A cooling coil was provided in the slurry tank to maintain isothermal conditions in the tank."

The solids used for the slurries are described in

Table I.

TABLE I

PHYSICAL PROPERTIES OF MATERIALS* AND SUPPLIERS

1

MATERIAL	SUPPLIER	DENSITY @ 20°C	SPECIFIC HEAT @ 60°C	THERMAL CONDUCTIVITY	AVERAGE Particle Size
		gm/cc	BTU/LB- ^o f	BTU HR-FT-OF	Microns
Chalk Powder					
Atomite	Thompson Weinman & Co. Montclair	2.71 (Company)	0.209 (Perry)	0.40 (Perry)	2.5 (Company)
Snowflake	W .	2.71 (Company)	0.209 (Perry)	0.40 (Perry)	6.0 (Company)
Number 1 White		2.71 (Company)	0.209 (Perry)	0.40 (Perry)	14.0 (Company)
Iron Oxide	Binney & Smith N.Y., N.Y	4.06 (Company)	0.0823 (Company)	0.257 (Company)	G.5 (Company)

-- -

*All properties of water from Badger & McCabe Thermal conductivity of brass (85-15 red brass) 90 BTU/(HR.) (^OF) (FT.)

EXPERIMENTAL PROCEDURE

The fifty gallon drum was filled with approximately two hundred lbs. of water.

Valves on the discharge of the pump were closed and power to the pump turned on. The valve on the recirculating line was then opened to the desired position. The valve controlling flow into the equipment was then set according to the desired manometer reading.

Steam was admitted to the system through a hand valve and constant pressure valve. All cooling water valves were opened, these included, cooling water for the fifty-five gallon drum, the condensate from the steam trap, and the double pipe cooler which was to cool the heated water to the average temperature of the heat section before entering the viscometer.

When the temperature of the water flowing in and out of the heat section, was constant, readings were taken of the thermocouples, viscosity temperature, inlet and outlet water temperature, manometer reading, water rate in pounds collected per interval of time and the condensate rate. Average time allowed for equilibrium was approximately thirty minutes.

From the observed heat transfer water data a plot of N_{ν}/ρ_{r} .4 versus Reynolds number was constructed to

calibrate the equipment for the calculation of effective conductivity, Fig. 3.

From the observed pressure drop water data, a Von Karman plot was constructed. The variables plotted were

 \sqrt{f} versus $\mathcal{R}_e\sqrt{f}$, Fig. 4. These gave a straight line which agreed fairly well with the Von Karman equation:

$$\frac{1}{\sqrt{f}} = 2.0 \log Re \sqrt{f} = 0.8$$

The water data as noted in Table II was taken in two parts. The first set of data numbered from 101 to 110 was on heat transfer only and was used to construct the plot in figure 3.

The second set of data from 111 to 129 was used to construct the Von Karman plot in figure 4.

After completing the test runs with water, the desired weight of any solids were added to the water in the fiftyfive gallon drum and the agitator set in motion. The equipment was allowed to come to equilibrium as was evidenced by the constant temperature readings of the slurry at the inlet and outlet of the heat exchanger.

The readings observed and recorded were the following:

1. Thermocouple readings in millivolts, a total of six readings averaged; the average millivolt reading was converted to degrees F. and corrected to indicate the film coefficient temperature.

- 2. The water temperature inlet and outlet from the heat section.
- 3. The viscometer temperature which is controlled by the double pipe cooler to the average temperature of the heat section.
- 4. Manometer differential.
- 5. Steam pressure.
- 6. Steam rate as determined by weighing condensate collected over a measured period of time.
- 7. Slurry flow rate as determined by weighing a sample over a measured period of time. The method used to collect the slurry was by diverting the flow with quick opening valves having allegedly similar pressure drop characteristics (see discussion of results).
- 8. Density of the suspension was obtained by weighing in a calibrated volumetric flask.

The density obtained in step eight (8) above was used to determine the weight fraction of the solid in the slurry from previously constructed density versus weight fraction curves, Fig. 2.

The weight fraction data was obtained as follows:

A flask whose weight and volume were known was filled with water and weighed. After the water had been emptied from the flask, a small quantity of dry solids was introduced into the flask and weighed. The flask containing the weighed sample of solids was then filled with water to the known volume mark and weighed again. By subtracting the weight of the flask from all of the observed weight readings, the density of the solid plus water was obtained when divided by the weight of the water having the same volume. Thus, the density of the solid plus liquid was known; the weight fraction was equal to the known weight of solid added, divided by the weight of water plus solid.

1

ŕ

TABLE NO. II

OBSERVED DATA AND CALCULATED RESULTS FOR WATER

RUN HO.	WATER TIME (SEC.)	WEIGHT WATER COLLECTED (LBS.)	THER #1	#2	ple r #3	eadin #4	GS (M <i>#</i> 5	₩.) #6	WATER TEMP. IN	°C OUT	INLET STEAM PRESSURE (PSIG)	Cond's'te Temp. F	COND*S*TE TIME TO COLLECT (MIN.)	VISCOMETER TEMP. C	WATER HEAT <u>BTU</u> x 10 ³ HR.	HEAT SECTION Re. Ho. × 10 ³
101 102 103 104 105 106 107	99.0 39.3 29.2 33.0 32.4 23.2 28.1	100 50 50 50 50 50 50	3.46 3.90 3.54 4.38 4.38 4.38 4.51 4.04	3.11 3.65 3.41 3.17 3.91 4.08 4.00	3.27 3.65 3.41 3.35 3.99 3.90 4.05	4.04 4.70 4.45 4.44 5.10 5.05 5.10	4.39 5.05 4.80 5.45 5.45 5.45	4.22 4.84 4.58 4.60 5.22 5.22 5.25	42.80 53.85 54.55 48.90 58.51 62.55 60.00	67.90 79.60 75.90 73.20 85.21 84.95 84.95	3.0 14.0 10.0 10.3 23.0 22.5 24.0	91.0 113.0 113.0 113.0 122.0 127.0 125.0	8.0 4.0 6.0 5.0 3.0 3.0 3.25	56.0 66.0 63.0 71.6 74.0 72.0	164.3 212.5 237.0 227.0 267.0 314.0 288.0	75.3 109.0 144.0 123.0 142.0 205.0 165.0
108 109 110	37.2 52.1 22.0	50 50 50	3.96 4.11 3.45	3.54 3.74 3.28	3.54 3.74 3.47	4.46 4.54 4.42	4.73 4.77 4.75	4.59 4.66 4.56	47.10 42.62 56.10	74•55 76.40 75•35	8.3 8.4 8.5	101.0 95.0 105.0	4.0 5.0 4.0	61.0 60.0 65.0	239.5 210.0 283.0	106.0 75.0 191.0

OBSERVED DATA AND CALCULATED RESULTS FOR WATER

RUN NO.	WATER TIME (SEC.)	WEIGHT WATER COLLECTED (LES.)	VISCOSITY TEMP.°C	Manometter Reading (in.)	Re. No. x 10 ³	FRICTION FACTOR 1	$\frac{1}{\sqrt{f}}$	Re. V f x 10 ³
111	22.3	50	15.0	62.0	72.2	0.0194	7.18	10.00
112	24.0	50	18.0	55.0	72.5	0.0200	7.05	10.30
113	118.3	35	14.0	3.13	9.25	0.0562	4.22	2.19
114	63.8	50	16.0	9.25	25.80	0.0237	6,50	3.97
115	36.6	50	10.5	25-25	47.40	0.0213	6.85	6.92
116	29.1	50	15.0	38.50	55.20	0.0205	7.00	7.90
117	21.8	50	16.0	62.00	75.70	0.0186	7-36	10.30
118	44. 4	100	17.0	61.25	76.10	0.0190	7.25	10.50
119	29.0	50	16.0	39-22	56.90	0.0209	6.92	8.22
120	33.2	50	16.0	29.25	49.70	0.0202	7.05	7.05
121	67.2	50	17.0	8,25	25.20	0.0241	6.45	3.91
122	59.8	50	17.0	12.60	28.30	0.0283	5+95	4.75
123	31.7	50	61.0	57-75	183.00	0.0169 -	7.70	23.80
124	23.0	50	59+5	51.62	169.00	0.0168	7.73	21.90
125	26.4	50	59-5	37.25	144.00	0.0166	7-75	18.57
126	37-3	50	70.0	20.00	120.00	0.0172	7.64	15.70
127	21.5	50	63.0	58.00	191.00	0.0165	7-29	24.50
128	24.0	50	63.0	46.50	170.50	0.0165	7.80	21.80
129	27.1	50	62.0	38.00	149.00	0.0171	7.64	19.50

<u>Nu</u> Pr ^{.4}	EXP. FILM COEFF. 2° BTU/HRFT H	
203	2350	
287	3140	
383	4220	
336	3760	
346	3690	
464	4890	
404	4300	
301	3380	
230	2610	
533	5830	
TABLE NO. III

OBSERVED DATA FOR SUSPENSIONS

DIT	SLURRY	WEIGHT SLURKY	MANOMETER	THERMOCOL	IPLE R	EADIN	gs (m	V.)	SLURRY		INLET STEAM		COND'S'TE	COND'S'T	E	SLURRY	SLURRY
NO.	(SEC.)	(LES.)	(IN.) *	#1 #2	#3	件	<i>#</i> 5	#6	IN IN	OUT	(PSIG)	TEMP. OF	WEIGHT LbsOz.	(MIN.)	VISCOMETER TEMP. C.	WEIGHT LbsOz.	DENSITY TEMP. ^O C
ATOMI	TE			.	·		-		_								
1	26.5	50	48.75	3.94 3.3	3.66	4.75	5.04	4.89	56.00	79.80	13.7	98	20-9	4.0	68.0	9-10	24
2	22+5	50	63.50	3.90 3.40	3.63	4.70	4.99	4.65	59.06	80.40	13.4	100	21-7	4.0	69.0	9-10	24
- J	41+3	50	20190	4.04 3.40	2 3.01 2 h 01	1, 97	5.00	4.95	49.70	80.90	13.7		17-7	4.0	65.5	9-10	24
5.44 S.S. 55	27.1	50 ko	28.lin	4.27 3-90	2 75	1 70	5:00	5.00 h 01	43.90	80 b7	13.(00	19-9	4.0	63.6	9-10	24
6	21.8	50	62.60	3.56 3.90	2-50	1.70	5.00	4.85	56.50	78.02	12.7	97 11k	20-10	4.0	67.0	9-10 9-10	28
7	23.3	50	52.00	3.45 3.1	2 3.50	4.70	4.96	4.86	52.98	76.40	12.7	112	15-1	2.0	65:0	9-4 0-4	38
8	26.6	50	42.10	3.45 3.19	5 3.50	4.65	4.95	4.80	51.00	76.12	12.7	112	14-13	3.0	64.0	0-4	38
9	37.2	50	22.50	3.64 3.3	5 3.70	4.78	5.00	4.90	47.60	78.45	12.7	105	12-16	3.0	64.0	9 <u>-</u> 4	38
10	49.8	50	13.00	3.85 3.62	3.95	4.82	5.00	4,90	48.30	82.00	12.7	8 8 8	14-7	4.0	65.0	9-4	38
11	21.0	50	62.50	3.56 3.26	3.59	4.80	5.09	4.94	55.05	77.00	13.1	104	15-8	3.0	63.5	9-9	60
12	22.0	50	58.00	3.61 3.3	3.63	4.30	5.12	4.96	56.00	78.00	13.5	104	14-15	3.0	64.0	9-9	60
- 13	24.2	50	49.27	3.50 3.5	2 3-09	4.04	5.11	4-53	54.00	77,45	13.5	104	14-11	3.0	63.4	9-9	50
15	20.7	50	30.12 06 75	3.01 3.4	1 3-11	4.05	2.11	5.00	52.00	77.00	13.5	101	14-0	3.0	63.0	949	50 ()
16	44.5	50	14.70	3.10 3.4	5 L 10	4.90	5.76	5.06	10.00	80.60	13-7	93	16-12	3.0	63.0	949	60
			21110		/	*****	2 * L.	100	43100	00100	لر +ن.2	19	Tek ask	4.0	04.0	7-7	00
SNOWF	LAKE																
17	21.7	50	59.0	3.32 2.99) 3.20	4.49	5.05	4.89	50.10	68,90	14.2	98	14-11	3.0	57.0	8-8	65
18	23.3	50	50.0	3.35 3.05	5 3.30	4.55	5.07	4.89	49.65	69.85	14.2	102	14-5	3.0	57-5	8-8	65
19	27.0	50	39.5	3.45 3.10	3.40	4.35	5.05	4.20	49.80	71.65	13.9	99	13-14	3.0	63.0	8-8	65
20	31.9	50	29.5	3.50 3.20	3.40	4.65	5.03	4.00	48.95	73.05	13.0	.93	12-13	3.0	57-5	8-8	65
22	50.0 91.2	20 50	20.0 50.7	2.07 3.30	3.00	1 65	2+03	4+95	47.00 51.00	73-12	13.4	90	16-0	4.0	58.0	8-8	65 (r
23	23.3	50	50.5	3.50 3.18	3 3 35	4.00	5.00	1.00	54.85	73.80	14.0	113	14-0	3.0	64.0	0- 9 8-0	65
24	20.7	50	61.5	3.50 3.16	3.36	4.70	5.05	4.89	56.60	74.60	74.0	113	11-15	3.0	65.0	8_11	65
25	22.3	50	53.0	3.56 3.2	2 3.40	4-69	5.06	4.90	56.70	75.60	13.6	113	14-4	3.0	65.0	8-12	65
26	25.1	50	42.5	3.51 3.18	3.40	4.71	5.08	4.91	52.95	74.70	. 14.1	113	14-8	3.0	64.0	8-14	65
27	29-4	50	31.8	3.66 3.36	5 3.52	4.75	5.07	4.95	56.00	78.40	14.2	113	13-2	3.0	66.0	8-10	65
28	42.0	50	16.5	3.75 3.39	3.56	4.83	5.12	4.99	47.00	77.80	14.6	113	12-10	3.0	68.0	8-14	65
29	34.9	50	23.0	3.80 3.50	3.61	4.80	5.13	4.99	56.50	80.85	14.5	93	14-2	4.0	67.0	8-12	65
30	21.0	50	60.5	3.51 3.2	3.40	4.70	5.08	4.95	56.40	75.37	14.1	104	14-14	3.0	65.0	8-14	65
31	20.0	50	03.5	3.45 3.10	3.30	4.60	5.04	4.60	54.70	73.37	14.2	106	14-13	3.0	63.5	9 <u>-</u> 4	65
22 24	22.0 07 2	- 50	72.0	J.40 J.05	3-33	14.04), Co	4.95	4.70	53.00	13.30	13.2	100	14-0	3.0	63.0	9=4	65
22	-1+2	20	30.3	J*** J*10	2 2:40	4.09	7.00	4+0L	20.90	(4.40	派钟。 ""	TOS	45-14	3U	0310	ソーン	ゆう

* Tetrabromoethane

TABLE NO. U

OBSERVED DATA FOR SUSPENSIONS

RUM	SLURRY TIME	WEIGHT SLURRY COLLECTED	Manometer Frading	THE	RMOCO	UPLE	readi	ras (HV.)	SLURM	ic .	INLET STEAM PRESSURE	CONT. 1 4 mm	COND'S'TE	COMPISIE	E Trendamos	SLURRY	SLURRY
NO.	(SEC.)	(LES.)	(IN.)*	和	# 2	£3	种	豹	韬	18	OUT	(PSIC)	TENS OF	LisOz.	(MIN.)	TEMP. ⁰ C.	kalami IkusOz.	TENP. C
SHOW	LAKE (COM	["D)									,							
34	39.9	<u>50</u>	16.88	3-75	3-35	3-55	4.01	5.09	4.95	46.80	77.45	14.5	90	11-14	3.0	62.0	9-5	65
35	40.2	50	17.00	3.80	3.40	3.60	4.80	5.05	4.92	47.50	78.30	14.5	୍ରତ	11-14	3.0	63.0	9-5	65
36	19.7	50	65.75	3.70	3.20	3.43	4.70	5.04	4.85	56.90	76.40	14.8	104	9-10	2.0	66.0	9.0	65
37	22.0	50	59.50	3.69	3.20	3.41	4.70	5.00	4,80	56.38	76.38	14.0	the second se	9-10	2.0	65.5	9.9	65
38	4.6	50	42.25	3.71	3.23	3.41	4.69	5.00	4.61	53-35	76.30	13.6	100	8-14	2.0	64.5	9-10	65
39	30.3	50	29.50	3.84	3.30	3-54	4.79	5.05	4.90	52.00	78.30	14.5	99	8-2	2.0	65.0	9-10	65
40	45.5	50	14.38	4.05	3.46	3.75	4.85	5.05	4.93	47.50	80.30	14.5	83	6-10	2.0	64.5	9-11	65
NO.1	WHITE																	
41	21.7	50	58.50	3.34	2.95	3.16	4.55	5.04	4.79	50.30	68.45	14.5	100	14-15	3.0	59.5	8-10	65
42	23.7	50	48.25	3.35	2.99	3.20	4.58	4.99	4.79	49.50	69.00	14.8	97	14-11	3.0	59.5	8-10	65
43	32.1	50	30.00	3.47	3.16	3.21	4.58	5.04	4.83	46.50	70.00	14.0	93	16-2	3.5	57.5	8-10	65
44	82.3	50	5.50	3.94	3.61	3.71	4.80	5.09	4.96	36.10	77.47	14.3	73	9-13	3.0	56.7	8-10	65
45	36.1	50	22.75	3-52	3.19	3-39	4.68	5.04	4.94	45.60	72.20	14.5	91	13-8	3.0	59.0	8-10	65
46	32.5	50	27.25	3.46	3.12	3.32	4.69	5.05	4.85	46.70	72.30	13.5	93	13-12	3.0	59.7	8-15	65
47	40.4	50	18.75	3.58	3.24	3.44	4.73	5-05	4.90	44.65	74.25	14.0	91	13-4	3.0	59-5	8-15	65
40	21.1	50	59.75	3.44	3.02	3-26	4.66	5.04	4.69	51.70	71.25	14.7	100	15-8	3.0	61.5	8-15	65
49	24.2	50	47.75	3.44	3.09	3.89	4.63	5.00	4.93	59.00	71.50	13.5	97	15-1	3.0	60.6	6-15	65
50	27.5	50	37.00	3.45	3.10	3-30	4.70	5:00	4.84	49.30	72,40	13.6	95	14-8	3.0	60.8	8-15	65
51	20.5	50	60.75	3.45	3.09	3.30	4.74	5.09	4.90	52.05	72.25	14.7	100	15-15	9.0	62.0	9-5	65
22	24.0	50	48.50	3.45	3.11	3-33	4.71	5-01	4.85	50.70	72.86	13.6	97	15-3	3.0	62.0	9-5	65
23	32.2	50	\$7.00	3.50	3.25	3.44	4,78	5.05	5.90	47.60	74.78	13.8	93	13-5	3.0	61.0	9-5	65
24	120.0	50	3.25	4.18	3.91	4.12	4.96	5.19	5.12	34.70	83.50	14.5	72	9-11	3.0	59.0	9-5	65
55	27-3	50	37.50	3.55	3.21	3.41	4.75	5.08	4.96	50.00	74.70	14.0	95	24-4	5.0	62.5	9-5	65

•

* Tetrabromoethams

TABLE NO. III

OBSERVED DATA FOR SUSPENSIONS

.

RUN	SLURRY TIME	WEIGHT SLURRY COLLECTED	MANOMETER READING	THER	90COU	ple r	eadin	G8 (1	W.)	SLURR	S _C	INLET STEAM PRESSURE	(1) 15+mp	COND'S'TE	COND'S'I	E	SLURRY	SLURRY
NO.	(SEC.)	(LBS.)	(IN.) *	#1	#2	#3	# 4	# 5	#6	IN	OUT	(PBIG)	TEMP. F	LbsOz.	(MIN.)	TEMP. C	LbsOz.	TEMP. C
IRON	OXIDE									· · ·								
56	34.2	75	50.50	3.50	3.25	3.33	4.73	5.01	4.86	53.25	72.37	14.0	97	14-13	3.0	62.0	8-10	65
57	37.0	75	44.50	3.49	3.20	3.30	4.73	5.05	4.89	50.42	70.65	14.6	97	19-11	4.0	61.0	8-10	65
58	30.0	50	30.75	3.56	3.30	3=40	4.75	5.06	4.95	50.93	72.65	14.6	95	14-1	3.0	62.0	8-10	65
59	37.3	50	20.75	3.70	3.45	3.50	4.80	5.08	4.95	48.30	74.38	14.2	92	13-0	3.0	62.0	8-10	65
60	55+3	50	10.25	4.01	3.73	3.80	4.90	5.14	5.00	45.00	77.90	15.0	91	11-2	3.0	63.0	8-10	65
61	33.0	75	55.00	3.61	3.35	3.46	4.80	5-14	4.95	55.70	73.80	14.9	96	16-13	3-5	60.0	8-15	65
62	37.0	75	42.75	3.65	3.34	3.45	4.80	5.04	4.90	53.42	73.40	14.0	96	15-5	3.5	65.0	8-15	65
63	42.8	75	33.25	3.76	3.50	3-55	4.81	5.05	4.92	54.50	75.45	14.2	96	13-5	3.0	66.0	8-15	65
64	61.0	75	17.50	3-95	3-73	3.80	4.90	5.10	5.00	49.55	75.25	14.6	96	11-4	3.0	68.0	8-15	65
65	49.9	50	12.00	4.23	4.00	4.04	4.94	5.10	5.04	54.40	79.45	14.6	96	9-4	3.0	74.0	8-15	65
66	31.0	75	60.00	3.75	3.40	3.53	4.80	5.01	4.94	59.45	76.10	13.8	95	13-11	3.0	68.0	9-2	65
67	33.6	75	52.00	3.80	3-51	3.58	4.80	5.01	4.94	59.20	76.40	13.5	93	13-6	3.0	69.0	9-2	65
68	40.4	75	36.20	3.87	3.60	3.74	4.84	5.09	4.97	57-75	77.05	13.8	80	117	3.0	70.0	9-2	65
69	36.0	50	21.50	4.14	3.90	3.98	4.90	5.09	5.01	58,55	79.25	14.5	79	6-0	2.0	75.0	9-2	65
70	59.2	50	9.25	4.49	4-34	4.36	4.99	5.15	5.06	48.00	70.00	14.5	63	8-6	4.0	65.0	9-2	65
71	30.2	75	61.50	4.01	3.79	3.79	4.85	5.10	5.97	65.80	80.70	14.1	89	16-6	4.0	75.0	9-4	65
72	33.0	75	51.00	4.05	3.76	3.84	4.90	5.10	5.01	63.80	79.65	14.2	89	8-3	2.0	75.0	9-4	65
73	28.2	50	32.75	4.16	3.96	3.96	4.88	5.08	5.01	63.20	79.70	13.8	84	6-6	2.0	76.0	9-4	65
74	34.0	75	48.00	4.15	3.95	3.95	4.88	5.10	5.01	68.50	83.00	14.1	87	7-4	2.0	Š0₊0	9-4	65

; `

* Tetrabromoethane

TABLE NO. IV

ADDITIONAL VISCOSITY DATA

RUN NO.	MANOMETER READINC(IN.)*	SLURRY TIME (SEC.)	WEICHT SLURRY COLLECTED (LES.)	VISCOMETER TEMP.°C	SLURRY WEIGHT LbsOz.	SLURRY DENSITY TEMP. (°C)
IMOTA	116	,				
75	59,00	31.3	75.0	65.0	9-1	65
76	52.25	33.6	75.0	65.0	9-1	65
	38.75	39.8	75.0	64.0	9-1	65
78	17.25	41.3	50.0	64.0	9-1	65
79	8.00	64.7	50.0	64.0	9-1	65
80	9.50	58.2	50.0	61.0	8-14	65
81	18.00	39.6	50.0	61.0	8-14	65
82	29.25	31.0	50.0	61.0	8-14	65
83	39.50	39.0	75.0	62.0	8-14	65
84	59.00	31.6	75.0	62.0	8-14	65
85	62.50	30.4	75.0	60.0	9-9	65
86	58.00	31.7	75.0	61.0	9-9	65
87	49.80	34.7	75.0	60.5	9-9	65
88	38.10	39.8	75.0	61.0	9-9	65
89	27.00	47.9	75.0	60.0	9-9	65
90	15.50	67.2	75.0	60.0	9-9	65
SNOW	PLAKE					
91	56.75	23.0	50.0	67.0	8-7	65
92	46.00	24.5	50.0	62.0	8-7	65
93	34.00	28.7	50.0	62.0	8-7	65
94	5.75	77.9	50.0	61.0	8-7	65
95	11.25	52.2	50.0	63.0	8-7	65
96	63.50	19.9	50.0	61.0	9-5	65
97	57.50	21.0	50.0	62.0	9+ 5	65
98	45.25	24.2	50.0	62.0	9 - 5	65
99	26.50	32.5	50.0	62.0	9-5	65
100	14.75	44.6	50.0	62.0	9-5	65

`

EXPERIMENTAL RESULTS

In general, the apparatus as used by these investigators was found to be adequate for the work undertaken. However, there were several shortcomings to the apparatus, some of which were corrected and others which were not, since to correct them would involve major alteration. However, some of these recognizable difficulties could have been circumvented but it was felt that the costs of equipment necessary would make them prohibitive. Modifications to flow arrangement were made to partially negate the influence of these difficulties.

It is well to note that many of the aferementioned difficulties were not of the nature that could be detected upon only visual inspection of the equipment, but manifested themselves only after the "feel" of the equipment was had. Consequently, these investigators were compelled to rerun several slurries, and also water, for heat transfer data and particularly for pressure drop.

Considerable difficulty was experienced in keeping the flow rate constant to the exchanger, and since this is the most important single factor in bringing the equipment to thermal equilibrium, was a matter of serious concern. From calculations it was found that a manometer fluctuation of $\frac{1}{4}$ could not be tolerated. After considerable investigation it was finally deduced that the pressure drop in the

system was varying when the slurry was diverted to the weighing tank from normal recirculation. By process of elimination it was found that the quick opening valves used for diverting flow of slurry from slurry tank to weighing drum were inherently different insofar as pressure deop was concerned. In order to alleviate this difficulty these valves were removed and a piece of hose was used for the diversion of flow.

Keeping the flow rate constant was still more difficult at low rates of flow, and at very low flow rates was almost impossible. This explains the lack of data for flow rates of below 50,000 Reynolds number. At low flow rates particle fall-out from the slurry is more pronounced. This precipitated material probably coats out on the pipe constricting the flow area thereby causing fluctuations in the flow rate.

The method for obtaining data was as indicated in the section marked "Experimental Procedure", that is, both heat transfer and viscosity data were taken simultaneously for each run. Since difficulty was experienced in obtaining proper manometer readings, the cause of which was previously described, the results for viscosity for runs 1 through 16 and 22 through 35 were unreliable and could be taken with no degree of certainty. In order to arrive at more accurate figures for viscosity, additional runs were made for viscosity for atomite and snowflake chalk and curves plotted showing viscosity versus flow rate. In preparing slurries for this additional data approximation to the weight percent of the slurries of the formal runs were made. In this way the viscosity for the formal runs was estimated from these plots by interpolation. Additional viscosity data was also taken for water in order to have a more accurate Von Karman type plot in the calibration of the pipe line viscometer.

Reference to Table VII "Correlated Results" shown that per cent deviation of the calculated value of "h" from experimental value of "h" is completely out of order for runs 70 through 74.

This does not conclude that the experimental equation for "h" developed is incorrect in some ranges since the large deviation obtained in these runs are due to a plainly assignable cause. These runs were made with an iron exide slurry of extremely high percent solids for a material such as this. When such highly concentrated slurries are used, particle fall-out becomes increasingly more pronounced and significant. These particles tend to cost out on the tube surface invalidating any thermal analogies which are drawn concerning a heat transfer mechanism such as used here. Since there is an assignable cause for these deviations, the inferences to be drawn from them into correlations of results were disregarded.

The deviations of calculated film coefficients from experimental ones for the remainder of the data appear to give

satisfactory results, the average deviation of all runs being in the range of 5 to 6%. Larger deviations of 15 to 20% are probably due to particle fall-out as described before due to the high concentration of slurries. These deviations, it may be noted, have been recorded as \neq and - depending on how they fell referenced to the experimental value of film coefficient. This was done so as to facilitate the correlation of experimental results as described under section marked "Correlation". Statistically, if the sum of the deviations equals o or close to o, the experimental equation used in calculating film coefficients is representative of the data. This was the case in the results of this experiment.

In his thesis, Salamone has presented a discussion of probable error using experimental technique of this nature. Since the equipment used for gathering data of this report, and the materials used, were substantially the same, Salamone's figure of 10% overall error is applicable to this report.

TABLE NO. V

CALCULATED RESULTS FOR SUSPENSIONS

RUN NO.	DENSITY LBS./FT.3	WEIGHT % SOLIDS	MEAN. Sp. HEAT BTU/LES.°F	FLOW RATE LBS./MIN	APPARENT VISCOSITY CP. (HEAT SECT.)	SLURRY HEAT BTU/HR. x 10 ³	VISCOMETER FRICTION FACTOR	HEAT SECTION Re. No. x 10 ³	EXP. FILM COEFF. *	EFFECTIVE THERMAL CONDUCT. **
1	65.6	11.4	0.9115	113.0	0.601	264.5		107.5	4520	0.559
2	65+6	11.4	0.9115	131.0	0.588	275.0		127.0	5220	0.611
3	65.6	11.4	0.9115	72.7	0.635	223.2		69.6	3190	0.514
4	65.6	11.4	0.9115	47.7	0.843	182.0		35.6	2250	0.475
5	65.6	11.4	0.9115	88.5	0.620	248.0		86.0	4030	0.600
6.	67.3	15.2	0.8739	138.0	0.688	279.0		119.0	5250	0.585
7	67.3	15.2	0.8739	129.0	0.710	285.0		111-0	5000	0.580
8	67.3	15.2	0.8739	113.0	0.728	267.0		97.4	4690	0.580
9	67.3	15.2	0.8739	80.8	0.743	235.0		85.0	34.20	0.405
10	67.3	15.2	0.8739	60.3	0.800	192.0		46.0	2570	0.487
11	70.2	23.2	0.8220	143.0	0.800	279.0		107.5	4610	0.516
12	70.2	23.2	0.8220	129.0	0.785	269.0		07 L	hh70	0 571
13	70.2	23.2	0.8220	124.0	0.800	259.0		olu n	3040	0 175
14	70.2	23.2	0.8220	113.0	0.810	251.0		85.4	3690	0 455
15	70.2	23.2	0.8220	94.3	0.810	231.5		71.0	3705	0.455
16	70.2	23.2	0.8220	67.7	0.970	190.0		31.1	2200	0.508
17	62.4	3.0	0.9727	138.0	0.643	272.0	0.01745	131.0	1120	0.356
18	62.4	3.0	0.9727	128.9	0.533	274.0	0.0170	148.0	4070	0.351
19	62.4	3.0	0.9727	111.0	0.704	255.0	0.0180	06:5	3870	0.1010
20	62.4	3.0	0.9727	94.0	0.586	238.0	0.0185	08.0	2280	0 201
21	62.4	3.0	0.9727	77.3	0.559	221.5	0.0190	8h 5	2026	0 282
22	62.8	4.4	0,9628	141.0	0.581	260.0		740 0	karn	0.305
23	62.8	4.4	0.9628	129.0	0.576	253.0		127 0	4060	0.261
24	63.7	6.4	0.9494	145.0	0.585	267.5		152.0	1,620	0.301
25	64.2	8.0	0.9367	134.5	0.589	257.0		138.0	4030	0 108
26	65.0	9.9	0.9217	119.5	0.637	258.0		115:0	4,720	0.420
27	63.2	5.0	9.9605	102.0	0.555	237.0		119.5	2710	0 460
28	65.0	9.9	6.9217	71.4	0.670	219.0		65.3	2110	0.400
29	64.2	8.0	0.9367	86.0	0.573	211.0		01 0	2200	0.472
30	65.0	9.9	0.9217	143.0	0.632	270.0		7.t+9 7.hL:⊖	2220	0 475
31	67.9	17.1	0.8650	143.3	0.713	250.0		110 D	1030	0.413
32	67.9	17.1	0.8650	131.6	0.720	Pho.0		111 5	4140	0.400
33	68.4	18.3	0.8550	110.0	0.736	230 0			2720	0 450
34	68.4	18.3	0.8550	75.2	0.063	213.0		17 A	2164	0 470
35	68.4	18.3	0.8550	74.7	0.963	213.0		117 h	2800	0.419
36	70.2	23.0	0.8180	152.3	0.015	262.0	0.01815	109 0	1500	0.939
37	70.2	23.0	0.8780	136.1	1.500	Shi n	0.0201	102.0	4750	0.527
38	70.6	24-1	0.8000	121.0	0.705	oh2 0	0.0185	22+2 02:0	1080	0.019
39	70.6	24.7	0.8000	00.2	0.820	or Roc	0.0103	73-0	2000	0.714
40	71.0	25.2	0.8020	AL 6	1.770	182.0	0.0001	14110	3420	0.441
	1		Y TUYE V	WT #W	alle to be all a lat	TO210	VIVEEL	22+1	2320	0.400
	A									

* BTU/Hr.-FT. 2-0F ** BTU/Hr.-FT.--⁰F

VISCOSITY
TO 65°C
(CP.)
0.600
0.030
0.640
0.820
0.630
0.710
0.710
0.710
0.720
0.800
0.810
0.010
0.810
0.810
0.970
0.601
0.493
0.652
0.555
0.533
0.570
0.500
0.605
0.625
0.575
0.640
0.605
0.640
0.700
0.700
0.020
0.920
0.915
1.500
0.195
0.820
1.110

TABLE NO. V

CALCULATED RESULTS FOR SUSPENSIONS

			MEAN. Sp.	FLOW	APPARENT VISCOSITY	SLURRY HEAT	VISCOMETER	HEAT SECTION	EXP. FTLM	EFFECTIVE THERMAT.	VISCOSITY
RUN NO.	DENSITY LBS./FT. ³	WEIGHT % SOLIDS	HEAT BTU/LBS. ^O F	RATE LBS./MIN.	CP. (HEAT SECT.)	BTU/HR. x 10 ³	FRICTION FACTOR	Re. No. $x 10^3$	COEFF.	CONDUCT.	TO 65°C (CP.)
41	63.4	5.5	0.9565	138.0	0.702	258.0	0.01770	120.0	4230	0.395	0.648
42	63.4	5.5	0.9565	126.6	0.710	255.0	0.01790	109.0	3800	0.367	0.655
43	63.4	5.5	0.9565	93-5	0.710	227.0	0.01885	80.6	3000	0.350	0.640
44	63.4	5.5	0.9565	36.5	0.868	147.0	0.02380	25.7	1430	0.336	0.765
45	63.4	5+5	0.9565	83.1	0.685	229.0	0.01935	74.0	2830	0.360	0.630
-46	65.6	11.3	0,9108	92.4	0.710	232.5	0.01905	79.9	3460	0.483	0.660
47	65-6	11.3	0.9108	74.3	0.770	217.0	0.02015	59+1	2800	0.440	0.710
48	65.6	11.3	0.9108	142.0	0.704	286.1	0.01760	123.5	4470	0.436	0.670
49	65.6	11.3	0.9108	124.0	0.820	256.0	0.01850	92.8	3880	0.427	0.775
50	65.6	11-3	0.9108	1.09.0	0.729	248.0	0.01850	91.8	3660	0.426	0.684
51	68.4	18.4	0.8547	146.4	0.724	273.0	0.01755	123.8	4220	0.394	0.694
52	68.4	18.4	0.8547	125.0	0.762	255.0	0.01935	100.1	4280	0.494	0.705
53	68.4	18.4	0.8547	93-2	0.769	232.0	0.01935	72.0	3230	0.468	0.720
54	68.4	18.4	0.8547	25.0	2.870	112.4	0.03380	5.3	1067	0.622	2.640
55	68.4	18.4	0.8547	110.0	0.895	251.0	0.01930	75.0	3650	0.475	0.860
56	63.3	2.9	0.9764	131.5	0.510	251.5	0.01680	157.3	3810	0.301	0.490
57	63.3	2.9	0.9764	122.0	0.555	261.0	0.01720	134.6	3700	0.321	0.518
58	63.3	2.9	0.9764	100.0	0.558	229.0	0.01800	109.6	3130	0.301	0.540
59	63.3	2.9	0.9764	80.5	0.495	222.0	0.01820	29.5	2860	0.313	0.470
60	63.3	2.9	0.9764	54.3	0.458	188.6	0.01920	72.3	21,20	0.281	0.435
61	65.6	7.2	0.9413	136.5	0.615	251.0	0.01760	136.0	3730	0.306	0.615
62	65.6	7+2	0.9413	121.5	0.660	247.0	0.01780	112.0	3580	0.329	0.644
63	65.6	7.2	0.9413	105.1	0.600	224.0	0.01790	107.2	3180	0.203	0.600
64	65.6	7.2	0.9413	73.8	0.620	193.0	0.01910	72.7	2175	0.255	0.594
65	65.6	7-2	0.9413	60.2	0.580	153.4	0.01990	63.6	1735	0.214	0.600
66	67.0	9.8	0.9205	145.0	0.676	239.0	0.01740	131.0	3. YOC	0.317	0.705
67	67.0	9.8	0.9205	134.0	0.690	228.1	0.01760	119.0	3440	0.315	0.720
68	67.0	9.8	0.9205	111.5	0.600	215.0	0.01770	113.6	3050	0.271	0.620
69	67.0	9.8	0.9205	84.0	0.610	173.1	0.01850	84.0	2160	0.216	0.645
70	67.0	9.8	0.9205	50.6	0.879	110.5	0.02195	35.2	910	0.111	0.805
71	68,0	11.7	0.9005	148.9	0.650	216.0	0.01710	140.0	3550	0.350	0.730
72	68.0	11.7	0.9005	136.5	0.602	210.5	0.01704	138.0	3110	0.229	0.660
73	68.0	11.7	0.9005	106.4	0.594	170.5	0.01771	109.6	2310	0.182	0,653
74	68.0	11.7	0.9005	132.0	0.585	186.5	0.01700	137.6	2990	0.217	0.675

* BTU/Hr. - FT²-°F

** BFU/Hr -- FT-°F

TABLE NO. VI

ADDITIONAL RE-RUN DATA FOR VISCOSITY CALCULATED

CALCULATED NESULTS

					HEAT		
		FLOW		VISCOMETER	SECTION	APPARET	VISCOSITY
RIN	DEMSTRY	RATTR	WEIGHT &	FRICTION	Re. No.	VISCOSTIV	CORR. TO
NO	LBG. / PP. 3	LBS./MTN.	SOLIDS	FACTOR	$x 10^{3}$	(CP)	65°C
110 +						\~~/	
ATOM	STER.						
75	66.5	143.5	13.6	0.01731	136.1	0.645	0.645
76	55.5	134.0	13.6	0.01760	123.6	0.661	0.661
77	66.5	113.0	13.6	0.01825	102.1	0.676	0.664
78	66.5	72.6	13.6	0.01980	64.6	0.687	0.676
7 9	66.5	46.4	13.6	0.02240	31.4	0.905	0.890
80	65.1	51.5	10.0	0.02120	46.1	0.682	0.641
81	65.1	75.7	10.0	0.01855	84.3	0.549	0.516
82	65.1	96.8	10.0	0.01845	95.4	0.619	0.583
83	65.1	115.5	10.0	0.01875	124.5	0.562	0.538
84	65.1	142.5	10.0	0.01721	137.9	0.630	0.603
85	70.2	148.0	23.0	0.01815	100.2	0.903	0.835
86	70.2	142.0	23.0	0.01830	96.8	0.899	0.849
87	70.2	130.0	23.0	0.01855	90.3	0.880	0.825
88	70.2	113.0	23.0	0.01900	83.6	0.826	0.776
89	70.2	94.0	23.0	0.01940	69.2	0.830	0.769
90	70.2	67.0	23.0	0.02190	39.1	1.045	0.965
SNOW	LAKE						_
91	62.35	130.5	2.6	0.01670	162.0	0.522	0.534
92	62.35	122.5	2.6	0.01730	139.5	0.537	0.512
9 3	62.35	104.5	2.6	0.01760	123.0	6.520	0.495
94	62.35	38.5	2.6	0.02200	35.7	0.660	0.621
95	62.35	57.5	2.6	0.01930	74.7	0.470	0.455
96	68.35	150.1	18.0	0.01735	132.5	0.675	0.635
97	68.35	142.5	18.0	0.01745	128.0	0.680	0.645
98	68.35	124.1	18.0	0.01810	107.0	0.710	0.675
99	68.35	92.3	18.0	0.01095	69.5	0.814	0.775
100	68.35	67.2	18.0	0.02020	58.7	0.700	0.665

.

CORRELATION

The method utilized to correlate the results of the data in this report was of a statistical nature.

The equation was assumed to be of the exponential type:

 $\frac{hO}{K_{f}} = \frac{1}{E} \left(\frac{R_{e}}{R_{e}} \right)^{0} \left(\frac{P_{f}}{P_{f}} \right)^{4} \left(\frac{C_{s}}{C_{f}} \right)^{2} \left(\frac{K_{s}}{K_{f}} \right)^{n} \left(\frac{D_{s}}{D} \right)^{r}$

If in a group of runs, using the same material throughout, a ratio such as the following may be written:

(hD/Kf)_ Z(Re), (Pr), (Cs/Cf), (Ks/Kf), (Ds/D), RUN 1 (hD/Kf)2 Z(Re)2 (Pr)4 (Cs/Cf)2 (Ks/Kf)2 (Ds/D)2 RUN 2

Since for one particular material the groups $\left(\frac{K_{3}}{K_{f}}\right)$ $\left(\frac{C_{3}}{C_{f}}\right)$ $\left(\frac{D}{D_{c}}\right)$ cancel out along -fit following remains:

 $\frac{(hD/K_f)_i}{(hD/K_f)_2} = \frac{(R_e)_i^{\phi}(P_r)_i^{y}}{(R_e)_2^{\phi}(P_r)_2^{y}}$

And further

 $P_r = \frac{C_f \, ll_b}{K_l}$

 $\frac{h_i}{h_2} = \frac{\left(Re\right)_i^b}{\left(Re\right)_i^b} \frac{\left(\mathcal{M}_b\right)_i^y}{\left(\mathcal{M}_b\right)_2^y}$

Or

104 (h, / h2) = b 104 (Re, / Re2) + y 104 (Mb, / Mb2)

may be solved for the exponents b and y using an additional equation made up similarly from two other runs. All the data in this report was utilized in solving the exponents of b and y, i.e., the exponent for Reynolds number and Prandtl number.

In solving for the exponent of (O/O_5) , the runs from slurries having particles of different diameter were utilized.

The equation may be written as follows:

$$\frac{h_{A}}{h_{s}} = \frac{\left(R_{e}\right)_{A}^{b} \left(P_{r}\right)_{A}^{y} \left(D_{s}\right)_{A}^{r}}{\left(R_{e}\right)_{s}^{b} \left(P_{r}\right)_{s}^{y} \left(D_{s}\right)_{s}^{r}} \qquad \text{ATOMITE}$$

Since b and y were found previously, all that need be found is the value of the exponent r which may be found by solving the above equation in the following form:

$$\log\left(\frac{h_{A}}{h_{S}}\right) = b \log\left(\frac{Re_{A}}{Re_{S}}\right) + y \log\left(\frac{M_{bA}}{M_{bS}}\right) + r \log\left(\frac{D_{SA}}{D_{SR}}\right)$$

The exponents for the remaining groups were solved by utilizing slurries having different specific heat and thermal conductivity.

The equation from two runs is as follows:

 $\frac{h_{CHALK}}{h_{Far0}} = \left(\frac{R_e}{R_e}\right)^6 \left(\frac{P_r}{P_r}\right)^4 \left(\frac{C_s/C_f}{C_e/C_f}\right)^2 \left(\frac{K_s/K_f}{K_e/K_f}\right)^n \left(\frac{D_s/D}{D_e/D_f}\right)^r$

which is solved simultaneously with another equation made up similarly from two other runs of chalk and copper from J J. Salamone (12).

From the exponents for the various dimensionless groups obtained by Salamone (12), Binder and Pollara (19), and these investigators, the following equation results:

 $\frac{h D}{K_{f}} = 0.027 \left(R_{e} \right)^{.76} \left(P_{r} \right)^{.75} \left| \frac{C_{s}}{C_{f}} \right|^{.38} \left| \frac{K_{s}}{K_{f}} \right|^{.056} \left| \frac{D}{D_{s}} \right|^{.1}$

The data in figure 10 was plotted with the ordinate equal to $\frac{hO}{K_f}$

 $\frac{\left|\frac{C_{f}\mathcal{L}_{b}}{K_{f}}\right|^{.75}}{\left|\frac{K_{s}}{K_{f}}\right|^{.056}}\frac{D}{D_{s}}\right|^{.076}\frac{C_{s}}{C_{f}}\right|^{.38}}{\left|\frac{C_{s}}{K_{f}}\right|^{.056}}$

and Reynolds number as the abscissa. The curve drawn through the points was selected mainly on the premise that data obtained at high Reynolds numbers were more reliable than low Reynolds number. The mean of these data was found by arithmetic average. It was found that the data of this report and the data of J. J. Salamone (12), when treated according to the method described previously, i.e., averaging the ratios of the runs and solving by simultaneous equations, gave a value of .76 for the slope of the line to be drawn through the plotted data. Hence, by this method an intercept of .027 was obtained, which is equivalent to the constant of the Dittus-Boelter equation used for simple Newtonian fluids.

It may be seen from figure 10 that the line drawn through the plotted data represents the bulk of the data in the heavily concentrated portion of the plot, and at lower Reynolds numbers as well.

TABLE NO. VII

CORRELATED RESULTS

• •		· ·								hD Kr	•
RUN NO.	Re. x 10 ³	Re. * 10 ²	$\left\{\frac{c_{f}}{K_{f}}\right\}^{-7}$	$\left\{ \begin{array}{c} K_{\rm g} \\ \overline{K_{\rm f}} \end{array} \right\}^{-05}$	$\left\{\begin{array}{c} c_{s} \\ c_{f} \end{array}\right\}^{h}$	$\left(\begin{array}{c} \underline{D}\\ \overline{D}\\ \mathbf{s}\\ \mathbf{s}\\ \end{array}\right)^{106}$	CALC.	EXPER. h	% DEV.	$\left\{\begin{array}{cc} c_{\mathbf{f}} & \mathcal{U}/\\ \delta'_{\mathbf{K}_{\mathbf{f}}} \end{array}\right\}$	79
ATOM 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 1 4 5 6 1 6	ITE 107.5 127.0 69.6 35.6 86.0 119.0 111.0 97.4 85.0 46.0 107.5 97.4 94.0 85.4 71.0 31.4	10.59 12.11 7.49 4.39 8.88 11.48 10.79 9.79 8.78 5.38 10.59 9.79 9.52 8.82 7.61 3.95	2.93 2.88 3.06 3.84 3.00 3.26 3.46 3.68 3.68 3.68 3.68 3.67 3.71 3.71 4.26	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	4000 4500 3000 3120 3440 4850 4850 43930 5040 4660 43930 5040 4440 3630 2170	4520 5220 3190 2250 4030 5250 5000 4620 3420 2570 4610 4470 3620 3195 2300	-11.5 -13.8 -5.8 -14.6 -5.8 -6.9 15.0 -2.7 9.3 2.5 12.6 13.6 -5.6	164.0 193.0 111.0 62.4 142.6 171.0 159.0 144.6 105.1 74.5 133.3 131.4 114.2 103.7 91.7 57.5	
51789812245%78293183345%78999	FIARE 131.0 148.0 96.5 98.0 84.5 149.0 137.0 152.0 138.9 115.0 112.5 65.3 91.9 144.0 119.0 111.5 91.3 47.8 47.4 101.5 54.85 92.6 74.0 35.9	12.41 13.68 9.72 9.84 8.74 13.76 12.86 13.98 13.00 11.18 10.99 7.12 9.35 13.39 11.49 10.91 9.30 5.50 5.50 10.12 6.19 9.41 7.86 4.40	3.09 2.31 2.38 2.88 2.87 3.07 3.22 2.88 3.37 3.22 3.39 3.55 4.28 3.39 3.55 4.20 3.65 4.20 3.74 4.74	1.00 1.00	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	**************************************	4460 4300 3830 3250 4660 4350 4460 43570 3140 4600 4600 2790 2780 4930 4930 4930 4930 2780 2780 2780 2780 2780 2780 2780 278	4120 4070 3830 4060 4630 4060 4630 4060 4630 4060 3720 3360 4140 3720 2890 4060 4110 2790 2890 4060 3420 34500 34500 34500 34500 34500 34500 34500 34500 3500 3	8.3 5.7 - 1.0 - 1.	153.7 177.0 135.0 140.7 122.0 171.0 165.0 186.6 182.0 152.5 157.0 105.3 136.0 176.0 142.0 140.4 122.5 74.4 78.5 130.0 78.2 129.0 105.5 56.7	

٢.

TABLE NO. VII

CORRELATED RESULTS

									hD K _c			
RUN NO. Re. x 10^3	Re. x 10 ²	$\left\{\frac{c_{f} \mu_{b}}{\frac{K_{f}}{K_{f}}}\right\}^{T}$	$\left\{\frac{K_{s}}{K_{f}}\right\}^{+05}$	$\left\{ \frac{c_s}{c_f} \right\}^{.42}$	$\left(\begin{array}{c} \underline{D} \\ \overline{D}_{\mathbf{g}} \right)^{*106}$	CAEC.	EXPER. h	¢ Dev.	$\left\{\frac{c_{f}}{K_{f}}\right\}^{-7}$,.05	^C ^{s/C} f	(D/Ds)
No. 1 WHITE 41 120.0 42 109.0 43 80.6 44 25.7 45 74.0 46 79.5 47 59.1 48 123.5 49 92.8 50 91.8 51 123.8 52 100.1 53 72.0 54 5.3 55 75.0	11.70 10.71 8.42 3.36 7.86 8.35 6.56 11.84 9.42 9.34 11.86 10.00 7.69 .90 7.94	3.32 3.35 3.35 3.91 3.26 3.35 3.57 3.32 3.57 3.41 3.40 3.53 3.56 10.10 4.02	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11	4200 3920 1430 2792 2550 4250 3460 3460 3460 3460 3460 3460 3460 346	4230 3800 1430 2830 3460 2800 4470 3880 3660 4280 3230 1067 3650	0320140000430887	160.0 143.6 113.2 46.3 110.0 130.8 99.3 170.5 131.0 135.6 157.0 153.4 114.8 13.4 114.8			
IRON OXIDE 56 157.3 57 134.6 58 109.6 59 99.5 60 72.3 61 136.0 62 112.0 63 107.2 64 72.7 65 63.2 66 131.0 67 119.0 63 113.6 69 84.0 70 35.2 71 140.0 72 138.0 73 109.6 74 137.6	14.36 12.68 10.71 9.96 7.71 12.79 10.95 10.57 7.75 6.95 12.41 11.49 11.08 8.70 4.32 13.09 12.94 10.71 12.91	2.57 2.75 2.76 2.52 2.37 2.98 3.15 2.98 3.15 2.98 3.15 2.98 3.15 2.98 3.15 2.98 3.15 2.98 3.15 2.98 3.15 2.92 2.96 3.12 2.94 2.91 2.97	0.981 0.981	0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	3700 3500 2500 1680 3450 3970 3970 3760 3970 3760 3120 3120 3120 3120 3120 3120 3120 312	3810 3700 3130 2860 2120 3730 3580 3180 2175 1735 3900 3180 2160 910 3550 3110 2310 2990	-2.9 -5.4 -5.5 -12.0 -3.6 -3.7 -2 -3.6 -3.7 -2 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	195.0 177.0 149.0 149.2 117.5 164.6 149.4 143.0 95.3 80.0 160.0 138.2 137.2 96.0 30.2 149.6 139.0 104.2 132.2			

FRANKS-RINA:01

TABLE NO. VIII

CORNELATION OF DATA OF SALAMONE, BINDER - POLLARA, FRANKE - RINALDI

$\frac{hD}{K_{f}}$ =	Z	(Re.)	$\left\{ \begin{array}{c} c_{\mathbf{f}} & \boldsymbol{\mathcal{U}}_{\mathbf{b}} \\ \hline \boldsymbol{\mathcal{K}}_{\mathbf{f}} \end{array} \right\}$	$\left\{\begin{array}{c} K_{\mathbf{s}} \\ \overline{K_{\mathbf{f}}} \end{array}\right\}$	$\left(\begin{array}{c} c_{g} \\ c_{f} \end{array}\right)$	
Exponent For Groups Determined By:						
J. J. Salamone Binder - Pollara Franke - Rinaldi	0.131 0.346 0.0138	0.62 0.70 0.80	0.72 0.72 0.79	0.05 0.08 0.05	0.35 0.35 0.42	0.050 -0.152 0.106

Weighted Arithmetic Average For Exponents

 $\frac{\text{Let } \mathbf{T}}{\left\{\begin{array}{c} C_{\mathbf{f}} & \mathcal{U}_{\mathbf{b}} \\ \left\{\begin{array}{c} C_{\mathbf{f}} & \mathcal{U}_{\mathbf{b}} \\ \left\{\begin{array}{c} K_{\mathbf{f}} \end{array}\right\}^{0.75} \left\{\begin{array}{c} K_{\mathbf{s}} \\ K_{\mathbf{f}} \end{array}\right\}^{0.956} & \left\{\begin{array}{c} C_{\mathbf{s}} \\ C_{\mathbf{s}} \end{array}\right\}^{0.076} \\ \left\{\begin{array}{c} T_{\mathbf{s}} \\ T_{\mathbf{f}} \end{array}\right\}^{0.076} \\ \left\{\begin{array}{c} K_{\mathbf{s}} \\ K_{\mathbf{f}} \end{array}\right\}^{0.076} & \left\{\begin{array}{c} T_{\mathbf{s}} \\ T_{\mathbf{s}} \end{array}\right\}^{0.076} \\ \left\{\begin{array}{c} T_{$

.

SALAMONE DATA: COPPER "A"

RUN		Re. No.
NO.	T	x 10 ⁰
10	the o	303 0
50 7.3	147.0	101+2
20 21	199 0	70.0
22	101.5	61.0
23	75.0	20.1
24	54.0	23.3
25	148.0	109.3
26	141.0	101.0
27	137.0	91.9
28	116.0	81.0
29	140.0	65.0
30	76.0	40.1
31	161.0	114.2
32	148.0	100.0
33	137.0	91.6
34	123.5	78.1
35	109.0	67.2
36	76.0	38.5
37	147.0	110.5
38	141.5	103.4
39	134.5	93-2
40	129.0	80.4
41	111.0	67.2
42	83.0	42.8
43	157.0	117.8
1	148.5	109.4
4) 16	143.5	98.2
40	127.0	83.2
4/ 10	111.0	66.6
40 ka	69.1	34.1
47 50	159.0	127.8
2V S1	107.0	119.6
у л 20	130.0	104.0
<u> </u>	128 0	00.2
ノJ ch	70010 10010	04.6
274	107.2	34.9

SALAMONE DATA (CONT'D) COPPER "B"

RUN NO	राष-	Re. No. 10^3
71V 6	.	× 70
55	154.0	122.0
56	148.0	106.5
57	132.0	89.0
58	104.0	68.8
59	95.0	50.8
60	38.4	13.3
61	175.0	136.0
62	167.0	122.5
03	120.0	100.5
04 Kc		03.2
05	101 × 0	23-2
	SALAMONE DATA (CONT'D) COPPER "C"	
<i>p p</i>		
66	179.0	132.5
67	145.0	100.8
60 60	132-5	84.2
9 9		00.L
10 71	180.0	47.4 106 8
14 72	157 0	100.8
73	135 E T31.0	Re 6
74	110.0	61.1
75	81.0	37.9
		~* ! ~
	SALAMONE DATA (CONT'D) SILICA	
76	136.0	116.0
77	128.0	106.5
78	119.0	95.2
79	105.0	79.2
80	83.1	55.2
OL CL	137.0	112.6
202	124.0	99.5
110	141.0	116.2
110	129.5	103.0
TTS 2011	110.U 87.0	06.2
TT	0(.2	50.1

٠

.

SALAMONE DATA (CONT'D) CARBON

RUN NO.	Ŷ	Re. No. x 10 ³
83 84 85 86 87 88	158.0 143.0 124.0 108.5 74.0 103.0	125.4 113.5 94.2 75.0 47.2 79.8
	SALAMONE DATA (CONT'D) ATOMITE CHALK	
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	$ \begin{array}{r} 185.0 \\ 155.0 \\ 152.0 \\ 123.0 \\ 104.0 \\ 128.0 \\ 127.0 \\ 128.0 \\ 127.0 \\ 106.0 \\ 85.5 \\ 141.5 \\ 125.1 \\ 117.2 \\ 103.0 \\ 84.0 \\ 55.4 \\ \end{array} $	143.8 119.6 109.2 83.3 66.5 117.0 105.5 87.2 70.6 53.6 105.3 92.8 82.5 69.2 53.1 31.1
	BINDER - POLLARA DATA COPPER	
1 2 3 4 5 6 7	193.0 138.0 166.0 126.5 100.0 92.3 57.9	54.0 31.3 45.1 34.2 22.2 24.8 12.6

•

FRANKS - RINALDI DATA ATOMITE CHALK

RUN NO.	Ŧ	Re. No.
	-	3. 4.0
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 1 5 6 7 8 9 10 1 1 2 3 4 1 5 1 6	202.0 237.0 137.0 78.5 177.0 214.0 199.0 161.0 132.0 94.0 167.0 165.0 144.0 129.0 116.0 73.3	107.5 127.0 69.6 35.6 86.0 119.0 111.0 97.4 85.0 46.0 107.5 97.4 94.0 85.4 71.0 31.4
	FBANKE - RINALDI DAPA (CONFID) SNOLFLAKE CHATK	
17 18 19 2 1 2 3 4 5 2 7 8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$ \begin{array}{r} 188.0 \\ 216.0 \\ 165.0 \\ 172.0 \\ 149.0 \\ 209.0 \\ 202.0 \\ 227.0 \\ 222.0 \\ 186.0 \\ 192.0 \\ 128.5 \\ 166.0 \\ 215.0 \\ 174.0 \\ 172.0 \\ 150.0 \\ 91.0 \\ 96.0 \\ 159.0 \\ 96.0 \\ 158.0 \\ 105.5 \\ \end{array} $	$\begin{array}{c} 131.0\\ 148.0\\ 96.5\\ 98.0\\ 149.0\\ 137.0\\ 152.0\\ 138.0\\ 1152.5\\ 91.0\\ 111.5\\ 91.3\\ 47.4\\ 101.5\\ 92.6\\ 74.0\\ 101.5\\ 92.6\\ 74.0\\ \end{array}$

BINDER - POLLARA DATA (CONT'D) ATOMITE CHALK

.

RUN MO.	T	Re. No. $x \ 10^3$
1 2 3 4 5 6 7 8 9 10 11	74.5 143.5 31.0 45.5 73.5 104.0 91.7 81.0 82.5 61.5 31.0	38.6 76.5 1.04 16.6 34.4 54.1 48.0 39.6 37.2 25.4 98.0
	BINDER - POLLARA DATA (CONT'D) SNOWFLAKE CHALK	
1 2 3 4 5 6 7 8 9 10 11 12	185.0 130.0 135.5 113.0 92.0 40.4 36.4 71.0 95.2 118.0 143.0 161.5	72.4 48.1 50.4 40.6 31.8 9.95 10.2 22.3 33.6 43.1 56.8 64.3
	BINDER - POLLARA DATA (CONT'D) No. 1 WHITE CHALK	
1 2 3 4 5 6 7 8 9 10	114.0 117.0 112.0 82.7 69.9 145.0 95.0 128.0 73.0 67.5	36.2 34.8 31.2 21.7 17.2 48.8 31.6 40.5 22.2 21.3

.

FRANKS - RINALDI DATA (CONT'D) No. 1 WHITE CHALK

RUN		Re. No.
NO.	T	x 10 ³
b 1	100.0	120.0
42	170-0	100.0
43	134.0	80.6
44	54.5	25.7
45	130.5	74.0
46	155.0	79.5
47	117.5	59.1
48	202.0	123.5
49	155.0	92.8
50	161.0	91.8
51	186.5	123.8
52	182.0	100.1
53	136.5	72.0
54	15.9	5.3
55	136.0	75.0
56	267.0	157.3
57	242.0	134.6
58	204.0	109.6
59	204.0	99+5
60	161.0	72.3
61	225.0	136.0
62	204.0	112.0
63	196.0	107.2
64	130.5	72.7
65	109.5	63.2
60	219.0	131.0
67	139.0	119.0
68	188.0	113.6
69	131.5	84.0
70	41.4	35-2
<u>γ1</u>	205.0	140.0
72	191.0	138.0
73	142.5	109.6
74	181.0	137.6

DISCUSSION OF RESULTS

The heat transfer film coefficient is expressed in terms of three dimensionless groups, namely, Nusselt, Reynolds and Prandtl for fluids. Additional dimensionless groups have been found to be of significance in this investigation. These are the ratios of the specific heat of the solid to the specific heat of the suspending medium

 C_5/C_f , the ratio of thermal conductivity of the solid to that of the suspending medium K_5/K_f , and the ratio of the tube diameter to the suspended particle diameter

0/05·

The results obtained in this investigation gave an exponent for the Reynolds group equal to 0.80, while the exponent of the Prandtl group was 0.79. Chu et al (5) stated.

"The degree of pseudoplasticity of the fluid may be regarded as a measure of its deviation from simple Newtonian behavior. It is a reasonable inference that the degree of pseudoplasticity may also be a measure of the difference between the observed coefficient of heat transfer for the pseudoplastic fluid, and the value of the heat transfer coefficient predicted for a simple Newtonian fluid of similar viscosity by the already established relations."

Salamone (12) and Binder-Pollara (19) contend that the pseudoplastic characteristics of slurries have a significant effect on the magnitude of the heat transfer film coefficient. It may be seen from the results obtained in this present investigation that the product of the Reynolds group and the Prandtl group in effect render the viscosity ..., of the fluid virtually insignificant, i.e., viscosity \mathcal{H}_{6} . Hence, a reasonable inference indicates that in Salamone's derived equation, an exact value of viscosity is not necessary since even large deviations from true viscosity lead to small errors.

The c_s/c_f group bears an exponent of 0.42 indicating that the convective transport of heat contributes significantly to the mechanism of heat transfer. Thus, materials having high specific heats cause more heat to be transferred to the bulk of the fluid.

The magnitude of the exponent for the O/O_3 group was determined to be 0.05 by Salamone and 0.106 by these authors. Salamone's value tends to minimize the importance of this group whereas the value of 0.105 renders this group very significant. Thus it follows that the smaller the particle diameter of the suspended solid the greater the value of the heat transfer film coefficient.

 K_S/K_f exponent was found to be 0.05. The significance of this group is solely dependent upon the material being suspended and the suspending medium and hence may or may not be significant. For the materials used in this

report the K_5/K_f group was of little consequence.

However, for materials such as the copper particles used by Salamone, this group is of definite importance. The increase in the value of the film coefficient using this group amounts to approximately 37% which indicates its degree of importance. Since copper possesses perhaps the highest thermal conductivity of commercial metals, then the value of 37% increase is probably the upper limit of increase which may be expected in a heat transfer mechanism such as this.

The values of the heat transfer film coefficients obtained by these investigators were somewhat higher than those of Salamone but not as high as those of Binder-Pollara. The results in this report agreed within 12% of Salamone's, the greatest difference being the slope of the line drawn through the plotted data, (see Fig. 10).

It is possible that the difference in the method of installation of thermocouple leads in the apparatus used accounted for these differences as pointed out in Binder-Pollara thesis. However, this difference of 12% cannot be definitely attributed to this since 12% lies within the expected degree of accuracy for this investigation.

Inspection of the final equation developed indicates a close similarity to the Dittus-Boelter equation with added correction groups D/D_5 , C_5/C_f , K_5/K_f . The most notable exception is the exponent for the Prandtl group which is approximately double that of the exponent for the Prandtl group in the Dittus-Boelter equation. It is obvious from the above that the Dittus-Boelter equation is inadequate for the calculation of film coefficients for slurries, unless the correction groups are used and the Prandtl group exponent modified.

An additional possible correction factor which must be investigated concerns the shape of the particle suspended. As was seen in the derivation of the Salamone equation, the particles were assumed to be of spheroidal shape. If heat transfer, in a mechanism such as this, is at all dependent upon particle surface area, then considerable error can be introduced by the assumption of spheroidal particles. In commercial operations, where solid particles are used, such as catalysis, the shape factors most frequently encountered are in the range of 1.0 to 1.75. This means that generally particle surface area may be as much as 75% greater than that possessed by a perfect sphere. The effect of particle shape is a phase of the mechanism that has not yet been ascertained. This poses a consideration that may lead to considerable investigation, but is dependent upon finding

a suitable method for determining particle shape.

The conclusions draw in this investigation are predicated upon the fact that the particles used are insoluble dorat least relatively insoluble in the suspending medium. Sufficient industrial applications exist to warrant the investigation of solutions composed of particles soluble in the suspending medium, insofar as heat transfer is concerned. Various concentrations of solutions could be used in addition to saturated and supersaturated solutions.

DISCUSSION OF CORRELATED RESULTS

As may be seen from the discussion under section entitled "Correlations" that a different method was used for obtaining the values of the various exponents, than was used by Salamone (12) and Binder-Pollara (19). This method was specifically adopted by these authors in order to include the major portion of the data so that conclusions drawn would be representative of the data as a whole. This method differed from that of Salamone and Binder-Pollara in that their method was selective and limited; actually the values obtained were only representative of the few runs used to obtain results. * As evidence of this, calculations using all of Salamone's data gave a value of 0.72 compared with a value of 0.57 to 0.62 obtained by Salamone for the exponent of Reynolds number group. The range of this value manifests the inadequacy of the method upon which the Salamone correlations are predicated.

Inspection of the final Correlation Plot (FiG. 10) on which is plotted data of Salamone, Binder-Pollara and these authors, reveals the complete disagreement of the Binder-Pollara data with the bulk of the data obtained by Salamone and these authors.

*From page 59 Salamone Thesis, "There is no theoretical justification for the broken line of Fig. 21 as this suggests that the error lies in the slope and intercept."
Furthermore, it may be noted that the data below Reynolds number of 50,000 correlates satisfactorily when the Binder-Pollara data is disregarded. The bulk of Binder-Pollara data, although in disagreement from the bulk of data, does show symmetry; sufficiently to induce the conclusion that a constant error must have been committed in experimental technique.

SUMMARY AND CONCLUSIONS

Although water suspensions of solid particles such as chalk, and iron oxide behave as pseudoplastic non-Newtonian materials in that viscosity decreases with increasing flow rate to a limiting value, the results of this investigation show that the viscosity is not as critical as previously believed. This is evidenced by noting the values of the exponents of the Prandtl and Reynolds groups.

In using this expression for design, if a method is devised for estimating viscosity, then the viscosity obtained may be used for calculation of film coefficient. If the viscosity used is within approximately 15% of the actual, this deviation will lead to little error.

The final equation developed (equation 4) is now based upon more than two hundred runs of slurries composed of a rather large variety of physical properties. The bulk of the data falls within 12% of the mean of these points; well within the limits of the accuracy to be expected in an investigation of this nature. Hence, the equation developed can be used in the design of heat transfer equipment for slurries and reasonable degree of accuracy can be expected. It has been mentioned by Salamone that the equation may be used with equal success with pipelines varying from 3/8" to $1\frac{1}{2}$ " dia. (I.P.S.).

Caution should be exercised in using the developed equation for design purposes, especially when using suspending mediums other than water. Still another case that requires particular caution is the one when high slurry concentrations are used. From the work conducted it is reasonably certain that materials of about 2.4 density or less could be safely used in slurry concentration up to approximately 20%. Not enough data is available for predicting the upper limit of concentration when materials of higher density are used, and as a consequence this phase offers considerable room for further investigation.

These authors feel that the amount of data above 50,000 Reynolds number is presently sufficient to formulate the conclusions herein drawn regarding water suspensions of solids, but are fully aware of the fact that the range below 50,000 Reynolds number presents considerable work for future investigations.

Furthermore, a great deal of work is to be done using suspending mediums other than water. Due to the extensive industrial applications which could result, it is suggested that hydrocarbon oils might be good suspending mediums to begin with.

LIST OF SYMBOLS AND UNITS

-

a .		٠	•	٠		٠	٠	*	÷	•	.Constant, dimensionless.
A.	•	٠	٠	•	٠	•	•	٠	•	٠	.Heat transfer surface, sq.ft.
b.	٠	٠	•	٠	•	٠	*		•		.Constant, no dimensions.
В.	•	•	•	•	*	9	•	•	•	•	.Square feet of suspended solid sur- face per unit volume of slurry, sq.ft./cu.ft.
C,	¢	Ê *	٠	*	•	•	•	•	*	٠	.Specific heat of fluid or suspend- ing medium, $BTU/(LB_m(^{O}F)$.
Cs	٠	٠	•	٠	٠	•	•	*	٠	*	.Specific heat of suspended solid, BTU/(LB _m) (°F)
D.	٠	٠	٠	٠	٠	٠	*	•		•	.Pipe diameter, ft.
D _S	٠	*	٠	٠	•	•	•	٠	*	*	Average diameter of suspended solid particles, it.
e.	•	٠	٠	٠	٠	•	٠	٠	•	•	.Constant, dimensionless.
f.	٠	٠	٠	•	٠	٠	4	٠	•	٠	.Friction factor, dimensionless, con- stant, no dimensions.
g.	*	٠	•	*	٠	*	*	*	*	+	.Constant, no dimensions.
бc	•	٠	*	٠	•	٠	*	٠	٠	٠	.Dimensional constant, 32.2 (LB _R) (Ft.)/(LB _f) (SEC) ² .
h.	×	٠	2	٠	٠	٠	•	*	•	٠	.Film coefficient of heat transfer, BTU/ (HR)-(Sq.ft.) (^O F).
1.	*	٠	٠	•	٠	•	٠	•	•	٠	.Constant, dimensionless.
j.	•	•	•	٠	•		•	•	•	٠	.Constant, dimensionless.
K,	Kj	E•	ą	٠	٠	٠	٠	•	•	٠	.Thermal conductivity of fluid or sug- pending medium. HTV/(HR) (°F) (Ft.).
ĸ _b	•	٠	£	•	٠	٠	•	•	٠	•	.Bulk thermal conductivity of suspen- sion, BTU/(HR) (°F) (Ft.).
ĸe	¥	*	•	•	*	*	•	•	•	•	.Effective thermal conductivity of suspension, BTU/(HR) (^O F) (Ft.).

١

١

	ĸ _s	*	-	٠	•	٠	*	•	٠	٠	.Thermal conductivity of suspended solid, BTU/(HR) (°F) (Ft.).
	L.	•	٠	٠	٠	٠	٠	•	*	*	Length of pipe, ft., any linear dimension.
	X.	*	٠	•	*	٠	•	٠	•	٠	.Any mass dimension.
	N.	٠	٠	*	•	٠	٠	٠	*	•	.Constant, dimensionless.
۵	P.	•	*	•	٠	ł	•	*	•	•	.Pressure drop over a length of pipe, lbs./sq.ft.
	q.	٠	•	* '	*	٠	٠	•	•	٠	.Heat transfer rate, BTU/Hr.
	r.	٠	٠	٠	,	٠	•	*	*	*	.Constant, dimensionless.
	t.	٠	٠	•	•	•	٠	٠	•	•	.Temperature, ^O F, any temperature dimension.
4	tm	•	٠	٠	٠	•	٠	•	*	•	.Logarithmic mean temperature differ- ence between average inside pipe sur- face temperature and inlet and out- let slurry temperature, ^O F.
	V.		٠	*	*	*	•	٠	*	٠	.Linear velocity, ft/sec.
	v _b	•	•	*	*	٠	•	٠	•	•	.Linear velocity of suspension, based on the bulk density of the suspension ft/sec.
	X.	٠	٠	٠	*	٠	٠	٠	٠	٠	.Weight fraction of solid.
	Z .	٠	•	*	*	*	٠	٠	•	٠	.Constant, dimensionless.
	Nu	•	٠	*	¥	•	*	*	٠	*	.Nusselt number, h D/k, dimensionless.
	$\mathbf{P_r}$	٠	٠	٠		•	*	٠	٠	*	.Prandtl number, C4/k, dimensionless.
	Re	•	٠	٠	•	٠	•	٠	٠	٠	.Reynolds number, DV P_{b}/M_{b} , dimension-less.
	ø			•	*	٠	٠	•	•	٠	.Volume fraction of solid.
	φ'	r		٠	•	*	•	•	•	٠	.Volume fraction of solid in sedimented bed.
	P	3	P _f	-	٠	•		•	٠	*	.Density of fluid, LB _H /cu.ft.
	e	ь		•	•	٠	*	٠	•	*	.Bulk density of suspension, $LB_m/cu.ft$.

.

c

.

(s	
1L	
llw	
LL B	

.

REFERENCES

- 1. Badger, W. L., and McCabe, W.L., "Elements of Chemical Engineering", Mc-Graw-Hill Book Co., Inc., New York, 1936.
- 2. Binder, R. C., "Fluid Mechanics", Prentice-Hall Inc., New York, 1945.
- 3. Bonilla, C. F., et al "Preprints of Symposium on Heat Transfer", 44th Annual Meeting A.I. CH. E., Dec., 1951.
- 4. Brown, G. G., and Associates, "Unit Operations", John Wiley and Sons, Inc., New York, 1950.
- 5. Chu, J. C., Brown, F., and Burridge, K.G., Industrial Engineering Chemistry, Vol. 45, 1953, p. 1686.
- 6. Hoopes, J. W., et al., <u>CH. E. S-111 Report</u>, Columbia University, 1945.
- 7. Mac Laren, D. D., and Stairs, R. G., Master's Thesis in Chemical Engineering, Columbia University, 1948.
- 8. Mc Adams, W. H., "Heat Transmission", New York, Mc-Graw-Hill Book Co., Inc., New York, 1942.
- 9. Munroe, W. D. & Amundson, N. R., Industrial and Engineering Chemistry, Vol. 42, August 1950, pp. 1481-1488.
- 10. Orr, C., Jr. and Dalla Valle, J. M., Preprint No. 13, Heat Transfer, 44th Annual Meeting.
- 11. Perry, J. H. (Editor), "Chemical Engineers Handbook," Mc-Graw-Hill Book Co., Inc., New York, 1950.
- 12. Salamone, J. J., Doctor of Engineering Science Thesis, New York University, April 1954.
- 13. Sieder, E. W., and Tate, G. E., Industrial and Engineering Chemistry, Vol. 28, 1936, p. 1429.
- 14. Shandling, J., "Master's Thesis in Chemical Engineering", New York University, 1949.
- 15. Wilhelm, R. H., and Wroughton, D. M., Industrial and Engineering Chemistry, Vol. 31, 1939, p. 482.

- 16. Wilhelm, R. H., Wroughton, D. M., and Lieffel, W. F., Industrial and Engineering Chemistry, Vol. 31,
- 17. Winding, C. C., Baumann, G. P., and Kranich, Chemical <u>Engineering Progress</u>, Vol. 43, 1947, pp. 527, 612.
- 18. Leva, M., and Grummer, M., Chemical Engineering Progress, Vol. 43, 1952, p. 307.
- 19. Binder, H. and Pollara, P., Master's Thesis in Chemical Engineering, Newark College of Engineering, May, 1954.

APPENDIX

-

-

SAMPLE CALCULATIONS

SAMPLE RUN NO. 49 (No. 1 White) *

- Weight Of Water @ 65°C To Fill 1. SLUERY DENSITY: Volumetric Flask # 8.6 Lbs. $= 62.37 \frac{(8.938)}{8.5} = 65.6 \text{ Lbs./Ft.}^3$ Slurry Density 65.6 Lbs./Ft. $= \frac{65.6}{62.43}$ gm/cc = 1.05 gm/cc 2. WEIGHT % SOLIDS: From Fig. 2 Wt. \$ Chalk= 11.3% 3. MEAN SPECIFIC HEAT: = 1- (1 - $C_{\rm B}$)x = 1- (1 - 0.21).113 = 0.9108 = 124.0 Lbs./Min. 4. FLOW RATE: = q⁼(Rate) (Temp.Rise) (SP.HT.) 5. SLURRY HEAT: -(124.0) (60) (1.8) (71.50 - 50.60) (0.9108) q = 256,000 BTU/HR.
- 6. VISCOMETER FRICTION FACTOR:

$$P = \frac{47.75}{12} \quad (62.4) \quad (2.9638 - 0.995) = 489 \text{ Lbs/Sq. Ft.}$$

$$f = \frac{\Delta P}{P_{b}} \quad \frac{D}{L} \quad \frac{2 \text{ gc}}{\sqrt{2}b} \quad \text{where } V_{b} = \text{Rate/60 (Area)}(P_{b})$$

$$f = \frac{(64.4) \quad (489) \quad (65.6) \quad (0.622/12)^{5}}{(6.95) \quad (6.0)}$$

$$f = 0.01850 \quad \sqrt{b} = \frac{124}{60 \quad (0.785) \quad D^{2} \quad P_{b}}$$

* Calculations Of Water Runs The Same

7. APPARENT VISCOSITY:

 $\frac{1}{\sqrt{t}} = \frac{1}{\sqrt{0.01850}} =$ 7.35 Re. $\sqrt{f} = 12.50 \times 10^3$ From Fig. 4 Re. = 12.50 x 10³/ $\sqrt[9]{0.01850} = 91,800 = \frac{DV_b \rho_b}{\mu_b}$ (Viscometer) $D \left(\frac{2.64}{\rho_{\rm b}}\right) \left(\rho_{\rm b}\right)$ $\mathcal{U}_{\mathcal{D}}$ 0.000672 (91,800) $=\frac{2.64}{0.000672 (0.622/12) (91,800)}$ 0.829 CP. 332 Average Temp. In Heat Section_ 61.05°C = 60.6°C = 0.4618 CP. = 0.4645 Viscometer Temp. Viscosity Water At 61.05°C Viscosity Water At 60.6°C *M* Corrected To Heat Sect. Temp. 0.829 x .4619 0.820 CP.

8. HEAT SECTION REYNOLDS NUMBER:

$$\frac{Be}{\mathcal{U}_{b}} = \frac{DV_{b}P_{b}}{\mathcal{U}_{b}} = \frac{D\left(\frac{2.64}{p^{2}}\right)}{\mathcal{U}_{b}}\left(\frac{p_{b}}{p_{b}}\right)} + \frac{D\left(\frac{2.64}{p^{2}}\right)}{\mathcal{U}_{b}}\left(\frac{p_{b}}{p_{b}}\right)} = \frac{2.64}{2} + \frac{2.64}{0.000672} + \frac{10.820}{(0.622/12)} + \frac{10.622}{12} + \frac{10.62}{12} + \frac{10.622}{12} + \frac{10.622$$

9. EXPERIMENT FILM COEFFICIENT OF HEAT TRANSFER:

 $h = q/A \Delta t_m$ g = 256,000 BTU/HR. (See Calc.5) A = (3.14) (0.622/12) (8.0)=1.30 FT.² (Theor.) or $1.30 \times 1.0625 = 1.38$ (Mill Tolerance Can Give Thickness 12.5 % Less Or Average 6.25 % Less) Arithmetic Average Of All Millivolt Readings Is 4.047 MV. Equivalent To An Outer Surface Temperature Of 207.86°F Drop In Temp. Across Wall^OF₁ q (Pipe Wall Thick.) $\frac{q}{K_{Metal}} \stackrel{A}{}_{Average}$ K For Brass = 90 BTU/(HR.) (^oF) (FT.) $o_{\mathbf{F}} = \frac{256,000 \ (0.109/12)}{(90) \ (1.38) \ (0.731/0.622)} = 16.0^{\circ} \mathbf{F}$ Average Inner Temperature 207.86 - 16.0 = 191.86°F $\Delta t_{m} = (191.86 - 123.10) - (191.86 - 160.70)$ ln <u>191.86 - 123.10</u> 191.86 - 160.70 $\Delta t_m = 47.7^{\circ} F$ h = 256,000/(1.38)(47.7) $h = 3880 \text{ BTU/(HR.)} (SQ.FT.) (^{\circ}F)$

10. EFFECTIVE THERMAL CONDUCTIVITY:

 $265 = (hD/K_{e}) / (C_{b} \mathcal{U}_{b} / K_{e})^{0.4}$ $K_{e} = \left(\frac{1}{(265)} \left(\frac{(hD)}{(C_{b} \mathcal{U}_{b})} \cdot 4\right)^{1.667}\right)^{1.667}$ $K_{e} = \left(\frac{1}{(265)} \left(\frac{(3880)}{(0.9108)} \left(0.622/12\right)}{(0.320 \times 2.42)} \cdot 4\right)^{1.667}$ $K_{e} = 0.427 \text{ BTU/(HR.) (FT.) (^{O}F)}$

For Re. = 92,800 Ordinate Of Fig. 3= 265

11. CALCULATED FILM COEFFICIENT USING DEVELOPED EQUATION:

$$\frac{hD}{K_{f}} = 0.0138 \qquad \left(\frac{DV_{b}}{\mathcal{M}_{b}}\right)^{0.8} \left(\frac{c_{f}}{\mathcal{M}_{b}}\right)^{0.79} \left(\frac{K_{s}}{K_{f}}\right)^{0.05} \left(\frac{c_{b}}{C_{f}}\right)^{0.106} \left(\frac{D}{D_{s}}\right)^{0.106}$$

$$\frac{h (0.622/12)}{(0.373)} = 0.0138 (92.8 \times 10^3) \begin{bmatrix} (1.00) (0.820 \times 2.42) \\ 0.373 \end{bmatrix} \begin{bmatrix} (0.209) \\ 0.42 \end{bmatrix} \begin{bmatrix} (0.622/12) \\ 0.461 \times 10^5 \end{bmatrix}^{0.106} \begin{bmatrix} (0.622/12) \\ 0.373 \end{bmatrix}$$

h = 3840 BTU/(HR.) (°F) (SQ.FT.)

`،

TABLE NO. IX

The following table shows the combination of runs used in determining various exponents for the equation of this report by the method described under section marked "Correlation."

REYNOLDS NUMBER EXPONENT

ATOMITE

Runs: 1 and 3, 5 and 7, 9 and 11, 13 and 15 - Averaged For Equation 1 Runs: 2 and 4, 6 and 8, 10 and 12, 14 and 16 - Averaged For Equation 2 Equation 1 and 2 solved simultaneously yield exponent 0.777

SNOWFLAKE

Runs: 17 and 19, 21 and 23, 25 and 27, 29 and 39, 33 and 35

Averaged For Equation 1

Runs: 18 and 20, 22 and 24, 25 and 28, 30 and 32, 34 and 36, 38 and 40

Averaged For Equation 2

Equation 1 and 2 solved simultaneously yield exponent 0.785

No. 1 WHITE

Runs: 41 and 43, 45 and 47, 49 and 51 - Averaged For Equation 1 Runs: 42 and 46, 48 and 50, 52 and 55 - Averaged For Equation 2 Equation 1 and 2 solved simultaneously yield exponent 0.837

IRON OXIDE

Runs: 57 and 59, 61 and 63, 65 and 67, 69 and 71 - Averaged For Equation 1 Runs: 56 and 58, 60 and 62, 64 and 66, 68 and 70, 72 and 74 Averaged For Equation 2

Equation 1 and 2 solved simultaneously yield exponent 0.790

PRANDIL GROUP EXPONENT

Using equations developed from groupings listed under Reynolds Number Exponent above, an exponent of 0.79 is obtained for this group.

D/D GROUP

SNOWFLAKE - No. 1 WHITE

Runs: 17 and 41, 22 and 50, 24 and 43, 26 and 51

ATOMITE - No. 1 WHITE

Runs: 1 and 41, 15 and 50, 3 and 43, 12 and 51

Solving simultaneously yields exponent For D/D_g 0.106

 C_s/C_f and K_s/K_f GROUPS

ATOMITE

Runs: 1, 15, 3, 12

IRON OXIDE

Runs: 57, 61, 65, 71

SALAMONE COPPER "B"

Runs: 57, 61, 62, 64

SNOWFLAKE

Runs: 17, 22, 24, 26

Solving three simultaneous equations yields the following exponents:

 $\begin{cases} \frac{C_s}{C_f} \\ \frac{K_s}{K_f} \end{cases} = \frac{Exponent = 0.42}{Exponent = 0.05} (Rounded From 0.047) \\ Z (Intercept) = 0.0131 \end{cases}$