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ABSTRACT 
A Theoretical Study of the Subband Structures and Tunneling 

in Polytype Heterostructures 

by 
Hong Chen 

A theoretical study of the electronic and optical properties in polytype 

heterostructures is presented in this thesis. 

In the first part of the thesis (Chap. 2 and Chap. 3), an explicit expression for 

calculating the subband structure and tunneling is formulated by the incorporation 

of the envelope function approximations and the transfer matrix technique. It is 

based on the k•p theory as done to date, but contains two significant improvements: a 

more realistic treatment of the spatial and energetic dependance of effective masses 

and band edges; the availability of the calculations, in favor of direct numerical 

evaluation, to various quantum well structures composed of complicated bases. 

The second part of the thesis is devoted to applications of the theoretical 

approach. A computer program written in Fortran-77 is used to calculate the 

subband structures and tunneling coefficients for various polytype quantum well 

structures. From such calculations, the feasibilities of quantum well infrared laser for 

some special designed structures are studied by considerations of population 

inversion and the different relaxation mechanisms of the carriers. 
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CHAPTER 1 
INTRODUCTION 

Recently advances in microstructure technology in semiconductors like molecular 

beam epitaxy (MBE) and electron beam lithography have made ultrathin and 

ultrasmall novel structures possible. Among these, the electronic and optical 

properties of the superlattice and quantum well have been extensively studied 

because of their interesting physical phenomena and possible device applications. 

Up to date, a wide range of quantum well systems has been grown and 

studied. Established epitaxial growth techniques are capable of growing many new 

systems that have not yet been investigated. Because of different types of band-edge 

lineups, various materials systems can show qualitatively different physical behaviors. 

The electronic structure of a superlattice or quantum well depends on the layer 

thickness as well as on the constituent materials. The precise controllability of the 

layer thickness allows us to design the electron band structure of semiconducting 

materials. Moreover, we also design a novel structure for a special device. 

This thesis serves two principal purposes. The first is to develop a useful 

theoretical description and calculation approach for the electronic and optical 

properties of superlattice and quantum well. With an increasing interest in 

applications of novel quantum well structures, an accurate but simple calculation 

model is necessary for the theoretical predictions and explanations of experimental 

results as well as the design of device structures. The theoretical approach is based 

on the envelope function approximation within the k.p theory scheme (in Chapter 2). 

The envelope function equations are solved by the transfer matrix technique (in 

Chapter 3). An explicit expression of tunneling coefficient and subband structure for 

various quantum well structures are also given in Chapter 3. 

The second principal purpose of the thesis is to apply the model of calculation 

to practical device structures. The numerical results of such calculations are 
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presented in Chapter 4. As a special application of the calculations, the feasibility 

study of the quantum well infrared laser is demonstrated. 

In my view, one of the most interesting challenges in physics of semiconductor 

superlattice and quantum well is to utilize the power of modern epitaxial growth 

techniques by inventing new physical structures that show interesting and 

technologically important new properties. An accurate and simple theory plays an 

important role in the challenge. 



CHAPTER 2 
ENVELOPE-FUNCTION APPROXIMATION 

2.1 Introduction 

Theory of Electronic structure has a unique role to play in superlattice and 

quantum well research because of the rich variety of possible material systems. The 

theory can be used to invent structure that exhibit new physical phenomena. In 

some cases these phenomena have technological applications. Theory can also be 

used to tailor superlattice electronic structure either to enhance the observation of 

a particular effect or to optimize the material for a technological purpose. 

There is an essential difference between the role of electronic-structure 

theory in superlattice research and that in conventional semiconductors. For 

conventional semiconductors, theory can be used to describe the electronic 

structure and to interpret experiments that depend on the electron structure. There 

are, however, few parameters available for designing new material. The large 

number of potential superlattice systems allows great freedom in material design. 

Theory can play an important role in this design process, which is sometimes called 

bandgap engineering. 

The energy offsets between corresponding bands in the constituent materials 

of a superlattice are typically on the order of a few hundred mev; modifications in 

the electronic structure due to the periodic superlattice potential are on this energy 

scale. Thus a theoretical description of superlattice electronic structure must deal 

with questions on this energy scale. Those electronic states whose mean free path is 

comparable to or longer than the thickness of the constituent material layers are 

significantly influenced by the spatial modulation of the superlattice. States whose 

mean free path is much less than the thickness of the constituent material layers are 

essentially kinetically confined within a particular material. Such states, therefore, 

are not modified greatly by superlattice modulation. As a result, electronic states 

3 
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relatively close in energy to band edges, which have relatively long lifetimes and 

mean free paths, are of greatest interest in superlattice material. Thus, theories of 

superlattice electronic structure are band-edge theories. 

A very wide range of theoretical techniques has been applied to superlattice 

electronic-structure calculation. The degree of complexity in these approaches 

ranges from scaled Kronig-Penney models to self-consistent many-electron 

calculations. Which theoretical approach is most appropriate depends on the 

material system studied and the questions asked about that material system. 

For the purpose of device design, the envelope-function approach based on 

k • p theory has proved efficient, relatively reliable as compared with more 

sophisticated approaches, and has the merit of often leading to analytical results. 

Starting from Kane's k.p theory in Section 2. 2, we shall rederive envelope-

function equations, which indicate nonparabolicity and the fact that the constituent 

materials have different bulk effective mass with three-band models in Section 2. 3. 

This Schrodinger-like equation with appropriate boundary conditions fulfilled by 

the envelope-function at the interface will be a fundamental tool of describing 

electronic-structure in superlattices and quantum wells. It gives dispersion relations 

for a wave vector along the growth axis and energy subbands in superlattice. It can 

also be used for calculations of transmission mechanism and optical properties. 

2.2 Kane's kp Theory [ 1 

In bulk semiconductor, k•ro theory is particularly effective at describing states near 

the conduction- and valence-bands edges. As mentioned above, it is the band-edge 

states of superlattices that are of primary interest. For this reason, it is natural to 

consider k • p methods for describing these states in superlattices. The first 

theoretical efforts to describe superlattices based on Kronig-Penney models had 
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considerable success in describing the optical properties of GaAs/Gal-xAbuks 

superlattices. The currently developed theoretical methods which can account for 

much more effects also utilize the kp scheme. 

2.2.1 The kp Representation 

In the one-electron problem of an electron moving in a periodic potential V(r), the 

eigenvalue equation for the electron energy E is 

 + V( r) = EW (1.1) 
P M II 2 0   

Bloch showed that w may be written 

= exp( i k • r ) Unk( r  ) (1.2) 

where Unk  ( r)  has the periodicity of V(r), and k lies in the first Brillouin zone and n 

is a band index running over a complete set of bands. Substituting Eq.(1.2) in 

Eq.(1.1) gives 

{ 2

-2,

o mo mho 
 ( k p)   + V( r) Unk( r ) En( k ) Unk( r  ) (1.3) m 

For any given k, the set of all link( r ) is complete for functions having the 

periodicity of V(r). Hence if we choose k = ko, the wave function for any k may be 

expressed in terms of the wave function for ko  , 

Unk( r) = E Crim( k — ko) Umk
0  ( r  ) 

(1.4) 
' 

We call this the k, representation. 

We define Hka  to be 
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„2 h2k02 
H   + ko • p ) + 9m0 

V( r ) 
ko 2m 0 (1.5) 

then, by the above discussion, 

H U = En( ko ) Un  
1( 0  nko 

ko 
(1.6) 

Hko mo 2m0 k — k0) • p + —1( k2— k02) Unk --= En( k)  Unk (1.7) 

We can easily convert Eq.(1.7) to a matrix eigenvalue equation by substituting 

Eq.(1.4) in Eq.(1.7), multiplying both sides of Eq.(1.7) by Unk(  r) , and integrating 

over the unit cell in which the U's are normalized: 

{ En( k0) + 2m0( k2  ko2) ) 6nm + 21t11
10

( k — ko) • Pnm Cnm 

= En(k) k ) Cnm  
(1.8) 

Prim = Unk (r) P U (r) dr 
J - nk (1.9) 

unit cell ° 

Equation (1.8) is the eigenvalue equation for the point k written in the ko  

representation. 

Although Eq.(1.8) as it stands is correct for any k, it is most useful when k is 

near k, so that the nondiagonal part of the Hamiltonian 

k — ko) • Pnm (1.10) 

can be treated as a perturbation. 

In the case of a single band treated by ordinary perturbation theory, Eq.(1.8) 
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gives, for the energy in the neighborhood of kt, to second order, 

En( k) = En( k0)  + h  ( k k0) • Pnm + h2 ( k2— ko 2 ) mo 2m0  

+ h2 x_, 1 i ' Pnmi2 (1.11) 
mF)  41--,.1  En( k0  )—Em( k0  ) 

The expansion point ko  is frequently an extreme so that Pno-fik, = 0. 

Assuming ko  is an extreme and using principal axes, Eq.(1.1 1) becomes 

7
h2 (ki—koi)2  

En( k ) = En( k0  ) + * m• L. (1.12) 1-1. 1 

1 
= + 

1 2 I i ' PilM12  
m*. mo m20  ri En( ko ) — Em( ko ) (1.13) 

1 

where i is a unit vector in the direction of the ith principal axes and mm the 

effective mass. Eq.(1.1 2) are dispersion relations, which in the vicinity of an edge 

located at k, are parabolic in terms of (k - ko  ). 

Refinements can be included within the k • p method to account for 

departures from quadratic dispersion relations ( the band nonparabolicity ) when 

the kinetic energy in the nth band, En( k ) — En ( 1(0  )is not very small compared with 

the k0  band gaps En( 1(0  ) — Em( 1(0  ). This, of course, happens more often in 

narrower-band-gap semiconductors(e.g. InSb, InAs, Hg1-xCdxTe). 

2.2.2 Kane's Model 

The Kane model is the most commonly used to account for nonparabolicity effects. 

For Zincblende III-V and II-VI materials, the fundamental band gap occurs at the 

point(k=0, see Fig. 1.1). The Kane model is an exact diagonalization of the 

(fi/m)kp perturbation in the(truncated) basis generated by the eight zone center 

Bloch functions of the conduction band(2), topmost valence band(4) and split-off 
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valence band(2): 

Hno Uno = E„( 0)  Uno  (1.14) 

where Hno  is the Hamiltonian including spin orbit interactions, Uric)  are the 

eigenfunctions with eigenvalues 0 ). These wave functions and corresponding 

eigenvalues are listed in Table 1.1, where s, x, y, z denote periodic functions that 

transform like s, x, y, z atomic functions under the symmetry operations that map 

the local tetrahedron onto itself. 

6 , L4 5 

L 6 

4 r; 

2 1.6 X6 

o E; , 
45 FT 

-2 L6 X7  
X6 

-4 

-6 

-8 

- I 0 
L6  

-12 ri, 

A r A x 

Figure 1.1 Band Structure of A Direct III-V Compound (e.g., GaAs) in the 
Vicinity of the Center of the Brillouin Zone 
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TABLE 1.1 

Periodic Parts of the Bloch Functions at the F6, F7, r8  Edges. I Denotes the 
Orbital Angular Momentum, j the Total Angular Momentum 

and m Its Quantized Projection along Growth Axis. 

Un0 I L.I,rn> Ujm E(k-=--  0) 

U10 = I s,1/2,1/2> = 1 i s > 0 

U30 = 1p,3/2,3/2> =,11/ 21(x+iy) > -E0 

U50 = 1p,3/2,1/2> = J2/3 (z > +,11/ 61(x+iy) > -E0 

U70 = 1p,1/2,1/2> =11/ 31(x+ iy) > +j1/ 31z > -4- A 

U20 = (s,1/2,-1/2> = 1 i s > 0 

U40 = I P,3/2,-3/2> =j1/ 21(x-iY) > -E0 

U60 = I p,3/2,-1/2> = -,j2/31z > 0/  61(x-iy) > -E0 

U80 = 113,1/2,-1/2> = Y1/ 31(x-iy) > +,/1/ 31z > -E0- A 

Following the process of degenerate perturbation theory, we can find the 

matrix eigenvalue equation: 
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E { En(  0 )  6„m  + ILk•P } C — Ei1C m0 nrn nrn — n \ k ) - 11111 (1.15) 

where the matrix elements of Ao- k • Pnrn are listed in Table 1.2. 

TABLE 1.2 the Matrix Elements of loo k • Pnm 

Un0 U10 U30 U50 U70 U20 U40 U60 U80 

U10 0 0 ahPk Zh•Pk 0 0 0 0 

U30 0 —E0  0 0 0 0 0 0 

U50 Ni-hpk 0 —E0  0 0 0 0 0 

U70 N3hpk 0 0 — E0 — A 0 0 0 0  

U20 0 0 0 0 0 0 \ -tipk Nilhpk 

U40 0 0 0 0 0 — E0  0 0 

U60 --- 0 0 0 0 \ -s-hPk 0 — E0 0 

U80 0 0 0 0 \RhPk 0 0 —Eo—A 
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The dispersion relations are each fund to be doubly degenerate and the 

solutions of 

A( A + E0) ( A + Eo  + A ) = p2 h 2 k 2( A + Eo  + ) (1.16a) 

A = —Eo (1.16b) 

where 

h2 k
0  

2  A = E 9m (1.17) 

In Eqs.(1.16) the energy origin is taken at the F6 (s-like) edge, E0  = E6 —E8  is the 

fundamental band gap, = Eg -E7 is the zone center spin-orbit coupling, and 

P Pxi x> (1.18) 

is the Kane matrix element between the conduction band I s> and the valence band 

P>. For GaAs, 2 moP2= 21.5 ev [ 8 [. 

2.2.3 Effective Mass Equation 

From Eq.(1.15), a Schrodinger-like equation related to r6  can be obtained: 

P  1*  P) f = Ef (1.19) 
mr6 

where the r6  effective mass rn% is isotropic and is such that 

1 1 2p2( Eo  + +A ) 

mr6 'n0 E0( E0  + A ) (1.20) 
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where usually the second term dominates the free-electron one. Eq.(1.20) 

reciprocally allow a determination of P if 46  , E0 and A are known, which is 

usually the case. 

23 The Envelope Function Scheme 11 4-10 ]  

We shall discuss the electronic states found in heterostructures made out of lattice-

matched semiconductors. Modern expitaxy techniques(MBE, MOCVD) allow in 

principle the growth of defect-free, atomically sharp interfaces between two lattice-

matched homopolar semiconductors(e.g. III-V on III-V or II-VI on II-VI), thus an 

idea interface between an AC semiconductor and BC semiconductor will be a plane 

of C atoms. Each of the host materials has a band structure characterized by 

(B) 
dispersion relations En ( kA  ), En ( kB  ) and Bloch functions 

(A) 
n 

( r  ) 
kA 

w
nkB( r ). For 

allowed energies, the wave functions 
T (A) 

nk(r )( and (B) 
T r* ( r ) display the familiar 

form: 

(A) 
1  exp( i kA r) Unk( r ) WrIkA( r) = -42 

(1.21) 

where UnkA  is a periodic function and kA  is a real wave vector that can be restricted 

to the first Brillouin zone of the A material. An expression similar to Eq.(1.21) 

holds for the B Material. 

It may be noted that there is a difference between bulk semiconductors and 

heterostructures. No propagating bulk states exists in the forbidden gaps separating 

the allowed energy En( kA  ) and En( kB  ). However, since layers of finite thickness 

along z (LA, LB, respectively) are involved in heterostructures, one must also retain 

the host evanescent states, whose energies fall in the bulk forbidden gaps. To 
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illustrate this point, one may consider the Ur, 's equal to unity in Eq.(1.21), and take 

the energy zero at the top of the quantum well. To calculate the allowed bound 

energy levels (E<0) of this model heterostructure, we have to find the bulk 

propagating and evanescent states in each kind of layer. Inside the well, these are 

plane waves with real wave vectors of opposite signs. Outside the well there are also 

plane waves but with imaginary wave vectors, i.e., evanescent states with 

exponentially growing or decaying wave functions(see Fig. 1.2). 

Figure 1.2 Dispersion Relations upon the Real and Imaginary Wave Vectors in A 
and B Layers Stacked to Form a BAB Quantum Well. 

2.3.1 Building Heterostructure States 

In actual semiconductor heterostructures, we shall proceed exactly in the same way 

as outlined for textbook quantum wells. For a given energy E wave function in the 

A and B layers can be expanded in terms of the complete orthonormal set of bulk 
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eigenstates, 

)2, c
~A> ( 

kf
i
A)) w

i
(
i

) ( r) 
z E B 

I<A` 
(1)( r ) = 

n, kA 

E cp)(  kT)) ir(B) r
) z E B (1.22) 

n, kB e' 

In Eq. (1.22) the summation runs over all the bands of A and B host layers; kT) 

are the propagating (or evanescent) wave vectors solutions of the implicit 

equations, 

(A) (A) ,,(B) / i,(B) \  En  ( kn  ) = E — E (1.23) 

and ‘11,(1AkA)(r ), and ‘11 -113kB)(r ), are the Bloch functions for the nth band and wave 

vector k. The coefficients c;,,A)and 0,B)are determined by imposing the boundary 

condition: the continuity of, (I) and across the interfaces. For instance, in 

a superlattice structure we require HHH to satisfy the Bloch theorem: 

( p, z d ) = exp( d ) cI)( p, z) (1.24) 

In a quantum box we require that 4)( r) 0 far away from the box, and so forth. 

The general solutions given in Eq.(1.22) is totally useless because the Bloch 

functions are seldom known for all the bands of a crystal. Thus we need to truncate 

the summation in Eq. (1.22) by using some physical reasoning. 

The key remarks on which envelope function type of models are based are 

(a). Most of host materials display similar band structures. Moreover, the 

periodic parts of the Bloch functions of the relevant band edges do not differ very 

much from one host material to the other. 
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(b). The relevant electronic states of the actual heterostructure are often 

close from the band extrema of the hosts. Thus, only a small fraction of the host 

Brillouin zone participates in the building of the heterostructure states. It is a fair 

approximation to take only the r6 , 1'7 , r8 edges into consideration to build the 

quantum well states in this energy range. 

In addition, we shall assume that the host materials are lattice-matched, and 

that flat band conditions are satisfied. 

The remark (a) means that the zone center periddic parts of the Bloch 

functions are the same in the A and B layers: 

uno(A)( r ) — 
(B)„ 

— um ( r) = lino( r) (1.25) 

This identity is, of course, not exactly true, but it is very reasonable in view of, for 

example, the constancy of the Kane matrix elements <siPx  I p> across the III-V or 

II-VI family. 

The remark (b) implies that the envelope function scheme is a band-edge 

theory. In many III-V or II-VI based heterostructures, the band edges relevant to 

optical and transport properties have the r6  , r7  , r8  symmetries. Thus, the states 

whose energies relatively close to the r points in both layers will be described in 

terms of the k.p expansion around the F point. As a result, the summation in 

Eq.(1.22) runs over all the host band edges but r6 , r„ , r8  

For heterostructures with a unidirectional modulation(z-axis) and under flat-

band conditions, we can exploit the translational invariance in the layer plane to 

assert that the in-plane projection of the electron wave vector 

k1  = ( kg  , ky  ) 
(1.26) 

is a good quantum number. Hence 
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kf,A) — (A) - ( k i , knz  ) 

L(B) (B), (1.27) 
E. n = ( k j_ , .K.nz  ) 

The above discussion with respect to Eqs. (1.25)--(1.27) allows us to rewrite 

Equation (1.22) in the simple form 

8 LA,B) (1)( r ) = exp ( i kl. r ) E Un0( r ) m ( z) (27) (1.28) 
n=1 

where fn(z) is an envelope function that is slowly varying on the scale of the host 

periodicity. If, as assumed so far, there is no band bending in the heterostructures, 

fn  is a linear combination of plane waves, 

f(
n
A,B)( 

z
) = 1 

 i 
\---, 0

1 ,B)( ie,B)) exp( ikz •z) . (1.29) 
Sr —i kz  

We can see from Eq. (1.28)--(1.29) that the wave function F( r) is a sum of 

products of slowly varying functions at the scale of the host unit cell ( the envelope 

functions) fn(z) by band edge periodic functions Uri0( r ). It is the clear cut 

separation between the spatial extensions of the two kinds of terms which underlie 

the envelope function scheme. The rapidly varying terms will later enter in the 

heterostructure calculation only through effective parameters. Together with the 

host crystalline potentials, the fixed band gap, interband P matrix elements, etc. All 

these quantities are assumed to be a priori known in the envelope function 

approximation. The slow spatial variations will be taken more exactly into account: 

our goal is to find a Schrodinger-like equation governing their spatial behaviors. 

This equation will be parametrized by effective parameters, which are remnant of 

the host material periodicities, and will not in general be a scalar since several host 
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band edges may participate in the building of the fn  wave function. 

2.3.2 The Effective Hamiltonian 

Let us now establish the effective Hamiltonian acting on the envelope function. To 

do so, we write the Hamiltonian in the form 

rs2 
H=  + VA( r ) 0( z E A ) + VB( r ) 0( z E B ) + V„t( z ) , (1.30) 2mo  

Where the function e(z E B) [ is introduced 

1 z E Q 
. e(zeQ)= Q =A,B { (1.31) 

0 otherwise 

In Eq.(1.30) Vext(z) is the external potential, assumed to depend only on the z 

coordinate, and . The Uno are, by definition, solutions of 

( 02 (1.32) 
 + V(A,B)( r ) Uno( r) EfiA'B)( 0) Uno( r) . 

Letting H act on Eq.(1.28) 

2  H (I)( r ) = 2Pmo + VA( r ) e(zEA) + VB( r ) 0(zEB) + Vext ( z ) 

8 
• { exp ( i r) E _ ) AAB)( 

z) 
 

n=1 

8 
E exp ( i ki_. r ) E uno( ini")( z) 1, 

n=1 J (1.33) 

multiplying .Urrio, integrating over a unit cell, and making use of the different length 

of variations of the envelope function fn  and the cell periodic parts, we finally get 
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D •f = E f (1.34) 

where f is an 8 x 1 column vector whose components fn are solutions of the coupling 

differential system: 

{ 
2k 

( EflA)( 0) e(Z EA) + EnB) ( 0) e(zeB) + V„ 
h 

t ( z) + h2  d2  } fI1( 2M

2  

0 m° dz- 
8 
E { mo  k1  < Unol P1I Umo> mi < Unol Pzi Urno > ddz 

fm( z  )  
n=1 

= E fn( z ) 

(1.35) 

D is thus the effective Hamiltonian we were looking for. All the microscopic 

information about the rapidly varying function has explicitly disappeared from D. It 

survives, however, through effective parameters such as the band gaps and the 

Kane matrix elements. Notice also that in the envelope function Hamiltonian the 

potential steps at the interface Er- 4A)  appear only in the diagonal. This results 

from the assumption Eq.(1.25) and is more related to a symmetry argument than to 

an assumption of a slow variation. 

The energy E of the electronic state under consideration is related to khh, 

khh, khh, by the two relations 

E = E ( k1 , le)) ; E = E( k1  k(B)
) (1.36) 

Let us take the A material as a reference for the energy scale, then, E and k , are 

univoquely related by means of the dispersion relations of the bulk A layer. A 

crucial point in evaluating k is the band lineup of the A and B materials at the 

heterointerface: 
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EfiA)( 0) 0(zEA) + Efir13)( 0) e(zEB) = EfiA) + Vn( z ) , 
(1.37) 

where Vn  are step functions 

0 , when z E A 

Vn( z ) = { (1.38) 
( 

En(B)( 0 ) — EnA) ( 0 ) , when z E B 

Thus, they are the algebraic energy shifts of the nth edge when going from the A 

layer to the B layer. If EA, EB, AA, AB are the r6,-- 1'8  band-gaps and zone center 

spin orbit coupling in the A and B layers, respectively, there exists a single 

unknown, say the r6  offset (hereafter termed Vs),[ 11-15 ] and the other edge 

offsets (Vp  and V4 , respectively) are expressible in terms of V, EA, EB, AA , AB ( 

see Fig. 1.3 ) 

EA — Vp = EB — Vs (1.39) 

`~A = AB — Vp + V6 
(1.40) 

Figure 1.3 Relation between Vs, Vp, Ni, and EA, EB, AA, AB 
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The Dnm  matrix elements can be explicitly evaluated from Eq.(1.35) and 

Table 1.1 and 1.2. One finds 

(+Vs phk+ -aphkz  -aPhkz 0 0 --aphk- -aphk- 

phk- (-EA+Vp 0 0 0 0 0 0 

-aphkz 0 (-EA+V p 0 4iphk- 0 0 0 

NR- p1 0 0 (-EA-AA +V6 \ROI- 0 0 0 

0 0 \ OI+ \Ilphk+ (+V5 ptik- .phkz IAkz 

0 0 0 0 phk+ (-EA+Vp 0 0 

-&hk+ 0 0 0 _.saphkz 0 (-EA-I-Ni p 0 

-.Tpttk+ 0 0 0 .8phkz 0 0 (EA-6,A+V6 

where the energy zero has been taken at the HH6 edge of the A material, 

( _ h2k2 
2m0  + Vext( z ) 

(1.41a) 

k± = -41 ( kx  + iky) (1.41b) 

k=  ( k1 , az 
—2 ° ) (1.42) 

and P is the Kane matrix element defined in Eq.(1.18). 

Equation (1.35) is useful in order to calculate the r6-related dispersion 

relation of heterostructures as well as the edges (k = 0) of the r, - and 1'8 - 

(Jz= +1/2)-related states. It has, however, a severe drawback, namely the inaccurate 

description of the heavy hole-related states and more generally of the ra-r, 
kinematics. 
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2.3.3 Envelope Function Equation 

If the in-plane wave vector is set equal to zero, 

kJ.= 0, (1.43) 

a considerable simplification occurs: an inspection of Eqs.(1.40)—(1.43) reveals 

that: 

(i) The fn's associated with the heavy hole band edges I p,3/2, +3/2 > become 

decoupled from those associate with the light hole band edges I s,1/2,+1/2>, 

I p,3/2, + 1/2 > , I p,1/2,+ 1/2 > . 

(ii) The eigenstates are twice degenerate. 

Indeed the complete effective Hamiltonian Eq.(1.38) splits into decoupled and 

identical blocks: 

D+ 0  
D = 

0 D- 
_ _ (1.44) 

where 

(+Vs  phk+ -Nriphkz  NRPhkz 

phk- (-EA+Vp 0 0 
D± -- 

-Nliphkz 0 C-EA+Vp 0 

.4-i-phkz 0 0 C-E-A+V (1.45) 

The second row and second column, which are uncoupled with the others, refer to 

the heavy hole states. The first row and column are associated with the r6 edge, 

while the third and fourth rows and column refer to the I p,3/2,+ 1/2> and 
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I p,1/2, +1/2> edges, respectively. 

The eigenstates at kJ.= 0 also split into two categories: 

1+  
f= 

f —  
(1.46) 

where f+  and E are now 4 x 1 column vectors that are, respectively, eigenstates of 

D+  and D . The notations"+" and "2 represent the states with spin up and down. 

To find a Schrodinger-like equation for envelope function related to r6  

light particle band edges, we remove the terms associated with the heavy hole band 

edge from Eq. (1.45), and then, we get 

_ - - , 
(+ Vs _ Nriptiliz \ 1vhkz fs fs 

- 
 

— Niphkz (—EA  -f-Vp 0 
fP — E fP 

-phk N 3ii z 0 ( — EA  — A.A  ± V6 f6 fa 
— — — — — — (1.47) 

or, more explicitly, 

(( + Vs) fs — aPhkz fp + aPhkz fb = E fs , 
(1.47a) 

— 
13phkz A + ( ( — EA + vp ) fp = E fP , (1.47b) 

\ 3phkz  A + ( ( —EA—AA + V6 ) 4 = E fs 
(1.47c) 

where the envelope function .1,, fpand .4 are associated with the conduction electron 

band edge I s,+1/2>, the valence light hole band edges I p,3/2,+1/2> and 
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1P,1/2, + 1/2 > , respectively. 

From Eqs. (1.47b)-(1.47c), one may find fa and fp in terms of fs 

— \ipt/k, 
fP ((—EA  + Vp ) 

A (1.48) 

— iptikz  
f6 

- (C -EA -AA  + v6  )  A (1.49)  

Substituting these into Eq. (1.47a) gives 

+ Vs(z) + Vext(z) I f =Ef (1.50) 
Pz  24(E, z) Pz  

where 

1 91)2 9 1  
p(E, z) 3 E+ EA --V +A —V p — \Text + E—E A A 6 — V ext (1.51) 

and ti is the effective mass, which depends on the position and energy. 

We have now succeeded in the derivation of a Schrodinger-like equation for 

the envelope function, which is parametrized by effective parameters. To proceed 

we must derive some connection rules at the interfaces for the envelope function: 

boundary conditions. 

2.3.4 Boundary Conditions 

The differential system must be completed by boundary condition. Generally, for 

envelope functions the boundary conditions can be given by a continuity argument 

of envelope function. 

Since the effective Hamiltonian is quadratic in Ps, the envelope function f 

should be continuous everywhere and in particular across the heterointerfaces. 
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Such a condition ensures that Eq.(1.28) is an acceptable quantum-mechanical 

function. The second rule(the equivalent of the aa°z continuity in vacuum) is 

fulfilled by demanding the continuity of Al, where A is an 8 x 8 matrix with element 

Anm  equal to f D 
un

, dz . Since D is at most of the second-order in a  , A is at 

most of the first-order in 
az 

. The continuity of A. f is the generalization for 
a  

coupled bands of the well-known continuity condition of az 
f  

, the derivative of a 

scalar wave function in one-dimensional quantum-mechanical problem. The 

continuity of k af and not, say, of a,
f , as could have been thought at first sight, is 

a boundary condition which warrants the conservation of the probability current, 

and ultimately the stationarity of the heterostructure wave function. 

In addition, the long range behavior of f has to be specified. It depends on 

the problem under consideration. For bound states f should decay to zero at large z. 

For superlattices the spatial periodicities of Vs(z), Vp(z), Vs  (z) and Vext(z) lead to 

the Bloch theorem 

z+ d ) = ezqd  j( z) (1.52) 

where d is the superlattice period and q is the superlattice wave vector that one may 

restrict to the first Brillouin zone of the superlattice 

— < q < (1.53) 

When i) the in-plane wave vector kl  is equal to zero and ii) the coupling 

between light and heavy particle states are absent, an important simplification takes 

place: the boundary condition corresponding to Eqs.(1.50)-(1.51) is that 

I , a f-  are continuous everywhere. I/ az 
(1.54) 



CHAPTER 3 
ANALYTICAL CALCULATIONS 

3.1 Introduction 

As mentioned in Chapter 2, the envelope function approximation is a useful method 

of describing the electronic-structure and optical properties of heterostructures. 

Generally, the solutions of the Schrodinger-like equations in which the properties of 

the hosts are presented in terms of effective parameters will provide all the 

information about the heterostructures. In this chapter we will give a general 

formalism for calculating the electronic-structure and transport properties of various 

polytype heterostructures. 

The chapter is organized as following: In section 3.2, we demonstrate the 

transfer matrix method to solve the envelope function equations. Section 3.3 gives an 

explicit expression for calculating the tunneling coefficient, tunneling current and 

tunneling time through heterostructures. The subband structures of multiple 

quantum well and superlattice are presented in Section 3.4. 

3.2 Transfer Matrix Approach 

3.2.1 Basic Equation 

In chapter two we have obtained the Schrodinger-like equation for envelope function 

in heterostructure. The equations with boundary conditions may be rewritten in the 

general forms 

[ Pz 
2µ(E, z) Pz + Vs(z) + Vext(z) I f = E f 

(3.1) 

1  df f and 
p(E, 

z) dz continuie everywhere (3.2) 

25 
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where Pz =+ ,:, and p(E, z) is the energy- and position-dependent effective 

mass: 

(i) Effective Mass( one band ) Model 

2 1 hp  r 1 1  (3.1a) 2  
p(E, z) 3 EA  —Vp EA  ± AA  —Vb = 

" r6 

(ii) Two-band Model 

1 4P2 
 [ µ(E, z) 3 E EA  —Vp  — Vext (3.1b) 

(iii) Three-band Model 

1 2p2  
2 1 (3.1c) µ(E, z) = 3 E+ EA  — Vp — Vext E — EA± AA — V6 — Vext 

For studying the electronic structure and transition properties of 

heterostructures, and automatic solution matching at interfaces and ease of 

numerical computation, it is convenient to introduce the state vector 

Fa(z) 

z ) = (3.3) 
1 df F b(z) cU 

whose components are continuous and satisfy the coupled equations 

Fa = p Fb  
(3.4a) 

2(E—Vs—Vext) Fa Elb  = —{  
h2 (3.4b) 
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consistent with Eq.(3.1) 

Eq.(3.4) can also be written in the matrix form 

= A . f (3.5) 

0 µ Fa 

• 

F'b 0 Fb 
-- — (3.5a) 

and 

7 =  
2(E—Vs—V„t)

] [ h2 

They, together with corresponding boundary conditions( f are continuous 

everywhere), are the basic equations which can be solved easily by the transfer matrix 

approach. 

3.2.2 Transfer Matrix 

It is readily verified[ 30 I that F(z) evolves according to 

f( z) = S(z, z') • f( z') 
(3.6) 

with 

F(2) 
a . 

S(z, z') = 
(1) F b F(2) 

(3.7) 
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where f(i) and f(2) are particular solutions of Eq.(3.5) satisfying the initial 

conditions 
_ _ 

1 
_ 

0 
fo.) = f(2) = 

, (3.8) 
0 1 

- - - 

Eqs(3.6)-(3.8) give the definition of the transfer matrix and mean that state 

f( z') is transferred to state f( z ) by the transfer matrix S( z, z'). The transfer matrix 

S( z, z') has the following properties: 

(a) As required by Eq.(3.6), S( z, z')reduces to the identity matrix when z = z': 

S(z, z1)1 , =I . 
z,z 

(b) Since the determinant of S( z, z')is the Wronskian of Eq.(3.4), then 

det { S(z, z') } = 1 , 

a necessary condition for particle conservation. 

(c) inverse symmetry 

S(z', z) = S-1(z, z') . 

Transfer Matrix for One Layer[ 0, L] 

In a region [0, L], the transfer matrix S( z, zi)is only determined by the parameters of 

this layer. Thus, S( L, 0 ) is the desired matrix for the layer, and equation 

f( L ) = S( L, 0 ) • f( 0 ) 

(3.9) 

gives, if state f( 0 ) is known, the state f( L ) . 

Now let us form the transfer matrix S( z, z')in the layer. For the case: Vext(z) 

= 0 or constant within the layer, the Transfer matrix can easily be formed, by the 
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general solutions of the equation (3.1) and the definition of transfer matrix, as 

following: 

Cos k(z—z') LSzn k(z—z') k 
S(z, z') = 

—kSzn k(z—z') Cos k(z—z') It — (3.10) 

where 

h2 2 2ii•  (E—Vs) 
k = (3.11) 

is the wave vector and uin is effective mass. Notice a) that det{S} = 1. b) S( z, z') is 

a real matrix no matter whether k is real or imaginary. 

Transfer Matrix For Multiple Layers 

Let us consider a multiple-layer heterostructure shown as Fig. 3.1. 

Figure 3.1 An N-layer Heterostructure 

Within the ith layer, one may have 

fi( Li ) = S(Li, 11_1). fi( Li-1) 
(3.12) 

and at interfaces 
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fi( 
Li-1) 

= fi_1( 
Li-1) (3.13) 

required by continuity of f( z ), Thus, combine these expressions, one may also find 

that 

fc( z) = Sc(z, LN). fe( LN) 

= Sc(z, LN). fN( LN) 

Sc(z, LN) • SN(LN, LN_ 1) • fN-1( LN 1) 

• ' 

= Sc(z, LN) • SN(LN, LN-3.) • SN-1(LN-1,  LN-2) 

S2(L2, L1) • S1(L1, Lo) • Se( Lo, zo) • fe( zo) 

= Sc(z, LN) • SNLH(LN, L0) • Se( L0, zo) • fe( z0) (3.14) 

where 

SNLH(LN, L0) -L.-  SN(LN, LN-1) • SN(LLN-2) • • • 

• • SI(Li, Li-1) • • • S2(L2, L1) • Si(Li., L0) 

(3.15) 

is the transfer matrix of the multiple-layer heterostructure. 

3.3 Tunneling 

Suppose that a heterostructure consists of N layers[0, L]. Outside the heterostructure 

the wave function is given by 
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2 kez A z k ez 
A+ e + A e for z < 0 

— 

f( z) = { 

B+ e 
z kcz 

+ B e- 
z k ez for z > L , (3.16) _ 

where ke , ice define wave vectors in the respective regions. The corresponding state 

vectors are 

1 1 A+ e 2 k e z 

fe( z) = 
eke eke  

A e z k ez  

— 
Pe Pe — _ (3.17) 

and 

1 1 B+ e z k ez 

fc( z) = 
lk, _zkc  

B e- z ke z 
Pc Pc _ _ 

(3.18) 

According to Eq.(3.14), t( z) and fe( z) are connected by the transfer matrix 

Se-c( z, zo): 

Se_c(z, zo) = Se(z, L) • SNLH(L, 0) • Se( 0, zo) , 
(3.19) 

where SNLH is the transfer matrix within the heterostructure. 

3.3.1 Tunneling Coefficient 

To calculate the tunneling coefficient Ttunnei  in the left- and right-contacts (see 
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Fig.3.2), it is convenient to let A+ = 1, A- = R, B+ = T and B- = 0 in Eq.(3.16). 

Then we get 

f
e
( z) = e  z k e z + R e  2 k ez 

, for z < 0 ; (3.19) 

fc( z) = T e ' kcz / for z > L , 

(3.20) 

where R, T are the reflection, and transmission amplitudes, and ke, kc the wave 

vectors in the emitter and collector respectively. The tunneling coefficient is defined 

as following: 

kepe  
Ttunnel = k I T 1 2 

ell, (3.21) 

Figure 3.2 Tunneling in the Left- and Right- Contacts 
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To calculate T, we shall first find the relationship between T and the transfer 

matrix. After comparing Eqs.(3.19)-(3.20) with Eqs.(3.16)-(3.18), letting z = L, z'= 0, 

one may find 

kcz — T e 1 
— 

m. 
0 

(3.22) 

where 

M11 M12 

111 

M21 M22 

1 c 
1 1 zk c  

1 
SNLH(L,  0) . (3.23) 

1 itc Ike zke  
ikc tie — lie 

Thus the reflection and transmission amplitudes R and T are given by 

1\421 det{ } 
R — — , T M22 

(3.24) 
M22 

From Eqs.(3.27)-(3.28) and the identity of the determinant of S( L, 0) , we 

finally obtained the tunneling coefficient through an arbitrary heterostructure 

kektc 1  
Ttunnel 

kciz e I M22 12  

4  
)(cite  2 2 kePc  2 2 k e kc   2 2 fteitc  .2 ,2 2 -I- (  k

e p, 
 ) 

s11 
(  k

c m, 
 ) S22 + / /joie  ) S12 k

c
k

e 
 ) s21 

(3.25) 
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where Sij are the element of the transfer matrix S( L, 0) within the heterostructure. 

It is noted that Eq.(3.29) gives the general expression for calculating the 

tunneling coefficient through an arbitrary multiple-layer heterostructure and is based 

on the envelope function approximation and correct boundary conditions. The 

formalism reduce to the well-known expression obtained by authors[ 2,  29 1 under 

different limits and simplifications. 

3.3.2 Tunneling Current 

To find the net tunneling current, we need to define the energy E which measures 

from the energy of the incident electron and E', that of the transmitted. The current 

density J may be computed as the average of the product of Ttunnei  by the group 

velocity, V ( k) = h Vk E 

J = < e V(k) Ttunnei  > 

= 2e  f dk V( k 
(2703 

) Ttunnei [ A E ) — A El  ) i 
(3.26) 

where j E) = [ 1 + exp( 
E—Ef 

) ]-1 is the Fermi-Dirac distribution at absolute 
kB0 

temperature 0, and with Ef being the Fermi energy and kB  the Boltzmann constant. 

Because of a separation of the variables, the tunneling coefficient Ttunnei is only a 

function of the longitudinal energy. It can be shown that the transverse components 

of J are zero by symmetry, and that, after changes of variable from momentum to 

energy, the longitudinal component becomes 

J ,  2em*   fdE id E T (3.27) 
z 

 
(27r)2h3 1 t tunnel [ •f( E) — A El  ) ] 

Integrating over the transverse energy, we find 
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Ef  — E 

jz 
 _ 2ern*kBO I 00 f 1 + exp(  ko 

1 ) } 

dE1 Ttunnel L71 
Ef — Ei —Va (2702h3 0 1 a  ) . (3.28) 

B'' 

For 0-0, the above expression becomes 

for Va  > Ef  , 

Ef  

jz 
 ,  2em: 

Q 
 I dEi Ttunnel(Ef —Ej) (27rrh' 0 

for Va  < Ef  , 

Ef  Ef  
j z  ,-_ 2em* -_. { 

Ttunnel(Ef —El) 
Va  f dE1 Ttunnei + i dE1 (27020  

0 (3.29) Ef  —V, 

3.3.3 Tunneling Time 

To a good approximation, the time it takes an electron tunnel out a bound quantum 

well state is given by[ 24 I 

T 
tc  

= t tunnel T (3.30) 

where 

2 W  tc  = ., 
vg 

(3.31) 

is the classical oscillation period of the electron with the velocity Vg in the quantum 

well, and w the width of the quantum well (see Fig. 3.3) The tunneling time may be 

understood as semiclassical tunnel time which is the time to be taken by an electron 

completely tunneling through the barrier. Because during the period tc  only the 
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Ttunnel parts of an electron tunnel through the barrier. 

Figure 3.3 Tunneling time through a barrier 

3.4 Subband Structures and States in Superlattices 

3.4.1 Subband Structures 

Consider a superlattice with the periodicity D. The periodicity of wave function 

implied the state vector f satisfies Bloch Theorem: 

A z ± D ) = e± 2 GID A z ) 
(3.32) 

On the other hand, 

f( z ± D ) = Ss( z + D, z ) • f( z ) 

(3.33) 

A combination of these gives 
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A e
+2 qD (3.34) { Ss( z D z) — A I }• f( z ) = 0 , 

The condition for the equation to have a nontrivial solution is that the determinant of 

the coefficient vanish. Thus 

Ss11 Ss12 
= 0 

Ss21 Ss22 — A (3.35) 

This gives an equation of the second degree for A . The summation of the two roots 

Of A is 

A A 2 e
z qD 

+ e — S
— z qD 

1 s11 + Ss22 (3.36) 

and the dispersion relation of the superlattice becomes 

2 Cos qD (3.37) Ss11 Ss22 

3.4.2 Envelope State Functions 

The superlattice envelope functions are the eigenstates in Eq.(3.34) ). From this 

equation, one may easily find The ratio of Fa(zo) and Fb(zo) at an arbitrary point zo 

Fa (zo) = S512 • (3.38) 
Fb (z0 ) Ss11 —A 

Therefore, the wave function at z can be constructed from an initial point z, by 
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f( z) = S( z, zo) • f( zo) 

—  Ss12  — 
Ss11--- 

= S( z, z0) • x Constant 

1 (3.39) 

where S511, S512 are the elements of Ss( z + D, z) and S( z, zo) is the transfer matrix 

from z0  to z, the constant may be determined by the normalization. Note that, 

although there are two wave functions for A = e+2 qD , their absolute values, i.e. 

the square roots of probabilities are equal. 

3.5 Summary and Conclusion 

In the chapter we have presented a general formalism for calculating the tunneling 

and subband structure in various types of quantum wells. The formalism is 

developed by combining the envelope function approximations theory and the 

transfer matrix techniques. It is very useful for the analysis of quantum wells and 

superlattices, and can be applied for device designing. The keys of the formalism are 

1. By Introducing a state vector f( z) = [ f 1 
P 

d df  ] T , the envelope ' z 

function equation can be rewritten as 

f' , A • f 

2. The state vector f( z  )evolves according to 

f( z) = s(z, z') • f( z') 

where S( z, z') is the transfer matrix. 
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3. The transfer matrix of a layer is formed by the solutions of the 

envelope function equation, depending on the structural and band 

parameters of the layer. 

4. The transfer matrix of multiple layers is the simple products of the 

matrix of each layer. 

5. Once known the transfer matrices of the quantum well structure, 

all information about the quantum well structure can in principle 

be calculated. 



CHAPTER 4 

APPLICATION TO THE FEASIBILITY STUDY OF 
QUANTUM-WELL INFRARED LASER 

4.1 Introduction 

In the chapter, as an application we apply the envelope function approach to the 

calculation of the subband structures and tunneling properties of a special designed 

quantum well structure, which may be a candidate for infrared laser. The analytical 

results of the previous chapter are implemented into computer simulations. The 

general considerations on the realization of lasing are presented in Section 4.2, where 

the necessary conditions to achieve population inversion in quantum well subband 

transition laser are discussed. The feasibility studies of multiple quantum well 

(MQW) far infrared Laser are presented in Section 4.4.. 

Fortran-77 was used to write a program for calculating the subband structures 

and tunneling coefficients of various polytype heterostructures. The program has 

been run in the VAX/VMS on node TESLA in NJIT. 

4.2 General Considerations 

Since the theoretical proposal of the generation and amplification of infrared light in 

a semiconductor superlattice, optical transitions between subbands in quantum well 

] structures have received considerable attention.[ 21-26One of the advantages of 

using quantum well structures is the possibility of tuning the wavelength 

corresponding to the intersuband transition energy by changing the barrier thickness 

and height as well as the well width and depth. 

For the realization of lasing in quantum well structures, one of the important 

steps is to design situations where population inversion is possible. Another 

40 
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important step is to achieve the efficiency of the stimulated radiation. 

Figure 4.1 Schematic Structure Depicting the Basic Principles of Creating 
Population Inversion in Quantum Well Subbands by Current Injection. 

Before discussing the structure and calculation results, it is instructive for later 

reference to discuss briefly the general model of lasing condition in quantum well 

structures ( Fig. 4.1 ). A feature common to all the devices proposed is current 

injection by resonant tunneling from one side of the active layer to the upper 

subband, and resonant tunneling from the lower subband to the other side of the 

active layer. This feature can be described by the following set of simplified rate 

equations: 

dn2 — J n2 n2 
dt — e 721 7t2 (4.1) 

dri l n2 ni  
dt — T21 Ttl 

(4.2) 

where n1( n2) is the electron density in subband 1(2) of the quantum well, J is the 

current density. It is clear that electrons injected into the subband 2 can either tunnel 
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through the barrier with time Tt2 or relax to the lower subband 1 with relaxation 

time 7 2 1 . In a steady-state condition one may easily find 

J n = 2 e 
 (

1  1 1  ) 
T21 -1- Tt2 j (4.3) 

and 

n2  _ 721  
n1 — 7t1 (4.4) 

Equation (4.3) and (4.4) imply that the population inversion is controlled by the 

condition 

7 2 1 >> 7t1 

(4.5) 

while the electron concentration in the upper subband is determined by the tunneling 

density and the rate of relaxation under the condition 

Tt2 > 721 , 

(4.6) 

Thus, we conclude an appropriate combined requirement for realization of 

the population inversion: 

Tt2 > 721 >> Tti • 
(4.7) 

This requirement will play an important rule in the design of quantum well laser 

structures discussed in following sections. 

43 Design Idea and Structure 

To realize population inversion, it is required to remove electron from the 

lower subband faster than the tunneling time of the upper subband. It imply, when 
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designed for a structure, that a tunneling inversion is necessary in the structure. As a 

first candidateE 22 ], the resonant tunneling diode is naturally chosen. A structure of 

periodically repeated resonant tunneling diodes is shown in Fig.4.2. a single period 

of the structure consists of two undoped quantum wells defined by three barrier I, II, 

III. 

Figure 4.2 Structur-I: Double Quantum Well Resonant Tunneling Structure 

However, for the structure, scattering and subband broadening are the serious 

problems which can strongly diminish the selectivity of the tunneling process[ 21 ]. 

Figure 43 Structur-II: Schematic of the Band Alignment 
of a Type-II Heterostructure 

Another possible structure is the tunneling diode composed of type-II 
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heterojunctions[ 24 [. Recently tunneling measurements have been performed in the 

type-II heterostructure (see Fig. 4.3), showing negative differential resistance upon 

tunneling through a single barrier[ 16,  17,  19 ]. This phenomena can be understood as 

inversion of the tunneling rate through the barrier by the theory of two-band model. 

In this model, the wave vector in the barrier can be express as 

k2  —  
2 h2

3 P2 ( E ± ( ) ( E ± ( —Eb) 

where the zero of energy is measured from the conduction-band edge of the well 

material. For --(< E < Eb —(, k2  becomes negative and k imaginary. If I k I = a) a —1 
 

corresponds to the penetration length of exponentially decaying waves in the barrier. 

The relationship between A and E shown in Fig. 4.4 imply that the inversion of 
Eb 

tunneling rate take place in the range: 0 < E < 2 —( 

Figure 4.4 The Dispersion Relation in the Barrier 

Fig. 4.5 gives the calculated tunneling coefficient as a function of energy, 

Ttunnei (E), for different barrier thickness and two different band lineups. These 

results are close to those of M. Helm and S. J. Allen. Therefor, a negative conclusion 
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is arrived in this structure. 

Figure 4.5 Calculated Tunneling Coefficients versus Energies for Structur-II 

We have seen that, to achieve the population inversion the Structure-I take an 

advantage of resonant tunneling while Structure-II uses a type-II heterostructure to 

invert the tunneling probabilities. However, the selectivity of the tunneling process in 

former structure could be strongly diminished by an unavoidable nonresonant 

leakage current caused by scattering and level broadening, and the later structure 

also could not achieve the population inversion due to an insufficient negative slope 

of Ttunnel (E) to satisfy the requirement of Eq.(4.6). In the following we present a 

structure and discuss its possibility and operation principle. 
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Figure 4.6 Structure-III: Schematic Band Diagram of a Polytype Heterostructure 
for the Realization of Population Inversionbetween 

the Electron Subbands in a Quantum Well 

Structure-III shown in Fig. 4.6 may be a candidate for an infrared laser. It is a 

polytype heterostructure formed by type-I and type-II heterojunctions. The basic 

idea of the structure is to achieve population inversion through resonant interband 

tunneling which is a result of the existence of a tunneling window between the 

conduction band edge of InAs and the valence band edge of GaSb[ 27 i. The idea 

also comes from the experimental results of a high peak-to-valley ratio in polytype 

GaSb/AlSb/InAs system done to date[ 16--20 ]. 

To achieve population inversion between subbands E1  and E2 the upper 

subband is pushed up into the forbidden gap of GaSb while the lower subband 

resides within the tunneling window. Thus the most likely path for electrons at E2 is 

through a transition to E1  and then from there tunneling into the well in the valence 

band of GaSb and finally reaching the adjacent layer. The purpose of having the well 

sandwiched between AlSb barriers is to enhance the effects of intersubband 

tunneling from subband E1  and to reduce the tunneling rate related to E2 The hole 

subband Eh is designed to be above E1  such that it will move down to align up with 
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E1  under a certain bias Vc. To realize these operation conditions, it is important to 

predicate the subband structures and tunneling properties ( tunneling coefficients 

and tunneling times) by an accurate simulation of the structure. 

Figure 4.7 Calculated Subband Structures versus the Width of InAs Layer. 

4.4 Numerical Results 

Using the theoretical approach obtained in the previous chapter, we have calculated 

the subband structures, the tunneling coefficients, and tunneling times for the type of 

structures as shown in Fig. 4.6. From the calculations, we find that 

(a) The electron subband location in InAs well is a strong function of the well 

width Le  (see Fig. 4.7). Similarly, the hole subband location in GaSb well is a strong 
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function of the well width Lh. Therefore, by adjusting the well width, the wavelength 

of laser corresponding to the subband gap can be tuned. 

(b) The barrier thickness of AlSb controls the peak-width of resonant 

tunneling through the window. The thicker the barriers are, the narrower the peak-

width of tunneling becomes. This can be understood as a broadening of the hole 

subband due to the correlation of the state between adjacent wells. 

(c) The GaSb layer serves as either a barrier to electrons at E2 or a tunneling 

window to electrons at E1. To greatly invert the tunneling rate, the GaSb layer 

should be wider. However, the width of GaSb layer is limited by the appropriately 

positioning of the resonant subband in the window for the practical design. 

(d) The key of the structure is that it can provide a sufficient negative slope of 

Ttunnel(E) while the Ttunnel(E)  of lower subband is close to unity. this effect means 

that, in contrast to Structure-II, the two physical requirements of both inverted and 

fast tunneling rates can be fulfilled simultaneously in the structure. 

Figure 4.7 Tunneling Coefficients versus Energies 
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4.5 Discussions and Conclusions 

Now let us discuss the possibilities of population inversion for the structure operating 

in two typical wavelengths of 10,Lim and 40i/m. 

Relaxation Time in InAs Quantum Well{ 21, 22, 24, 25 ] 

It is an important input parameter for considerations of population inversion here. It 

depends on the material and temperature, and can be determined by the 

experiments of optical- and acoustic-phonon emission rates. For the case of 

AE=E2--E1 larger than the LO-phonon energy, Eop( e. g., 35 mev for GaAs ), the 

relaxation time is dominantly determined by the process of LO-phonon relaxation 

(having a characteristic time T21 — 10-12 s)[ 21, 23, 24, 25  ]. For the subband 

separations smaller than LO-phonon energy Eop, both LA-phonon relaxation and 

Auger process are expected to be the dominant mechanism for intersubband 

transitions, giving a characteristic time T21-. 10-10 s. Because of the lack of sufficient 

experimental data on intersubband relaxation time in InAs quantum wells, we use 

value for InGaAs as an estimate. For InGaAs quantum wells experiment gives a 

upper limit of 721= 3 (ps) ) for A = 10 pm and T21=  600 (ps) for A = 40 pm . It is 

reasonable to expect that in InAs quantum well T21 will be even large, because of 

smaller electron effective mass and lower electron-phonon coupling in this material. 

However, we use a conservative value of 'T21 = 1 (ps) for A = 10 pm , and 

T21= 500 (ps) for A > 40 pm 

Tunneling Times from Subbands 

They depend on the values of the tunneling coefficients of related subbands. 

The tunneling time of lower subband, 7 tl , controls the population inversion while 

the tunneling time Tt2 determines the density residing in the upper subband. The 
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calculated tunneling coefficients versus energies are shown in Fig. 4.8. 

The calculated results of the structure are listed in table 4.1 for two possible 

structures operating at 10 urn and 40 urn. From the calculations, we find that 

(1) For a moderate current density of J = 104 ( A/cm2 ), population 

inversions of n2 - n1 = 5 1010 (cm-2) and n2 - n1 = 3.1 1013 (cm-2) can be achieved 

for A = 10 pm and A = 40 ymi, respectively. 

Table 4.1 Calculated Parameters of the InAs/AISb/GaSb 
Polytype Structure 

.... 

A (prn) 10 10 40 

Le ( X ) 150 150 400 

Lh ( X ) 120 120 120 

L ( X ) 15 10 25 

E1 ( ev ) 0.061 0.060 0.01 

E2 ( ev ) 0.185 0.185 0.04 

Eh ( ev ) 0.115 0.113 0.116 

T21 ( Ps ) 1 1 500 

rt1 ( ps ) 0.4 0.1 21 

Tt2 ( Ps ) 1 5x104 1.5x103 3x104 

n2  —n i  ( cm-2) 3.7)(101° 5.0x101° 3.1x1013 

(2) The relaxation time is the key limit of realization of population inversion. 

The characteristic time 721 in the picosecond range is a serious limit in all efforts to 

achieve population inversion for a laser of 10 µm , which is a strong desire for many 

significant applications. It is difficult to design a subband laser structure in which the 

tunneling time of lower subband is less than 1 (ps) and at the same time a sufficient 

large inverted rate of tunneling is achieved. It may be a right reason that the 

development of intersubband laser of 10 urn is a rather difficult task. 

(3) It should be noted that this design has established a fundamental step--a 
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possible population inversion--towards the realization of an intersubband laser. To 

design a practical laser, a much greater effort must be made. As an immediate next 

step one should calculate the optical gain coefficient and laser efficiency taking into 

account the device geometry and all possible optical loses. In my view, the feasibility 

study of infrared intersubband laser is a very interesting topic. I look forward to 

experiments and theoretical modeling to ascertain whether the intersubband 

Infrared lasing can be achieved. 

In summary, based on the calculations of subband structures and tunneling, 

we have presented a quantum well device based on InAs/AlSb/GaSb polytype 

heterostructures in which population inversion between subbands can be achieved. 

Infrared emission in the device is therefore possible under a forward bias condition. 

For a moderate current injection of 104 (A/cm2), the population inversion could be 

as high as 5x1010  _3.1x1013 (cm-2). 
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