
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1992

Graphical image persistence and code generation for object Graphical image persistence and code generation for object

oriented databases oriented databases

Subrata Chatterjee
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Chatterjee, Subrata, "Graphical image persistence and code generation for object oriented databases"
(1992). Theses. 2228.
https://digitalcommons.njit.edu/theses/2228

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F2228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2228?utm_source=digitalcommons.njit.edu%2Ftheses%2F2228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
Graphical Image Persistence and Code Generation

For Object Oriented Databases

by
Subrata Chatterjee

Attached is the detailed description of the design and implementation of graphical

image persistence and code generation for object oriented databases. Graphical image

persistent is incorporated into a graphics editor called OODINI. OODINI creates and

manipulates graphical schemas for object-oriented databases. This graphical image on

secondary storage is then translated into an abstract, generic code for dual model

databases. This abstract code, DAL can then be converted into different dual model

database languages. We provide an example by generating code for the VODAK Data

Modeling language. It is also possible to generate a different abstract language code,

OODAL from a graphical schema. This language does not have any dual model

database architectural dependencies.

GRAPHICAL IMAGE PERSISTENCE AND CODE GENERATION
FOR OBJECT ORIENTED DATABASES

by
Subrata Chatterjee

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Computer and Information Science

May 1992

APPROVAL PAGE
Graphical Image Persistence and Code Generation

for Object Oriented Databases

by
Subrata Chatterjee

•

Dr. Yehoshua Perl, Thesis Adviser
Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Subrata Chatterjee

Degree: Master of Science in Computer and Information Science

Date: May, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1992

• Bachelor of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1987

Major: Computer and Information Science

This thesis is dedicated to
my parents and family.

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Professor Yehoshua Pen and

Professor James Geller for their guidance, friendship, and moral support throughout this

work.

The author also wishes like to acknowledge and express appreciation to the following

people for their invaluable contribution to this document: Mike Halper, Ashish Mehta,

Ram Mohan Madapati, Steve Beck and Walter Jones.

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Scope 1

1.2 Audience 2

1.3 Terminologies 2

2 GRAPHICAL IMAGE PERSISTENCE 7

2.1 Problem Statement 7

2.2 Design Solutions 8

2.2.1 A Traditional Approach 8

2.2.2 A Generic Approach 9

2.3 Implementation Details 13

2.4 Design Advantages 15

2.5 Performance Evaluation 17

2.6 Porting Issues 18

3. CODE GENERATION 20

3.1 Problem Statement 20

3.2 Implementation of DAL 22

3.2.1 Object Types 22

3.2.2 Attributes 23

3.2.3 Set-of and Member-of 24

vii

Page

3.2.4 Category-of 25

3.2.5 Role-of 26

3.2.6 Part-of 27

3.2.7 Tuple-of 28

3.2.8 Ordinary Relationships 29

3.2.9 Essential Relationships 30

3.2.10 Multi-valued Relationships 31

3.2.11 Dependent Relationships 32

3.2.12 Multi-valued Essential Relationships 32

3.2.13 Multi-valued Dependent Relationships 33

3.2.14 Methods 34

3.3 Syntax For DAL 35

3.4 User API For DAL 35

3.5 Implementation of Structural and Semantic Hierarchy 38

3.6 VML Code Generation 39

3.6.1 Conversion Of Object Types 39

3.6.2 Conversion Of Object Classes 44

3.7 Implementation Of OODAL 48

3.7.1 Implementation Of Object Classes 49

3.7.2 Implementation Of Attributes 49

3.7.3 Implementation Of Relations 50

viii

Page

3.7.4 Implementation Of Relationships 50

3.7.5 Implementation Of Methods 51

3.8 Syntax For OODAL 51

3.9 User API for OODAL 52

4 CONCLUSIONS 54

APPENDIX A: MANUAL PAGES: IMAGE PERSISTENCE 56

APPENDIX B: BNF DESCRIPTION FOR DAL 66

APPENDIX C: USER API HEADER FILE FOR DAL 68

APPENDIX D: USER API LIBRARY CALL FOR DAL 71

APPENDIX E: MANUAL PAGE: DAL EXECUTABLE 73

APPENDIX F: MANUAL PAGE: VML EXECUTABLE 74

APPENDIX G: MANUAL PAGE: HEAP FILE COPY 76

APPENDIX H: BNF DESCRIPTION FOR OODAL 77

APPENDIX I: USER API HEADER FILE FOR OODAL 79

APPENDIX J: USER API LIBRARY CALL FOR OODAL 81

APPENDIX K: MANUAL PAGE: OODAL EXECUTABLE 83

APPENDIX L: SOURCE TREE AND SOURCE COMPILATION 84

REFERENCES 88

ix

LIST OF TABLES

Table Page

1 DAL Source File Names 84

2 DAL Executable/Library File Names 85

3 OODAL Source File Names 85

4 OODAL Executable/Library File Names 85

5 VML Source File Names 86

6 VML Executable File Name 86

7 MAPAMLLOC Source File Names 86

8 MAPMALLOC Object File Name 87

9 OOCOPY Source File Names 87

10 OOCOPY Executable File Names 87

x

LIST OF FIGURES

Figure Page

1 Memory Mapping of Persistent Heap File 12

2 Persistent Heap File Configuration Layout 15

3 Data Flow Diagram For Code Generation 21

4 Data Flow Diagram for VML Code Generation 22

5 OODINI Attribute Graphical Notation 24

6 OODINI Setof/Memberof Graphical Notation 25

7 OODINI Categoryof Graphical Notation 26

8 OODINI Roleof Graphical Notation 27

9 OODINI Partof Graphical Notation 28

10 OODINI Tupleof Graphical Notation 29

11 OODINI Ordinary Relationship Graphical Notation 30

12 OODINI Essential Relationship Graphical Notation 30

13 OODINI Multi-valued Relationship Graphical Notation 31

14 OODINI Dependent Relationship Graphical Notation 32

15 OODINI Multi-valued Essential Relationship Graphical Notation 33

16 OODINI Multi-valued Dependent Relationship Graphical Notation 34

17 DAL User API Data Structures 37

18 VML Semantic MetaClass Keywords 47

xi

Figure Page

19 OODAL User API Data Structures 53

20 Source Code Tree Hierarchy 84

xii

CHAPTER 1
INTRODUCTION

This document describes in detail the design and implementation of graphical image

persistence and code generation for object oriented databases. In order to represent

large networks of classes, their attributes and relationships for an object oriented

database a graphics editor called OODINI (Object-Oriented Diagrams at the New

Jersey Institute of Technology) was designed and developed in the Computer Science

Department at New Jersey Institute of Technology [2]. OODINI's intent was to

facilitate designers to graphically represent object oriented database schemas. A major

portion of the work detailed in this document entails secondary storage representation of

such graphical schemas, i.e., graphical image persistence. The obvious benefit derived

is the iterative execution and update operations of the same graphical schema under

OODINI. This graphical image representation on secondary storage is then translated

into an abstract, generic code, DAL (Dual Model Abstract Language), for dual model

databases. A complete description of dual model object oriented databases can be found

in [1], [4] and [5]. Briefly, in the dual model there is a distinct separation of the

structural and semantics aspects in the definition of an object class [6]. This abstract

code, DAL, can then be converted into different object oriented database languages. We

provide an example by generating code for the VODAK Data Modeling Language

(VML). A complete description of VML semantics and syntax can be found in [3]. It is

also possible to generate a different abstract code from a graphical schema. This code,

OODAL (OODINI Abstract Language), does not have any dependencies on the dual

model database architecture.

1.1 Scope

This document is intended for publication towards a Master's Thesis at NJIT.

2

1.2 Audience

This document is intended for system planners, architects, developers and testers of

Dual Model Object Oriented Database project ongoing at New Jersey Institute of

Technology. For other audiences the materials in the Reference Section is a mandatory

prerequisite to this document.

1.3 Terminologies

API: Application programming interface.

Attribute: A structural aspect of a class that is composed of a name and a data type.

BNF: Backus-Naur Form. BNF is a metalanguage for programming languages. A

metalanguage is a language that is used to describe yet another language. BNF is used

to describe the syntax of a programming language. It uses abstractions for syntactic

structures.

Category-of: A semantic relation between two classes. It relates a specialized class to a

more general class where both these classes are viewed within the same application

context.

Class: A container of objects which are similar in their structure and their semantics.

DAL: Dual Model Abstract Language. The graphical image for a database schema is

first converted to this abstract language and then to other object oriented database

languages. The DAL syntactic form closely resembles the language proposed under the

Dual Model architecture.

Dependent relationship: A relationship where the existence of an object depends on

the existence of yet another object. If the class A has a dependent relationship to class

B, then the existence of an instance of A is dependent on the existence of an instance of

3

B. That is, if an instance a of A depends on an instance b of B, and b is deleted, then a

must also be deleted.

Dual Model: A database model in which the object type description is separated from

the description of object class. This model gives a clear distinction between the

structural and semantic elements in the definition of an object class.

Essential Attribute: The existence of an object is conditioned on the existence of this

attribute. An instance of a class can only exist if the value of its essential attributes are

all different from NIL.

Essential Relationship: A relationship which is not permitted to have a nil value.

Heap: Described within the context of a programming language. It is that portion of a

user process's virtual address space from which dynamic memory is allocated.

Malloc: A memory allocation routine. Allocates dynamic memory from a user

process's virtual address space. This dynamic memory is not persistent across execution

sessions. This routine is typically implemented as a library call in UNIX operating

systems.

Member-of: A connection between two object types. Here an object type is said to

belong-to or be a member of another object type - the latter object type representing a

set. This is also a relation.

Method: A program segment with one required parameter of some object type, and any

number of optional parameters. A method always returns a value of an object type or

data type.

Mmap: Memory mapping of objects. This is an operating system terminology. It

represents a system call that can map objects (e.g., files, devices, etc) into a user

4

process's virtual address space.

Multi-valued relationship: A one-to-many relationship between two classes. It

indicates that an instance of one class can be related to any number of instances of the

class to which the relationship is directed. An example of this can be the relationship

between the classes section and student, where a given section can have many students.

Part-of relation: A relation which is used to connect a part of a complex or assembled

(real-world) object to its integral object. An example of this relation can be used to

represent parts of a book, e.g., the classes chapter and page can be in a part-of relation

with the class book.

Object: The concept of an object is universal. Literally everything, from items as

simple as the integer constant 1, to a file-handling system, memory, data structures, etc.,

are objects. As objects, they are treated uniformly. Objects have local memory, inherent

processing ability, the capability for communicating with other objects, and the ability

to inherit characteristics from ancestor objects.

Object type: In order to express that all instances of a class have a common structure

and behavior one can consider them to be of the same abstract data type. This type is

called the object type of that class.

OODAL: OODINI Abstract Language. The graphical image for a database schema is

first converted to this abstract language and then to other object oriented database

languages.

OODINI: Object-Oriented Diagrams at the New Jersey Institute of Technology. A

graphics editor for drawing and manipulating object oriented database schemas.

Part-of: A connection of a part of a complex or assembled (real-world) object to its

5

integral object.

Relations: Generic or system defined connection between object types or object classes.

Set-of, member-of and subtype-of constitutes relations between object types.

Category-of, role-of and part-of constitutes relations between object classes.

Relationship: User defined connection between classes that can contain either

structural or semantic information in the context of the application.

Role-of: A semantic relation between two classes. It relates a specialized class to a

more general class, where both these classes are viewed in different application

contexts.

Semantic aspect: An aspect of a specification is considered to be semantic if either (1)

it refers to actual instances of objects in the application or (2) one cannot decide

whether this aspect of information describes an object properly, based solely on its

mathematical structure and without relying on an intuitive understanding of the

application.

Set-of: A connection between two object types. Here an object type represents a set of

other member object types. In a mathematical sense this is also a relation.

Structural aspect: An aspect of a specification is considered structural if either (1) it is

composed of names, types and logical arithmetic operations, or (2) one can decide

whether this aspect of information describes an object properly based solely on the

mathematical structure of this aspect, without relying on an intuitive understanding of

the application.

Tuple-of relation: A relation constructor used to gather a group of classes (constituent

classes) into a single class (the tuple class) for some purpose. A concrete example of

6

this can be the tuple class shipment which is involved in a ternary relation with its

constituent classes supplier, product and department.

VML: The VODAK Data Modeling Language.

CHAPTER 2
GRAPHICAL IMAGE PERSISTENCE

GRAPHICAL IMAGE PERSISTENCE OODINI is a graphics editor that allows

designers to graphically represent dual model database schemas. It runs under a SUN-

SPARC work station in a UNIX operating system environment. The application makes

use of X-Window and Motif tools for creation and manipulation of graphical images

representing classes, attributes, relations, relationships, methods, etc, of a dual model

database schema. This section of the document describes the problems associated with

obtaining secondary storage representation of such graphical objects, describes a

traditional solution approach, presents an innovative generic solution, its

implementation details, performance statements and software porting issues.

2.1 Problem Statement

It is obvious that the graphical representation of any object as viewed on a screen need

not be of concern. It is the internal memory representation of the graphical object by the

application (in our case, OODINI) that needs to be saved on secondary storage. This is

because any application will eventually invoke primitive library routines (e.g., X-

Window library calls) to draw the physical image on the screen using the internal

memory representation of the object. Hence with each graphical object, whether it be a

line, segment, text, arc, etc., there has to be an associated internal memory

representation. This internal memory representation of a graphical object also has to be

a part of user's program (OODINI) execution image. More specifically this memory

can either be a part of the user's data segment or the heap (from which dynamic memory

is obtained). It should now be evident that if we can achieve data persistence of the

user data space and the heap - we will also have achieved graphical image persistence.

This is the linchpin of our proposed design solutions.

7

8

2.2 Design Solutions

First we present a crude, traditional design approach to save graphical images generated

by OODINI on secondary storage. Then we present a more elegant, sophisticated and

generic design that will work not only for OODINI but for other graphical editors as

well. The scope of the latter approach is however not restricted to graphical editors.

This new design can be useful in other application environments - this will be justified

appropriately.

2.2.1 A Traditional Approach

A rather crude, cumbersome and traditional approach to obtain data persistence for an

executable's execution environment is to write out each internal memory representation

of graphical objects one at a time to a file on secondary storage. It is obvious that this

should be performed prior to execution termination. The primary obstacles to this

approach are outlined below:

1. Implementation of this design can be tedious and time consuming. It is true that

it is easy to write out individual memory objects to secondary storage. But the

major implementation hurdle lies in dealing with pointers. Data variables in

memory will for the major portion use pointer variables to reference other data

objects. It is easy to save, for example, the name of a class in the file. On the other

hand, directly writing out the contents of pointer variables will never work. In

such case the developer needs to come up with a labeling scheme that associates a

label (usually an integer variable) with each graphical object. This requires a

detailed understanding of the graphics editor and its internal data structures.

2. Performance of the software is also an issue. Prior to termination of the graphics

editor, expensive searches on extensive data structures needs to be made and each

object must be written back to secondary storage one at a time. Prior to program

9

execution the image has to be loaded back from secondary storage and the data

structures needs to be restored to their original state. Besides such I/O

considerations memory allocation/deallocation also creates performance

problems. Image saving and restoring for large number of graphical objects can

easily lead to sluggish software response.

3. Maintenance of this software will become tedious. For example assume that a

new object is incorporated into the design or a new pointer variable is added to an

existing data structure. This is typical in a development organization where

several developers might attempt modifications to the same software. Every time

such changes are made - a corresponding change needs to be made to the portion

of the software that writes out the object to secondary storage. Hence at least one

developer needs to be maintained for this software every time such modifications

are anticipated. There is either a cost issue involved with maintaining a developer

for this software or it requires every developer that makes changes to the graphics

editor to have knowledge about that piece of the software that writes out images

to secondary storage.

4. Furthermore this obviously is not a generic solution. If a new graphics editor

other than OODINI is targeted for development, the current software that writes

out images to disk will have to be changed extensively. This solution is heavily

dependent on internal data structure representation.

In any case this design approach is attainable but hardly desired.

2.2.2 A Generic Approach

In this section we propose a more generic solution to our problem. Our solution

• attempts to achieve user dynamic memory persistence of the heap space of an

execution image. We seek a mechanism where all updates to the heap of a running

executable is automatically written to secondary storage; and to demonstrate persistence

10

we also need a mechanism to restore the heap to its existingl old state prior to program

execution. In order to grasp this design approach one needs to understand some UNIX

Operating System concepts. We proceed to explain a relatively new feature of the UNIX

Operating System - the mmap() system call.

The word mmap implies memory mapping. It is a UNIX system call that establishes a

mapping between a process's address space and a virtual memory object, e.g., a device

or a file. In our case the object being mapped is a flat UNIX file. Traditionally, in the

UNIX world accesses to files were done using the standard read() and write() system

calls. Using mmap() on an existing file allows users to manipulate the file without using

read() and write() system calls. Once a file is mapped into the user virtual address

space, all the process has to do to access the file is to use the data at the address range to

which the file was mapped. Assume that the user requests a mapping of an existing file

and the operating system maps the file at user virtual address V. The virtual address

range accessible to the user would then be from V to V + N, where N is the length of the

file. Then if the user process writes to location V this would be equivalent to writing out

data in file at logical offset 0. If the user process reads from location M, where V <= M

< V+N, this would be equivalent to reading from the file at logical offset M - V. In

other words, by touching memory address from V to V+N the user process can

manipulate the entire file. It should be noted that mappings to objects need not start at

logical offset 0 of the object being mapped.

There are two ways of mapping an object. One can achieve a private mapping to a file

using the MAP PRIVATE flag as an argument to the mmap() system call. In such a

case, whenever the user attempts to update data in the file by writing memory in the

mmap()-ed address space, the user gets its own, private copy of the physical page being

touched. This is analogous to how the copy-on-write feature works in UNIX. When a

process creates a child process, one of them gets its own private page during the first

11

write attempt to that page. Hence, when a process maps a file using the

MAP PRIVATE feature, all the pages corresponding to that file are initially marked as

read-only. A write access on any page causes copy-on-write to take effect. When the

operating system is low on memory, it tries to swap pages out. When copy-on-write

occurs on a page, the page becomes dirty in memory. Such dirty pages are then swapped

to the swap device.

Another way of mapping a file is to use the MAP SHARED flag. In such a case, all

processes can share the file - everybody has the right to read and write pages

corresponding to the file. During swapping activity such dirty pages are written back

into the file, i.e., these pages do not have swap-device associations. An interesting

feature to note is that it is the operating system's responsibility to flush dirty pages for a

file back to secondary storage -- it is not the user process's responsibility (this is very

different from read()Iwrite() system calls). So even if the user process terminates

prematurely - the operating system will flush out the dirty pages to disk.

The following diagram summarizes the discussion of the mmap() system call.

Figure 1. Memory Mapping of Persistent Heap File

Our solution uses the mmap() system call to achieve persistent of the heap of any user

process. During process execution, the process will allocate dynamic memory from the

heap. This allocated memory would then be used to represent graphical images. Our

solution to achieve persistent is extremely simplistic - instead of allocating dynamic

memory from the traditional heap space, we allocate memory from a mmap()-ed

file. How this is done is discussed in the next section.

13

2.3 Implementation Details

In the UNIX world dynamic memory allocation is done from the heap using the

malloc() library call. Dynamic memory deallocation is done using the free() library

call. These two routines perform necessary memory management of the user process's

heap address space. Briefly, it maintains a linked list of blocks of memory that are

currently allocated/used and another linked list of blocks of memory that are currently

being unused or were deallocated. It maintains a header section (a block of memory) in

the heap address space - that maintains pointers to the beginning of each linked

(used/free) list. However note that the pages in memory corresponding to the heap

address space are not associated with any file, these pages are associated with the swap

device. During swapping activity these pages are swapped back and forth from the swap

area. Upon program termination the operating system simply throws (returns pages to

the free page pool) these pages out, and frees the swap space reserved for these pages.

Such memory that have swap association are often referred to as anonymous memory.

Our solution implements the entire heap of a user process in the mmap0-ed address

space. This simply means that all memory allocation and deallocation buffers, list

pointers, user data, etc. - are preserved during process execution and even after process

termination. Remember, it is the operating system's responsibility to write out pages for

mmap0-ed address space. We use the MAP SHARED flag during the mmap() system

call, so that all updates to the heap are reflected back into a file that was mapped. We

provide a new library - libmapmalloc.a that provides equivalent functionality of the

traditional malloculfree library calls. More specifically, the following library routines

are critical from the implementation point of view:

1. mapmalloc_init() - This library routine takes in as an argument a file name. If the

file does not exist it creates one. It then maps the file into user memory. The

initial file created is of a default or user specified size.

76

APPENDIX G: MANUAL PAGE: HEAP FILE COPY

This section contains the manual page for the oocopy executable invocation.

NAME
oocopy - OODINI Persistent Heap file copy command.

USAGE

oocopy from-filename to-filename

DESCRIPTION
The oocopy command should be used to copy persistent heap files
used by the OODINI executable. The persistent heap file used by the
OODINI executable is often very large in size. However, the heap file
has holes in between, i.e., disk blocks for unused portions of the file
are not allocated by the underlying file system. But if the traditional
UNIX cp (copy command) is used to copy a heap file to another file,
then this new file will have disk blocks allocated for unused portions
of the file. This is a typical file system behavior. To avoid this problem
oocopy only copies the used/allocated blocks and the header portion
of the unused/free blocks from the persistent heap file to the new file.
The saving in disk blocks in the new file are due to 2 reasons. First, the
holes in the persistent heap file are ignored by the oocopy command.
Second, too many allocations followed by deallocations from the
persistent heap file by the OODINI process will allocate file system
blocks for the unused/free portions. The oocopy only copies the
header portion of these deallocated (and now free) blocks. The entire
freed block is not copied and is not necessary.

ARGUMENTS
The from-filename argument is used to specify the persistent heap file
name where the graphical image for OODINI was stored by the user.

The to-filename is used to specify the new file where the persistent
heap file will be copied to.

RESULTS
On success oocopy exits with an exit code value of 0. On failure the
exit code value is 1 and a failure notification message is generated on
the standard output.

77

APPENDIX H: BNF DESCRIPTION FOR OODAL

This section gives the BNF description of the OODAL language.

<Start> --> <class>

<class> --> <classbody> <class> I <classbody>

<classbody> --> class <classname> <classdefinition> end ;

<classdefinition> --> <relations> <attributes> <relationships> <methods>

<relations> --> <setof> <memberof> <categoryof> <roleof> <partof> <tupleof>

<setof> --> setof : <class-name-list> ; I <NULL>

<memberof> --> memberof : <class-name-list> ; I <NULL>

<categoryof> --> categoryof : <class-name-list> ; I <NULL>

<roleof> --> roleof : <class-name-list> ; I <NULL>

<partof> --> partof : <class-name-list> ; I <NULL>

<tupleof> -> tupleof : <connect-list> ; <tupleof> I <NULL>
<connect-list> --> < <connector-name> : <classname> <more-connect>
<more-connect> --> > I , <connector-name> : <classname> <more-connect>

<attributes> --> attributes <pnrs> endattributes; I <NULL>
<attrs> --> <attr> ; <attrs> I <attr> ;
<attr> --> <attribute-name> <attr-separator> unknown_type
<attr-separator> --> : I :+

<relationships> --> relationships <relationbody> endrelationships; I <NULL>

<relationbody> --> <relationshipname> <typeofrelapon> <classname> ;
<relationbody> I <NULL>

<typeofrelation> --> : :+ I :> I :: I ::+ I ::>

<methods> --> methods <method-body> endmethods ; I <NULL>
<method-body> --> <method-name>O; <method-body> I <method-name>O;

<classname> --> Character string constituting a class name

<class-name-list> --> <classname> , <class-name-list> I <classname>

<attributename> --> Character string constituting an attribute name

<relationshipname> --> Character string constituting a relationship name

78

<connector-name> --> Character string, a connector name in a tuple-of relation

<method-name> --> Character string constituting a method name

<NULL> --> ""

79

APPENDIX I: USER API HEADER FILE FOR OODAL

This section lists the contents of the user API header file, oodal.h.

typedef struct basestruct

struct basestruct *next; /* Next list element pointer */

int flag; /* What kind of arc */
char *name; /* Name field */

union { /* Variant */

struct oclass *classp; /* Class pointer */
un;

char *foruser[2]; /* 2 private slots for users */
char *future[4]; /* Future expansion slots */

I basestructt;

typedef basestruct_t orelation_t; /* Ordinary relationships */
typedef basestruct_t erelation_t; /* Essential relationships */
typedef basestruct_t drelation_t; /* Dependent relationships */
typedef basestruct_t mvrelation_t; /* Multi-valued relationships */
typedef basestruct_t mverelation_t; /* Multi-valued Essential */
typedef basestruct_t mvdrealtion_t; /* Multi-valued Dependent */
typedef basestruct_t roleof t; /* Role-of connection */
typedef basestruct_t categoryof_t; /* Category-of connection */
typedef basestruct_t partof t; /* Part-of connection */
typedef basestruct_t setof t; /* Set-of connection */
typedef basestruct_t memberof t; /* Member-of connection */
typedef basestruct_t tupleof t; /* Tuple-of connection */
typedef basestructt subtypeof t; /* Subtype-of connection */
typedef basestruct_t attributeof t; /* Attribute list */
typedef basestruct_t essential t; /* Essential attribute list */
typedef basestructt method t; /* Method name list */

80

typedef struct oclass {
struct oclass *next; /* Next class pointer */
struct oclass *nexthashp; /* Next hash pointer */
char *name; /* Name of class */
int level; /* DAG level number */
long flag; /* Flags */
setof_t *setoflist; /* Set-of connection list */
memberof_t *memberoflist; /* Member-of list */
roleof_t *roleoflist; /* Role-of connection list */
categoryof t *categoryoflist; /* Catg.-of list */
partof t *partoflist; /* part-of connection list */
partof_t *tupleoflist; /* tuple-of connection list */
roleof_t *rolegenlist; /* Role-Generalized list */
categoryof t *categorygenlist; /* Category-Generalized list */
partof_t *partgenlist; /* Part-Generalized list */
eattribute_t *eattributelist; /* Essential attribute list */
orelation_t *orelationlist; /* ordinary relationships */
erelation_t *erelationlist; /* Essential relationships */
drelation_t *drelationlist; /* Dependent relationships */
mvrelation_t *mvrelationlist; /* Multi-valued */
mverelauont *mverelationlist; /* Multi-valued Essential */
mvdrelation_t *mvdrelationlist; /* Multi-valued Dependent */
method_t *methodlist; /* Method-name list */
long attributecnt; /* Attribute count */
long setofcnt; /* Setof count */
long memberofcnt; /* Memberof count */
long roleofcnt; /* Roleof count */
long groleofcnt; /* Generalized count */
long categoryofcnt; /* Categoryof count */
long gcategoryofcnt; /* Generalized count */
long partofcnt; /* Partof count */
long gpartofcnt; /* Generalized count */
long tupleofcnt; /* Tupleof count */
long gtupleof; /* Generalized count */
long methodcnt; /* Method count */

long *foruser[2]; /* User private slots */
method_t *future[8]; /* Future expansion */

oclasst;

/* Global externs for library users */
extern oclass_t *classptr; /* Pointer to list of object classes */
extern oclass_t **classhashptr; /* Pointer to list of hashed classes */

/* Hash table size */
#define CHASHSIZE 256

/* Hashing Function -- use first character of classname into an ASCII table */
#define CHASHINDX(classname) (((int)(*(classname))) % CHASHSWF)

81

APPENDIX J: USER API LIBRARY CALL FOR OODAL

This section contains the manual page for the User API routine oodal() incorporated in
the oodallib.a library.

NAME
oodal - OODAL library routine invocation.

C SYNOPSIS
#include "oodal.h"

int oodal(heapfilename, oclassp, dag, debug_on)

char *heapfilename;
oclass_t **oclassp;
int dag;
int debug_on;

DESCRIPTION
Upon invocation this routine parses the heap file generated from the
OODINI object oriented database graphics editor. It returns a pointer
to a list of object classes defined by the user during the OODINI
session.

ARGUMENTS
The heapfilename argument is the heap file name where the graphical
image for OODINI was stored by the user.

The oclassp argument is pointer to an object class whose definition is
given in the oodal.h header file.

The dag argument if set to 1 will allow the oodal() routine to verify if
the database schema is a directly acyclic graph (DAG) or not. If the
schema is not a DAG then a comment is generated on the standard
output to indicate this during OODAL code generation. If the value of
this argument is 0 then oodal() does not verify if the schema is a DAG
or not.

The debug_on argument allows the oodal() to generate debugging
messages (if any) on the standard output. A value of 1 turns on
debugging, while a value of 0 turns off debugging.

RESULTS
On success oodal() returns a value of 1. On failure it returns a value of
0 and the values of the last 2 arguments are undefined. Severe errors in
input database schema aborts execution and prints appropriate error
messages on the standard error file descriptor.

EXAMPLE

Sample code to invoke oodal():

82

int ret;
oclass _t *oclassp;

if ((ret = oodal ("/tmp/heapfile", &oclassp, 0, 0)) != 0) {
error processing code;

}

83

APPENDIX K: MANUAL PAGE: OODAL EXECUTABLE

This section contains the manual page for the oodal executable invocation.

NAME
oodal - OODAL executable invocation.

USAGE

oodal -h heapfilename [-d] [-x] [-f outputfilename] [-e
errorfilename]

DESCRIPTION
Upon invocation this executable parses the heap file generated from
the OODINI object oriented database graphics editor. It generates an
abstract textual code form of the database schema.

ARGUMENTS
The -h heapfilename argument is used to specify the heap file name
where the graphical image for OODINI was stored by the user.

The -d optional argument allows oodal() to verify if the database
schema is a directly acyclic graph (DAG) or not. If the schema is not a
DAG then a comment is generated on the standard output to indicate
this during OODAL code generation. If this optional argument is not
used then oodal does not verify if the schema is a DAG or not.

The -x optional argument allows oodal to generate debugging
messages (if any) on the standard output. If this optional argument is
not used then oodal does not generate any debugging messages.

The -f outputfilename optional argument allows oodal to generate the
OODAL code in outputfilename. If this option is not used then the
oodal output is generated on the standard output which can also be
redirected to an output file at the UNIX shell level.

The -e errorfilename optional argument allows oodal to generate all
error messages (if any) in errorfilename. If this option is not used then
all error messages are generated on the standard error which can also
be redirected to an output file at the UNIX shell level.

RESULTS
On success oodal exits with an exit code value of 0. On failure the exit
code value is non-zero. Severe errors in input database schema aborts
execution and prints appropriate error messages.

84

APPENDIX L: SOURCE TREE AND SOURCE COMPILATION:

This section describes the source tree layout for the DAL, OODAL, VML, mapmalloc
and oocopy implementations. The following diagram gives a high level view of the
source tree layout. Note that beret is the login name under which all the source were
implemented.

Figure 20. Source Code Tree Hierarchy

DAL Source:

The following table lists the DAL source files and corresponding high level
implementation comments.

TABLE 1. DAL Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate DAL executable and library.
2. genlisp.h Header file for generic list manipulations.
3. dalcode.h Header file for DAL code generation.
4. dal.h Header file for dalib.a library.
5. genlisp.c Generic List manipulation code.
6. dallib.c dallib.a library source code.
7. daltype.c DAL object type handling source code.
8. dalclass.c DAL object class handling source code.
9. dal.c DAL high level source code for dal executable.
10. globals.c Global variable declarations source file.

85

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 2. DAL Executable/Library File Names
No. Target Name Target Description

1. dal The DAL executable.
2. dallib.a The DAL library.

OODAL Source:

The following table lists the OODAL source files and corresponding high level
implementation comments.

TABLE 3. OODAL Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate OODAL executable and library.
2. oodalcode.h Header file for OODAL code generation.
3. oodal.h Header file for oodalib.a library.
4. oodallib.c oodallib.a library source code.
5. oodalclass.c OODAL object class handling source code.
6. oodal.c OODAL high level source code for oodal executable.
7. globals.c Global variable declarations source file.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 4. OODAL Executable/Library File Names
No. Target Name Target Description

1. oodal The OODAL executable.
2. oodallib.a The OODAL library.

VML Source:

86

The following table lists the VML source files and corresponding high level
implementation comments.

TABLE 5. VML Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate VML executable.
2. vml.h Header file for VML source code generation.
3. vmltype.c VML object type handling source code.
4. vmlclass.c VML object class handling source code.
5. vml.c VML high level source code for vml executable.
6. vmlsemantic.c Code for VML metaclasses.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 6. VML Executable File Name
No. Target Name Target Description

1. vml The VML executable.

MAPMALLOC Source:

The following table lists the persistent heap (MAPMALLOC) source files and
corresponding high level implementation comments.

TABLE 7. MAPMALLOC Source File Names
No. Source File High Level Source Comment(s)

1. mapmalloc.h Header file for MAPMALLOC feature.
2. mapmalloc.c Source file for MAPMALLOC object code generation.

Source Compilation:

To compile the source execute the following command at the user prompt:

cc -c mapmalloc.c

Target(s) Generated:

Upon successful compilation the following targets are generated.

87

TABLE 8. MAPMALLOC Object File Name
No. Target Name Target Description

1. mapmalloc.o The MAPMALLOC object file.

OOCOPY Source:

The following table lists the OOCOPY source files and corresponding high level
implementation comments.

TABLE 9. OOCOPY Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate OOCOPY executable.
2. oocopy.c OOCOPY source file.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 10. OOCOPY Executable File Names
No. Target Name Target Description

1. oocopy The oocopy executable.

REFERENCES

1. Neuhold, E. J., Perl, Y., and Turau, V. "The Dual Model for Object-Oriented
Databases, Institute for Integrated Systems." CIS Department and Center for
Manufacturing Systems, New Jersey Institute of Technology, Newark, NJ,
Research Report: CIS-91-30.

2. Halper, M., Geller, J., and Perl, Y. "An OODB Graphical Schema Represen-
tation." CIS Department, New Jersey Institute of Technology, Newark, NJ,
Research Report: CIS-92-01.

3. "User's Guide to PSG." Praktische Informatik, Technische Hochschule Darmstadt,
MagdalenestraBe 11c, D-61 Darmstadt, West Germany, Report PI-R4/88,
October 1989.

4. Geller, J., Neuhold, E. J., Perl, Y., and Turau, V. "A Theoretical Underl-
ying Dual Model for Knowledge-based Systems." Proceedings of the First
International Conference on Systems Integration, Morristown, NJ, pages 96-103,
1990.

5. Neuhold, E. J., Perl. Y, Geller, J., and Turau, V. "Separating Structural
and Semantic Elements in Object-Oriented Knowledge Bases." Proceedings of
the Advanced Database System Symposium, Kyoto, Japan, pages 67-74, 1989.

6. Geller, J., Perl, Y., and Neuhold, E. J. "Structure and Semantics in OODB
Class Specifications." SIGMOD Record, Vol. 20, pages 40-43, December, 1991.

7. Geller, J., Perl, Y., and Neuhold, E. J. "Structural Schema Integration with
Full and Partial Correspondence using the Dual Mode." Institute for Integrated
Systems, CIS Department and Center for Manufacturing Systems, New Jersey
Institute of Technology, Newark, N.J. 07102; Institute for Integrated Publication
and Information Systems, GMD, Darmstadt, Federal Republic of Germany,
Research Report: CIS-91-11.

8. Geller, J., Perl, Y., Cannata, P., and Sheth, A. "Structural Intergration:
Concepts and Case Study." Institute for Integrated Systems, CIS department and
Center for Manufacturing Systems, New Jersey Institute of Technology,
Newark, N.J. 07102; Bellcore 444 Hoes Lane, Piscataway, N.J. 08854; GMD-
IPSI Integrated Publication and Information Systems Institute, Dolivostr. 15,
D-6100 Darmstadt, Germany, Research Report: CIS-92-02.

9. Kambayashi, Y., Rusinkiewicz, M., and Sheth, A. "Structural Schema
Integration in Heterogeneous Multi-Database Systems using the Dual Model."
First International Workshop on Interoperability in Multidatabase Systems,
Kyoto, Japan, April 7-9, 1991.

88

