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ABSTRACT 

Optical Flow Determination and Motion Analysis 

by 
Qian Wang 

Optical flow, also known as image flow, is of fundamental importance in the 

processing of image sequences. Various approaches to determine optical flow 

have been proposed --- others continue to appear. Using several sets of real 

image sequences, here, the results of three different approaches to the the 

determination of optical flow are reported, the approaches are the Gradient-

based approach, the Correlation-based approach and the Correlation-feedback 

approach. The comparisons are primarily empirical, and they show that 

the performance of these different algorithms differs significantly among the 

different image sequences, indicating that there does not exists one superior 

algorithm which could be suitable to every different kind of situations. Every 

individual algorithm has its own advantages and limitations. 

Also, recent research shows that motion analysis has many potentials 

in the computer vision area. There are basically two different approaches 

to recover structure of objects and relative motion between objects and 

cameras: one is the optical flow field approach and the other is the feature 

correspondence approach. The unified optical flow field (UOFF) [5] is a 

generalization of the optical flow to stereo imagery. Here, through the results 

obtained from the real image sequences, the feasibility of UOFF  approach to 

motion analysis has been shown. 
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CHAPTER 1 

INTRODUCTION 

Optical flow, also known as image flow, is a very important property of 

image field. Optical flow means assigning velocities to each point in the 2-

dimension image field which is the perspective projection of the 3-dimension 

object's surface points. The 2-d velocity vector depicts the projection of 

the instantaneous 3-d velocity of the corresponding point of the object. The 

information of the motion of a 3-d object in a dynamic sense is contained 

in an image sequence, therefore the image flow should be computed from 

the image sequence. However, it cannot be computed locally because only 

one independent measurement is available from an image sequence at a 

given point, while two components of velocity are required to be computed 

successfully. This is the major challenge in calculation of optical flow. 

Various methods have been proposed for computing optical flow, and 

we can expect more methods to be introduced in the near future. Most of 

the current approaches to the computation of optical flow can be divided into 

different categories according to their selection of measurements. 

A study and comparison of the following three different optical flow 

algorithms are reported in this thesis: Gradient-based, Correlation-based and 

Correlation-feedback approaches, represented by Horn and Schunck, Singh 

and Pan's algorithm respectively. Despite their differences in implementation, 

all these three algorithms can be viewed conceptually similar in terms of 

going through the following procedure: Extracting the interested signal 

structure from the real image sequence, enhancing the signal-to-noise ratio 

of it, selecting the basic measurements, then combining these measurements 

to create a 2-d optical flow field with the smoothness assumption of the 



underlying optical flow field. 

In this thesis work, after comparing the results calculated with the above 

algorithms in three different settings, the conclusion is that no single algorithm 

is most suitable to calculate optical flow at all the different kind of situations. 

Every individual algorithm has its own advantages and limitations. We should 

use different algorithms to calculate the optical flow in different cases. The 

results obtained from real image sequences proved this observation. 

Over the last ten years, motion analysis has become a very active research 

subject in the computer vision area. In the vision system, recovery of motion 

of objects gives us the ability to estimate their speed and direction and then to 

navigate, recognize and track objects. Optical flow field approach and feature 

correspondence approach are the two major different approaches to recovery 

structure of objects and relative motion between objects and cameras. 

The feature correspondence approach requires the solution to feature 

detection and correspondence establishment, which have been proven to be 

computationally and conceptually difficult to solve. And only partial solutions 

suitable for simplistic situation have been developed. 

The optical flow field approach suggests that we should use the distribu-

tion of apparent velocities of movement of image brightness patterns over a 

large portion of the image, to recover the object's position and motion. These 

methods achieve more robustness at the expense of more computation which 

is encountered mainly in calculation of the optical flow field. Relatively, the 

analysis of the motion of objects is less computational intensive. However 

optical flow cannot be computed locally, it must be computed under some 

constraint, so in many cases an estimated optical flow field is not the same of 

the true motion field. 

Recently, a new approach to motion analysis from a sequence of stereo 



images has been developed. Feature correspondence is not necessary in this 

approach, so it is more efficient. This new approach is based on an unified 

optical flow field (UOFF), combining both the spatial and the temporal 

domains. The recovered 3-d motion is valid for a whole continuous moving 

field instead of only valid for some features. 

In this thesis, the new concept of UOFF is studied , and two different sets 

of equations which are corresponding to two different imaging geometries to 

recovery the position and motion of 3-d objects have been derived. 



CHAPTER 2 

IMAGE FLOW DETERMINATION 

2.1 Three Different Optical Flow Approaches 

The recovery of 3-d motion and structure from corresponding image sequences 

can be archived by two steps: 1) Compute image velocities from the changes 

of image intensity value, i.e., the optical flow. 2) Compute 3-d motion and 

structure using optical flow as an intermediate result. The first step is the most 

difficult part. So far, there does not exist one unique technique that can cover 

all situation. 

In this thesis, three different approaches, gradient-based approach, 

correlation-based approach and correlation-feedback approach have been 

studied. 

2.1.1 Gradient-based Approach 

Horn and Schunck's technique is a typical representative of the gradient-based 

approach [1]. It is a differential technique which computes the velocity from 

spatiotemporal derivatives of image intensity. 

Let I(x, y, t) denote the image brightness at the point(x, y) in the image 

plane at time t. Assume the brightness of a particular point in the pattern is 

constant when the pattern moves, that is, 

dI  
dt 

--= 0 (2.1) 

which can also be written as 

I(x,y,t) .,-..,- I(x + 8x,y + Sy,t+ St) (2.2) 

we call the above equation as the intensity-constancy assumption. 



Expand the right side into Taylor's series in the vicinity of point (x,y,t), 

we have 

/(x + Sx, y + Sy ,t + St) = I(x,y,t) + —
aI 

Sx+ —
al 

Sy + —
aI 

St + 6 (2.3) 
aX ay at 

where E contains the second and higher order terms of Sx,Sy and St. 

From equations (2.2) and (2.3), we can get 

ai al ai 
ax 
—Sx + ay —Sy + a

t 
St + E = 0 (2.4) 

Dividing both sides by St, we get 

ai 6 x ai Sy _L  al _i_ 6 n 

ax St ' _i_ ay St 1  at ' St - - - `' 
(2.5) 

Considering the fact that E contains the second and higher order terms of 

Sx ,Sy and St, we can ignore the term E 1 8t when St -4 0, this gives us 

0I dx i_ al dy  DI  
ax dt ' ay dt tat `' 

(2.6) 

If we let u A dx/dt, vl,' dy I dt, we can get 

/,u ± iyv + it  = 0 (2.7) 

ai(
a
7,0 

,
4  A at,y,t)

, 
 i

t 
 g± at.y,t)  where 1", A 't  are the partial derivatives of 

/(x, y, t) with respect to x, y, t, respectively. 

It is not sufficient to compute the optical flow by just using the above 

equation. To solve this problem, we usually add the smoothness constraint as 

an auxiliary equation which is minimize the square of the magnitude of the 

gradient of the optical flow velocity: 

( au\2+( au,1 
I-  and 

( v )2+  ( ay 2  

ax) ay ax) ay) 

In practice, the error comes from two major sources, one is the rate of the 

change of image brightness, and the other is the departure from smoothness in 



the image velocity, these can be expressed as the following equations: 

eb = iyv + It (2.8) 

c
2 = (6;1)2 _4_ 

(66y)2 

 + ( xV )2 + (6:)2 (2.9) 

The problem to calculate the optical flow becomes to minimize the sum 

of the error of the above two sources. For some practical reasons, we should 

choose a suitable weighting factor, denoted by a2. Now, we can compute the 

optical flow by minimizing the following error equation. 

62 = if (a2E2 dx dy (2.10) 

By the calculus of variation, we obtain 

/x2u _ix/yv = a2V2u — t (2.11) 

/x /yu = a2V2u — /y/t (2.12) 

Using the approximation of the Laplacian, 

02u k(Ti — u) 

V2v k(T) — v) 

In this situation, we can assume k = 1. By using the above four equations, 

we can solve Equation (2.10) in the following way: 

(a2 /x2)u /x/y v = (a211 — /x /t) (2.13) 

/,/yu (a2 /y2)v = (a277 — /y /t) (2.14) 

The determinant of the coefficient matrix is a2(a2  + /2 + ) Solving 

these equations with respect to u and v we find that 

(a2 + 1-
y  
2)u  = +(a2 i

y
2),17 — (2.15) 



(a2 1-2 i
y
)v  = (4a2 i

x
2),17 _ (2.16) 

Now, there is a pair of equations for every point in the image. But it 

would be very costly to solve these equations simultaneously by some of the 

standard method, such as Gauss-Jordan elimination. So iterative equations are 

used to minimize the equation 2.10, and image velocity (u, v) can be obtained 

as 
— Isrin  lyTin  + 

un+1 = un (2.17) (c,2 /s2 _q) 

I TO + ly27n  + vn-ki = (2.18) (c,2 + + 12) 

where u° and v° are the initial velocity estimations and are set to zero 

everywhere,7?-t and /7 denote the neighborhood averages of image velocity. 

2.1.2 Correlation-based Approach 

Let's use Singh's technique as a typical representative of the correlation-

based approach. Singh's method is a region-based matching technique, which 

computes the velocity as the shift d that yields the best fit between image 

regions at different time. Finding the best match is equivalent to maximizing 

a similarity measure (over d), such as the normalized cross-correlation, or 

minimizing a distance measure, such as the sum-of-squared difference (SSD) 

[4]. 
n n 

Ec(dx ,dy) = E E w(i,i)p-1(x+i,y+i)—/-2(x+d2 +i,y+dy+i)? (2.19) 
3=—n t=—n 

where w denotes a 2-d window function, and (d2, dy) are usually restricted 

to be small integer numbers. 

Singh specifies the matching technique into two steps, in the first step 

conservation information is extracted, then in the second step neighborhood 

information is extracted. Finally the image flow can be computed by combining 

the two estimates on the basis of their covariance-matrices. 



Conservation information is extracted based on conservation property 

of intensity over time. Based on the assumption of conservation, estimating 

image flow amounts to an explicit search for the best match in a search-area 

in the subsequent images of a sequence. Correlation gives a response at each 

pixel in the search window in the subsequent images. 

The procedure of extracting the conservation information can be de-

scribed as, first creating a correlation-window Wp  of size (2n + 1) * (2n 1) 

around the pixel at location (x, y) in the first image h. , then forming the 

search-window Ws  of (2N + 1) * (2N + 1) around the pixel at location (x, y) 

in the second image 12, finally (2N + 1)2  samples of error-distribution are 

computed as following using sum-of-squared-differences as: 
n n 

Ec(U, V) = E E [ii (x + y j) - I2(x u i7 y v j)]2 (2.20) 
.7=—n i=—n 

-N < u,v < +N 

The (2N + 1)2  samples of response-distribution are computed as an 

exponential function of error-distribution as follows: 

Rc(u, v) = e-k6c(u'v) (2.21) 

Each point in the search area is a candidate for the "true match". The 

response at the point can be thought as a weight that reflects the faith in the 

measurement. Based on the weighted-least-squares estimation, the estimate 

of image velocity, denoted by Ucc = (ucc, vcc), can be computed as: 

Eu  Ev  Rc(u, v)u 
ucc -=  (2.22) 

Eu  Ev  Rc(u, v) 

Eu EV  Rju,  v)v 
=cc (2.23) 

Eu E, Rc(u, v) 
and the associated covariance—matrix is given by 

Eu  Ey  Rc(u,v)(u—ucc)2 Eu Rc(u,v)(u—ucc)(v—vcc)  

Scc = Eu  E Rc(u,u) Eu  E Rc(u,u) (2.24) 
Eu  Ey  Rv(u,uxu—uvc)(v—vvv) Eu  Ey Rv(u,u)(v—vvv)2 

E. Lev Rc(u,v) Eu  L1Rv(u,u) 



where the summation is carried out over —N <u,v < +N. 

Neighborhood information is utilized to propagate velocity. Forming 

the neighborhood window of size (2w + 1) * (2w + 1), the velocities of these 

(2w + 1)2  pixels are mapped to the points (u„ v,) in u — v space (where 

1 < z < (2w + 1)2), with the weight to the point (a„ vi) as Rn(u„vi). Based on 

the weighted-least-squares estimation, the estimate of image velocity of the 

central pixel denoted by U = , is given by 

_U = Eu Rri(u, v)u 
(2.25) 

Eu R7, (u, v) 

Eu Et, Rn(u, v)v v = (2.26) 
Eu Et, R7, (u, 

The covariance matrix is 
( Et  R„(u„,,,)(u, —77)2 Et  

Et  Rri(ui,vo Et  Rr,(u„v,) (2.27) sr, -= Et  Rn(u„vo(u, —mvt Et  Rn(ut ,v0(),—i-,)2 

Et  Rn(u„v 2 ) Et  Rn(u„vo 

where the summation is carried out over 1 < i < (2w + 1)2, —N < u, v < 

+N. 

By estimation theory, the neighborhood error in a quadratic form is 

(U — riTS,T1  ( U — -(7) 

conservation error is the following quadratic form: 

(U — U„)TS 1(U — ucc) 

where U is used to denote the velocity estimate (IL, v) 

The sum of conservation error and neighborhood error represents the 

squared error in the velocity estimate U. The optimal estimate of velocity is 

the estimate which minimizes the mean squared error over the visual field. 

That is 

uys,
7
7 1(u — c

i ucc)Ts(u — Minimize I I KU —U) + (U — U„)iclxdy (2.28) 



Calculus of variations can be used to solve the above problem,that gives 

5 .,1(U — U) + S;,-1 (U — ri) = 0 (2.29) 

( sc,1  + S7;1) U = .5,,1  U„ + STT 1U (2.30) 

The iterative algorithm is then used as following 

Uk+l = [5;2 + s;
,
1] -1[5,--

c1 ucc  + 
s7

7: 1 uk] (2.31) 

with the starting iteration value of U be U°, equal to the conservation 

estimate U° = Ucc. 

2.1.3 Correlation-feedback Approach 

The third approach studied in this thesis is the newly developed method by 

Pan et al. [3]. This approach is based on the correlation-based approach and 

the idea of feedback, that is why it is called correlation-feedback approach. 

Clearly, the procedure of this approach can be viewed as two steps, one 

is correlation step, and the other is propagation step. 

Unlike correlation-based approach, in correlation step, a new continuous 

two-dimension function f(i, j) is defined as an extension of the real digital 

image /(i,j). 

As for image 1, we define it as following 

fi(ii,./i) = ii(zi,ii) (2.32) 

where i1  and ji are indexes of I. Then, for zmage 2, using bilinear 

interpolation, we define 

f2(22 — un(i2, j2) 7 32 — vn(i27 :12)) 
= (1 — a) [(1 — b)11 (int(x), int(y)) + b 11 (int(x) , int(y) + 1)] (2.33) 
+ 4(1 — b)/i  (int(x) + 1, int(y)) + bi i(int(x) + 1, int(y) + 1)] 

where int(x) = int(i2 — un); int(y) = znt( j 2 — vn); a = i2 — un  — int(x); 

b = j2 — v,, — int (y) . Information about U is known from the difference between 



the expected value of (12(i2,i2))  and /2(i2,32). A correlation-window Wz, of 

size (2n + 1) * (242 + 1) is formed around the pixel at location (x, y) in the 

first image I1, and a search-window W, of size (2N + 1) * (2N -I- 1) is formed 

around the pixel at the location in the second image /2. The (2N + 1)2  samples 

of error-distribution are computed by using the sum-of-squared-differences as 

n n 
E (I i , V) = E E (12(i2 +x,72 + y) — f2(i2  + x — u,.72  + y — v))2  (2.34) 

x=--n y=—n 

The (2N + 1)2  samples of response-distribution are computed as follows 

Rc(u, v) = e-kg(u'v) (2.35) 

Based on the weighted-least-squares estimation 

Rc(n v)u 
uc(i2,,7 2) = (2.36) 

Eu a Rc(u, v) 

Eu Ev  Rc(u, v)v 
vc(i2,./2) = (2.37) 

Eu a Rc(u, v) 

In the propagation step, forming the neighborhood window of size 

(2w + 1) * (2w + 1), mapping the velocities of the these (2w + 1) * (2w + 1) 

pixels to the points (u„ v1) in the u-v space, choosing the weight w(x, y) as a 

Gaussian mask, we get 

N N 
Un+1 = E E w(x, y)uc(i2 + x, :72 + y) (2.38) 

x=—N y=—N 

N N 
V Th+1 = E E w(x,y)vc(i2+x,i2 + y) (2.39) 

x=—N y=—N 

Figure 2.1.3 shows a block diagram of this framework. 

This iterative procedure should be terminated when luri+1  — un  1 and 

vn+1  — vn  I are greater than a threshold, expected value of ('2(i,7)) is updated 

in the observe stage according to un+i(i, i ), vn+i(i,i) and 11(i,7). Since the 

algorithm is convergent (see [3] for the hairy detail), (Un0.0 tends to the true 

optical-flow vector. 



Figure 2.1 Schematic Diagram for Correlation-Feedback Approach 

2.2 Experimental Techniques 

Experiments have been conducted to examine the performance of these three 

different techniques on real image sequences. There are three different image 

sequences which are taken in different settings and used to conduct three 

different experiments. Before discussing the results, the settings and the 

image sequences as well as error measurements used in experiments are 

described. 

The image sequences used here are taken by a CCD TV camera and 

through an peripheral device attached on a Sun SPARCstation made by 

DATACUBE Inc. The size of images is 64x 64 (pixelxpixel I frairte). The detail 

procedure of how the 64 x 64 (pixel x pixel/ frame) image sequence is created 

is illustrated as follows: 1) By using the CCD TV camera and DATACUBE 

electronic circuit boards, an image of 512 x 512 (pixel x pixel/ frame) is created. 

2) The 512 x 512 (pixel x pixel/ frame) image is too big for computing , so it 

is cut into a 256 x 256 (pixel x pixel !frame) image 3) In order to decrease the 

influence of noise, the 256 x 256 (pixel x pixel/ frame) image is compressed 

into a 64 x 64 (pixel x pixel/ frame) image with sub-sampling method, that is, 

first, a 256 x 256 pixel x pixel' frame image is divided into 64 x 64 blocks, 

with each block having 4 x 4 pixels, i.e., one block corresponding to a pixel in 



Figure 2.2 The Plane of Perspective Projection 

the 64 x 64 (pixel x pixel' frame) image, then, assigning the average intensity 

value of the 4 x 4 (pixel x pixel' frame) block to the intensity value of the 

corresponding pixel in the 64 x 64 (pixel x pixel/ frame) image. 

In order to use error measurement to evaluate the performance of the 

proposed approaches, not only the real optical flow but also the correct optical 

flow is needed. The perspective projection between an object in 3-d world 

space and an image in 2-d image plane is -sf- = L. All these parameters are 

illustrated in the perspective projection plane (see Figure 2.2), where X is the 

distance of one point moves in the object, D is the distance between the optical 

center of the camera and the object, x is the distance of the pixel corresponding 

to the same point in that object moves in the image plane , f is the focal length 

of camera. According to this perspective projection, the correct optical field 

can be calculated. 



2.2.1 Experiments I, II and III 

• Experiment I 

Experiment I described here uses a sphere standing before a white post 

which is used as background. The sphere is remained still while the 

camera and white post are clockwise rotated at the same speed, which 

means that the white post keeps still relative to the camera. Refer 

to the perspective projection plane, the clockwise rotation velocity is 

0 = —2.5°/frame (assuming the rotation should be counterclockwise), 

the focal length of the CCD camera is f = 12.5 mm, the distance 

between the center of the sphere and the optical center of the camera is 

D = —1080 mm. According to the perspective projection transformation, 

the true optical flow (7,(uc, vc) can be calculated. This algorithm can be 

illustrated as below: 

Given one point p(x, y) in the image plane, the corresponding point 

P(X,Y, Z) in 3-d world space can be calculated with using the perspective 

projection. When the image sequence moves from one frame to the next 

frame, the point P(X,Y, Z) moves to the point P2  (X2, Y2, Z2). The relation 

between P(X, Y, Z) and P2 (X2, Y2, Z2) is fixed when the experimental 

setting is given. So, the corresponding point p2(x2, y2) in the image plane 

can be calculated with using the perspective projection again. Assuming 

the time interval between one frame and the next frame is one second, 

the velocity can be illustrated as ue  = Ax = x2  — x (mm/second) and 

vc  = Ay = y2 — y (mm I second). Practically, the velocity is expressed 

with unit (pixel I second) as following 

— 
uc  = 

Ax x2

lx 
 x 

= (pzxellsecond) 
Ox 

vc  = AY Y2/—
, 

Y (pixel/second) 
ly 



Refer to the Appendix for the final correct optical flow result. The velocity 

along x-direction ranges from 0.0 (pixel) to —0.9444 (pixel). The velocity 

along y-direction ranges from —0.04583 (pixel) 0.04583 (pixel). It's 

worth to notice that the unit along x direction (l, = 0.05588(mm/pzxel)) 

and the unit along y direction (ly = 0.04657 (mrn/pixe/)) in the image 

plane are not the same by calibration, the projection of sphere into the 

image plane is actually an ellipse instead of a circle. 

Figure 2.3 shows the setting for this experiment. Figure 2.4-- 2.7 is an 

image sequence which is generated in this setting. 

• Experiment II 

Experiment II described here uses a texture post standing above a table. 

The CCD camera moves normal to its line of sight, the moving line is 

parallel to the plane of the texture post. In the perspective projection 

plane, the CCD camera's moving distance is / = —2.2(mm/frame), 

the focal length of the camera is f = 30 mm, the distance between 

the texture post plane and the optical center of the camera is D = 

—850 mm. By calibration, it is known that the unit along x direction is 

/, = 0.05588 (m,rn 1 pixel). According to the perspective projection = -y-, 

and the algorithm for calculating correct optical flow (v,,, v,) which is 

illustrated in Experiment I, the correct optical flow can be calculated as 

below. Also assuming the time interval between one frame and the next 

frame is one second. 

x = X Y = Y 
f D f D 

X =  Y = 
x Di y Di  

f f 

X2 = X - / Y2 = Y 

D2 = Di = D 



Figure 2.3 Setting in Experiment I (sphere) 



Figure 2.4 The First Image Used in Experiment I (sphere) 

Figure 2.5 The Second Image Used in Experiment I (sphere) 



Figure 2.6 The Third Image Used in Experiment I (sphere) 

Figure 2.7 The Fourth Image Used in Experiment I (sphere) 



X2 f (X — 0  f 
x 2  - 

D2 D 
Y2 f Y f  

Y2 = D2 D 
(X — 0 f X f 1 f 

A x = x2  — x =  = —7), D D 

Ay = Y2—y= Yf 
Yf 

 =0 
D D 

Ox I f 
uc = =  = —1.3895 (pixel I second) 

1, D lx  
y A 

v, = = 0 (pixel! second) 
ly  

Figure 2.8 shows setting for this experiment. Figure 2.9-- 2.12 is an 

image sequence that is obtained corresponding to this setting. 

• Experiment III 

Experiment III described here uses a texture standing above a table, 

similarly to the Experiment II. The CCD camera moves normal to its line 

of sight, but the moving line is not parallel to the texture post plane, the 

texture post is on a slant to the camera. The degree between the slant and 

the normal of the sight line is 0 = 35°. In the perspective projection plane, 

the camera's moving distance is 1 = —2.2 (mm/ frame), the focal length 

of the camera is f = 30mm, the distance between the center of the slant 

and the optical center of the camera is D = —850mm. By calibration,it is 

known that the unit along x direction is is  = 0.05588 (mm I pixel) and the 

unit along y direction is ly = 0.0465664 (mm/pixel). According to the 

perspective projection which is -!'- = if while D* changes with different 

point in the slant, and the algorithm for calculating correct optical flow 

(uc, vc) which is illustrated in Experiment I, the correct optical flow can 

be calculated as below. Also assuming the time interval between one 



Figure 2.8 Setting in Experiment II (plane) 



Figure 2.9 The First Image Used in Experiment II (plane) 

Figure 2.10 The Second Image Used in Experiment II (plane) 



Figure 2.11 The Third Image Used in Experiment II (plane) 

Figure 2.12 The Fourth Image Used in Experiment II (plane) 



frame and the next frame is one second. 

xDi YDi  X =-  Y = 

where D1 = D XtanO = D xD i tan0 

Di =  1 s tan° 
f 

X2  = X — 1 Y2  = Y 

D2  = D1  — ltan0 

X2  f Y2 f  
x2, Y2 = D2 D2  

Ax = x2 — X = 
(X  — 0 f X i  f 

 
Di — ltan 0 Di  

—1 f Di  + X f ltan 

D1 (D1  — ltan 8) 

—f1(1—ItanO) 

tan 
f 

Yf Yf  
AY = Y2 — Y = 

D2 Di 
1 = 1 y f (  

D1  — tan 0 Di  
Y Pion° 

Di (Di  — 1 dtanO) 
yltanO 

D — ltan0 _ x tan  
I I 

O
x 

uc = A  (pixel/ second) 
lx 

Ay 
v, =  (pixel/second) 

From the above equations, the correct optical flow along x-direction 

ranges from —1.2847 to —1.5138 (pixel/second), the correct optical 



Figure 2.13 Setting in Experiment III (slant) 



Figure 2.14 The First Image Used in Experiment DI (slant) 

Figure 2.15 The Second Image Used in Experiment III (slant) 



Figure 2.16 The Third Image Used in Experiment III (slant) 

Figure 2.17 The Fourth Image Used in Experiment III (slant) 



flow along y-direction ranges from —0.0540 to 0.0605 (pixel/ second). 

Figure 2.13 shows setting for this experiment. Figure 2.14-- 2.17 is an 

image sequence that is created in this setting. 

2.2.2 Error Measurements 

Two error measurements are used here to analyze the performance of these 

three approaches for image flow determination. One measurement is the 

relative error measurement, and the other is angular error measurement. They 

are described respectively in the following. 

• Relative error Ee. 

Let tic(u,, vc) denote correct optical flow vector, Ce (ue, ye) denote the 

estimate optical flow vector, the relative error between the correct 

velocity v-, and the estimate v-, is 

VEi=0E3=o((uc(i, j) ue(i, j))2  (vc(i, j)  ve(i, j))2)  
E e  = 

VEt----13E3=0(Uc(i' j)2 + V c(i j)2) 

• Angular measure of error 0, [4]. 

Assuming that velocity can be written as displacement per unit time 

as in v = (u, v)Tpixe/s/frame, or as a spatiotemporal direction vector 

(u, v, 1)T in units of (pixel,pixel,frame). Velocity is obtained from the 

direction vector by dividing through by the third component. When 

velocity is viewed (and measured) as orientation in space-time domain, 

it is natural to measure errors as angular deviations from the correct 

space-time orientation, we call it angular measure of error. Therefore, 

let velocities v = (u, v)T be represented as 3-d unit direction vector, 

= 1   (u, v, 1)T. The error between the correct velocity v-, and an Vu2+v2+1 

estimate v-, is 

= arCCOS(ec  • ee) 



This angular measure of error is convenient in some cases because it 

can handle very large and very small speeds without the amplification 

inherent in a relative measure of vector differences. However, it does 

have some bias. For example, directional errors at small speeds do not 

give as large an angular error as similar directional errors at higher speeds. 

A complementary measure is also available for errors in measurements 

of normal (component) velocity [4]. 

2.3 Experimental Results 

By using the relative error and angular error measurement, the performances 

of the three different approaches are analyzed quantitatively. The results 

are obtained by using real image sequences as input image sequences. 

Three different computer programs which implement these three different 

approaches are used here in these experiments. The program for Singh's 

approach is provided by J.L.Barron (University of Western Ontario, Canada), 

the programs for Horn and Schunck's approach and Pan's approach are 

provided by J.N.Pan (New Jersey Institute of Technology, U.S.A). I've 

studied these programs intensively and extensively, and fixed some bugs in 

these programs, I also enhanced them and made some modification to make 

them suitable of my experiments. As the requirement of these programs, 

the input images should be SUN raster files for Singh's program, and input 

images should be float-data files for Horn and Schunck's, and Pan's programs. 

Also, Horn and Schunck's program just need two images as the input image 

sequence, and Singh's and Pan's programs need three images as the input 

image sequence. 

Since the results for different programs depend on how the parameters are 

chosen, it is very important to select the appropriate parameters for different 



approaches before running the programs. As to the Singh's algorithm, 

the parameters N, k, n and w have to be established in order to compute 

response-distribution (refer to the section for Singh's algorithm as a represent 

for correlation-based approach for more detail). The choice of N --- the 

search-window size --- depends on the maximum possible displacement of 

a pixel between two frames. If the displacement is small, N = 2 (i.e., a 

5 x 5 search window) is appropriate. If the displacement is large, one can 

still use N = 2 with a hierarchical search strategy. The parameter k ---

parameter for the exponential function for converting error-distribution into 

response-distribution --- is essentially a normalization factor, it is chosen so 

to make the maximum response-distribution a fixed number which usually 

close to unity. The values of n --- the correlation-window size --- and w --- the 

neighborhood size --- are decided on the basis of how many neighbors should 

contribute to the estimation of velocity of the point under consideration. Too 

small neighborhood leads to noisy estimates, and too large neighborhood 

leads to distortion caused by excessively smoothing. Empirically, n = 1 and 

w = 1 (i.e., a 3 x 3 window) appears appreciate. Also, when solving the 

linear equations for the result of u,v, inverse of various matrices becomes hard 

when one or more of their eigenvalue are zero or very small. Singular-value-

decomposition is used for matrix-inversion in order to solve this kind problem. 

As to Horn and Schunck's algorithm, the parameter a --- a weighting factor 

between the measurement for the rate of change of image brightness and the 

measurement for the departure from smoothness in the velocity flow --- should 

be roughly equal to the expected value of noise in the estimate of .e 

(Consulting the section for Horn and Schunck's algorithm as a represent for 

gradient-based approach for more detail). From the equations shown in that 

section, it is well known that a2  plays a significant role only for areas where 



the brightness gradient is small, preventing hazardous adjustments to the 

estimated image flow velocity caused by noise in the estimated derivatives. 

As to Pan's algorithm, the parameters a, N, k, n and w should be chosen by 

combining the criteria of Singh and Horn and Schunck's. For all these three 

programs, criteria have been established to stop the iterative update processes. 

The input real images are 64 x 64 (pixel x pixel)/ frame. The central 40 x 40 

pixel x pixel optical flow vector arrays are used to compute the error used in the 

program provided by J.L.Barron, so for the consistency, all the input for error 

analysis of all these approaches are the central 40 x 40 pixel x pixel optical flow 

vector. Two results are obtained for each experiments by two different input 

image sequences.One result is shown in Table 2.1 and Table 2.2 ,which is 

obtained by using the first two or three images and corresponds to the velocity 

u1  and v1, and the other result is shown in Table 2.3 and Table 2.4, which 

is obtained by using the second two or three images and corresponds to the 

velocity ur and vT. The notations u1 , v1, uT and V r  used here will be explained 

in next chapter. 

Following is some notations used in these Tables. a --- a weight factor 

between the measurement for the rate of change of image brightness and the 

measurement for the departure from smoothness in the velocity flow. sw ---

means the search window. cw --- means the correlation window. gm  ---

means the Gaussian mask. deviat --- means the deviation for the statistical 

characteristic. 1,2,3,4 --- mean the 1st, 2nd, 3rd and 4th image used in these 

experiments. * --- means the best approach among these three approaches 

corresponding to one specific experiment setting. 

From the result shown in the Table 2.1, Table 2.2, Table 2.3 and Table 2.4, 

the following observation can be achieved. 



Table 2.1 Results of Relative Error (as to ul,r)/) 
Gradient-based 
approach 
Using image 2,3 

Correlation-based 
approach 
Using image 1,2,3 

Correlation-feedback 
approach 
Using image 1,2,3 

Iteration = 128 
a = 10 

Iteration = 25 
sw = 9 x 9 
cw=5x5 
gm = 5 x 5 

Iteration = 12 
Horn-iteration = 30 
sw = 5 x 5 
cw=3x3 
gm = 3 x 3 

Ce Ce E e  

Sphere 0.5466 * 0.7693 1.647 
Plane 0.2611 0.2716 0.1691 * 
Slant 0.3669 0.5389 0.2188 * 

Table 2.2 Results of Angular Error (as to ui ,v / ) 
Gradient-based 
approach 
Using image 2,3 

Correlation-based 
approach 
Using image 1,2,3 

Correlation-feedback 
approach 
Using image 1,2,3 

Iteration = 128 
a = 10 

Iteration = 25 
sw = 9 x 9 
cw=5x5 
gm = 5 x 5 

Iteration = 12 
Horn-iteration = 30 
sw = 5 x 5 
cw=3x3 
gm = 3 x 3 

0,  
average deviat. average deviat. average deviat. 

Sphere 14.699 7.8545 10.125 11.611 32.411 15.251 
Plane 8.2221 7.1052 8.9019 0.6881 3.945 2.2408 
Slant 12.507 10.081 15.094 18.408 6.4788 6.4275 

Table 2.3 Results of Relative Error (as to ur,vr) 
Gradient-based 
approach 
Using image 3,4 

Correlation-based 
approach 
Using image 2,3,4 

Correlation-feedback 
approach 
Using image 2,3,4 

Iteration = 128 
a = 10 

Iteration = 25 
sw = 9 x 9 
cw=5x5 
gm = 5 x 5 

Iteration = 12 
Horn-iteration = 30 
sw = 5 x 5 
cw=3x3 
gm = 3 x 3 

Ce 6e Ce 

Sphere 0.5242 * 0.6873 1.2073 
Plane 0.5111 0.6505 0.1456 * 
Slant 0.4687 0.6066 0.2208 * 



Table 2.4 Results of Angular Error (as to ur,vr) 

Gradient-based 
approach 

Correlation-based 
approach 

Correlation-feedback 
approach 

Using image 3,4 Using image 2,3,4 Using image 2,3,4 
Iteration = 128 Iteration = 25 Iteration = 12 
a = 10 = 9 x 9 Horn-iteration = 30 

cw = 5 x 5 sw = 5 x 5 
gm = 5 x 5 cw = 3 x 3 

gm = 3 x 3 
0  Oe 

average deviat. average deviat. average deviat. 
Sphere 13.755 8.3677 7.5548 9.7462 19.833 16.676 
Plane 21.852 9.6763 21.731 22.612 4.0385 2.9386 
Slant 19.419 9.9719 17.093 21.411 6.4048 5.3374 

• The gradient-based approach is better than the correlation-based and 

correlation-feedback approaches when the boundary is not too sharp as 

shown in Experiment I --- Sphere experiment. 

• The correlation-feedback approach is appreciate to texture post which 

has discontinuities boundary as shown in Experiment II and III --- Plane 

and Slant experiments. 

• The correlation-based approach has an inherent shortcoming which is 

lacking of the ability to estimate not integer number of displacement. In 

Experiment I, the correct optical flow is almost integer, and in Experiment 

II and III, the correct optical flow are not integer numbers. 

Also, vector diagrams for flow field are developed to give more visual 

comparison among these different approaches. It's worth noticing that only 

the central 40 x 40 (pixel x pixel) optical flow vector arrays are created in 

the program provided by J.L.Barron. For the consistency, all the input for 

error analysis of these approaches are the central 40 x 40 (pixel x pixel) optical 

flow vector, that's also the input for the creation of vector diagrams for flow 

field which are shown from Figure 2.18 to Figure 2.29. But for the Sphere 



Figure 2.18 Correct flow field in Sphere Experiment 

Experiment, the tendency of flow field is not obvious if the offset size is 

ignored. So in Figure 2.30, Figure 2.31 and Figure 2.32, the inputs of vector 

diagrams are 64 x 64 (pixel x pixel) optical flow vector. 



Figure 2.19 Calculated flow field in Sphere Experiment (Horn) 



Figure 2.20 Calculated flow field in Sphere Experiment (Singh) 



Figure 2.21 Calculated flow field in Sphere Experiment (Pan) 



Figure 2.22 Correct flow field in Plane Experiment 



Figure 2.23 Calculated flow field in Plane Expenment (Horn) 



Figure 2.24 Calculated flow field in Plane Experiment (Singh) 



Figure 2.25 Calculated flow field in Plane Experiment (Pan) 



Figure 2.26 Correct flow field in Slant Experiment 



Figure 2.27 Calculated flow field in Slant Experiment (Horn) 



Figure 2.28 Calculated flow field in Slant Experiment (Singh) 



Figure 2.29 Calculated flow field in Slant Experiment (Pan) 



Figure 2.30 Correct flow field in Sphere Experiment (64 x 64 pixels) 



Figure 2.31 Calculated flow field in Sphere Experiment (Horn) (64 x 64 pixels) 



Figure 2.32 Calculated flow field in Sphere Experiment (Pan) (64 x 64 pixels) 



CHAPTER 3 

MOTION ANALYSIS 

3.1 Unified Optical Flow Field (UOFF) 

Over the last ten years, research shows that motion analysis has many potentials 

in the computer vision. In the vision system, the recovery of the motion of 

objects gives us the ability to estimate their speed and direction and then to 

navigate, recognize and track down objects. There are basically two different 

approaches to recover the structure of objects and the relative motion between 

objects and the cameras: one is the optical flow field approach and the other 

is the feature correspondence approach. 

The feature correspondence approach requires the solution of the feature 

detection and the correspondence problem, which has been proven to be 

computationally and conceptually difficult to solve. And only partial solutions 

suitable for simplistic situation have been developed. 

The optical flow field approach suggests us to use the distribution of 

apparent velocities of image brightness to recover the position and motion of 

the object which covers a large portion of the image. This approach achieves 

more robustness than feature correspondence approach at the expense of more 

computation in determine an optical flow. But the optical flow cannot be 

computed locally, and must be computed under some constraint, this results 

that the recovered optical flow field is not the true image flow field, so the 

more accurate the optical flow is calculated, the more efficient the motion 

analysis is. 

Recently, a new approach to motion analysis from a sequence of stereo 

images has been proposed. It is a generalization of the optical flow to stereo 

imagery, it is for a whole continuous field instead of only for some features, it 



does not need finding feature correspondence. It is based on a Unified Optical 

Flow Field (UOFF) conception. 

3.1.1 Imaging Space and General Brightness Function 

First, consider the formation of a normal image sequence and its brightness 

function. Assume a sensor located in a specific position in 3-d world space, 

that generates images about the scene one after another. When time goes by, 

the images form a sequence. The set of these images can be represented by 

a brightness function I(x, y, t), where x and y are coordinates on the image 

plane. This is also the basic outline of the brightness function I(x, y, t) used 

by Horn and Schunck in the Gradient-based Approach to calculate the image 

flow. 

Second, consider the formation of a more general image sequence and 

its brightness function. Assume there are many sensors instead of only one 

at a specific instant of time, and each sensor has its own different position 

to view the object in the image space, so we can not use the previous single 

brightness function I(x, y, t) to describe these different image planes, we must 

use some more sophisticated mechanism to describe them, so we introduce a 

set of brightness function 

I(x, y, t, g) 

which depends not only the spatiotemporal variables x, y, t of the image 

plan but also the position of sensor g, which contains the coordinates of the 

sensor center and the orientation of the optical axis of the sensor, so, .-5'  is a 

5-element vector 

AI', 0, 'Y) 

where l'' and ^ represent the coordinates of the optical center of the 

sensor in 3-d world space; 0 and -y represent the orientation of the optical axis 



of the sensor in 3-d world space. 

More specifically, each sensor in 3-d world space can be considered 

associated with a 3-d Cartesian coordinate system whose center is located on 

the origin of the sensor and whose optical axis is aligned with the OZ axis. We 

choose in 3-d world space a 3-d Cartesian coordinate system as the reference 

coordinate system. Hence, a sensor with its associated Cartesian coordinate 

system coincident with the reference coordinate system, has its position in 

3-d world space denoted by . = (0, 0, 0, 0, 0). An arbitrary sensor position 

denoted by g = (^, , , 13, -y) can be described as the following. The sensor's 

associated Cartesian coordinate system first has been moved from the origin of 

the reference coordinate system to @i, , on the reference coordinate system 

and then has been rotated with the rotation angles 13 about its OY axis, and y 

about its OX axis. 

The above two expressions can be used to describe the gray levels of the 

more general image plane. 

Then, assume a point p in 3-d world space that is projected onto the 

image plane as a pixel with the coordinates x p, yp. Since the xp, yp are also 

dependent on time t and sensor's position g, the coordinates of the pixel can 

be denoted by x p  = x p(t, g), y p  = yp(t,g). We can get 

/ = /(x„(t, .4), x p(t, g), t, g) (3.1) 

By far, we can consider the general brightness function varies with 

temporal variant -- time t and spatial variant -- sensor's positions . It has been 

shown that "temporal" optical flow field /(x„(t, 4+), x p(t, .4), t, g = 6) can be 

computed by using the technique developed by Horn and Schunck in Gradient-

based approach, and "spatial" optical flow field /(x,(t, g), x p(t, .4), t = 0, .4) 

can be analyzed by using the inherent relation between a pair of stereo images 

obtained at the same moment. A Unified Temporal-Spatial Optical Flow 



Figure 3.1 Four Frame Model 

Field (UOFF) /(x,(t,.-.5), x p(t,:§'), t, g.) is formed by combining these two types 

of optical flow fields. The word "temporal-spatial" is omitted thereafter for 

brevity. 

3.1.2 A Four-Frame Model for UOFF 

From the definition of UOFF, we know that the unified optical flow field 

has two variants -- time t and sensor's center position .-5'. Here we describe 

the procedure to obtain one specific unified optical flow field based on the 

four-frame model. 

Figure 3.1 shows the four frame model. The four images shown here are 

chosen from a stereo image sequence where image (a) and (c) are taken by the 

left camera at moment t and t1  = t + At, image (b) and (d) are taken by the 

right camera at time t and t1  = t + At, respectively. 

The following is the explanation of how to establish the unified optical 

flow field. 



• Consider the images (a) and (c) 

These are the two images taken from the monocular image sequence 

generated by using the left camera. Consult the method of Horn and 

Schunck, we can get the following two equations: 

(t)2u/ + t
iy

i vi = (4:v2u/ — tp
t (3.2) 

o
y
i ut + (4/ )2ve = (qv2v/ _ /L

it
/ (3.3) 

where u1  A-  linist,o 6L6c = ddxti , the velocity of the pixel (xl, y1 ) along the 

x1 direction, and v,  4 limst,o 81- = dc 
 l, the velocity of the pixel (xl, yi) 

along the y1  direction. /x1 4 ap(
a
xy,t) , Iv/  A apcxy,t)

,1
1  A ap(xatt,y,,t)  are the 

partial derivatives of Il(xl, y1, t) with respect to x1,y1  and t, respectively; 

p2,,,/ A 82111   +  a2tit  and v2vi ° a2vi  + °2v1  are the of ul and vi, — (a02 (ay/)2 — (ax02 oyo2 

respectively. 

The smoothness constraint can be used in the derivation of the above two 

equations and the first order derivative of P(xl, y1, t), i.e., I, IL, Il can be 

determined from image data /1 (xl, yl, t) and //(xi, yi, t + At). Therefore, 

u1  and vi can be solved from the above two equations. 

• Consider the images (b) and (d) 

These are two images taken from the monocular image sequence gener-

ated by using the right camera. Similarly, we can get the following two 

equations about ur and vr: 

(47.)2ur + 
ix

r
iv

rv, = aiv2ur _ Tx (3.4) 

ix
r
/y

rur + ( 
jy
r)2vr = q02vr i

y
ri

t
r (3.5) 

where ur, vr, Imo, I;, ri,v2ur  and V2vr are the counterparts of u1, v1, Px, /,', 
il,  v2u/ and V2v1  defined in the above step respectively. The comments 



Figure 3.2 Image Geometry of Spatial Sequence 

made in the above step are also applicable here. Similarly, ur and v' can 

be solved from the above two equations. 

Up to now, we can compute two sets of temporal optical flow velocities, 

one is u1  and v1  associated with the left monocular image sequence, 

another is ur and yr associated with the right monocular image sequence. 

• Consider the images (a) and (b) 

These are the two images from the bicular image sequence associated 

with left and right camera. These images can be viewed as a "spatial" 

sequence of images with the moment "fixed" in the time domain. 

Before considering a "spatial" sequence of images, the different posi-

tions of cameras in space at a specific moment should be predicted, we 

don't want to use too sophisticated mathematics to describe the camera's 

movement, so the left camera is fixed and only the right camera moves 

in this case, Figure 3.2 shows that. 

From the Figure 3.2, the movement of the right camera can be viewed 



as the translation of the lens center O' following by the rotation of the 

optical axis O' Zr. The rotation of Or Zr is about or.  Yr . The displacement 

of Or along OX and OZ direction are denoted by St and respectively. 

The angle displacement of OrZr about OrYr is denoted by #. However, 

= 0 when that Or lies on OX is assumed. Define 

8,3  A .\
.
/V + x269, 

A 
sr 1 

= 

--  X is a characteristic length chosen according to image setting. 

Ss is a measurement of the variant of the right camera's position 

with respect to the left camera's position, i.e., the variation of the 

position of the right lens center Or with respect to that of the left 

lens center 0 and the orientation of the right optical axis Or Zr with 

respect to that of the left optical axis OZ. 

▪ s' is the left camera's position. 

Sr is the right camera's position. 

Also define 
A 
= xr — xl  

by 
yr yi 

▪ sx is the horizontal coordinate difference of the image point on the 

right and left image plane, corresponding to the same point in 3-d 

world space. 

-- 6y is the vertical coordinate difference of the image point on the 

right and left image plane, corresponding to the same point in 3-d 

world space. 



Corresponding to the same point in 3-d world space, the invariance of 

the brightness of a pair of image pixel can be illustrated by the following 

equation 

P (xl  Y i  ,t)ls=st = Is  (xr  Yr,  , t)ls=sr (3.6) 

Since Sx xr — x1  and Sy yr — y1, and using Taylor's series, the 

following equations can be obtained 

is(xr, yr, = is(xl  + Sx, y1  + Sy,  0155+8, 

= Is (xt , yl,t)l s_si +  x + Sy + Ss + E 
aX all as 

Following the above steps, it shows that 
ap az' 

 x + Sy 
as 

+ Ss + E 0 (3.7) 
aX ay  

Dividing the both sides of the above equation by Ss, and let Ss 0, 

considering the fact that E contains the second and higher order terms of 

S x,Sy and 8.5, we can ignore the term E/S8 when Ss 0, this gives 
ail 

us -F
ii

vs + 
ap 

0 (3.8) 
ax as 

where 
s o 6x 

u = .11M 
Ss 

- Sy 
vs — 

b-s-0 Ss 

all 0 
llm 

is (xl ,  y1  , 01,„ — Is (xl  , yl , Os, 
as 5,,o Ss 

F(xl ,yl,t) — (x1  , yl ,t) 
IV  

Ss 

Using the same method which is used in Horn and Schunck's approach, 

the following equations can be derived to solve the two unknowns us and 

vs 

(4)2u, + 
jx

/
iy

i vs = a3v2us (3.9) 



(4/)2vs = a3v2v, — 
Iyls (3.10) 

• Consider the images (a), (b), (c) and (d). 

So far, an unified optical flow field can be established with consisting 

of the following six field quantities: ul,v1,ur,vr,us,vs which can be solve 

from the following equations (which are just conclusion from the above 

steps) 

( is
i)2u/ = aT,v2u/ — oi

t
• (3.11) 

I I,u1 (i-D2v/ = ce1V2v/ — yI (3.12) 

(K)2ur rx1;vr = a1v2ur — (3.13) 

1-77-
yu

r ▪  (1-yr)2vr = 4v2yr .Tyri; (3.14) 

(i
x
t)2u. tiyivs = a302us (3.15) 

i-
x
/ /Le  • (i

y
i)2v., — /Li

s
/ (3.16) 

By using the calculus of variation and using the approximation to the 

Laplacian, linear equations can be derived from the above equations for 

variables u1, v1, ur, Vr, U s, Vs, solving these linear equations, we can find 

that 

▪ (t)2 + (iD2)71/ +(a? + (
Ty
/ )2)7 — px/yi,17  — p

x _Ti
t 

(3.17) 

+ (.02 + (//
y
)2) y/ =___ (c + (.02)t7 — (3.18) 

(al (-1;)2  (-Tyr)2)ur = +(cq (-1;)2)Y -rr1;°7  KIT (3.19) 

(a? + (K)2 + (I)2)vr = (cq + (K)2),17- / •yr (3.20) 

(i;)2 (-4s)2)us  = +(eq' (i:)2)t-T-9  /;/:7-79  i;rt5 (3.21) 

(c4 + (.1;)2 + (/02)y.5 = + + (412),F, — ,Tysi (3.22) 



Finally, image velocities u1, v1 , ur, V r ,  , us , V s  can be computed with iterative 

procedure 
r6  

(u
ly+1 (7)n x 

x

11  (77)n 

-4  2

(W) 

(1-02
Il (3.23) 

(v9r0-1  = II  x
(ui). 

(3.24) 
Y ? + (.02 4.. 

(vi) 

{I y) 
r(2,7)n 

+ 

I yr  (77)n  + 
(3.25) 

(uln+i @TT —    
X al + (4)2  + (4)2 

Ti r  (vr)n+1 (77F)n Iy 
I( 

(3.26) 
) ai

t + Iy(7)n  + 

 4-  (4)2  ± (4)2 

s  (us)n+i =. (7.73-)n —  
I x (175)n  1:(Fi)n 

(3.27) 
a? 4_ (4)2 + (49)2 

(771-3)n vs (Fy 
(vs)n+1 07)n

—  
 s 

(3.28) 

Y ai + (4)2  + (-4 2  ) 

3.2 Equations for Analysis of 3-d Motion Field Based on UOFF 

In this section, it will be shown that when the six UOFF quantities 

ui,vi,ur,v,,us,vs are given, the six motion field quantities X,Y,Z,X,Y,Z are 

easy to be obtained. That also means the six field quantities ul,u1,ur,vr,us,vs 

contain enough information to recover the motion in 3-d world space. It's 

obvious that xl,y1,xr,yr are the input data for the input image sequence. 

In this thesis, two cases of object movement are considered: one is 

the object moving around corresponding to the optical axis of the fixed left 

camera, the other is the object moving normal to the optical axis of the fixed 

left camera. 

3.2.1 Imaging Geometry 1: Rotation 

It should be noted that the six UOFF quantities ul,ui,ur,vr,US,VS are known, the 

six motion field quantities X,Y,Z,X,Y,X are unknown. 



Figure 3.3 The Perspective Projection of The Left Camera 

About rotation moving, the image geometry can be considered as Fig-

ure 3.2. Assuming a point in 3-d world space, its coordinates in the two 

coordinate systems are (X, Y, Z) and (X r , Yr , Zr) which have the following 

relation 
Xr X 

Yr = R x Y T) (3.29) 
Zr 

where R is a rotation matrix and T is a translation vector. 

cos9 0 —sin° —1 
R= 0 1 0 T= (0 

sin& 0 cos° 0 

Figure 3.3 shows the perspective projection plane of the left camera. 

Before any further discussion, one assumption should be remembered that the 

discussed world point is far away from the camera in the whole thesis. 

Following from the geometry optics, the relation between the world point 

P(X, Y, Z) and its image point pi (x,y) is that 

1 f l  v 
X =

Zl 
y = (3.30) 



Similarly, the relation between the world point P(X, Y, Z) and its image 

point pr (x, y) is that 

xr = f 
zr 

 X' yr = fr
r 
 Yr (3.31) 

Z 

Assuming f 1  = fr = f in this thesis, and using the relation between 

(X, Y, Z) and (Xr,  ,Yr , Zr), the following results can be gotten 

x / =  f —x (3.32) Z 
1 f 

Y 
=    ZY 

(3.33) 

xr = f xr 
Zr 

= f (x — °cos() —  Z sine 
X sine + Zeos0 

(the far field assumption Zr •---..,- Z) 

--:.-. ((x — ° case — Z sine) (3.34) 

yr f _ yr 

Zr 

(condition Yr = Y and Zr ::-..,- Z) 

f —Y (3.35) 
Z 

The relative relation between X and Z can be derived from Z ,,-..--, Zr, it can 

be proved as the following: 

Z ,,-„- Zr 

= Zcos0 + Xsin0 

(divided by Z on both sides) 

1 R-_,' cos° + —
z

sine 

(do calculation on both sides) 

X _ 1 — cose 
(3.36) 

Z — sine 



Following the definition of us = lims,_,0  .86i. 

us 1 sx 8x 
7 = — hm — ,,,, _

1 _  
f 6,0 Ss f Ss 
xr — xl  1 =  

f Ss 
f XT X1 ) 1 

- Zr Zi 02 + x2 02 

_ ((X1  — l)cos0 — Zi  sine X' ) 1 
Zr Zi 02 + x202 

(assumption Zr R,- Z, X1  = X, Z1  = Z) 

,
,._ ((X — °cos° — Zsine X) 1  

Z Z 02 + x202 

_ (Xcos0 — lsznO — Zsin9 — X ) 1 
Z i 1 112 + x202 

_ XcosO — X lcos0 1 (  
 sine)  

Z Z 02 + x202 

X 1 — cost) ) 
(using -2-- R-  

sine  

(
lcos0 

+ sine +
1 — cog) 

(1 —cost))) 
1  

Z sine 02 + x202 

lcose (sin0)2  + 1 — 2cos0 + (cos0)2  ) 1  
= ( Z + sine ) N112 + x202 

/cos° 2(1 — cost))) 1  
= ( + (3.37) 

Z sine I  02 + x202 

Up to now, Z can be solved from the above equation, the procedure is 

us 
- 

( /cos° 2(1 — cas0) ) 1 
+ -._, 

f Z sine I  02 + x202 

/cos() us, 2 + x202 2(1 — cost)) 

Z f sznO 
ussin002 + x202 + 2f (1 — cost)) 

= (3.38) 
f sine 

The final result about Z can be computed as following 

fisinecos0 
Z =  (3.39) 

us sole 1.112  + x2  02  +2f (1 — cos 0) 



From the previous derivation, we have 

X = 
xZ 

(3.40) 

yl Z 
Y = — (3.41) 

Following the definition of u1  and Ur,  , 

6x1 dX1 
ul lint -=-  

6t--4:1 St dt 

hill Ur = 
Sx' dxr 

 =  

6t.-0 St dt 

It's obvious that 

1 / 1 dxl d(1) d(P  
fu = 

f dt dt dt 

d(-4-) 

dt 
XZ — X Z. 

(3.42) 
Z2  

1 
= 1 

dxr d(f.)  
f dt dt dt 

(X-i)co so-zstne) 
z 
   

dt 
(XeosO — ZsinO)Z — ((X — Ocos0 — ZsznO)Z 

Z2  

=_ XZeos0 — ZZ sin° — X Zcoss9 +1ZcosO ZZsznO 

Z2  
XZcos0 — X Zcos0 1Zcos0 

Z2  
XZ Z

2

— 1Z 
cos° 

z2
cosi9 

(using the equation 3.42) 

/Z 
= —

1
u

/
case —

z2
cos0 (3.43) 

From now on, the Z can be solved from the above equation 3.43 

14 
z2

cos0 =
1

ulcos0 —
1

a" 



z2 ur — cos° ) 
=  (3.44) 

f leosO 

It follows from Equation 3.42 that 

= XZ- lZ u 
(3.45) 

Z f 

By the definition of vi, vr, 

v = 
/ 

lim 
Sy1 dyl 

 =  
6.-t-,0 St dt 

vr  A lim Syr  — dyr 
St-03 St dt 

and using the property of this image setting Y = Yr , we know that vr = vt 

1 1 dyl 
vl  = 

f dt 

d(z)  
dt 

YZ-YZ _=  
Z2  

Y Z- 
= 

Z Z2 
(3.46) 

From Equation 3.46,Y can be obtained as 

YZ viZ vrZ Y = = (3.47) 
Z f Z f 

Here is summary equations for recovering the six 3-d motion field 

quantities 

flsinOcos0 
Z = (3.48) 

us sin \ l2  + x2 02 + 2f (1 - cos 0) 

xl Z 
X = f (3.49) 

Y = 
Z  

f (3.50) 

z2  (ur — cos 19)  
Z = (3.51) 

f 1 cos 0 
X Z- ul Z 
Z f 

X =  (3.52) 

Y Z Z  
Z f 

Y = (3.53) 



Figure 3.4 Imaging Geometry-2: Parallel 

3.2.2 Imaging Geometry 2: Parallel 

The parallel imaging geometry can be considered as Figure 3.4. Assuming 

a point in 3-d world space, its coordinates in the two coordinate systems are 

(X, Y, Z) and (X r, Yr, Zr) which have the following relation 

( Xr ) ( ( X 
yr = y + T (3.54) 
Zr Z 

where T is a translation vector: T = 0 ( 
0 

It is worth noticing that the perspective projection of the left camera is 

almost the same case as the rotation imaging geometry which is shown in the 

Figure 3.3. The same assumption that the world point is far away from the 

camera. The only difference is 8s , which is the measurement of the variant of 

the right camera's position with respect to the left camera's position. 

68  A ir + x20,2 

(where in this case 0 = 0) 

= V (-02  = Ill 



Similarly, following the definition of us = limss_.o --68xs , the below derivative can 

be reached 

us = 
i 

1 . (5x - —r  hin 

f 
e  

8s-4:) OS 

1 8x 

f 63 
xr xi 1 

= f Ss 

_ ( Xr X1 ) 1 

— Zr Z11 111 

(Usingassumption Zr .--:,- Z1  = Z) 

,z, 
( (X 1) xl 

z z' Ill 
1  

= 
ZI/1 

(3.55) 

Also,following the definition of u1 and Ur , 

1 
i 

A , Sx1 dx1  
u -= im = 

st-,0 St dt 

A i . xr dxr 
ur = Lail — = 

st,0 St dt 

It's obvious that 

1 / 1 dxl d(0 
u = 

f f dt dt 

d(-}',) d(1)  
= dt dt 

XZ - X X 
=  (3.56) 

Z2  

1 1 dxr d(xi) 

f
ur =  

f dt dt 

= d(-1-:-..) d((x  z-1)) 

dt dt 
= XZ-X.X-flZ 

Z2  
XZ-X.X. 

+
1Z 

Z2 Z2 



(uszng the equation 3.56) 
LZ 

= —
1

7/1+  (3.57) 
f z2  

From now on, the Z. can be solved from the above equation 

Z2(ur — ul) 
Z =  (3.58) 

f 1 

Referring to the previous section to get more detail for the derivatives, 

the following six equations can be derived to solve the six unknown motion 

field quantities 

Z = of (3.59) 
i 
1 
/ 1 

l  Z 
X = 

x 
(3.60) 

f 
1 z 

Y = 
Yf 

(3.61) 

Z2  (ur — ul ) 
z = (3.62) 

f 1 

X =  
X Z + 

 f 

ul  Z 
(3.63) z  

V = 
Z 
 ± 

f 

vl  Z 
(3.64) z  

3.2.3 Imaging Geometry 3: Slant 

In the slant imaging geometry, 0 is the degree between the slant and the normal 

to its line of sight, it is very close to the parallel case, except the assumption 

Zr = Z can not be used while calculating the velocity us. This problem rises 

when I try two different methods to recover the correct position of the object, 

one method is using the perspective projection directly to recover the position 

and the other is using the same program to recover the object's position when 

the input data is the correct velocities instead of calculated velocities. The 

relative error of the two "correct" results is usually less than 1%. But when I 



Figure 3.5 Imaging Geometry-3: Slant 

try this method in slant imaging geometry with the assumption Zr = Z1  = Z, 

the relative error of the two "correct" results increase to 5%. To solve this 

problem, another set of equations is derived here. 

The slant imaging geometry can be considered as Figure 3.5. Assuming 

a point in 3-d world space, its coordinates in the two coordinate systems are 

(X, Y, Z) and (Xr, Yr, Zr) which have the following relation 

( Xr ) ( ( X 
yr = I/ + T (3.65) 
Zr ) Z 

1 where T is a translation vector: T = —0 ( 
—ltanO 

The measurement of the variant of the right camera's position with respect 

to the left camera's position Ss can be expressed as Ss 4 \/(-02 = 111. 

Similarly, following the definition of us = li1118,0 -66-s„ the below derivitive 

can be reached 

us 1 ,. Sx 
= — nm 

f f ss-0 bs 
1Sx — 
f Ss 



xr — xl 1 =  
f Ss 

, (Xr X1  1 
Zr Z1 )  Ill 

(can, not use assumption Zr ,--:_-, Z) 

= (  
Z —ltanO Z ) 1 1 1 

___. —1Z +1XtanO  1  
Z(Z — ltanO) Ill 
—1+ 11 tan° 1 

=  
Z —ltan0 111 

So, the expression for Z can be obtained as below 

1  Z = 1 tan 0 + (-1 + —
x 

tan 0) 
f usf 111 

Similarly, the following six equations can be derived to solve the six unknown 

motion field quantities in this image geometry 

Z = 1 tan 0 + (-1 + f —
x 

of 
1 
I 
 1 

tan 0) (3.66) 
1  

x 
x =

l  z  
f 

(3.67) 

yl Z 
Y = (3.68) 

f 
z2  (ur — ul) 

z = 
f 1 

(3.69) 

X =  
X Z 

d-f
ul  Z 

(3.70) Z  

Y = 
Y Z 

+
1Z  v 

(3.71) 
Z f 

3.3 Experimental Techniques and Results 

Similarly to determining the optical flow, three experiments are made here 

to implement recovering motion of objects. These experiments are based 

on three image geometries discussed above, one is rotation moving, one is 

parallel moving and the other is slant moving. The settings of experiments are 



the same as used in determining the optical flow, see Figure 2.3, Figure 2.8, 

Figure 2.13. Referring to Experiment I, Experiment II, Experiment Ill made 

in chapter 2, more detail about settings of experiment, input image sequence 

and correct optical flow can be obtained in the same way. Also using the 

information of correct optical flow, correct motion of objects also can be 

obtained.Error measurement (relative error measurement and angular error 

measurement) are also used here to analyze the performance of this newly 

proposed approach. The results are shown in Table 3.1 and Table 3.2 . 

Following is the notations used in these Tables. a --- a weight factor 

between the measurement for the rate of change of image brightness and the 

measurement for the departure from smoothness in the velocity flow. sw ---

means the search window. cw --- means the correlation window. gm  ---

means the Gaussian mask. deviat --- means the deviation for the statistical 

characteristic. 1,2,3,4 --- mean the 1st, 2nd, 3rd and 4th image used in these 

experiments. * --- means the best approach among these three approaches 

corresponding to one specific experiment setting. 

From the results shown in the Table 3.1 and Table 3.2, the following 

observation can be developed. 

• Angular measure of error be  cannot be used here, it is meaningless when 

there is no way to measure angular deviation just from one direction. 

• Rotation geometry algorithm works very well in motion analysis to 

recovering object position, this can also be proven qualitatively. 

It's known that 

flsinOcos0 
Z =  

us sin  0 \112 + x2 02 + 2f (1 — cos 0) 

where u*s = us 02  + x2 02//s  is used in this thesis, Z can be expressed in 



the below 

Z = — 
f lsin0 cos° 

u*s sin° lx  + 2f (1 — cos 0) 

dZ = flsinOcosOsznels  
_- 

d u*s (u*s sin 0 lx  + 2f (1 — cos 0)) 2  

(Using the known parameters in this setting) 

12.5(-47.2) sin(-2.5) cos(-2.5) 0.05588 szn(-2.5) 
(u*s 0.05588 sin(-2.5) ± 2 x 12.5(1 — cos(-2.5)))2  
( u*s ranges from 0 to — 0.9444) 

(Using u*s = —1(pixel I second)) 

_ 0.063067497  
— (0.02623146)2  
..!, 90 (mm - second/pixel) 

• On the other hand, parallel geometry algorithm works poorly in motion 

analysis to recover object position, it can also be proven qualitatively. 

It's known that in this geometry, Z = ufi lii , similarly, u*s = us -0-2//x  is 

used in this thesis, Z can be expressed as Z = uLlix . 

dZ =_ f 1 1 

d u*s lx  (u*s)2 

= 30.2.2 1 
- 

0.05588 (-1.3895)2  
,---,: 700 (mm • second/pixel) 

Comparing the above two results, it is shown that parallel imaging 

geometry algorithm is much more sensitive to the image flow error than rotation 

imaging geometry algorithm. The parallel imaging geometry algorithm is not 

suitable to recover the object's position. 



Table 3.1 Results of Relative Error (as to position P(X,Y,Z)) 
Gradient-based 
approach 
Using image 2,3 

Correlation-based 
approach 
Using image 1,2,3 

Correlation-feedback 
approach 
Using image 1,2,3 

Iteration = 128 
a = 10 

Iteration = 25 
sw = 9 x 9 
cw=5x5 
gm = 5 x 5 

Iteration = 12 
Horn-iteration = 30 
sw = 5 x 5 
cw=3x3 
gm = 3 x 3 

E e  E e  6e 

Z 0.021877 * 0.031524 0.039566 
Sphere X 0.022025 * 0.041414 0.051873 

Y 0.022854 * 0.046481 0.053264 
Z 26.399652 212.485062 0.197676 * 

Plane X 7.930244 42.965904 0.166631 * 
Y 9.426798 275.560822 0.176282 * 
Z 2.424380 12.290870 0.387771 * 

Slant X 1.946272 3.682637 0.317726 * 
Y 2.130626 13.863711 0.548148 * 

Table 3.2 Results of Angular Error (as to position P(X,Y,Z) ) 
Gradient-based 
approach 
Using image 2,3 

Correlation-based 
approach 
Using image 1,2,3 

Correlation- 
feedback approach 
Using image 1,2,3 

Iteration = 128 
a = 10 

Iteration = 25 
sw = 9 x 9 
cw=5x5 
gm = 5 x 5 

Iteration = 12 
Horn-iteration = 30 
sw = 5 x 5 
cw=3x3 
gm = 3 x3 

0 0 0, 
average deviat. average deviat. average deviat. 

Z 0.00108 0.00052 0.00099 0.00137 0.00145 0.00129 
Sphere X 0.04253 0.06494 0.02868 0.05539 0.05608 0.10156 

Y 0.04854 0.06252 0.03594 0.06160 0.04515 0.05112 
Z 1.26144 14.8655 0.01816 0.00121 0.00762 0.00542 

Plane X 3.42467 14.1641 1.59044 1.67008 0.66902 0.83359 
Y 3.88653 14.2059 1.85745 1.88311 0.83339 1.05078 
Z 0.24622 6.35666 9.35175 39.8839 0.01083 0.00876 

Slant X 2.24361 6.80466 9.94329 35.1677 1.04929 1.88105 
Y 2.33847 6.71815 11.1416 38.2559 1.02869 1.29566 



CHAPTER 4 

CONCLUSION 

Through studying three different approaches to determination of optical flow 

and implementing the associate experiments on real image sequences, some 

general observations can be obtained as follows. 

The gradient-based approach is based on the first order derivatives of 

the image intensity. Optical flow can be computed by two assumptions: 

one is intensity-constancy assumption and the other is smoothness-constraint 

assumption. But it must be noted when implementing this algorithm, the 

smoothness-constraint assumption is not true on the boundaries in images. 

The primary difficulty for the gradient-based approach arises from the fact that 

they are only suitable when the displacements are small compared with the 

scale of the image intensity variations. However, this requirement is not easily 

met in real image sequences due to the low temporal sampling rate. That is, 

because of the limitation of quantization and resolution, the temporal sampling 

rate cannot be high, otherwise the scale of the image intensity variation would 

be too small to calculate the optical flow [3]. The gradient-based approach 

should perform well when boundaries are not too sharp. Experiment I --

Sphere experiment discussed in this thesis proves this observation. 

The correlation-based approach is in fact the correlation matching process 

using sum-of-squared-differences match measurement. The estimate of image 

velocity can be computed by using the weighted-least-squares estimation. 

Propagation procedure has to be used to reduce errors, actually the propagation 

procedure does a much better job of preserving the boundary discontinuities 

than the gradient-based approach. However, one of the main problems 

with the SSD-based matching techniques is lacking the ability to estimate 



displacements which are not the multiple of pixels (one pixel distance is the 

distance between two consecutive pixels). For image movement involving 

integers or near integer numbers of displacement, they appear to perform well, 

but when the motion involves velocities involving a fraction of the pixel, the 

estimated displacements are often poor. 

The correlation-feedback approach, which is based on the correlation-

based approach and the idea of feedback, can obtain continuous image by a 

bilinear interpolation of digital image. It can recover the true image vectors 

that are not equal to integer pixels, and can make the system robust to noise, 

and thus raising the estimation accuracy. It can be considered as an improved 

correlation-based approach. These two correlation approaches can do well for 

texture picture, and correlation-feedback approach can do better when correct 

image vectors are not integer number of pixels. Experiment II and Experiment 

III prove this observation. 

It is worth noticing that correct optical flows are needed when the error 

measurements are used. So far, the unit along the x direction --- the distance 

between two consecutive pixels along the x direction --- and the unit along 

the y direction --- the distance between two consecutive pixels along the x 

direction --- (task of calibration) are not really "correct", and the distance 

between camera and object is still questionable. How to obtain the correct 

unit along the x and y directions and the distance between the camera and the 

object is another research subject. That's why that the correct optical flow is 

"roughly" calculated in this thesis. 

As to the correlation approaches, the two-step procedure is only based 

on a pair of images or a sequence of three images. But it is difficult to obtain 

high accuracy due to noise, digitization error, etc. Many applications require 

that the estimation algorithms can operate in an on-line and incremental 



fashion. Therefore in this step, the future approach will be developed based 

on UON,  and Kalman filter. Kalman filter is a powerful technique for doing 

incremental, real-time estimation in dynamic systems. It allows the integration 

of information overtime and it is robust with respect to both system and sensor 

noises. In the near future, Kalman filter will be used to do motion analysis 

based on a sequence of many consecutive images. 

What have been accomplished in this thesis work can be summarized 

as follows. In this thesis, three different approaches to determining optical 

flow and the unified optical flow field method to estimate motion parameters 

have been studied thoroughly. Two sets of equations for analysis of 3-d 

motion field based on UOFF, corresponding to parallel imaging geometry 

and slant imaging geometry, have been derived. Experiments for optical flow 

determination and motion analysis are conducted on real image sequence input 

data. 



APPENDIX 

DERIVATION OF FORMULAE AND C PROGRAMS 

The following is the derivation of formulae for calculating correct velocities 

in rotation geometry. 

Figure APPENDIX.1 and Figure APPENDIX.2 show the setting and 

perspective projection for calculating correct velocity, and the following 

equations can be established from the above Figures. 

x2 y2 z2 

a2 b2 2 = 1  

x f 

X D—Z 

Y f  
Y D—Z 

where P(X, Y, Z) is one point of the object in 3-d world space, p(x,y) 

is the corresponding point of the image in 2-d image plane, f is the focal 

length of the CCD camera, D is the distance between the optical center of 

the camera and the object, a is the long radius of ellipse, b is the short radius 

of ellipse. After rotating AO degree, P(X, Y, Z) becomes P2 (X2, Y2, Z2) and 

p(x,y) becomes p2(x2, Y2)• In this problem, p(x, y) is known and p2(x2) Y2) is 

unknown. In the procedure of solving this problem, X, Y, Z ,X2,Y2 and Z2 are 

used as the auxiliary variables. 

The procedure of solving this problem can be described as the following 

b2x2 a2y2 b2Z2  a2b2 

b2( x(D —  Z) y(D — Z) \  
)2  + a2( )

2 
Z` = a2b2 

b2x2(D — z)2  a2y2(D  — z)2 b2 f222 a 2b2 f2 

(b2x2 + a2y2 b2f2)z2 2(2x2 a2y2)DZ  (b2x2 a2y2)D2 a2b22 =_ 0 



Figure APPENDIX.1 Setting for Calculating Correct Velocity 

Figure APPENDIX.2 Perspective Projection for Calculating Correct Velocity 



For the sake of simplicity, let 

A ____ b2x2 + a2y2 + b2f2 

B = —2(b2  x2  + a2  y2) D 

C = (b2x2  + a2y2)D2 — a2b2f2 

So, the auxiliary variable Z can be calculated as the following 

—B +  V B2  — 4AC 
Z = 

2A 

It is worth to notice that Z = -B-V2BA2-4Ac  can be ignored since just one 

point which is near the camera should be used. 

So far, given one point of image in the image plane, the corresponding 

point in 3-d world space can be calculated as the following 

Z = —B + \I B2  — 4AC 
2A 

X = 
x(D — Z)  

f 

Y = 
y(D — Z)  

f 

Rotating AO degree, the relation between P (X ,Y, Z) and P2(X2, Y2, Z2) 

can be described as 

(

X2 cosAO 0 —sinAO X 
Y2) = ( 0 1 0 ) x ( Y 
Z2 sinAO 0 cos00 Z 

The relation can be derived as the following. 

First, it can be assumed that 

X = p since cose 

Y = p coscp 

Z = p since sing 



Then, if the ellipsoid rotates count-clockwise, it can be gotten 

X2 = p since cos (° — AO) 

= p sin (cos0 cosAO + sin° sinA0) 

= p since cos0 cosAO + p since sing sinAO 

= X cosAt9 ± Z sin00 

Y2  = p coscp 

= y 

Z2  = p since sin(0 — AO) 

= p sinco(sin0 cosAO — cos° sinAO) 

= p sin' sin0 cosAO — p since cos° sin00 

= —X sinAO + Z cosAO 

From now on, the p2(x2, y2) point can be computed as 

.f X2  x2  = 
D — Z2 

.f Y2  
Y2 = D — Z2  

Assuming the time interval between one frame and the next frame is 

one second, then the correct optical flow Cc(uc, vc) can be calculated as 

it, = A x = x2  — x (pzxel I second), vc = A y = y2  —  y (pixel/ second). 

The following is the C program for calculation of correct velocities in 

rotation geometry. 

/* 
* To calculate the correct motion of an ellipse image. 
*/ 

#include <stdio.h> 
#include <math.h> 
#include <rasterfile.h> 

/* The unit length per pixel in the image plane */ 



#define UNIT _X (0.01397 * 4.0) 
#define UNIT Y (0.0116416 * 4.0) 

int sizex,sizey; /* the size of the image */ 

float D,f; /* the parameters of the geometry of the camera */ 

float theta; /* the rotate angle of the ellipse */ 

float a,b,aa,bb; /* parameter of the ellipse in image plane */ 

typedef struct 

{ 
struct 

{ 
float x, y; 

} point; 
struct 

{ 
float X,Y,Z; 

} Point; 
} mapping; 

typedef struct 

{ 
float delta_x; 
float delta y; 

} velocity; 

/* 
* Map a point in the image plane to the real world. 
*/ 

void MapFrom2Dto3D (map) 
mapping *map; 

float Z; 
float tmp = b * b * map -> point.x * map ->point.x 

+ a * a * map -> point.y * map -> point.y; 
floatA= tmp +b*b*f*f; 
float B = -2 * D * tmp; 
floatC= tmp *D*D-a*a*b*b*f* f; 

/* here, we solve the classic quadratic equation 
A * Z ^2 + B * Z + C = 0; */ 

float delta =B*B- 4 * A * C; 
if ( delta < 0 ) 

panic("No real solution in this problem. \n"); 



map -> Point.Z = Z = (- B + sqrt ((double)delta))*0.5 / A; 
map -> Point.X = - map -> point.x * ( D - Z) / f; 
map -> Point.Y = - map -> point.y * ( D - Z) / f; 

1 

/* 
* The motion on the image plane at (x,y), see the comments 
* of MapFrom2Dto3D 
*/ 
void motion (x,y,vp) 
float x,y; 
velocity *vp; 

{ 
mapping map; 
float X1,Y1,Z1, X2,Y2,Z2; 
map.point.x = x; 
map.point.y = y; 

MapFrom2Dto3D ( &map ); 
X1 = map.Point.X; 
Y1 = map.Point.Y; 
Z1 = map.Point.Z; 

X2 = X1 * cos (theta) - Z1 * sin (theta); 
Z2 = X1 * sin (theta) + Z1 * cos (theta); 
Y2 = Y1; 

vp -> delta _x = -f * X2 / (D - Z2) - x; 
vp -> delta_y = -f * Y2 / (D - Z2) - y; 

1 

int on the_ellipse (x,y) 
float x,y; 

{ 
if ( ( x * x / +y*y/ bb ) <= 1.0 ) 

return 1; 
return 0; 

} 

main(int argc, char **argv) 
{ 
struct rasterfile head; 
char *on_it; 
int fd1,fd; 
int i,j; /* the integer i, j coordinates of the image,*/ 

/* (0,0) is the upper-left corner.*/ 
velocity v; 
float *vels,x,y; 



if ( argc != 9 ) 
panic("Usage:a.out sizexsizeyabDftheta output.\n"); 

size_x = atoi (argv[1]); 
size_y = atoi (argv[2]); 
D = (float)atof (argv[5]); 
f = (float)atof (argv[6]); 
theta = atof (argv[7]) * MPI / 180.0; 
a = (float)atof (argv[3]) * UNIT _X *D / f; 
b = (float)atof (argv[4]) * UNIT_Y *D / f; 
as =f*f*a*a/ (D*D ); 
bb =f*f*b*b/ (D*D ); 

if ( (vels = (float *)malloc(size_x*size_y*sizeof(velocity) 
+ sizeof(float) * 6) ) == NULL) 

panic("Not enough memory.\n"); 

head.ras_magic = RAS_MAGIC; 
head.ras_width = size_x; 
head.ras_height = size_y; 
head.ras_depth = 8; 
head.ras length = size_x*size_y; 
head.ras_type = RTSTANDARD; 
head.ras_maptype = RMT NONE; 
head.ras_maplength = 0; 
if ( (on_it = (char *)malloc(size x * size y) ) == NULL) 

panic("Not enough memory.\n"); 
if ( (fdl = creat("on_it" , 0644) ) == -1) 

panic("Wrong when create on_it file.\n"); 
write (fdl , &head, sizeof(head) ); 

vels[0] = vels [2] = size_x; 
vels[1] = vels [3] = size_y; 
vels[4] = vels [0] - vels [2]; 
vels[5] = vels [1] - vels [3]; 

for ( j = 0; j < size_y; j++ ) 
for ( i = 0; i < size_x ; i++ ) 

{ 
x = ( i - size_x / 2.0 ) * UNIT _X ; 
y = ( -j + size_y / 2.0 ) * UNIT_Y; 
if (on the_ellipse(x,Y) ) 

{ 
motion(x, y, &v); 
vels[ j * size_x * 2 + i * 2 + 6] 

= v.delta_x / UNIT_X; 
vels[ j * size_x * 2 + i * 2 + 6 + 1] 

= v.deltay / UNITY; 



on_it[ j * size_x + i] = 0xff; 

} 
else 

vels[ j * size_x * 2 + i * 2 + 6 ] = 0.0; 
vels[ j * size_x * 2 + i * 2 + 6 + 1 ] = 0.0; 
on_it[ j * size_x + i ] = 0; 

1 
1 

if ( (fd = creat (argv[8] , 0644) ) == -1 ) 
panic("Wrong when create the on_it file.\n"); 

if ( write (fd, (char *)vels,size_x*size_y*sizeof(velocity) 
+ sizeof (float)*6 ) 

!= size_x*size_y*sizeof(velocity) + sizeof(float)*6 ) 
panic("Wrong when write the on it file.\n"); 

write (fdl, on it, size_x * sizey); 

printf("You Got the Ellipse.\n"); 
exit (0); 

1 

panic (error message) 
char *error message; 

puts(error_message); 
exit (-1); 

The following is the C program for recovery of object position in 3-d 

space and correspond velocities in these three geometries. 

/* 
* To calculate the exact position (X,Y,Z) of the object in 
* 3-D space and correspond velocities. 
*/ 

#include <stdio.h> 
#include <math.h> 

#define UNIT _X (0.01397 * 4.0) 
#define UNITY (0.0116416 * 4.0) 
#define UNIT L 1.0 



int sizex, sizey; /* the size of image in pixel number.*/ 

float focus; /*the parameter of the camera. */ 

float length; /*the distance between the right and */ 
/*left cameras.*/ 

int factor; /* Experiment I--1; Experiment II--2 */ 
/* Experiment III--3 */ 

main(int argc, char **argv) 

{ 
float us, vs, ur,vr, ul, vl, X,Y,Z, Z_vel,X_vel,Y_vel,theta; 
float thetasin,theta_cos,theta tan; 

FILE *ifp[6]; 
FILE *ofp[6]; 
char outname[256]; 

int i, j; 
float x,y; 

if ( argc != 14) 
no_luck("You lose, Usage:position size_x size_y focus \ 

length theta factor us vs ur vr ul vl output_base\n"); 

size_x = atoi(argv[1]); 
size_y = atoi(argv[2]); 
focus = atof(argv[3]); 
length = atof(argv[4]); 
theta = atof(argv[5]); 
factor = atoi(argv[6]); 

theta = (theta) * M_PI / 180.0 ; 
theta_sin = (float) sin(theta) ; 
theta_cos = (float) cos(theta) ; 
theta tan = (float) cos(theta) ; 

for ( i = 0; i < 6; i++) 

{ 
if ( (ifp[i] = fopen(argv[i+7], "r")) == NULL) 

{ 
perror(argv[i+7]); 
exit (-1); 

1 
sprintf(outname, "%s.96-d", argv[12], i); 
if ( (ofp[i] = fopen(outname, "w")) == NULL) 

1 
perror(outname); 



exit(-1); 
} 

 

for ( j=0; j<size_y;j++) 
for ( i=0; i<size_y;i++) 

{ 
x = ( i - size_x/2 )*UNIT X; 

Y = ( -j + size y/2 )*UNIT_y; 

if ( fread ( (char *)&us, sizeof (us),1,ifp[0]) != 1 ) 
noluck("You lose when read.\n"); 

if ( fread ( (char *)&vs, sizeof (us),1,ifp[1]) != 1 ) 
no luck("You lose when read.\n"); 

if ( fread ( (char *)&ur, sizeof (us),1,ifp[2]) != 1 ) 
no luck("You lose when read.\n"); 

if ( fread ( (char *)&vr, sizeof (us),1,ifp[3]) != 1 ) 
noluck("You lose when read.\n"); 

if ( fread ( (char *)&ul, sizeof (us),1,ifp[4]) != 1 ) 
no luck("You lose when read.\n"); 

if ( fread ( (char *)&v1, sizeof (us),1,ifp[5]) != 1 ) 
noluck("You lose when read.\n"); 

if (factor = 1) 
Z = - focus*length*theta_sin*theta_cos / (us*UNIT_L 

*UNIT X*theta sin + 2*focus*(1 - theta cos ) ); 
if (factor = 2) 

Z = -focus * length / ( us * UNIT_X); 
if (factor = 3) 

Z = length*theta_tan + length*(x*theta tan/focus- 1) 
* focus/(us*UNITL*UNITX) ; 

X = x * Z / focus; 
Y = y * Z / focus; 

if (factor = 1) 
Z = (-ul*theta cos + ur)*UNIT X*Z*Z/(focus*length); 

if (factor =2) 
Z vel = (ur - ul) * UNIT _X *Z * Z / (focus*length); 

if (factor = 3) 
Zvel = (ur - ul) * UNIT X *Z * Z / (focus*length); 

X vel = X*Z vel/Z + ul*UNIT X*Z/focus; 



Y vel = Y*Z vel/Z + vl*UNIT Y*Z/focus; _ _ _ 
1 

if ( fwrite( (char *)&Z, sizeof(Z) , 1 , ofp[0]) != 1) 
noluck("You lose when write.\n"); 

if ( fwrite( (char *)&x, sizeof(Z) , 1 , ofp[1]) != 1) 
noluck("You lose when write.\n"); 

if ( fwrite( (char *).&Y, sizeof(Z) , 1 , ofp[2]) != 1) 
noluck("You lose when write.\n"); 

if ( fwrite( (char *)&Z_vel, sizeof(Z) , 1 , ofp[3]) != 1) 
noluck("You lose when write.\n"); 

if ( fwrite( (char *)&X_vel, sizeof(Z) , 1 , ofp[4]) != 1) 
noluck("You lose when write.\n"); 

if ( fwrite( (char *)&Y_vel, sizeof(Z) , 1 , ofp[5]) != 1) 
noluck("You lose when write.\n"); 

return 0; 

I 

no _luck(char *msg) 

1 
puts(msg); 
exit(-1); 

1 



REFERENCES 

1. Horn, B. K. P., and B. G. Schunck. "Determining Optical Flow." Artificial 
Intelligence 14 (1981): 185-203. 

2. Singh, A. "An Estimation-theoretic Framework For Image-flow Com-
putation." Proceeding of the 3rd International Conference on Com-
puter Vision, Osaka, Japan. (1990, Dec. 4-6). 

3. Pan, J. N., Y. Q. Shi, and C. Q. Shu. "A New Approach of Computing 
Optical Flow Based on Analysis of Errors of the Correlation-based 
Method." Technical Report No. 19, Electronic Imaging Laboratory, 
Department of Electrical and Computer Engineering, New Jersey Insti-
tute of Technology, Newark, New Jersey. (1992). 

4. Barron, J. L., D. J. Fleet, and B. B. Beauchemin. "Performance of Optical 
Flow Techniques." Technical Report No. 299, Department of Com-
puter Science, University of Western Ontario, London, Ontario and 
Department of Computer Science, Queens University, Kingston, 

Ontario. (1992). 

5. Shu, C. Q., and Y. Q. Shi. "A New Approach to Motion Analysis From a 
Sequence of Stereo Images." Technical Report No. 18, Electronic 
Imaging Laboratory, Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, New Jersey. (1990). 

6. Shu, C. Q., and ►̀ ' Q. Shi. "Computation of Motion From Stereo Image 
Sequence Using the Unified Optical Flow Field." SPIE' s 1990 
International Symposium on Optical and Optoelectronic Applied 

Science and Engineering, San Diego, CA. (1990). 

7. Shu, C. Q., and Y. Q. Shi. "On unified Optical Flow Field." Pattern 
Recognition, Vol. 24, No. 6 (1991, June): 579-586. 


	Optical flow determination and motion analysis
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Image Flow Determination
	Chapter 3: Motion Analysis
	Chapter 4: Conclusion
	Appendix: Derivation of Formulae and C Programs
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

