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ABSTRACT  

Title of Thesis: Stability of Bicomponent Polymeric liquids 

in Poiseuille Tlow 

Chin-Chant Jeng, Master of Science, 1984 

Thesis directed by: Dr. Wing T. Wong, Assistant Professor 

Polymer processing, involving two or more components, has 

become more popular recently in industrial plants. However, 

product Quality is affected very much by the fluid stability. 

Some theoretical and experimental results concerning New-

tonian and non-Newtonian flow in rectangular coordinates, have 

been published, and the fluid-fluid interfaces were observed 

to be unstable by some researchers. 

In this paper, the linear stability of bicomponent non-

Newtonian fluids flowing in a cylindrical tube was investigated 

by using the Ellis model. Only the very long wave and the 

axisymmetric disturbances were considered. The Ellis zero-

shear-rate viscosity ratio, m( =η02/η01) , was found to be 

destabilizing. The half-zero-shear-rate-viscosity stress 

ratio, γ ( = τ01/τ02 ), was shown to have a stabilizing 

effect. The power factor, α 1  and α2  , have monotonous des-

tabilizing effects. Surface tension, in general, will play 

a stabilizing role at the fluid-fluid interfaces. 
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NOMENCLATURE  

a Position of interface ( dimensionless ) 

b density ratio 

c wave velocity 

Fr Froude number 

m zero-shear-rate viscosity ratio 

R
e 

Reynolds number 

V
i 

interfacial velocity 

We Weber number 

α wave number 

γ shear stress ratio 

σ interfacial tension 

η viscosity 

τ time ( dimensionless ) 

8 deviation of the interface 

ρ density 



(I) Introduction 

Polymer processing involving two or more different 

polymers has become the subject of considerable interest 

in recent years. Examples of such flow are numerous. In 

plastic processing the conbination of two melt streams in 

coextrusion process has become a very economical method of 

producing materials with unique properties which can not 

be achieved by using the individual polymer alone. In 

pratical problems, scientists made a lot effort trying to 

optimize the products by using compositive materials 

instead of simple component system. In polymer processing, 

involving two or more components, fluid-fluid interface 

has been observed to be unstable and some theoretical and 

experimental results have also been published, though in 

much less details than those for Newtonian fluids. 

By using a hydrodynamic stability analysis, Yih (1) 

has found that for simple plane couette flow, viscosity 

stratification alone is sufficient to cause instability no 

matter how small Reynolds number is. KHAN and HAN [2,3], 

by studying stratified two-phase poiseuille flow between 

two parallel plates, pointed out that viscosity ratio and 

elasticity ratio of two super imposed fluids are important 

in determining the occurrence of interfacial instability, 

with the viscosity ratio predominant over the elasticity 

ratio. Schrenk and Bradley [4] confirmed that a wavelike 

distortion of the interface could arise under certain 

coextrusion conditions, implying the onset of instability. 

Li [5] has found that the presence of elasticity can not 

only destabilize simple flows but stabilize them for 

certain values of the parameters involved. Waters [6] 

studies two power-law fluids in plane couette flow and 

pointed out that the ratios of the power-law parameters 

for each layer can stabilize and destabilize the flow. 
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In 1971, HICKOX [7] studied the stability of a steady, 

axisymmetric, laminar, primary flow composed of two new-

tonian fluids flowing concentrically in a straight circular 

tube by using the method of small perturbations. He 

demonstrated that, regardless of the size of the Reynolds 

number, no situations are encountered for which the primary 

flow is stable to the asymmetric and axisymmetric dis-

turbances, simultaneously. The primary cause of instability 

is found to be the difference in viscosities of the two 

fluids. 

None of these analyses ( or experiments ) considered 

the concentric flow of bicomponent polymer melts in a 

cylindrical tube. This process is frequently observed in 

industrial plants like fiber spinning, extrusion ( pipes 

forming ) or injection molding. One of the main problems 

arises in this process is that the flow could become 

unstable, resulting in a product with irregular interface. 

The rheological models most often used by experi-

mentalists which predicts a shear-dependent viscosity is 

the so-called " Ellis-model " liquid. In this paper, the 

flow of concentric bicomponent polymer melts in circular 

pipe will be investigated by using this model. Only 

viscosity stratifications will be concerned. 
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(II) Time Independent Flow 

In this investigation, the stability of an axi-

symmetric, non-newtonian flow composed of two fluids flowing 

concentrically in a straight circular tube is considered. 

The fluids have different densities and viscosities and 

are incompressible and nondiffusive. An interface between 

the two fluids exists at some prescribed radial distance 

from the axis of symmetry. 

The fluids with the interface perturbed is illustrated 

by the sketch in Fig 2-1. 

c 1.- 1 
Z r 

1  1 

R I  

1\\11  R2 _  

CI  , Olt , 2'o1) e2, 04Z. r2 

1 8 

ro I 

Fig 2-1: Definition Sketch 
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0 
a r ( 2-1 ) 

At steady state, the only nonzero velocity in the flow 

is the axial velocity, Vz 
 , which is a function only of the 

radial position r. The flow system should satisfy the 

Cauchy's equation which will reduce to 

a p a 
z e 

g] 2 
= -57 r  t-q ;1,2 1, 

( 2-2 ) 

The subscripts 1,2 refer to fluid 1 ( inner ) and fluid 2 

( outer ) respectively. If the left side of Eq ( 2-2 ) is 

kept constant and is represented by ( 4p )i2 , the 

solution of Eq ( 2-2 ) is 

( 2-3 ) [ "L" = r /2 + c/r 
r,z 1,2 

If each fluid can be approximated by the Ellis model, 

then: 

0(‘: 
—= 1 + ( Z / "ro a ) i = 1,2  ( 2-4 ) 

Application of Eq ( 2-3) and Eq ( 2-4 ) to the inner and 

outer fluid regions seperately along with the reguirements 

of zero velocity on the rigid boundary, finite velocity 

and shear stress on the axis of symmetry, and continuity 
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of velocity and shear stress across the interface will 

provide the complete solutions which are listed in 

Table 2-1. 

The nondimensional forms for Table 2-1 can be derived 

by using the characteristic units as following: 

length : R1 

density : 
(71 

time : t = R
1 

/ V. 
1 

velocity : V = Vi 

viscosity : yo 

The results are shown in Table 2-2. The details of deri-

vation were listed on Appendix I. 
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Fluid 1 Fluid 2 

Table 2-1 : Steady state solution for two fluids 

15; = (Pig - API ). fl = (P23 -L,P2) - FT- 
, 

R 
-1--.  = ± [4-(51 (1 —  (+1) + rt.; 1.  a 4 I NI+ I 

041 act-1, 
4_ 

51/g ) . ( I — (4-) ) Vi. 
42 

- 2 
— I zez R2 r 2 
v2 = - A (1-42)) -c24-) 

o —r 

1 
R

2 I  21
—
P2 C2 4/2  

+ V2ri ( 2 r ÷ T) 4r 
r 

0 0 API
A 

 
_ 

0 0 0 

_`Zely- 0 0 

7 0 0 .613121- C2-\ 

t-2  = 7 0 0 2 0 " 

ViT4:1 0 0 /2 2 r 

)(0!  

1 + ( 1 irei /To  ) I 

= )?(7 1  

1 + ( 2.171 r r I  I 

)702  

1 + ( I tly bi To  

f*2  

I -t I (4  TD-2 r t c, r2-1 

To2A/2 -1 2 r / 

-LI = I\ 7? 0 'Zs \ 

\ -L;a 0 0 // 
P 

F3y3  
\ 

"2 = 0 0 Y7. 2  
 \\ ti7m  

,-..; 0 0 
2 
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Fluid 1 Fluid 2 

Table 2-2 : Nondimensional forms of steady state solutions 

PI = ( Fir - PI ). 
vz2 ..6f3-1  .R, 

Fr = Fe( ; pi  = ei  vz2 

152.  = ( 4 —(3.z).— We = P1- 14;€ 

E)) 

4 
RI . .., = E 

 vtRI 
17= ( 2

, 
; Pa  = , \-F2 , we o., 

'Tr = 1  Re  ,[1- r 2 ± 2D,  ii_yo1+1)1 
lb 4 al+ 1 k I i  

+I .  

Di = (421512-'  1!)1  5'1  -1 . 

-1)2.6= 2
0,1
1?e  • 02 - e) - 2 sg, .1,77(1) 

Ck 
C2 q2 

-4-2D2 r y (r + —) . dr 

iRfe I in= fo2 ; .•.
z  ., 

2_52 ; 
D, 

 = (
2 2 

701 A Pa f? 

0 0 ;y 

rt- o 0 0 
,;,-, 1 

...f3J. y- 0 0 1 
? 

6?1. e 1 ° T-* Or+ -f )  T: 2 = 000 
c; 1 -----y-t-7-) 0 o 

I  
7i = i + Di r c'1-1  

7n  
'-'2 , 4- - i D2 ( r + +1)(2-1 

R
e 
 ( 0 0 ----T 

--,6 l = — 0 0 o 
Tr 0 0 

-"Oe 
7 0 0 --:--2(r+ 4-A2 )\ L = _ c-:. 2 ), \ _.( 0

),..„ ,,z o o 
2(  
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(III) Differential System Governing Stability  

The stability of the fluids described in the previous 

section is to be investigated through use of the method 

of small perturbations. This method which was rigorously 

formulated by Yih [1] was simple and straightforward. 

Following Yih [1], we seek solutions which have the forms 

y = vo + a'•  1/0i + 0(2  -)-i0.2 +  (3-1) 

which is a non-singular perturbation around0(= 0 which 

corresponds to very long waves. "0(-R
e 
 " is assumed 

small compared with unity and, as pointed out by Yih [1], 

no matter how large R
e 
 is, there is a range of O for 

which the perturbation procedure is valid. 

The complete cauchy's equations for each fluid are 

Dv 
2 

- - D-  7 = - Cpl + v. z + 1 g 

for fluid 1, and 

Dv
2 

—Dt = - b V 7;2 + b \•T2  + g 

for fluid 2. 

The continuity equation is 

v• v = 0 

(3-2) 

(3-3) 

(3-4) 

for both fluid. 

It should be noted that Eq (3-2) & Eq (3-3) were written 

in nondimensional forms, where b is defined as the ratio 
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•;'; 
V. = V. v. 
1 1 

( 3-5 ) 

P. = P. P. ( 3-7 ) 

of density ( PZ / p, ). 

It is now assumed that the flow system is disturbed 

slightly so that the velocities and pressure and relevant 

non-zero stress consist of their steady state valued in 

the main flow plus a small perturbation. Thus, they can 

be expressed as 

ij ij i,j = r, z  ( 3-5 ) 

The barred quantities are steady values. The quantities 

with asterisks represent perturbations to the steady state 

flow and are assumed to be small enough so that second or 

higher order product of these perturbed quantities are 

negligible. Remember that only the axial velocity and 

pressure have initial values different from zero. Thus, 

the shear stress tensor can be written as 

= T) + 

,r_ 

7 ZYY- Z7  re re -riq + ' fr:rj 

. 4f 
Tire Zee Tel 1 

( 3-8 ) 
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for fluid 1. The corresponding second invariant is 

2 = E tn.; = 2 ( + 7- ;;) 2 
lrz ( 3-9 ) 

The shear rate tensor can be expressed as 

A =  + A*  

= - R  
e 

= - R
e 
 [ 1 + ( 

II T, )1/2 )cic-i 

T".1 /(); VZ2  

= - R
e 

[ ± Zr3 7-1)3  )0( 
-K1 ( 3-10 ) 

—_. 
for fluid 1. Since sr lrz > 0 for 0 4- r ~ R1 

and T lrz lrz << 17 I 
, the absolute sign could be taken 

1 — * 
off from i -7--  , ,,, lrz 

+ ri:' 
lrz 

 I . Thus, 

R
e E 

'421 -+P. 14'7(4211: )4"-1 
Z- 1 r  

1 rz 

R
e 

lrr 

( 3-11 ) 
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Ale z = - Re
• Pclez )7, ( 3-15 ) 

Similarity
**  

6'190 = - Re 
 • T;99 "(I  

alzz 
-17 

- R
e 

• -6-   lzz 71 

Alr8 - Re • Zelr0 / )7i 

( 3-12 ) 

( 3-13 ) 

( 3-14 ) 

041 
_- Z lrz  

= - R
e lrz [ 27 + + Z lrz + Llrz 

( / V2 ) .  1 

c.( lrz °1 -1 ;:
07 ) , V. 

lrz 
( 3-16 ) 

Since, 

av,,* alb 
I ar ‘D(fielli)  .Dirt*  

. 
ar Y r ae a Y ad

aY 
 

r-P--(31i5+ atIr ail: 1 6*  
‘)". r ae 

a(171+2.1.3-4) 91)-r* a?It)44  I As' r  36 r 7.3-4"Fae 

2.P-U-7*  
DY -6E a& +7 ae 

3-17) 

** : Detail derivation in Appendix II. 
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Application of Eqs ( 3-11 ) - ( 3-17 ), we can rewrite 

the shear rate tensor as following: 

A
lrr 
 * /a r =  = 2 a vlr - R e r / 

a A * 
L-11919 

1 vi 
= 2 ( - + vl

r
* / r )=-R

e • ciao 0 r ae  

L aylz ----- 
lzz 

=( AT
lz 

) = 2 v
iz a  z 

(3-18) 

(3-19) 

= - R
e 
• 'C

lzz /  
(3-20) 

A a  vio 
) 

avir 
= r ( + = - R -T / ) 

Llgr ire- ar r r e e 1r9 ?,  

(3-21) 

* = VT; 1 a 
1 IFIZ a 6 r De 

( V
lz 

+ V
lz 

V le 
vlz  =- R .7" 

- 

a5 r 3 G e lez / 171 
(3-22) 

lrz lzr 

a v lz 
=- - Re 

[ 1 +0<11)
1r ]Tirz r -a-  z  

R 
 = - 6 

lrz 

Application of Eq ( 3-2 ), the r-component of the 

equation of motion is 

- 12 - 
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* * x2 
ally aliff* W e  aVir 1);67  ( Z.; ,13 

a ;  
a- 'r V;r a r y ae 

= 
a I a j_ a Tye Z709 a Z-1  

( + ) Zr*)
Yr a e a 6 

Neglecting the terms whose perturbed power greater than two, 

we get 

i v- a _ a Pi [ a t, 7- -*) I aZ-r  e 'Cleo DZTra  
a-t oaa — 

lf  
ar 1"-FT ae a t,  

for r-component. Similarity to 9  , z components and 

continuity equation: 

0 - component 

- av-a, ayie aPi*  [I a (r2,7-*) i aToe a'4"ea 
at 13 ab 72-Tr dire Te a  e a 8 _ 

z-component 

*- 
a1164  

9 
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v
r 
• = iG(r) EXP (3-29) 

v = H(r) EXP (3-30) 

v
z 
• = F(r) EXP (3-31) 

and 

P • = p(r) EXP (3-32) 

Continuity equation 

a av 
iz  T 57 ( ry ) + 

lr 
— + - 0 
r a z (3-28) 

for fluid 1. It should be note that the starry sign 

indicated the purturbed values and the barred mean the 

steady (primary) values. 

Following the procedure of Batchelor and Gill [3], 

the perturbation terms for the fluid are assumed to have 

the forms 

Where EXP = exp [ in() + ick( z - ce ] and G, H, F, P 

are nondimensional functions of r, 

r = R/R1 ; z = z/ ./R R, ; tV 1 (3-33) 
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and and c are the nondimensional wavenumber and speed 

repectively. The parameter can be zero or any integer 

value and is the means by which the angular dependence of 

the purturbation terms is expressed. The i is the 

imaginery number (-1)2  . In general, the wave speed c 

can be complex. It is the sign of its imaginary part 

which will ultinately determine the stability or insta-

bility of the flow. If the imaginary part of c is positive, 

the perturbation terms will grow exponentially with time 

and the flow is considered unstable. 

Application of Eqs ( 3-18 ) - ( 3-23 ) and Eqs ( 3-29 ) 

( 3-32 ), the perturbed terms of shear stress tensor were 

determined, i.e. 

el= 
= - 2 7, 

 /R
e
• a vlr 

/ar = - i2- G1 EXP/Re 

nH
1
+ G

1  
2109 

= - i2 - 71 ( ) EXP/Re 

(3-34) 

(3-35) 

(3-36) = 
tClzz 

io(2 EXP/Re 

H 
= _ r 

11G 

1/19 
R 

 

1 
- 

e 
 ] EXp 

77 
[ 0( H + F EXP 

(-lez 1 r 1
e  

.,. 
C. 

,,.._
lrz = - T - 

.. 
All [ F1 - - CX  ] EXP 

1 
e 

(3-37) 

(3-38) 

(3-38) 
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Substituting Eqs (3-34) - (3-39) into Eqs (3-25) - (3-28), 

the governing equations for fluid 1 are readily written as 

following ** 

r-component 

0 
(g.( lz - c )01 = pl - -T-- [ 2G1 + 2( 11 + 1 ) r

, 
 

(

e 

H n2 H 
--7-

2 
+ )G1  + n( , — 3 ) 

r 7' 
 

r 

J./  +0(-- /  - F ] 
1 

e -component 

—/ , 

• it/ / H 
c>(( 7 — c )H = — a p - !TT [ H,, /-. 

+ ( _ + 1 ) -1 - lz 1 r 1 1 r 
7' 

IA- 2 
- ( 

r71 /1/  +1+2n + cx2,,„ 
ju  r

2 l  

G
T.   
1 L . 1 - n( -- + ( --f; 

G2  
_-...--- + 3 ) -- ) -cxn 71 :-- ] 

71 r 

(3-41) 

** Refer to Appendix III for detail. 

(3-40) 
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z-component 

Ok( -171z 
- c )F1 + v'lz -G1 = -ap1 _ iR lL [ AIL F1 4. 

e yi   
, 

A 

,L 

, i F 2 
-- ( 1+ V(1  ) Ti - (27 + 2a )F

1 
1(1 

AAI r 

1  - t•o('(G1 
/ r 

 + (1+ 114) -1 - ) 

o( - n- H
1 
] 

Continuity equation 

(3-42) 

G
1 G1 + + -- H

1 + c('F1 
= 0 (3-43) 

Applying the same procedure to fluid 2, we can get the 

similar equation of motion and continuity equation as 

following ** 

r-component 

• 
- / , 

__ 
__ 

i f G 
b o(( v2z - c )G2 = p2 - -R -

.2 ..112 [ 2G2 + 2( - + 1 ) -a 
e 2- 

r 
, 

, n +2 2 AA 2 
' ,, H H  

- ---- + ma
2 -Fr )G2 + n( Ta - 3 -2) 

r
2 

0-  ' r 
 

? ' 
+ In 40(' -=:- F ] 

f2 2 

** Refer to Appendix III for detail 
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e -component 

H, 
ba( v2z - c)H2 = - r  p2 - R [ H2 + ( 111 + 1 ) T= 

e 
 

CZ  

fix/ 
/ 

_ r• 2  +1+2n2 
+ 0(2  )H2 r2 

—/ 

- n( + ( -122 + 
G
2 

F
2 3) 001 -- 

r
C2 r 

(3-45) 

z-component 

b[ 4" -172z - c  )F2 v2zG2 1 = -6" - R [ 1224 F"  2 2 

/  
+ a& ( 1+  Latla) 

F 

2 
n 

 
111 - ( —7 + (2)F2 -2i2.  
r-2  

r
/ G

2 (G2 
+ (1+ z ) r 

o( - n  H 
r 2 (3-45) 

Continuity equation 

G2 G2 + +H2+ p(• F
2 

= 0 (3-46) 

- 18 - 



Thus, except for the factor b and m, these equations of 

motion for fluid 2 have the same forms as those for 

fluid 1. The simultaneous solutions of these equations 

together with the appropriate boundary and interfacial 

conditions will provide information from which the 

instability of the bicomponent non-newtonian flow can be 

inferred. 
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and 

G
2
(a) = H

2
(a) = F

2
(a) =0 (4-2) 

(IV) Bounday and Interfacial Conditions  

The boundary conditions expressing finiteness of 

velocity along the axis of symmetry and no slip at the 

rigid surface are 

G
1
(0), H

1
(0),' F

1
(0) ---- Finite (4-1) 

Where a = R
2
/R

1 

The interfacial conditions require continuity of 

velocities, shear stress and normal stress. These 

conditions must be evaluated carefully, becasuse, strictly 

speaking, they are to be applied at the interface of" the 

disturbed flow, r = 1 +8 , and not at the original 

interface, r = 1. 

Because of the periodic disturbance, we can assume a 

wavy form described by the equation 

r = 1 + 6 = 1 + S0  • exp [ in•9 + z - c (4-3) 

where S, is the amplitude of the fluctuation of the 

interface from its mean position at r = 1 and is an 

infinitesimal quantity to be determined by the interface 

conditions. Thus, the substantial derivative of S with 
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respect to time must be equal to the radial component of 

the perturbed velocity, i.e. 

D8 
( TT )r=11-10 = vr = iG( 1 + 8 )EXP (4-4) 

rearrange above equation, we can find 

a * 
( 

at  + v1 z az ).8 = vr = iG( 1+ S )EXP 

or 

-iac6 + ia( v )r=l+S -8 = iG( 1 +8 )EXP l z 

(4-5) 

(4-6) 

recalling that v
lz 

is equal to v
2z 

at the interface. 

Expanding Eq (4-6) in Taylor series around r=1 

-Lptc8 + io(71z (1)- S + icK ( vlz )r=1 

= i G (1) + G (1)•S EXP (4-7) 

and neglecting terms above second order in infinitesimal 

quantities, we have 

Gi (I)  
S =  

Vi
z
(1) - c ] 

EXP (4-8) 

Continuity of v
r 

across the interface requires that 
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v
lr • (1) 

(1) = V
2r 

(4-12) 

G1(1) = G2(1) (4-13) 

v
lr
( 1+8,e,z,t)=v

2r 
( 1+ 6 , 6 , z , t ) 

i.e. 

vlr • (1+S) = v2r 
(1+8) 

(4-9) 

(4-10) 

Or 

, , 
vlr 
• (1) + vlr (1)• = V2r (1) + v2r 

(1) (4-11) 

Since both vlr and v
2r 

are infinitesimal quantities, we 

can get 

(4-12) by eliminating all the second order terms. Equation 

is equivalent to 

Similary, the continuity of v accross the interface will 

result in 

v
1 
• (1) (2) = v2 

H1(1) = H2
(1) 

Or 

(4-14) 

(4-15) 

Continuity of vz 
 requires a more careful formulation 

because there is a gradient of axial velocity in the mean 

- 22 - 



flow which is discontinuous at the interface. The condition 

requires that 

v
lz (1+8 ,0,z,t) = v2z 

( 1+6,0,z, t) (4-16) 

or 

4(- 
V (1+S ) + Vlz  (1+8 , 

z t) = v
2z 

(1+ 8) + 

v
2z 

(1+ , 8, z, t) 

(4-17) 

Expanding in Taylor's series around r=1 

N
1z

(1) + vlz (1).3 + vlz(1) + vlz(1) -S 

= v
2z
(1) + v

2z 
• S + v

2z
(1) + v

2z(1) 
(4-18) 

and neglecting terms above second order, we have 

v
lz
(1)-S + v

lz
(1) = v

2z
(1)'S + v

2z(1) 
(4-19) 

Since v
lz
(1) = v

2z
(1) , we rearrange above equation by 

applying Eq (4-8) and Eq (3-18) 
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F + 
v
lz 

• G
1 = f + 

v
2z

- G
2  

Oe( v
z,1

(1)-c) ( v
z,1

(1)-c) 

at r=1 

(4-20) 

Continuity of stresses across the interface can be 

expressed as 

1 2 A 
T.. • 

A 
n. = T... n. 

iJ J J 
(4-21) 

at r = 1+8 and i = r, 9, z . Where n is the unit 

normal vector of the interface given by 

A V ( r-1-S ) V( r- )  n = 
It7( r-I-S) 17( r-S )1 

where 

V(r-;) = a 
57: (r-S)J•U r  + - 2a8 (r-S)i• Lle  

+ az (r-S)]•11 

A 

= L< r [ it 8 ]. [ i°`8].  lAz 

A A 

r 
, tie  , Lt are unit vectors in the r, 0 , z 

directions respectively. So, 

_ in s 
= n -  

r 
1
1 
7 (r - S ) 

n 
I V(r--5-)7 
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- iof E 
n= --- - - - —_ z I 

1 N7 (r -8)1 
(4-24) 

Since 8 is an infinitesimal quantity, the components of n 
in the 0 and z directions are small compared to that in 

the r direction. Expanding Eq (4-21), we get 

1 A 1 
n 
A 1 

n 
A 2 A 2 

n
A T • n

r 
+ T 

re 
• + T 

rr • = T
rr

. n
r + TrP • 9 rz z  

2 A 
+ T 

rz • 
n
z 

(4-25) 

1 
n 
A 1 n A 1 1\ 

= T 2 
A 2 ,• T

er 
• 

r 
+ T90 • + T 

Gz 
• n

z Or 
• n

r 
+ T • n OP o 

2 A 
+ T

Oz 
. n

z 

1 A 1 A 1 2 2 T .n + T
zO
.n + T • n

z 
= T n + T

z0 
.ne zr r zz zr r 

2 n 
-.A 

zz 
+ T . 

z 

(4-26) 

(4-27) 

at r=l+ S. Where 1 and 2 represent inner and outer fluid, 

respectively. However, for primary flow 

.,-- i L = 0 
rr 

,-7--  i _.7..—  i = 0 L  re = L  e r 

± 
'Coe = o 
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zzi = ° 
i = 1, 2 (4-28) 

T = - pI - (4-29) 

:4  93  = = o 

everywhere and everytime. The equation of state tells us 

that 

where p is a function of z direction only. Thus, equations 

(4-25) - (4-27) result in 

A ----  I i 

'Cry . n
r 
+ re  • ne + Z0+ 'rya ) nz 

••• 2 *,2 
rz ) nz = nr CrO flG L r z 

(4-30) 

A, I A •1/4 Y92 n_ #41.2 
Ler  .n + + 'C, •n = n + - n + ""C" • n w 9 e6 • z r r L-e9 66 z 

(4-31) 

-- 1  
CT +

Zr
,1 * ^ ) n • + n ( p 

91 
),n 

30 zz z 

* 9 
J
• 

, - \ 
• n 

-- 2 * /1/4 ic.2.... -F fr = ( "C + PC ).n
r 
+ '17 , n, + ( P ,-z  zr zr

,2 
,Je z z 

(4-32) 

-- 1 --  at r= 1+8. Expanding 1:- and "Z: 2 about 1 and 
rz rz 

neglecting all terms over second order, Eq (4-30) becomes 
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(4-33) 

(4-34) 

rr rr at r=1 (4-35) 

Ter = at r=1 -er  (4-36) 

at r=1 (4-37) 

I 
Z 1 r  . n

r 
+ [ Pr 

(1) 
 + ( df -- )

r=
1 • S ] • n

z 
= Z"'" rr  .er' 2.1..-  

rr
'  

dr
z 

r 

2 
-- 2   + [ PC rz(1) + ( ee -TITz 

)r=1•  ,g ].nz 

*,1 *,2  
'-t-rr . nr 

+ PC ( 1 ) • n. 
z 

= PCrr  . nr  + E r z  (1 )• nz  

Using the fact that T: 1(1) =t" 2(1) , we have rz rz 

Or 

Similar procedure applied to the second and third equation 

above yields 

and 1 
'tzr 

2 
( d ) 

dr r=1 zr dr 
.6 q: *,1 ( dtZr *,2 

)1„i 
 

zr 'S + 

Application of Eq (3-27), (3-41) and (4-8), Eq (4-37) 

reduces to 

A G1 , 
- 4 ( F1 - C ( G1 ) 7 R 

C" .71z(1)-c  ) 
e 

 ^ G
2 , m /te.2 P2 

c
2 . ,- ( 1- -7 ) __ ( F

2 - ()(G2 ) T--  z r 0“ 7
2 z ( 1 ) - c ) e 

at r=1 
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5 P ) trr (4-40) 

Application of Eq (3-25), Eq (3-40) and Eq (4-36), 

Eq (4-36) reduces to 

Hi nG, H nG
2 7r( H - - -

T- ) = ik( 112  - - ) 

at r=1 . 

(4-39) 

The normal stress condition at the interface is the 

most complicated because the difference in normal stress 

across the interface is counterbalanced by the action of 

surface tension between the two fluids. It must also be 

remembered that the normal stress includes a derivative 

of the radial velocity, i.e.,/: in addition to the 
rr 

pressure. Hence, the difference of the quantity is 

evaluated for the inner and outer fluids by the following 

form 

and this quantity must be equivalent to 

We

1 1 \ 
17-// 171 1  (4-41) 

where p is the mean pressure, W
e 
 is the Weber number 

defined in section(II), and R,1  and RI.  are the non-

dimensional principal radii of curvature of the interface. 

A radius of curvature is positive if the center of 

curvature lies in region 1 ( inner fluid ). The radius of 

curvature R is evaluated in a plane which contains the 

axis of symmetry while Ri is the radius of curvature in 

a plane taken perpendicular to the axis. The radius of 

curvature are given by 
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_ ces 
R# 

az 

--
R1 

= 1 + ( n
2 
- 1 ) • 

and 

(4-42) 

(4-43) 

Application of Eq (3-24), (3-37), (4-40), (4-42) and (4-43), 

the normal stress condition at the interface can be written 

as 

, 2-74  ' 0(2+1-n2  
( 131

- 
 

,  R 
G
1 
) ( p

2 
. 

R 
G
2 
) = ( 

W
e 

)' 
e e 

 

1  

04( -v-lz
(1)-c) 

(4-44) 

The results of this section were summarized in the 

Table 4-1. They were used in conjunction with the 

governing differential equations to provide a solution to 

the stability problem. Since six constants arose in the 

solution of each set of governing equations, there were 

a total of tweleve constants to be determined from the 

tweleve boundary and interfacial conditions. 

The differential system represents an eigenvalue since 

c must take an specific value in order that the solution 

not be identically zero. The flow will be unstable, 

neutrally stable, or stable accordingly as the imaginary 

part of c, c
i 

, is positive, zero, negative. 
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G1 (0), Ei (0), "Fi (0) finite 

G 2 (a) = F,(a) = 0 

G ( 1 ) = G2(1) 

H1 (1) = H 2 " ) 

2z G 2  z 1  = F, 0 
 -7

“--T
2z - c) F 1 + 

7 

(Vi z ) 

01 01 
Fl 

02 c 2 G
2  G1 ) - 2 ( 1) 

r p( (-7-
2z

-c) 2 a(V1 z - c) Re 

at 

--11142 ( F2 - 0(  G2 ) 
e  at r=1 

El /1G-1 '2 
ri.G. 

2 
h1 - r - = )?.2.  H2 - r - -7 ) at r=1 

271 , 2)72 , 0(
2+1-n2 01  ( p 1 

Re 
0

1 
) ( P

2 - .2 
) a<(--71z-c) 

at r=1 

Table 4-1 



(V) Solution for the Axisymmetric Case ( n=0 )  

The differential governing equations in section III 

will now be solved by the regular perturbation procedure 

described in section III. The series expansions given in 

Eq (3-1) will be substituted into the governing differential 

equations and boundary conditions. Then terms of the same 

power of 0( will be equated separately in each equation. 

This procedure will allow a solution to be built up step-

by-step from the first approximation to any degree of 

accuracy required. In order to determine the first 

approximation to the onset of instability, it will be 

necessary to proceed only as far as the second approximation 

When n=0 , the equation of motion associated with 

the 0 coordinate, (3-26) and (3-45), express only a 

relationship governing circumferential velocity and may, 

if required, be solved after the other three equations in 

the differential system have been solved. In order to 

determine the stability of the flow, it will not be 

necessary to solve (3-26) at all. Thus, the order of the 

differential system is reduced by 2, and there will be a 

total of eight constants to be determined instead of 

tweleve. 

Omitting H
1 

and H
2 
from consideration and taking n=0, 

yields 

_ / 
•  0(.( -c )G = P - [ 2G1 + 2( -7 .= + 1 ) -- 

lz 1 1 iR
e F1

r  

2 
" 

24.4 
) G - f; 1 F1  (5-1) 
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+ A
3 (5-4) 

)?1 Iv 

0(-( x7
lz

-c )F1 + vlzG1 = -c*P11 - [ 
/11, 
F + • 

R
e 

ye/  1 yi  

Fl 
( 1+ ) —

T 
- 2WF

1 - G1 .14  P  
/ G, 

-± + ( 1+ 11:2̀'ll ) ) ] 
Al/ 

(5-2) 

and 

G1 + G1 /r + oI•F1 = 0 (5-3) 

Eliminating p between Eq (5-1) and (5-2), and combining 

Eq (5-3) provides the solution of F1  and Gi . The 

procedure of solutions for fluid 2 is similar to that for 

fluid 1. 

A. First Approximation  

If Eq (3-1) is used in Eqs (5-1) - (5-3), we get the 

first approximation 

2 Ai D r LA1 1 cefi 0(1D1  r0('-1)1,0 F = A ( -- + — r ' ) + A ( In r + 1 4 27-TT7 2 (ol -1) 

G
1,1 

= - A ( r
3 
+  ark2 

) - 1 16 2(0j+1) -(C(1+3) 
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0{1D1 c4 r , 
A2 ( 7 r ln r+ -777.77-7-wT7_ 1+  r ) ) 

- 
A
3 r + - 

A
4 - 

2 r 

for fluid 1. And 

d D 
1 - 2 -1.,

1 F2,0 2 = B1 -4 ( r2 2 - cfri (r) ) + B2 ( In r -oeD 2  - 25b(r) ) 

+ B3 

0(2D2 
0(D  4(r) G21 

= B1 11 ( -1 r
3 + --2-i- 4(r) - -

242
6 .- r-  ) + B2 

r 2D2 , 0(21)2 46/(r) 
2 4 ( - - In r + r  + -T-- r-952(r) - --4 - r 

) 

r - 7, 
Z  
- B3 + B

4 
/ r 

where the first subscript of F and G means fluid region 

and the second subscript indicate the degree of approxi-

mation. The all coefficients at right side of equation 

are integral constants. And 

j 

a , 
c  
 

a(2-/ 
,E?(r) = r ( r + T- ) • dr 

r A c a  _t 
(P2  (r) ... ) r  al ( r + -2

r  )
2  I  dr 

r 
Q c2 ot2  _./ 

c.  (r) = ) r3 ( r + --r  ) dr 3  
r 

(5-6) 

(5-7) 
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Application of the boundary and interfacial conditions 

result in 

(5-8) A2 
= A4 = 0 

2 
( 2- )B1 + ( In a )B2 = - B3 4  

4 ,2 

( TT )B1 ( 2—  )B2 = B4 4 

(5-9) 

(5-10) 

E 
(XiDi A

3 
[ 
-1 OV241(1)  

2( ] Al + +1) ( +3) 1 2 16 4 

0V2.45(1) a2 a4 1 63(2D2.0-2(1)  
8 16 ]B1 

+ + 
44 4 

ay)24),(1) ln a a2 - 
4 7 ] B2 = (5-11) 

E ± (P_L-P2+ (3262) 1 p(1B 1 \ 
+ 1 ] A — + [ (3,  (32 + (32 62  

2 •7r 2 0e1+1)) 1 7C 
]A3 

E m (Pi -N  e5.2 ) 1 a2 
227C ( 2 -(X2D211(1) 2 )] B1 

( A  ) + [ m + 20(
2
D242(1) 

+ 2 In a )]B
2 

= 0 

(5-12) 
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A
l 
+ 0-A

3 
- B

1 
+ 0-B

2 
= 0  (5-13) 

Taking A3=1 , the constants Al , B1 , B
2 

can be solved by 

solving Eqs (5-11) - (5-13) simultaneously. Then B3 and 

B
4 

can be readily determined by using Eqs (5-9) - (5-10). 

Thus, c0 can be derived by using Eq (4-20) which will yield 

_t 

V
z1 

V
z2 
) 

c0 = vlz 
(1) + 

( F
10 

- F
20
) 

G
11 

(5-14) 

at r=1. Since c0 is real, no instability will be 

manifested at this stage of approximation. It is thus 

necessary to proceed to next approximation. 

B. Second Approximation  

Starting from Eq (5-1) to (5-3) with the same procedure 

described in first approximation, the solution for this 

stage can be redily written as following 

F11 =iAS(r) Al ( r2 4- OZ1 2(0(1+11) - 
r ai+.1 ) + A

2 
[ In r 

OqD1 ai+1 ] + A
3  + r 
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()Cl i  1 r 
G
12 = i [ S2 r 

;;.• 

A 1 + 2 0(+l) • (C) 14-  3 ) 
r 

oti+2 
) 

r r , (>1D1 - A - In r - 767, 7. ) (01+1) 2 2 r 

* * 
A 

.... -7-3 
r ] (5-16) 

where 

, 2d1+4 0(1D a+5 

1 
1 v.+3 ] , 1- ..„? 

21-. 
r .,.. 

(0(1+5 ) S . (r) = - .11[ ---(-2cei+77 ± (3(114-3) 
r  

1./N 

0(1Di 2Ce1+2 ] 
,/ 

rc41 1
D 

1 
2o(I+ 4 ] + 13 [ 7,07

+3 
57 + (20(+-1) r  - + 72;71 -T-717 r  

4 ay),

) 

4.3 ] C) 1 D
1 rCeri-  5 , r + i, r-I r 6 

— _ ] + 5L -7, (a1 3+ 4J -T + T5IT-) 

OC
1 

A l / (cei-F1)
2
001) (2c+4) 1 

D(1 3  
= Q1 Re D1 Al ( ---(01IT1)-(0(1T3) 8 ) 

2D 

3
= Q1  D1  A3 (ai1) (0 1+1, + R

e 
 -AlceiDi [ (21 ( 1 +q,'+1 

 ) 

+ 1 - C 0 ] / [ 2 (0(1+1) 

= Q1 R
e 

• A
l 

/ 8 

2D 
= R

e
- Al- [ Q1( 1 +  

04+1 
 ) + 1 - co ] / 4 
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Q 
1 = (3i•R e / 4 

S
2
(r) = - 1  — r S1 (r) dY 

r  

for fluid 1. Similarity to fluid 2, the solutions are 

* * 2 0621)2 * 
F
21 

= i [ S
3(r) + B 

r 
( -T - + B2 ( In r 

* * 
q2Q2q)2(r) ) B3 

and 

* -1 3 06D2 02)2 4)a(r)  G22 = i [ S4 (r) + B1 [ 16 
4 

-- 
I 

r + --=— r-, (r) 
4 r ] 

* * r r C42D2 (21)2 1(r)  + B
2 
[ - —

2 
in r + — + ---r— rCI) (r ) 

4 4 2- 4 r ] 

* B-* 

- 7 B3 + -T4 ] ] 

Those eight integral constants are determined by applying 

the boundary and interfacial conditions listed in section 

(IV). The eigen value, c1 
, is thus calculated by 

(v
lz 

-c
0
) (vlz

- v
2z
) 

G12 
c — l = TF10 --F207 ( F11 - F21 ) (F10 17T207 

(5-19) 

(5-17) 

(5-18) 
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The results were carried out for a variety of 

situations by using the Univac 90/80-3 computer. The 

influences of zero-shear-rate viscosity ratio (m), shear-

stress ratio (T)), power parameter ( 0(1, 0(2) and surface 

tension on axisymmetric disturbances for unidirectional 

flow are exhibited in the graphs. 
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Fig 5-1 
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Fig 5-2 
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Fig 5-3 
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Fig 5-4 
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Fig 5-5 
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Fig 5-6 
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Fib 5-7 
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Fig 5-8 
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Fig .5-9 
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Fig .5-10 
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Fig 5-11 
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1 

Fig 5-12 
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Fig 
.
5-13 
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(VI) Discussion  

In the present work, numerical analyses were performed 

for the axisymmetric case. The parameters were chosen in 

ranges typically found for some common non-Newtonian fluids. 

Owing to the large number of parameter combinations, the 

actual eigenvalue, cl , of each particular case must be found 

by using the computer program listed on the Appendix IV. 

From Fig (5-1) and Fig (5-12), the viscosity ratio is 

shown to be destabilizing, i.e. the larger the value of m, 

the larger the wave growth rate. On the contrary, the shear 

rate ratio was found to stabilize the flow as its value in-

creased ( Fig (5-3) and Fig (5-9) ). From Figs (5-5) and 

(5-9), the factoro(Iseems to have monotonous destabilizing 

effects. The same monotonous destabilizing effect of 0(2 

could be seen from Figs (5-7), and (5-10). For larger than 

1, the surface tension would play a stabilizing role as seen 

from Fig (5-11), while its effect is negligible for/).< 1, as 

seen from Figs (5-2) , (5-4) , (5-8) & (5-11). From Fig (5-12), 

the effect of D1 is seen to be stabilizing for lower value of 

m (<10 ) and destabilizing for higher value of m (>10 ). For 

m smaller than 10, the surface tension will play a stabilizing 

role, as shown by comparing Figs (5-4), (5-6) and (5-13). 

The most important conclusion to be drawn from the 

numerical results of the previous section is that the cause 

of instability is the difference in zero-shear-rate viscosity 

(m), shear streee (1) ), and power parameter ( ;0(z). 

Surface tension, in general has a stabilizing effects. 
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Hickox (7) studied the stability of both axisymmetric 

and asymmetric disturbance for Newtonian fluids with the same 

geometry. He pointed out that the surface tension would have 

a negligible effect for m=20 ( which was also found for non-

Newtonian fluids ). He also indicated that an increasing 

viscosity ratio has a stabilizing influence on asymmetric 

disturbances, but has a destabilizing effects on axisymmetric 

disturbances. From our work, the increasing zero-shear-rate 

viscosity ratio was also found to have a destabilizing effect 

in the axisymmetric case. Comparing the results for New-

tonian and non-Newtonian fluids with axisymmetric disturbances, 

we find the there is a range of interfacial stability for 

Newtonian fluids which can not be seen in non-Newtonian 

systems. 

Since only long waves are considered, and since insta-

bility is manifested for any Reynolds number however small, 

turbulence is not expected as an end result of the insta-

bility. The long waves considered in this analysis will 

experience an initial growth rate which is exponential in 

time. But once the wave amplitude becomes finite, nonlinear 

effects will become important and must be accounted for. 

In the analyses we have assumed the fluid to be non-

diffusive. From the physical point of view, this is not 

unrealistic since, for example, there are many polymers 

which are not mixed together. 
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(AI-3) finite 

APPENDIX I 

The only nonzero velocity of steady state flow is the 

axial velocity, V
z , which is a function of r. The Cauchy's 

equation will be reduced to 

o = - aTii /ar 

= - api /ae 

o = - aiTi taz - -Lr ( r -f
rz 
 ) +Pi  g (AI-1) 

for fluid 1, and 

o = - aji2 /ar 

o = - aT 2 /ae 

a 
o a-52/ z r'r2rz + Pig 

(AI-2) 

for fluid 2. The axial velocity, thus, can be found by 

applying Eqs (AI-1), (AI-2) with two boundary conditions 

and one interfacial condition which are 

v
lz
(0) 

v2z(R2) = 0 

1z
(R

1) = 
7
2z 

 (R
2 
) 

(AI-4) 

(AI-5) 

- AI-1 - 



pp 
1 

c1 
lrz = 2 r + -- (AI-6) 

Equation (AI-1) result in 

where L1pl = Pg - api/az . The integral constant, cl, 

must be zero for fittness of Eq (AI-3). 

Now 

- Zlrz 
viz _ "- 

1 IT1rz  )0(1.- 
] - lrz [ 1 + ( 

()1 it 01 

Since 

• 
v
lz < 0 , for 0 <r<R1 

(AI-7) 

i .e. 

Eirz 7 0 ' for 0 <r <R1 

Thus 
o<1  

_ / 
= - 1 

frlrz  
[ vlrz ,-7- ce, -i ] rT lrz + 

701 %-oi 

AT5 
1 

.6.-P-1 )0( I 04 
r i] 2- r  + ( 2 'r01 ' .

Z 
 01 ()1 

7̀  

I AT:.1. 2 A171 0 ) TO1 dt+/ 
+ Si ] .1z = - -- [ 7t - r  + ( 2'C01 ) ',;(7.-TT. r  //01 
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Similarity, the equation (AI-2) will have the solution 

form as following: 

- I 
2

452 2  
v
2z 

= - --- L --- r + c2 
In r + ----TicT 

)02 '270z 
r f 

452 c2 0(2  

4 2 r 
( --- r + ) dr + B 2  ] (AI-9) 

Application fo Eq (AI-4), (AI-5), (AI-8) and (AI-9), we 

can solve those three integral constants as 

B 4/31 2 "6' 17 )1 °(/ PC-01 c6+1 - )
01 

V
i 

= - --4-- Ri - 
01 

• _ 
ok, 

Ri 

r 
4132 2 A p 2 c oe2 2 = _ R - c2.1n R2 1  

oe -1 ( -7- r + -7 ) dr 
TO2 2  

and 

ATI - AT2 2 
c2 = ( 2 

) R1 

where V. is the interfacial velocity which has the 

expression as 

AP R
2 

1 
4  

R1 2 
R., 

2 2  
Vi = --- [ ( 1 - ( .7.- ) ) - c ln( 7-1 ) 

V2 
E2 2 E2 

(R, 
1  c a

2 
+ ( 4.- 1;1 r + 7-2 ) dr ] 

rn 2 ce2-1 IR, 
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and 

where 

The equations of steady - state flow could be non-

dimensionalized by using the characteristic units as 

length : R
1 

time : R
1
/V

i 

velocity : V
i 

stress V
2 

• density Pi 

viscosity : 
)?01 

Thus 

AT; 1
-  P = - - ) R z = ( - ) 1 2 2 1 Fr 1-1 z  6 V. Vi   

P2 _g 4P2 0*--/  
1-32 = ( -- 7

i 
 - ---7 ) Riz - 

Pi v A v. v  R PI i 1 ]. 

b 1 . ( -- - A ) z -  - F r -'2. W
e 

1 
= P1 - 1,7 

Fr = 17 / gR 
1 1 ; PI  =.671R1 /Pivi ; 

p
.
2 = 21-72 R 1 i n  v.2 

i  ti 1 ; • b = (1/ pi ; We  = 1 V4  1). V 1  R1 LI  n' /  

and a = R
2
/R
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The axial velocities will be 

4,17  
1 1R 1 /t701R1 '651111 °Ci 

Vlz •
_01 

- - [ ( 1 r
2 
) + 0(1+1 ( 7F01 ) V

1  
. 4  
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e 

2D oe -1-1 = v [ 1 - r2 
+ OT 

1  
TT 

 ( l _ r  , ) ] + 1 4  1 

and 

I 4172 
R 

R22 r 2 r V2z = [ ( 1-( -) ) - C2 in ( 17- ) 
r(02 V - 1 2 '12 

r it 
.... 

AI)2 c2 0(2  
+ 

6
7,  7_ ( -7- r + 7- ) dr ] 

Z-02 1  Jr 
2 

/ , GP 
( a2 r2 ) ln( r \ = , L -----  -  - c2 

- ) 
)"(02 v i 4 a 

R1 
a/2-/ 

4T2R1 00 2c2 1 (2 + ( --7-  ) • ( r+ (----7-) T) dr ] 
1:02 r 4P2R1 

Re P 
r, 2 2 r 'a .. e  2 c''.2 

= 7771-  t_a, -r ) - 2c2 ln(L) + 2D (r+--) dr ] a r 2A 

where 

arq 0(.2-1 
D1 = (AT1R1 / 22-01 ) ' • D2 = (.4 171R1 / 2 ) 02 ; 

n - m = )7 1 Y7 02 (01 and c
2 = 2c2 help2R1 

The viscosities of fluids will be 

- o 
1 + 1rfei-1 
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and 

t2 
m 

Z,1)-2 11 1 afrq C2 06-1 
1 + ) • ( r + -- ) 

2 L'02 

m  

c2 cez-i 
1 + D2

( r + 
r
) 

The shear stress tensors will be 

/ 
0 D1r  

2 
\\ 

"t"" rt- = 0 0 0 

D1r 
0 0 

A 

0 0 c2 -2(r+ - -) 
2 r 

__ 
N\ 

= z7Z \ / Vi   = D I 0 0 0 

A i/ c 
—2- 

2 
(r+ 

r
--) 0 0 

2  

The corresponding shear rate for each fluid will be 

0 0 PI 
- 7-- r  _ _ _ R
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 i 
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}- -12-)Lr 0 0 
2 
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and 
A 

2 cq. c2 
0 0 -pi  -7(r+ -T) 
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) 
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7
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c 
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The following function groups can be rewritten as 

f3R e AViR, 
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4 1 4 2 erV. )(01 
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n 

a2k [ 2c2 
or--/ 
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R 4p-  R PV r2 e 1 2 1 \ I  i 1 - Q - 4m 2 4m r) V.  2 7O1 i 

1 1  —7 --- 
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APPENDIX II ----------- 

The shear rate for fluid 1 can be calculated by 

= + A CCI = - R e  

tl 

Since 

1/71  = ( 7 
I 

) 2 = `lrz L'lrz 

It should be noted that 7: lrz  is greater than zero 
for 0 < r R1 and {Zlrzl is negligible compared with 

We can get 1:1rz 

1 /6-1rz + lrz 
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lrz 'Clrz 

Thus 
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( 1  - 11
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R e  77- 

/7- * "Clrz lrz a, -I  lee = - Re [ 1 + ( ---------2----- ) LI% •  / v. 

R  
(-100 
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PC01 
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— * * i 

= - Re L 

r 
fr lrz + -L 

/7... 
-lrz 4- 
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(r01 in'  
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Similarity to fluid 2. 
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R 
PC2rz + ir2rz 0.--/ 

,,
z ,,  ..= - e { 1 + ( _____________ —___ ] . fr 4—.2 7 ) m ----- 2 

/r02 /0Vi 

Thus, the shear rate tensor for fluid 2 were shown as 

following 
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APPENDIX III 

The governing equation of fluid can be derived from 

Cauchy's equation by applying Eqs (3-34) - (3-39). 

For fluid 1: 

r-component 

ovir + avir 5P 1 a, 1 &Tire -— — [ )  
aiz z a r r car lrr r a 0 

r100 a(Clrz  _ 
r  a z 

-io(c (iG ) +
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1 e 
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z -component 
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Continuity equation 

* * 

r ar 
1 a , * 1 a,-,7 6., avi  
- -- k. rv

lr r 8 z
z ) + — --- -I- ---- = 0 

G 
 
G1 

1 
r 

+ + H1 +O(F1 = 0 

The governing equations for fluid 2 are similar to those 

for fluid 1 except the density ratio, b, and characteristic 

viscosity ratio, m = /
02 / 

. 
(01 

We shall omit the 

derivation procedures for them. 
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APPENDIX IV 



1^0000 SUBROUTINE SS|(S3,S4,AV,A,CO,B,B1,B2,B3,Q2,RF2,RM, 
2,0000 1D2,B4) 
3,0000 M=RM 
4,0000 WO=B*Q2*RF2*D2/M 
5,0000 W1=A**(2,*RF2f4^)/(2~*RF2f4^)fRF2*D2*A** 
6.0000 1(3^*RF2f3^)/(3^*RF2f3.) 
7^0000 W2=A**(2^*RF2f2,)/(2,*RF2f2,)fRF2*D2*A** 
8,0000 1(3,*RF2f14)/(3^*RF2f1^) 
9,0000 W3=A**(RF2f5.)/(RF2f5,)fRF2*D2*A**(2.*RF2 
10^0000 1f4,)/(2^*RF2f4^) 
11~0000 W4=A**(RF2f3^)*ALOG(A)/(RF2f3^)-2~*A**(RF2f3^)/(( 
12~0000 1RF2f3^)**(2.))fRF2*D2*(A**(2^*RF24-2,)*ALOG(A)-A** 
13^0000 1(2^*RF2f2^)/(2^*RF2f2,)-A**(2^*RF2f2,)/(RF2f3,)) 
14,0000 1/(2^*RF2f2,) 
15^0000 W5=A**(RF2f3^)/(RF2f3,)fRF2*D2*A**(2^ 
16.0000 1*RF2f2,)/(2^*RF2f2,) 
17^0000 W6=A**(RF2f1^)/(RF24-1.)fRF2*D2*A**(2,*RF2 
18.0000 1)/(2,*RF2) 
19,0000 W7=A*A*ALOG(A)/4,-A*A/4,fRF2*112*(A**(RF2f1,)*AL06 
20,0000 1(A)-A**(RF2f1^)/(RF24-1,)-A**(RF2f1,)/2^)/(2^*RF2f2.) 
21,0000 E21=-WO*D2*B1*W1/((RF2f1^)**(2~)*(2,*RF2f4^)) 
22^0000 E22=-WO*2^*112*B2*W2/((RF2-1,)*(RF24-1,)*(2,*RF24-2.)) 
2340000 E23=WO*B1/RF2*W3/(2^*(RF2f1,)*(RF24.5^)) 
24^0000 E24=2^*WO*B2/RF2*W4/((RF24-1,)*(RF2f3^)) 
25,0000 E25=2,*WO*B3/RF2*W5/((RF2f1,)*(RF2f3,)) 
26~0000 E26=WO*B1*(CO/02-A*AfB2/B1)*W5/(2^*(RF2f1^)*(RF2f3^)) 
27,0000 E28=-WO*D2*B1*W1/(2^*(RF24-1,)*(2,*RF24.4,)) 
28~0000 E30=WO*D2*B2*W2/(2,*(RF2f1^)*(2,*RF2f2^)) 
29,0000 E31=WO*B2*(CO/02-A*A)*W6/((RF2-1,)*(RF2f1^)> 
30,0000 E32=WO*B2*W5/(2^*(RF2-1,)*(RF2f3,)) 
31^0000 E33=-WO*D2*B2*W2/(2^*(RF2-1^)*(2^*RF2f2^)) 
32,0000 E34=WO*B1*W3/(2,*(RF2f3^)*(RF24-5,)) 
33,0000 E35=WO*D2*B1*W1/(2.*(RF2f3,)*(2,*RF2f4.)) 
34,0000 E36=WO*B2*(A*A-CO/02)*W7/(RF2*D2) 
35^0000 E37=WO*B2/RF2*W4/(RF2f3^) 
36,0000 E38=WO*B1/RF2*W3/(8^*(RF24-5^)) 
37.0000 E39=WO*(2.*B3-B2)/RF2*W5/(2*(RF24.3^)) 
38.0000 E40=-2^*WO*B4/RF2*W6/(RF24-1^) 
39^0000 E41=-B*02*B1*(A**(6^)/6^fRF2*D2*A**(RF2f5^)/(RF2 
40^0000 1f5^))/(48,*M) 
41^0000 E42=B*02*B1*(A*A-CO/02-2^*B2/B1)*(A**(4.)/4^fRF2 
42^0000 1*D2*A**(RF24.3^)/(RF2f3^)>/(16.*M) 
43^0000 S3=E21fE22fE23fE24fE25fE26fE28fE30fE31fE32fE33fE34 
44^0000 14-E354-E36fE37fE38fE394-E40fE414-E42 
45~0000 WW1=-A**(2,*RF2f5,)/({2,*RF2f4,)*(2^*RF2f6^))-RF2 
46.0000 1*D2*A**(3^*RF2f4^)/((3.*RF2f3.)*(3^*RF24-5^)) 
47,0000 WW2=-A**(2,*RF24.3^)/((2,*RF2f2.)*(2^*RF24-4^))-RF2 
48.O000 1*D2*A**(3^*RF2f2^)/((3,*RF24-1,)*(3^*RF24-3^)) 
49^0000 WW3=-A**(RF24.6^)/((RF24-5^)*(RF2f7^))-RF2*D2*A**( 
50.0000 12.*RF2f5^)/((2^*RF2f4^)*(2,*RF2f6^)) 
51^0000 Z1=-A**(RF2f4^)*ALOG(A)/((RF2f3^)*(RF2f5.))f2,*A 
52^0000 1**(RF2f4^)/((RF24-3.)**(2,)*(RF2f5^))fA**(RF24-4^) 
53,0000 1/((RF2f3,)*(RF2f5,)**(2,)) 
54.0000 Z2=A**(2~*RF2f3^)*ALOG(A)/(2,*RF24.4^)-A**(2,*RF2 
55^0000 1f3^)/((24*RF2f4^)**(2^))-A**(2^*RF2f4^)/((2^*RF2f2^ 
56^0000 1)*(2,*RF2f5,))-A**(2^*RF2f4.)/((RF2f3,)*(2,*RF24-5.)) 
57,0000 WW4=Z1-RF2*D2*Z2/(2,*RF24-2^) 
58,0000 WW5=-A**(RF2f4^)/((RF2f3,)*(RF2f5^))-RF2*D2*A**( 
59^0000 12^*RF2f3^)/((2^*RF24-2,)*(2,*RF2f2^)*(2^*RF24-4,)) 
60,0000 WW6=-A**(RF2f2^)/((RF24-1,)*(RF2f3^))-D2*A**(2^*RF2 
61,0000 1f1^)/(2,*(2.*RF2f2,)) 
62,0000 Z3=A**(RF2f2^)*AL0G(A)/(RF24-3,)-A**(RF24-2,)/((RF2 
63,0000 1f3^)**(2^))-A**(RF24-2^)/((RF2f1^)*(RF2f3^))-A**( 



66.0000 1*(RF24-1.)) 
67.0000 S4=E21*WW1/W14-E22*WW2/W24-E23*WW3/W31-E24*WW4/W44.E25 
68.0000 1#WW5/W54.E26*WW5/W54-E28*WW1/W14-E30*WW2/W2 
69.0000 S4=S44-E31*WW6/W64-E32*WW5/W54.E33*WW2/W2A-E34*WW3/W3 
70.0000 1i-E35*WW1/W14-E36*WW7/W7+E37*WW4/W4 
71.0000 54=544-E38*WW3/W3+E39*WW5/W5+E40*WW6/W6 
72.0000 E43=B#02#B1#(A##(7.)/48.+RF2#I►2#A##(RF2+6.) 
73.0000 1/((RF24.5.)*(RF24.7.)))/(48.*M) 
74.0000 E44=-B*(32*B1*(A*A-00/02-2.*B2/B1)*(A**(5.)/24.4.RF2 
75.0000 ].#I►2#A##(RF2+4.)/((RF'+3.)#(RF2+5.)))/(16.#M) 
76.0000 54=844-E434-E44 
77.0000 AV=E21/W14-E22/W24.E23/W34-E24/W4*(-1./(RF2+3.))+E25 
78.0000 1/W54.E26/W54-E28/W14.E30/W24-E31/W64.E32/W54-E33/W24-E34/ 
79.000() 1W3A-E35/W14-E36/W7*(-1./4.)+E37/W4*(-1./(RF24.3.))4. 
80.0000 1E38/W34-E39/W54.E40/W64-B*02*B1*(-1./12.4.(A*A-CO/Q2 
81.0000 1-2.*B2/B1)/4+)/(4.*M) 
82.0000 RETURN 
83.0000 END 
84.0000 SUBROUTINE GAUSS(X,Y,NrEPS) 

- 85.0000 DIMENSION X(5,5),Y(5) 
86.0000 DO 1 I=1rN 
87.0000 K=I 
88.0000 IF(I-N)21,7,21 
89.0000 21 IF(ABS(X(I,I))-EPS)6,6,7 
90.0000 6 K=K4-1 
91.0000 Y(I)=Y(I)+Y(K) 
92.0000 DO 23 J=1,N 
93.0000 23 X(I,J)=X(I,J)+X(KrJ) 
94.0000 GO TO 21 
95.0000 7 DIV=X(I,I) 
96.0000 Y(I)=Y(I)/DIV 
97.0000 I►O 9 J=1,N 
98.0000 9 X(I,J)=X(I,J)/DIV 
99.0000 DO 1 M=1,N 
100.0000 DELT=X(M,I) 
101.0000 IF(ABS(DELT)-EPS) 1,1,16 
102.0000 16 IF(M-•I) 10,1,10 
103.000() 10 Y(M)=Y(M)-Y(I)*DELT 
104.000() DO 11 J=1,N 
105.0000 11 X(M,J)=X(M,J)•-X(I,J)#DELT 
106.0000 1 CONTINUE 
107.0000 RETURN 
108.0000 END 
109.0000 C EIGEN VALUE,C1, FOR AXISYMMETRIC CASE BY USING 
110.0000 C ELLIS MODEL 
111.0000 C 
112.0000 C 
113.000() DIMENSION X(5,5),Y(5) 
114+0000 REAL MrK 
115.0000 RF1=2. 
116.0000 RF2=4. 
117.0000 GR=0.1 
118.0000 M=100. 
119.0000 D1=10. 
120.0000 WRITE(2,301) RF1,RF2,GR,M,D1 
121.0000 301 FORMAT(//' RF1=1 F5.11 RF2=1 F5.11 GR=1 F5.1 
122.000(l 1' M=1 175.1' D1=q75.1) 
123.0000 K=1. 
124.0000 RF12=(RF2-1.)/(RF1-1.) 
125.0000 101 R1=0.0079 
126.0000 R2=0.079 
127.0000 RD=(R2-R1)/9. 
128.0000 410 A=R2/R1 
129+0000 B=1. 



132+0000 1*D1**(RF12)*A**(RF2+1.)/(RF2+1.)) 
133.0000 02=01*K/M 
134.0000 V1V2=2.*(02*(1.+112)-01-01*D1) 
135.0000 X(1y1)=1./16.+RF1*D1/(2.*(RF1+1.)*(RF1+3.)) 
136.0000 X(1y2)=-(A**(4.)+1.)/16.+A*A/8.-RF2#112*A*#(RF2+3.)/(4.* 
137.0000 1RF2+12.)+RF2*D2*A**(RF2+1.)/(4.*RF2+4.)-RF2*D2/(2.*(RF2 
138.0000 1+1.)*(RF2+3.)) 
139.0000 X(1,3)=(1.-A*A)/4.+RF2*D2*A**(RF2-1.)/(RF2-1.)-RF2*D2 
140.0000 1*A**(RF2+1.)/(2.*RF2+2.)-RF2*D2/(RF2*RF2-1.)+ALOG(A)/2. 
141.0000 E1=-2.*(01-M*02)/V1V2 
142.0000 X(2,1)=E1*(1./4.+Wl*D1/(2.*(RF1+1.)))-1.12. 
143.0000 X(2,2)=M/2.+EDWA*A-1.)/4.+RF2*D2*(A**(RF2+1.)-1.)/ 
144.000() 1(2.*(RF2+1.))) 
145.0000 X(2,3)=M+E1*(ALOG(A)+RF2*D2*(A**(RF2-10)-1.)/(RF2-1.)) 
146.0000 X(3,1)=1. 
147.0000 X(3,2)=-M 
148.0000 X(3,3)=0. 
149.0000 A2=0. 
150.0000 A3=1. 
151.0000 Y(1)=-A3/2. 
152.0000 Y(2)=-E1*A3 
153.0000 Y(3)=0. 
154.0000 EPS=0.000001 
155+0000 N1=3 
156.0000 CALL GAUSS(X,YyN1,EPS) 
157+0000 A1=Y(1) 
158.0000 B1=Y(2) 
159.0000 B2=Y(3) 
160.0000 B3=-B1*(A*A/4.+RF2*D2*A**(RF2+1.)/(2.*(RE2+1.)))-B2 
161.0000 1*(ALOG(A)+RF2*D2*A**(RF2-1.)/(RF2-1.)) 
162.0000 B4=-B1*(A**(4.)/16+RF2*D2*A**(RF2+3.)/(4.*(RF2+3.))) 
163.0000 1-B2*(A*A/4.+RF2*D2*A**(RF2+1.)/(2.*(RF2+1.))) 
164.0000 F1F2=A1*(1./4.+Wl*D1/(2.*(RF1+1.)))+A3+B1*((A*A 
165.0000 1-1.)/4.+RF2*D2*(A**(RF2+1.)-1.)/(2.*RF2+2.))+B2* 
166.0000 1(ALOG(A)+RF2*D2*(A**(RF2-1.)-1.)/(RF2-1.)) 
167.0000 CO=1.+V1V2*(-A1*(1./16.+RF1*D1/(2.*(RF1+1.)*(RF1 
168.0000 1+3.)))-A3/2.)/F1F2 
169.0000 SI1=01*2.*RF1*D1*D1*A1/((RF1+1.)*(RF1+1.)*(RF1+3.)) 
170.0000 SI2=01*D1*A1*(RF1/(RF1+1.)*1./(RF1+3.)-3./8.) 
171.0000 Si3=01*D1*A3*(RF1-1.)/(RF1+1.)+Al*RF1*D1*(01*(1, 
172.0()00 1+2.*D1/(RF1+1.))-00)/(2.*(RF1+1.)) 
173+0000 SI4=01*A1/8, 
174.0000 SI5=A1/4 .*(01*(1.+2.*D1/(RF1+1.))-00) 
175.0000 V1C0=1.-CO 
176.0000 E4=SI1*(1./((2.*RF1+4.)*(2.*RF1+6.))+RF1*D1/((3. 
177.0000 1*RF1+3.)*(3.*RF1+5.)))/(2.*RF1+40) 
178.0000 E5=SI2*(1./((RF1+5.)*(RF1+7.))+Wl*D1/((2.*RF1+4. 
179.0000 1)*(2.*RF1+6.)))/(RF1+5.) 
180.00.00 E6=SI3*(1./((RF1+3.)*(RF1+5.))+RF1*D1/((2.*RF1+2. 
181.0000 1)*(2.*W1+4.)))/(RF1+3.) 
182+0000 E7=SI4*(1./48.+RF1*D1/((RF1+5.)*(RF1+7.)))/6. 
183.0000 E8=SI5*(1./24.+RF1*D1/((RF1+3.)*(RF1+5.)))/4, 
184,0000 S2=E4-E5-E6+E7-E8 
185.0000 E9=SI1*(1./(2.*RF1+4.)+RF1*D1/(3.*RF1+3.))/(2.*RF1 
186.0000 1+4.) 
187.0000 E10=SI2*(1./(RF1+5.)+RF1*111/(2.*RF1+4.))/(RF1+5.) 
188.000() El1=SI3*(1./(RF1+3.)+RF1*D1/(2.*RF1+2.))/(RF1+3.) 
189.0000 El2=SI4*(1./6.+RF1*D1/(RF1+5.))/6, 
190.0000 E13=SI5*(1./4.+RF1*D1/(RF1+3.))/4. 
191.0000 S1=-E9+E10+Ell-E12+E13 
192.0000 A3S=0, 
193.0000 X(1,1)=0. 
194.0000 X(1,2)=A*A/4.+RF2*D2*A**(RF2+1.)/(2.*(RF2+1.)) 
195.0000 X(1,3)=ALOG(A)+RF2*D2*A**(RF2-1.)/(RF2-1.) 



198.0000 X(2,1)=0. 
199.0000 X(2,2)=A*A*A/16.+RF2*D2*A**(RF24.2.)/(2.*(RF24-1.) 
200.0000 1*(RF24.3.)) 
201.0000 X(2,3)=A*ALOG(A)/2.-A/4.+RF2*D2*A**(RF2)/((RF2 
202.0000 1-1.)*(RF24.1.)) 
203.0000 X(2,4)=A/2, 
204.0000 X(2,5)=-1./A 
205+0000 X(3,1)=1./16.4-RF1*D1/(2.*(RF14-1.)*(RF14.3.)) 
206,0000 X(3,2)=-1./16.-RF2*D2/(2,*(RF2+1,)*(RF24.3.)) 
207.0000 X(3,3)=1,14.-RF2*D2/((RF2-1.)*(RF2+1.)) 
208,0000 X(3,4)=-1./2. 
209.0000 X(3,5)=1. 
210.0000 X(4,1)=1. 
211.0000 X(4,2)=-M 
212.0000 X(4,3)=0. 
213.0000 X(4,4)=0. 
214+0000 X(4,5)=0. 
215.0000 EE=A1/2.4-142-M*(B112.4-B2) 
216.0000 X(5,1)=(EE*(1./4.+RF1*D1/(2.*RF14.2.)))/F1F2-1,/2, 
217,0000 14.(1./16.+RF1*D1/(2.*(RF1+1.)*(RF14-3.)))*(-EE*V1V2 
218.0000 1/(F1F2*V1V2)) 
219.0000 X(5,2)=M/2.-EE*(1./4.+RF2*D2/(2,*(RF24.1.)))/F1F2 
220,0000 X(5,3)=M-EE*RF2*D2/(F1F2*(RF2-1.)) 
221.0000 X(5,4)=-EE/F1F2 
222.0000 X(5,5)=0. 
223+0000 RM=M 
224.0000 CALL SSS(53,54,AVrAvCO,D,BirE12,B3,02,RF2,RM,D2,134) 
225,000() 83A=83 
226.0000 S4A=54 
227.0000 AA=1. 
228.0000 CALL SSS(53,54,AVrAA,CO,B,B1,B2vD3,02,RF2,RM,D2,134) 
229.0000 831=53 
230.0000 841=84 
231,000() Y(1)=-83A 
232.0000 Y(2)=-54A 
233+0000 Y(3)=52-841 
234.0000 Y(4)=A3*(01*(1.4-2.*D1/(RF1+1.))-00)-B*02*(133*(A#A 
235.0000 1-CO/02-2.*B4)) 
236.0000 Y(5)=EE*(531-51-V1V2*S2/V1C0)/F1F2-M*AV-SI1/(2. 
237.0000 l*RF14.4.)+812/(RF14.5.)+,513/(RF14-3.)-514/6.4-515/4. 
238.0000 N2=5 
239+0000 CALL GAUSS(X,Y,N2,EPS) 
240.0000 A1S=Y(1) 
241.0000 B1S=Y(2) 
242.0000 B25=Y(3) 
243.0000 B38=Y(4) 
244.0000 B4S=Y(5) 
245.0000 CC=V1C0*(514.A1S*(1./4.4.RF1*D1/(2.*RF14.2.))-531-B1S 
246,0000 1*(1./4.4-RF2*D2/(2.*RF24-2.))-D25*RF2*D2/(RF2-1.)-B3S) 
247.0000 C1=(CC-W1V2*(52-AlS*(1./16.+RF1*D1/(2,*(RF14-1.)* 
248.0000 1(RF14.3.)))))/F1F2 
249+0000 DB=R1/R2 
250.0000 WRITE(2,4000) MrElfirC1 
251.0000 4000 FORMAT(' M='F5.11 Rl/R2=1F5.11 Cl/RE=' 
252.0000 1F30.6) 
253+0000 IF(DB.GE.0.9) GO TO 5000 
254.0000 R1=R14-RD 
255.0000 GO TO 410 
256.0000 5000 CALL. EXIT 
257.0000 END 

258. 
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