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NOMENCLATURE

Position of interface ( dimensionless
density ratio

wave velocity

Froude number

zero-shear~rate viscosity ratio

Reynolds number

interfacial velocity

Weber number

wave number

shear stress rTatio
interfacial tension
viscosity

time ( dimensionless )
deviation of the interface

density

)



(I) Introduction

Polymer processing involving two or more different
polymers has become the subject of considerable interest
in recent years. Examples of such flow are numerous. In
plastic processing the conbination of two melt streams in
coextrusion process has become a very economical method of
producing materials with unique properties which can not
be achieved by using the individual polymer alone. In
pratical problems, scientists made a lot effort trying to
optimize the products by using compositive materials
instead of simple component system. In polymer processing,
involving two or more components, fluid-fluid interface
has been observed to be unstable and some theoretical and
experimental results have also been published, though in
much less details than those for Newtonian fluids.

By using a hydrodynamic stability analysis, Yih (1)
has found that for simple plane couette flow, viscosity
stratification alone is sufficient to cause instability no
matter how small Reynolds number is. KHAN and HAN [2,3],
by studying stratified two-phase poiseuille flow between
two parallel plates, pointed out that viscosity ratio and
elasticity ratio of two super imposed fluids are important
in determining the occurrence of interfacial instability,
with the viscosity ratio predominant over the elasticity
ratio. Schrenk and Bradley [4] confirmed that a wavelike
distortion of the interface could arise under certain
coextrusion conditions, implying the onset of instability.
Li [5] has found that the presence of élasticity can not
only destabilize simple flows but stabilize them for
certain values of the parameters involved. Waters [6]
studies two power-law fluids in plane couette flow and
pointed out that the ratios of the power-law parameters

for each layer can stabilize and destabilize the flow.



In 1971, HICKOX [7] studied the stability of a steady,
axisymmetric, laminar, primary flow composed of two new-
tonian fluids flowing concentrically in a straight circular
tube by using the method of small perturbations. He
demonstrated that, regardless of the size of the Reynolds
number, no situations are encountered for which the primary
flow is stable to the asymmetric and axisymmetric dis-
turbances, simultaneously. The primary cause of instability
is found to be the difference in viscosities of the two

fluids.

None of these analyses ( or experiments ) considered
the concentric flow of bicomponent polymer melts in a
cylindrical tube. This process is frequently observed in
industrial plants like fiber spinning, extrusion ( pipes
forming ) or injection molding. One of the main problems
arises in this process is that the flow could become

unstable, resulting in a product with irregular interface.

The rheological models most often used by experi-
mentalists which predicts a shear-~dependent viscosity is
the so-called "™ Ellis-model " liquid. In this paper, the
flow of concentric bicomponent polymer melts in circular
Pipe will be investigated by using this model. Only

viscosity stratifications will be concerned.



(I1) Time Independent Flow

In this investigation, the stability of an axi-
symmetric, non-newtonian flow composed of two fluids flowing
concertrically in a straight circular tube is considered.
The fluids have different densities and viscosities and
are incompressible and nondiffusive. An interface between
the two fluids exists at some prescribed radial distance

from the axis of symmetry.

The fluids with the interface perturbed 1is illustrated

by the sketch in Fig 2-1.

Rz

Pl)dl”z’”' Pz'dz’z‘;z ) 3

Fig 2-1: Definition Sketch



At steady state, the only nonzero velocity in the flow
is the axial velocity, VZ , which is a function only of the
radial position r. The flow system should satisfy the

Cauchy's equation which wi1ll reduce to

3 p _ -
o2 = 0 ( 2-1 )
3P = 1 0

- __Z— + F}g]'a = {_;_ __; (T T}E )]Lz ( 2-2 )

The subscripts 1,2 refer to fluid 1 ( inner ) and fluid 2
( outer ) respectively. If the left side of Eq ( 2-2 ) is
kept constant and is represented by ( A TD )1,2 , the
solution of Eq ( 2-2 ) is

L T = Apr /2 + cfr ]1 5 ( 2-3 )

If each fluid can be approximated by the Ellis model,
then:

770£ o ~|

— = 1+ (T ] Toi ) i= 1,2 ( 2-4 )
7

Application of Eq ( 2-3) and Eq ( 2-4 ) to the inner and
outer fluid regions seperately along with the reguirements
of zero velocity on the rigid boundary, finite velocity

and shear stress on the axis of symmetry, and continuity

- 4 -



of velocity and shear stress across the interface will
provide the complete solutions which are listed in

Table 2-1.

The nondimensional forms for Table 2-1 can be derived

by using the characteristic units as following:
length : R
density : PI

time : 0t = R. [/ V.

velocity : V = Vv
viscosity 7“

The results are shown in Table 2-2. The details of deri-

vation were listed on Appendix I.



Table 2-1

+ Steady state solution for two fluids

Fluid 1 Fluid 2
7 = (0g - 7. )3 (B9 aR)s - £
= | [2RR,
[APR'O—(——- )+t @f?;[A LR0-t4 @) - Gkl
dﬁ AF% Cz
‘éar )] %{J (‘ )-
0 0 4y _ 0 0 4ng
’Z :< 0 0 g > Zz=<—§0 0 0 >
%EY 0 0 é-PiH—CrE 0 0

2

Tol
|+ (1l /7, )OH

(@

| + (AP’ Y)d'




Table 2-2 : Nondimensional forms of steady state solutions
Fluid 1 Fluid 2
—_— = b — :— ..__.}__.
P={( F'r - 8,) 3 (F-6.)8~ W P
2 — 2
_ML_ ] _ 4P-R, A%f{ ) _AVR
Fr ) i B P’%z b:-é%— : €E= Q\/é 3o We = —2
7, - B&Re‘[,_ﬁ*_ 0$+D‘.(I_),dl+!} T)) Bi’Re [(a Y3 - 26, ﬂn(")
+ | +2sz),(” Cz)zd

5 .p N\~ ]
ARCRY 7. A G AR R
D ‘) m=-2 £ 28
I ( 2 Tol 70{ 2 AP, R? (QCZ
8 e
- ° o0 Fy _ o 0 _S*_()q.cri)
z;‘ = O 0 g;Z:Z 0 o 0
%Y o] 0 5“()/_7_) o) 0
— | = m
{ [+ D™ s [+ Dy (r+ <2)*"
O 0] ———S—’Y — ' 0 0 @J(n é)
2& . Re 2 N = _E%_ v
£ 51| © o0 o ~2 )'Z_ 0.0 o0
0 \_s P \Bpg
=57 0 0 2100




(ITI) Differential System Governing Stability

The stability of the fluids described in the previous
section is to be investigated through use of the method
of small perturbations. This method which was rigorously
formulated by Yih [1] was simple and straightforward.

Following Yih [1], we seek solutions which have the forms

Yo=Y, o+ oY + Y, i (351D

which is a non-singular perturbation around®{= 0 which
corresponds to very long waves. "EXRe " is assumed

small compared with unity and, as pointed out by Yih [11],
no matter how large Re is, there is a range of & for

which the perturbation procedure is valid.

The complete cauchy's equations for each fluid are

Dv

5T T -V'ﬁl + VT te (3-2)

for fluid 1, and

55 = -bVB, + DV, +¢g (3-3)

for fluid 2.

The continuity equation 1is
Vv =0 (3-4)
for both fluid.

It should be noted that Eq (3-2) & Eq (3-3) were written

in nondimensional forms, where b is defined as the ratio



of density ( P& / Q, ).

It is now assumed that the flow system is disturbed
slightly so that the velocities and pressure and relevant
non-zero stress consist of their steady state valued in

the main flow plus a small perturbation. Thus,‘they can

be expressed as

Vi T -\71 vy ( 3-5 )
’Cij = iE ij + T ?j i, =1, , 2 ( 3-5 )
P, = Py ¥ N ( 3-7)
The barred quantities are steady values. The quantities

with astericks represent perturbations to the steady state
flow and are assumed to be small enough so that second or
higher order product of these perturbed quantities are
negligible. Remember that only the axial velocity and
pressure have initial values different from zero. Thus,

the shear stress tensor can be written as

—— L}
,,E‘ = T + T,
% 'S —
T Tre Tyt Ty
= L ( 3 - 8 )
Tro Tios Tioy



for

The

for

and

fluid 1. The corresponding second invariant is

1T = Ll Zli? = 2(;51rz+(1r: FC3-9)

)

shear rate tensor can be expressed as

— *
él = él + én
<
= - R —_—1
e
T
7 _
= - R [ 1 ( ('%IIQJ ) >m i] Z}
¢ ?31//ﬁ \Qz -
Fo + Ty -l
= - Re [ 1 + ‘Cira Vi >~l ]zgl ¢ 3-10 )
To‘/PI\J'L.
fluid 1. Since ?? 1rz v 0 for 0 £ r £ R1

PC 1r:l<< iflrz , the absolute sign could be taken
!
| = :':{
from | T ., + 7:1rz P Thus,
T+ Ty A1
Ay, = -k [ 1+ (22l imy™ 37 - ( 3-11)
rz e TQM/F%%

Re e
- Z ?T 1rr




Similarity ,

A,Qg = - Re T;egﬂ / 7[ ( 3-12 )
Zﬁlzz = - Re'lzﬂlzg / 7‘ ( 3-13 )
lere -7 Re‘zjlre / )Z ¢ 3-14 )
Drgs = % Tigl 17 Camts )
T
_ ~ lrz *
lerz -7 Re [ zjlrz 2 * ?:1rz +
C 7 Vi)
o=
¢ < 11rzz ) C1rz € 3-16 )
T:;/fjavi
Since,
- %
> 1Y 2%y ), 2V
2 3% (Yl se v
3 ko »* * *
* daVe , Ur Vg, 12
A Y%(—?HT%%Y 265 *)j) 33‘*7_3% (3-17)
oG+ Uy, a0 o I 2% Py
S5 "33 25 7Y 26 2 —a‘éz
Detail derivation in Appendix II.



Application of Egs ( 3-11 ) - ( 3-17 ), we can rewrite

the shear rate tensor as following:

KN P
w

Alrr = 29v,_ Izt =-r: T /[ (3-18)
S ov ) 7

DNig = 2 ¢ %5‘@1‘ (LT ) = =R Tl [ (3-19)
. _ . av %
v 5 - 1z

Z31zz B 2-53( Vig T Vig ) o= 2 S5 =z

Aw; = Alr; - T 'g?( "]?ﬁ_ Y “ R Ty 1 7
(3-21)
- - U 5 ;
AlLe =A19; = g—g@ * % 5o ( Vip * vy, )
- %%le; + % —g—:;l; - - Revflaz / /f, (3-22)
Alrz =Alz: B "Z‘Xi:g * _aa_z'zl'z = - Ry D1 oFoyDyr 1T,
. _;(E.. T 1r: (3-23)

Application of Eq ( 3-2 ), the <r-component of the

equation of motion is



* »* x 2
av—r U-*BUr 7{;9 2%/-/ _ 7{;_9 +(U-a+ A )aUy

* »* «
S /P * 4 [ 2T
SRR = [+ 500+ 4252 - 2 4 i ]

Neglecting the terms whose perturbed power greater than two,

we get

U ol P | 5T T, 2G
X’ ouvrr —_ a o ! r@_ Y3
ot Us 5 T ar [Y ai(YT”) ¥ 26 y "o
for r-component. Similarity to 9 s Z components and

continuity equation:

Q - component

*
ggu%a_?f/ﬁ:

zZz=-=component

— * * *
2% Ug U]r Us 53 a?fg = "?ﬁ—[i i(r@;)+_f_ 0 Ueg +LE§5J

- 13 -



Continuity equation

o
Y

5 v W v v
1 * 12719, PV1g
r 38 oz

for fluid 1. It should be note that the starry sign

(3-28)

indicated the purturbed values and the barred mean the

steady (primary) values.

Following the procedure of Batchelor and Gill [3],

the perturbation terms for the fluid are assumed to have

the forms

v, = iG(r) EXP

v = H(r) EXP

v: = F(r) EXP
and

p" = p(r) EXP

Where EXP = exp [ in§ + iX-( z - c -) ] and G, H,

are nondimensional functions of r,

r = R/R s oz o= z/R1 ; C = tVi/R1

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)



and and ¢ are the nondimensional wavenumber and speed
repectively. The parameter can be zero or any integer
value and is the means by which the angular dependence of
the purturbation terms 1is expressed. The 1 is the
imaginery number (—1)]/2 . In general, the wave speed c¢

can be complex. It is the sign of 1its imaginary part

which will wultinately determine the stability or insta-
bility of the flow. If the imaginary part of ¢ is positive,
the perturbation terms will grow exponentially with time

and the flow is considered unstable,.

Application of Eqs ( 3-18 ) - ( 3-23 ) and Eqs ( 3-29 )

~ ( 3-32 ), the perturbed terms of shear stress tensor were

determined, i.e.

*

o _ — ] ¥ - .‘- -3
Typn = = 2 7( /R v,  lor 127,G1 EXP/R (3-34)
; _ nH1+ G1
’5169 = - 127 === ) EXP/R (3-35)
<% _ s ) (3—36)
(P i 27,F1EXP/Re
>y , H nG
* - _ j_l_ [ Hl _ __}_ - ___l ] EXP (3_37)
?rlrg Re i ’
7 n ' (3-38)
= - ) IR + - F EXP
tlgz * Re EO(HI r 1 J
A : (3-38)
= - rr - &G, ] EXP
t&rz Re L 1 1



Substituting Eqs (3-34) - (3-39) into Egs (3-25) - (3-28),
the governing equations for fluid 1 are readily written as
following %%

r-component

7 G
= - - 0 " ra 1
oA ( Vi, c )Gl p1 [ 2G1 + 2( =~ + 1 ) =
e i
2 H. H
- ( E_ig + O(J_éi_/ )G]_ + n( ._.l - 3 _l
r / Tr
v ALy (3-40)
7ot
g -component
7 7L
= - .1 S G " r _1
X ( vy, c )Hl = = P Re [ H1 + (== + 1) -
l
7/
L/ A1+
-« 7 ; 2 4 &?)n
. T
G Y G F
- n( -1y ( E_Z_ + 3 ) -1 -an L
2 r
1 T
(3-41)

*% Refer to Appendix III for detail.



z-component

' _ i"z‘ 'L[, "
Gl vy, = e D+ vy "G = apy gL 7 Fp
e
/ F 2
Aoqpndhy 1 (P35 + 200F,
| /l’(l T T
G
A ! I‘~,6(1/ 1
- == A(G, + (1+ =£= ) ——= )
% 1 AQ T
- 9—';0(— Hy ] (3-42)
Continuity equation
! Gl n
Gl + . + - Hl + O('Fl = 0 (3-43)

Applying the same procedure to fluid 2, we can get the
similar equation of motion and continuity equation as

following =%

r~-component

_ / '
7% G
= _ il " VA 72
b A ( v, c )GZ = p2 = [ 2G2 + 2( ==+ 1)
e 71.
~ H. B
- (B2, e )G, + n( 2 _ 3 ~%)
T 7% T
+ mot—= T, ] (3-44)

*% Refer to Appendix III for detail
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¢, -component

- —_7
_ , " 1 H
bot (¥, - e, = -2y o EL gty (2B 2
e 2
--/_ 2
e r.7/7Zz ;—1+2n + O(z)H
R 2
G, 7/ G F
-n(—%+(£:)é+3)—-§-)—o<n—%
7 -
(3-45)

z~-component

2z 2 Re A ’2
m M T FZ
+ M2 ( 1+ _LLLZ) ——
A 2 r
n? 2 m U
- (354 20hr, - By
2
r 7
, /G
(G, + (1+ e y 2
2 /L[Z T
-2y (3-45)
r 2
Continuity equation
! G2 n
G, + =—£ 4 2 + o =0 3-46
2 T + T HZ X FZ ( )



Thus, except for the factor b and m, these equations of
motion for fluid 2 have the same forms as those for
fluid 1. The simultaneous solutions of these equations
together with the appropriate boundary and interfacial
conditions will provide information from which the
instability of the bicomponent non-newtonian flow can be

inferred.



(IV) Bounday and Interfacial Conditions

The boundary conditions expressing finiteness of
velocity along the axis of symmetry and no slip at the

rigid surface are

G1(0), Hl(o),' Fl(O) ~--- Finite (4-1)

and

G2(a) = H_(a) = Fz(a) =0 (4=2)

Where a = R2/R1 .

The interfacial conditions require continuity of
velocities, shear stress and normal stress. These
conditions must be evaluated carefully, becasuse, strictly
speaking, they are to be applied at the interface of: the

disturbed flow, r = 1 +§&§ , and not at the original

interface, 1 = 1.

Because of the periodic disturbance, we can assume a

wavy form described by the equation

T =1+3 =1+ &, expl ino + ix( z - cz )] (4-3)

where &, is the amplitude of the fluctuation of the
interface from its mean position at r = 1 and is an
infinitesimal quantity to be determined by the interface

conditions. Thus, the substantial derivative of § with

- 20 -



respect to time must be equal to the radial component of

the perturbed velocity, i.e.

( %% )r=1+8 = Vr = iG( 1 + & )EXP (4-4)

rearrange above equation, we can find

D 3 ) _ o .
(35 +* vy, 5528 = v = 16( 1+ 3)EXP (4-5)
or
-ite§ + it v )r=1+8-5 = iG( 1 + 8 )EXP (4-6)
recalling that v1Z is equal to Vs, at the interface.

Expanding Eq (4-6) in Taylor series around r=1

“loed + iV (18 + ix(V, ) __, S

=i [ G (1) + G (1)S] EXP (4-7)

and neglecting terms above second order in infinitesimal

quantities, we have

S - G )

d'['?lz(l) - c |

EXP (4-8)

Continuity of V. across the interface Tequires that



(148,68, 2, t) (4-9

vyp (148, y oz, T ) =V,
i.e,

Vi (1+8) = Vo (1+8) (4-10)
or

s ot 8 o Eo S

AL (1y + v, (1) = v, (1) + v, (1)- (4-11)
Since both V1; and sz are infinitesimal quantities, we
can get

Vi, (1) = Voo (1) (4-12)

by eliminating all the second order terms. Equation (4-12)

is equivalent

G, (1)

Similary, the

result in

or

Continuity of

because there

to

Gz(l) (4-13)

continuity of v accross the interface will

(4-14)

(4-15)

v, requires a more careful formulation

is a gradient of axial velocity in the mean

22



flow which is discontinuous at the interface. The condition

requires that

v (1+8 , 68, 2z , t) v (1+8, 0, z , t) (4-16)

1z 2z
or
— e p——
= +
vy, (I+8) + v, (148,60, 2z , t) = v, (1+3) +
Vz; (1+8, 6, z, t)
(4-17)
Expanding in Taylor's series around r=1
vy, (1 + v (18 + v, (1) + v, (1)
= v, (1) + vZZ.S + vy, (1) 4+ v, (1) (4-18)
and neglecting terms above second order, we have
- * —_ ¥
vlz(l)'S + v, (1) = VZZ(l)'S + v, (1) (4-19)

Since v. (1) = v
lz 2
applying Eq (4-~8) and Eq (3-18)

Z(l) , We rearrange above equation by



A ( vz’l(l)—c) ( vz,l(l)—c) (4-20)

Continuity of stresses across the interface can be

expressed as
R S, A (4-21)

. A . -
at r = 1+8 and i =r,8, z . Where n 1is the unit

normal vector of the interface given by

/I; - V( I‘-l-g) = V( r-g) (4_22)
~ V( t-]-8) V(-8

where

V-8 = [ & G-, +[ 25 @81 U

3r 20

P12 910,

Sz

=, + [ -8+ [ - xsTU, (4-23)

T

A A A .
u]? R ue ,Il N are unit vectors in the r, 8 , z

directions respectively. So,

’ in

|V]Er—5>{ ;

n —_

r [V e-80]



n o= ——iXD (4-24)

z IV(r—S),

A
Since & is an infinitesimal quantity, the components of N
in the # and 2z directions are small compared to that in

the r direction. Expanding Eq (4-21), we get

N
T T S ST S
rT T 6 rz z TT T 8 é
2 A
+ T . n (4-25)
TZ z
1 -~ 1 1 A~ 2
. + . . = -+
T9r n T% n -+ Tez n, TGr n T ng
+ 17 2.7 (4-26)
6z Z
A~ e
LA o+ a4 n =T %h +T 2.0,
ZT T 20 pAVA z zZr r zé
+ T a
zz ~ Mz (4-27)
at r=1+8. Where 1 and 2 represent inner and outer fluid,
respectively. However, for primary flow
— i
Trp =0



o
&‘; -~
1}
KA
Q ~.
1]

o

(4-28)

o
Il
(=)
e
il
(-
-
N

everywhere and everytime. The equation of state tells us

that
T = - pI - T (4-29)

where p is a function of z direction only. Thus, equations

(4-25) -~ (4-27) result in

*,,A *f’/\ —"'l )f,‘ A
’[;,r.nr+ ’Z;e-n9+(’z;é+’[,5)n

z

*Z A %2 A - 2 *,2 A
= : + . + -
(e n_ Z;e n, (’Crz +’Crz ) n_ (4-30)
*x1 A »®l A MA %2 A %2 A~ *2 A~
Tor ‘n + oo 'Tg + 2;5 m_ = ’Q,.nr + Too-Dg *+ ’Z;a'nz

(4-31)

— 1 w1 A
(’Czr +“Zér )en

wta

%, 2 ~ E ) %, 2 _
o ).nr + Tée ng + (p +’CZZ )-nz (4-32)

be

- (T 2+

. — | =
at = 1+§. Expanding erz and eri about 1 and

neglecting all terms over second order, Eq (4-30) becomes



1

Y z 1 dZrz N P
’Crr Py + [Trz(l) + dr )r=1 S ]'nz Z’rr nr
_ 2
- 2 dTrz A
+ [Y:rz(l) + ( A )r=1'8 ]-nz (4-33)
or
*,1 A~ — 1 A *,2 A~ —_— 2 A~
. + . = . . -
'er nr /trz(l) s Q:rr nr +'?rrz(1) o, (4-34)
Using the fact that 1(1) =T 2(1) , We have
Tz Tz
*,1 %, 2 _ _
err = err at r=1 (4-35)

Similar procedure applied to the second and third equation

above yields

T;r" = Tt at  r=1 (4-36)
and 1 2
( 9%%2 )r-l S + /t‘zj,l = ( g%%E )r=1'8 ?rz;,z
at r=1 (4-37)

Application of Eq (3-27), (3-41) and (4-8), Eq (4-37)

reduces to

G
-2@' — -#—’(Fl—o(Gl)
ol ( Vlz(l)—c ) e
) G ,
- 56_2 (1--5) ; — (T, ~o6, ) E§4£ (4-38)
T X( v, (1)-c) e
z
at r=1



Application of Eq (3-25), Eq (3-40) and Eq (4-36),
Eq (4-36) reduces to

ToCu, - =2 - L = Zecw, - 2o 2 (4-39)

The normal stress condition at the interface is the
most complicated because the difference in normal stress
across the interface is counterbalanced by the action of
surface tension between the two fluids. It must also be
remembered that the normal stress includes a derivative
of the radial velocity, i.e.,'tr: in addition to the
pressure. Hence, the difference of the quantity is
evaluated for the inner and outer fluids by the following
form

ata oL
A FAN

- (P +P ) T, (4-40)

and this quantity must be equivalent to

1 1 1
- W; ( ﬁ-//- + _R—_: ) (4-41)

where P 1is the mean pressure, we is the Weber number
defined in section(II), and R, and R, are the non-
dimensional principal radii of curvature of the interface.
A radius of curvature is positive if the center of
curvature lies in region 1 ( inner fluid ). The radius of
curvature R, is evaluated in a plane which contains the
axis of symmetry while R, is the radius of curvature in

a plane taken perpendicular to the axis., The radius of

curvature are given by
- 28 -



; = 882 = - &3§ (4-42)
Vi Sz ,
and
L - 1+t -1)-8 (4-43)
Ry

Application of Eq (3-24), (3-37), (4-40), (4-42) and (4-43),

the normal stress condition at the interface can be written

as
= Y, 2 2
. 2% . . 2% v ., o+1-n° |,
e e e
G
1
A ( Vi (1)-¢)
z
(4-44)
The rTesults of this section were summarized in the
Table 4-1. They were used in conjunction with the

governing differential equations to provide a solution to
the stability problem. Since six constants arose in the
solution of each set of governing equations, there were
a total of tweleve constants to be determined from the

tweleve boundary and interfacial conditions.

The differential system represents an eigenvalue since
¢ must take an specific value in order that the solution
not be identically zero. The flow will be unstable,
neutrally stable, or stable accordingly as the imaginary

part of c, c, is positive, zero, negative.



G1(O), H1(O), F1(O) finite

Gz(a)

H(a) = F(a) = 0
6, (1) = G,(1)

(1) = HEy(1)

v, G V. G
1z 71 2z 2
P+ = = F, + = at r=1
1 d(v1z—c) 2 d(vzz - c)
G >y G
B, p M ' 8o Co 2
T AT, - " ® P - AG) =52 (1 -5 )
1z e T 27
iy
Y .
R (P, -olG, ) at r=t
— , B, nG, — 4, nG,
7,‘( h,] —-—-E— = )=)Zz( Hz—-r-—__r_) at =1
(P 12?1(;')-\?-12’?20')=(0(2+1"n2)—————w—G1
1 Re 1 2 Re 2 he d(v1z—c/
at r=1

Table 4-1



(V) Solution for the Axisymmetric Case ( n=0 )

The differential governing equations in section III
will now be solved by the regular perturbation procedure
described in section ITI. The series expansions given in
Eq (3-1) will be substituted into the governing differential
equations and boundary conditions. Then terms of the same
power of ¢{ will be equated separately in each equation.

This procedure will allow a solution to be built up step-
by-step from the first approximation to any degree of
accuracy required. In order to determine the first
approximation to the onset of instability, it will be

necessary to proceed only as far as the second approximation.

When n=0 , the equation of motion associated with
the § coordinate, (3-26) and (3-45), express only a
relationship governing circumferential velocity and may,
if required, be solved after the other three equations in
the differential system have been solved. In order to
determine the stability of the flow, it will not be
necessary to solve (3-26) at all. Thus, the order of the
differential system is reduced by 2, and there will be a
total of eight constants to be determined instead of

tweleve.

Omitting H., and H, from consideration and taking n=0,

1 2
yields
- —7 '
G
- - i-% " -7 1
ol ( Vi, C )G1 = P1 Re [ 2G1 + 2 , + 1 )
2
-( 5 + o2 )6, + o 2 oo (5-1)
T 7 7



o v, -c )F +VG=-o(-p—" [ = F, + =
1z 1 1z71 1 Re )Z’ 1 )Z’
r Al F1 of A
M, M
(l+-—-/z(-l—)——-;—2-F1 /o((Gl
/ G
Ay 1 _
+(1+,a/) ) ] (5-2)
and
G1 + Gl/r + d'Fl = 0 (5-3)

Eliminating p Dbetween Eq (5-1) and (5-2), and combining
Eq (5-3) provides the solution of F1 and G1 . The
procedure of solutions for fluid 2 is similar to that for

fluid 1.

A, First Approximation

If Eq (3-1) is used in Egqs (5-1) - (5-3), we get the

first approximation

2 1P D
= z 1 1 ol K171 a
F1,0 ™ & (=7 2w+1y T )+ A, (1o T + (S, )
* oAy (5-4)
3
G = -~ A ( 2= 4 ol 1Py P2y
1,1 1 16 2@+1) - &d+3)



O(]LD]L *)

A2 ( % r 1In r + (%_1) CSY) r + % )
B T
for fluid 1. And
Fy o = By ( 7l - 5;3 95, (r) ) + B, ( 1n t -cpD,h(r) )
+ B, (5-6)
Gy 1 =By (€ %% r’ + i r¢>(r) - _g;g 5%522 )+ B,
(-Zimz+ls 0—(3——r ¢, () _‘l‘é_?_%_a_)
- g B3 + B4 / T (5-7)

where the first subscript of F and G means fluid region
and the second subscript indicate the degree of approxi-
mation. The all coefficients at right side of equation

are integral constants. And

a 6\ O(—I
QQ(r) = ‘J r ( v + ;g )2 . dr
: &
ol —
D (x) = j%(r+—%)z dr
r A
/ a ¢ d"/
qg(r) = j r3 (r + —% )2 dr



Application of the boundary and interfacial conditions

result in

A, = A, = 0 (5-8)
2
( T )B1 + ( 1n a )B2 = - B3 (5~9)
8.4 a2
( 1% )Bl + ( W )B2 = - BA (5-10)
oL A17 R R - L
16 20 1) C +3) 1 2 16 A
oDy 2, 1 oDy
e T v £ T S
asz’d%l) in a a2
7 + 5= - =7 ] B2 = 0 (5-11)
[ (@4—62‘*' 6:@) ( 1 " §£1_>+ 17 A, + _@l:_ezi 6282
2~ AN CASY 1 R
m _ (5[‘82'*‘ 6262 ) 1 . a2
U3 2T (3 -0y P + 2507 3,
+ [ m + (61-62-’- 526:2 )

and

e C 20,0,4,(1) + 2 1n a )IB,

(5-12)
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AL+ 0-A - B + 0B = 0 (5-13)

Taking A_=1 , the constants A

3 1 B1 s B_ can be solved by

2

solving Eqs (5-11) - (5-13) simultaneously. Then B3 and

B4 can be readily determined by using Eqs (5-9) - (5-10).

Thus, ¢, can be derived by using Eq (4-20) which will yield

(v . -7
= z1 z 2
ey = Vq, (1) + F

G (5-14)
10 on) 11

at r=1. Since cy is real, no instability will be
manifested at this stage of approximation. It is thus

necessary to proceed to next approximation.

B. Second Approximation

Starting from Eq (5-1) to (5-3) with the same procedure
described in first approximation, the solution for this

stage can be redily written as following

o 2 4D
. E T 171 - o+ E
=4 -+ —— T —————
Fi ‘[E%(r) A =3 XCASD I )+ Ay, [dnx
X1P1 * %
PR S ' -
&=y T 1+ A, ] (5-15)



where

ko 5_3: M1D1 o +2

G1p = 2 L 8,00 = Ay C I8 * 2@y~ )
= ol1 Py o
L - X ]
- Ay CdnT -t T o+1) * )
.A*
- _.2_2 r ] (5-16)
20(+4 D o5
. _ r 171 3, +3 T
Sp(r) = —él[ (24+4)  © T(3a+3) T n +éz[ [CASD)
1Py oxra AR S -
Flray T 17 €l w3y Y ey T
6 ol D 4 oD
r 101 o5 T 1°1 o3
Ul ot It ELT ey T
€= 2@ R 4D Ay [ [ @rDZE@D) (@) ]
- X 3
Ez= Q) R Dy Ay +1)- ©+3) 8 )
2D,
és= Q, Dy A (ef-1) / (e#1) + R_-A o4 [ Q (1 +07}—ﬁ )
+1-0cy 1 /[ 2@ ]
Lgrf: Q R-8y 18
2D,
Es=R_-a,-0 Q1 FgIT ) L1/ 4
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for fluid 1. Similarity to fluid 2, the solutions are

F..o=1i [ S.(r) + B ( 2 _kl2 (r) + 37 ¢
21 3 1 A 5 T , Uin T
L0, P, (x) > + "By ] (5-17)
and
D D
. % % -1 3 0Ok’ P2 bur)
Gyp =1 L 5,0+ B, [ 73 - rhe) - mpEeme ]
D
% T r 2272 2% 7 g@(r)
+ B, [ S In T o+ & o+ =52 45( ) - =55 - ]
s ‘:B*
- L% o+ -2 77 (5-18)

Those eight integral constants are determined by applying

the boundary and interfacial conditions listed in section

(IV). The eigen value, cq ; is thus calculated by
- (v, =) CF . - F. )+ Vi~ Vay) Gy,
1 (Flo - FZO) 11 21 (FIO ”FZO)
(5-19)



The results were carried out for a variety of
situations by using the Univac 90/80-3 computer. The
influences of zero-shear-rate viscosity ratio (m), shear-
stress ratio ( ), power parameter ( & , O;) and surface
tension on axisymmetric disturbances for unidirectional

flow are exhibited in the graphs.
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(VI) Discussion

In the present work, numerical analyses were performed
for the axisymmetric case. The parameters were chosen in
ranges typically found for some common non-Newtonian fluids.
Owing to the large number of parameter combinations, the
actual eigenvalue, Cq of each particular case must be found

by using the computer program listed on the Appendix IV.

From Fig (5-1) and Fig (5-12), the viscosity ratio is
shown to be destabilizing, i.e. the larger the value of m,
the larger the wave growth rate. On the contrary, the shear
rate ratio was found to stabilize the flow as its value in-
creased ( Fig (5-3) and Fig (5-9) ). From Figs (5-5) and
(5-9), the factor ¢ seems to have monotonous destabilizing
effects. The same monotonous destabilizing effect of ol
could be seen from Figs (5-7), and (5-10). For-ﬂ larger than
1, the surface tension would play a stabilizing role as seen
from Fig (5-11), while its effect is negligible for1}< 1, as
seen from Figs (5-2), (5-4), (5-8) & (5-11). From Fig (5-12),
the effect of D1 is seen to be stabilizing for lower wvalue of
m (<10 ) and destabilizing for higher value of m (>10 ). For
m smaller than 10, the surface tension will play a stabilizing

role, as shown by comparing Figs (5-4), (5-6) and (5-13).

The most important conclusion to be drawn from the
numerical results of the previous section is that the cause
of instability is the difference in zero-shear-rate viscosity
(m), shear streee (1/ ), and power parameter ( d,;<xé).

Surface tension, in general has a stabilizing effects.

- 51 -



Hickox (7) studied the stability of both axisymmetric
and asymmetric disturbance for Newtonian fluids with the same
geometry. He pointed out that the surface tension would have
a negligible effect for m=20 ( which was also found for non-
Newtonian fluids ). He also indicated that an increasing
viscosity ratio has a stabilizing influence on asymmetric
disturbances, but has a destabilizing effects on axisymmetric
disturbances. From our work, the increasing zero-shear-rate
viscosity ratio was also found to have a destabilizing effect
in the axisymmetric case. Comparing the results for New-
tonian and non-Newtonian fluids with axisymmetric disturbances,
we find the there is a range of interfacial stability for
Newtonian fluids which can not be seen in non-Newtonian

systems.

Since only long waves are considered, and since insta-
bility is manifested for any Reynolds number however small,
turbulence is not expected as an end result of the insta-
bility. The long waves considered in this analysis will
experience an initial growth rate which is exponential in
time. But once the wave amplitude becomes finite, nonlinear

effects will become important and must be accounted for.

In the analyses we have assumed the fluid to be non-
diffusive. From the physical point of view, this is not
unrealistic since, for example, there are many polymers

which are not mixed together.



APPENDIX I

The only nonzero velocity of steady state flow is the

axial velocity, v, s which is a function of r.

equation will be reduced to

0 = - 851/8r
0 = -2p,/56
= - AT - 1= >~
0 apllaz r ar ( r'?;z ) +Pie

for fluid 1, and

0 = —aﬁz/ar
0 = - a’ﬁz/ae

- - 1 & — .
0 = apz/az el ( o o1y ) +08

The Cauchy's

(AT-1)

(ATI-2)

for fluid 2. The axial wvelocity, thus, can be found by

applying Eqs (AI-1), (AI-2) with two boundary conditions

and one interfacial condition which are

v, (0) finite
1z

vy, (Ry) =0

v, (Ry) =V, (Ry)

- AI-1 -

(AI-3)

(AI-4)

(AI-5)



Equation (AI-1) result in

— AD
Z&rz - 2 T +

I

Hl o

where AEI = Psg °8.P—1/az

must be zero for fittness

(ATI-6)

. The integral constant, Cl’

of Eq (AI-3).

Now
- Tirz
Vlz -7 ?r—
1
- Ties] o4 1
= - 1 Qflrz [ + ( J__lEEl YoM ] (AT-7)
7o1 01
Since
V1z<0 , for 0<r<R1
i.e.
%11:270 , for O<r<R1
Thus
&y
-/ — T
Yirz =~ - LT lrz 1;{4 ]
701 /C;; :
' A-ﬁ]_ A-I;l o @
ST i N ¢ ) Ty T 1
761 2 2 Zbl 01
=
_ | AD AP & T o+
Vi, = - — —Zl rz + ( Ejff— ) ——%% r / B’]
701 01 xq

AI-2 -



Similarity, the equation (AI-2) will have the solution

form as following:

- J 4Py }
v = = —— [ — 1" 4+ ¢, In v + ————m—r
T
2z 702 2 2 Q:QZ
Yy -
4D, c, O
(== 1 + =% )"dar + B, ] (AI-9)
2 T 2
*

Application fo Eq (AI-4), (AI-5), (AI-8) and (AI-9), we

can solve those three integral constants as

B APy R2 - APy % To1 _atl v
PR i i -y
4 "1 27T o1 AL 1 01 ‘i
_ P, _
B, . %22 a1 [ah e
A e 7 T
and
c, = ( 3 ) R]

where Vi is the interfacial velocity which has the

expression as

ADSR R
Vo= o [ (1 - CFE0%) - eI )

702 2 2

R
1 2 Apz cz 0(2
TR S (== 1 + == dr |
ﬂ;— r
To2

Rl
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The equations of steady - state flow could be non-

dimensionalized by using the characteristic units as

length : R

time : R_/V,.

<

velocity

<

stress

density : P,

viscosity 701

Thus
AD.
= . 8_ _ 1 = ¢ 1 _
p; = (=23 5= ) Ryz = (57 - B 2
ve P
1 1
and
- & ¢ AP, o
Py = (5 =5 - —=5) Rz - —
Cr v Bv; O vy Ry
b
R 2R
. o= 1
= Py TR

- . - - 2 .
where Fr = V{ / 8R, ; @I—‘Alel /F%Vi ;

B, =247,k /Q,vi ; b=Pz/p, ;W= (v

d = R
an a RZ/



The axial velocities will be

/

i i NP O} b R G e B
(1-%y 142
R 2D
- BiRe 2T o+
= Z [ 1 r° + d1+1 ( Yy 1 + 1
and
- 2
| AP, R, £ .2 r
v = [ ( 1-( =)") -~ ¢Cc, 1In ( = )
22~ Mooy 4 R, 2 R,
)’Rz( 222 2 % 4r )
+ —— —— T + = dr
0 -1 2 T
To2 y
_ 2
AP . R
2
= IV[ il(az—r)—czln(g)
702 3
R 4aP,R. “ 2c o
bt (2L )7L Crd (——5-) 1)%ar ]
To2 % 2 IR r
r APy Ry
R B a &
- _e’2 2_2y _ 2 r 242
= -7 [(a®-r7) 202 ln(a) + ZDZ/L (r+ r) dr
where
A %=1 47 %~
Dy = (ApyRy [ 275, ) 3Dy = GegRy 127, )
_ o~ - 52
mo= T, 179y 2nd e, = 2¢c, [AP,R)

The viscosities of fluids will be

]



and

AD R o, e, el
1+ (52107 (v =2
To2 T
- m
(o} d'
1+D2(r+-3)2'

The shear stress tensors will be

0 0 Dlr
= = 9 )
’//ZV:I = ’g, 1oV, = 0 0 0
Dlr 0 0
and 3
2 T
T = Z/ov: = 0 0 0
°
%(H;g) 0 0

The corresponding shear rate for each fluid will be

0 0 - Ea T
— - R 2
A =-Tly == 0 0 0
P~ ~ Z
- ;ar 0 0
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and

A
28, .2
0 0 -fv 5 (r+=2)
— R
A - - 7. = ( =+ . L. 0 0
Re=-T/f - (7,03 0
A
c
—P,V?l %‘?(r+—%) 0 0
S
Y c
0 0 -~2-—(r+——)
R
= £ 0 0 0
e 6 ©,
-—:(r+—g 0 0
2
The following function groups can be rewritten as
BFe _ 0. =1 s R T AR
4 1 4 2
av; «
= m l 1
1- — + —=+1In a+2(yk)2 .p &l (r+-=) - dr
2 2 1 | r
a a
where k =Ap2/4p1 and )/ = ’C’Ol /’C’Oz
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= Q = —
4m 2 4m 2

ani 701

1 l

- _—2- A oy~ a A

& 1. 2% ) = c, o
[1- -5 + 2.1n a + 2(Yx) »Dl . (r+—=) -dr ]

a a ! r
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APPENDIX II

The shear rate for fluid 1 can be calculated by

— * T
A= A + A, = - & _ =
=~ | == | =~ | e 7
Since
—_— _ l 1/2 _ —_— .*
1/73 = ( 2 IIEl ) - ,Tirz + 7:1rz

It should be noted that ?— is greater than zero
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for O_éréRl and l’C

al.
w

is negligible compared with

lrz
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Thus
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*

Re ZZrz + /CZrz

=-m b1 3
To2 'AV3

Thus, the shear rate tensor for fluid 2 were shown

following
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APPENDIX TIIT

The governing equation of fluid can be derived from
‘Cauchy's equation by applying Eqs (3-34) - (3-39).
For fluid 1:

r-component

OV1r . = 9V1r oP 1 D 1 27T1lre
5t T2 5 T 5r L iECTCu ) YT 5
2339 a/C-'.er
- J
T 3z
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S e im(i6) - - p sl 22 (7
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Continuity equation

1 2 * 1 _
;é?(rvlr)-*_r 39+®z 0
= ' Gl n
—— o—— + -
G1+ r+rH1 o(F1 0

The governing equations for fluid 2 are
for fluid 1 except the density ratio, b,
viscosity ratio, m = 702 / 701 . We

derivation procedures for them.
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APPENDIX IV



1.0000
2.0000
3.0000
4,0000
5.0000
6.0000
7.+.0000
8.0000
?.0000
10.0000
11,0000
12,0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
19.0000
20,0000
21.0000
22,0000
23,0000
24.0000
25,0000
26.0000
27.0000
28.0000
29.0000
30.0000
31,0000
32.0000
33.0000
34.0000
35.0000
36.0000
37,0000
38,0000
39.0000
40.0000
41.0000
42,0000
43,0000
44,0000
45,0000
44,0000
47,0000
48,0000
49.0000
50.0000
51.0000
52,0000
53.0000
54.0000
55,0000
56.0000
57,0000
58.0000
59.0000
60,0000
61,6000
62.0000
463.0000

A  INININSS

SUBROUTINE 8S8(S83+54,AVrAsCOsBsRLIyE2yR3+Q2yRF2+RMy
102 E4)

M=RM

WO=RXQ2¥RF2%D2/M

Wi=AX¥ (2. XkRF2+4,) /(2. ¥RF244 . ) +RF2XD2XAXX
T(3 kRF24+3.) /(3. XRF2+3.)

W2=AXXK (2. kRF2+2 2 /7 (2, kRF242 ) FRF2X D2 RAXK
VO3 kRF241 .0 /7(3 . ¥RF24+1 4

W3=aXX(RF24+5. )/ (RF2+5, Y FRF2RD2KAKE (2, XRF2
1443 /(2 kRF2+4.)

WA=AXK (RF2+43. ) XALOG(AY /(RF243. ) -2 . XAXKK (RF 243 . )/ ((
IRF243.)0XX (2. )HRF2XD2K (AXX (2 XRF 242, )XALOG (A) ~AXXk
1(2.kRF242 ) /(R KRF242. ) -AXX (2 kRF 242, ) /(RF243.))
L/(2.%RF24+2.)

WE=AXK(RF243. ) /(RF24+3 ) +RF2XD2RAXK (2,
TXRF242. /(2 kRF2424)

WE=AKK(RF2+1 ) /(RF24+1. Y FRF2XD2XAXK (2 XRF 2
1Y/ (2.kRF2)

W7=AXAXALOG(A) /4. —AXA/ 4, +RF2XDZ2K (AKX (RF2+1 ., Y ¥AL.06G
LAY -AXK(RF241 )/ (RF241 ) -AXKX(RF24 1, /720 /(2 kRF242.)

E21=~WOXD2XB1XUW1/ ((RF24+1 XK (20K (2. XkRF244.))

E22=-WOX2 o XKD2XE2RW2/ ((RF2-1 )X (RF241 DX (2. %kRF242.))

E23=WOXB1/RF2RUI/ (2. ¥ (RF2+1 O X(RF245.))

E24=2 , XWOXB2/RF2¥WA/ ((RF24+1, )X (RF243.))

EQ20=2, XWOXBI/RF2RWS/ C(RF241 . )X (RF243,))

E26=WOXRIX (CO/Q2-AXA+R2/RIDXUWS/ (2. X (RF2+4+1 X (RF243., )

E28=~WOXDIXRIXWL/ (2. K (RF2+1, 30X (2 XRF244,))

E30=WOXD2XE2XW2 /(2. K (RF2+1 2% (2.kRF242. )

E31=WOXEZX(CO/QA2-AXAYXWS/ ((RF2~1 )X (RF241.)

E32=WOXB2XWS/ (2 K (RF2-1 . )% (RF243.))

E33=—~WOXDZIKB2XW2/ (2 K (RF2-1 0% (2, kRF242.))

EZ34=WOXRBIXW3/ (2 K (RF2+3. )X (RF245.))

E3TG=WOXDIKEIKWL/ (2, Kk (RF2+3, 0% (2 kRF244.,))

E36=WOXBE2X (AXA-CO/Q2)XW7/ (RF2%D2)

E37=WOXB2/RF2¥WA/ (RF2+43.)

E38=WOXBL/RF2XW3/ (B8 X (RF2+45,.))

EZ39=WOX (2, kRB3-R2) /RF2¥WS (2R (RF2+3. 1))

E40=~2 , XWOXBA/RF2%We/ (RF2+1.)

E41l=-BXQ2XB1X(AXX (6.0 /6 FRF2XD2XAXK(RF 245, ) 7/ (RF2
143503 /(48 . %M)

E42=BXQ2XEB1X(AXA-CO/Q2-2 . XB2/BL)X(AXX{(4.) /4 +RF2
LRDZ2KAXK(RF2+3 ) /(RF243.02 /(16 kM)

S3=E21+EL2HERITERATERGHER2SHERBHEZOHEILAEZZHEZ3HE34
IHE3GHEISHEI7HEZBHEIPHEA0+E414+E4R

WWl=—AXK (2 XRF245. )/ ((20XRF244, Y% (2. kRF2446.))-RF2
TRD2KAKK (I KRF24H4. )/ (B RKRF243 X (3. kRF245.))

WW2=~AKK (2. KRF24+3.) /(2. XRF242. 0% (2. XRF244 ., ) ) -RF2
TRD2KAXK (I KRF242. 0/ C(3 . kRF241 X (F XRF 243, )

WW3=-AkK (RF24464 )/ CIRF 245G IR (RF 2474 ) ) ~RF 2XD2% A%k (
120XRF245. ) /(2 XRF244, 0% (2 XRF2+46.))

Z1=-AXK(RF2+4 O XALOG(AY /7 C(RF2430X(RF245.)34+2 . %A
IR (RF244 ) /CIRF243 0K (2, 3R (RF245. ) ) +AXK(RF2+4 )
L/CRF2H3OIXK(RF245. )X (2.4))

L2=AKK (2 KRF24+3.IXALOG (A /(2 kRF 244, ) ~A%XX (2, XRF2
143 /7C(2,kRF24H4 0K (2,2 ) —AXK (2 XRF244. )/ ( (2 XRF 242,
IR (2.KkRF2450) ) -AXK (2. KkRF244,) A C(RF243 XK (2 XRF 245, )

WWA=Z1~-RF2XD2XZ2/ (2 XRF24+2.)

WWO=-AXK (RF24+4. )/ C(RF243 DX (RF245 ) ) ~RF 2% D2% &%k (
T2 kRF2430) /(2 XRF 242 K2 RXRF242 0% (2 . kRF244.))

WWE=-AXK (RF2+2.) /7 C(RF24 1 IR (RF243 ) ) ~N2XAXK (2 kRF2
1410 /(2. X (2, kRF2+2. )

Z3=AXKX(RF242.0%AL0OG(AY /(RF 243, ) ~AXK(RF 242, ) / ((RF 2
1430 % (2.0 ) -AkK(RF2+42 )/ C(RF2+1 DX (RF 243, ) ) —A%¥(

o Py |y \N JF £ " abe F 2024 § VY - %



6640000
&7.0000
68.0000
62.0000
70.0000
71.0000
72.0000
73.0000
74.0000
7%+0000
76.0000
77.0000
78.0000
79.0000
80.0000
81.0000
82.0000
83.0000
84.0000
B%.0000
86.0000
87.0000
88,0000
89.0000
20,0000
?1.0000
g2.0000
23,0000
?4,0000
25,0000
76,0000
?7.0000
98.0000
?%.0000
100.0000
101.0000
102.0000
103.0000
104.,0000
105.0000
1046.0000
107.0000
108.0000
109.0000
110.0000
111.0000
112.,0000
113.0000
114.0000
115.0000
116.0000
117,0000
118.0000
119.0000
120.0000
121.0000
122.0000
123.0000
124.,0000
125.0000
126.0000
127.0000
128.0000
129.0000

TR(RF2+1.))

SA4=E21¥WWL /WLFEZ2KWHZ /W2 HE2ZTRWWI A WIHE24XWW4 7/ WAHE2S

LXWWE/UWSHEZ2OXWWE/WSHE28XWWL /W1 HEIOKWW2 /W2

S4=84+E3 1 XWWE/ WEHEIZRUNWG A WSHEIZTRWW2 /W2HEI4RWWI /W3
1HEZSXUUL /WIHEIOXRUWZ7 /W7 HEI 7 kW4 /W4

S54=54+E38RXHWI/WITEIPXWWS /WSHE4OKWWS /W

E43=RXQ2XB1X(AXX(7.)/48  +RF2XD2XAXX (RF 246 )
1/CRF245 D (RF247 032/ (4B kM)
E44=-BXQ2%XB1X (AXA-CO/Q2-2. XB2/B1 )X (AXX(5.) /24 . +RF2
LRD2XKARK(RFZ24+4 )/ ((RF2HZ IR (RF245. 313 /7(16 %MD

S4=84+E43+E44

AV=E21 /WIHEZ2/W2HERZ/WIHER24/W4% (~1 . /(RF24+3 . ) ) +ERS
L/WGHE26/WSHE28/WIHEZO/W2HEZL /WSHEI2 /WSHEZZ /W24HE3 4/
TWAHE3S/WIHEZS /U7X (1. /74 ) HE37 /7WaX (-1 . /(RF2+3.2) 4
1E38/UWIHEZ? /WEHEAQ /WEHRXQAZ2KRIX(~1 ., /12 + (AXA-CO/Q2

1-2.XB2/7B1)/74.)/(4.%M)

RETURN

ENID

SUBROUTINE GAUSS{(XsYsNyEFS)

DIMENSTION X(35:3)Y(35)

o 1 I=1»N

K=1

IF(I-MNI21+7221
21 IFCARS(X(I» 1D I-EFS)&6+657
é K=K+1
YD) =Y(I)+Y(K)
no 23 J=1sN
XCIe D) =X(Ts DH+X(K2 0D
GO0 10 21
7 DIV=X{Is1)

Y{I)=Y{1)/0IV

no 9 J=1yN
K4 X(Is =X(Is»J2/DIV
DO 1 M=1sN
DELT=X(MsI)
IFCABS(DELTY-EFS) 1s1916
IF(M-1) 10+1+10
YMY=Y(M)-Y(IIXDELT
D0 11 J=1sN
11 X(Mr J2=X{(Ms ) -X{Is HXDELT
1 CONTINUE

RETURN

END
C EIGEN VALUE.C1s
C ELLIS MODEL
C
C

146
10

DIMENSTION X{5:3)+Y(5)
REAL MeK
RF1=2,
RF2=4,
GR=0.1
M=100.
nNi=10.
WRITE(2,301)
FORMAT(/ /!
17 M= F&. 17
K=1.
RF12=(RF2~1.,)Y/(RF1~-1.)
R1=0.0079

R2=0.,07%

RO=(R2-KR1)/%9.

A=R2/R1

B=1.,

301 RF1=/F5,1"

Il="F3.:1)

101

410

FOR AXISYMMETRIC

RF1«RF2sGReMs DNl

CASE RBY USING

RF2= F5.1°

GR=F%.1



132.00600 IXTIFEX(RFIZ2ORARR(RFZ+L . 3 /A CRFZ24HL . ))
133.0000 Q2= Gl*K/M
134,0000 UIU“ fXRCQ2%R (L D2 -Q1-Q1%D1)
135.0000 X(lyl) 1o/716ARFIXDL/Z (2. X (RF1I41DR(RF1I4+3. 20
13440000 X(Le2)==(AXK(4,)+1 ) /716 +ARA/ B ~RF2RDIZXARK(RF243,)/(4. %
137.0000 IRF2412 ) FRF2XD2XAXKK(RF 241 . ) /(4 kRF 244, ) -RF2XN2/ (2 . X (RF2
138.0000 141X (RF24+3.0)
139.0000 X1y 3=l -AKAY /4 HRF2XD2KAXK (RF2~1, Y/ (RF2-1 4 )~RF2XD02
140.0000 TXAKK(RF24+1 ) /(2 kRF242. ) ~RF2XD2/(RF2¥RF2-1. 2 +AL0OG(AY /2,
141.0000 El=-2.%(Q1-M¥Q2)/V1V2
142.0000 X(2s1)=E1X{1. /4. +RFL1XD1/ (2. k(RF14+1.3))-1./2.,
143,0000 X2y 2)=M/2.tELX((AXA~1 ) /4. +RF2XD2K (AXX(RF2+14)~1,3/
144.,0000 T2 (RF241.0))
145.,0000 X2y 3)=MHtELIX(ALOG(AYHRF2XD2X (AXX(RF2-1, -1 )/(RF2~1.))
146.0000 X(3s13=1.,
147.0000 X(3y2)=~M
148.0000 X(3+3)=0.
149.0000 A2=0.,
150.0000 A3=1,
151.0000 Y{(1)=—-Aa3/2,
152.0000 Y{2)=~-E1XA3
153.0000 Y(31=0.
154,0000 EFS=0,000001
155.0000 N1=3
154.0000 CalL GAUSS(X,YeNIsEFS)
157.0000 Al=Y (1)
158.0000 El=Y(2)
1592.0000 B2=Y(3)
1460.0000 E3=-RIX(AXA/ 4 FRF2XD2HAXK (RF 241 .3 /(2 X (RF241.2))~RB2
161.0000 LECALOG (A FRF2XD2RAXK(RF2-1 .0 /(RF2-1. 1)
1462,0000 B4=-RIX(AXX (4, )/ L6HRF2XD2RAXE(RF 2430/ (4 R (RF24+3.0 )
163.0000 1-B2¥(AXA/ 4, FRF2XD2KARE (RF2+1L ) /(2K (RF2+1. 33
164.0000 FIF2=A1¥(1./74 . +RFIXDI/ (2R (RF1+1. 20 ) +AZHRIXC(A%a
165.0000 1-10) /4 +RF2XD2X (CAXK(RF241 .0 -1 . ) /(2 RRF242, 2 ) +B2X
146 .0000 LCALOG(AYHRF2XD2X (AXX(RF2-14 )14 ) /(RF2-1.22
167.0000 CO=1+VIVEX(-ALIX(1./16 . FRFIXDI/ (2. X (RF1+1,)%(RF1
1468.0000 I43.)30)-A3/2. ) /F1F2
169.0000 ST1=Q1%2 ¥RF1XD1XkD1XAL/C(RF1+1 X (RF1+1 X (RF14+3.))
170.0000 SIZ=Q1XD1XA1K(RF1/(RF1+1.0%1./(RF143.)-3./8.)
171.,0000 SI3=QIXNIXAIK(RF1I~1.)/(RF1+1.)+A1XRF1XD1Ik(QLIk (1,
172.0000 1+2 . %D1/7(RF1+1. ) -COX /(2 % (RF1+1. )
173.0000 SI4=01%A1/8.
174.0000 SIS=A1/4.%(Q1X (1. 42 . ¥D1/(RF1+1.))~-CO)
175.0000 V1iCOo=1.-C0
176.0000 E4=8T1k(1./ ({2, kRF1+4. )% (2. XRF1+6 ) +RF1XD1/( (3
177.0000 IXRF1I43 XK (3 RkRFLI4S5.)) /(2. %RF14+4.)
178.0000 ESG=812% (1. /((RF1+5 DK (RFI+7 . 23 +RFIXDL /(2. XRF1+4,
179.0000 Y2 RkRF146.0))/7(RF14+5)
180.0000 E6=SI3% (1, /((RF1+3, )*(RF1+J.))+RF1*H1/(( +EXRF14+2.
181.0000 D)X XkRF1+4. )Y/ (RF1+3.)
182.0000 E7=814%(1./48 . +RF1XDL/((RF14+5. 0%k (RF14+7.2))/6,
183.0000 ES=GI0%(1./24,+RF1XD1/((RF1+3. 2% (RF1+5.2))/4,
184.0000 S2=E4~-ES~-E&6+E7~EB
185.0000 E9=011%(1./(2.¥RF1+4.)+RF1kD1/ (3. XRF14+3.)) /(2. %RF1
186.0000 1+4.)
187.0000 E10=51I2%(1./(RF1+5.)+RF1IXD1/ (2. ¥RF1+4.)) /(RF145.)
188.,0000 E11=8I3%(1./(RF14+3 . +RFIXD1/ (2. %RF14+2.))/(RF143.)
189.0000 E12=814%(1./86 ., +RF1XDI/(RF14+5.2)/6,
1920.0000 E13=813%X(1./4. tRF1XDLI/(RF1+3.2)/74.
121.0000 S1=-E9+E10+E11-EL12+EL3

2.0000 A35=0,
193.0000 X(1+1)=0.
1724.0000 X1y 2)=AXA/4 . tRF2RDZ2KAXK(RF241 ) /7 (2 % (RF241.))
195.0000 X1y 20 =ALOG (A HRF2XDZXAXK (RF 21 )/ (RF2-1 )
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198.0000
129.,0000
200,0000
201.0000
202,0000
203.0000
204.0000
205,0000
206.,0000
207.,0000
208.0000
2092.0000
210.0000
S 211.0000
212.0000
213.0000
214.0000
215.0000
216,0000
217.0000
218.0000
212.0000
220,0000
221.0000
222,0000
223.0000
224,0000
225.0000
226.0000
227.0000
228.0000
229.0000
230.0000
231.0000
232.,0000
233.0000
234.0000
235,0000
236.0000
2370000
238.0000
2392.0000
240.,0000
241.0000
242 .,0000
243.0000
244.0000
245.0000
246.,0000
247.,0000
248.0000
249 .0000
250.0000
2351.0000
252.0000
253.,0000

54,0000
quoOOQO
256 .0000
257.0000

258.

4000

G000

X{2y1)=0,
/(D K(RF241 )

1X(RF243.0)

X(223)=A%ALOG (A /24 ~A/4 ARF2XD2KAXK (RF2) / ((RF 2

1-1. % (RF2+1.))

X(2¢4)=Ra/2,

X(2+5)=—1,/A

X(3s10=1 4 /16 HRFIXDLI/ (2. X (RF1I+1L )X C(RF143:))

X(B3y2)==1 4 /16 ~RF2RN2/ (2. % (RF241 . YR (RF243.))

X(3+3)=1 /4, ~RF2XD2/ ((RF2~1 )X (RF2+1 .,

X(Ze4)=~1 /2,

X(3eH)=1,

X(4y1)=1,

X(442)=~M

X(443)=0,

X(444)=0,

X(4y53)=0,

EE=AL/2.+A2-M¥X(B1/2.+82)

Xy DI=(EEX (L /4, +RFIXDL/ (2. RF14203)/F1F2~1./2.
IHCL. /716 HRFIXDL/ (20K (RFI4AL X (RFLIHZ, 1) )X (~-EFERVIY2
L/CFIF2%V1IVan)

X(5+2)=M/2+-EEX{(L1+ /4, +RF2XD2/ (2. X (RF24+1 .Y )/F1IF2

X(Gy3)=M~ EE*RF”*D“f(FlF“*(RF” 1.0

XSy 4)=-EE/F1F2

X(G235)=0,

RiM=M

CALL S595(853+54,a8V9ACOvBEyRIsH2yB3 Q2 sRF2+RM« D2 R4)

53Aa=53

S4a=54

fAh=1.

CALL S85(83sS54yAVyAAYCOYRryRLIsR2,B3sQ2+RF2yRM D2 RB4)

831=63

S541=54

Y{1)=-83A

Y(2ry=-544

Y(3)r3=82~541

Y{A4)=A3X (QLI¥X (1,42 %D1L/(RFI1+1 ) )-COY-REQ2X (B3 (A%A
1-CO/Q2-2.%B4))

Y(3)=EEX(S31-51-VIV2XG2/VICO) /FIF2~-MXAV-8T1/(2

1XRF1+4 4812/ (RF1I45 4813/ (RF 143, )~ %I4X6+*ST¢/4.
N2=3

CALL GAUSS(XsYsN2LEFS)

ALS=Y (1)

B1S=Y(2)

B285=Y (3)

EB35=Y(4)

R4S8S=Y(5)
C=V1COX(S1+Al18% (1. /4. +RFIXD1/ (2 kRF142.,))~531-R15

1%L, /74 4RF2RD2/ (2 KRF242, ) ) ~B2SXRF2XD2/ (RF2-1 . ) ~E38)
Cl=(CCHVIV2K(S2~-ALSH (L. /16 +RFIXDL/ (2, X (RF1+1.)%
LORFLI43.30 00 /F1F2
BRE=R1/R2

WRITE{(2+s4000) HMsREyC1
FORMAT( M= F&.1"
1F30.6)

IF(RR.GE.0.9) GO TO 5000
Ri=R1+RD

GO TQ 410

Call. EXIT

END

RiI/ZR2="F5.1° Cl/RE="/
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