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ABSTRACT

This thesis presents a mathematical model of the steady
state heat and temperature diétributiqns of a hot sphere
located along the miaplane of an infinitely long wedge of
any arbitrary central angle. The heat and temperature

distributions of this geometric configuration are of immense

value,since through the use of this model as a wedge shaped
unit cell the description of any number of hot spheres,
arranged in-a regular planar array can be immediately

determined,

The method of reflections is used to solve Laplace's
equation , V2T=0 , analytically using the sphere and the
wedge walls as boundary conditions. Only the second

reflection was obtained,yielding a first order correction,

The resulting model of an individual sphere within a
wedge,and an arbitrary number of spheres arranged in a
regular polygonal élanar array were obtained. Thé regular
planar array was tested and compared with known exact
solutions 6f Laplace's equation in Bipolar coordinates
f for the solution of two spheres in space ] and Toroidal
coordinates [ for the solution approximating an extremely
large number of densely packed spheres in a regular planar
array ] . The model tested accurately in the comparison with
Bipolar coordinates,while the comparison of the developed
model with a toroid showed the limitations of a first order

correction solution.
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. Qn(x) Legendre's functions of order n

Q Rate of heat transfer
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Tamb Temperature of.the ambient space
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v ' Nabla operator

W,W(l),W(z)Normalized temperature variables
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INTRODUCTION -

The work presented herein concerns ifself with the-
'development'of a mathematical modeljwhich describes the
temperature distribution due to the presence of a hot
sphere located along the midplane of an infinite wedge
of an arbitrary central angle. Two basic problems are
treated; each problem differs only in boundary conditions.
The simplest occurs when the wedge walls are held at constant
uniform temperature; the seécnd,.and far more‘interestingu
problem,occurs when boundary conditions at the wedge walls

are dT/d6 = 0 , |

Problems relating to a sphere within a wedge develop
when trying to describe large numbers of hot spheres
“arrange in a regular planar array. Given the array shown
in Figure 1l.,each sphere can be considered to be located
within its own particular wedge-shaped unit cell , of
central angle 26, . 0, in turn is expressible in terms of

the number of spheres, N , according to the following relation: i

Bo = m/N

The walls of the unit cell prove to be lines of
gymmetry , both for the regular polygonal array and the
resulting temperaturevdistribution.‘The lines of symmetry

within the temperature field are mathematically;

dT/d6 = 0 [on the wedge walls]



The second , more complex model , simultaneously

solving Laplace's eQuatior’f“ with boundary c.onditions of
: dT/d6= 0 [on the wedge walls] and T = T, [on the sphere
surface] , can be developed from the simpler solution,

avdphere within a wedg@’of uniform surface temperature.



- Lines of S-y’mme‘l“‘r}' (N=6)
Figure 1. |
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DEVELOPMENT OF MODEL - WEDGE WALLS AT CONSTANT TEMPERATURE

The simplest unit cell would consist of a sphere of
constant temperature , T,s» located within a wedge of

constant wall temperature TZ’ ag shown in Figure 2.

Ihe temperature field must'be.a harmonic function , ie.
a solution to Laplace's equation

V2T = 0 _ (i),
and must also be.consistentlﬁith the boﬁﬁdarylcbnditions.
In this case, the satisfaction of the boundary conditions
- requires that the temperature of the sphere surface be T1

and the temperature at the wedge walls be Toye
Let W=(T~T2)/(T1—T2) . (2)

By sudstituting the variable Y , defined in equation(Z),'
for the temperature variable ,T, the boundary conditions

become normalized in terms of VY,

Y(on the.sphere.surface).= 1 (3)

¥(on the wedge walls)= 0 (4)

Y 18 also a solution of Laplace's equation in that :
V2T=0 (1)
T is related to ¥ by transposing equation (2).
T = ¥(T,_T,) + T, (5)
‘Performing the required substitution and stipulating that

(T;-T,) be a non-zero fixed constant one obtains:



‘Spl.e‘r"e and \A/eq/éé of CowsTaNT Tefn)oerafure.

(R6,Z)
- Ta

-~ - — o — —— — -

e

_Figure 2

n



12,

V2T = ( T - T >v2¢ = 0 : (6)
A . | |

Therefore: - y2¢y = 0 ‘ (7

We nowfhavevreduced fhe'problem into the normalized
temperéture v;riable ﬁith the appropriate boundary
conditions.

The problem inherently ﬁossesses two diésimilaf
geometries, wedge—shaped.and spherical. No single
" coordinate system can be used to simpltaneously treat Eoth
geometries, The method of reflections must be used as an
algorithm ., The method involve; obtaining an infinite
number of solutions, each solﬁtion individually being the
golution to a boundary condition upon one surface, and add;ng
tﬁem. The resultant sum is a solution which satisfies |
the boundary conditions upon both surfaces. Thus, the
 réquired solution ¥ will be built up as an infinite series of 
individual solutions; the odd numbered solutions satisfy
the boundary conditions on the‘spﬁere surface and the even
numbered solutions satisfy the boundary conditions. upon the
wedgg surface.

v o= v (D (D Gy () (8)

The aim of this thesis will be to obtain up to the
gecond term of this reflecgion series. The second reflection
amounts to a first order corfection factor,kcorrecting
~the temperature field of the sphere in accordance with

the effect of the wedge walls.
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Starting with a sphere(of éurface'temperature TﬁTl
and a spherical coordinate é&stem based upon the sphere
centér~as an origin, the hafménic function ; due to
sphétical symmetry, Qill be;a function of the spherical‘

radius alone. The boundary restrictions are:

'W(l)= A harmonic function
p (1) 1. . [At the sphere surface;ie. rs=a]
¢y A function of r. alome due to spherical

8

symmetry
In sphérical coordinates for W(l) # £(%,¢) , the well
known solution to Laplace's equation in the region
exterior to the sphere is: |

y (1) - alr, (9)

W(l)'is consistant with the boundary conditions since

it i4s a harmonic function, its value at the sphere
surface is 1 , and it is a function of r, alone, It
also exhibits the characteristic property that:
limit [v(1) (x)]= 0 (10)"
K30 ;
Figure 3 shows a plot of the isotherms of¥(1)as a

function of r_  expressed as multiples of a .

g
o= w(D4 v(2)4 ¥(D+,, . ¥(=) | S (8)
v o= a/rgr v(24 y(p 0 oy() (11)

Truncating after the second reflection term to obtain



' ﬁISoﬂerr;‘ns of the Fi.rs.'f' ReflecTion

"

Fo'auf'@ 3
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a first order correction ,
(;

y = alr, + y(2) o (12)

W(l) based upon sﬁhere surface boundary conditions
sets up a temperature field_of concentric spheres of
éonstant temperature of value a/rs . These concentric
spheres ﬁre cut across by the walls of the wedge ,
~maintained at constant suniform temperature. The hot
sphere sets up a temperature distribution on the wedge walls.
However, since the boundary conditions at the wedge walls
require that the wall gemperature expressed in terms of VY
be zero, the second reflection must cancel off the effect

of the first reflection, shown in figure 4.

v(2) - _y(1) [To satisfy that ¥=0 on the wedge Walis]
ThisAcondition must be satisfied only upon the wedge surface
and not everywhere else 1n space. W(z) and W(l) must be
linearly independant solutions to Laplace's equation .
¥(2) npust also be a harmonic function.

From geometry, in cartesian coordinates:

X = X+ X
v s (13)
V.~ Ve - (14)
. zZ = z (15)
w 8 ' :
AR ERPVII a ~ (16)




16

Infersé'cf':'ow»_ of \A/EO{Q&
ave  First ReflecTion

Fisu're.' 4
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_ a_ :
(1) = : ' ' ' (17)
: YV (x._ - x )% + y% + z°
° Tw w

w

. a . .
(D S (18)
. T - )
/jxw 2xwxo + x4+ Yo + oz

Shifting to cylindrical coordinates with origin at the

wedge center

»

x, =P cos (e) (19),
v, =p sin (8) - (20)
2 2 2 52 -
X + y5 =0 ‘ (21)
‘ . : a J :
y (1) _ (22)
. Y p% - 2x _pcos(8) +x% + zé
W(z).must be a harmonic and equal to -v(1) a4t the wedge

walls, Transform analysis indicates that the form of

W(Z) should be:

o 00

W(z) = ff A cosh(TG).K;T(Ap) coe(Azw)‘dAdT ‘(23)

The above solution is valid everywhere within the domain
bounded by the wedge , le. «© >p >0 , ® > 2z > ==
,The constant A is really not a constant but an unknown

functi%n of the separation constants A and 1. A can not be

a function of the'variébles Ps 2, s OF 0.At the wedge walls

when 6 = 6, ,

p(2 o y(D o , ==

, , (24)
V' p% - 2x_pcos(8,)+ x5 + zé
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oo v -g .
ff A cosh(re )er(lp)cos(kz )dldT" (25)ﬂ

/pzn2xopcos(ﬁo)+x§+zé

Inverting the bzw transform yields:

| [ A cosh(t6,) Kit(Ap) dt = -2a/m Ko(th—Zxopcos(eo)+x% ) (26)

However:

o . .
”f Kit(Ap) Kit(Ax,)cosh[t(m=0,)]dr= /2 Ro(AVpZ~2x,pcos8(B,)+xZ )

(27)
By comparing like terms one can conclude:
A = - éa cosh tT(ﬂ—Go)] Kit(Axo) (28)
. m% cosh (t16,)

Y(2)= ffcosh T(m=-00)] Kit(Ax, )cosh(Te)KIT(Ap)cos(Az Ydrdt[~4a/n2]
®°cosh (TG ) ‘ (29)

‘The approximate temperature field may now be expressed as!

Y = a/Y pZ-2x.pcos (6,) + xZ + z2

w
~baln? f[cosh[T(w 8, )]Kzr(xxc)cosh(rB)Ktr(Xp)cos(kz Ydadr
°®cosh(T6,) _ . (30)

Q, the rate of heat transfer, can be expressed as the series;
/ .

|

(1) (2) (3)

Q= QP4 Py 3y, - (31)

Truncating the above series to form a first order correction;

qQ = P + (¥

- This truncated series can be shown, from Appendix A , to

be equal to :

113

Q brka( T

: (2) : ’
1mT) L1+ {x,,0,0}]  (32)
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This law is analogous to Faxen's law,used primarily
hydrodynamics of low Reynold's numbers. At the sphere

center (x,,0,0) , W(z)is de fined by:

?(2){x°,d,0}= ~a/x, f cosh[r(n~e Y] drt .(33) .
° cosh(re ) cosh(tm) :
Q = 4mka(T -T,)[ 1-a/x, f cosh[t(m-8,)] drt ] (34)

° cosh(t8,) cosh(mt)
~Equation (33) is,obtained by evaluating equation (29)

at P=Xe ,9=0,Z ‘0.
w

¥(?) (x.,0,0}= -4a/n2f[ coshlt(n=0,)1[Krit(ix )]2 drdt (35)

: °® cosh(16,)

v$?) (x,,0,0}= -a/xo [ coshlt(r=6,)] p (1) dt(36)
° cosh(t160) cosh(mt) 17-1/2

Equation (36) is obtained by inverting thel transform
within equation (35). Also due to its conical nature
P (1) = 1 for all values of v, Therefore;
1t~1/2

v(2) (x,,0,0}= - a/x, [ cosh[t(1-8.)] dr (33)
° cosh(t8,) cosh(mT)

This completes the development of the models of
heat transfer rate and temperature distribution for a
hot‘sphere within the walls of a wedge maintained at’

constant temperature,
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This solution leads té the.ptesentation of a more
;heoretically interesting‘probiem,the problem of a hot
sphere in a wedge of boundary conditions dT/de ? 0.

This correspords to the unit cell to be used in the

anaiysis of a large number of hot spheres arranged in a

regular planar array. A solution to this problem involves

the identical differentialjequation.as before,namely

Laplﬁce's'equation;the boundary conditions are now modified.
¥[{at the sphere surface] = 1

dW(l)/de [at the wedge walls] = -dw(z)/de [at the wedge
walls]

W(l) remains the same as in thégprevious problem,

} -3
y(1) - ' ' (37)
/'p‘—Zxopcos(e)+x§+zé
ay (1) -ax,psin(8) (38)
de 3

[V p%-2x,pcos8(8) +x3 +z; ]

W(z) will be of the same form as in the previous problem,

W(z) = f{A éosh(re) KlT(Ap)cos(Azw) dadn (39)

o

2 oooo‘ ‘ ‘ ' .
?W( }de = ff Arsinh(Te)K1T(Xp)cos(xzw) didr (40)
{ oo
Eqﬁation (40) 1s obtained from equation (39) by performing
the indicated differentiation with respect to 6 . The
boundary conditions state that the derivatives with respect

to the variable 6 must cancel each other only at the wedge

walls, { 6 =2 6,}

‘ ’ ax _psin(8,)
ff Atainh(reo)Ktr(Ap)cos(kzw)dldr= ' 3/2
(.-}

(p2%-2xepcos(6,) + x§+z£)

(41)
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Inverting the A transform,

o . v : © apxe gin(8,) cos(rz, ) dz,
fAtsinh(16.)Rit(Ap)dt = 2/n | . 3/2
° ° (p2-2x6pcos(6°)+x%+zé )

(42)

Evaluating the cosine transform with respect to 2,

. | . : .
f Atsinh(16,) Kit(Ap). d1= ZaxoApsin(en)Kl(A/p‘—anpcos(eo)+xf
[-3

©

‘fﬁ/p2~2x°pcos(9°) + x* (43)

To solve for the value of A , the T transform must be

”minverted,and a final relation must be derived , Given,

KiT(Axo)K1i(Ap)cosh[T(m=8)]dTt=7/2 Ko(AVp%-2%x,pcos(0)+x%)
! 0 (44)

0%, 8

d K1T(Ax°)Ktr(Ap)cosh[r(w~6)]drég“ﬂlz KO(A/pA—Zxopcos(6)+x§)
de das

(45)
Taking the indicated derivative with respect to & , the

following equalities develop:

lATsinh(Teo)K1T(Ap) dt =2aApxnsin(eo)Kl(k/pZ—Zxopcos(Gn)+x%)

m/pZ=-2x,pcos (0,)+x35 (46)

=4a/w2er1T(Xxo)KtT(Ap)sinh[T(w—eo)] dr  (47)

From these two equalities the value of A can be

determined by comparing like terms. One can conclude

that the value of A is}

A = 4a sinh[r(w—eo)] Kit(ix,) (48)
14 8inh(16,)

0,0,0} develops to be:

Having the value of A, v(2) ¢,

W(Z) {xoDODO} = [[ A K'&T()\xo) dxdr (49)
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©0 00

W(z){xo;0,0} ha ff sinh[t(w=-0,) ] KtT(kxo)er(Axo)dde (50)
' T °° sinh(t6,)

‘Inverting the X transform as.before,

W(Z){xo,o;O} = af/x, [ sinh[t(m-0,)] dr (51)
° sinh( T16,_,) cosh(wT)

~ The model for heat transfer is now:

Q ;‘hﬂka(Tl—T Yy ['1 - a/xo f ginh[t(n-06) drt 1 (52)
2 ® 8inh(t0) cosh(mrt)

For N spheres arranged in a regular‘polygon, each

- individual sphere can be considered to be enclosed in a wedge
of central angle 6, , where 6, = m/N . The heat transfer
raté per sphere 1g:

0

Q = 4nka(T,-T_)[1 - a/xo [ sinh[({N-1}/N)mr] dr _](53)
am ° sinh[nt/N] cosh(mnrt)

The rate of heat transfer from the entire array would merely
be the rate of heat transfer per sphere , equation (53),
multiplied by the number of spheres , N ,

The temperature distribution is modeled by,

Y /pZ—ZXOpcos(8)+x§+z$

o000

- 4a/n? ]f sinh[t(n-6, )]Kmt(xxn)coah(r@)Klr(Ap)cos(kz YdAdr
sinh (t6,)

(54)
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lsumﬁarizing the results for a hot‘sphe?e within the
b;undaries of a wedge shaped unit cell:
For a wa&ge of fixed wall témperéture,the heat transfer rate
'Q‘is:

Q= Aﬂka(T 1~T ) [ lma/x° fcosh[r(w—e )1 dr ]

% cosh(160)cosh(mrt)

%

For a wedge of boundary conditions dT/d6= 0 at the walls.

Q= 4rka(T-T )[l-a/x, fsinh [({N-1}/N)7t] dt ]
' am ° ginh(wt/N) cosh(mt)

where Q is the heat transfer rate pef spﬁere and N 1s the
number of épheres arranged 1in the regular plamar array.

For a single sphere in space, the central angle of the
_ wedge 1s 180°, The formula in this case degenerates to:

Q = éwka(TlmT )

amb .
This 1is known to be the correct solution to the heat
transfer rate of a single sphe?e in space., For two
‘apheres in space, the equation yields:

Q = énak(Tl—Tamb)'[ 1. - a/2x,]
since the value of the integral yields:

f dt/cosh(wt) = 1/2

The results of this study are shown in Appendix 2. A
"final regarding the accuracy of the formula appears in
Appendix 3 . In Appendix 3 the formula 1s used to approximate
a toroid by allowing the number of spheres to become large.
in the case of two spheres in space, the aboﬁe solution compares
most favorably with the answer derived from bipolar

coordinates. In the attempt to approximate a toroid, the

solution is limited by the a/x° value, as shown in Appendix 3,
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" SUMMARY

In summary, a mathemaﬁical_solutioh to Laplace's
equation was developed for é sphere in a wedge type unit cell.
Two types of b;undary conditions were considered:a wedge
of fixed uniform wall remperature, and a wedge along whos§
walls the derivative of temp;rature.with respect to a
" change in the central‘angle was zero. This latter model
was used to describe an array of hot spheres in space
arranged in a regular planar array. %he ﬁodel was
tested and proved accurate in all cases for one and two
spheres. From a comparison with the bipolar coordinate sblutioh;.
to Laplace's equation, the accuracy of the first order |
correction model was shown to be related to a/x,. In an
attempt to compare the model Qith a toroidal coordinate
golution the number of spheres Qas allowed to increase and
the inter-sphere spacing was permitted to decrease until

all the spheres were tangent. It was found through

. computer analysis that the value of the geometric view

fadtop;
‘j sinh[({N-1}/N) 7T] dT
° ginh(19/N) cosh(tm

increased much faster than the decrease in the value of

[ a/x, ] with the number of spheres. Thus with the spheres
max.

touching the first order correction model was inaccurate and

higher order terms in the reflection series would be needed

to achieve accuracy in this case.
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‘Future advances along these lines would be the
dévelopment of higher order terms in the‘reflection series,
allowing the soiution to the problem of a large quantity of
spheres toﬁchiﬁg or similar concentrated systems. The
reflection technique may provide a method of simultaneously
solving the creeping motion equation and the equation
;of continuity within thevboundafies of a wedge~like unit cell.
The resulting model would then be an effective model of

sedimentation.b



1)

2)

3)

4)

5)

6)

26.

REFERENCE AND BIBLIOGRAPHY

Batéman,Harry, Tables of Integral Transforms,

New York: McGraw*Hill Co.,1954 ,Vol 1. pp 9-11,

Vol 2. pp 175

Fettis , Harry, Tables of Toroidal Harmonics,

Functions of the First Kind , U.S. Government

Aerospace Research Labs, Vol 1. Feb. 1969, Vol 2

July 1970.

Gradshtegn,I.8. and Ryzhik,I.M.,Tables of

Integrals,Series and Products , New York,

Academic Press, 1965,

Lebedev,Special Functiong and Their Applications,

Englewood Cliffs,N.J.,Prentice Hall, 1965 pp 221-234

Happle,John and Brenner,H,Low Reynold's Number

Hydrodynamics , Englewood Cliffs,N,J.,Prentice Hall,

1965,

Oberhettinger,Frank,Tables of Bessel Transforms,

New York, Springer—Verlag,lQ?Z,pp 241-261,



APPENDIX A

Proof of equation (32)

The rate of heat transfer ,Q, 1s expressible as a

series similar in form to the series developed for the

- temperature , T.

(1), (2). (3). (&) (=)

Q=Q +Q +Q +Q 000+Q (A."l)

The form of Q{J) is developed from the definition of Q.

9

Q ='—k f(d Area)* dT/dr ' (A-2)
21 7w
o= walr -1, 0 f [ dw(j)/dr lsin(4) déde (A-3)
¢“O¢O ra

The variable T is replaced in the definition (A-2) by its
equivalent in terms of ¥, and the resultant equation is
integrated o&er the sphere surface. The form of[dW(j)/df;rsa
in equation (A-3) is presenfly known in wedge centered
cylindrical coordinates. Invorder to perform the necesséry
integration, the function | d‘i’<j)/drslr=a must be translated
to‘é sphere centered spherical coordinate system., To translate

the function to spherical coordinates it must be expressed

as a geries.

[For even numbered reflections ]

‘. ® (m)
v 2 T T B 1 cos(me) 2] (cos(4)) (A-4)

n=m m=0 m,n

[For odd numbered reflections]

© (m) (-n-1) m A
g3 Yy Y ¢ t cos(md) P (cos(¢)) & 5)
n=m m=0 m,n 8 n
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© Taking the derivative of equations(A-4) and (A-5),

and evaluating these functions at the sphere surface.

® N (m) n-1 n
o [d¥/dr ] =) ) B (n)a cos(md)P (cos(d)) (A-6)
r =a n=m n=0 n,m T n
S . ’ ' [even reflection]
' L o (m) © =n=2 m
[dyv/dr ] Z 2 -C (n+l)a cos(m®)P (cos(¢)) (A-7)
® r =a n=m m=0 n,m. . . " n

S [odd reflection]

Integrating these. derivatives over the sphere surface.

(j=even) , 2n o “« = (m) n-1 m
Q =ka (Tl-T % f f z Z B na cos(m®)P (cos¢))sin(¢)dedd
aMP =0 ¢=0 n=m m=0 n,m n (A-8)
(j=o0dd) 9 2m T o . (m) - =n-2 m
Q =-ka®(T -T_J ] [ I Y} ¢ (n+l)a cos(md)P (cos¢))
1 am $=0¢=0 n=m m=0 n,m : n

sin(¢) d¢dd(A-9)

By examination of the integrals several terms can be

eliminated.

2T = 0 [ for m# 0 ]
f cos(md) do : '
=0 : = 27n[ for m= 0 ]
Thus
(j=even) 2 T e (m) n-1
Q = 271ka (Tl—Tamg‘f 2 B. n a P (cos(¢))sin(é)d¢ (A-10)
° n=1 O,n n :
(j=o0dd) 2 : T (m) -n~2
Q =-2rka’(T;-T_ ) [ ] C (n*l)a P (cos(¢))sin(¢)dé(A-11)
amb % j=0 O,n n
but '

= [ 0 for n# 0 ]
n

m
[P (cos(¢)) sin(¢) d¢
0 . = [ 2 for n = 0 ]

Therefore;
(j=even) , o
=0 : (A-12)
- (m)
c (A-13)
0,0 -

(ij=odd)
Q

=4 kgrlﬁTamb)



1ii,

The rate of heat transfer is merely the sum of the odd terms

3

in Q°. The boundary conditions used with the reflection method

indicate that,in general, at the sphere surface.

.\\

(next odd) (even)
y [a,d,0] = -V [a,9,0] (A-14)
(next odd) © © (m) o
¥ = z z C cos(md) P (cos(4))
n=m m=0 m,n ®on+l (A-15)
(m) =n a
) Y B a cos(m®) P (cos(¢))
= n=m m=0 m,n n
(A-16
One can conclude :
(m) (m) n nt+l
C = - B a a (A-17)
m,n m,n .
For n=m=0,
(m) (m) :
C = - B a (A-18)
6,0 0,0
but
(m) (m) (2m)
C = -B a = -a V¥ [0,0,0] (A-19)
0,0 0,0 :

The final summary indicates:

(2m) v
Q = Q ' (A-20)
(2m+1) (2m)
Q = 4wak(Tl—T ) ¥ [0,0,0](A-21)
amb

o (2m+1) , © (2m)
Q = %Q = 4wak(Tl—Tamb)[l;ZlW [0,0,0]
(A-22)
(2m) (2m)
Where V¥ [0,0,0] refers to V¥ evaluated at the
(2m)
gsphere center, or V¥ [2¥06,0,0] which refers to the same

position except that wedge centered coordinates are used to

express location.



APPENDIX B

Comparison with the exact Bipolar

Coordinate Solution

As was indicated by equations(57) and (58) the first

ordér solution for two spheres in space 1s:

Q = 4 ak(T -T [ 1 -a/2x, ]

amb)

This type of geometry is identical to the solution

iv.

of Laplace's equation in bipolar coordinates . The comparison

with bipolar coordinates shows that the truncation of
higher order terms in the reflection series leaves an error
This error approaches zero as the higher order terms of the
reflection series become less gignificant, The first order
correction solution will approach the bipolar coordinate
solution as a/x, approachesl§ery’sﬁall numbers.This

result 1s similar to the effedk of linearizing a power
series by the truncation of terms higher thamn order 2

and limiting the argument to small values. The first

order correction appears to be consistent with the bipolar

solution within computer accuracy. The comparison is shown

in Table 1 . The computer program from which this comparison

was derived follows table 1.



TABLE 1

A comparison with the exact Bipolar coordinate solution

Xg Q -"1lst order Q -Bipolar % Error

-1

., 1000 .9523866 .9500000 2.5x10
. ) » ) -3

.0100 .9950249 " +9950000 2.5x10
. . _q

.0010 9995002 .9995000 2.5x1Q
-7

.0001 +9999500 .9999500 2.5x10
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Ny
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B3Ry

52

53

59

54

55

DAVID HORWAT Vi
DAVID HORWAT %kATHESI Sk %% o '
B1PGLAR SOLUTION AND COMPARISON
IMPLICIT REAL*8(A-H,0~Z)
tJEMAT (*1°Y)
PHINT 8888
DO 857 LG = 149
READ 4 AX

N = -1

SUM = 0o
SERIES = 1o
Y = AX/2e

N = N+1

RN = N

BO =DLOG(1«/AX4+DSART(AXX%(=2). = 1e })

TERM =DEXP ((RN+¢500)%(~B0))/COSH{(RN+.500)%B0)
SUM = SUM+TERM ’

[IF(TERM — 1+0E-30) 52+,51451

SUM =DSART(AXXx%(~-2) ~ 14)%SUM

K = 1

SERIES = SERIES # (Y*%K)%(—14%%K)

ERROR = SUM - SERIES

PERCNT = ERROR/SUM%100.

PRINT 53 ;

FORMAT (*0% 48X+s*A/X VALUE® 39X *SUMY 312X ,*SERIES® ,
12Xs* % ERROR ') :

ERROR = PERCNT

PRINT 59 +LGsAX3sSUMsSERIES+ERROR

FORMAT (* *,15,6(E15792X))

Z =(1e - SUM JI/AX

PRINT 54 + 2

ZZ = «5

PRINT 55,22 o o

FORMAT (*'C THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS
F8e6)

FORMAT(* THE K VALUE OF OUR FIRST REFLECTION IS: *3F8.6 )
ERR = Z~22

IF (Z) 58,57+58

PCNT = ERR/Z%100,

PRINT S6 » ERRISPCNT

FORMAT (' THE ERROR BETWEEN K VALUES IS: *",F9e5,3X,*THE PERCENT ERR
$RROR IS: *4F9e6) e

CONTINUE
PRINT 8888
sToP

END

REAL FUNCTION COSH%*8(2)
IMPLICIT REAL%X8B8(A~H,0-2)

CUSH = ( DEXP(Z) + DEXP(~Z))*.500000000
RETURN
END



AN VAL UL SUM . SERIES % CRROR v""
1 Qal QOO C0D Q0 0+9523866D0 00 095000000 0O 0625059510 00

154 K VALUE OF THE BIPOLAKR COORDINATE SOLUTION IS @ 0.476134
1t Kk VALUE OF OUR FIRST REFLECTION IS: 0.500000

re o P RROR BETWLEN K VALUES 1S3 ~002387 THE PERCENT ERROR IS -5012530

A/ X VALUE SUM SERIES % ERROR
2 $el10000C0L-01 0.9950249D 00 099500000 00 025000620~02

it K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS I 04497512
THE K VALUE UF OUR FIRST REFLECTION 1IS:2 0500000

T16 P RROR SETWEEN K VALUES IS:  =—0e00249 THE PERCENT ERROR IS: -0500013

A/X VALUE SUM SERIES % ERROR
3 0e1000000D=-02 099950020 00 0+9995000D 00 02500001D~04

)

THE K VALUE CF THE BIPOLAR COORDINATE SOLUTION IS I 04499750
THik K VALUE OF OUR FIRST REFLECTION, IS: 0.500000

T4+ CKROR BETWEEN K VALUES IS: ~0.00025 THE PERCENT ERROR 1S: -0.050000

A/ X VALUE SUM - SERIES % ERROR
4 Ce1000C0O0D-C3 0,9999500D 00 099995000 00 0.25006000D0~06

THE K VALUF OF THE BIPOLAR COORDINATE SOLUTION IS ! 0499975
THE K VALUE OF OUR FIRST REFLECTION IS: 0500000

Tiir, FRRCR BETWEEN K VALUES 1S3 -0.00002 THE PERCENT ERROR IS: -0005000

A/X VALUE SUM SERIES % ERROR
5 041000000D~-04 0099999500 00 0¢9999950D 00 0.2500009D-08

THO K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS I 04499998
Tt K VALUE OF DUR FIRST REFLECTION IS: 0500000
THT ERRCR BETWEEN K VALUES IS3 -000000 THE PERCENT ERROR 1IS5: -0000500

A/ZX VALUE SUM SERIES % ERROR
6 041000000D-05 06 9999995D 00 099999950 00 0+2495366D~10

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS ! 0.500000
THE K VALUE OF OUR FIRST REFLECTION IS: 0500000

THT ERRKUOR BETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR 1S: -0.000050

A/X VALUE .- SUM . SERIES X% ERROR
7 041060000D-06 010000000 O1 . 0+100C000D 01 = 0.4468648D-12

THE K VALUE OF THE BIPOLAR. COORDINATE SOLUTION IS : 04500000
THE K VALUE OF DUR FIRST REFLECTION IS: 0500000
THE EFROR BETWEEN K VALUES IS: =-0.00000 THE PERCENT ERROR IS: -0.000009

A/X VALUE SUM SERIES % ERROR
8 041000000D-07 0.1000000D0 01 0+.1000000D0 01 0e3247402D~-12

T K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0500000
T k VAL UL UF OUR FIRST REFLECTION IS: 0.500000

Tt FRROR BIITWEEN K VALUES IS: -0+00000 THE PERCENT ERROR IS: -0.000065
A/ X VALUE SUM : SERIES % ERROR
3 Ce10000000-08 0.10000000 01 0410000000 01 0«5509482D0-12

1HE K VALUE OF THE BIPOLAR COORDINATE- SOLUTION IS : 04499994
THr K VALUS OF UUR FIRST REFLECTION IS: 04500000



viii.

APPENDIX C

A comparison with a'toroidal coordinate solution

A third comparison cén'exiat'féf which the accurate
and exacting closed form solution to Laplace's equation are
known. A large numBer of sphgréé;all tangent to each other
can be used to apﬁroximate‘a'toroid. For N spheres touching,
as shown in figure 5 , the a/x, valué is related to the
number of spheres ,N, by:

[ a/x, ]max.= sin(m/N)
To be larger than this value of a/x., would imply the
c;ushing of spheres into each (other,.

Comparing the.reéults for a first order correction and
the toroidal solution, an immense error is noted which grows
with an increase in the nuﬁber of spheres. These results are
depicted in Table 2 . This erfor is due to the concentrated
nature of this system. When sphefes fend to touch each other
the higher order terms are extrémely significant and their

truncation leads to a large error, For proper accuracy:?

[a/x,] / [a/%)] = << 1
max,

and; & :
a/x, fsinh[({N—l}/N)ﬂT] dt < 1
° ginh [t8/N] cosh(mwT)

. The accuracy of the first order éorrection is dependent
upon the a/x, values, and until the higher ordef terms of
this reflection series are develqped or until accurate
closed form solgtions to Laplace's equation are developed

for spheres in regular polygonal arrays a precise and



1x.

accurate error'analysis is impossible., However combining
the results of the computer
comparisons with bipolar and toroidal coordinates one can

speculate that the percentage of error might be of the form:

% error = 25[a/xe [/ (a/xo) ]
" max

2

The‘computer program from which the data in table 2 is

derived follows table 2 .



TABLE 2

A comparison with a toroidal coordinate solution

Q -~ toroidal

Spheres Q ~ 1lst order
4 .7071066° .5099413
10 . 3090169 +3243985
50 .0627904 ©.2070628
1000 00314158 .1275128

% error

169.3
527.6
1565.

4833.

e



Xt

3/ = SiN(@) |
e="/N |

(a/xo)qu = Sin(T/x)

~ figure §
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WATFIV VERSION 13 ¥x%x¥% JUOB=002 DAVID HORWAT
WATFIV VERSION 1.3 *%%x% JOB=002 DAV ID HORWAT
WATFIV VERSION 1.3 =%% JUB=002 DAVID HORWAT
WATFIV VERSION 1.3 %% JOB=002 DAVID HORWAT
$408 DAVID HORWAT
e DAVID HORWAT BEETHEST Shokk
L TOROIDAL SOLUTION VS, FIRST REFLECTION
1 COMMON NsZ
2 PRINT 1000
3 READ, RNUM
&4 Pl = 3514159286535
5 AX = SIN{PI/RNUM)
& Z = la/AX
7 FACTOR = 2 /PIRSART{ZF %2 ~14)
8 IUM = Qe
g N = -1
10 E = le
113 &1 N o= N+i
i1z RN = N
13 QA = QIRN=-35000}
i4 PA = P{RN=-.530000 }
i5 TERM = CDHQA/PA
16 PR = P { BN ¥+ »50000)
17 aB = @ { RN + 25800003
18 CHECK = PB % QA - GB % PA
1% THEDO = 12/ { RN + »50000)
20 ER = CHECK = THED
21 BLER = ER / THED ¥ 100
22 PRINT 1000
23 PRINT 802 s CHECKSTHEGERL,PCER
24 BO2 FORMATI® WRONSKIAN ACTUAL *,E15,7, ' WRONSKIAN THEORETICAL *:E515.7
s 7/ ERRORY ,E1527s * PERCENT ERROR %y E15.7)
28 PRINT 1000
26 E = 2a
27 SUM = SUM + TERM
28 IF { TERM = 1s0FE=30 ) 6256161
29 62 SUM = SUMKFACTOR/RNUM
30 NUM = (0.000
321 Moo= RNUM
32 DELTA = 00001
33 X2 = Qo
34 FXO = FLOATIN-1}
35 INDEX = 000
35 AREA = 0,000
37 i CONTINUE
38 XG0 = X2
39 X1 = X0 + DELTA
49 X2 = X1 + DELTA
41 IF{INDEX) 54165
a4z 5 FX0 = FX2
43 & FX1 = FUNC{X1)
&4 FX2 = FUNC{X2}
45 INDEX = INDEX + 1
46 TERM = [(FX0 + 4:.%FX1 + FX2)1/73:%DELTA
&7

AREA = AREA + TERM

Lo TREIL A i Ty o

T4s148

747148

T74/148

747148

2132393209

21339309

213393209

21339109

EE S
A ek
Hokok

ok

WATF IV

WATFIV

WATF1IV

WATFIV

o % ok

EE X3

% 3k

ek



49
50
51
22
53

54
85
856
87
58
59
50
61
62
63
64
05

&6
&7
68
L9
70

71
72

73
74
78
76

77

78
79
80

81
82
83
ga

85
86
87

‘88
89

90

91
92
93
94
95

96
97

98

o9

L LR

2

1000

3

53

55

87

b

IF { TERM = 120E-8) 25251
PRINT 1000

FORMAT (°® *)

PRINT 3,NAREASTERM

FORMAT { * THE NUMBER OF SPHERES 1S53

$.857 TOLERANCE? ;E158}
SERIES = 1.0
¥ = AX¥AREA
K = 1
SERIFS = SERIES + {(wk%xKik{—1s%%K]}
FRROR = SUM -~ SJERIES

PERCNT = ERRUOR/S5UMEIOG.

PRIMT 2 K2AXsSUMs SERIES,ERROR , PERCNT
Z ={1s = SUM JI/AX

PRINT 54 » Z

ZZ = AREA

PRINT 58,722

FORMAT {0 THE K VALUE OF THE TOROID

$ E 15:6)
FORMATA® THE K VALUE OF (QUR FIRST REFLECTION 153
ERR = Z2~Z2
PUNT = ERR/Z¥100
PRINT 56 » ERR,PCNT
FORMAT (* THE ERROR BETWEEN K VALUES
SRRON 1532 2,H,E 15.6 )
STOP
END

FUNCTION FUNC (X))

COMMDON N » GAX

Z =N

ARG = 3¢1415926538%X/FLOATINI
¥ = ARG
FUNC =
RETURN
END

TANH{ Z%RY ) /TANH{Y })~1.

FUNCTION TANH{X)
IF{X~25:)2+2+3

2,14, THE INTEGRAL I3:1%.F15

COORDINATE SOLUTION IS I *.FB.61

TLE 1526 3

IS eF823,3X,?THE PERCENT ERR

TANH = {EXP{X}-EXP{-XII/LEXPIX)+EXP{~X])})
GO 70 &

TANH = 1»

RETURN

END

FUNCTION FACTNIMX)
K = 1

IF {MK) 2+2.3

DO 1 L = 1-,MK

K o= KL

FACTN = K

RETURN

END

FUNCTION PSI1IK)
SUM = —.577215566
IF{K} 2+2.3



101
02
103

104
108
1¢6
107
its
iv9
1140
111
112
113

114
115
116
117
118
119
120
121
122
1273
124
125
iz28
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
i42
143
14 4

145
146
147
148
143
150
151
is52
183
154

8

o3

PSI1 = 5UM
RETURN
END

FUNCTION PSIZI{K)

SUM2 = 5.0

BM = = ST7T721366 = Z2+¥ALOG{ 2.1}
v { K 3 2:253

KA = 2%K=1

DO 1 L = 1.KAs 2

SUMZ2 = SUM2 + 1-/FLOAT{L)

PSI2 = SUM 4 2, %5UM2

RETURN

£ND

FUNCTION Q{X)

COMMON NoZ

A = N

RN = N

NREMN = X 4+ 51

N = NRN

RN = NRN

DELTA =ALOG{Z+SGRT{Z%xZ~1-1)

FACTOR = 314159286535 HEXAPL{-DELTAX{RN+,500013)
K = -1

SUR
Bo=
REK = K

NUM = |

NQ = 2%N+2%K-~1

IF INQ) 535.7

DO 3 L = 1.NGs2

MNUM = NUM % |

NZ = 2%K-1

IF {NZ) B8.8.:9

DO 4 L = 1aNZs2

NMUM = NUM%L.

TERM = FLOATINUM)/{26%%INF22K)I/FACTNINIKI/FACTN(K ) HEXP{=24%RKADELTA)
L.TA) ;

SUM = 5UM + TERM

IF { TERM — 10E—-10) 24141

Q = SUMRFACTOR

PRINT 99 » MsZH»Q

FORMAT(® @ P 2717202 FBale?) = *4E12.56}

N = A

RETURN

END

k4
Al

O s
+1

FUNCTION P{X)

COMMON Ny Z

SUMYI = 000

A = N

RM2 = N

NRNZ = X + 51

N = NRNZ2

RNZ2 = NRNZ

DELTA =ALOGIZ+S50RT(Z%Z~1s1)

FCTORZ = EXP{-DELTAX{RNZ+.5000)}/3. 141592565

IFINY 12291
CONTINUE

EASTOID — Eal Ve W Ea Y e TR R B T S,



158 D 3 JG = 1N

159 K = JG=1
160 RK = K
161 DEN = 1,
162 1A = 2%K+1
163 I8 = 2%N-2%K=~1
164 IF { I8 ) 12.,12,11
168 11 DO 6 L = IAsIB,2
166 & DEN = DENRFLOATIL)
167 12 TERM = FACTN{N=K=1)}/FACTNIK)I*EXP{ =2 %RK*DELTA)*¥2s %%{ N=2%K ) /DEN
168 3 SUM1 = SUM1 + TERM
169 SUM1 = SUMI%FACTOR
170 2 SUMZ2 = De00
171 K = =1
172 4 K=K+1
173 RK = K g
174 TERM2 = EXP{=2 .%RK¥DELTA)%{2+ %DELTA+PSII{K)I-PSI2{KI+PSI1{(K+N}~-P51
3 2{K+N}}
175 NUM = 1
176 IC = 2N + 2kK=]
177 IF { IC ) 13.,13.10
178 10 DO 7 L = 1.1C,2
179 7 NUM = NUMXL
180 13 ID = 2%K=1
181 IF { ID ) 14.146,15
182 15 DO B8 L = 1,ID,2
183 8 NUM = NUMXL
184 14 TERM = FLOATINUM)/FACTNI{K#N) /FACTNI(K) /2 %%k {N+2%K)*TERM2
185 SUM2 = SUM2 + TERM
186 IF { TERM = 1.0E=10) S5,4,4
187 5 SUM2 = SUM2*FCTOR2
188 P = SUM1 + SUM2
189 PRINT GaNsZHP
190 9 FORMAT{*® P 8 ,I2,7=1/2(%,FH6ale?) = 1,E12:6)
191 N = A
192 RETURN
193 END
SENTRY
G 0=1/2{ 318.3) = 0.1245128 00
P 0=1/2{ 318.3) = D.197876E 00
P 1=1/720 318Bs3) = 0.,160629F 02
e} = De9QT77915E~C4

1=1/2( 318.3)
‘wﬁoﬂskiaw ACTUAL 0. 1999993E O01WRONSKIAN THEORETICAL  0s2000000E 01
ERROR ~0e6675720E-05 PERCENT ERROR -0+3337860E-03

1-1/2{ 31843)
i=1/72( 318.3)

2=172{ 318.3}
2=1/724 318, 3)

G2 B77915E-04
D 160629E 02
De68B1723E 04
G2 115208E-06

o

cTVUVO

H

. WRONSKIAN ACTUAL D+6666647E COWRONSKIAN THEDRETICAL 0+ 65666666E 0O

ERROR =0,1966953E-05 PERCENT ERROR =0.2950430E-03

LI SR 2 U - D0 35 VRS L S B R e SN S




P Z=1/721 318B.3) =
P 3=31/21 318633 =
Q@ 3-1/2{ 31B.3) =

HRONSKIAN ACTUAL  Os
EFROR =0.,9536743E-06
3=1/2( 318.3) =
3-1/2{ 318.3) =

4=172{ 318B3) =
41724 318e3) =

ovUo

WRONSKIAN ACTUAL 028571418 COWRONSKIAN THEORETICAL

ERROR =0 .1738139E-06

4=172{ 318.3) =
4=3/2( 318.,3) =
E=1/21( 318.3) =
F=3172{ 318.3) =

ol B« v

WRONSKIAN ACTUAL 0222222208 00WRONSKIAN THEORETICAL

ERROR ~0.2384186E~-06

S=172{ 3183) =
5=172{ 3183} =
5=1/72{ 318B3) =
E=-1/724 3183} =

LRy B

WRONBKI AN ACTUAL 018181798 QOWRONSKIAN THEORETICAL

ERROR =0 +2384186E-06

6=1/721{ 318.3) =
&=1/21{ 318.3) =
T=1/72{ 318,3) =
T=1/2{ 318+3) =

OTUTO

WRONSKIAN ACTUAL 0. 1538460E COWRONSKIAN THEORETICAL

ERROR =0o1788139E~06

THE NUMBER OF SPHERES IS: 1000 THE INTEGRAL I$3
1587E~02 Ge 1273128 0OC ~0+6035866E 01

i 0s314

THE K VALUE OF THE T

THE K VALUE OF QUR FIRST REFLECTION 1S3
ALUES 1S3 sokdkkkokd

THE ERROR BETWEEN K V
CORE USAGE OBJE
DIAGNOSTICS NU

COMPILE TIME=

k&% WATFIV VERSION 1a

06817238 04
0347198 07
O» IBLBOGE~-DG

39G9UG0E CUOWRONSKIAN THEOQRETICAL

PERCENT ERRQOR

D 1D50B0YE~CD
0.347198E OF
De 1H9455E 10
De207278E-12

PERLCENT ERROR

D 207278E~12
0. 189485 10
D:107210CE 13
0« 293038E~-15

PERCENT ERROR

0 293038E~-15
02107210 13
C2620406E 15
B:421939E~18

PERCENT ERROR
U+421939E~-18
06204066E 15
G«364618E 18
02615436E~21

PERCENT ERROR

-De2384186E~03

-0 5625854888~ 04

=0 1072884E~03

-0s1311302E~-03

-021162291E-03

OROID COORDINATE SOLUTION IS 2

Y CODE= 9912 BYTES, ARRAY AREA=

MBER 0OF ERRORS=

059 SECLEXECUTION TIME=

3 kxk JOB=0G0G2

0e«223989E 04
THE PERCENT ERROR 132

J.40000008 00

028571438 00

D+2222222E 00

U.1818181€ 00

s 15384618 00

2239,59000000 TOLERANCE 0s00000000E 00
G+6163378E 01

D 2777228 03

60 BYTES,TOTAL AREA AVAILABLES

O NUMBER OF WARNINGS=

DAVID HORWAT

0s 50D SELC,

WATFIV - VERSION 1 LEVEL 3 MARCH

0.4833535E 04

-0« 706413E 03

0s NUMBER OF EXTENSIONS=

BYTES

o

DATE= 74/148

213392109 %% WATFIV %%k



	The steady state heat and temperature distribution of a hot sphere within an infinite wedge
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Page
	Table of Contents
	Introduction
	Development of Model - Wedge Walls at Constant Temperature
	Summary
	Reference and Bibliography
	Appendix A
	Appendix B
	Appendix C

	Abstract
	Acknowledgements
	Dedication
	Symbols Used and Their Meanings
	List of Figures 
	List of Tables 

