New Jersey Institute of Technology

Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

8-30-1975

Computer program for binary distillation using the method of Pochon-Savarit with enthalpy data calculated by Lagrange interpolation

Joseph J. Rogus New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Rogus, Joseph J., "Computer program for binary distillation using the method of Pochon-Savarit with enthalpy data calculated by Lagrange interpolation" (1975). Theses. 2137. https://digitalcommons.njit.edu/theses/2137

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

COMPUTER PROGRAM FOR

BINARY DISTILLATION

USING THE METHOD OF POCHON-SAVARIT
WITH ENTHALPY DATA CALCULATED BY LAGRANGE
INTERPOLATION

BY

JOSEPH J. ROGUS

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE

0F

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1975

APPROVAL OF THESIS

BINARY DISTILLATION USING THE METHOD

OF POCHON-SAVARIT WITH ENTHALPY DATA

CALCULATED BY LAGRANGE INTERPOLATION

BY

JOSEPH J. ROGUS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING
NEW JERSEY INSTITUTE OF TECHNOLOGY

ВУ

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY
AUGUST, 1975

ACKNOWLEDGMENTS

I would like to express my appreciation to A. Saltzman for his guidance in the preparation and implementation of the program. In addition, I would like to thank the personnel at Computer Center of Schering Corporation for the acesss and use of their computer facilities.

I would like to acknowledge the valuable suggestions given by Dr. John E. McCormick during the preparation of this thesis.

Most of all, to my wife KAREN and daughters Kimberly and Denise, whose encouragement and deep understanding provided the most essential inspiration and guidance.

August, 1975

Joseph J. Rogus

ABSTRACT

This thesis presents a Fortran Computer Program to solve binary distillation problems. The solution is obtained by the method of Pochon-Savarit which is based upon graphical use of an enthalpy-concentration diagram. The enthalpy data in this program is calculated using Lagrange interpolation. This is accomplished by utilizing the Lagrange interpolation to get values for the enthalpy of the vapor until we find that value which lies on the same line as the enthalpy of the liquid from the preceding tray and its corresponding del point.

The required input data consist of liquid-vapor equilibrium data, heat of solution data with the reference temperature, the feed rate and temperature, the weight fraction of the lighter component in the feed, distillate, and bottoms, and the reflux ratio. In addition, for each component, the molecular weight, heat of vaporization, critical temperature, boiling point and specific heat of the liquid and vapor must be specified. The specific heats must be in terms of a third order polynomial with respect to temperature. The program output includes the mole fraction, quantity, and enthalpy of the feed, distillate, and bottoms, the condenser and reboiler heat loads, the feed tray location, the number of ideal trays, and the mole fraction and enthalpy of the vapor and the liquid at each tray. This program enables as many sets of data to be run within one execution of the program as desired by the user.

TABLE OF CONTENTS

1. INTRODUCTION	L
II. DISTILLATION THEORY	3
A. MATERIAL BALANCE CALCULATIONS	3
B. ENTHALPY CALCULATIONS	10
III. METHOD OF POCHON-SAVARIT	12
A. THE ENRICHING SECTION	12
B. THE STRIPPING SECTION	16
C. THE COMPLETE SYSTEM	19
IV. LAGRANGE INTERPOLATION	23
V. PROGRAM DESCRIPTION	24
VI. DISCUSSION OF RESULTS	[*] 27
VII. CONCLUSION	29
APPENDIX I	
REQUIRED INPUT DATA	30
APPENDIX II	
INPUT DATA SHEET	32
APPENDIX III	
A. LIQUID - VAPOR EQUILIBRIUM DATA	34
B. HEAT OF SOLUTION DATA	38
APPENDIX IV	
COMPUTER PROGRAM	40
APPENDIX V	
SAMPLE OUTPUTS	53
NOMENCLATURE	59
BIBLIOGRAPHY	62

LIST OF FIGURES

FIGURE		PAGE
1	Overall Material Balance of a Fractionator	4
.2	Material Balances for Enriching Section	7
3	Material Balance for Stripping Section	8
4	Enthalpy Balance of a Distillation Plant	11
5	HXY Diagram for Enriching Section Total Condenser Reflux at Bubble Point	14
6	HXY Diagram for Stripping Section	18
7	HXY Diagram with Overall Operating Line	20
8	Pochon-Savarit Solution	22

I. INTRODUCTION

The solution to binary distillation problems requires obtaining the number of trays or plates necessary to achieve the desired distillate and bottoms concentrations for a specific feed. The number of trays is a function of the feed condition and the specified reflux ratio. The final number of trays is usually determined by utilizing that reflux value which will minimize the total system cost.

There are several methods available for solving binary distillation problems. Some of the common methods involve solution to the problem by either graphical procedures or by the use of analytical equations. The methods of Pochon-Savarit and McCabe-Theile employ the use of graphical techniques where as others such as Underwood and Colburn compute the solution analytically.

Each method has advantages and disadvantages associated with it.

The Pochon-Savarit method is the subject of this thesis. Some of the major advantages of this method over several other methods will be discussed briefly before the detailed procedure is developed.

The McCabe-Theile method requires that the system have equal molal over-flow. This condition is not necessarily available for all applications. The Pochon-Savarit does not require this condition and therefore is more applicable to actual industrial calculations.

The graphical solutions allow less complex equations to be used. Non-ideal vapor-liquid equilibrium relationships required for analytical solutions often become very complex and cumbersome. The data required for the

Pochon-Savarit method are more readily available (Appendix I) and does not require the use of intermediates such as fugacity, K factor or relative volatility. This method, because of its relative simplicity, as compared to some of the more complex methods, readily lends itself to use on some of the smaller computers available in industry today.

Following the discussion of the theory, two (2) distinct systems will be solved utilizing the computer program.

II. DISTILLATION THEORY

The equations developed in the text of this thesis will use the same nomenclature used in the computer program to facilitate reference.

A. MATERIAL BALANCE CALCULATIONS

1. OVER-ALL BALANCES

Figure 1 represents a continuous distillation plant. The feed enters the column at a rate of FEED moles per hour and a concentration of ZFA. This results in the production of DIST moles per hour of overhead product with a concentration of XDA and BOT moles per hour of bottom product with a concentration of XBA. From this data, we can write two (2) over-all material balances for the system.

Total Material Balance:

$$FEED = DIST + BOT \tag{1}$$

Component A Balance:

$$(FEED) (ZFA) = (DIST) (XDA) + (BOT) (XBA)$$
 (2)

Providing the values for FEED, ZFA, XDA and XBA are available, which is the case for our system, one can eliminate DIST from these equations. The result provides a solution for calculation of BOT.

$$BOT = (FEED) (XDA-ZFA)/(XDA-XBA)$$
 (3)

The value of DIST can now be obtained from Equation 1.

For most industrial applications, we are not so fortunate as to have the feed given in moles per hour and the mole fractions of the feed, distillate and bottoms specified.

Figure 1
Overall Material Balance
of a Fractionator

A system is usually specified as follows:

The column is fed at a rate of F pounds per hour with a weight percent of WFA. This results in the production of an overhead product with weight percent of WDA and of a bottom product with a weight percent of WBA.

We must now determine the quantity of the products produced by this system.

We first determine the number of moles of components A and B, with molecular weights of MWA and MWB respectively, in the feed.

$$MOLA = (F)(WFA/MWA)$$
 (4)

$$MOLB = (F)(WFB/MWB)$$
 (5)

From these, we determine:

* FEED = MOLA + MOLB
$$(6)$$

$$ZFA = MOLA/FEED$$
 (7)

The mole fraction of the distillate and the bottom products are determined by use of Equation (8) and Equation (9) respectively.

$$XDA = (WDA/MWA)/(WDA/MWA + (1-WDA)/MWB)$$
 (8)

$$XBA = (WBA/MWA)/(WBA/MWA + (1-WBA)/MWB)$$
 (9)

With this data, we can now compute BOT and DIST using Equation (3) and Equation (1).

We must now compute the average molecular weight of the distillate.

$$MWDAV = 1/(WDA/MWA + (1-WDA)/MWB)$$
 (10)

This enables us to compute quantity of distillate, WDIST, in pounds per hour.

$$WDIST = (DIST)(MWDAV)$$
 (11)

The quantity of bottom product produced, WBOT, in pounds per hour is determined by the total material balance in Equation (12)

$$WBOT = F - WDIST \tag{12}$$

2. NET FLOWS OF EACH SECTION

Now that we have discussed the total system, we consider the flows in each section of the column.

Consider the upper or enriching section of the column as shown in Figure 2. DIST represents the difference between the flow rates of the streams entering and leaving the top of the column. A balance around the condenser yields

$$DIST = G1 - Lo (13)$$

Since DIST represents the difference between the flow rates of vapor and liquid anywhere in the enriching section, a total material balance for this section gives

$$DIST = Gn+1 - Ln \tag{14}$$

A material balance for component A in the system yields the following

$$(DIST)(XDA) = (G1)(YA1)-(Lo)(XAo)$$
(15)

$$(DIST)(XDA) = (Gn+1)(YAn+1)-(Ln)(XAn)$$
(16)

Similarly, for the bottom or stripping section of the column, Figure 3, the following equations apply

$$BOT = Lb-Gb = Lm - Gm+1$$
 (17)

$$(BOT)(XBA) \doteq (Lb)(XAb) - (Gb)(YAb) = (Lm)(XAm) - (Gm+1)(YAm+1)$$
(18)

The subscripts n and m are used to represent a plate in the enrich-

Figure 2
Material Balances for
Enriching Section

Figure 3
Material Balance for
Stripping Section

ing and stripping section respectively.

The feed plate is not included in either section. Since the feed plate separates the stripping and enriching sections and since the feed can have any condition from liquid below its bubble point to super-heated vapor, it requires special calculations.

B. ENTHALPY CALCULATIONS

OVER-ALL ENTHALPY BALANCE

Suppose we consider the overall enthalpy balances for a distillation plant with negligible heat losses. This system is represented in Figure 4.

We now define the reflux ratio as

$$REFLX = Lo/DIST \tag{19}$$

Consider the condenser, Section A(Figure 4). The total material balance is the same as Equation (13), but now we rewrite it as follows

$$G1 = DIST + Lo (13a)$$

Solving for Lo in Equation (19) and substituting that value in Equation (13a)

$$G1 = DIST(REFLX + 1)$$
 (20)

The enthalpy balance for Section A is

$$G1(HG1) = QCOND + Lo(HLo) + DIST(HDIST)$$
 (21)

or

Where QCOND represents the condenser heat load.

To obtain the reboiler heat load, we consider Section B of Figure 4 and employ a complete enthalpy balance for this section to obtain

Figure 4 Enthalpy balance of a distillation plant

III. METHOD OF POCHON-SAVARIT

As we mentioned previously, this thesis will only consider the case of negligible heat losses for the distillation plant.

A. THE ENRICHING SECTION

We will consider the enriching section through Tray n, Section C, Figure 4. As before, Tray n is any tray in this section. The material balances are developed in the same manner as those in Section IIA.

Total material balance from Equation (14)

$$Gn+1 = Ln + DIST$$
 (24)

For Component A

Equation (16) DIST(XDA) = Gn+1(Yn+1)-LnXN

The enthalpy balance for this section is

$$(Gn+1)HGn+1 = (Ln)HLn + QCOND + DIST(HDIST)$$
 (25)

If we let HDELD represent the heat removed in the condenser and permanently removed with the distillate per mole of distillate, we get

$$HDELD = \frac{QCOND + DIST(HDIST)}{DIST} = QCOND/DIST + HDIST$$
 (26)

and

$$(Gn+1)HGn+1 - (Ln)HLn = DIST(HDELD)$$
 (27)

Similar to the case of the material balance Equation (13) the left hand side of Equation (27) represents the difference in flow. This time, the difference is in heat flow. The right hand side of this equation as before is constant for a specific set of conditions. This difference remains constant in this section of the column, is independent of

the tray number, and is equal to the quantity of heat permanently removed at the top of the column with the distillate and at the condenser.

The elimination of DIST between Equations (24) and (16) and between Equations (24) and (27) yields

$$Ln/Gn+1 = \frac{XDA-YAn+1}{XDA-XAn} = \frac{HDELD-HGn+1}{HDELD-HLn}$$
 (28)

Equation (28) represents a straight line on the Hxy diagram through points (HGn+1, YAn+1) at Gn+1, (HLn, XAn) at Ln, and (HDELD, XDA) at \triangle DIST.

Figure 5 represents a Hxy diagram for a total condenser. This is the only type of condenser considered in these calculations.

For a total condenser, the distillate, DIST, and the reflux Lo have identical coordinates. The saturated vapor from the top Tray G1, when totally condensed, has the same composition as DIST and Lo. The Liquid L1 leaving Tray 1 is in equilibrium with the vapor G1 and can be located by drawing a tie line from G1 to the saturated liquid curve.

Since Equation (28) is applicable to all trays in the enriching section,

G2 can be located on the saturated vapor curve by the line drawn from \triangle DIST to L1. Again, the Liquid L2 is located using a tie line from G2 to the saturated liquid curve. The number of ideal trays, represented by the number of tie lines, may now be determined for this section by alternate tie lines and construction lines through \triangle DIST. For any Tray n, the Ln/Gn+1 value is given by the ratio of line lengths HDELD-Gn+1/HDELD-Ln. Utilizing Equations (24) and (28), we obtain

Mole Fraction of A

Figure 5

HXY diagram for
Enriching Section

Total Condenser Reflux

at Bubble Point

$$Ln/DIST = \frac{HDELD-HGn+1}{HGn+1-HLn} = \frac{XDA-YAn+1}{YAn+1-XAn}$$
 (29)

If we apply Equation (29) to the top tray, we obtain the external reflux ratio, a value which is normally the one specified.

$$\frac{\text{HDELD-HG1}}{\text{REFLX} = \text{Lo/DIST} = \frac{\text{HDELD-HG1}}{\text{HG1-HLO}} = \frac{\text{Line HDELD G1}}{\text{Line G1LO}} = \frac{\text{Line HDELD G1}}{\text{Line G1 DIST}}$$
(30)

Thus, with the reflux ratio specified, Equation (30) may be used to locate \triangle DIST on the Hxy diagram. The condenser heat load may now be calculated from the value of HDELD.

B. STRIPPING SECTION

In the stripping section, we will consider Section D of Figure 4. As we did in the enriching section, we will select a tray, m, and make our balances around it.

The total material balance is

Equation (17) BOT = Lm = Gm + 1

and for Component A

Equation (18) BOT(XBA) = (Lm)XAm-Gm+1(YAm+1)

The right hand side of Equation (18) represents the difference in the rate of flow of Component A. For a given distillation, the left hand side of the equation is constant. This difference is therefore independent of the tray selected in the stripping section. Similar to the case in the enriching section, this difference represents the rate of A removed permanently out of the bottom. We may now write the enthalpy balance for this section.

$$(Lm)HLm + QBOIL = (Gm+1)HGm+1 + BOT(HBOT)$$
(31)

We now define HDELB as the net flow of heat out of the stripping section per mole of bottom product

$$HDELB = \frac{BOT(HBOT) - QBOIL}{BOT} = \frac{HBOT - QBOIL}{BOT}$$
 (32)

and

$$(Lm)HLm-(Gm+1)HGm+1 = (BOT)HDELB$$
 (33)

This difference in heat as was the difference in mass in Equation (18) is constant for a given distillation and independent of the tray loca-

tion in the stripping section of the column.

If we now eliminate BOT, similarly to what we did for the enriching section, between Equations (17) and (18) and between Equations (17) and (33), we find

$$Lm/Gm+1 = \frac{YAm+1-XBA}{XAm-XBA} = \frac{HGm+1-HDELB}{HLm-HDELB}$$
(34)

As did Equation (28), Equation (34) represents a straight line on a Hxy diagram. This straight line is drawn through (HGm+1, YAm+1) at Gm+1, (HLm, XAm) at Lm, and (HDELB, XBA) at \triangle BOT. Analogous to the enriching section Equation (34) applies to all of the trays in the stripping section. If we consider the Hxy plot in Figure 6, the line from GNp+1 the vapor leaving the reboiler and entering the bottom tray Np of the tower, to \triangle BOT intersects the enthalpy curve for the saturated liquid at LNp, corresponding to the liquid leaving the bottom tray.

Similar to the enriching section, the number of trays can be determined on the Hxy diagram by alternating construction lines from HG(i) to BOT and tie lines between HG(i) and HL(i). Each tie line again representing an ideal stage for this section.

Mole Fraction of A

Figure 6

HXY Diagram for

Stripping Section

C. THE COMPLETE SYSTEM

If we go back to Figure 4 and consider the entire distillation plant, Section B, we can generate:

Material balances

Equation (1) FEED = DIST + BOT

Equation (2) FEED(ZFA) + DIST(XDA) + BOT(XBA)

and the enthalpy balance

Equation (23) QBOIL = DIST(HDIST) + BOT(HBOT) + QCOND-FEED(HFEED)
Utilizing the values of HDELD AND HDELB, defined by Equations (26) and
(32) respectively, in Equation (23) we obtain

$$FEED(HFEED) = DIST(HDELD) + BOT(HDELB)$$
 (35)

The elimination of FEED from the three (3) above equations allows us to obtain

$$\frac{\text{DIST}}{\text{BOT}} = \frac{\text{ZFA-XBA}}{\text{XDA-ZFA}} = \frac{\text{HFEED-HDELB}}{\text{HDELD-HFEED}}$$
(36)

Equation (36) represents a straight line on the Hxy diagram in Figure 7. This line is through points (HDELD, XDA) at \triangle DIST, (HFEED, \angle FA) at FD, and (HDELB, XBA) at \triangle BOT.

We will call this line the overall operating line for the system. The feed location shown in Figure 7 represents a feed condition of saturated liquid at its bubble point. This is only one case and the feed can be represented anywhere from liquid below its bubble point to super-heated vapor above the saturated-vapor curve.

Now that we have discussed the basic principles for tray determination in each section of the column, we will explain how total number of trays

Mole Fraction of A

Figure 7

HXY Diagram with

Overall Operating Line

for the system is established. (Refer to Figure 8.)

Once we have established the location of FD on Hxy diagram, we determine the location of \triangle DIST from the reflux ratio utilizing Equation (30). We then construct the overall operating line through \triangle DIST and FD. This line establishes point \triangle BOT where it intersects with XBA (Equation (36)). We now proceed, as discussed in Section IIIA, to construct a series of alternating tie lines and operating lines through \triangle DIST commencing at point G1.

This is continued until we find the tray where the liquid concentration, point K, is less than the abscissa of the intersection of the overall operating line with the saturated liquid curve. This tray establishes the location for the introduction of the feed. This is a critical point for if the feed is introduced above or below it, the system will require additional trays to achieve the separation.

The feed tray separates the enriching section of the column from the stripping section of the column. When the feed tray is reached, we must change the construction of our operating lines from ▲ DIST to ▲ BOT. Line BOT1 represents this switch. We now determine the number of trays in the stripping section. This is done, as discussed in Section IIIB, by a series of tie lines and operating lines starting at point GB. The last tray is determined when we find the first tray where the liquid concentration, point P, is less than or equal to XBA.

The total number of trays required to achieve the separation is the number of tie lines commencing at point G1 and terminating at point P.

Figure 8
Pochon-Savarit
Solution

IV. LAGRANGE INTERPOLATION

The computer program utilizes Lagrange Interpolation for determination of the enthalpy data required for construction of the operating lines discussed previously. The Lagrange method allows for interpolation for unequally spaced data.

The Lagrange method lends itself to this type computer calculation, because it is less complex than other methods available. Other methods utilized for unequally-spaced arguments, such a determinant form or Aitken's method, require the setting up of matrices. Since the Lagrange method does not require matrices, it may be readily used with the smaller computers available today.

The method of Lagrange states that if we have three (3) sets of unequally spaced arguments

we can determine for any X its corresponding Y value. This is accomplished utilizing the following equations

$$A1 = \frac{(X-X2)(X-X3)}{(X1-X2)(X1-X3)}$$
 (Y1) (37)

$$A2 = \frac{(X-X1)(X-X3)}{(X2-X1)(X2-X3)} (Y2)$$
 (38)

$$A3 = \frac{(X-X1)(X-X2)}{(X3-X1)(X3-X2)} (Y3)$$
 (39)

$$Y = A1 + A2 + A3$$
 (40)

Equation (40) represents the solution to the Lagrange interpolation.

V. PROGRAM DESCRIPTION

The computer program is written to allow as many sets of experimental data to be run within one execution as desired by the user. The only requirement is that the input data follow Appendices I and II. Should any set of data be read in missing a "Title" card, the program will terminate at that point with an appropriate error message printing out.

The program is divided into a main program consisting of three (3) distinct sections and five (5) subprograms. Each of these will be discussed briefly.

A. MAIN PROGRAM

1. MATERIAL BALANCE CALCULATIONS

This section utilized the equations developed in Section IIA. The data returned from this section includes:

- Mole fraction of the feed
- 2. Mole fraction of the distillate
- 3. Mole fraction of the bottom
- 4. The distillate flow in pounds per hour
- 5. The bottoms flow in pounds per hour

2. ENTHALPY CALCULATIONS

Utilizing equations developed in Section IIB and III, this section returns the following data:

- 1. Enthalpy of the feed, BTU/lb-mole
- 2. Enthalpy of the distillate, BTU/lb-mole
- 3. Enthalpy of the distillate del point (DIST), BTU/1b-mole
- 4. Condenser heat load, BTU/hr

- 5. Enthalpy of the bottom product, BTU/lb-mole
- 6. Enthalpy of the bottom del point (△ BOT), BTU/lb-mole
- 7. Reboiler heat load, BTU/hr

3. POCHON-SAVARIT CALCULATIONS

The calculations in this section are basically the same as discussed in Section III. Since all the calculations are done mathematically, we are presented with problems that did not exist for a graphical solution. The values we obtained graphically for HG(i+1) by construction of the operating from HL(i) to \triangle DIST must now be determined mathematically. This is accomplished by utilizing the Lagrange interpolation to get values of HG until we find the value on the same line as HL(i) and \triangle DIST. We compare the slope of the line \triangle DIST-HG to the slope of the line \triangle DIST-HL(i). We consider the slopes equivalent when the dividend of the slope of our i^{th} iterative guess line and our initial guess line is less than 10^4 or when the increment (Y1NC) divided by the guess point (YATS) is less than 10^4 . This same type of check is used in the stripping section.

To determine when we change from the enriching section calculation to stripping section calculations, we again compare slopes. This time we call for the change when the slope of line \triangle DIST-FD is greater or equal to the slope of line \triangle DIST-HL(i).

The last tray in the stripping section is reached when the XL(i) value is less than or equal to XBA.

Since the guess point (YATS) on our curve range from 1 to .01 (or

less), a factor of 100 in order of magnitude, the iterative increment (Y1NC) is set to YATS/100 at all points along the curve. This speeds up the calculations in enriching section without detriment to the calculations in stripping section.

This portion of the program returns the following:

- 1. The total number of trays required including the reboiler.
- 2. The enthalpy and concentration of the liquid for each tray.
- 3. The enthalpy and concentration of the vapor for each tray.
- 4. The feed tray location.

B. SUBPROGRAMS

- WHERE is a search routine to locate a variable in an ascending or descending array.
- 2. YLIN is a linear interpolation.
- 3. $\underline{\text{YLAGR}}$ is the Lagrange interpolation described in Section IV.
- 4. EL is used to calculate the enthalpy of the saturated liquid.
- 5. $\underline{\text{EV}}$ is used to calculate the enthalpy of the saturated vapor.

VI. DISCUSSION OF RESULTS

Appendix V contains sample computer program outputs to confirm the validity of the program. The printout for each system includes the system tilte and all the input variables as well as all the required output data. Each printout will be discussed briefly.

SYSTEM I: METHANOL - WATER

To be sure the program would give valid results, an example problem from Mass-Transfer Operations by Treybal, pages 326-329 was selected for System I. This problem requires the design of a methanol-water distillation plant. The design parameters for the system are:

The feed to the system will be supplied at a temperature of 136°F with a composition of fifty percent (50%) by weight of methanol at a rate of 5,000 pounds per hour. The system will produce a distillate containing ninety-five percent (95%) by weight methanol and a bottom product that is 1.0% by weight methanol. The reflux ratio for the system is 1.029.

All of the program calculations agree with text answers with the exception of the total number of trays required. The text answer is nine (9) trays including the reboiler and the program requires ten (10) trays including the reboiler.

This difference occurs in the stripping section. This is confirmed by the fact that the feed locations for both solutions are the same. The reason for the additional tray is believed to be related to the degree of accuracy of the computer calculation versus that of the graphical solution.

The values for XBA and the liquid concentrations leaving tray 9 and 10 are

0.00565, 0.006, and 0.001 respectively. Since completion of the program requires that the liquid concentration be less than or equal to XBA, ten (10) trays are required. If this were solved graphically, we would get nine (9) required trays because the difference between XBA and XA (9) would not be detected.

SYSTEM II: ETHANOL - WATER

This system requires the design of a plant for an ethanol - water distillation. The design parameters for this system include:

A feed to the system of a temperature of 177°F, with a composition of fifty-two percent (52%) by weight ethanol and a rate of 2,000 pounds per hour. The system is to produce a distillate with a concentration of ninety-one percent (91%) ethanol and a bottom product composed of four percent (4%) by weight ethanol. The reflux ratio is specified at 3.00. The system requires ten (10) trays with the feed tray at stage 8. The system indicates we are getting very little separation in the enriching section per tray compared to that of the stripping section. This appears to be because of the azeotrope that occurs 10.57 mole percent ethanol.

These results are very similar to those obtained by direct graphical methods, but there is a great savings in time and labor with an increase in accuracy when utilizing this program. Essentially, this method evaluates only the necessary points on the HXY curves, thus a total picture of the system under study is not required.

VII. CONCLUSION

This program should be easily and widely used because it utilizes commonly available real data. Unlike the method of McCabe-Theile, it does not require equal molal overflow. The application of Lagrangian interpolation is relatively new with respect to machine solution of stage-to-stage calculations in chemical engineering. This procedure can easily be extended to solution of extraction problems expressed in a manner similar to that of the Pochon-Savarit method. This method is particularly useful because it can be used with unequally spaced data such as normally found or developed in a laboratory.

APPENDIX I

REQUIRED INPUT DATA

APPENDIX I

REQUIRED INPUT DATA

		SYMBOL	UNITS	SOURCE
1.	Equilibrium Data*		.	5
	Mole fraction of A in liquid	XA	~	
	Mole fraction of A in vapor	YA	-	·
	Liquid temperature for XA	TL	o _F	•
	Vapor temperature for YA	TG	o _F	
2.	Heat of solution	HSA	Kilojoule/g-mole	4
3.	Reference temperature for HSA	TO	° _F	4
4.	Molecular weight of A	MWA	lb/lb-mole	5
5.	Molecular weight of B	MWB	lb/lb-mole	5
6.	Heat of vaporization at nor-	LAMA1	cal/g-mole	6
	mal boiling point, for A			•
7.	Heat of vaporization at nor-	LAMB1	cal/g-mole	6
	mal boiling point, for B			
8.	Critical temperature of A	TCA	o _K	8
9.	Critical temperature of B	ТСВ	° _K	8
10.	Boiling point of A	ВРА	o _F	5
11.	Boiling point of B	ВРВ	o _F	5
12.	Specific heat of A	CPA**	BTU/1b ^O F	9
13.	Specific heat of B	CPB**	BUT/1b ^O F	9
14.	Feed rate	F	lbs/hour	***
15.	Weight fraction of A in feed	WFA		***

÷		SYMBOL	UNITS	SOURCE
16.	Weight fraction of A in	WDA	**	***
	distillate		, , , ,	
17.	Weight fraction of A in bot-	WBA		***
	toms		v	
18.	Temperature of the feed	TF	o _F	***
19.	Reflux ratio	REFLX	_	***

*The equilibrium data and heats of solution used for these programs were obtained from the curves in Appendix III to facilitate the input data

**Since the specific heat is a function of temperature, the values for the liquids and vapor of each component are calculated for each temperature.

The equations for these calculations are on the order of

$$CP = A + B TEMP + C TEMP2 + D TEMP3$$

This common form enables us to read in to the program only the coefficients A, B, C, D for the liquid and vapor calculations of each component for a given set of calculations.

***The terms are specified for a given distillation problem.

APPENDIX II

INPUT DATA SHEET

APPENDIX II

INPUT DATA SHEET

CARD NUMBER	<u>INPUT</u>	COLUMN NUMBER
1	Title Card	
	Titlebb	1-8
	Any user title for experiment	9-80
2-21	Table values for equilibrium data and heats of	
	solution; 20 values for each $XA(=YA)$, TL, HSA,	
	TG	
	1 card for each set of variables in XA ascending	
	order (F10.0 format)	
	XA(=YA)	1-10 .
	TL	11-20
	HSA	21-30
	TG	31-40
22	Input variables (F10.0 format)	
	F, WFA, MWA, MWB, WDA, WBA, TF, REFLX	1-80
24-27	Specific heat coefficients (E20.6 format)	
24	AEL coefficients for specific of liquid A	
	Coefficient of constant	1-20
	Coefficient of linear term	21-40
	Coefficient of quadratic term	41-60
	Coefficient of cubic term	61-80

CARD NUMBER	INPUT	COLUMN NUMBER
25	BEL coefficients for specific heat of	(Same as
	liquid B	Card 24)
26	AEV coefficients for specific heat of	(Same as
	vapor A	Card 24)
27	BEV coefficients for specific heat of	(Same as
	Vapor B	Card 24)

APPENDIX III

LIQUID - VAPOR EQUILIBRIUM DATA

APPENDIX III

HEAT OF SOLUTION DATA

APPENDIX IV

COMPUTER PROGRAM

```
JOB (050557$####,FFFF,0#20$003,05,0,99,1)
//B616
                                                                                             JOB 879
//S1 EXEC FORTHCL, PARM= 'XREF'
XXFORT
            PROC MEMBER = GO
                                                                                             00000010
                                                                                              00000020
                                                                                              00000030
                   FORTRAN H
***
$28.92
                                                                                              00000040
             PROCEDURE TO COMPILE AND LINK EDIT A FORTRAN SOURCE MODULE
                                                                                              00000050
***
                                                                                              00000060
***
XXFORT
             EXEC PGM=FRTH, REGION=250K
                                                                                              000000070
                                                                                              000000080
XXCONTROLP DD
                   DSN=SYS6.CONTROL(IEKAA00).DISP=SHR
                                                                                              000000090
XXMSGPRINT DD
                   SYSOUT-A
                                                                                              00000100
XXSYSLIN
                   DSN=&&LOADSET, UNIT=SYSSQ, DISP=(MOD, PASS, DELETE).
              DD
                                                                                              00000110
XX
XX
                   DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200),
                                                                                              00000120
                   SPACE=(CYL,(1,1),,CONTIG)
                                                                                              00000130
XXSYSPRINT DD
                   SYSOUT=A
                                                                                              00000140
XXSYSPUNCH DD
                   SYSOUT=B
                                                                                              00000150
                   UNIT=SYSSQ.SPACE=(CYL.(1.1)..CONTIG)
UNIT=SYSSQ.SPACE=(CYL.(1.1)..CONTIG)
XXSYSUT1
              DD
                                                                                              00000160
XXSYSUT2
              DD
                                                                                              00000170
***
                                                                                              00000180
米米米
                                                                                              00000190
//FORT.SYSIN DD *
IEF2361 ALLOC. FOR B616
IEF2371 343 ALLOCATED
                                    FORT
                  ALLOCATED TO CONTROLP
IEF2371 A45
IEF2371 345
                  ALLOCATED TO MSGPRINT
ALLOCATED TO SYSLIN
                  ALLOCATED TO SYSPRINT
IEF237I A49
                  ALLOCATED TO SYSPUNCH
ALLOCATED TO SYSUT1
IEF237I A11
IEF237I 345
                  ALLOCATED TO SYSUT2
ALLOCATED TO SYSIN
         345
IEF2371
IEF237I AA4
IEF142I - STEP WAS EXECUTED - COND CODE 0004
             SYS6.CONTROL
ĪEF285I
                                                                        KEPT
             VOL SER NOS = SYSLB2.
IEF2851
             SYS75227.T073405.RV000.B616.LOADSET
IEF285 I
                                                                        PASSED
             VOL SER NOS= DISK01.
IEF2851
             SYS75227.T073405.RV000.B616.R0005906
IEF2851,
                                                                        DELETED
             VOL SER NOS= DISKØ1.
IEF2851
             SYS75227.T073405.RV000.B616.R0005907
VOL SER NOS= DISK01.
IEF285I
                                                                        DELETED
IEF2851
IEF2831 YUL 3EK MUS- DISKUI.
IEF373I STEP /FORT / START 75227.1219
IEF374I STEP /FORT / STOP 75227.1220 CPU 0MIN 02.16SEC STOR VIRT 256K
XXLKED EXEC PGM=IEWL.PARM=(MAP.LIST).REGION=130K.COND=(4,LT.FORT) 000
                                                                                              00000200
***
                                                                                              00000210
XXSYSLIB
                   DSN=SYS6.USERLIB.DISP=SHR
                                                                                              00000220
                   DSN=SYS6.USERLIB.DISP=SHR
DSN=SYS6.FORTLIB.DISP=SHR
DSN=SYS7.FORTLIB.DISP=SHR
DSN=**.FORT.SYSLIN.DISP=(OLD.DELETE)
XX
              DD
                                                                                              00000230
              DD
                                                                                              00000240
              DD
                                                                                              00000250
XXSYSLIN
              DD
                                                                                              00000260
\times\!\times
                   DDNAME=SYSIN
              DD
                                                                                              00000270
//LKED.SYSLMOD DD DSN=RESEARCH.MODLIB(8616).DISP=SHR
X/SYSLMOD DD DSN=&&GOSET(&MEMBER),UNIT=SYSDA,DISP=(MOD,PASS,DELETE).
IEF653I SUBSTITUTION JCL - DSN=&&GOSET(GO).UNIT=SYSDA.DISP=(MOD.PASS.DELETE).
XX SPACE=(CYL.(1.1.1)..CONTIG) 00000
                                                                                              00000290
XXSYSPRINT DD
                   SYSOUT=A
                                                                                              00000300
XXSYSUT1
              DD
                   UNIT=SYSSQ, SPACE=(CYL, (1,1),, CONTIG)
                                                                                              00000310
IEF2361 ALLOC. FOR B616
                                    LKED
                                                S 1
IEF237I 521.
IEF237I 521
                  ALLOCATED TO SYSLIB
                  ALLOCATED TO
ALLOCATED TO
IEF2371 343
IEF2371 521
IEF2371 345
                  ALLOCATED TO
ALLOCATED TO SYSLIN
 IEF237I 13A
                  ALLOCATED TO SYSLMOD
```

```
IEF237I A42 ALLOCATED TO SYSPRINT
IEF237I 345 ALLOCATED TO SYSUT1
IEF142I - STEP WAS EXECUTED - COND CODE 0000
IEF285I SYS6.USERLIB
                                                                                                         KEPT
                   VOL SER NOS= SYSLB1.
SYS6.USERLIB
IEF285I
IEF2851
                                                                                                         KEPT
                SYSE.USERLIB
VOL SER NOS= SYSLB1.
SYS6.FORTLIB
VOL SER NOS= SYSLB2.
SYS7.FORTLIB
VOL SER NOS= SYSLB1.
, SYS75227.T073405.RV000.B616.LOADSET
VOL SER NOS= DISK01.
RESEARCH.MODLIB
IEF2851
IEF285 I
IEF285 I
IEF285 I
                                                                                                         KEPT
                                                                                                         KEPT
IEF2851
IEF285 I
IEF285 I
                                                                                                         DELETED
IEF285I
                                                                                                    KEPT
                                                                                                         DELETED
                                                                                          OMIN 00.40SEC STOR VIRT 124K
//STEPLIB DD DSN=RESEARCH.MODLIB.DISP=SHR
//FT06F001 DD SYSOUT=A
//FT05F001 DD *
IEF236I ALLOC. FOR B616 S2
IEF237I 13A ALLOCATED TO STEPLIB
IEF237I A45 ALLOCATED TO FT06F001
IEF237I AA3 ALLOCATED TO FT05F001
COMPLETION CODE - SYSTEM=322 USER=0000
IEF285I RESEARCH.MODLIB
IEF2851
IEF2851
                                                                                                          KEPT
                   VOL SER NOS= DSK014.
IEF373I STEP /S2
IEF374I STEP /S2
IEF375I JOB /B616
                                       / START 75227.1221
/ STOP 75227.1226 CPU
/ START 75227.1219
                                                                                           0MIN 17.44SEC STOR VIRT 44K
                                         / STOP 75227.1226 CPU
 IEF376I
                 JOB /8616
                                                                                           0MIN 20,00SEC
```

```
LEVEL 21.6 ( MAY 72 )
```

ISN 0037

OS/360 FORTRAN H

```
COMPILER OPTIONS - NAME: MAIN.OPT-00.LINECHT-62.SIZE-0000K.
SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, XREF
                B616
                        PROGRAM FOR J.ROGUS
                        SEE FORMAT 6000 FOR SYSTEM TITLE
ISN 0002
                        DIMENSION TITLE (20), HG1(100), HL1(100)
ISN 0003
                        DIMENSION XA(20),TL(20),HSA(20),YA(20),TG(20).
EQUIVALENCE (XA,YA)
ISN 0004
                        REAL*4 MWA.MWB.LAMA1.LAMB1.MOLA.MOLB.MWFAV.MWDAV.MWBAV
DATA TITL/'TITL'/
ISN 0005
ISN 0006
                        COMMON F. WFA. MWA. MWB. WDA. WBA. TF. REFLX. TO. LAMAI. LAMBI. TCA. TCB. BPA
ISN 0007
                                 BPB
ISN 0008
                        COMMON /CPAB/ AEL(4), BEL(4), AEV(4), BEV(4)
                00000
                        READ IN DATA- TITLE CARD SIGNIFIES BREAK BETWEEN EXPS.
                        NP=NO. OF POINTS
                        NP=20
ISM 0009
                    10 READ(5,500,END=999) TITLE
IF(TITLE(1).NE.TITL) GO TO 800
READ(5,501) (XA(I).TL(I).HSA(I).TG(I).I=1.NP)
READ(5,502) F.WFA.MWB.WDA.WBA.TF.REFLX
ISN 0010
ISN 0011
ISH 0013
ISN 0014
                        READ(5,502) TO.LAMAI.LAMBI.TCA.TCB.BPA.BPB
READ(5,503) AEL.BEL.AEV.BEV
ISN 0015
ISN 0016
                        WRITE(6,6000)
                                           (TITLE(I), I=3, 15)
ISN 0017
                        WRITE (6.600)
ISN 0018
                                       (XA(I),TL(I),HSA(I),TG(I),I=1,NP),
F,WFA,MWA,MWB,WDA,WBA,TF,REFLX,
TO,LAMA1,LAMB1,TCA,TCB,BPA,BPB
                       Ž
ISN 0019
                        WRITE(6,616) AEL,BEL,AEV,BEV
                MATERIAL BALANCE CALCULATIONS
ISN 0020
                        MOLA=F*WFA/MWA
ISN 0021
                        MOLB=F*(1.-WFA)/MWB
ISN 0022
                        FEED=MOLA+MOLB
ISH 0023
                        ZFA=MOLA/FEED
ISN 0024
                        WRITE(6.601) (TITLE(I), I=3.15), ZFA
ISN 0025
                        MUFAY=F/FEED
ISM 0026
                        XDA=(WDA/MWA)/(WDA/MWA+(1.-WDA)/MWB)
ISN 0027
                        WRITE(6,602) XDA
MWDAV=1. /(WDA/MWA+(1.-WDA)/MWB)
ISN 0028
ISH 0029
                        XBA=(WBA/MWA)/(WBA/MWA+(1.-WBA)/MWB)
ISM 0030
                        WRITE(6,603) XBA
ISN 0031
                        MWBAV=1.
                                    /(WBA/MWA+(1.-WBA)/MWB)
                        BOT=FEED*(XDA-ZFA)/(XDA-XBA)
ISN 0032
'ISH 0033
                        DIST-FEED-BOT
                        WDIST=DIST*MWDAV
ISN 0034
ISN 0035
                        WRITE(6,6031)
                                          WDIST
ISN 0036
                        WBOT =BOT *MWBAY
                        WRITE(6,6032)
```

```
C
                      FEED ENTHALPY CALCS.
               C
ISN 0038
                      XATS=ZFA
               c
                      CALL WHERE TO FIND WHERE IN TABLE VALUE FITS
               000
                           WHERE RETURNS THE LAST I VALUE OF THE ARRAY <- THE ARG
ISN 0039
                      II=+1
                      CALL WHERE (XA.NP.XATS.II)
ISN 0040
               C
               č
                      DO LINEAR INTERP. TO GET TLT + HSAT
ISN 0041
                      I = I I
                      TLT=YLIN(XATS,XA(I),XA(I+1),TL(I),TL(I+1))
ISN 0042
                      HSAT=YLIN(XATS,XA(I),XA(I+1),HSA(I),HSA(I+1))
ISN 0043
              ooo.
                      CALL EL TO RETURN ENTHALPY OF LIQUID =HL
                      CALL EL(XATS, HSAT, TF, HL)
IF((TF-TLT).GT.0.) GO TO 12
GO_TO_15
ISH 0044
ISN 0045
ISN 0047
ISN 0048
                   12 YATS=ZFA
ISN 0049
                      II=+1
                      CALL WHERE(YA,NP,YATS,II)
TGT=YLIN(YATS,YA(II),YA(II+1),TG(II),TG(II+1))
ISN 0050
ISN 0051
ISH 0052
                      CALL EV(YATS, TGT, HG)
ISN 0053
                      HFEED=HG
               Ċ
                      NOTE DIVISION CAN OCCUR IF TGT=TLT ---- THIS SHOULD NOT OCCUR IF ((TF-TGT).LT.0.) HFEED=((HG-HL)/(TGT-TLT))*(TF-TLT) + HL
ISN 0054
ISN 0056
                      GO TO 18
ISN 0057
                   15 HFEED=HL
ISN 0058
                   18 WRITE(6,604) HFEED
               C
ISN 0059
               C
                      ENTHALPY CALC. FOR HG1
               C
ISN 0060
                      YATS=XDA
ISN 0061
                      II=+1
                      CALL WHERE (YA, NP, YATS, II)
ISN 0062
               C
               Ĉ
                      DO LINEAR INTERP TO GET TGT
ISN 0063
                      TGT=YLIN(YATS, YA(II), YA(II+1), TG(II), TG(II+1))
               C
               č
                      CALL EY TO RETURN ENTHALPY OF VAPOR - HG
ISN 0064
                      CALL EV(YATS, TGT, HG)
ISN 0065
                      HG1(I) = HG
               CCC
                      CALC. ENTHALPY OF DISTILLATE
ISN 0066
                      XATS-XDA
ISN 0067
                      II=+1
ISN 0068
                      CALL WHERE (XA, NP, XATS, II)
                      TLT=YLIN(XATS,XA(II),XA(II+1),TL(II),TL(II+1))
ISN 0069
ISN 0070
                      HSAT-YLIN(XATS, XA(II), XA(II+1), HSA(II), HSA(Iİ+1))
```

```
CALL EL (XATS, HSAT, TLT, HL)
ISH 0071
ISN 0072
                      HDIST=HL
ISN 0073
                      WRITE(6,606) HDIST
               000
                      ENTHALPY OF DEL PT.
                      HDELD=(REFLX*(HG1(I)-HDIST))+ HG1(I)
ISN 0074
ISN 0075
                       WRITE(6,607) HDELD
               000
                      CONTENSER HEAT LOAD
ISN 0076
ISN 0077
                       QCOND = (HDELD-HDIST) *DIST
                       WRITE(6,608) QCOND
               C
                       ENTHALPY OF BOTTOMS
               Ĉ
ISN 0078
                       XATS=XBA
ISN 0079
                       II=+1
ISN 0080
                       CALL WHERE (XA, NP, XATS, II)
                       TLT=YLIN(XATS,XA(II),XA(II+1),TL(II),TL(II+1))
HSAT=YLIN(XATS,XA(II),XA(II+1),HSA(II),HSA(II+1))
ISN 0031
ISN 0082
ISN 0083
                       CALL EL (XATS, HSAT, TLT, HL)
ISN 0084
                       HBOT=HL
ISN 0085
                       WRITE(6,610) HBOT
               C
                       ENTHALPY OF BOT. DEL. PT.
                Č
ISN 0086
                       HDELB = (FEED*HFEED-DIST*HDELD) /BOT
ISN 0087
                       WRITE(6,611) HDELB
               000
                      REBOILER HEAT LOAD
ISN 0088
                       QBOIL=(HBOT-HDELB)*BOT
ISN 0089
                       WRITE(6,612) QBOIL
                c
ISN 0090
                       WRITE(6,605) I, HG1(I), YATS
                0000000
                       ENTHALPY CALCS. FOR ENRICHING & STRIPPING SECTION BY ITERATIVE TECHNIQUE
                                    -- ENRICHING SECTION
-- STRIPPING SECTION
                       LFLAG=0
                       LFLAG=2
ISN 0091
                       LFLAG=0
                C
ISN 0092
                       YTRY=YATS
                   20 YATS=YTRY
ISN 0093
ISN 0094
                       TT = +1
                       CALL WHERE (YA, NP, YATS, II)
ISN 0095
ISM 0096
                       TGT=YLIN(YATS, YA(II), YA(II+1), TG(II), TG(II+1))
                   21 TLT=TGT
ISN 0097
ISN 0098
                       II = -1
                       CALL WHERE (TL, NP, TLT, II)
ISN 0099
ISH 0100
                       HSAT=YLIN(TLT.TL(II).TL(II+1).HSA(II).HSA(II+1))
ISN 0101
                       XATS=YLIN(TLT,TL(II),TL(II+1),XA(II),XA(II+1))
ISN 0102
                       CONTINUE
                       CALL EL(XATS.HSAT.TLT.HL)

IF(LFLAG.EQ.0) WRITE(6.6051) I.HL.XATS

IF(LFLAG.EQ.2) WRITE(6.615 ) I.HL.XATS
ISH 0103
ISN 0104
ISN 0106
```

```
C....
                          TEMP IN THIS (MAIN) PROGRAM INDICATES TEMPORARY ARGUMENT
               C....
                          TEMP IN EL AND EV SUBROUTINES INDICATES TEMPERATURE
               c....
                      IF(LFLAG.EQ.2) GO TO 28
TEMP=(HDELD-HFEED)/(XDA-ZFA) - (HDELD-HL)/(XDA-XATS)
ISN 0108
ISN 0110
ISH 0111
                      IF(TEMP.GE.Ø.) GO TO 66
ISN 0113
                      GO TO 30
                   28 IF((XATS-XBA).LE.(0.00)) GO TO 101
ISN 0114
               C
               0000
                      SEARCH FOR NEXT HG1 POINT
                  30 GET NEXT 3 YA TABLE VALUES ( HG1(I)
30 DO 35 J=1.19
JJ=20-J
ISM 0116
ISN 0117
ISN 0118
                       IF(YA(JJ).LE. YATS ) GO TO 37
                   35 CONTINUE
JJ=1 IF FALL THRU
ĪŠN 0120
               Ċ.
                   37 IF(JJ.LE.3) JJ=3
ISM 0121
ISN 0123
ISN 0124
                       YAT1=YA(JJ)
                       YAT2=YA(JJ-1)
                       YAT3=YA(JJ-2)
ISN 0125
                      TGT1=TG(JJ)
TGT2=TG(JJ-1)
ISN 0126
ISM 0127
                      TGT3=TG(JJ-2)
CALL EV(YAT1.TGT1.HGT1)
ĪŠN 0128
ISM 0129
                      CALL EVCYATZ TGT2 HGT2)
ISH 0130
                      CALL EV(YAT3, TGT3, HGT3)
YTRY=YATS
ISN 0131
ISN 0132
                      YINC=YTRY/100.
ISN 0133
ISN 0134
                      SAVE=-1.
                      SAVET=0.
ISN 0135
               C
ISN 0136
                   45 YTRY=YTRY-YINC
                      ANS=YLAGR(YTRY, YAT1, YAT2, YAT3, HGT1, HGT2, HGT3)
IF(LFLAG, EQ. 2) GO TO 46
ISH 0137
ISN 0138
ISN 0140
                       TEMP=(HDELD-HL)/(XDA-XATS) - (HDELD-ANS)/(XDA-YTRY)
ISN 0141
                      GO TO 47
                   46 TEMP=(ANS-HDELB)/(YTRY-XBA) - (HL-HDELB)/(XATS-XBA)
47 CONTINUE
ISN 0142
ISN 0143
                       IF(SAVE.EQ.-1.
                                         .AND. SAVET.EQ.0.) SAVET-TEMP
ISN 0144
ISN 0146
                       YINTR=YINC/YTRY
                       IF (ABS (TEMP/SAVET).LT.1.E-4 .OR. ABS (YINTR).LT.1.E-4)
ĪSN 0147
                                                                                          GO TO 49
ISH 0149
                       IF((TEMP*SAVE).GT.0.) GO TO 45
ISM 0151
                       SAVE=TEMP
ISM 0152
                      YINC=-YINC/2.
                      GO TO 45
ISN 0153
ISH 0154
                   49
                      I = I + 1
ISN 0155
                      HG1(I)=ANS
ISN 0156
                       IF(LFLAG.EQ.0) WRITE(6,605 ) I.HG1(I).YTRY
IF(LFLAG.EQ.2) WRITE(6,6151) I.HG1(I).YTRY
ISN 0158
ISN 0160
                       GO TO 20
               C
ISN 0161
                   66 WRITE(6,609) I
ISN 0162
                      LFLAG=2
ISN 0163
                       GO TO 30
               0000
```

```
101 WRITE(6,614) I
ISN 0164
                                       GO TO 10
                          C
ISN 0166
                               500 FORMAT(20A4)
                              501 FORMAT(4F10.0)
502 FORMAT(8F10.0)
ĪŠN 0167
ISN 0168
                            503 FORMAT( 4E20.6 )
6000 FORMAT(1'.//.18X, ****** / BINARY DISTILLATION CALCULATION BY PONCH
10N-SAVARIT METHOD ********, //
ISN 0169
ISH 0170
                                     220X. ***** ENTHALPY DATA CALCULATED USING LAGRANGE INTERPOLATION
                                     3 ******/,//
                                     600 FORMAT(101////
ISN 0171
                                             5X, 1XA=YA1,5X, 1TL1,8X, 1HSA1,7X, 1TG1,//,
                                              20(4F10.3./). ///
                              ISN 0172
                                     110X, *----
                       2--',//
3 10X,'MOLE FRACTION OF FEED = ',F5.3,/)
602 FORMAT(10X,'MOLE FRACTION OF DISTILLATE =',F5.3,/)
603 FORMAT(10X,'MOLE FRACTION OF BOTTOMS =',F7.5,/)
603 FORMAT(10X,'DISTILLATE(POUNDS/HOUR) =',E14.6,/)
604 FORMAT(10X,'BOTTOMS (POUNDS/HOUR) =',E14.6,/)
605 FORMAT(10X,'ENTHALPY OF FEED =',E14.6,/)
605 FORMAT('BENTHALPY OF VAPOR ENRICHING SECTION - STAGE ',I2,
1 '=',E14.6,5X,'YA=',F5.3)
6051 FORMAT('ENTHALPY OF LIQUID ENRICHING SECTION - STAGE ',I2,
1 '=',E14.6,5X,'XA=',F5.3,/)
606 FORMAT(10X,'ENTHALPY OF DISTILLATE =',E14.6,/)
607 FORMAT(10X,'ENTHALPY OF DISTILLATE DEL POINT -',E14.6,/)
608 FORMAT(10X,'CONDENSER HEAT LOAD =',E14.6,/)
610 FORMAT(10X,'ENTHALPY OF BOTTOMS DEL POINT -',E14.6,/)
611 FORMAT(10X,'ENTHALPY OF BOTTOMS DEL POINT -',E14.6,/)
612 FORMAT(10X,'REBOILER HEAT LOAD =',E14.6,/)
614 FORMAT(//,75X,'TOTAL NUMBER OF IDEAL PLATES INCLUDING REBOILER -',
1 13)
ISN 0173
ISN 0174
ISN 0175
ISN 0176
ISN 0177
ISH 0178
ISH 0179
ISN 0180
ISH 0181
ISN 0182
ISN 0183
ISH 0184
ISN 0185
ISM 0186
ISN 0187
                                             13)
                                     1
                             615 FORMAT('ENTHALPY OF LIQUID STRIPPING SECTION - STAGE '.12.

1 '='.E14.6.5X.'XA='.F5.3./)

6151 FORMAT('GENTHALPY OF VAPOR STRIPPING SECTION - STAGE '.12.

1 '='.E14.6.5X.'YA='.F5.3)
ISN 0188
ISN 0189
                               616 FORMAT('0AEL COEFFICIENTS - '.4E15.6./

1     BEL COEFFICIENTS - '.4E15.6./
2     AEV COEFFICIENTS - '.4E15.6./
ISH 0190
                                                      ' BEV COEFFICIENTS
                                                                                               - ',4E15.6,/ ,'1')
                                       ERROR
                               800 WRITE(6,801)
801 FORMAT('1',//,'0***** ERROR - NO TITLE CARD FOR EXPERIMENT ****
ISN 0191
ISN 0192
                              999 STOP
ISH 0193
```

ISN 0194

END

OS/360 FORTRAN H

isn	COMPIL 0002	LER OF	TIONS - SUBROUS	SOURC	E.EBCDI	C.NOL IS	ST. NODE	NT=62,S: ECK,LOAI	(ZE=0000K),MAP,NOE	, DIT.ID.XR	EF
		C C C			THALPY			HL.		. * *	
ISN	0003 0004 0005		REAL*4	MWAV F.WFA,					FAV.MWDAV D.LAMA1.L		TCB,BP
ISH	0006	C	COMMON	BPB /CPAB/	AEL(4)	BEL(4)	, AEV	(4),BEV	(4)		:
ISH	0007	С С	DELHS= DELHS=		F SOL. *1.8*HS	AT*XAT	3 ,				
18H 18H 18H 18H 18H	0008 0009 0010 0011 0012 0013 0014 0015	•	TEMP = (** CPA = AEL CPB = BEL CPM = XA	TLT+460 _(1)+AE _(1)+BE TS*CPA	L(2)*TE	MP+AEL MP+BEL (ATS) *CI	(3) *TEI (3) *TEI PB		EL (4) *TEM EL (4) *TEM		

05/360 FORTRAN H

```
COMPILER OPTIONS - NAME = MAIN.OPT = 00.LINECNT = 62.SIZE = 0000K.
SOURCE.EBCDIC.HOLIST.HODECK.LOAD.MAP.HOEDIT.ID.XREF
SUBROUTINE EV(YAT .TGT.HG)
· ISN 0002
                     000
                              EV CALCS. ENTHALPY OF VAPOR -HG
  ISM 0003
ISM 0004
                             REAL*4 MWA.MWB.LAMA1.LAMB1.MOLA.MOLB.MWFAV.MWDAV.MWBAV REAL*4 LAMA2.LAMB2
   ISN 0005
                             COMMON F.WFA.MWA.MWB.WDA.WBA.TF.REFLX.TO.LAMA1.LAMB1.TCA.TCB.BPA.
                                       BPB
 'ISN 0006
                              COMMON /CPAB/ AEL(4), BEL(4), AEV(4), BEV(4)
   ISN 0007
                              TRA1=(BPA+460.)/(1.8*TCA)
                              TRB1=(BPB+460.)/(1.8*TCB)
   ISN 0008
   ISN 0009
                              TRA2=(TGT+460.)/(1.8*TCA)
   ISN 0010
                              TRB2=(TGT+460.)/(1.8*TCB)
                             LAMA2=LAMA1*((1.-TRA2)/(1.-TRA1))**.38 *(1.8/MWA)
LAMB2=LAMB1*((1.-TRB2)/(1.-TRB1))**.38 *(1.8/MWB)
   ISH 0011
   ISN 0012
                             TEMP=(TGT+460.)/1.8
CPA=AEV(1)+AEV(2)*TEMP+AEV(3)*TEMP**2+AEV(4)*TEMP**3
   ISM 0013
   ISN 0014
                             CPB=BEV(1)+BEV(2)*TEMP+BEV(3)*TEMP**2+BEV(4)*TEMP**3
HG= YAT * ( CPA*MWA*(TGT+TO) + LAMA2*MWA )
L +(1.-YAT)*( CPB*MWB*(TGT+TO) + LAMB2*MWB )
   ISN 0015
   ISN 0016
   ISN 0017
                              RETURN
   ISN 0018
                             END
```

OS/360 FORTRAN H

	*CO	MP ILER	OPTIONS - NAME: MAIN.OPT:00.LINECNT:62.SIZE:0000K. SOURCE.EBCDIC.NOLIST.NODECK.LOAD.MAP.NOEDIT.ID.XREF
ISN	0002	,	SUBROUTINE WHERE (ARRAY, N, ELEM, I)
		0 0 0	WHERE WILL DETERMINE WHERE IN THE ARRAY ELEM FITS AND RETURN I OF THE LAST ARRAY ELEMENT <- ELEM.
ISN	0003		DIMENSION ARRAY(N)
		חחחחח	ARRAY IS STRICTLY MONOTONIC INCREASING OR DECREASING DEPENDING ON I IF I=+1, INCREASING IF I=-1, DECREAS
ISN	0004	C	IF(I.LT.0) GO TO 50
ISH ISH ISH ISH ISH	0006 0007 0009 0010 0011 0012	. i	DO 10 J=2.N IF(ARRAY(J).GT.ELEM) GO TO 20 CONTINUE I=N RETURN 3 I=J-1 RETURN
184 184 184 184 184 187	0014 0015 0016 0018 0019 0020 0021 0022	~ 5i	O CONTINUE DO 60 J=2.N IF(ARRAY(J).LT.ELEM) GO TO 70 CONTINUE I=N RETURN I=J-1 RETURN END

OS/360 FORTRAN H

	COMPILER	OPTIONS - NAME = MAIN.OPT=00.LINECNT=62.SIZE=0000K,
ISN 000:		SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, XREF FUNCTION YLAGR(X, X1, X2, X3, Y1, Y2, Y3)
	Č	YLAGR IS A HON-LINEAR LAGRANGE INTERPOLATION FUNCTION
	טטטטטט	YLAGR WILL RETURN THE Y VALUE ON THE Y1.Y2.Y3 SCALE CORRESPONDING TO THE X VALUE ON THE X1.X2.X3 SCALE. (I.E. GIVEN PTS. (X1.Y1).(X2.Y2).(X3.Y3) AND X ON THIS CURVE. GET Y)
ISN 000 ISN 000 ISN 000 ISN 000 ISN 000 ISN 000	4 5 6 7	A1=((X-X2)*(X-X3))/((X1-X2)*(X1-X3)) * Y1 A2=((X-X1)*(X-X3))/((X2-X1)*(X2-X3)) * Y2 A3=((X-X1)*(X-X2))/((X3-X1)*(X3-X2)) * Y3 YLAGR=A1+A2+A3 RETURN END

05/360 FORTRAN H

	COM	PILER OF	PTIONS - NAME: MAIN,OPT-00,LINECNT-62,SIZE-0000K, SOURCE,EBCDIC,NOLIST,NODECK,LOAD,MAP,NOEDIT,ID,XREF
ISH	0002	_	FUNCTION YLIN(X,X1,X2,Y1,Y2)
		Č	YLIN IS A LINEAR INTERPOLATION FUNCTION
	0003 0004 0005	0000	YLIN WILL RETURN THE Y VALUE ON THE Y1.Y2 SCALE CORRESPONDING TO THE X VALUE ON THE X1.X2 SCALE. (I.E. GIVEN PT.(X1,Y1).(X2,Y2) AND X ON THIS LINE - GET Y) YLIN=(Y2-Y1)/(X2-X1) * (X-X1) + Y1 RETURN END

APPENDIX V

SAMPLE OUTPUTS

****** BINARY DISTILLATION CALCULATION BY PONCHON-SAVARIT METHOD ******

***** ENTHALPY DATA CALCULATED USING LAGRANGE INTERPOLATION *****

****** SYSTEM 1: COMPONENT A=METHANOL COMPONENT B=WATER ******

XA≖YA	TL	HSA	TG
Ø.0 Ø.0 Ø.0 10 0.10 <	212.000 199.000 199.000 183.800 179.200 175.500 176.600 165.500 161.900 161.900 158.500 159.000 159.400 152.400 152.400 159.500	7.700 6.838 5.989 5.114 4.357 3.666 3.055 2.591 1.896 1.632 1.398 1.197 1.017 0.716 0.716 0.569 0.419 0.272 0.134	212.000 209.500 207.200 204.600 199.100 199.300 199.300 197.200 181.000 177.600 177.600 1766.000 162.000 158.400 151.000

F=	5000 .000	WFA=	0.500	MWA=	32.040 t	ΜWB= 18.8	32 9
WDA=	0.950	WBA=	0.010	TF=	136.000	REFLX=	1.029
T0=	67.500	LAMA1=	8430.000	LAMB!	l= 9717.000	TCA=	513.000
TCB=	647.000	BPA=	148.000	BP8=	212.00 0		

AEL COEFFICIENTS - 0.582480E+00 -0.375646E-03 -0.167844E-05 0.106214E-07
BEL COEFFICIENTS - 0.213974E+01 -0.968137E-02 0.268536E-04 -0.242139E-07
AEV COEFFICIENTS - 0.189431E+00 0.361729E-03 0.540825E-06 -0.443004E-09
BEV COEFFICIENTS - 0.452219E+00 -0.129224E-03 0.417008E-06 -0.200401E-09

OUTPUT FOR SYSTEM 1: COMPONENT A=METHANOL COMPONENT B=WATER

MOLE FRACTION OF FEED = 0.360

MOLE FRACTION OF DISTILLATE =0.914

MOLE FRACTION OF BOTTOMS =0.00565

DISTILLATE(POUNDS/HOUR) = 0.260638E+04 BOTTOMS (POUNDS/HOUR) = 0.239362E+04

ENTHALPY OF FEED = 0.996142E+03

ENTHALPY OF DISTILLATE = 0.170925E+04

ENTHALPY OF DISTILLATE DEL POINT = 0.313272E+05

CONDENSER HEAT LOAD = 0.250309E+07

ENTHALPY OF BOTTOMS = 0.258734E+04

ENTHALPY OF BOTTOMS DEL POINT = -0.183865E+05

ENTHALPY OF VAPOR STRIPPING SECTION - STAGE 8 = 0.183517E+05

ENTHALPY OF LIQUID STRIPPING SECTION - STAGE 8 = 0.248506E+04

ENTHALPY OF VAPOR STRIPPING SECTION - STAGE 9 = 0.1857655+05

REBOILER HEAT LOAD = 0.277379E+07

ENTHALPY OF ENTHALPY OF			0.163066E+05 0.168723E+04	YA=0.914 XA=0.814
			0.164300E+05 0.168173E+04	YA =0.864 XA=0.689
			0.165814E+05 0.168633E+04	YA=0.802 XA=0.552
			0.167428E+05 0.169819E+04	YA=0.736 XA=0.412
			0.169069E+05 0.173396E+04	YA=0.670 XA=0.306 FEED TRAY LOCATION PLATE = 5
			0.172365E+05 0.187420E+04	YA=0.538 XA=0.173
			0.178461E+05 0.222230E+04	YA=0.304 XA=0.066

YA=0.113

XA=0.021

YA=0.033

ENTHALPY OF LIQUID STRIPPING SECTION - STAGE 9 = 0.258273E+04 XA=0.006

ENTHALPY OF VAPOR STRIPPING SECTION - STAGE 10 = 0.186479E+05 YA=0.007 ENTHALPY OF LIQUID STRIPPING SECTION - STAGE 10 = 0.261636E+04 XA=0.001

TOTAL NUMBER OF IDEAL PLATES INCLUDING REBOILER = 10

****** BINARY DISTILLATION CALCULATION BY PONCHON-SAVARIT METHOD ******

***** ENTHALPY DATA CALCULATED USING LAGRANGE INTERPOLATION *****

***** SYSTEM 2: COMPONENT A=ETHANOL COMPONENT B=WATER *****

XA=YA	TL	HSA .	TG	
0.000000000000000000000000000000000000	212.000 196.000 188.000 184.000 181.600 179.000 177.500 176.000 175.200 174.500 174.500 173.530 172.960 172.700 172.500	16.000 12.540 9.856 7.402 3.978 3.9385 1.5251 1.0044 0.6991 0.478 0.478 0.1788	212.000 209.500 207.100 204.500 199.400 199.500 196.500 187.000 187.800 187.800 177.800 177.800 177.800 173.620 173.630 172.700	

F= 28	300 .000	WFA=	0.520	MWA=	46.050	MWB= 18	.020
WDA=	0.910	WBA=	0.040	TF=	177.000	REFLX=	3.000
T0=	32.000	LAMA1=	9220.000	(LAMB)	= 9717.000	TCA=	516.000
TCB=	647.000	BPA=	173.000	8P8=	212.00 0		

AEL COEFFICIENTS	-	0. 504351E+00	-0.481584E-03	-0.921631E-06	0.114379E- 07
BEL COEFFICIENTS	_	0.213974E+01	-0.968137E-02	0.268536E-04	-0.242139E- 07
AEV COEFFICIENTS		0.131120E+00	0.918566E-03	-0.235957E-06	-0.719165E -10
BEV COEFFICIENTS		0.452219E+00	-0.129224E-03	0.417008E-0 6	-0.200401E- 09

MOLE FRACTION OF DISTILLATE =0.798

MOLE FRACTION OF BOTTOMS =0.01604

DISTILLATE(POUNDS/HOUR) = 0.110345E+04 BOTTOMS (POUNDS/HOUR) = 0.896551E+03

ENTHALPY OF FEED = 0.312547E+04

ENTHALPY OF DISTILLATE = 0.427635E+04

ENTHALPY OF DISTILLATE DEL POINT = 0.643590E+05

CONDENSER HEAT LOAD = 0.164125E+07

ENTHALPY OF BOTTOMS = 0.313950E+04

ENTHALPY OF BOTTOMS DEL POINT = -0.313332E+05

ENTHALPY OF VAPOR ENRICHING SECTION - STAGE 1 = 0.192970E+05

REBOILER HEAT LOAD = 0.167337E+07

ENTHALPY	OF	LIQUID	ENRICHING	SECTION	 STAGE	1	=	0.425532E+04 -	XA=0.784
			ENRICHING ENRICHING			2		0.192947E+05 0.422270E+04	YA=0.788 XA≃0.763
			ENRICHING ENRICHING			3 3		0.192918E+05 0.416531E+04	YA=0.772 XA=0.730
			ENRICHING ENRICHING			•	=		YA=0.747 XA=0.686
			ENRICHING ENRICHING			5 5	=	0.192802E+05 0.398303E+04	YA=0.714 XA=0.629
			ENRICHING ENRICHING			6		0.192711E+05 0.382616E+04	YA=0.672 XA=0.550
ENTHALPY ENTHALPY			ENRICHING ENRICHING			7 7		0.192565E+05 0.350584E+04	YA=0.613 XA=0.414

FEED TRAY LOCATION PLATE = 8

ENTHALPY OF VAPOR ENRICHING SECTION - STAGE 8 = 0.192247E+05

ENTHALPY OF LIQUID ENRICHING SECTION - STAGE 8 = 0.283177E+04

YA=0.514

XA=0.177

ENTHALPY OF LIQUID STRIPPING SECTION - STAGE 9 = 0.296176E+04 XA=0.040

ENTHALPY OF VAPOR STRIPPING SECTION - STAGE 10 = 0.189898E+05 YA=0.051 ENTHALPY OF LIQUID STRIPPING SECTION - STAGE 10 = 0.320362E+04 XA=0.008

TOTAL NUMBER OF IDEAL PLATES INCLUDING REBOILER = 10

NOMENCLATURE

BOT bottom product, pounds per hour

BPA natural boiling point of A, OF (A is the more volital

component.)

BPB natural boiling point of B, OF

CPA specific heat of A, BTU/lb-OF

CPB specific heat of B, BTU/lb-OF

CPM specific heat of the mixture of the two (2) components,

BTU/1b-OF

DELHS heat of solution at TO and the prevailing concentration,

BTU/1b-mole

DIST distillate, lb-mole/hour

F feed, lbs/hour

FEED feed, 1b-moles/hour

G vapor flow rate, lb-moles/hr

Gm vapor flow rate at any tray m in the stripping section,

lb-moles/hr

Gn vapor flow rate at any tray n in the enriching section.

lb-moles/hr

HBOT enthalpy of the bottom product, BTU/lb-mole

HDELB enthalpy of the bottom del point, BTU/lb-mole

HDELD enthaly of the distillate del point, BTU/lb-mole

HDIST enthalpy of the distillate, BTU/lb-mole

HFEED enthalpy of the feed, BTU/lb-mole

HG enthalpy of the vapor, BTU/lb-mole

HG(i) enthalpy of the vapor at tray i, BTU/lb-mole

HL enthalpy of the liquid, BTU/lb-mole

HL(i) enthalpy of the liquid at tray i, BTU/lb-mole

HSA heat of solution, kilojoules/g-mole A

LAMA latent heat of vaporization of A at its natural boiling

point, cal/g-mole

LAMB latent heat of vaporization of B at its natural boiling

point, cal/g-mole

L liquid flow rate, lb-moles/hour

Lm liquid flow rate at any tray m in the stripping section,

lb-moles/hour

Ln liquid flow rate at any tray n in the enriching section,

1b-moles/hour

MOLA lb-moles of A in the feed

MOLB lb-moles of B in the feed

MWA molecular weight of A, lbs/lb-mole

MWAV average molecular weight of component mixture, lbs/lb-mole

MWB molecular weight of B, lbs/lb-mole

MWBAV average molecular weight of bottom product, lbs/lb-mole

MWDAV average molecular weight of the distillate, lbs/lb-mole

MWFAV average molecular weight of the feed, lbs/lb-mole

QBOIL reboiler heat load, BTU/hour

QCOND condenser heat load, BTU/hour

REFLX reflux ratio, lb-mole reflux/lb-mole distillate

TCA critical temperature of A, OK

TCB critical temperature of B, OK

TEMP In main program, it is used as a temporary value used in

the check equations. In the enthalpy calculation, it is

the temperature in the CP calculations, OK

TF feed temperature, ^OF

TG dew point temperature, ^OF

TL bubble point temperature, ^OF

TR reduced temperature

WBA weight fraction of A in bottom product

WBOT bottom product flow, lbs/hour

WDA weight fraction of A in the distillate

WDIST distillate flow, lbs/hour

WFA weight fraction of A in the feed

XA mole fraction of A in the liquid

XBA mole fraction of A in the bottom product

XDA mole fraction of A in the distillate

YA mole fraction of A in the vapor

ZFA mole fraction of the feed

BIBLIOGRAPHY

- Hodge, Bartlow, Computers for Engineers, New York: McGraw-Hill Book Company, 1969.
- 2. Kuo, Shan S., <u>Computer Applications of Numerical Methods</u>, Reading, Massachusetts: Addison-Wesley Publishing Co., 1972.
- 3. McCabe, Warren L., and Smith, Julian C., <u>Unit Operations of Chemical Engineering</u>, Second Edition, New York: McGraw-Hill Book Company, 1967.
- 4. National Research Council, <u>International Critical Tables</u>, Volume 5, New York: McGraw-Hill Book Company, 1926.
- 5. Perry, J. H., <u>Chemical Engineer's Handbook</u>, Fourth Edition, New York: McGraw-Hill Book Company, 1963.
- 6. Reed and Sherwood, <u>The Properties of Gases and Liquids</u>, Second Edition, New York: McGraw-Hill Book Company, 1966.
- 7. Scheid, Francis, Theory and Problems of Numerical Analysis, Schaum's Outline Series, New York: McGraw-Hill Book Company, 1968.
- 8. Smith, J. M. and Van Ness, H. C., <u>Introduction to Chemical Engineering Thermodynamics</u>, Second Edition, New York: McGraw-Hill Book Company, 1959.
- 9. Touloukian and Makita, Specific Heats of Nonmetallic Liquids and Gases, "Thermophysical Properties of Matter the TPRC Data Series" New York: IFI/Plenum, 1970.
- 10. Treybal, Robert E., Mass-Transfer Operations, Second Edition, New York: McGraw-Hill Book Company, 1968.