New Jersey Institute of Technology

Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

5-31-1964

Esterification of oleic acid with oleyl alcohol

Robert Persurance New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Persurance, Robert, "Esterification of oleic acid with oleyl alcohol" (1964). Theses. 2136. https://digitalcommons.njit.edu/theses/2136

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ESTERIFICATION OF OLEIC ACID WITH OLEYL ALCOHOL

BY

ROBERT PERSURANCE

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

NEWARK, NEW JERSEY

APPROVAL OF THESIS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING

BY

PACULTY COMMITTEE

APPROVED:		
	A CONTRACTOR OF THE PROPERTY O	

MEMARK, NEW JERSEY
MAY, 1964

ACKNOWLEDGEMENTS

The author wishes to acknowledge his indebtedness to Dr. Saul I. Kreps, of Newark College of Engineering, for his invaluable assistance with this project.

ABSTRACT

ESTERIFICATION OF OLEIC ACID WITH OLEYL ALCOHOL

The esterification of oleic acid with oleyl alcohol was studied. A literature search showed that the chemical kinetics for this reaction had not been studied previously.

In the temperature range of 150 to 200°C. and up to a conversion of about 85 per cent, the esterification was found to be a second order reaction when the water of reaction was removed from the system by simple distillation.

Para-toluenesulfonic acid is an effective catalyst for this system, and the observed specific rate constant is a linear function of the catalyst concentration.

The effect of temperature on the specific rate constant for the uncatalyzed reaction is given by the equation

$$\ln k_1 = -\frac{6.88 \times 10^3}{T} + 10.5$$

where k_1 is in units of 1./(g.-mole) (min.) and T is in degrees Kelvin. For the catalyzed reaction, the equation is

$$\ln k_2 = -\frac{4.90 \times 10^3}{\pi} + 14.7$$

Energies of activation for the uncatalyzed and catalyzed reactions were graphically evaluated to be 13,650 calories per gram-mole and 9730 calories per gram-mole, respectively. An empirical rate equation was derived for this system.

Using the values of the frequency factors and energies of activation determined from the experimental data, the rate equation becomes

$$r = (2.35e^{-6.88 \times 10^3/T} + 2.69e^{-4.90 \times 10^3/T}$$
 $c_C) c_A c_B$

where r = reaction rate, (g.-moles)/(l.) (min.)

 $^{\text{C}}_{\text{A}}$, $^{\text{C}}_{\text{B}}$, $^{\text{C}}_{\text{C}}$ = concentrations of oleic acid, oleyl alcohol, and catalyst, respectively, m./l.

T = absolute temperature, OK.

TABLE OF CONTENTS

																										Page No	<u>o</u> .
ABSTE	RACT		œ	ga(sa		200	¢ ⊳		epo.	400	ente	tipo.	*		004	-	440	estas:	CIE		œ	Aspa	***	stita	***	i1	
LIST	OF	FI	GUI	ŒS	5	***	***	***	923		dip	qia.	120	***	tipa	**	482	49	*>	444	RES.	***	CD.	423	-	v	
LIST	OF.	TA	BLE	ß		400	ens	-	MOV	***	1026	-	cas.	***	ide.	**	**	1989	cte	**	qua.	460	40	4	-	vii	
INTRO	DUÇ	TI	ON		*	-	•		4340	462	çab	aps	***	cus	-	**	-Scie	****	4/3	**	***	4 04	des	rajas	909	1	
EXPER	IME	INT	AL	PF	100	EI	OUF	₹E	ψ'n		quis	443-	ów	ASSE	ezi-	æ	stoops.	dito	-	ation	-	400	des	***	40	5	
EXPER	RIME	ENT	AL	CA	LC	UI	LAT	PI(SMC	Š	and a	OMP	-	444	***		425	dia	qip.	080	-	4628	****	rada etach	çie	7	
EXPER	IME	INT	AL	DA	TA		cate	=	okao	CORP	**	œ n	***	425	4 55	1992	-	10 0	***	spain .	66	*0	***	***	cop	8	
DISCU	ISSI	ON		-	t=3	400	Mac ij	S	sp.	130	stica	œ	æ	ф¢э	-Apple	œ	espis.	cito	citales	c#s	400	1983	*	****	***	33	
CONCL	JUSI	ON	S	***	cast.	****	site	***	max	-	449	cis	400	color	**	ein	Ψb	1000	طجته	saba-	~	etr.	tipe	***	-	42	
RECOM	MUN	IDA	TIC	NS	` 	-	*#**	nia.	em	CD	•	a	***	epo.		æ	-	10 (1)	400	~	*CA	•	cae.	53	œ	43	
APPEN	DIX		•	and the	~	**	***	€ ©	em	жэ	æco	400	œs	•	**	*	sije-	104	anto-	opo,	***	**	-	450	400	तेर्	
REPER	RENC	ES		thin.	MODE	***	-	2004	##	-	-		***	C)A	**	-	***	***	atgra-	100	**	****	-	-	-	76	

LIST OF FIGURES

<u>Figure</u>	No.	Page
lA.	Determination of Specific Rate Constant, k. Run No. R-1.	Щ
18.	Determination of Reaction Order. Run No. R-1. Third Order Plot	45
2A.	Determination of Specific Rate Constant, k. Run No. R-2.	46
2B.	Determination of Reaction Order. Run No. R-2. First Order Plot	47
20.	Determination of Reaction Order. Run No. R-2. Third Order Plot	48
3A.	Determination of Specific Rate Constant, k. Run No. R-3.	49
3B.	Determination of Reaction Order. Run No. R-3. Third Order Plot	50
цА.	Determination of Specific Rate Constant, k. Run No. R-4.	51
μВ.	Determination of Reaction Order. Run No. R-4. First Order Plot	52
4C.	Determination of Reaction Order. Run No. R-4. Third Order Plot	53
5A.	Determination of Specific Rate Constant, k. Run No. R-5.	54
5B.	Determination of Reaction Order, Run No. R-5. Third Order Plot	55
6A.	Determination of Specific Rate Constant, k. Run No. R-6.	56
6B.	Determination of Reaction Order. Run No. R-6. First Order Plot	57
60.	Determination of Reaction Order. Run No. R-6. Third Order Plot	58
7.	Determination of Specific Rate Constant, k. Run No. R-7.	59
მ.	Determination of Specific Rate Constant, k. Run No. R-8.	60
9.	Determination of Specific Rate Constant, k. Run No. R-9.	61
10.	Determination of Specific Rate Constant, k. Run No. R-10.	62
11.	Determination of Specific Rate Constant, k. Run No. R-11.	63

LIST OF FIGURES (Continued)

Figure N	IO n	Page
12.	Determination of Specific Rate Constant, k. Run No. 12.	64
13.	Determination of Specific Rate Constant, k. Run No. 13.	65
14.	Determination of Specific Rate Constant, k. Run No. 14.	66
15.	Determination of Specific Rate Constant, k. Run No. 15.	67
16.	Determination of Specific Rate Constant, k. Run No. 16.	68
17.	Reaction Rate as a Function of Catalyst Concentration at 150°C.	69
18.	Reaction Rate as a Function of Catalyst Concentration at 175°C	70
19.	Reaction Rate as a Function of Catalyst Concentration at 200°C.	71
20.	Reaction Rate as a Function of Catalyst Concentration at Different Temperatures.	72
21.	Variation of Uncatalyzed Reaction Rate with Temperature	73
22.	Variation of Catalyzed Reaction Rate with Temperature	74
23.	Specific Gravity as a Function of Composition	75

LIST OF TABLES

Table No.	•													Page
lA.	Experimental	Data	for	Run	No.	R-1	coe	qua.	delo	dille	**	***	(36)	8
1B.	Experimental	Data	for	Run	No.	R-1	-	es	dep	rate.	***	443	44	9
2A.	Experimental	Data	for	Run	No.	R-2	njur	com-	das	420	coe.	/228e	4	10
2B.	Experimental	Data	for	Run	No.	R-2	~	digas.	w	q##	1366	40%	4	11
20.	Experimental	Data	for	Run	No.	R-2	anir	cus	rjuljer	cus.	da	che .	grave.	12
3A.	Experimental	Data	for	Run	No.	R-3	eser-	-	em	etan.	400	eico	ceto;	13
3B.	Experimental	Data	for	Run	No.	R-3	404	æ	18 473	etim	de	Мę	-	14
4A.	Experimental	Data	for	Run	No.	R-4.	999	400	ajin	arigos-	*	cus	450)	15
4B.	Experimental	Data	for	Run	No.	R-4	40,0	æ	*	444	***	titi:	cht	16
4C.	Experimental	Data	for	Run	No.	R-4	**	*	AP.	ctor	*** 2	***	90	17
5A.	Experimental	Data	for	Run	No.	R-5	mito	4CD	100P	1000	rists	cojo	***	18
5B.	Experimental	Data	for	Run	No.	R-5	40	cas	AND .	esph.	=	nio	-	19
6A.	Experimental	Data	for	Run	No.	R-6	#.9	\$	N/A	ф	(1885)	C30	***	20
6B.	Experimental	Data	for	Run	No.	R-6	90	***	\$	ches	digita.	a p	⇔	21
6C.	Experimental	Data	for	Run	No.	R-6	***	42	100	*	ces	***	-	22
7.	Experimental	Data	for	Run	No.	R-7	ezpa-	**	4 25	-	ditto	*	a th	23
8.	Experimental	Data	for	Run	No.	R-8	840	~	**	dia	-	400	Æ	24
9.	Experimental	Data	for	Run	No.	R-9.	ctto	*	**	den	==	***	-	25
10.	Experimental	Data	for	Run	No.	R-10.	ato	4764	dia	20,000 (C)	de	***	605	26
11.	Experimental	Data	for	Run	No.	R-11.	deb	~	wide.	****	**	-	ećy	27
12.	Experimental	Data	for	Run	No.	R-12.	C	=	impo	cite	•	es	ca	28
13.	Experimental	Data	for	Run	No.	R-13.	des.	cpto	ops-	çes	és	c	وجن	29
14.	Experimental	Data	for	Run	No.	R-14.	ejas	ಈ	-	****	500	1389	ca s .	30

LIST OF TABLES (Continued)

Table N	O s											F	ege.
15.	Experimental	Data	for	Run	No.	R-15.	***	439 44	<u>, </u>	***	***	***	31
16.	Experimental	Data	for	Run	No.	R-16.	**	wo c	a etao	œ	egs.		32
17.	Experimental	Ly Det	termi	ined	Spec	cific P	Rat	Θ (on	st	an	ts	35
18.	Catalyzed Rea	action	n Spe	ecifi	ic Ra	ate Co	nst	ani	ss.	· sep	***	•	36

INTRODUCTION

Esterification may be defined as the formation of an ester by the substitution of an organic radical for the acid hydrogen of an acid. There are many ways of producing an ester. The method studied in this paper is the direct reaction of an acid with an alcohol. The equation for this type of reaction may be written

(1) RCOOH + R'OH \longrightarrow RCOOR' + H₂O where R and R' are the acid and alcohol radicals, respectively.

The esterification is believed to be a hydrogen ion catalyzed reaction. When an acid catalyst is used, the hydrogen ions are supplied by the catalyst. If no catalyst is present, the hydrogen ions are supplied by the organic acid undergoing esterification. The esterification is thought to proceed in the following steps:

(2)
$$R-C$$
 $+ HA \rightleftharpoons R-C$ OH $+A$

(3)
$$\begin{bmatrix} OH \end{bmatrix}^{+} + R^{\dagger}OH \Longrightarrow \begin{bmatrix} OH & R^{\dagger} \end{bmatrix}^{+} \\ R-C-O & \\ OH & H \end{bmatrix}$$

$$\begin{bmatrix}
OH & R' \\
R-C+O \\
OH & H
\end{bmatrix}^{+} \rightleftharpoons \begin{bmatrix}
OR' \\
R+C
\end{bmatrix}^{+} + H_{2}O$$

(5)
$$\begin{bmatrix} OR^{\dagger} \\ R-C \end{bmatrix}^{\dagger} + A^{-} \rightleftharpoons R-C \end{bmatrix} + HA$$

The rate of a chemical reaction is the rate at which the concentration of the reactants change with time. Mathematically, this definition can be written

$$r = -\frac{dC}{dt} \tag{1}$$

where r is the rate of reaction, C is the concentration of one of the reactants, and t is the time.

For homogeneous chemical reactions, the rate is proportional to the concentration of the reactants. In the reaction

the rate equation is

$$\mathbf{r} = \mathbf{k} \ C_{\mathbf{A}}^{\mathbf{a}} C_{\mathbf{B}}^{\mathbf{b}} \tag{2}$$

where

r = rate of reaction

k = proportionality constant

 C_{A} , C_{B} = concentrations of reactants A and B, respectively

a, b = exponents to which the concentration terms

must be raised

The proportionality constant, k, in the rate equation is known as the specific rate constant. This constant can be evaluated from experimental data if the order of the reaction is known. By definition, the order of a reaction is the sum of the exponents of the concentration terms in the rate equation.

If a catalyst is present, more than one reaction takes place. For the case of the second order bimolecular reaction

between reactants A and B in the presence of catalyst C, the reactions occurring are

(6)
$$A + B \rightarrow Products$$

$$(7) \qquad A + B + C \longrightarrow Products + C$$

The rate equation for the uncatalyzed reaction (6) is

$$\mathbf{r}_{1} = \mathbf{k}_{1} \ \mathbf{C}_{A} \mathbf{C}_{B} \tag{3}$$

and for the catalyzed reaction (7)

$$\mathbf{r}_2 = \mathbf{k}_2 \mathbf{c}_{\mathbf{A}} \mathbf{c}_{\mathbf{B}} \mathbf{c}_{\mathbf{C}}^n \tag{4}$$

where n is the exponent to which the catalyst concentration must be raised. Since the observed reaction rate is equal to the sum of the rates of the catalyzed and uncatalyzed reactions, it follows that

$$\mathbf{r} = (\mathbf{k}_1 + \mathbf{k}_2 \mathbf{G}_0^n) \mathbf{G}_{\mathbf{A}} \mathbf{G}_{\mathbf{B}} \tag{5}$$

In terms of the observed specific rate constant, k_s the rate equation is $r = k C_A C_R$ (6)

Combining equations (5) and (6) gives

$$k = k_1 + k_2 c_C^n \tag{7}$$

Thus, a plot of the observed specific rate constant against the catalyst concentration raised to the n^{th} power should give a straight line having a slope equal to the specific rate constant for the catalyzed reaction. The intercept at C_C equal to zero will be k_1 , the specific rate constant of the uncatalyzed reaction.

For a chemical reaction to occur, the molecules of the reactants must be in an activated state when they collide. The additional amount of energy that the molecules must possess, in excess of the average amount, in order to become activated is known as the energy of activation. Using the Arrhenius equation, the energy of activation for a reaction can be calculated. This equation can be written

$$k = Ae^{-E/RT}$$
 (8A)

where

k = specific rate constant

A = frequency factor

E = energy of activation

R = gas constant

T = absolute temperature

For evaluating A and E, equation (8A) can be written in a more convenient form:

$$\ln k = -\frac{E}{RT} + \ln A \tag{8B}$$

When ln k is plotted against 1/T, the value of $\frac{E}{R}$ can be obtained from the slope of the straight line. Since the intercept is equal to ln A, the frequency factor can be evaluated from the same plot.

EXPERIMENTAL PROCEDURE

Esterification

The esterification was carried out in a one liter, three neck, round bottom flask equipped with an agitator, condenser, heated addition funnel, thermometer, and heating mantle. An I²R temperature controller was used to maintain constant temperature. On the average, the temperature was controlled to within + 1 °C.

All of the reacting materials used in the experiment were of industrial grade. Based on average molecular weights, the purities of the oleic acid and oleyl alcohol were 98 and 95 per cent, respectively.

After being heated, the alcohol was placed in the heated addition funnel, and the acid was placed in the round bottom flask. In the catalyzed runs, the catalyst was dissolved in the acid. When the reactants reached reaction temperature, the alcohol was added to the acid.

Vigorous agitation was maintained during the experimental runs. The water that formed distilled out of the reaction mixture and was removed from the system through the condenser.

During the reaction, samples of the reaction mixture were pipetted from the round bottom flask and transferred to stoppered flasks which were immediately placed on ice.

For analysis, the chilled samples were weighed into tared

flasks and mixed with 50 ml. of reagent grade methanol. The resulting solutions were titrated for acid content with 0.5N sodium hydroxide solution and phenolphthalein indicator.

Density

In order to convert concentrations into the form of moles per liter, it was necessary to know the density of the reaction mixture.

The density of the mixture decreased with increase in temperature and increased with increase in ester concentration. The effect of temperature and composition on density was determined experimentally. Mixtures of different compositions of acid, alcohol, and ester were heated to various temperatures, without catalyst, and 100 ml. samples of the mixtures were pipetted into tared flasks.

The experimental results are shown in graphical form in Figure 23.

EXPERIMENTAL CALCULATIONS

The experimental results and calculations are presented in Tables 1A through 16. A sample calculation will serve to illustrate the method used in making the computations.

Run No. R-1

Sample A:

Data:

- (1) Reaction temperature = 200°C.
- (2) Molar ratio of acid to alcohol = 1
- (3) Sample time = 10 minutes
- (4) Concentration of NaOH solution = 0.498 N

Calculations:

Based on the average of three titrations, 2.88 ml. of NaOH solution were required per gram of reaction mixture.

Moles of oleic acid per gram of reaction mixture =

(2.88/1000) x (0.498) = 0.001434.

From Figure 23, the density of this sample at 200° C. is 0.765 g./ml. Therefore, the concentration of oleic acid in this sample = 0.001 μ 3 μ x 0.765 x 1000 = 1.098 m./l. The reciprocal of the oleic acid concentration = 1/1.098 = 0.911 1./m.

The calculated data for this run are plotted in Figure 1A.

Table 1A

Experimental Data - Run No. R-1

Temperature: 200°C.

Catalyst Concentration: 0 m./l.

Sample	Time (min.)	Vol. NaOH Soln. per Gm.Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./1.)	1/C _A (1./m.)	Conversion C _E /C _{Ao}
A	10	2.88	0.0011;34	0.765	1.098	0.911	0.220
В	30	2.02	0.001007	0.769	0.774	1.292	0.450
C	60	1.425	0.000710	0.772	0.548	1.825	0.611
D	120	0.958	0.000477	0.773	0.369	2.71	0.738

0.498 N NaOH solution.

Table 1B

Temperature: 200°C.

Catalyst Concentration: 0 m./1.

$$C_{A_0} = 1.408 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)		$1/c_{A}^{2}$ $(1./m.)$	Conversion CE/CAO
A	10	2.88	0.001434	0.765	1.098	1.207	0.830	0.220
В	30	2.02	0.001007	0.769	0.774	0.599	1.670	0.450
C	60	1.425	0.000710	0.772	0.548	0.301	3.33	0.611
D	120	0.958	0.000477	0.773	0.369	0.1361	7.35	0.738

0.498 N NaOH solution

 $C_{\rm E}$ = concentration of ester, m./1.

Table 2A

Temperature: 200°C.

Catalyst Concentration: 0.00399 m./1.

 $C_{A_0} = 1.408 \text{ m./l.}$

Sample	Time	Vol. NaOH Soln. per Gm.Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C _A (1./m.)	Conversion CE/CAO
A	10	0.827	0.000412	0.774	0.319	3.14	0.774
В	30	0.397	0.0001978	0.775	0.1532	6.52	0.892
C	60	0.339	0.0001689	0.775	0.1310	7.64	0.906
D	120	0.326	0.0001624	0.775	0.1260	7.94	0.912

0.498 N NaOH solution

 $C_{\rm E}$ = concentration of ester, m./1.

Table 2B

Temperature: 200°C.

Catalyst Concentration: 0.00399 m./1.

 $c_{A_0} = 1.408 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C _A (m./1.)	ln C _A	Conversion CE/CAO
A	10	0.827	0.000412	0.774	0.319	-1.141	0.774
В	30	0.397	0.0001978	0.775	0.1532	-1.878	0.892
C	60	0.339	0.0001689	0.775	0.1310	-2.04	0.906
D	120	0.326	0.0001624	0.775	0.1260	-2.07	0.912

0.498 N NaOH solution

Table 20

Temperature: 200°C.

Catalyst Concentration: 0.00399 m./1.

$$C_{A_0} = 1.408 \text{ m./l.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc. CA (m./1.)	(m ² /1 ²)	1/c _A ² (1 ² /m ²)	Conversion CE/CAO
A	10	0.827	0.000412	0.774	0.319	0.1018	9.84	0.774
В	30	0.397	0.0001978	0.775	0.1532	0.0235	42.5	0.892
C	60	0.339	0.0001689	0.775	0.1310	0.01717	58.4	0.906
D	120	0.326	0.0001624	0.775	0.1260	0.0159	62.9	0.912

0.498 N NaOH solution

Table 3A

Temperature: 150°C.

Catalyst Concentration: 0 m./1.

 $C_{A_0} = 1.451 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./1.)	1/C (1./h.)	Conversion
A	10	3.50	0.001744	0.786	1.371	0.729	0.0551
В	30	3.18	0.001585	0.788	1.249	0.801	0.1390
C	60	2.81	0.001400	0.790	1.107	0.904	0.237
· D	120	2.34	0.001167	0.793	0.925	1.081	0.362
E	180	1.985	0.000989	0.795	0.786	1.271	0.458
F	240	1.746	0.000870	0.796	0.693	1.442	0.522
G	300	1.563	0.000777	0.797	0.619	1.617	0.574

0.498 N NaOH solution

Table 3B

Temperature: 150°C.

Catalyst Concentration: 0 m./1.

$$C_{A_0} = 1.451 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (M./1.)	c_{A}^{2} $(m^{2}/1^{2})$	1/c ² (1./m.)	Conversion
A	10	3.50	0.001744	0.786	1.371	1.880	0.531	0.0551
В	30	3.18	0.001585	0.788	1.249	1.560	0.641	0.1390
C	60	2.81	0.001400	0.790	1.107	1.226	0.816	0.237
D	120	2.34	0.001167	0.793	0.925	0.855	1.170	0.362
E	180	1.985	0.0009 89	0.795	0.786	0.618	1.619	0.458
F	240	1.746	0.000870	0.796	0.693	0.480	2.08	0.522
G	300	1.563	0.000777	0.797	0.619	0.383	2.61	0.574

0.498 N NaOH solution

 $C_{E} = concentration of ester, m./1.$

Table 4A

Experimental Data - Run No. R-4

Temperature: 150°C.

Catalyst Concentration: 0.00411 m./1.

 $C_{A_0} = 1.451 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C,	Conversion $G_{\rm E}/G_{\rm A_O}$
A	10	1.465	0.000730	0.797	0.581	1.72	0.599
В	30	0.671	0.000334	0.801	0.268	3.73	0.815
C	60	0.425	0.000212	0.802	0.170	5.89	0.884
D	120	0.407	0.000203	0.802	0.1629	6.15	0.886
E	180	0.382	0.0001903	0.802	0.1528	6.55	0.894
F	2110	0.355	0.0001770	0.802	0.1420	7.04	0.901

0.498 N NaOH solution

Table 4B

Temperature: 150°C.

Catalyst Concentration: 0.00411 m./1.

	m2	Vol. NaOH Soln.	Moles Acid	Density	Acid Conc.	⊁ y	Conversion
Sample	Time (min.)	per Gm. Sample (ml.)	per g. Sample	(g./ml.)	C _A (m./1.)	ln C _A	CE/CAO
A	10	1.465	0.000730	0.797	0.581	-0.541	0.599
В	30	0.671	0.000334	0.801	0.268	-1.317	0.815
C	60	0.425	0.000212	0.802	0.170	-1.77	0.884
D	120	0.407	0.000203	0.802	0.1629	-1.812	0.886
E	180	0.382	0.0001903	0.802	0.1528	-1.878	0.894
F	240	0.355	0.0001770	0.802	0.1420	-1.950	0.901

0.498 N NaOH solution

Table 4C

Temperature: 150°C.

Catalyst Concentration: 0.00411 m./1.

$$C_{A_0} = 1.451 \text{ m./1.}$$

Sample	:	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (M./1.)	$\frac{c_A^2}{(m_*^2/1_*^2)}$	$1/c_{A}^{2}$ $(1./m.)$	Conversion CECAO
A	10	1.465	0.000730	0.797	0.581	0.338	2.96	0.599
В	30	0.671	0.000334	0.801	0.268	0.0719	13.91	0.815
G	60	0.425	0.000212	0.802	0.170	0.0289	34.6	0.884
D	120	0.407	0.000203	0.802	0.1629	0.0265	37.8	0.886
E	180	0.382	0.0001903	0.802	0.1528	0.0234	42.7	0.894
F	240	0.355	0.0001770	0.802	0.1420	0.0202	49.5	0.901

0.498 N NaOH solution

Table 5A

Temperature: 175°C.

Catalyst Concentration: 0 m./1.

$$C_{A_0} = 1.429 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/CA (1./m.)	Conversion CE/GAO
A	10	3.09	0.001591	0.775	1.234	0.810	0.1369
В	30	2.59	0.001333	0.778	1.038	0.964	0.274
C	60	2.06	0.001061	0.781	0.829	1.208	0.420
D	120	1.506	0.000776	0.783	0.608	1.643	0.575
E	180	1.202	0.000619	0.785	0.486	2.06	0.660
F	5110	1.010	0.000520	0.786	0.409	2.45	0.715
G	300	0.873	0.000450	0.786	0.354	2.82	0.754

0.515 N NaOH solution

Table 5B

Temperature: 175°C.

Catalyst Concentration: 0 m./l.

 $C_{A_0} = 1.429 \text{ m./l.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc.,	c_{A}^{2} $(m_{*}^{2}/1_{*}^{2})$	1/c _A ² (1./m.)	Conversion CE/CAo
A	10	3.09	0.001591	0.775	1.234	1.521	0.657	0.1369
В	30	2.59	0.001333	0.778	1.038	1.079	0.927	0.274
C	60	2.06	0.001061	0.781	0.829	0.687	1.458	0.420
D	120	1.506	0.000776	0.783	0.608	0.368	2.72	0.575
E	180	1.202	0.000619	0.785	0.486	0.236	4.24	0.660
F	240	1.010	0.000520	0.786	0.409	0.1672	5.98	0.715
G	300	0.873	0.000450	0.786	0.354	0.1252	7.99	0.754

^{0.515} N NaOH solution

C = concentration of ester, m./l.

Table 6A

Temperature: 175°C.

Catalyst Concentration: 0.00406 m./1.

$$C_{A_0} = 1.429 \text{ m./l.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (A./1.)	1/C (1.4m.)	Conversion CE/CAO
A	10	1.089	0.000560	0.785	0.1110	2.28	0.694
В	30	0.406	0.000209	0.788	0.1650	6.06	0.886
C	60	0.305	0.0001570	0.788	0.1238	8.08	0.915
D	120	0.248	0.0001278	0.789	0.1008	9.92	0.930
E	180	0.231	0.0001190	0.789	0.0940	10.63	0.935
F	240	0.218	0.0001122	0.789	0.0885	11.30	0.940
G	300	0.211	0.0001088	0.789	0.0858	11.66	0.941

0.515 N NaOH solution

Table 6B

Temperature: 175°C.

Catalyst Concentration: 0.00406 m./1.

 $C_{A_0} = 1.429 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	ln CA	Conversion CE/CAO
A	10	1.089	0.000560	0.785	0.1110	-0.820	0.694
В	30	0.406	0.000209	0.788	0.1650	-1.800	0.886
C	60	0.305	0.0001570	0.788	0.1238	-2.08	0.915
D	120	0.248	0.0001278	0.789	0.1008	-2.29	0.930
E	180	0.231	0.0001190	0.789	0.0940	-2.36	0.935
F	240	0.218	0.0001122	0.789	0.0885	-2.42	0.940
G	300	0.211	0.0001088	0.789	0.0858	-2.46	0.941

0.515 N NaOH solution

 $C_{\rm E}$ = concentration of ester, m./l.

Table 6C

Experimental Data - Run No. R-6

Temperature: 175°C.

Catalyst Concentration: 0.00406 m./1.

 $C_{A_0} = 1.429 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm.Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (A./1.)	CA (m²/1²)	1/c _A ² (1 ² /m ²)	Conversion E A _o
A	10	1.089	0.000560	0.785	0-1110	0.1935	5.17	0.694
В	30	0.406	0.000209	0.788	0.1650	0.0272	36.8	0.886
C	60	0.305	0.0001570	0.788	0.1238	0.01531	65.3	0.915
D	120	0.248	0.0001278	0.789	0.1008	0.01018	98.4	0.930
E	180	0.231	0.0001190	0.789	0.0940	0.00884	113.1	0.935
F	240	0.218	0.0001122	0.789	0.0885	0.00784	127.8	0.940
G	3 0 0	0.211	0.0001088	0.789	0.0858	0.00736	135.9	0.941

^{0.515} N NaOH solution

C = concentration of ester, m./l.

Table 7

Temperature: 175°C.

Catalyst Concentration: 0.00406 m./1.

 $C_{A_0} = 1.429 \text{ m./l.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (m./1.)	1/C (1.7m.)	Conversion
A	10	0.935	0.000481	0.786	0.378	2.64	0.737
В	30	0.405	0.000209	0.788	0.1648	6.07	0.887
C	60	0.300	0.0001547	0.788	0.1219	8.21	0.915
D	120	0.278	0.0001431	0.789	0.1130	8.85	0.921
E	180	0.261	0.0001345	0.789	0.1061	9.42	0.928

0.515 N NaOH solution

Table 8

Experimental Data - Run No. R-8

Temperature: 175°C.

Catalyst Concentration: 0.00406 m./1.

 $C_{A_0} = 1.429 \text{ m./l.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./1.)	1/C _A (1.7m.)	Conversion C _E /C _A
A	10	0.963	0.000496	0.786	0.390	2.56	0.728
В	30	0.427	0.000220	0.788	0.1735	5.76	0.880
C	60	0.30 8	0.0001588	0.788	0.1251	7.99	0.915
D	120	0.284	0.0001464	0.789	0.1156	8.65	0.920
E	180	0.263	0.0001355	0.789	0.1070	9.35	0.927

^{0.515} N NaOH solution

 $C_E = concentration of ester, m./l.$

Table 9

Temperature: 150°C.

Catalyst Concentration: 0.000413 m./1.

 $C_{A_0} = 1.451 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C (1.7m.)	Conversion C _E /C _{Ao}
A	1	3.54	0.001822	0.785	1.431	0.698	0.0138
В	3	3.50	0.001801	0.785	1.415	0.707	0.0248
C	6	3.44	0.001770	0.786	1.392	0.718	0.0406
D	10	3.36	0.001730	0.786	1.360	0.735	0.0626
E	15	3.27	0.001689	0.787	1.328	0.754	0.0846
F	30	3.03	0.001560	0.788	1.229	0.814	0.1530
G	60	2.61	0.001344	0.791	1.063	0.940	0.267
H	120	1.993	0.001027	0.794	0.815	1.228	0.439

^{0.515} N NaOH solution

 $C_E = concentration of ester, m./1.$

Table 10

Temperature: 150°C.

Catalyst Concentration: 0.00086 m./1.

$$C_{A_0} = 1.451 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C _(1.7m.)	Conversion CE/CAO
A	1	3.54	0.001822	0.785	1.430	0.700	0.0145
В	3	3.48	0.001791	0.785	1.408	0.710	0.0296
C	6	3.37	0.001737	0.786	1.364	0.734	0.0600
D	10	3.20	0.001649	0.787	1.298	0.771	0.1054
E	15	2.99	0.001540	0.789	1.215	0.823	0.1630
F	30	2.42	0.001247	0.792	0.986	1.013	0.320
G	60	1.684	0.000868	0.796	0.691	1.449	0.524
H	120	1.100	0.000566	0.799	0.452	2.22	0.689

0.515 N NaOH solution

 $C_{E} = concentration of ester m./l.$

Table 11

Temperature: 150°C.

Catalyst Concentration: 0.00200 m./1.

$$G_{A_0} = 1.451 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. Per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C _A (m./1.)	1/C (1.4m.)	Conversion C _E /C _{Ao}
A	2	3.16	0.001629	0.788	1.282	0.780	0.1163
В	4	2.78	0.001432	0.790	1.131	0.884	0.220
C	7	2.54	0.001309	0.791	1.034	0.966	0.287
D	10	2.24	0.001151	0.793	0.914	1.095	0.370
E	15	1.801	0.000927	0.795	0.737	1.358	0.490
F	30	1.134	0.000584	0.798	0.466	2.14	0.677
G	60	0.630	0.000324	0.801	0.260	3.84	0.820
H	120	0.360	0.0001851	0.802	0.1487	6.73	0.897

0.515 N NaOH solution

 $C_E = concentration of ester, m./l.$

Table 12

Temperature: 175°C.

Catalyst Concentration: 0.000778 m./1.

 $C_{A_0} = 1.429 \text{ m./1.}$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (M./1.)	1/C (1.7m.)	Conversion C _E /C _{A o}
A	2	3.28	0.001690	0.774	1.309	0.764	0.0841
В	4	3.04	0.001567	0.775	1.213	0.824	0.1510
C	7	2.74	0.001411	0.777	1.098	0.911	0.232
D	10	2.44	0.001257	0.779	0.979	1.021	0.316
E	15	2.12	0.001091	0.781	0.852	1.173	0.405
F	30	1.490	0.000767	0.784	0.602	1.662	0.580
G	60	0.922	0.000475	0.786	0.374	2.68	0.740
H	120	0.534	0.000275	0.788	0.217	4.61	0.850

0.515 N NaOH solution

 $C_E = concentration of ester, m./l.$

Table 13

Temperature: 200°C.

Catalyst Concentration: 0.000649 m./1.

$$C_{A_0} = 1.408 \text{ m./l.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., C (A./1.)	1/C _A (1.7m.)	Conversion C _E /C _{A_O}
A	2	3.16	0.001629	0.763	1.242	0.805	0.118
В	4	2.82	0.001451	0.765	1.110	0.901	0.212
С	7	2.36	0.001215	0.767	0.931	1.073	0.339
D	10	2.03	0.001046	0.769	0.804	1.245	0.429
E	15	1.738	0.000894	0.770	0.688	1.453	0.511
F	30	1.184	0.000610	0.772	0.471	2.12	0.665
G	60	0.744	0.000382	0.774	0.296	3.38	0.790
н	120	0.476	0.000245	0.774	0.1898	5.27	0.864

0.515 N NaOH solution

 $C_{E} = concentration of ester, m./1.$

Table 14

Temperature: 150°C.

Catalyst Concentration: 0.0031 m./1.

$$C_{A_0} = 1.451 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C (1.7m.)	Conversion $C_{\rm E}/C_{\rm A_{\rm O}}$
A	2	3.02	0.001555	0.789	1.228	0.815	0.1535
В	1	2.63	0.001355	0.791	1.072	0.934	0.261
C	7	2.20	0.001132	0.793	0.898	1.113	0.381
D	10	1.834	0.000945	0.795	0.751	1.330	0.482
E	15	1.374	0.000708	0.797	0.565	1.770	0.610
F	30	0.747	0.000385	0.800	0.308	3.24	0.786
G	60	0.403	0.000208	0.801	0.1668	6.00	0.884
H	120	0.288	0.0001483	0.802	0.1190	8.40	0.919

^{0.515} N NaOH solution

 $C_E = concentration of ester, m./l.$

Table 15

Experimental Data - Run No. R-15

Temperature: 175°C.

Catalyst Concentration: 0.00232 m./1.

$$C_{A_0} = 1.429 \text{ m./1.}$$

Sample		Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C (1.7m.)	Conversion CE/CAO
A	5	2.07	0.001067	0.781	0.833	1.200	0.418
В	10	1.384	0.000714	0.784	0.560	1.787	0.608
G	15	1.009	0.000519	0.786	0.408	2.45	0.715
D	30	0.538	0.000277	0.788	0.218	4.59	0.850
E	60	0.282	0.0001451	0.789	0.1146	8.73	0.920
F	120	0.216	0.0001111	0.789	0.0877	11.40	0.940

0.515 N NaOH solution

 $C_E = concentration of ester, m./l.$

Table 16

Temperature: 200°C.

Catalyst Concentration: 0.00203 m./1.

$$C_{A_0} = 1.408 \text{ m./1.}$$

Sample	Time (min.)	Vol. NaOH Soln. per Gm. Sample (ml.)	Moles Acid per g. Sample	Density (g./ml.)	Acid Conc., CA (m./l.)	1/C (1.7m.)	Conversion
A	3	2.27	0.001170	0.768	0.899	1.112	0.362
В	7	1.369	0.00705	0.772	0.544	1.840	0.614
C.	10	1.048	0.000511	0.773	0.417	2.40	0.705
D	15	0.746	0.000384	0.774	0.297	3.37	0.790
E	30	0.392	0.000202	0.775	0.1566	6.39	0.890
F	60	0.222	0.0001142	0.775	0.0885	11.30	0.939

0.515 N NaOH solution

 $C_{E} = concentration of ester, m./1.$

DISCUSSION

The chemical reaction studied was the reaction of oleic acid with oleyl alcohol to form oleyl oleate and water:

(3) CH₃ (CH₂)₇ CH = CH(CH₂)₇COOH+CH₃(CH₂)₇ CH=CH(CH₂)₇CH₂OH

CH₃(CH₂)₇CH = CH(CH₂)₇COOCH₂(CH₂)₇CH=CH(CH₂)₇CH₃+H₂O

Swern, Billen, and Knight ¹¹ produced oleyl oleate by this direct reaction, but they did not study the reaction kinetics.

The order of this reaction was determined graphically by plotting different functions of acid concentration, C_A , against time. The concentration functions which were plotted were $\ln C_A$, $1/C_A$, and $1/C_A^2$ which should give straight lines for first, second, and third order reactions, respectively.

From the plots made, both the catalyzed and uncatalyzed reactions were found to be second order at low conversions. At high conversions, above 85 per cent, the reaction no longer appears to be second order.

These results are in disagreement with those obtained by Flory 4,5 who studied the kinetics of esterifications and polyesterifications. Flory found that uncatalyzed esterifications were third order reactions. However, the second order plots in figures 1A, 3A, and 5A for the uncatalyzed reactions are definitely more linear than the third order plots in figures 1B, 3B, and 5B. Other inves-

tigators who studied different cleic acid esterifications also found the catalyzed and uncatalyzed reactions to be second order. The explanation of why different orders were reported for the same type of reaction may be found when the extent of ester conversion is studied. At low conversions, the esterification is a second order reaction, but at high conversions, the order of the reaction may change to third order.

For this reaction, the rate equation is

$$-\frac{dC_{A}}{dt} = k C_{A}C_{B}$$
 (9)

where C_A and C_B are the concentrations of cleic acid and cleyl alcohol, respectively. In the experiments, the acid and alcohol were present in equal concentrations. Therefore, the rate equation becomes

$$-\frac{dC_{A}}{dt} = k C_{A}^{2}$$
 (10)

Integration gives

$$\frac{1}{C_A} = kt + C' \qquad (11)$$

where C' is the constant of integration. At zero time, the concentration of oleic acid is equal to its initial concentration, $C_{A_{\,\circ}}$. Thus

$$\frac{1}{C_{A}} = kt + \frac{1}{C_{A_{O}}}$$
 (12)

A plot of $1/C_A$ against t gives a straight line having a slope

equal to the specific rate constant, k.

The specific rate constants were determined graphically. These constants are summarized in Tables 17 and 18.

TABLE 17

EXPERIMENTALLY DETERMINED SPECIFIC RATE CONSTANTS

Run No.	Temperature	Catalyst Conc., m./1.	k k/(gmole)(min.)
R+3	150	٥	0.00325
R-9	150	0.000413	0.00441
R-10	150	0.00036	0.0133
R-11	150	0.00200	0.0500
R-14	150	0.00310	0.0889
Rad	150	0.00411	0.105
R-5	175	0	0.00715
R-12	175	0.000778	0.0333
R-15	175	0.00232	0.133
R-6	175	0.00406	0.175
R-7	175	0.00406	0.175
R-8	175	0.00406	0.172
R-1	200	0	0.0184
R-13	200	0.000649	0.0500
R-16	200	0.00203	0.187
R-2	200	0.00399	0.33

TABLE 18

CATALYZED REACTION SPECIFIC RATE CONSTANTS

Temperature OC.	$1.2/(gmole)^2$ min.
150	22.8
175	40.0
200	77.1

In determining the specific rate constants, the reverse reaction was assumed to be negligible. This assumption is valid at low conversions because the rate of the reverse reaction is proportional to the concentration of ester and water, and at low conversions the ester is present in small quantities. Since the water was removed from the system, the reverse reaction was made even more negligible. Theoretically, if the water were completely removed the instant it formed, there would be no reverse reaction. At high conversions, the assumption is no longer valid. An appreciable reverse reaction takes place because of the high concentration of ester and the presence of water which was not completely removed from the system.

To avoid the complications of the reverse reaction, the slopes of the lines were measured at low conversions.

In addition to the esterification reaction and reverse reaction, side reactions occurred. The side reactions included the reaction of the impurities present in the reactants and the reaction of atmospheric oxygen with the reactants.

When oleic acid and oleyl alcohol are heated separately in open beakers, both with and without the catalyst, each reactant becomes dark in color, indicating that a reaction takes place. If the heating is continued, the reactants become very dark and thicken when they cool to room temperature. This change appears to occur more quickly when catalyst is present.

The changes that were observed can be attributed to the reaction of oxygen with the reactants. Henderson and Young studied the rate of reaction of cleic acid with oxygen and found that the reaction took place readily even at moderate temperatures.

Deatherage and Mattill², and Hamilton and Olcott⁷ found that the reaction of oleic acid and oleyl alcohol with oxygen was complex and that many products were formed. The products that formed were peroxide, aldehyde, carboxyl, and hydroxyl compounds.

Because more than one reaction was possible, it seemed desirable to determine whether the experimental procedure yields reproducible results. As a test, three identical runs were made, R-6, R-7, and R-8. By comparing the specific rate constants for these runs in Table 17, it can be seen that the results are reproducible.

Some of the second order plots are linear initially but become curved as the conversion to ester increases. In almost every case, the curvature begins at a 1/C valve of 4 to 7 1./m., corresponding to an ester conversion of 83 to 91 per cent, respectively. The curvature does not begin at exactly the same ester conversion for every run. The reason for this is that the reactants, after being heated separately, were held for different lengths of time before being reacted together.

This deviation from linearity at high ester conversions

may be caused by side reactions, a change in reaction order, or the reverse reaction, which can not be completely eliminated because it is difficult to drive out all of the water from the reaction mixture. More studies would have to be made to determine the principal cause for the deviation.

When the specific rate constants were plotted against the catalyst concentration, a linear relation was observed. These plots are shown in Figures 17, 18, and 19. The same relation was found by Levesque and Craig and by Othmer and Rao for their catalyzed oleic acid esterifications.

The effect of temperature on the slope of the lines is shown in Figure 20.

To calculate the energy of activation, the Arrhenius equation in the form of equation (8B) was used. The plot of the natural logarithm of the specific rate constant against the reciprocal of absolute temperature for the uncatalyzed reaction is shown in Figure 21, and the plot for the catalyzed reaction is shown in Figure 22.

energy of activation was calculated to be 13,650 calories per gram-mole for the uncatalyzed reaction and 9730 calories per gram-mole for the catalyzed reaction. Ling and Geankoplis determined the energy of activation for the uncatalyzed oleic acid-isobutyl alcohol esterification to be 14,100 calories per gram-mole.

By substituting data at different temperatures into

Equation (8B), the following equation relating the specific rate constant to the temperature for the uncatalyzed reaction was obtained:

$$\ln k_1 = \frac{6.88 \times 10^3}{T} + 10.5 \tag{9}$$

where the units of k_1 are 1./(g.-mole)(min.) and T is expressed in degrees Kelvin. For the catalyzed reaction, the equation is

$$\ln k_2 = 4.90 \times 10^3 + 14.7 \tag{10}$$

Using the data in Equations (9) and (10), the frequency factors, A₁ and A₂, for the uncatalyzed and catalyzed reactions were found to be 2.35 and 2.69 respectively.

An empirical equation relating the reaction rate with reactant concentration, catalyst concentration, and temperature can be written by combining equations (6), (7), and (8A):

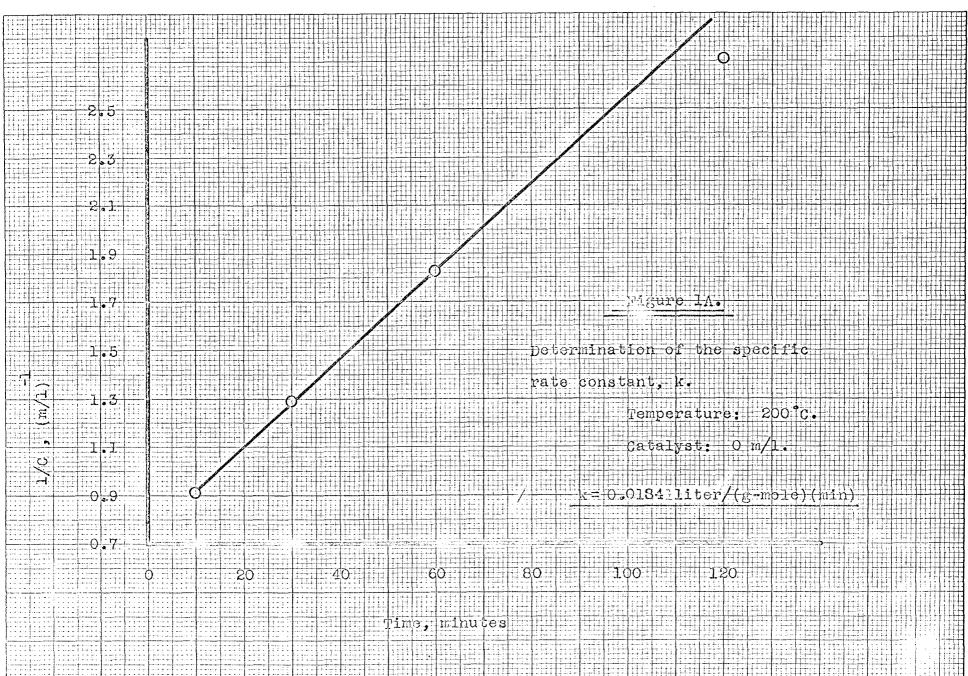
$$\mathbf{r} = (\mathbf{A}_1 \mathbf{e} + \mathbf{A}_2 \mathbf{e} + \mathbf{A}_2 \mathbf{e} + \mathbf{C}_C) \quad \mathbf{C}_A \mathbf{C}_B \quad (11A)$$

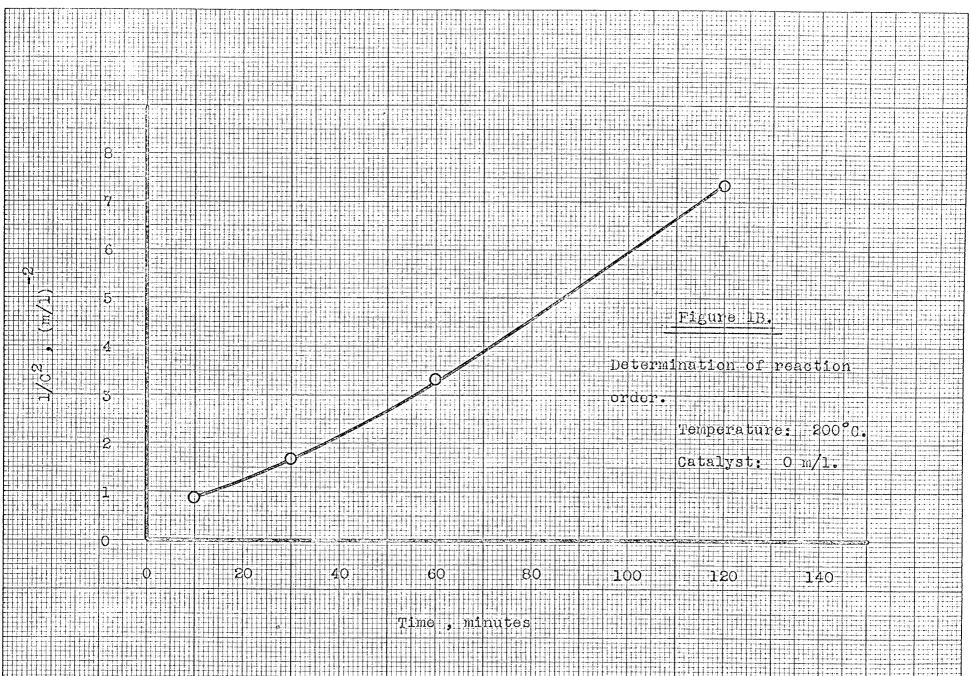
Substitution of known values into Equation (11A) gives

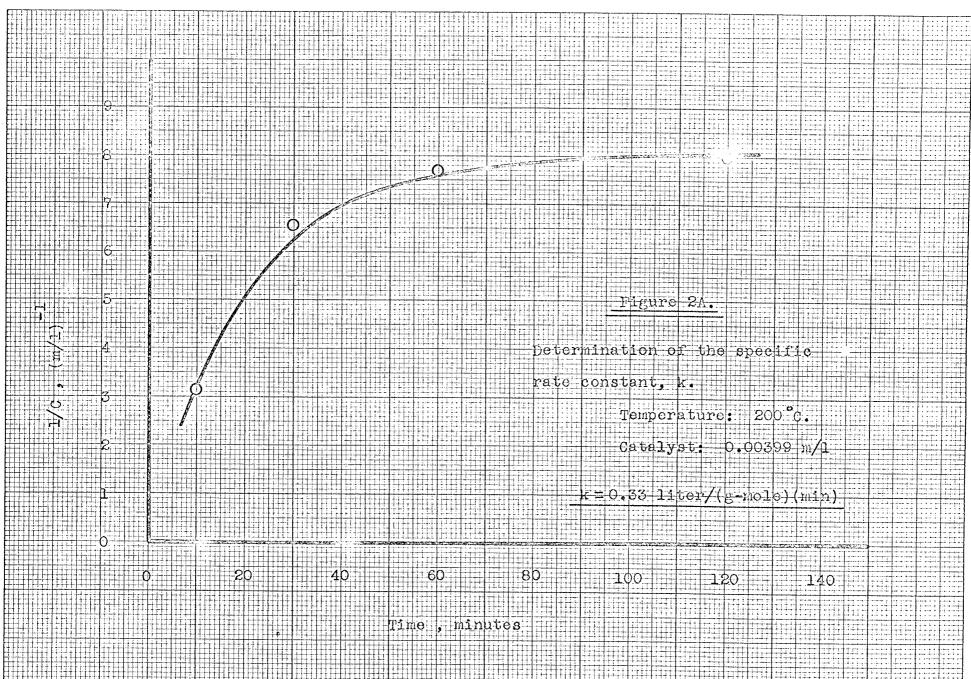
$$r = (2.35e) -6.88 \times 10^{3} / T -4.90 \times 10^{3} / T +2.69e$$
 C_{C} C_{A} C_{B} (11B)

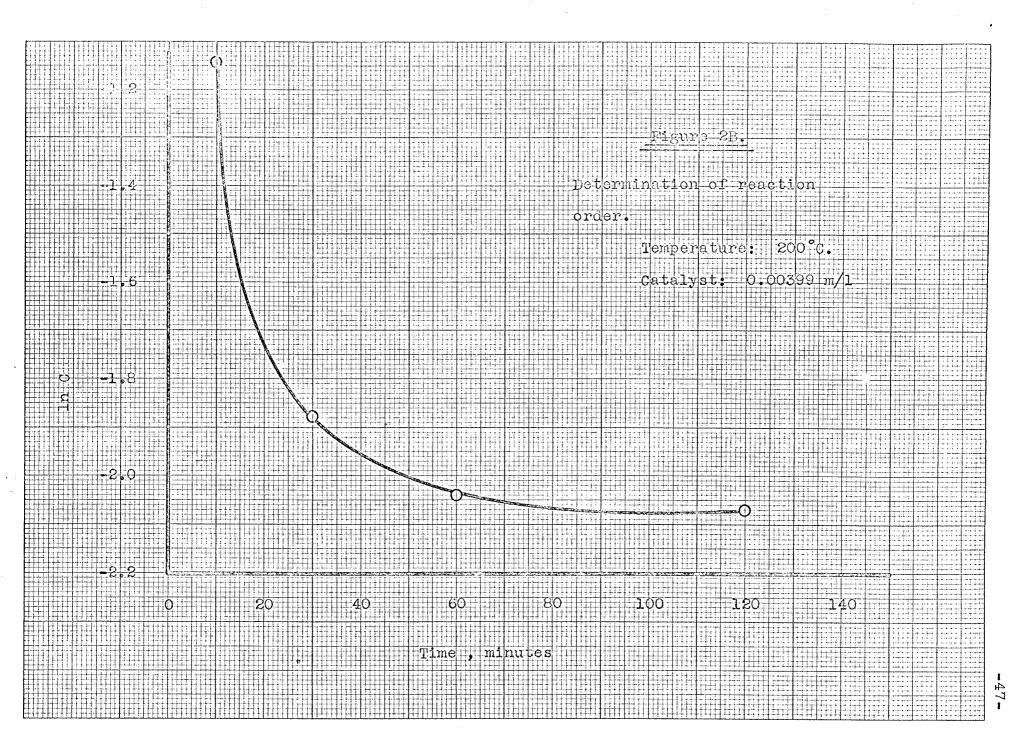
CONCLUSIONS

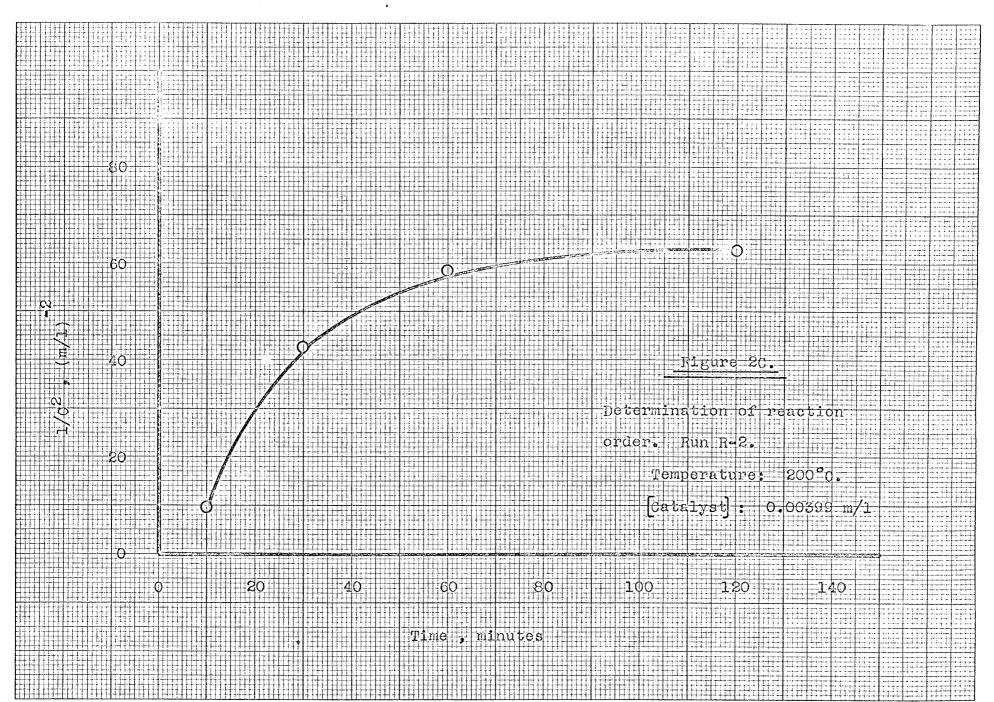
- 1. In the temperature range of 150 to 200°C., the esterification of cleic acid with cleyl alcohol appears to be a second order reaction up to about 85 per cent conversion, both in the presence and absence of catalyst. Beyond this conversion, side reactions complicate the kinetics.
- 2. The observed specific rate constant for the para-toluene-sulfonic acid catalyzed reaction is a linear function of the catalyst concentration.
- 3. The relation of the specific rate constant with temperature is described by the Arrhenius equation.
- 4. The empirical equation derived can be used to predict the reaction rate when the temperature and the concentrations of the reactants and catalyst are known.

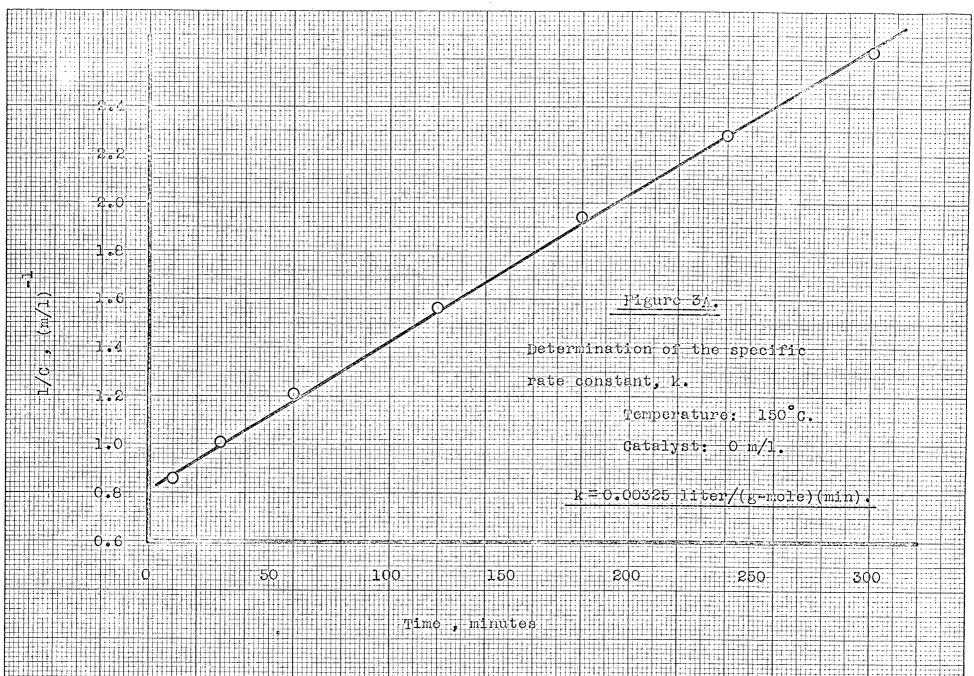

RECOMMENDATIONS

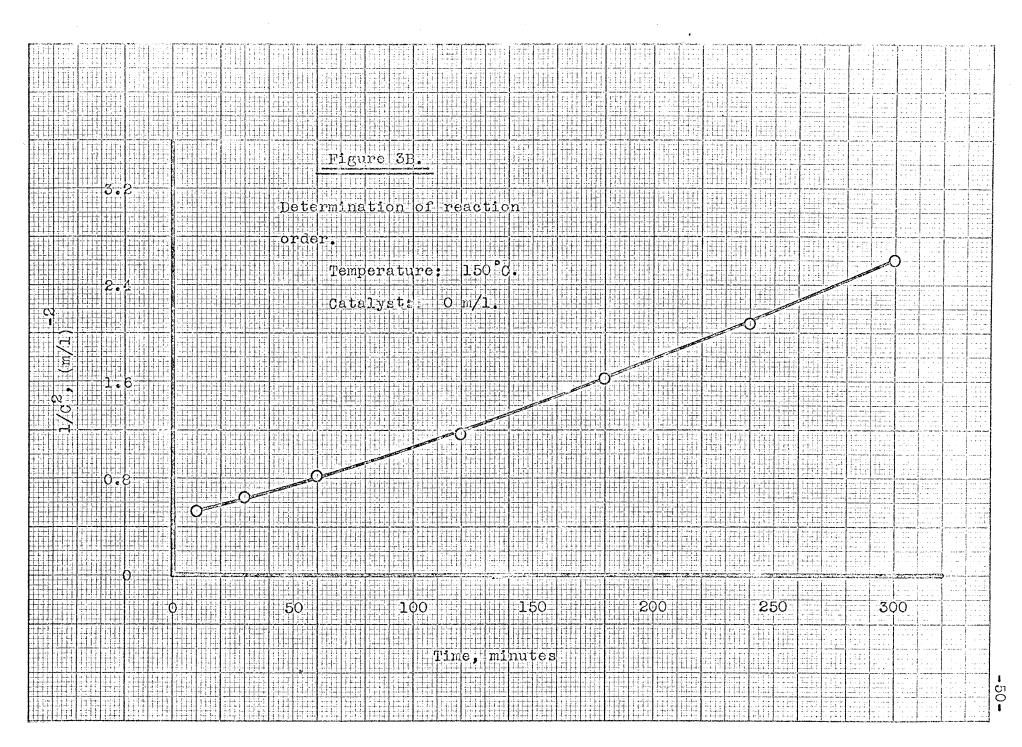

From an academic point of view, it might be desirable to use purified rather than industrial grade oleic acid and oleyl alcohol.

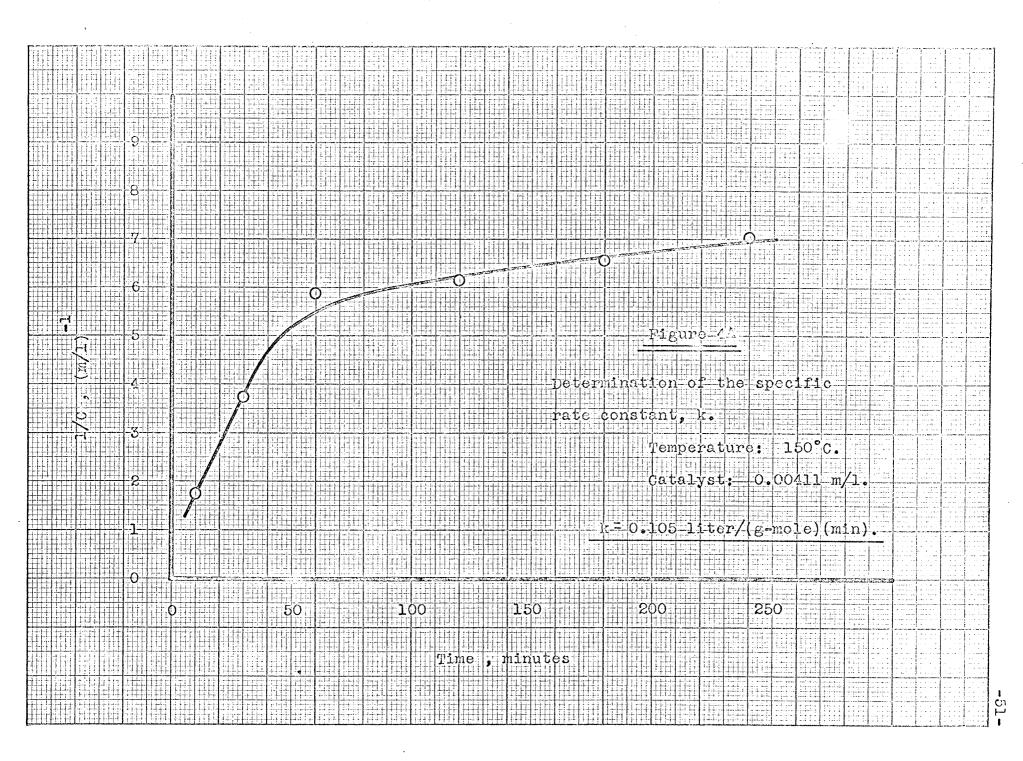

An inert gas atmosphere should be used in the reaction flask. The inert atmosphere would prevent the
reaction of cleic acid and cleyl alcohol with atmospheric
oxygen. This would then eliminate one of the side reactions that can take place.

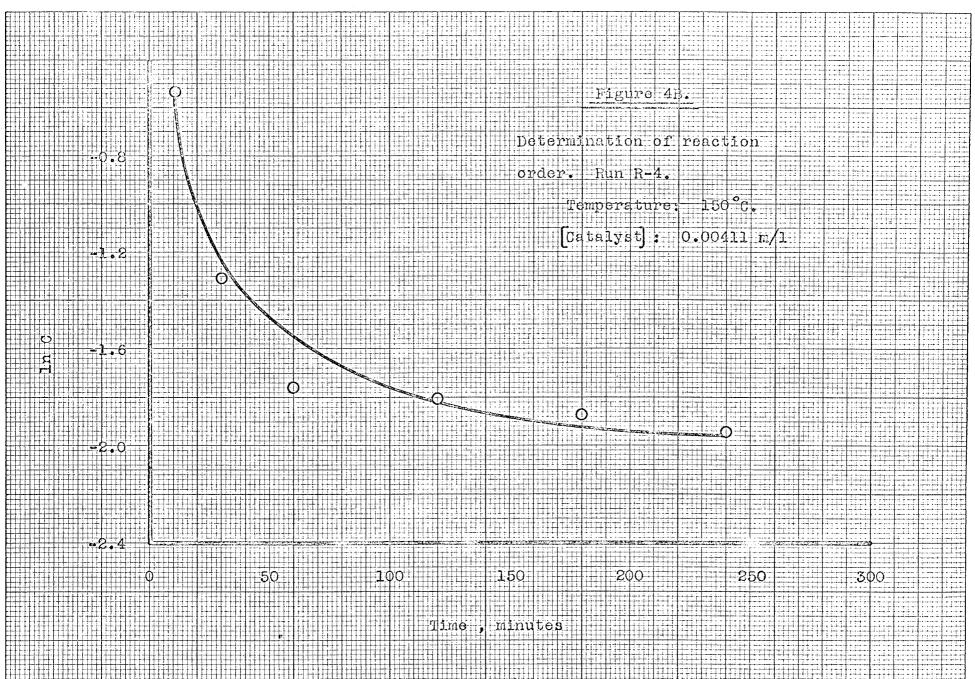

If inert gas were introduced into the flask by passing it through the reaction mixture, it would aid in the removal of water. The extent to which the reverse reaction takes place depends on the amount of water present in the system.

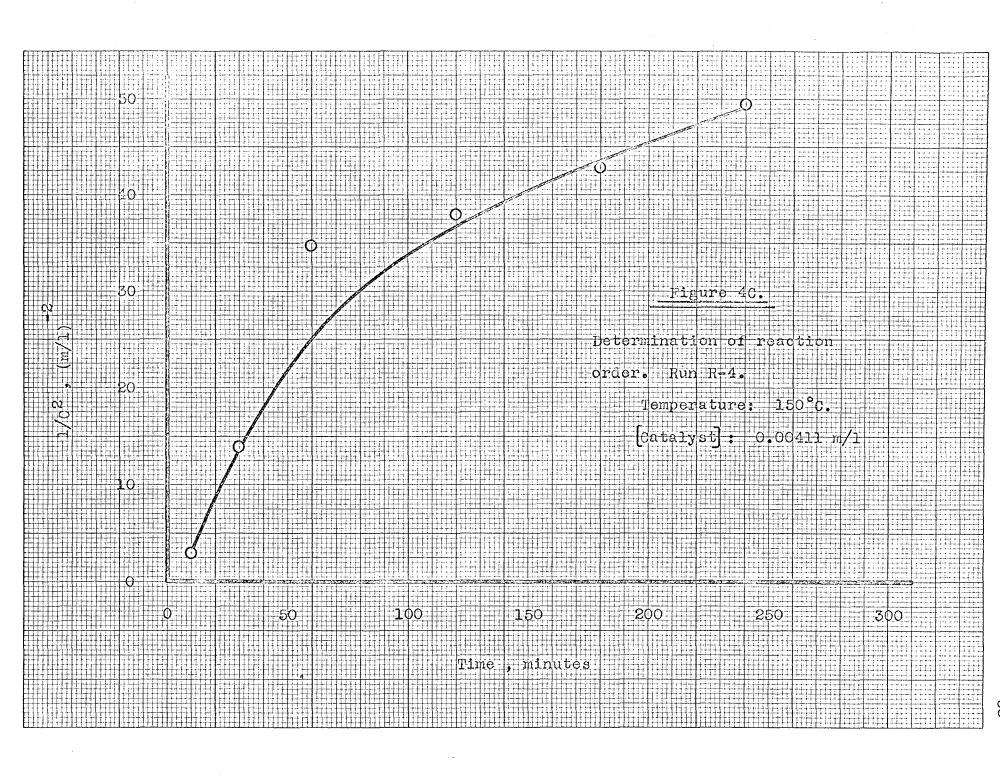

Additional work should be done to study the reaction at conversions of ester above 80 per cent.

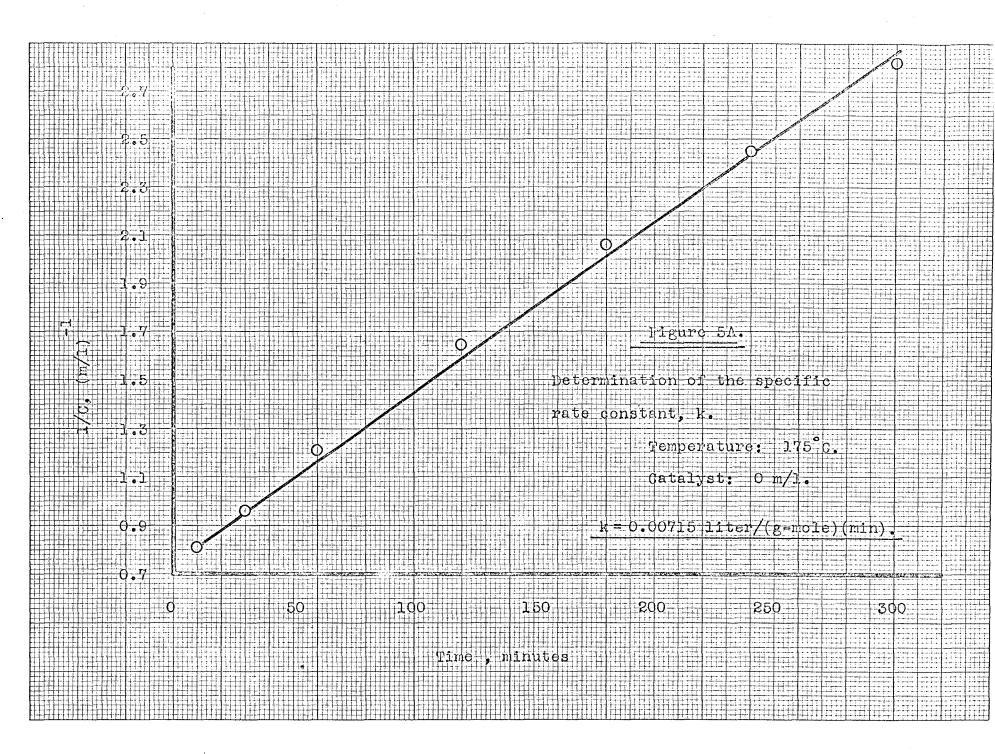


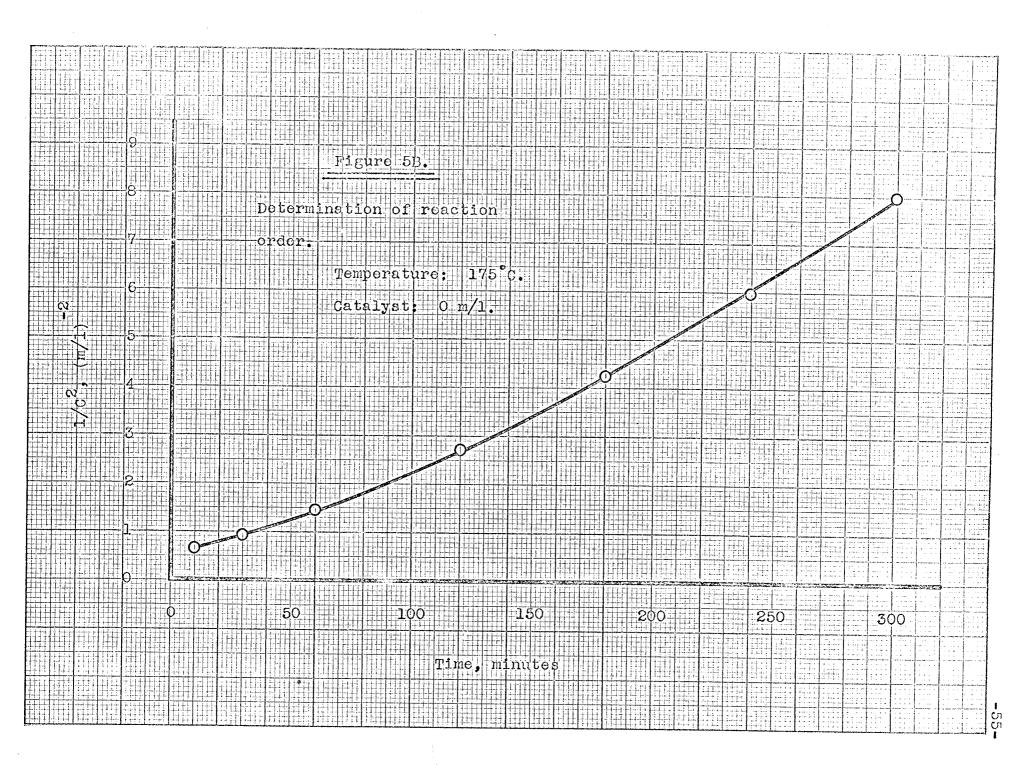


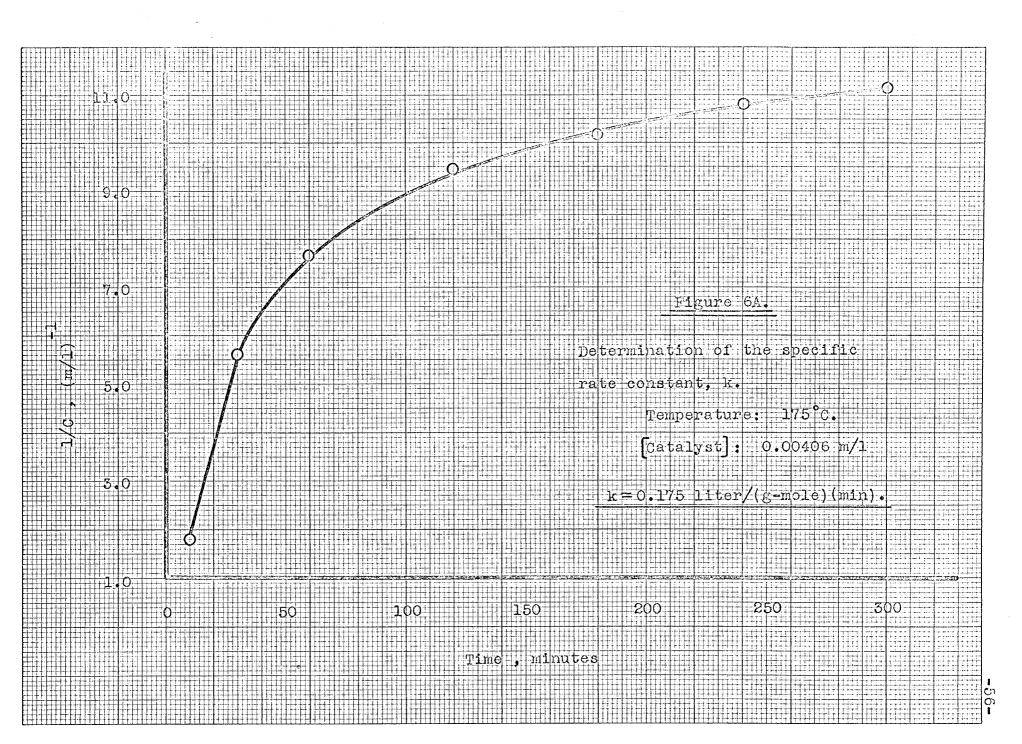


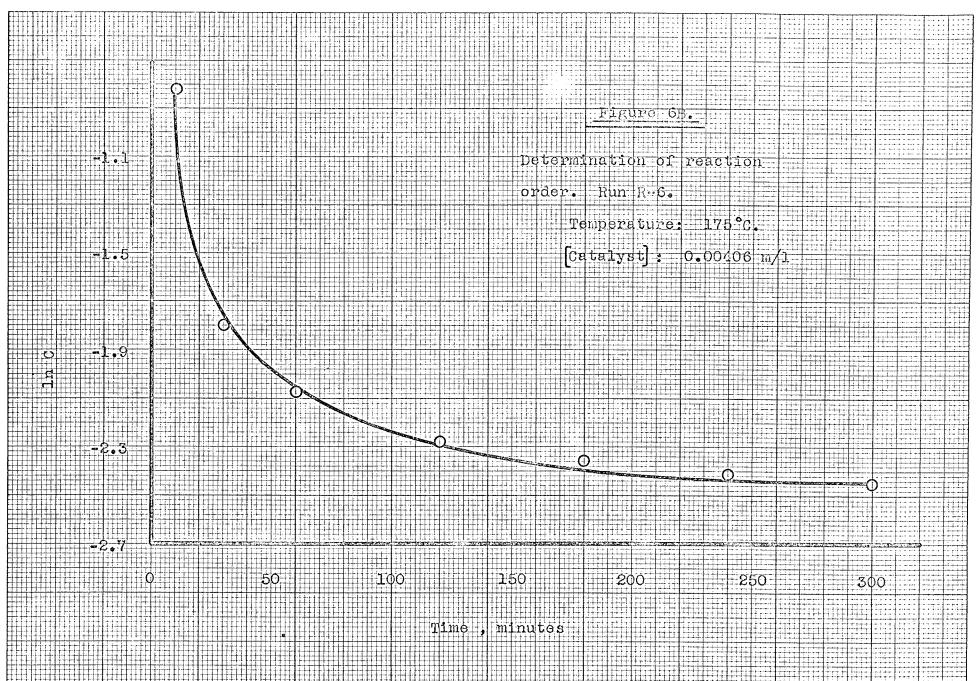


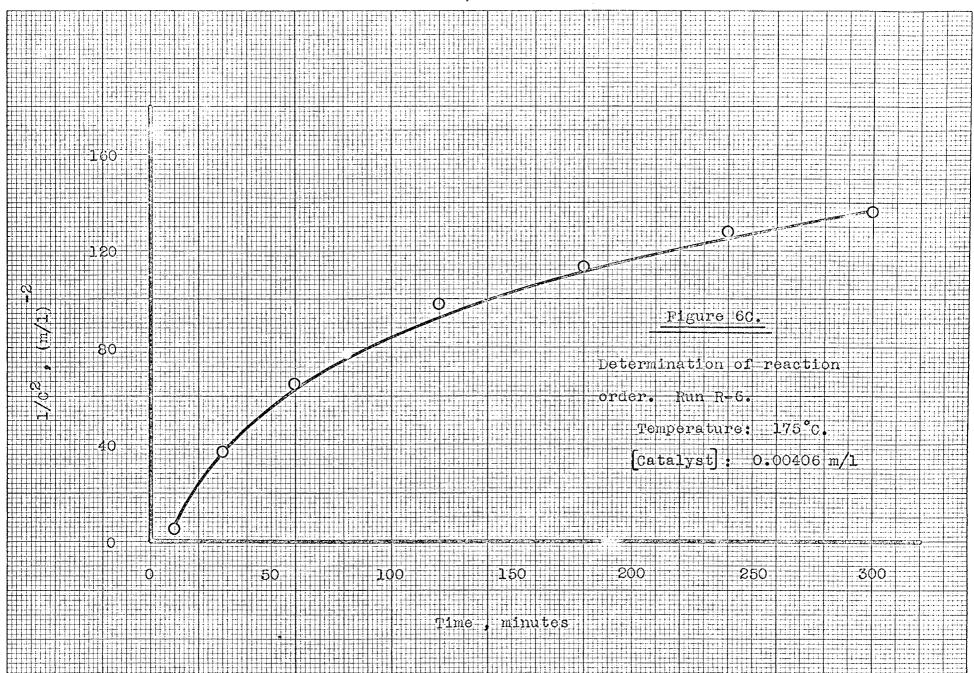


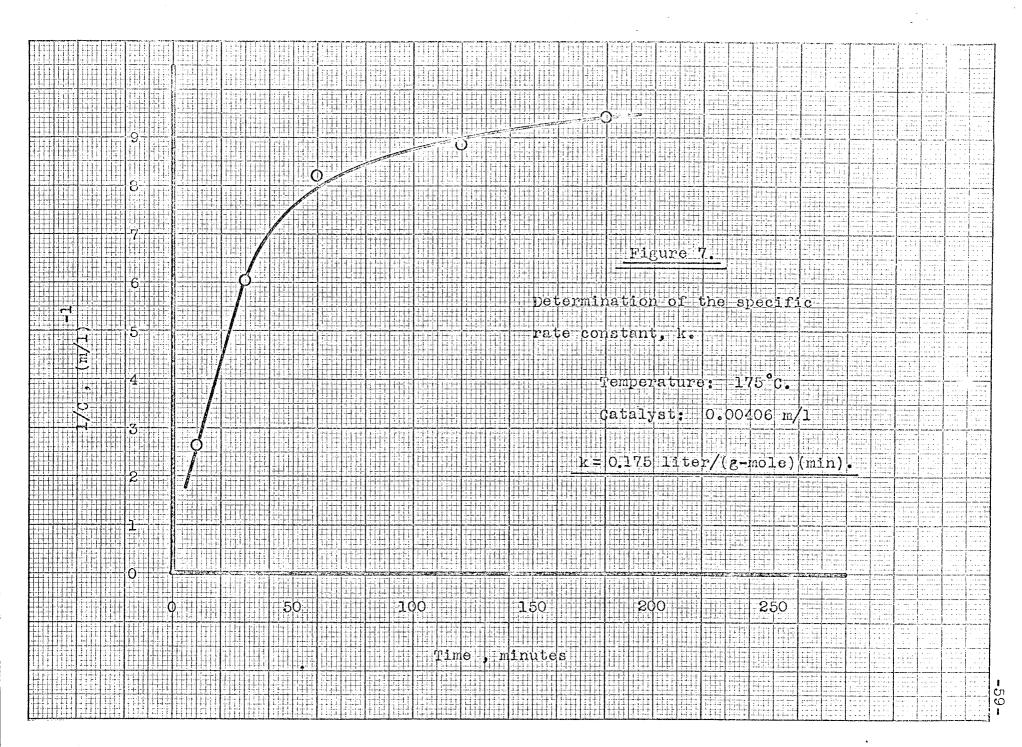


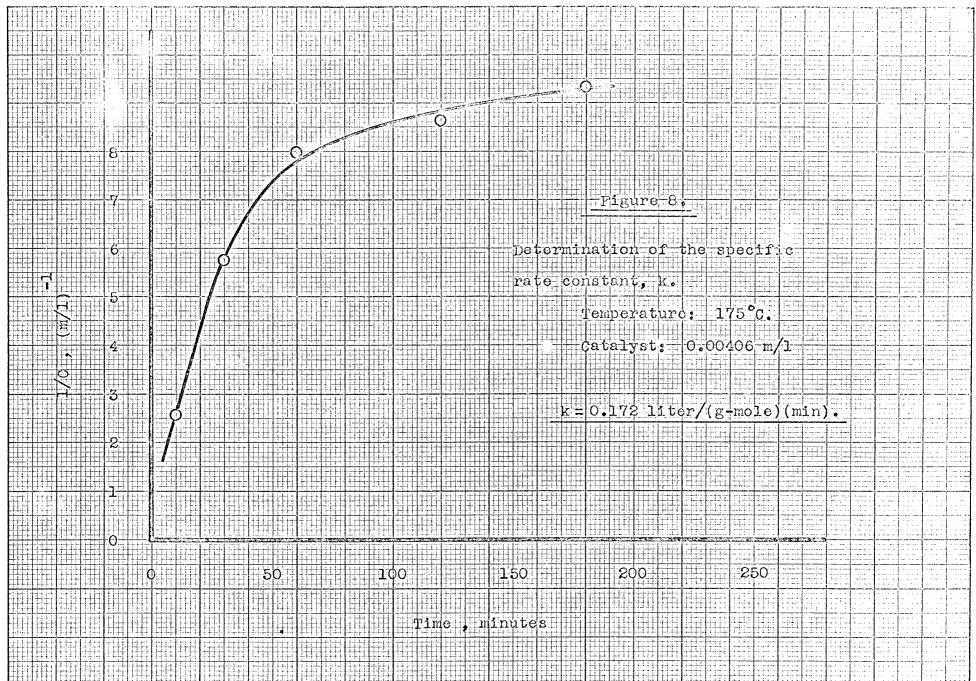


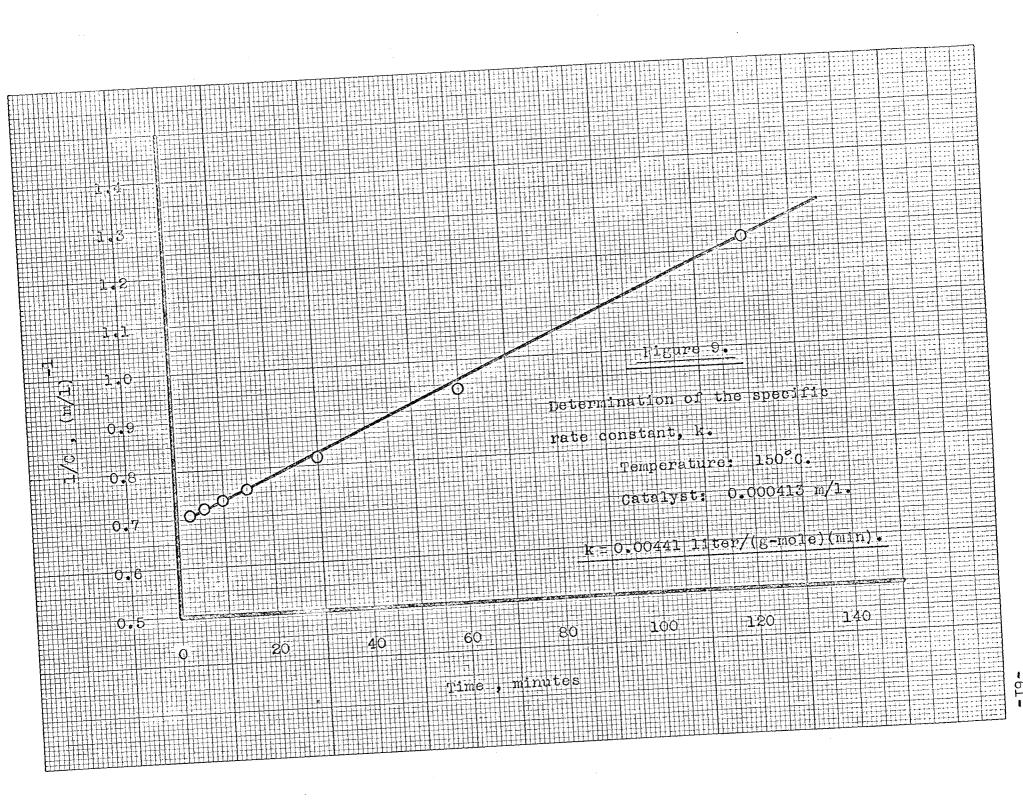


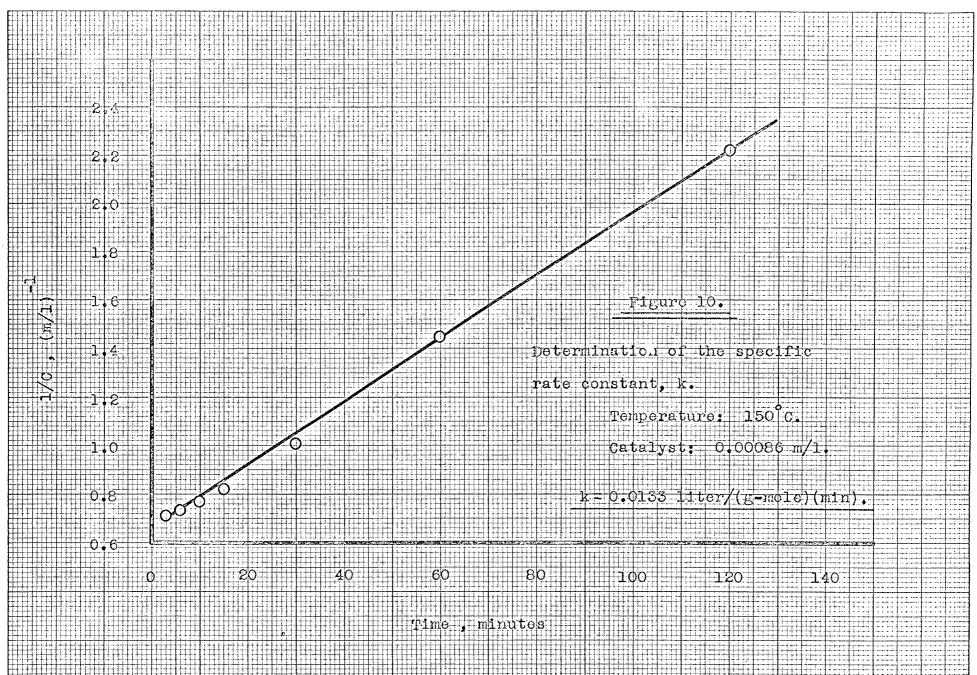


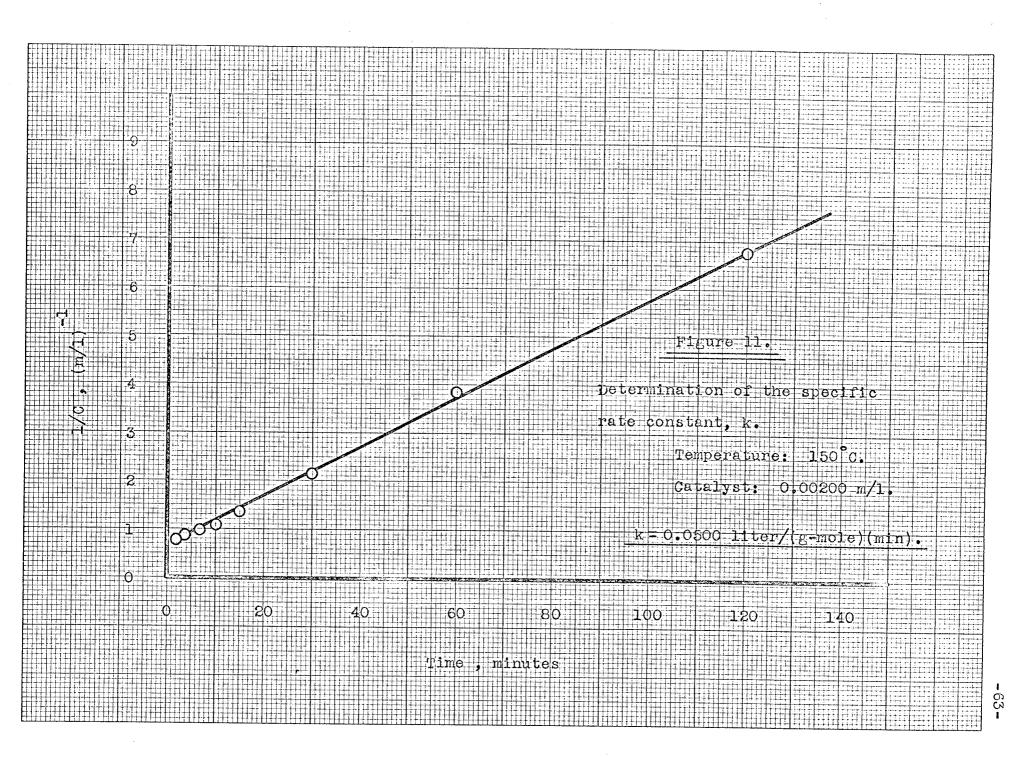


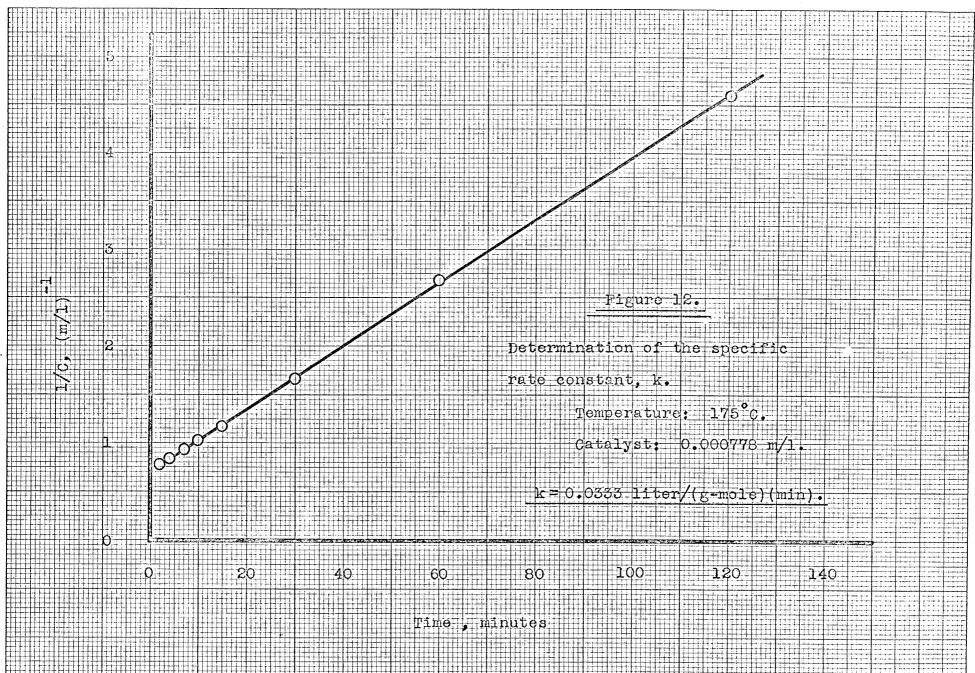


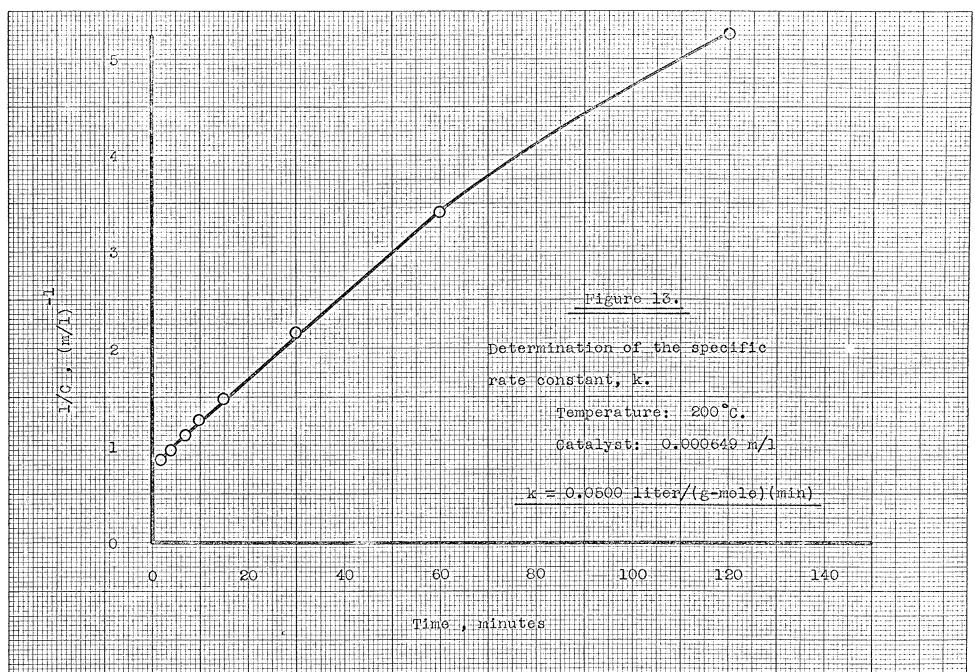


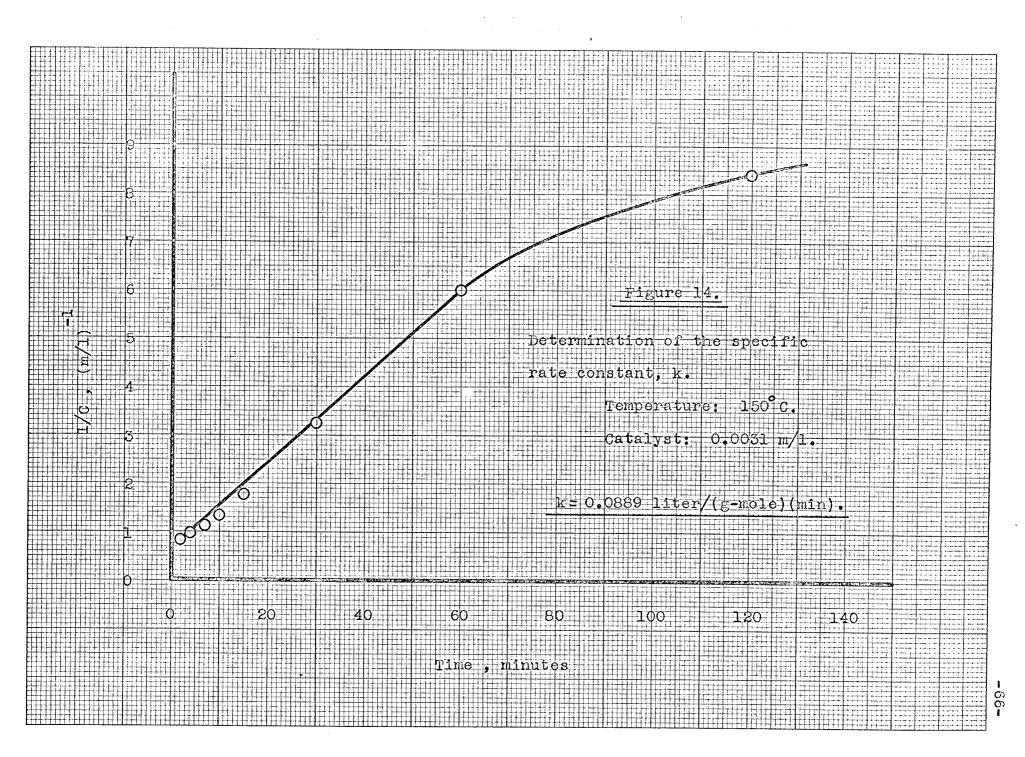


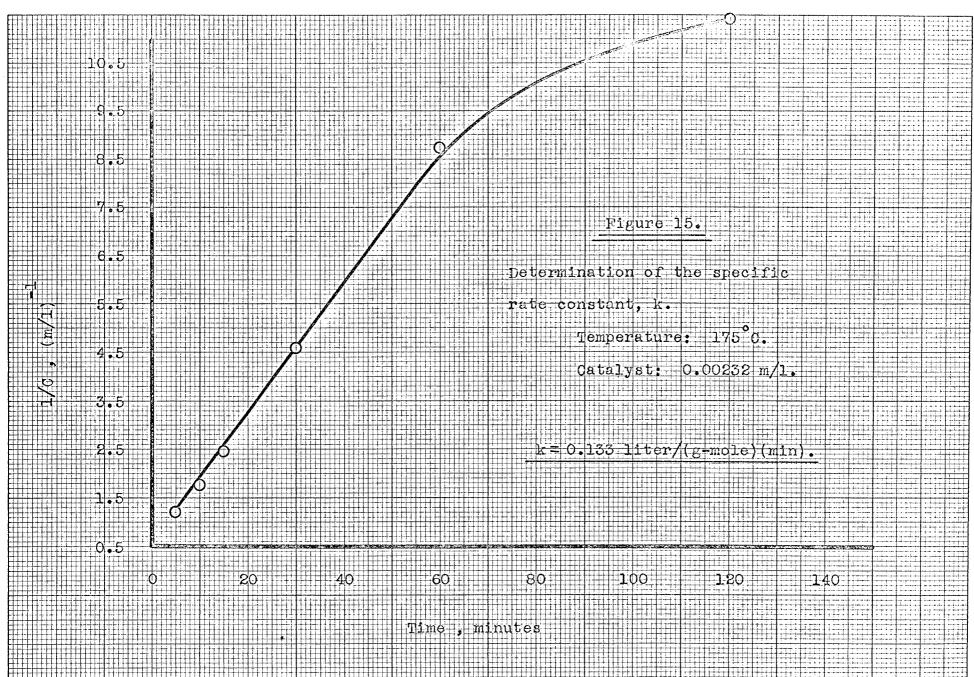


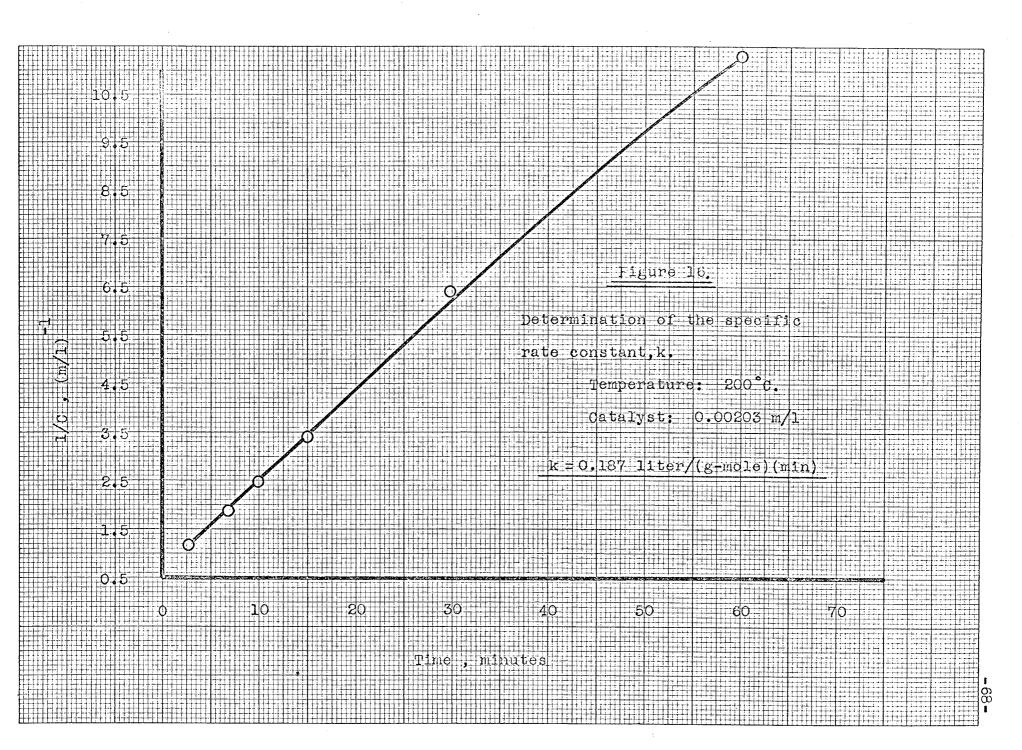


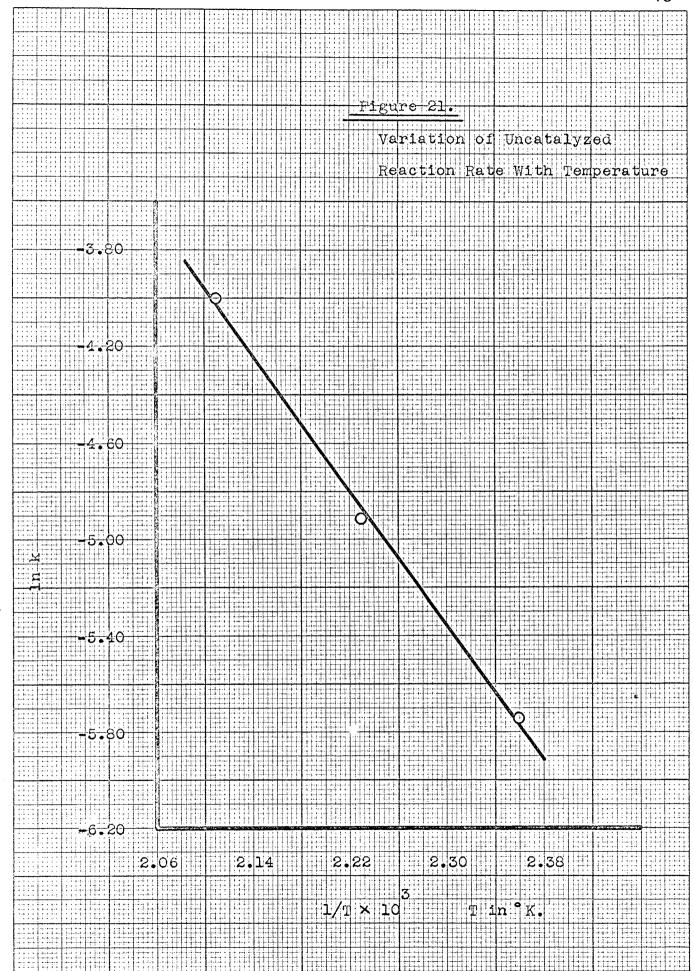


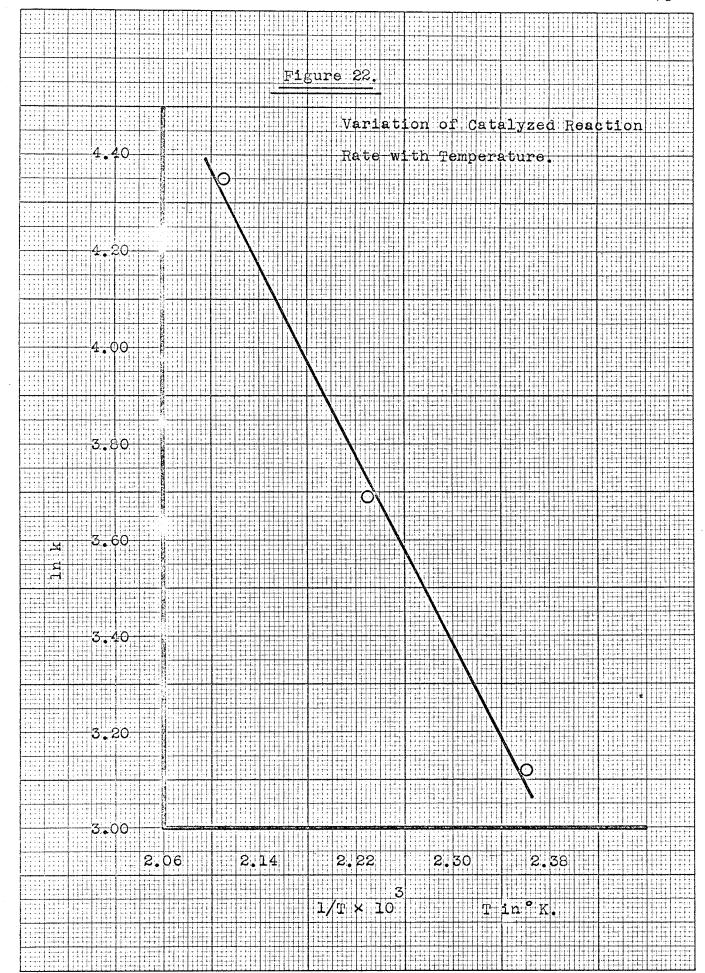


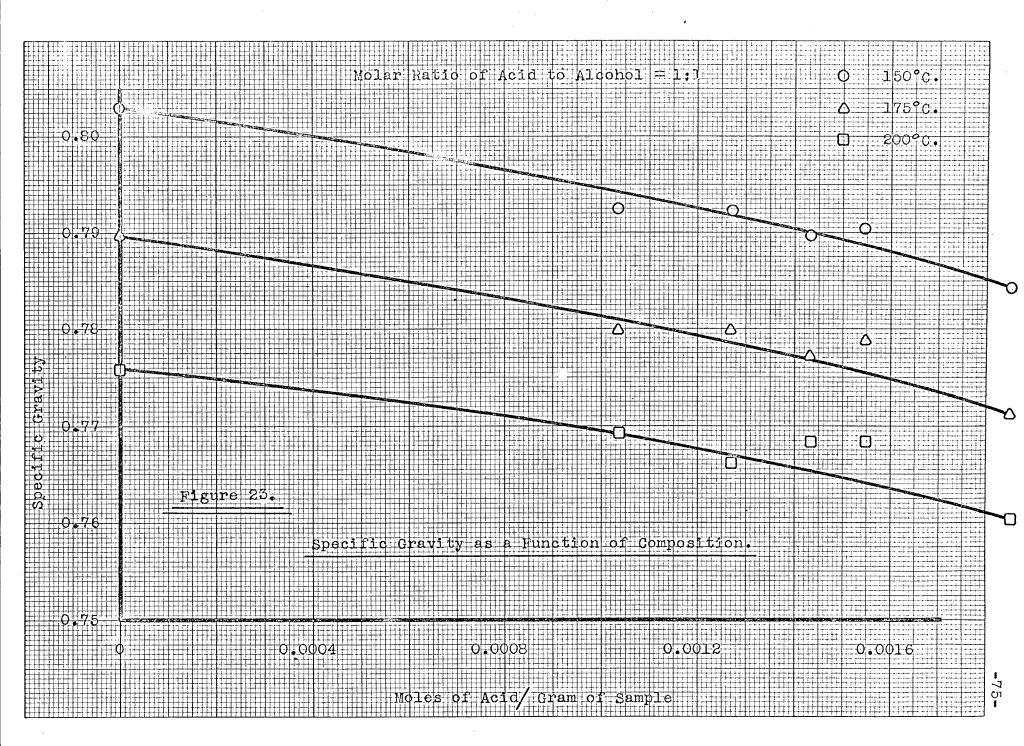







	I i i i		Time	1:::1	THE	Įπi			[[]]	Till	1:1.1	Tinti	1111					THE	П	H	- 1		11	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	1111	- t	78
				1:::::							1111					1											
			<u>i </u>					1111			1																
		1 1 1 1 1																		1							
				1::::																				<u> </u>			
							1	عنا	ur	e 1	7.											Ш					
									11.																		
								F	ea	cti	on	Ra	te	as	8 8	Fι	nc	tio	n	0.1	r					Hii	
		H						ΕH	HH	Hiit	EH			+													
									a t	aly	st	Co	nc	ent	ra	tic	n.				Ħ			i#Ti.			Ī
	14	詌															0										
	T ().]	2							Ľ,	em	per	a t	ure):	18	0	¢.								44.	1
																										11	
							1411																				
																				#		#	1			<u> </u>	
	##\$	1.1	lo.												卌												E
ĦŖ.		##							Ш		Щ				#												Ħ
																						Ħ					
ြေ		邢		世							圕											壨					
i o		 ∐						#														讕					F
50																											
																								圃			
te.																											
13) . (6																								
												1	ا		H												
						1	4		1444								HHH	1-1-1-1						2 1 1 1 1			1
) . C	4								1									Ш	++1			1-1-1-			Ιŧ
																											11.
		<u> </u>			* 1															Ħ	H					I Harris	1
																Ш				4		-+	+++				1
	壨	;;;;; Э ∡ (2								1 ++++			-1-1-1-1	-1-1-	1111		1444			وباده	· • - - -4.					
							<i>6</i>										1-1-1-1										1
		琩						0																			
-1-1	4-1-1-1		1-1-1-1	1	4												囲									陆	
		#		Ç	3	0									H					#				1			
)				100			TARREST	THE RESERVE AND ADDRESS.	F 10 10 10 10 10 10 10 10 10 10 10 10 10	Charles Market	A CONTRACT OF	PERSONAL SERVICE	A Company of the Contract of t	100	C. 19 32 32	10275	CONTRACT OF		2 PHILE 22	A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		\blacksquare									H	2	2				3				4						
11 551		HH			HE					1117					72												
	1111						1 1 1 1 1 1 1				讎		; ×		ر 0	in,	/1					##					
		++++																		-i- -i-							
				╂╃┼┼┼					 - - - -		##											#					
	###	H	1333			H			Ш		H							H		Ш		##			##		Œ


Reaction Rate as a Function of Catalyst Concentration. Temperature: 175 C. O.CO O	70-
Reaction Rate as a Function of Catalyst Concentration. Pemperature: 175 C. O.20 O.10 O.10 O.08	
Reaction Rate as a Function of Catalyst Concentration. Pemperature: 175 C. O.20 O.10 O.10 O.08	
Reaction Rate as a Function of Catalyst Concentration. Pemperature: 175 C. O.20 O.10 O.10 O.00	
Resettion Rate as a Function of Catalyst Concentration. [temperature: 175 C.] O.26 O.16 O.16 O.08 O.09 O.09	
Reaction Rate as a Function of Catalyst Concentration. Temperature: 175 O. Co.20 Co.16 Co.16 Co.16 Co.16 Co.16 Co.10 Co	
Catalyst-Concentration. Temperature: 175 C. 0.20 0.16 0.0-16 0.12 0.02 0.04 0.04 0.04	
Catalyst-Concentration. Temperature: 175 C. 0.20 0.10 0.016 0.012 0.02 0.04 0.04	
0.20 0.16 0.016 0.008 0.008	
0.20 0.16 0.16 0.12 0.08 0.04 0 1 2 3 4	
0.20 (a) (b) 0.16 (c) 0.16 (c) 0.12 (d) 0.12 (d) 0.12 (e) 0.08	
0.04 0.04 0.04 0.04	
(arg. 1.1. 0.16	
(arg. 1.1. 0.16	
0.04 0.04 0 1 2 3 4	
0.08 0.08 0.04 0 1 2 3 4	
0.04	
0.08	
0.08 0.04 0.04 0 1 2 3 4	
0.04	
0.08	
0.04	1 + +
	11-1-1-1-1-1
	1-1-1-1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	<u> </u>
3	1 1 1 1 1 1 1 1 1 1
c × 10 , m/1	######
c × 10 , m/1	


							-71-
		Figure	19.				
		Reac	tion	Rateas	a Functio	nof	
		7 : 44: 144: 141:					
		- Cata	lyst	Concent	ration.		
			Temp	perature	: 200°c.		
0.48							
0.40							
0 0.32							
0.24							
				0/			
							▋ ▗ ▗▗▗▗▗ ▗ ▗▗▗▗▗▗ ▗
						· <mark>┠┼╌┆╌┸┈┈┦┈┊╌┦┼┆╏╢╌┤╌┼┼┼┼</mark> ┼┼	
			/ I + i-I				
			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			 	┩┩┪╍╅╼╾┨╌┼╸╏╶╾╡╏╶┼╌╎╌┼╌╏┈╛╌╂╌╸╾┫
						المساولة واحتماما واحتماما أواحتما	
	5				₹	1	
		 			m/1		
				3			
			⊞ c :	× 10 + ;	m/1		

٠.

	,	.,,					,																																						-7	2	,
																						::													:::									\prod		\prod	
							<u>:</u>	H	18	3	ir	e	2	0	•						::																										::
													:::				li				::	i.i.																	-								
			::								R	68	àC	t	i	'n		R	a l	e		as	3	a	I	าน	n	c t	i	0	n.	0	ſ	C	al	a	13	s	t								::
											~		10		n	1 1		4.	11	1						٠,		100		1								e:									::
										1	. V.		10	0		1	a	٠	1:		11	а (::		ינ	1	1		1. E	111	. .		Ö	141	, 6	1.5	با ا	uı	(a)	, د	•						#	-
										1	Tr	4	ותכ	+	F	g	u	1	e :		1	7,		1	₿,		8	nc	1	1)		H		+11				+					\parallel	#		1 1
			: :					1					+ + +						11		++1							141			1					1 1	H		#					+			
			::	1111	1:::				: 11				 								ir			H				111				/			;;;				+	111	1			+		#	-
									111				H						7.1 11						#		-			#	/								#			111	Ш	\mathbb{H}		H	
1111			={) . {	4	$\frac{\cdot}{\cdot}$							t!: ∃!:	1:			11 11]]-1											1									#					\parallel			
:::::				1411) 			+							#												1	•									1								
1111			11	111		4		Taractus.		1			<u> </u>	H			11		11	Įij.	11	#			1		1	/		##	#							Щ	#					4		#	Į.
: : : :				掛		:			: []				#	F			#		#	H							,	/											#			#	Щ	\parallel	H	Щ	1 1
				ر ر ـ ر	3 O -			1202					Ħ		H											1																					-
								1											I						,																						****
			Ħ			#							##		H		#		#			#		4							H				#							Ħ					++++
	1.1		Ħ					100									Ŧ	Ė						/																		#					-
	-					1							H				H		H					1			7	H								9			Ħ								++++
1:-1:	70			Э¦;∃ ∷∷	6	-		15.5						#					H			,						111				1							#			H					+
	-mo16							,					\pm						11		,/												,														1
1111	10)						1					<u> </u>							1															111												-
	er/						111	316					#				H		1		H						#												\pm			H					+
1.11	172		- ().]	2		:::						III				H	,										/				H			##				#	Ħ		### T -				+	+
	•												#:				,										1								THE												
	, ,		11	### ###		-1-1	1;; [] [1			* <u>†</u>		#			,	1				#														1-1-1 1-1-1			-									+
			H-											++	1				11					•	/ 		1			#									#			Ħ			Ħ		+
	H		1) . (18									1	•					Į.		/																					#			1	-
							11													1	1			#						/									\prod								-
1111							11:						<u>/</u>	11				,	/		#			#			_			#				Ħ	111				Щ			1::	#		#		†
			H					1				/ _	1				•				11											H				E		1:11		##	1	50	Č		#	1-7	1
1434) • (ĺ				,									Ħ																Hi		11.			111	Ш	
			1		1					1			,/		###	ij.					1	H		#			#														1	/ D	L C				
									1																		+								##					•	20	00	°C	, .			:
							111			P													Ħ				+								111				\prod			1-4 ·			H		:
			H				H		- A -																									Ħ									H	Ħ	#		
			() :::: 																																								223			
								C)							1						H	:2	3					#		3							4						\parallel	11:		
1111		: :			1::	H	<u> </u>			#												1++	<u> </u>																	##		111	Ħ	빍	11: 11:		
			H				1 I I	1			#		<u> </u>			1-1					C		×	1	O	3		m,	/	Ĺ				++			#		+		+ -	<u> </u>	#		111		
	1:::							#		\parallel																	1						H	.:: 	711 141						1	:::: ::::		畕	111		
					1	11	++-	#	##		H		#		+++ 									#		H			#					#									#	#	111	#	
::::::		: #:		7113	1::	肼	##	#	#	Ħ						1		1.1	11	1					Ш		-		#		Н	##		H		Ħ		H	Ш		1 1	17		핅	11:		

REFERENCES

- 1. Daniels, Farrington. Chemical Kinetics. New York: Cornell University Press, 1938. p. 18-21.
- 2. Deatherage, F. E. and Mattill, H. A. American Oil Chemists' Society Journal. 31:1425-31. November, 1939.
- 3. Dunlap, L. H. and Heckles, J. S. American Oil Chemists' Society Journal. 37:281-5. June, 1960.
- 4. Flory, Paul J. American Chemical Society Journal. 61:3334-3340. December, 1939.
- 5. Flory, Paul J. American Chemical Society Journal. 62:2261-2264. September, 1940.
- 6. Groggins, P. H. Unit Processes in Organic Synthesis. New York: McGraw-Hill Book Company, Inc. 1958, p.22-31, 694-705.
- 7. Hamilton, L. A. and Olcott, H. S. <u>Industrial and Engineering Chemistry</u>. 31:1425-31. November, 1939.
- 8. Henderson, J. L. and Young, H. A. <u>Journal of Physical</u> Chemistry. 46:670-84. June, 1942.
- 9. Hill, G. A. and Kelly, L. Organic Chemistry. Philadelphia; The Blakiston Company. 1943. p. 271-273.
- 10. Levesque, C. L. and Craig, A. M. <u>Industrial and Engineering Chemistry</u>. 40:96-9. January, 1948.
- 11. Ling, W. C. and Geankoplis, C. J. Industrial and Engineering Chemistry. 50:939-42. June, 1958.
- 12. Moelwyn-Hughes, E. A. The Kinetics of Reactions in Solution. Oxford: The Clarendon Press. 1933. p. 29-34, 223-229.
- 13. Othmer, D. F. and Rao, S. A. <u>Industrial and Engineering</u> Chemistry. 42:1912-19. September, 1950.
- 14. Swern, D., Billen, G. N., and Knight, H. B. American Chemical Society Journal. 37:281-5. June, 1960.