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ABSTRACT

Solutions to Laplace's equation are obtained by the method
of reflections for the probtlem of heat transfer from two parallel
rings of spheres arranged in regular polvgonal afrays. The mathe—
matical models developed describe the rate of heat transfer and
spatial temperature distribution due to an arbitrary number of
identical spheres of equal surface temperature correcting Fourier's
heat transfer equation for the interference caused by a multiparticle
afray. Although the method of solution is guite rigorous and can
be used to obtain as accurate a solution as desired, only the
second reflection was obtained, vielding a first order correction.
The model was compared with an exact solution of Laplace's equation
in spherical Bipolar coordinates for the case of two spheres in
space. The accuracy of the model was shown to be related to the
density of the array under consideration becoming more reliable

with increased dilution of the system.
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Symbol

a

NOMENCLATURE

Meaning

Sphere radius.

Unknown functions of integration for the
second reflection.

Modified Bessel function of order O.

Thermal conductivity of media surrounding
the spheres.

Modified Bessel functions of order 0,1 respectively.
Modified Bessel function of imaginary order

it - a real variable having the integral
representation,

® -x cosh. t.
K;, (x)= ée cos Tt dt.-
it

Number of spheres per regular array.

Legendre's function of imaginary order
(it - 1/2).

Legendre's function of order b and rank c.
Rate of heat transfer per set of spheres.

Numbered reflections of the rate of heat.
transfer per set o spheres.

Total rate .of heat transfer from the array.
Distance from sphere cenfer to’a point in space.
Temperature at a point in space.

Temperature of the ambient space.

Temperature at the’sphére surface.

Sphere centered Cartesian coordinates.



w,w‘l),w(?‘)..-

Yo

Wedge centered Cartesian Coordinates.

Horizontal distance from wedge vertex to sphere
center.

Vertical distance from wedge vertex to sphere
center.

Nabla operator.

Wedge centered cylindrical coordinates.

Half of the central angle of the wedge unit cell.
Separation constants of Laplace's.equation.
Dimensionlesé temperatures.

Dimensionless temperature evaluated at the sphere
center.

Coefficient in equation (56) - a function of
the number of spheres per array.

Coefficient in equation (55) - a function of
the number of spheres per array and the
aspect ratio, Xo/zo'

Coefficient in equation (59) -~ a function of the n

. number of spheres per array and the aspect
ratio, Xo/zo’
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1. TNTRODUCTION

The rate of heat transfer from a single sphere can easily be
predicted by Fourier's law of heat transfer. However, the effect
that multiple spheres in‘close proximity have on the rate of heat
transfer from individual spheres has never been widely investigated.
The work presented herein concerns itself with the development of
a mathematical model which describes the rate of hea£ transfer and
the spatial temperature distribution due to the presence of two
parallel rings of spheres of uniform surface temperature T . The
heat transfer model developed corrects Fourier's equation for the
interference caused by a multiparticle array. The problem may be
treated by considering two spheres located aloﬁg the midplane of
an infinite wedge of an arbitrary central angle. This model represents
an interestipg problem when the boundary conditions are&such that
the derivative of temperature normal to the wall is zero (i.e.,
9T/9¢ = 0 at ¢ = ¢o) and that at all points equidistant from the
sphere centers, the normal derivative of temperature is zero (i.e.,
3T/3z, = 0 at z, = 0).

The solution to the two sphere and wedge problem is identiéél
to the two ring problem and will yield the spatial temperature
distribution and rate of heat transfer of two parallel groups of
identical spheres arranged in regular planar arrays. In more

concrete terms, the model may be used as a first step in theé charac—--.

terization of a packed bed such as a catalytic reactor.



Considering a two ring system, two spheres, one from each of
the planar arrays, may be considered to be located within their
own wedge-shaped unit cell of central angle 2¢0. ¢o’ in turn,
can be expressed in terms of the number of spheres per ring,n,

according to the following relationship:
¢, = m/n. (1‘)

The walls of the unit wedge act as planes of symmetry both
for the double layer of regular polygonal arrays and for the
resulting temperature distribution. This may be stated in mathe-

matical form as follows:
3T/3¢ = 0 [on the wedge walls]. (2)

Similarly, the plane defined by the equation z, = 0 acts as a plane
of symmetry between the arrays and for the resulting temperature

distribution. Mathematically, this may be written as,

BT/BZW =0 [at z = 0]. (3)



2. SUMMARY

Mathematical models were developed for the rate’of heat transfer
and spatial temperature distribution due to the presence of two
parallél rings of identical spheres of equal surface temperature
arranged in regular polygonal arrays. Truncation of the solutions
to consider only the contributions coming from the second reflection
resulted in equations (49) and (59). The heat transfer correction
factor,y, used in equation (59) is obtainable from figures 8-11.
Since the higher order reflection terms were neglected, the model
presented is valid only for relatively small values of a/x0 and
a/zo. The limitations on these geometric factqrs are discussed in
appendix A.

The heat transfer model obtained by the method of reflections
wés compared- with an exact solution to Laplace's equation for the case
of two hof spheres in space. The reflection model compared favorably
with the bipolar coordinate solution and, as expected, the accuracy

of the reflection solution increased with decreasing values of

- aflz .
arz
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3. DEVELOPMENT OF MODEL

The unit cell chosen for the development of the temperature
distribution model consists of two spheres of surface temperature TS,
located within an infinite wedge such that a line connecting the
the sphere centers would be parallel to the wedge walls (see figures
1 and 2). The temperature field must be a harmonic function, i.e., a
solution to Laplaée's equation

V2T = 0 (4)
and must also satisfy the boundary conditions. In this case, the
boundary conditions are that at the wédge walls the normal derivative
of temperature is zero (i.e., 9T/3¢ = 0 at ¢ = ¢o,), at the midplane
thg normal derivative of temperature is zero (i.e., BT/BZW = 0 at
z, = 0), and the temperature at the sphere surfaces is TS.

The problem can be solved in terms of a dimensionless temperature,
¥, defined as follows:

b= (- T)/(T - T) o)
where Ta is the temperature of the ambient space and T is the temperature

‘of a point in space. Using this definition, the boundary conditions

become
A) 3y/3¢ (on the wedge walls) = 0; (6)
B) aw/azw (at the plane between rings) = 0; (7)
and C) Y (at the sphere surface) = 1. (8)

Also, according to the definition
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v (at infinity) = O. (9

Rearrangement of cquation (5) yields

T = (Tg - T)¢ + Ty (10)
Using equation (10) in conjunction with Laplace's equation, making
the required substitutions and simplifying, one obtains

v2y = 0. (11)
Hence,} is also a solution to Laplace's equation and the problem
can be solved in terms of the dimensionless temperature and the
appropriate boundary conditions.

The solution to this problem is obtained via use of the method
of reflections.t 'This involves obtaining an infinite number of
solutions, each solution independently satisfying one or more of the
boundary conditions. The resultant sum is a solution which satisfies
~all of the boundary conditions,
| Y = ¢(1)+¢(2)+w(3)+_,,+¢(”). (12)
Thus, the required solution,y, will be an infinite series
of individual solutions; the odd numbered solutions satisfy the
‘boundary condition on the sphere surface, while the even numbered

solutions satisfy the boundary conditions ﬁpon the wedge surface
and the surface of the midplane.

It will be the aim of this thesis to obtain up to the second

term of this series. The second reflection amounts to a first order

1. The original reflection technique was developed by Lorenz[9] in
conjunction with a problem in fluid mechanics. Haberman [4],[5],[6]
has also used this technique in solving the problem of heat transfer
from a sphere to a surrounding concentric cylinder.
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correction factor on the temperatﬁre field produced by the spheres,
negating the temperature gradients at the wedge walls and midplane
produced by the first reflection.

Due to the dissimilar shapes involved in the problem, wedge-
shaped and spherical, no one coordinate system can be used to
simultaneously treat both geometries. First, the development of
the model, using a spherical coordinate system based upon the upper
sphere center as an origin, will be considered. There are certain

restrictions upon the first order solution. They are that the solution

must be:
A) a harmonic function,
B) equal to 1 at the sphere surface,
and C) a function of rg alone due.to spherical

symmetry.

For w(1> = f(rg) only, the well known solution to Laplace's equation
in the regipn'outside of the sphere is:

w(l) =a/rs, (13)
This sclution is consistent with the above festrictions since it is
a harmonic function whose value is unity at the sphere surface and
is a function of rg only. This solution in conjunction with equation
(12), yields

v =alr_+ p(2) 4 ) 4 4 (=), (14)

Truncating after the second reflection term to obtain the first
order correction, one obtains: |

Y = alrg + p(2), (15)

The first reflection term sets up a temperature field of concentric
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spheres of constant temperature equal to a/rs. These spheres are
cut across by the wedge walls as well as by the midplane. The
spheres, therefore, set up a temperature distribution on the walls
and midplane and, at the same time, set up a thermal gradient
perpendicular to these surfaces. However, since the boundary
conditions of the problem are that no gradients perpendicular to
ﬁhese surfaces are to exist, the second reflection must cancel the
effect of the first reflection. In mathematical terms,

2y (2) /39 = a9V /a4 (16)

and 3y(2)/az, = ~ay (1) /32 . (17)

These conditions must hold true only at the wedge walls and the

midplane, respectively, and not evervwhere else in space. w(z)

and w(l) must be linearly independent solutions to Laplace's
Aequation.

Using Cartesian coordinates one can show that,

Xy = X5 T Xg» (18)
YW = YS) } (19)
o 2y = 2o F 24 ’ (20)
1) _ _ a
v = afrg - e (21)
xg t yg + 23 ,
o a , @
/wa - %)+ yG + (2 - 25) %
a
v = (23)
. 2 _ 2 2 - 2 "
' /kw ZXWXO +oxZ o+ ve (zw zo)

At this point, a cylindrical coordinate system, with its origin at



the intersection of the wedge center and the plane z, = 0, will be

employed. The following relationships apply:

Xy = P COS ¢ (24)
Yy = 0 sin ¢ , (25)
x% + y% = p2 . (26)

Making the appropriate substitutions, one obtains

(D) 2

Vo2 - 2x,p cos ¢ + xg + (2, - 20)2

(27)

Differentiating with respect to 2z,

3wV /az, = 2(zo = fw) . (28)
v 2 . + 52 - 213/2
[o 2xop cos ¢ x5 + (zy .zo) ]

At the plane between the spheres, this becomes

v (1) 3z, (2, = 0) = 02 = 2x,0 CO:Z; + %2 + 221312 - (29)
If p is defined as
| p = (p2 - 2xp cos ¢ + X02)1/2 , - ‘ (30)
equation (29) reduces to

29 /o2, (2, = 0) = %o : (31)

[p2 + 221372

Similarly, differentiation with respect to ¢ yields at the wedge

wall



ayp(1) /3 = = ~axop sin éo . (32
v ¢ (¢ ¢o) [p2 —2xop cos ¢, + xg + (zw - 20)2]3/2 (32)

Transformation analysis indicates that w(z) should be in the form

[+

w(z)'= f-f AR (Ap) cosh(t¢) cos(Azy)drdr + fBJO(KQ)e—A?wdA. (33)
0 0

o

The above solution is linearly independent of w(l) and is valid
everywhere within the wedge. A and B are not constants, but unknown
functions of the separation consténts, A and 1. Differentiating w(z)

with respect to z., one obtains:

w

(2 /35 =

O 8
o~ 8

AR, (1¢) cosh(t¢) [~ sin(iz )] drdr

+ [ BI,00) (1) (e7MEW)dx . (34)
0
Evaluation of the derivative at the midplane yields
39(2) /92, (2, = 0) = -f ABIg(hp) dA . (35)
0 :

However, since the normal derivative at the midplane must be equal

to zero, the first reflection derivative must cancel the second.
(2) = ~3p(1) =
P /azW Y /azW [at z, 0] . a7n

Substitution of the derivative from equation (35) and (31) respectively

results in the following identity:

15.



e e) . az

[ ABI (hp) dX = 0 (36)
0 0 [p2 + z§]372

It is known from the literature that

o . . )2

[ t(e™%5)3 (ar) at = r73(s + vr) (a/R)7 (37)
0

/s + A

where r = .and R=s+ 1 .

Letting v = 0, t = X, s =Z s and A = p vields the following identity

after simplification:

Z

0 = A(e-ZOA)JO(AQ) . (38)
02 + z213/2 0
- o
Comparison of equations (36) and (38) yields the followihg identity:
o ;z N o
af A(e 0T, (p) dx = [aBI (Ap) dX . (39)
0 0= _
0 0
The constant B can now be obtained by comparing like terms.
~Z A

B =a(e “0%) . | (40)

Substitution for B into equation (33) yields:

2. Harry Bateman, Tables of Integral Transforms, Vol. 1, p. 182.

16.



v(2) = [ [ AR, () cosh(t4) cos(hz ) didt

<o
(e}

"")\(Zw + ZO))

+ f alyOp) (e ax . (41)
0

-A search of the literature yields the following Laplace transform:

b ~ - 3
Ja e ac = T am)Y (42)
0

where r = Vsz +A%2 . and R=s+r.

Letting s = z, +'zo, v=20, t=2x, and A = p one obtains the following

identity:
f JO(KQ)(E—A(ZW + ZO)) an = (gz + (Zw + z0)2)-1/2 . (43)
0

Using the definition of p equation (43) may be rewritten as

oo .

A éJO(Kﬁ)(e_X(ZW+ZO)}dX = (pz— 20%,, cos ¢ +_Xg + (zw + 20)2)—1/2 . k44)

Substitution of this equation into equation (41), differentiation of

w(z) with respect to ¢, and evaluation of the resultant expression

at the wedge wall yields:

3. Bateman, Vol. 1, p. 182.

17.



aw(Z)/a¢.(¢=¢o) = é éTAKiT(Xp) sinh(r¢o) cos(AzW) didr

apxy sin ¢4

-~ . (45)
2 . 2 .. 213/2
{p 2pxO cos ¢ + xI 4 (zw + Zo) 1 /

However, since the normal derivative at the wedge wall must be

equal to zero, the first reflection derivative must cancel the second.
a9p(2) /3¢ = -2y /3¢ [at ¢ = ¢_] . (16)

Substitution from the proper equations for the derivatives in-

equation (16) and rearrangement of the resultant equation yields:

O 8
O~ 8

TA sinh(1¢0) KiT(Ap) cos(xzw) didr =

apx, sin ¢4 + apx, sin ¢, , (46)
[p2 + (2, - 2,)21%/2 [02 + (z, + 2,)2]3/2
Where‘Q§ = p2 - pro cos ¢O + xg

Inversion fo the Fourier and Lebedev transforms yields the value of A.

8aKiT(AxO) sinh[t(w - ¢O)] cos(Azo)

e sinh(f¢o)

(47)

4. The details of the transformations are included in appendix C.

18.

4
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Using theils definition of A, along with the equality in equation (43),

equation (41) may be rewritten as:

80000 '—h “{1
w(2)=f;%)é éKiT(AXO)KiT(Xp>[S;?nézggO? D])cos(kzo) cos(AzW) cosh(t¢) drdr

+ a . (48)
(gz + (zw + zo)2

The approximate temperature field may now be expressed as:

a + a
Ll 7 7 2 V) 7
vp ~2xop cos ¢+XO+(ZW—ZO) VYo -2x,p cos ¢+XO+(zw+zo)
8a ey sinh[t(r=¢.)]1) ..
+ S K. (Ax YK, (Ap) o) cos(Az _)cos(Az_)cosh(t¢) drdr.
(gi)é é it o’ it ( sinh(T¢O) ) 0 \ (49)
The rate of heat transfer per set of spheres, q, can be
expressed as the series;
q=q 4 q@ £ ¢G4 L4, | (50)
Truncatiﬁg the above series yields the following approximate
solution: _
q = q(l) + q(Q.) + q(3) “+ q(l‘}) . (51)
This truncated series can be shown from appendix D to be
q = 4rka(T_ - T )[1 - v{2) 1, (52)
s a XO’O’ZO> .
where w(z) refers to w(z) evaluated at the sphere center. This

(2550,2,

will henceforth be refered to as w(22
o



Evaluation of w(z) at the sphere center (p=xo,¢=0,zw=zo) yields upon

simplification
wéz) - (%)ZZ [KiT()\xo)}z H dadr
+ (%)Z Z[KiT(AxO)]Z H cos(2rz,) didt + —::-; , (53)
o .- S
Integration with respect to A yields
0 - O ey
(-—)f ) P ALt 3z0/30)7] dv 4 alaz, g (54)

Ignoring the last two terms in equation (54) makes this solution
identical to that proposed for w(z) at the sphere center for a
single plane of identical spheres arranged in a regular polygonal
array. This result is to be expected, given the similar geometries

involved.

The second term of equation (54) may be shown to be

a H 2 - | 7
(‘“)é(m) PULE 20 x) e = pafz), 35)

5. Details of the integration are included in appendix E.
6 David Horwat, The Steady State Heat and Temperature Distribution

of a Hot Sphere Within an Infinite Wedge, p. 22.
7. The development of this identity is shown in appendix F.

20.
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)

where B = rzl(l 4 {(xo/zo) sin(ﬂr/n)}2}~1/2

and r, = [n/2] = largest integer < n/2.

Examination of the coefficient in equation (55) indicates that for
very sméll values of xo/zo, B reduces to [n/2). This is evident -
in the graphs of B versus XO/ZO in figures 3-7.

The first term of equation (54) has been shown in a previous

work to be,

(a/x)) | [—MJ-L--) dt = (a/x )= , (56)
0

cosh(tw)

e o ¢ sinh[(n-1)t7n/n] dt
where é sinh{tn/n) cosh{t7)

'The geometric view factor, =, was calculated for various numbers
of spheres in the aforementioned work.

Equation (56) may be rewritten as follows:

[ H' o
(a/x) é [ pyepe J dv = (z /% )(a/z )= . (57)
Hence, equation (54) may be written as:

v§?) = (alzdv, (58)

where‘y=—{(quxo)m +' B + 1/2}.

8. Horwat, p. 22.



Therefore, the final form of the heat transfer equation is,

q = drka(T - T)) (1 ~v(a/z)) , (59)

where q is the rate of heat transfer per set of spheres. The
rate of heat transfer from the entire array would merely be the
rate of heat transfer per set multiplied by the number of spheres

per ring, n.
Q = 4rkan(T, ~ T,) (1 - v(alzy)) - (60)
The spatial temperature distribution is modeled by

fyoe a a
- <4
z- \ dx 24 (g —z )2 /522 Z Z
Vo 2xop cos ¢+x7 (z uo) Vo 2xop cos ¢+XO+(Z +zo)

sinh[t(m~d,)] |
sinh(T¢O)

+E§%)é éKiT(XXO>KiT(KD)( )COs(Azo)cos(Azw)COSh(T¢) drdr.

(49)

This ends the development of the models for heat transfer and

. spatial temperature distribution from two parallel groups of
-idéntical spheres arranged in~regular polygoﬁal arrays. There are
limitations on the uée of the y coefficient. These are outlined in

appendix A.



n /i
G ] _A
-~ /" il ) z : B B ‘{‘ '33
- g / | \ /’4
P / % . - .
(‘), /! Vo T A
\ ; -
\ j’// \ \
\ ! ;
\ i \\, !
\ Jo
\ -
A o
Y l -
. (J T — N P rd
~—— f\’/
()

TATALLEYL ARQANS O0F SPWVMERES

EACWAIME UNT WEDGE To W= &

F\GLRE Y



24,

FAGLRE 7

MO STWERES
UN\N \WEDG S {3‘%\&.&.& ‘bfr e

‘BN
//\/ ’\\\
A \\ N |
4 0 s,g,\ " .
/ TN N ST /of = 0
S ,
1 N S
!

@,0%.,)
TNOT Niyve\w

m\,
N ]
—-N-\-\Q% T ST/ 5z, =0
Ly, = R _ |

FR0OMN AT NAVEW]




4. RESULTS AND CONCLUSIONS

The coefficient B in equation (55) was calculated for various
values of the number of spheres per ring, n, and the aspect ratio,
xo/zo, using a Hewlitt~Packard programmable calculator. The results
are presented in Table 1 and figures 3-7. TFor the trivial case of
n =1, it can easily be shown that B = 0 for all values of xolzo.

The heat transfer correction factor, vy, in equations (58) and
(59) was calculated for various values of n and xo/zo. The results
are included in Table 2 and figures 8-~11. For n = 1, it can be
shown that vy = 0.5 for all values of Xo/zo'

Observe that in equation (59) the sign of‘the correction term,
—Y(a/zo), is negative. Thus, increasing the value of y or a/z0 has
the effect of reducing q. Table 2 shows that for a specified value
gf a/zo, increasing the number of spheres per ring results in a
lower value of q, all other things being equal. However, the total
heat transfer increases with increasing n since the term in brackets
in equétion (60) always decreases more slowly than the increase in
n. Thus, the greater the number of sphefes per array, the greater
the total rate of heat transfer, all other things being equal, but
the efficiency of each sphere as a source is diminished.

The models developed are, of necessity, not rigorous in describ-
ing the behavior of packed beds since the particles in such beds do
not form a regular array such as that treated in this report, nor

are they identical in shape or size. The models are, however, a

25.



26,

first step in the attempt to characterize heat transfer in a packed
bed. Future developments along this line would include the develop-
ment of higher order reflection terms(perhaps including a general
equation for the higher order terms), making it possible to solve
the pfoblem for concentrated systems. Experimental verification of
the models is also in order but this is a task much more easily said

than done.



TABLE 1

8 Coefficient for Various Values of n and XO/ZO

0.01 0.02 0.1 0.5 1.0 2.0 5.0 10 50 100

2 0.99950 | 0.99980 | 0.99504 | 0.89%443 | 0.70711 | 0.44721 .196116 | 0.09950 | 0.01999 | 0.01000

3 0.99996 | 0.99985 | 0.99627 | 0.91766 | 0.75593 ~0.50000 { 0.22502 | 0.11471 | 0.02309 | 0.01155

4 1.99993 | 1.99970 | 1.99255 | 1.83724 | 1.52360 | 1.02456 | 0.46828 | 0.23953 | 0.04827 | 0.0241i4

5 1.99994 | 1.99975 | 1.99378 | 1.86252 | 1.58672 | 1.11328 | 0.52791 | 0.27229 0.05503 | 0.02752

6 2.99990 | 2.99960 | 2.99006 | 2.78223 | 2.35746 | 1.65432 | 0.79252 | 0.41033 | 0.08305 | 0.04154

7 2.99991 | 2.99965 2.99130 | 2.80752 | 2.42120 | 1.75039 | 0.86741 | 0.45350 | 0.09213 | 0.04609

8 3.99988 | 3.99950 | 3.98757 | 3.72724 | 3.19206 | 2.29463 | 1.14304 | 0.59997 0.12216 | 0.06109

9 3.99989 | 3.99955 | 3.98881 | 3.75253 | 3.25582 | 2.39206 | 1.22593 | 0.65009 0.13287 | 0.066438

10 4.99985 | 4.99940 | 4.98509 | 4.67225 | 4.02669 | 2.93687 | 1.50736 | 0.80235 | 0.16433 | 0.08222
20 9.99973 | 9.99890 | 9.97266 | 9.39728 | 8.19982 | 6.14998 | 3.38783 | 1.90836 | 0.40611 | 0.20352
50 24.9994 | 24.9974 | 24.9354 | 23.5724 | 20.7192 | 15.7895 | 9.07152 | 5.41020 | 1.27688 | 0.64520
100 49.9987 | 49.9949 | 49.8732 | 47.1975 | 41.5849 | 31.8555 | 18.5450 | 11.2705 2.89714 | 1.49261
500 249.994 | 249.975 | 249.376 | 236.199 | 208.510 | 160.383 | 94.3327 | 58.1537 | 16.3737 | 9.04057
1000 499.987 | 499.950 | 498.755 | 472.450 | 417.167 | 321.042 | 189.067 | 116.758 | 33.2374 | 18.5760
5000 2499.94 | 2499.75 | 2493.78 | 2362.46 | 2086.42 | 1606.32 | 946.944 | 585.589 | 168.147 | 94.8601
10000 4999.87 | 4999.50 | 4987.57 | 4724.98 | 4172.99 | 3212.91 | 1894.29 | 1171.63 | 336.784 | 190.215
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vy Coefficient for Various Values

TABLE 2

of n and x /z
o' “o

XO/ZO 0.01 0.02 0.1 0.5 1.0 2.0 5.0 10 50 100
_—._g 51.4999 | 26.5000 | 6.49504 | 2.39443 | 1.70711 | 1.19721 | 0.79612 | 0.64950 | 0.53000 | 0.51500
3 116.970 | 59.2349 | 13.0433 | 3.72706 | 2.41063 | 1.57735 | 0.95596 | 0.73018 | 0.54618 | 0.52309
4 193.921 | 98.2102 | 21.6347 | 6.16566 | 3.93781 | 2.48167 | 1.35112 | 0.93095 | 0.58655 | 0.54328
5 277.776 | 140.138 | 30.0214 | 7.86804 | 4.83948 | 2.98966 | 1.57847 | 1.04757 | 0.61009 | 0.55505
6 368.970 | 186.235 | 40.0371 | 10.5916 | 6.51216 | 3.98167 | 2.02346 | 1.27580 | 0.65615 | 0.57809
7 464.453 | 233.976 | 49.5866 | 12.5266 | 7.53073 | 4.55516 | 2.28931 | 1.41445 | 0.68432 | 0.59218
8 565.473 | 284.986 | 60.5849 | 15.4467 | 9.30179 | 5.59950 | 2.76499 | 1.66094 | 0.73430 | 0.61718
9 669.466 | 336.983 | 70.9854 | 17.5519 | 10.4055 | 6.21689 | 3.05586 | 1.81505 | 0.76586 | 0.63298
10 777.990 | 391.744 | 82.7341 | 20.6221 | 12.2516 | 7.29932 | 3.55234 | 2.07484 | 0.81883 | 0.65948
20 1997.40 | 1003.95 | 209.163 | 49.6353 | 28.5688 | 16.5845 | 7.86163 | 4.39526 | 1.30349 | 0.90222
50 6451.54 | 3238.52 | 668.039 | 152.593 | 85.4796 | 48.4198 | 22.4236 | 12.3362 | 3.06209 | 1.78731
100 15109.1 | 7579.79 | 1556.23 | 348.870 | 192.671 | 107.648 | 49.1622 | 26.8291 | 6.40886 | 3.49840
500 101158. 50704.5 | 10340.7 | 2254.86 | 1218.09 | 665.423 | 296.649 | 159.562 | 37.0553 | 19.6314
1000 224381. 112440, 22887.3 | 4950.55 | 2656.47 | 1440.94 | 637.327 | 341.138 | 78.5134 | 41.4640
5000 1378050 | 690275. 140049. 29873.9 | 15842.4 | 8484.57 | 3698.54 | 1961.64 | 444.257 | 232.915
2976730 | 1490865 | 302161. 64160.1 | 33890.8 | 18072.1 | 7838.25 | 4143.86 | 931.630 | 487.888

10000
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APPENDIX A

Limitations on a/xo and a/zO

The system consisting of two planes of spheres contains
geometric limitations on the variables a/x0 and a/zO . The maximum
value of a/zO is fixed by the contact of one sphere from each of the

planar arrays. Thus, for the spheres in contact,

(alz ) = 1. (A-1)

o' max

Also, the value of a/xO is fixed geometrically by the tangency of
the spheres to the planes of the wedge. This condition corresponds
to each sphere in the ring touching both adjacent ones. It may be

shown that the value of a/xO corresponding to this case is:

(a/x ) = gin(n/n) . (A-2)

Oo"max

It is important not to confuse the geometric limitations on
a/xo and a/zO with those imposed upon the mathematical solution as
a result of the deletion of the higher ordered reflections. Since the
higher order reflections have been neglected in the development of
this model, the solution presented is valid only for relatively
small values of a/xo and a/zo. This is due to the fact that the
reflection solution is a power series in increasing powers of a/xO
and a/zo. Therefore, for small values of a/x0 and a/zo, the higher
order terms become small and neglectiné them ié Justified. It has

already been shown that there are geometric limitations on the
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on the values of a/xO and a/zo. Thus, the solutions are most valid
when a/x_ << (a/x) and a/z << (a/z ) . As a rule of thumE,
o O " max o 0" max

/
alx, should not exceed O.l(a/xo)max and a/zO should be less than

O.l(a/zo)max .

The aspect ratio, Xo/Zo’ may be calculated from the geometric

factors according to the fellowing equation:

alz
= o
xo/zO = . (A-3)
a/x
o
Since the aspect ratio is dependent on the geometric factors, the
values of xo/zO that may validly be used are fixed by equation
(A-3). Once a/z0 is chosen, the values of xo/z that may be used
o
are,
(x /z ) <x/z g (A-5)
0 0o pin o o <
10(a/zy)
here (x /=2 = e
where ( o/ o>min (a/x ) . (A-5)



APPENDIX B

Comparison of Reflection Solution to Bipolar Coordinate Solution

For the case of two identical spheres in space, an exact
solution in spherical bhipclar coordinates may be obtained. Values
of vy were obtained by Bart and Yorwat? for comparison with the
value of vy obtained via the method of reflections. ¥or the latter
case, it can be shown that v = 0.5 for all values of a/zo . TFor
values of a/zo = 0.1, 0.05, 0.0l; the bipolar solution was shown to
yield values of 0.476133, 0.4878C, and 0.49751, respectively.

The improvement in agreement with decreasing a/zo is caused by the

increased validity of neglecting the higher order reflection terms.

a. Ernest N. Bart and David W. Horwat, Solutions to Laplace's
Equation for (1) a Sphere in a Wedge and (2) Transport from
an Arbitrary Number of Spheres in a Planar Array, pp. 20-21.
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APPENDIX C

Proof of Equation (47)

The three terms in equation(46) may be labelled E, F, and G,

respectively. From a search of the pertinent literature the following

cosine transform is obtained,

Tt Vi y Fu-1/2 .
glp) = f(x u)Ku(Ax)cos(xp)dx = i—% (24) "Tixu +-% (p2+A2)+ -(C-1)
0 .
If the real part of u is greater than -1/2, the upper sign must be
used, whereas if it is less than +1/2, the lower sign is used.
Letting x =A, u =1, p = zW - zo, and A = Eoone obtains the
following identity:
(n/2)p, <
= Fyo= JAK A) cos[A(z -~ z dx. C-2
BR) = T T GITIT = DK (gh) cosDie - 2] (©-2)
,Byhcomparing terms in F and g(p) one can conclude that:
2apx,sin ¢
F ___,.9_.0..7___.9 g(p) . (c-3)
Substitution for g(p) from equation (C-2) yields:
2apx,sin ¢, (% T K
F = BT {)ml(g_x) cos[A(z, ~ z,)] dA. - (C-4)

Similarly, allowing p in equation (C-1) to be zw + zo, one obtains

the following identity:

a. Bateman, Vol. 1, p. 49.
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[+8]

kal(gék)cos[k(zw + zo)] dxa. .(C—S)
0

o 2apxysin ¢4
= e o,

Substitution of the above identities into equation (46) yields:

oG

2apxgsin ¢

E = T, éXKl(QOX){Cos[X(ZW = 2)] + cos[A(z, + 2z )1} dx.  (C-6)

However,

cos[A(z =~z )] + cos[A(z_ -2z )] = 2cos(Az )cos(Az ). (C-7)
w © w o w o

Hence, equation (C-6) may be written as:

oo

fAKl(QOA) cos(kzw) cos(kzo) dx. (C-8)

e 0

hapxysin ¢,
E:: RO A

- From the literature one may obtain the following identity:

I b
v 7y = |2 -
Ko(l/p 2pxO cos ¢ + X2 ) - fKiT(Ap)KiT(Axo) cosh[t(w-¢)] dx.
0 (c-9)
-Taking the derivative with respect to ¢ and letting
y =Avp? “pro cos ¢ + xg » the left hand side (LHS) of equation
(C-9) becomes;
3R, (M] gl [20R, ()] .
LHS = ———— = |[2X| |2 = |y (y). - (Cc-10
) 2 5y 3 1 ( )
L
LHS = -|-——20%0 SI0 ¢ R (5 (c-11)
/bz - 2pxo cos ¢ + xg
b. F. Oberhettinger and T.P. Higgins, Tables of LeBedev,

Mehler, and Generalized Mehler Transforms, p. 3.
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Evaluation of equation (C-11) at the wedge wall yields the following:

Apx_sin ¢O

O

LHS = -~ Kl(xgo). (c-12)

Differentiation of equation (C~9) with respect to ¢ yields for the

right hand side (RHS) the following:

RHS = —-% giKiT(kp)KiT(Axo) sinh[t(r-¢_)]1 dt. (c-13)

Equating equations (C~12) and (C-13), one obtains after rearrangement:

20,

Kl(KQO) = ﬂlpxosin r éTKiT(Ap)KiT(Xxo) sinh[1(w-¢o)] dt. (C~I4j

Using this definition of Kl(KQO), equation (C-8) may be equated to

the original definition of E in equation (46).

é éTKiT(Ap)KiT(AXO) sinh[A(ﬂ—¢o)] cos(kzw) cos(kzo) drdx

il
O 8
oY 8

TAK, (Ap) sinh(t¢ ) cos(rz ) drdr. (C-15)
it W

Comparing like terms, one may conclude that

A = 8aKi . (Axy) sinh[1(m-¢,)] cos(Azg)
- e sinh(T¢O)

. (47



APPENDTX D

Proof of Equation (52)

The rate of heat transfer per set of spheres, q, is expressible
in series form,

The form of q(m) is developed from the Fourier equation of heat

transfer.

dq/dA = —k(BT/arS), (D-2)
. 2m 7w :

q(J).z —f f k(aT/ars)a a? sin 6 déd¢ , (D-3)

. 00 -

ASPIENC I S VAC I O U (3)

(aw(j)/ars)a = (T, - Ta)*l(aT/ars)a . (D-4)

Substituting for (Z)T/ars)a in equation (D-3), one obtains,

S It 2 PP D . ey
q ¢ - Tka? [ [ (3y /ars>a sin @ ded¢ . (D-5)
0

o

The solution to Laplace's equation in spherical coordinated is,
for even numbered reflections.

, T |
Kb(zj) = ) yo{rt A(l;j cos (m¢) P?(u)} . (D-6)

i=0 m=0 s m
For odd numbered reflections,

© i
(23+1) _ (-i-1) (1)
Y = izo sz {rs Bm,2j+l cos(m¢) P?(u)} , (D-7)



46,

where u = cos 6 .

Taking the derivatives of equations (D-6) and (D-7), respectively,

and evaluating the resultant functions at the sphere surface, one obtains:

o0 i
(23) _ (-1 (4) m _
(3y /ars)a iZO mzo {ia Am,Zj cos(mé) Pi(u)} R (p-8)
(25+1) ST i) (@) m
(3y /Brs)a = iZO mzo {-(i+1)a m, 25+1 cos (m¢) Pi(u)} .
(D-9)
Substitution of equations (D-8) and (D-9) into equation (D-5)
yields the following:
21 ®, » i, .
(23) = kaz(T -T ) f f{ Z X (ia(l_l) Aélg cos{m¢) pl (u) )sin © ded¢)
0 0°i=0 m=0 ’ (p-10)
q(23+1) -
2 7w 0
kaz(T -7 )f é[LZO mgo{(1+l)a( ~i-2) é113+1 cos (m¢) P?(u) } sine]d6d¢

(D-11)

By making use of the following identity,equations (D-10) and (D-11)

may be simplified.

2n 0 (for m # 0)
f cos(m¢) do =
0 21 (for m=0) . (b-12)
Heﬁce,_
¥ ~2rka? (T _~T )f[ Z { (1-1) élzj P.(1) } sin eJde , (D-13)
0 i=0

[ee]

(23+1) = Zwkaz(T -T )é[lio{(l+l)a( o él%J+1 P01} sin e) o

(D-14)



However,

] 0 (for 1 # 0)
[P (n) sin 6 d8 =
0 2 (for i = 0) . (D-15)
Therefore,
25+1) _ 0 -
q(Z3*HD) = drk(r, - 1)) Bé’§j+l ) (D-17)

Hence, the rate of heat transfer is the sum of the odd terms,

o B
X q(2j+l) The boundary conditions indicate that, in general,

3=0

w(2j+l) = “w(Zj) (at the sphere surface) . (D~18)

Using this relationship the following identity may be obtained,

o i . . o i . s
(-i-1) _ (i) m i (1) m
.E y a B . cos{mé) P,{(p) = ~z z a A . cos(mg) P, (u)
, . 23+1
i=0 m=0 s e + i=0 m=0 ms 23 +
(D-19)
Comparing terms, one may conclude
aiA(i) = -a(ni—l) B(i> (D-20)

m,2j 23+1
It can be shown that for m=i=0, this simplifies to the following:

(V) = .0 -
Bo,2941 = 20,25 | (p-21)

It can also be shown that

0 23
Aé ;j = ¢( 3 (at the sphere center) . (D-22)
3



Therefore,
(0) _ (23)
. = -ay ’
0,23+1 o
where wézj) is the dimensionless temperature term evaluated at.

the sphere center. Hence,

. 2
q(23+1) = ~4ﬂka(TS - Ta)wé 3

Equation (D-1) may be approximated as

=gy @, () @)

Since the even numbered terms are zero, this may be rewritten as

PR CORE)

This is equivalent to

© , @

q = -4ﬂka(TS - Ta)[wo wo ]

The first term may be found since,

0 1 :
w( ) = —w( ) = —(a/rs) (at the sphere surface)
' - Hence,
0) _ :
P = =1 (at the sphere surface)
However, w(O) is not a function of ¥ . Therefore,
o

Equation (D-27) may now be written as

(D-23)

(D-24)

(D-25)

(D-26)

(b-27)

(D-28)

(D-29)

(D-30)

48.



q = buka (T, - T )L -y

(2)

o]

] .

(52)



APPENDIX T

Proof of Equation (54)

{35}][ [ [k, (x)1% H drdr

Yo = @ 00
C14al% % 2 ~
+ ;7'6 é [K;  Ox )17 H cos( z)) didt + a/220 . (53)

a
From Gradshetyn and Ryzhik the following identity may be obtained:

[ (a24b24c?)/2ab]

K (ax) K (bx) cos(cx) dx = ( ]sec(vw) P
é v v 4/ab (E-1)

(v-1/2)
Letting x=A,a=b=xo, c=0, and v=if, the first term of equation (53)
may be simplified. Similarly, letting x=X, a=b=xo, c=220, and

V=itT, the second term may be reducéd. The result of inverting the

transforms is that equation (53) may be written as:

(2) - [a7[_=
WOZ {Xo}é[cosh(Tn)){P(ir_l/z)(1)} dt

a w- H 2 ﬂ
+ [;}f {mJ{P(iT_l/z)[Hz(zo/xo) 1} dt + a/ZZO . (E-2)

cosh(tm
50 (tm)

However, it may be shown that P (1). = 1 for all values of 7.

(it-1/2)

Therefore,

v = (]

[l+2(z /x ) ]} dT + a/2z

£—~—ji;;J{P
cosh(tm)) " (11-1/2) (549

a. I. S. Gradshetyn and I. M. Ryzhik, Tables of Integrals, Serlee

and Products, p.732.
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APPENDIX F

Proof of Equation (55)

A search of the literature yields the following:

a
P [cosh «] = (2/m)eot{ (w1/2)7} [-sinhi{(v+1/2)6) do (F-1)
«¥2cosh 6 - 2cosh «
Defining « such that
sinh(«/2) = zo/xo . : (F-2)
it may be shown that
1+ 2(z0/x0)2 = 1 + 2sinh?(«/2) = cosh « . (F-3)
Therefore,
P(iT-l/Z)[l + Z(ZO/XO)Z] = Pv[cosh <] (F-4)

vhere v = i1-1/2 and « = Zarcsinh(zo/xo). Using Lebedev's identity

and simplifying, one may conclude that:

P(ir—l/z)

:th(T’n‘} /Cosh 8 - cosh «

(142(z, /)21 = <J‘/w>IC°*h‘T“>J; sl A8 ()

Using this identity, it may be shown that:

X Sinh(T¢o) sinh(tm) | Joosh 6 - cosh =

- {Zzé} ? Z {cosh(r¢o) _ coéhﬁTn)} sin(tH) d6 L (F-6)

where I is the second term of equation (54).

o

N. N. Lebedev, Special Functions and Their Applications, p. 173.




From Gradshteyn and Ryzhikb, it is found that:

- ¢ DL
csch(T¢o) = szO e - EEEHT?$;7

Therefore, using equation (F-7), one obtains

cosh(T$o) eT¢O + e”T¢o 2 )
sinh(téy) 2 =0

coth(tg,) =

Rearrangement and simplification yields:

o -2 oo
z . kT¢O + X

k=0 k=0

coth(td,) =

Further manipulation results in the following:

2 =2kt
coth(7¢o) =1+ 2 Z e °

k=1
Similarly, it can be shown that:

cosh(rm) = 1 4+ 2§ o2kt
sinh(tnw) k=1 .

- (21740

e .

(¥-7)

(¥-8)

(¥-9)

(¥-10)

(F-11)

Using the identities in equation (F-10) and (F-11), equation

(F-6) may be rewritten as:

'ﬂ'Xo

’ TI'XO

2V7%a

2V/7%a

R~ 8
O~ 8

A8
Y 8

"

0

N

-2kt¢,
e

~2kTTW
e

sin(t6) dtdo

Ycosh 6 - cosh «

sin(t6) drde

F-12
Ycosh 6 - cosh « ( )

This is equivalent to the following:

b. Gradshteyn and Ryzhik, p.23.

52.



I = 2V72 ? E [ ? e“2k7¢o sin(te) dr J 46
. ™o « k=1 ' 0 Vcosh 6 - cosh «

2/2a 7 E { ? o~ 2kt sin(70) dr ] 46
TXn « k=1 0 Ycosh 6 - cosh «

Inverting the Laplace transforms, the following relationship is

obtained:
2/7a G v 8 ds
I==222 () T vali
TXo £ k=1 [4k ¢o + 0 Vcosh 8 - cosh «

- 2/521 7{ of &) } de
TrXO « k=1 .4k2“2 + 62 Ycosh 6 - cosh «

Algebraic manipulation of equation (F-14) yields:

1= 2%y 0 , o
I X, i{kzl (26 )2 1k> +(8/26,)7] ’

Ycosh 6 - cosh «

__21:2'5.1.[{00 0 I de
X, o k=1 (2m)2 [k2 + (8/2m)2] Ycosh 6 - cosh «

From the literature, the following relationship is obtained:

o - C
coth(mx) = (1/7mx) + (2x/7) X (x2 + k2) 1.
k=1

c. Gradshetyn and Ryzhik, p.36.

(F-13)

(F-14)

(F-15)

(F-16)



54.

By letting x in equation (F-16) be equal to 6/2¢O , the first term

of equation (F-15) may be simplified to the following:

y 6
B 4 26 ) - 1/280 . (F-17
kzl l(2¢0)2[k2 + (8/2¢,)?] (m/4¢ )coth(wd/2¢ ) - 1/26 . (F-17)

Similarly, if x = 6/2m the second term of equation (F-15) may be

reduced.

<« e ~ _ B
kzl [(Zw)z[kz narryrmy) i Fl/4)coth(6/2) 1/26 . (F-18)

Using equations (F-17) and (F-18), a simplified version of equation

(F-15) may be written.

[eo]

= B - S -1 _
T Tiem £ [(n/¢,)coth(n0/2¢ ) ~ coth(e/2)] e (F-19)

Using equation (F-10), it may be shown that

= -kme
»coth(ﬂ6/2¢o) =1+2) e kr0/4q s ' (F-20)
k=1
and also thaﬁ
' S k6 :
coth(8/2) =1+ 2 ) e . (F-21)
k=1

Using these relationships, the second term of equation (54) may be

expressed as follows:



c-» ( o? "k» 9 cg “'ke
I=—2—f{1 -1 +ZL T e m8/4q -2 ) e } do (F-22)
ZWXOm ¢o ¢o k=1 k=1 Ycosh 6 ~ cosh «

It is obvious that equation (F-22) may be written as the sum of three
integrals. Using Laplace transforms, these integrals may be simplified.

d
From Bateman , the following didentity is obtained:

® —pt -1 i -1/2 1/2-
fe [cosh t-cosh b]v dt= -ivZ7/w evﬂlf(v)[sinh b]v / Q( / vicosh bl.
b (p-1/2

(F-23)

Letting b = «, t = 6, v = 1/2, and p = 0, an expression which is
proportional to the first integral of equation (F-22) is obtained.

The result is:

mi/2

First integral = C(-iv7e [cosh «]) , (F-24)

U-1/2)

where C = |T_ - 11,
¢o

Letting p = kw/¢o » an expression which is equivalent to the second

integral is obtained.

o _ (=2/Zma) "i/2 [ § | « _
Second integral {__Eznn}e {kzqukw/¢o _ 1/2)[cosh ]). (F-25)

Letting p = k, the third integral is obtained.

Third integral = 2v/2ie

mi/2 | ©
k=1 (k-1/2)

) Q [cosh cc]]- (F-26)

d. Bateman, Vol. 1, p. 164.
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Combining equations (F-24), (F-25), and (F-26), the following form

of equation (¥-22) is obtained:

3
¢ =7 .
I = Jﬁa { ; i/Eeﬂl/z 0] {cosh «]
X, [ ° (-1/2)
2V/2ni| wi/2
- —$;"— e - [cosh «]
k=1 (kn/¢o - 1/2)
+ 2/§ie“i/2 y Q [cosh «]
kzl (k - l/2)» . (F-27)

Adopting the following definition,

1 (for k = 0)

]

€
2 (for k # 0),

and replacing W/¢O with n, the number of spheres per ring, equation

(F-27) may be reduced to the following:

./2 oo
- a ./.2_ mL h o) .
I '/ﬁwxo {iv2e kZo ekQ(k _ 1/2)(cos ).
| -ni/iewi/z Z st ' (cosh «)}. (F-28)

k=0 (nk - 1/2)

o .
From Magnus et al , the following relationship is obtained:

u : ' u/2 (-u-1/2)
X ekQ (z) cos(mv) = equVﬂ72 T(1/2 +u)(z2-1) (z—cos v) .
m=0 = (m~1/2) (F-29)
e.. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and

Theorms for the Special Functions of Mathematical Phvsics,
p. 182,




Letting 4 = 0, z = cosh «, and v = 0, one obtains the following

identity:

o .~l/2
Z e Q (cosh =) = (n/Y2)(cosh « - 1 . (F-30)
m=0 ™ (m~1/2)

From Magnus et al the following relationship mayv be obtained:

o

u
e, cos(kv) Q (z) =
ZO k (kj-1/2)
Y
1 2 2 —u-1/2
e ™ /% F[%Jr u ‘;r' (zz—l)U/ ) {z-cos 2‘113:‘& }( w1/ ), (F-31)
r=r1
where ry = ~-[3/2 + v/2n],
r, = [3/2 - uw/2%},

and [x] is the largest integer < x .

Letting v = 0, j = n, z = cosh «, and y = 0, the following result

is obtained:

T
Y e Q (cosh «) = {5=—| )} {[cosh « - cos(2rr/n)] / s
weo k “(nk-1/2) Y2n rer,

(f—32)

h = - -
where r, T, [n/2]

f. Magnus, Oberhettinger, and Soni, p. 182.
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Substitution of equations (F-30) and (¥-32) into equation (F-28)

and simplification yields

r

2 -1/2 -1/2
I=|-2—|{ ] {lcosh « - cos(2nr/n)] } - [cosh « = 1] }. (F-33)
/2Xo r=1
However,
cosh =1+ 2(z /x )? . (¥-3)
o o
Therefore,
-1/2 -1/2 X,
(cosh « - 1) = {2(zo/xo)} = /fzo . (F-34)
Also, it can be shown that
—1/2 X : —1/2
[cosh « - cos(2nr/n)] = O 1+ [(x./z) sin(nr/n) 12} . (F-35)
Jizo o' “o

Using equations (F-34) and (F-35) in equation (F~33), one obtains:

T2 -1/2
I=(al2z){ ] ([1+ {(x,/2,) sin(rr/n)}2] ) - 1}.  (F-36)

r=rl

By symmetry, this is equivalent to

2 ~1/2 |
Z [1 + {(xo/zo) sin(rr/n)}?] }. (F-37)

I= (a/z ) {
° r=1

The second term of equation (54) may now be written as

<a/xo>£ Z&%Fﬁ Pliee1/2y[L + 2(20/x)%] dt = (a/z )8 , (55)



w2 ~ ,.-1/2
where B = rZl[l + {(xolzo) sin(nr/n) }4] ,

and r, = [n/2].



APPENDIX G

Sample Problem

Determine the rate of heat transfer per array and the total

rate of heat transfer for two parpllel arrays of two spheres each.

The spheres have a radius of one inch and a surface temperature of

200 degrees F. The surrounding medium is air at 70 degrees F.

X, = 50 inches and z, = 20 inches. Repeat the problem for n

BTU

k

q = drka(T, - T )[1 -y (a/z )]

= 1 dinch

= 200 deg. F
70 deg. F

50 inches

20 inches

N ¥ 30
C O p m
B n

]

for n = 2,

H

(a/xo)maX sin(r/n)

sin(n/2) = 1.0

'(a/xo)ﬁax

a/x = 1/50 = 0.02 < 0.1(a/x )
o O max
x /z = 50/20 = 2.5
)

alz_ = 1/20 = 0.05 < 0.1(a/z )
o O max

Since the values of the geometric factors are small the model is wvalid.

air 0.015 hr ft2 (deg. F/ft.)

10.

(59)

(4-2)
(6-1)
(¢-2)
(c-3)

(G-4)

60.



61.
for n = 2 and'xo/zo = 2.5, y = 1.1 (figure 8)
q(n=2) = 4u(0.015) (1/12) (200 ~ 70)[1 - 1.1(0.05)] (G-5)

9(n=2) = 1.9297 BTU/hr.-sphere (G-6)

Q(n=2) = nq(n=2) = 2(1.9297 BTU/hr.) = 3.85%4 BTU/hr.

(G-7)
for n = 10 and xo/zo = 2.5, vy = 6 (figure 8)
= . 2 - - 6(0. -
9(-10) 47(0.015) (1/12) (200 ~ 70)[1 - 6(0.05)] (G-8)
= 1,42 . -9
q(n=lO) 1.4294 BTU/hr.-sphere (G-9)

= = hd . = . T »
Q(n=10) nq(n=10) 10(1.4294 BTU/hr.) = 14.294 BTzéﬁio)

From this example it can be seen that as the number of spheres is
increased, the total rate of heat transfer is also increased, but

" the efficiency of each sphere as a source decreases.
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