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procedure.  The application discussed in thie paper is forv

B sidrstrean drawofiy in the reetifying section.
The tower was broken at the feed point and sidestyecam drawoff
Jocations inte three calculation sections. The fracticnatlion In esach

tower section can then be represented by a rigorcus series solution
expressed in terms of absorption or stripping factors. These rigorous

equations can then be simplified by the use of aversge absorption or

stripping

The shorﬁwcut procedure has twe methods of determining the
average stripping or absorption factors for each tower section. The
one mcihod uses thoe assumption of a Jlinear profile of absorption or
stripping factors based on end values in each section and is called
the Stand~Alcone Simpli Thiele-Geddes Method. The other method
determines average absorption or strip}ing factor for cach tower
secetion from o force-fit to a rigorous plate-to-plate solution. This

method is called the Torce~Tit Thiele~Ceddes Method and is suitablie

for accurate pavametric studies arcund a base casc rvigorous solwubion.



for the Thiele~Gaddes plate-

to-plate method and the stand-salone shorvi-cut procedure.  In addition,

a computer nrogram was written o obtain the force-fit fractions
1 i

gquired for the Torce-Fit Thiele-Ceddes Method. Parametriec cascs were

zor columm, and the results of

The resulits of these couwpavisons show the Stand~Alone
Simplified Thiele-Geddes Method to be of sultable accuracy for pre-
liminary design calculztions. The Torce-Fit Thiele~Geddes Method
results in a higher degree of accuracy in most cascs and is suitable
fFor parametric studies on a final design., The degree of accuracy
obtained from the Forvce~Fit Method is believed to be the highest

available from a short-cult procedure.



A SHORT--CUT CALCULATION

RICHARY

.
bt
P
s
ot
o]
o
_
i
™
i
&N
fex}
3
b}

Departmant of

~TL LR n ks .
Chemical Engincering

2

Newsrk Collecge

ineeTing

Faculty Committece

Approved:

..7‘—'—‘!’.«.‘.:‘"._*.”“ S P YN T



TOTCUS

Rig
&

@
b
e

{

PLol

>

The

gue

64

4 ) e
grage

ok

3&@

Colle






n Tower in a

a Fractionatior

1 Component Distyibut .
Rectifyving Secltion

(AR

[N
=]
—
=
-

$ o N
ceurTeam Uy

ith o Ligquid Sides

Tigure 2



1 Tower Case Studios

IT Case 1

v _ Case 2

\ Casec 3

Case 4

VITL Case 6



the purpose ¢f a fraction-

drawoll

in the rectidfiyving sect

(2)
tion pirocedure.  The © ko the Thiele~Ceddes Method wasg
< et ettt Ik T 1 B i 5 \3 T 7471 To s
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e epumarated,

Three products can

in a single tower bv taking

o - . K g o A L T e e miam oy o fo D gy e " oy o g N =g
advintage of a sidestream dyavoif. e conventional practice, for

that result from a sic

three components: LC = Lig

tc be separated into three streanms, each enriched in one of the comnor

For a liquid sidestreanm draowoff in the rectifying section,

it is possible to provide sufficlent reflux and stages in the top

section of the tower to fracrionate to any specification of MC in LC

in the overhbead. 1t is also possibie to meet any spocification on

-_a

HC in the s:

sreanm dvawoff by the combination of reflux and stoges
in the middle towuey section. The specification of MC in the botioma

can also be controlled by stages and stripping in the lower section.

Figure 1 dillustyates the eplits that take place.

costs, is to have a liquid sidestroam

i, MG o= Midale, and HC = Heavy. These arve
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it s onlyv the concend nonents, LC, thet

that cannot be con-

are PYLMSTL

ed.  Their copcentration de

moles of LC coming in with the feed and vhatever is in the Iiguid
reflux below the sidestream droveff. (It Js assumed that no TL.C

by

goes out the botitoms with HC.) Therefsre, a sidestream product rich

i
o
j=)
S

in MC and wvery HC can be produced. However, purve MO cannot

as this system is desi

1o}

o

be produced

™

=d. A sidestream styipper tower

A
s

~

can be used to control the concentration of LC in the sidestream pro-

duct, but this opticn was nct considered.

Sidestresm towers ave diffiecult to control zcocurataliv.,
They are usuvally used when rvough product cute ave desirved.

Figure 2 illustrates the particular sidestream tower on

o

which the frectionation calculaticng in this study were performed.

The tewer has one feed, Jiquid sidestream drawoff in the rectifying

)

section.

7

1 tetal condenser, and a partial rebeiler. The degrees of
freedom or variables Lo be specificd are expressed by the following

equaiion:

DDY

it

NC + NTT 4 10

vhere:

i

DDY = Design degrees of freedom

=
(@]
]
h

Number of components

1

NTT

I}
#

Number of stages
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the complete sot of 211 oysiows

J v o
Lo L

which satisf{y the above

. .y . o e 2 .. 3 s - g -
specified variables unchenged.  Then with a knowledge of the

for a1l the variablesz, the ability propos to meer

the desired gpecification can be vevicwed by the engineer. If all

speciiications are nolt mat,

adjusted in the direcction o
, the unit can be designed and built; ory 1f the unit is
an existing tower, the proposed operation can be reviewad Lo sce if

it Js an acceptable performance.

Whencver we have a calculation in wi
allowed to be specified are far less in number than the total poe-

1 aas

5
%
—
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, there ave two genersl techniques thav can he o

solubtion:

1. Sequentizl Iterative Methods - Make

additional wvariables so that calculations can be made
to detecrmine the remaining variables. The assumed variables

are then calculated from this solution and, by means of a

convergence procedure, a new set of assumptions is made in an

I

effort to bring assumed and calculated variables fcgethory.

The procedure is repeated until convergence of assumed and

calculated variables is obtained.
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equations is written to
7 all restrictions in the system, and these eguations
3 gl

are sclved simultancously.



a direcct matriy analyitical solution for fractionstion

7

unnlese

s witich convert equations teo linear

The Thiele—Geddes Method is of the fequential Tterative

type and it was selected &3 the method on which to base a shovi-cur

procedure. The critaria for selecting the Thicle~Geddes

were that 1t cenverges easily, it is a well esteblished method one

in

5t

be

cets the following reguirements which are necessayy for a good

= g PR &

1,

»1iaghle short~cut procedure:

Tiewibilicy to solve for a variety of process
arnd desi

2. A sound theorztical foundation - no cmpirical correlstions,

3. Lends iteelf te simplification.

4. Allows itself to become "educated" by a plate~to-plate

solution so that accurate parameiric studies can be determined.

5. Reduces the cost of fractionation studies

manual or compuler solution.

6. Tmwproves the engineers’ undevstanding of the

4

ffect of key

tower design variables.

The proposed shori-cut procedure can be used for either an
itial short—cut design, with the usual inaccuracies of trying to

timate average stripping factors, or aslternatively, a force~iit can

made tc a solution from a plate~to-plate calculation in order to
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Computer programs were
i ! &
plote-to-plate method and the

COWMPULCY [DYOEram was u

from a pla

e .
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were run for a five-component debut

and the accuracies of the meihods were cowmpared.

The following chepters show the equati

.

(]

Rigorcus Thiele-CGeddes Method and how they can be

short-cut procedure.
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,3  dn the rectifving secticn NIT 3_nvi(NF
in the stripping n > 1
vhera:
£ = Liguid flow rate ¢f component i off stage n
v = Vapor flow rate of cowponent 1 off steze n

)

d = Distillate flow rate of component i

P

component 1

n = Mny stapge (stage 1 is the reboilex)

NF -

Feed stage (Stage 1 is the reboiler)

NIT = Total number of stages including the reboiler but not

the condenser.

These ratios are calculated from equations based on component balances

around the stapge in question and the top or bettom of the columm.

3

05 &

top and bottom component e

o

give dndividual component rates of the distillate and bottoms.

A material balance around a total condenser (ref. Flgure

n then be solved simultancously to

1)

7
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A, = Absorption factor for component 1 on stape n

1. = Total liguic

v = Total vapor rate off stoge n

K = The equilibrium ratio value of cowponent i1
both sides of equation (2) by A .. , and noting that
it -

is cgual to the external reflux vatico (R«

/5
%

(R + 1D (4)
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=1
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NTT, 1

A meterial balsnce around any stage n below the top stage {(RTT) and

above the sidestream drawofi stage {(NE) results in the following

equation:
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L"«».“o"bu ined from couation (6)
wvhere:
W = Sidestresm drawoflf rate

L\T‘ = Liquid ratec off the sidestream stage before the side-~
ix

£

strecam is drawn off
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videstreosm has becos

The stripping section
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o2}

around the stage in question and the bottom of
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where:
n > 1
n < NF

v . 1o . e er e .
The &N is represented by the eculiibrium relationship:
1,14

{.va — }:]3.7_]:2.:1
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the bottow of the coluwmn to the feed plate and the top of the colums o
the feed plate.
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Rearvranpement of the overall ©
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Fearrangement of the feed balavce equation gives:

£, \{«“{_‘( ) (=

Y (203
J? ¢ fL
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c
i
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e
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o
P
T
it
3
o0

o, equation (20) into (19) and simplifyving vesulte in tha
3, . ! P ]

(21

equilibrium and material balance. The sunmation of the distillate
component rates and sidestrecam component rates does notb eogual the
specified distillate rate or the sidestream rate until the solution

has converged. The theta convergence method is used to facilitate

=R



CONVRTTOT .

IO
WL IO

specified

€] dj, = L w.,, =W

and 6 ) are determined by

- Y e T
Equation

-

22 can be differentiated

Raphson Met

the Newron~Eaphson Method.

The component rates of the bottoms and sidestream which

are normalized to the specified summations, are now found from the

following equations:

Round coff ervor is minimized by using the above cquations instead

of differences.

The sclution has converged when the thetas equal unity.

v






The Simplified Thicle-Ceddus Method is bascd on the Thiele-
in the next

Fquations (14) and (2315

series are developed to

subatitution of equations

following equation in terms of the component absorption factors:

')

s
i

s R) (4 D ... (A
Vol 7 Uy (s

4 (A VoL
—_— 10 T Ogpp g
g,

~~
]
~d
~

Ao .y + . . 0+
(SNS,l) K %

where:

/D
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s
e
T
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Q
bd
=
“h
=
o
b
=
o
fas
}»J
O
.
£
A
i
el

and: .

G- () (28)
3. RN

Jith succcssive substitution of equation (8), and remembering the

restriction of equation (10) the following cquation vesults:

=

 NS-L.3 ) .
(29
\ )
W Fyr % g ;
{Mg + Frrkop (A D X - coe .
w.ffi LY S L,l)(fl\lx_i - 2,1>
e,
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following sevice cquation:

= (S I ) e (8D (5) - .

NT. 4 PN d b b, A JARN

iy O
(5,) +. « .+ (8 4+ S \
N+ :,) l \ )}IFS}/ (\C)]\?r _ 1) i QNF (30]

The simplified approach to the Thiele~Ceddes Method
divides the colurm into three seciions defined by equations (27),
(29), and (30). The first step in the simpliificaticon of the
Rigorous Thiele~Goddes Metheod involvce the elimination of bubble
or dew point calculaticns for each tray. Only the solutions of
the end temperatures of the three towey sections are considered.
The problem then becomes one of finding the representative stripping

]

or abszorption factors for each tower section.

Five temperatures are calculated for each trial. These
temperatures are assumed for the initial trial. These temperatures
and their methods of determination ave:

1. Top tray temperature (TT) - dew point of the overhead vapor
(same composition as the distillate).

2. Sidestream tray temperature (TS) - bubble point of the side-~
stream product.

3. Bottom tray temperature {(TL) - bubble point of the bottoms.

4. Second stage temperature (T2) - T B, and L, are known

Y
iy
aleng with their compositions. The composition of Ly is obtainced

by material balance. The bubbla point of L, is therefore TX.
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vhy these temperatvyves

evident dn

the middlie

'

rto estimate their values

Y

by linear intcrpolation between TS and TF. The increase in
accuracy did not scem o Jjustify pursuing this wethod further.

Therefore TS and TF are uscd as

end temverabures

Constant molial overflow was used to set

and vapor flow rates. Absorption or stripping factors for the
ends of each tower section arve determined by cowmbinir
constant values with the respective licuid and vapor rates. . The

reboiler stripping and condenser absorption fachers are solvad for

1

separately, szince these are quite different from the valucs in the

adjacent tower section. The absovption factor for the tetal

condenser ds the external reflux ratioc.

The core of this simplified fractionation procedure is

R~

therefore, the calculaticn of

O
et
js}
ot
N
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h
w3
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0]
ot
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D
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e
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N

, the assumption

of constant meolal overflow in calculst

Ffactors, and the solution of forms of equations (27), (28), (28), =a

(30).
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the caleulated end valueo. This constitures the st
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calculation. his

ard

approach the calculation
procadure is as

as follows:

1. A =L

WL, A (\fg\MEEf

where:

e

L3 = ()M

V3= (R)y(M) + D

L'-!

’ S ¢ ) A
e Mys,1 V3) Kg )
8,4

Py

3. Solve equation (27) for using a linear interpolation i
the A's between A

NTT, 1

AR

Aot L

N
It

L2 RYMm - W

<2
t]
il

V3= (R)Y(M) + D

12
( . A B e e
CONT 1, T V2 (R, )
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13.
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Tor
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secticon and soive

3 and solve equation (3}

]
[ o]
3

Linearly interpelate {or intermediate

o
T

Solve gl
as,

Solve a modified form of equation (14) for di using O which is

initially unity.

4
e

(1) (z,
a, = R o (31)

where:
0 ds a forcing factor which is required to have the calculated

W

sidestream rate equal the specified sidestream rate.
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14, Solve fon &
W
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row.
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15. Solve cquation (31) using the calculated value of € .

1é. Deterwine the ceompositions on the four key locations by

multiplying the appropriate {i/d)i by d; or (V/b>i by bi'

17. Solve for the four cguilibrium temperatures Tl, T2, TS, and
TT, using the approoriste location compositions.
18. Go back to step 1 and repest until the assumed temperalures

[}

Ti, T2, TS, and TT) equal the calculated temperatures for
3 & s 4 s

9. 1f » 4, from step 12 equal the calculated distillate rate
i=1 "

.

the solution has converged. If they are nol equal assume a

new TF and return to step 1. Standard linecar interpolaiion

N
14

procedure on distiliate rate and TF is used to converge TF.

Mnother method of solving equations (27), (29), and (30)

is to define an average absorption or stripping factor for ecach

equation. Equation (27) becomes:

N

) (NTT-NS-1)% |
A3 . -1 \ave, i i/

(32)

ey
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that the accurecy obtained by

abacrption factors is less than 10 a linesw

d between the cend

The best way to determine the “"average' absorption or

stripping fsctors ie

- - Fogh] LTS LA — IR & B
to obtain definitive "average' £

the rigorous plate-to-plate solubion

(&

hase then be usad tco make
at other tower conditions. First, the {ractions

"average' ghsorption or st

3

FRAC3 5 (13)

(V3) (X

TT,i)

Middle tower secction:

A2 .
Ve ¢ .
(1.2}

V2y . L)

TS,

FP\ACL i =

i

Lower tower sectior:

ave,

(K. oy )<«~) Fpr

1251

(1.1 (115

FRACL, =
3
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used in cguations (33}, (34), and

1233 ovorfleow., Theers fractiong when used

Method reproduce the

solution within any des ired tolex

The real benefit of using force~fit fractions (FRACS

NG

FRAC'Ji) is that parametric cases can then be run with a bigh degree of

accuracy. The calculation procedure for the parametric obtains

the A3 Ly A2 ., and Sl , from the following equation
ave, 1 ave,i ave,i ’

0

<
«

A .3 (L.3) 1

FRACS, T il
ave,1 T OO WE T T ) (R 50 T (g
NS s, [y ]

=
O3
H

A2

it

. (1.2 (1.2) B {(1L.2) ;
ave,i = (FRACZ,) ('@2)(1\,}‘@ DT ) Ry SENCEINN) (41)
: 75,4 73

D B, D
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hich the foroco-—
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B
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fit

woare exitrvacted for

the Force-Fit

Geddes Method fer the other five

.
Tables 3 through & tebulate the resulls for these six

cases using the three calculation methods. The force-fit frveoctions

which would be reguired to duplicste the rigorvous base case solution

may be found in Table 2. - The accurscy of .the

m

Method i3 comsiderably better than the Stand~Alone Simplified Thiele-
Ceddes Method, with the exception of case number three, which has 2
reflux ratio considerably higher than that used in the base case.

It is appearent that in this Jmsrcu e the Force-fit fractions extended

into a region which is bveyond the accuracy of the msthod.

Temperatures calculated for the distiliate, bottoms, and
sidestreams were within 2° or better of the rigorous solution values
for the Stand-Alone Simplified Thicle-Geddes Method and within 0.5°

for the TForce-~Fit Thiele-Caddes Method (except case 3). Compositions
¥

were within 0.3 wmo for the Stand~Alore and 0.1 moles

Force-TitL.
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Geddes Method ig belicves o

procedu

VEE AT

zed that the Torce-Fit Thiele~Geddes

in the development of the <i

froctions toke inte account deviations from

by force fitting the rigorous solution. The force~fit also takes

into congid any compesitfion effects which were used in the

basic data for the plate-to-plate procedure.
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OVad e procedure using

fer complex towers could facil:
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Possin
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sree~fit fractions to

more The distribution curve of
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sorption or stripping factor at the respective tower end values could

provide a basis for dmproving t

Graphical methods can be developed for each typs of tower

it

section thus permitting easy hand calculations. Work using graphical

methods has been done by Dr. Raelph Cecchetti an adjunct professor at

.

lished.

Newark College of Engineering. His work has not yet been pub
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