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ABSTRACT 

Optimization of Flow in 
the Collecting Duct during the 

Concentrating Mode and the Diluting Mode 
in a Nephron Population of two different length 

with the Renin Angiotensin System and the ADH mechanism 

by 

Sivakumar Subramanian 

Our present study is to find out how the short and long nephrons are 

interacting in the human kidney to adjust the flow in the collecting duct to have 

the maximum flow during the diluting mode and minimum flow during the 

concentrating mode. The best lengths for the short nephron and long nephron 

are calculated during the concentrating mode and the diluting mode by using the 

Newton-Raphson method. If one wants the kidney to perform only the above 

mentioned functions, a design criteria for an artificial kidney has been proposed. 

These studies have provided qualitative information regarding the concentrating 

mechanism and illustrates well the problem involved in attempting to describe 

accurately the function of an organ like kidney. 
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LIST OF SYMBOLS USED IN THE MODELS 

SYMBOL ABBREVIATION 

F1H20 The rate at which water comes out of the descending limb one nephron. 

F1h20A  The rate at which water comes out of the descending limb of nephronA 

- two nephron 

F1h20B  The rate at which water comes out of the descending limb of nephronB 

- two nephron 

F*  The rate at which the salt comes out of the ascending limb of nephron - 

one nephron. 

F*A  The rate at which the salt comes out of the ascending limb of nephrnA - 

two nephron. 

F*B 
 

The rate at which the salt comes out of the ascending limb of nephronB 

- two nephron. 

Q0  The input flow for a one nephron. 

QA0  The input flow for a one nephronA. 

QB0  The input flow for a one nephronB. 

C0  The concentration at the top of the descending limb of a nephron. 

C(LA) The concentration at the bottom of nephronA. 

C(LB) The concentration at the bottom of nephronB. 

C2A(0) The concentration at the top of the ascending limb of nephronA. 

C2B(0) The concentration at the top of the ascending limb of nephronB. 

Q2A(0) The flow at the top of the ascending limb of nephronA. 

Q2B(0) The flow at the top of the ascending limb of nephronB. 

QDA  The flow in the distal convoluted tubuleA. 

QDB  The flow in the distal convoluted tubuleB. 

Q3(0) The flow at the begining of the collectng duct. 

Q3(LB) The flow at length LB in the collecting duct. 

X 



CHAPTER 1 

INTRODUCTION 

1.1 Literature review 

In the past few years several investigators have been engaged in the construction 

and solution of mathematical models of the flow of the flow of water and solute 

in the kidney.[ see, e.g. Stephenson et al. 1974,1976, and 1987]. Models with 

widely varying degrees of complexity have been considered, but most share the 

same general features. The system is assumed to consist of a number of 

components: renal tubules, glomerular and post glomerular capillaries, cortical 

interstitium (see fig 1 in Stephenson et al. 1976). Lists of relevant literature, along 

with some commentary, may be found elsewhere ( Jacquez et al., 1976; Jamison 

and Kriz, 1982; Marsh et al., 1980; Moore et al., 1980; Stephenson et al. 1976). In 

recent years mathematical investigation of concentrating mechanism had tended 

more toward, large-scale simulation(e.g. Foster et al., 1976; Layton et al., 1986; 

Jacquez et al., 1976) than toward schematic modelling. 

Urine production in the mammalian kidney is a complex dynamic process 

involving fluid flow, epthelial transport, hormonal regulation and feedback 

loops. One of those feedback loops, is Tubuloglomerular Feedback(TGF), which 

helps to regulate the rate of fluid and solute entry into individual nephrons. 

Much has been learned about TGF in recent years ( for review see [16] ), and 

several steady state models for TGF have appeared in [1], [12], [13]. 

An alternate model , one much closer to the real operation of the kidney is 

shown by Kuhn and Ramel, 1959. The membrane separating the two limbs now 

transports solute from the ascending to the descending limb; the membrane is 

water-impermeable and the solutes in the descending limb are concentrated still 

further. 

1 
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Flow rate in the vasarecta is expected to be an important factor in the ability 

of the medulla to generate hypertonic urine. If the flow rate is increased, 

countercurrent exchange becomes less efficient, and medullary osmolality drops 

as solute is lost. Support for this idea came from Thurau and Deetjen. They made 

use of the observation that medullary circulation is not autoregulated ( Kramer et 

al., 1960) so that elevating arterial blood pressure increases medullary blood flow 

rate. The structure and concentrating mechanism in the mammalian kidney for 

various mammals was studied by Bodilscmidt-Nielsen et al and Roberta 0' dell 

et al., 1960 and a close correlation was found between renal medullary thickness 

and ability to concentrate electrolytes in the urine indicating that the medulla 

acts as a countercurrent multiplier system. These studies cited provide strong 

evidence that the distribution of nephrons in the kidney is a significant feature of 

medullary physiology. 

1.2 Introduction 

Although the physical characteristics of each component can be studied 

experimentally in isolation, the complexity of the system precludes the simple 

translation of these studies into an explanation of the overall kidney function. It 

is here, as in many other areas of science and engineering, that mathematical 

modelling and numerical computation is needed. The connectivity of the 

individual components of the system determines a priori, the structure of the 

model equations. This structure, intern is used to develop especially efficient and 

flexible algorithms for the solution of equation. 

As part of the quest to understand how countercurrent flow in the tubules of 

the renal medulla produces highly concentrated urine, many mathematical 

models have been proposed in the last half-century[25]. 
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The mammalian kidney has the remarkable capability to produce urine that 

is much more concentrated than blood plasma. For example, the maximum 

concentration ratios of urine to blood plasma in a human, a rat, and a hopping 

mouse are about 4, 9, 25 respectively. The capability to produce concentrated 

urine, along with the capability to also produce dilute urine, enables an animal to 

maintain its blood plasma osmolality within the narrow range (about 290 to 310 

mosm/liter) that provides a suitable environment for its cells. 

In our attempt to investigate mathematically the concentrating mechanism 

of the kidney and its blood plasma osmolality, some new schematic models are 

developed. we expressed the outputs of the Henle's loop interms of its input. we 

then succeeded in expressing the input as a function of output of the Henle's 

loop. That is the nephron actually adjusts Q(0) to achieve a specified sodium 

concentration C2(0) at the top of the ascending limb. 

Chapter 2 introduces a very simple mathematical model developed by 

Charles S. Peskin (unpublished manuscript). A single model nephron obeying a 

number of simplifying assumption is able to bring urine osmolality upto only a. 

factor of e (the Euler constant, e=2.7) over plasma osmolality, regardless of the 

length of the loop of Henle or type of kinetics specified for pumping sodium 

chloride from the ascending limb. This model frame work is extended by 

relaxing the assumption that the water flux in the collecting duct is not negligible 

compared to the flux coming out of descending limb. 

In chapter 3 a model for two nephrons, each similar to the single nephron of 

chapter 2, but with varying loop of Henle lengths is considered. This two-stage 

model is found to have a concentrating limit of exp2(theoretically) and 

maximum flow in the collecting duct during the diluting mode. 

In chapter 4, the same two nephron model of chapter 3 is extended as the 

single nephron model in chapter 1 was extended. This two stage model was 
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found to have concentrating limit of exp2(theoretically) and minimum flow in 

the collecting duct during the concentrating mode. 

In chapter5 the model framework is extended to represent multinephrons 

with fixed length. This formulation leads us to solve for optimum flows with 

fixed number of short and long nephrons with a constraint on the length of the 

nephron. 

In this study, we formulated differential equations for solute and water 

movement for the counterflow system of the mammalian kidney. Numerical 

solutions have been obtained by computer calculations. 

The work reported here is a sequel to an earlier study (Peskin et al., 1986) 

which used a similar model framework. The present study confirms that the 

results previously obtained also hold good for a two nephron model of the loop 

of Henle. 



CHAPTER 2 

SINGLE NEPHRON MODEL (CONCENTRATING MODE) 

2.1 Introduction 

In this section Peskin's mathematical model for a single medullary nephron in 

the antidiuretic state is introduced. It has been possible to simulate behavior of 

the whole kidney as a function of solute concentration, and compute 

concentrations and flows in the various nephron segments. There is no attempt 

to include all of the phenomena that may contribute to the concentrating 

mechanism. For example, even though there is experimental evidence that the 

descending limbs of short-looped nephrons differ in permeability properties 

from the descending limb of the long looped nephron (Imai et al., 1984;), the 

model shows that if all the loops turn at the same depth, the concentrating 

capability is limited by a factor e over plasma osmolality. The model equations 

are derived from the conservation of mass for solute and fluid. Numerical 

solution have been obtained using computer calculations. 

2.2 Model 

2.2.1 Assumptions 

We shall construct a model of the nephron beginning with the most interesting 

part of the system, the loop of Henle (see fig(1)). The descending limb of the loop 

is designated tube 1, the ascending limb as tube 2 and the collecting duct as tube 

3. The sodium concentrations and water flows in the tubules are written Ci(x) 

and Qi(x), respectively, where i=1,2,3. The external sodium concentration is 

denoted by c(x). By our sign conventions, the flow is positive in the descending 

limb and negative in the ascending limb, since x increases downward. 

5 
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The physiological assumptions of our model of Henle's loop are the following: 

1.We assume that the walls of the descending limb are 

permeable to water but not to sodium. This is a simplification: The walls are also 

permeable to sodium, but this is not an essential feature of the operation of 

Henle's loop, and we leave it out. Moreover, we assume that the water 

permeability is so large that the water flux makes the internal and external 

sodium concentrations equal. This gives the equations 

dqi / dx+f1h20(x)=0 (1) 

(d/dx)(q1c1)=0 (2) 

c1(x)=c(x) (3) 

2. We assume that sodium is pumped out of the ascending limb at a fixed rate 

f*na  per unit length. We also assume that the ascending limb is impermeable to 

water. This gives 

dq2/dx=0 (4) 

(d/dx)(q2c2) +fna (5)  

3. At the turn of Henle's loop(x=1) we assume that all of the salt and water 

leaving the descending limb enter the ascending limb. This gives the boundary 

conditions 

c1(L)=c2(L) (6) 

c11(L)=-c12(1-) (7) 

4. At the collecting duct,we assume that the rate at which the water come out 

when ADH is present is f3h20. This gives the equations 

dq3/dx f3h20 (8) 

d(q3c3)/dx = 0 (9) 

5. Finally, we need an assumption about the peritubular capillaries, which pick 

up the sodium that is actively pumped out of the ascending limb and the water 

that passively flows out of the descending limb. First, we assume that the 
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capillaries pick up this sodium and water locally. That is, we do not allow for 

any longitudinal flow outside of the tubules and capillaries. Since we are 

considering a steady state model, it follows that the peritubular capillaries pick 

up water at the rate f1h20(x) and sodium at the rate of f*na  per unit length. Here 

we assume that the interstitial fluid is picked up by a process of filtration 

analogous to the process that occurs in the glomerular capillaries but running 

here in the opposite direction. In reverse filtration at the peritubular capillaries, 

we assume that the sodium is carried passively by the water at its local tissue 

concentration. This implies a relationship between the flux of sodium and the 

flow of water: 

ena= c(x)[f1h20(x)+f3h20(x)] (10) 

Solving (2) we get 

Gil (x)ci (x) = K; where K = q0c0 (A) 

Solving (9), we get 

q3(x)c3(x) = K1; where k1 = q3(0)c3(0) (B) 

By the product rule it follows that equation (2) and (9) can be written in the form 

-(dq1/dx) c =(dc/dx) q1 (11) 

-(dq3/dx)c =( dc/dx)q3 (12) 

Adding (11) + (12) we get 

dc/dx (q1+q3) = - (dqi /dx+dco/dx) c 

But, dq1/dx = f1h20 

dq3/dx = - f3h20 

Therefore 

dc/dx(q1+q3) = - (--fih2O+f3h20) c 

From eqn (10), the above eqn can be written as 

dc/dx(q1+q3) ' f Ana (13) 
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substituting the expression for q1(x) and q3(x) from eqn (a) & (b) and simplifying 

eqn (13) we get 

dc/dx = (rna c) /[q1(°)+c13(°)] c0; 

which implies that 

c(x) = c0 exp((f*na  x)/[q1(0)+q3(0)] c0); 

and in particular that 

c(l) = c0 exp((rna  1)/[q1(0)+(13(0)] c0); (14) 

Let a* = (enal)/[q1(0)+q3(0)] c0 

Therefore eqn (14) becomes 

c(1)= c0 exp(a*); 

Solving equation (5) 

q2(x) dc2/dx = -f*na (15) 

Where q2(x) = q0 exp(-a*); 

therefore equation (15) becomes 

dc2/dx = - f*na exP(a*)/q0; 

Which implies that 

c2(x) = c0exp(a*)[1-a] f*na  exp(a*) x/c0 (16) 

Where a = (f*nal)/(c10 c0) < 1; 

Note: f*na  1 is the total rate at which sodium is actively pumped out through the 

walls of the ascending limb of Henle's loop, while (q0c0) is the rate at which the 

sodium enters the loop from the proximal tubule. Thus the ratio of these fluxes is 

always less than 1. 

In particular equation (16) can be written as 

c2(0) = c0 exp(a*) [1-a] (17) 

It is now easy to check that exp(a*)[1-a] < 1 when a is not equal to zero. Thus, 

c2(0) < co and the fluid leaving the top of the ascending limb is more dilute than 

blood plasma. 
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2.2.2 The Juxtaglomerular Apparatus and the renin angiotensin system 

Near the top of the ascending limb of Henle's loop there is a specialized cluster of 

cells called the juxtaglomerular apparatus. These cells monitor the tubular fluid 

and secrete a hormone, renin, into the afferent arteriole just before it enters the 

glomerulus. Renin is converted in the blood to angiotensin, a potent 

vasoconstrictor, i.e., a substance that stimulates the constriction of blood vessels. 

Although the details are not certain, it is a plausible hypothesis that the cells of 

the juxtaglomerular apparatus monitor specifically the sodium concentration at 

the top of the ascending limb and they secrete enough renin to make glomerular 

filtration, and pheraps reabsorption from the proximal tubule, proceed at 

whatever rate is needed to achieve the target concentration at that site. 

We will model this feedback mechanism in the simplest possible way: We 

assume that the inflow q1(0)to the loop of Henle takes on whatever value is 

needed to satisfy the equation 

c2(0) = c* (18) 

Where c*  is the target concentration sought by the juxtaglomerular apparatus. 

Thus we do not model the details of the renin angiotensin system. We assume it 

is working and we study its effects on the performance of the nephron. 

substituting equation (17) in (18), we get 

a = exp(a*)[1-a] (19) 

Where a= c*/co <1 

Here a is regarded as known so equation for a and q1(0). 

From equation (19) we can see that for each a such that 0<a<1 the solution 

satisfies 0<a<1. Thus for small values of a, a is approximately equal to one. we 

can now rewrite the results with c* as parameter in the following way: 

c11(0) (f*na 1)/c0; 

q2(0) = q1(0) exp(-a*); 
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These results summarize the behavior of the model of Henle's loop as controlled 

by the juxtaglomerular apparatus. 

2.2.3 The Distal tubule and collecting Duct 

We now come to the stage in the formation of urine where a decision has to be 

made whether to excrete a large volume of dilute urine or small volume of 

concentrated urine. The hormone that determines which possibility will occur is 

antidiuretic hormone(ADH). When ADH is absent, we assume that the distal 

tubule and the collecting ducts are simple conduits, impermeable to both salt and 

water. In these circumstances, the fluid that leaves the top of the ascending limb 

becomes urine without further modification. 

When ADH is present, the situation is more complicated. The effect of ADH is to 

make the distal tubule and the collecting duct become permeable to water. We 

assume that this permeability is so great that the equilibrium is achieved at every 

stage. In the distal convoluted tubule then, enough water is withdrawn to make 

the sodium concentration equal to that of blood plasma. Then in the collecting 

duct enough water is withdrawn to equilibrate with c(x) at each x. The sodium 

flux is given by, 

-c* q2(0) = c0 q3(0) 

which can be simplified and written as 

q3(0) = q0 a exp(-a*) (20) 

The flow at length 1 of the collecting duct is given by 

q3(1) c(1) = q3(0) c0 

which can be simplified and written as 

q3(1) = q0 a exp(-2a*) (21) 
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Thus, the ADH mechanism cannot be used to regulate the total sodium content 

of the body. It can be used to regulate the total sodium concentration of the blood 

plasma by excreting varying amounts of water in response to fluctuations in the 

plasma concentration of sodium. 



CHAPTER 3 

TWO NEPHRON MODEL (DILUTING MODE) 

3.1 Introduction 

According to the countercurrent hypothesis, the loops of Henle act as a 

countercurrent multiplier system, which creates the increase in osmotic 

concentration in the kidney tissue from cortex toward the papilla. The final 

concentration of the urine is supposed to be brought about by passive diffusion 

of water from the collecting ducts to the interstitium as the urine passes through 

regions of increasing osmotic pressure. All the experimental evidence obtained 

so far is consistent with the countercurrent hypothesis (2-6) and in principle there 

can no longer be much doubt about its validity. However, most mammalian 

kidneys consist of both long and short-looped nephrons. Whether these two 

types of nephrons operate in the same manner or if their functions differ is not 

known. 

The model equations are derived from the conservation of mass for solute and 

fluid. Numerical soloution have been obtained using computer calculations. 

3.2 Model 

3.2.1 Assumptions 

We shall construct a model of two nephrons beginning with the most interesting 

part of the system, the loop of Henle (see fig(1)). The descending limb of the loop 

is designated tube 1, the ascending limb as tube 2 and the collecting duct as tube 

3. The sodium concentrations and water flows in the tubules are written Ci(x) 

and Qi(x), respectively, where i=1,2,3. The external sodium concentration is 

denoted by c(x). by our sign conventions, the flow is positive in the descending 

limb and negative in the ascending limb, since x increases downward. 

The physiological assumptions of nephron A are: 

13 
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1.We assume that the walls of the descending limb are 

permeable to water but not to sodium. This is a simplification: The walls are also 

permeable to sodium, but this is not an essential feature of the operation of 

Henle's loop, and we leave it out. Moreover, we assume that the water 

permeability is so large that the water flux makes the internal and external 

sodium concentrations equal. This gives the equations 

dcl1A/dx+flAh20(x)=0 (1) 

(d/dx)(qi AciA)=0 (2) 

ci (xa)=c(x) (3) 

2.We assume that sodium is pumped out of the ascending limb at a fixed rate 

f*Ana  per unit length. We also assume that the ascending limb is impermeable to 

water. This gives 

dq2A/dx=0 (4) 

(d/dx)(q2Ac
Zfk
e,  A ) +f *An a (5) 

3.At the turn of Henle's loop(x=la) we assume that all of the salt and water 

leaving the descending limb enter the ascending limb. This gives the boundary 

conditions 

ci (LA)=c2(LA) (6) 

q1(LA)=-q2(LA) (7) 

The physiological assumptions of nephron B are: 

1.We assume that the walls of the descending limb are 

permeable to water but not to sodium. This is a simplification: The walls are 

also permeable to sodium, but this is not an essential feature of the operation of 

Henle's loop, and we leave it out. Moreover, we assume that the water 

permeability is so large that the water flux makes the internal and external 

sodium concentrations equal. This gives the equations 

dq1B/dx+flBh20(x)=0 (8) 
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(d/ dx)(qi Bci B)=0 (9) 

ci (xb)=c(x) (10) 

2.We assume that sodium is pumped out of the ascending limb at a fixed rate 

f*Bna  per unit length. We also assume that the ascending limb is impermeable to 

water. This gives 

dq2B/dx=0 (11) 

(d/dx)(q2Bc2B)+f*Bna (12) 

3.At the turn of Henle's loop(x=lb) we assume that all of the salt and water 

leaving the descending limb enter the ascending limb. This gives the boundary 

conditions c1(LB)=c2(LB) (13) 

q1(LB)=-q2(LB) (14) 

4.Finally, we need an assumption about the peritubular capillaries, which pick 

up the sodium that is actively pumped out of the ascending limb and the water 

that passively flows out of the descending limb. First, we assume that the 

capillaries pick up this sodium and water locally. That is, we do not allow for 

any longitudinal flow outside of the tubules and capillaries. Since we are. 

considering a steady state model, it follows that the peritubular capillaries pick 

up water at the rate f1h20(x) and sodium at the rate of f*na  per unit length from 

the two nephrons. Here we assume that the interstitial fluid is picked up be a 

process of filtration analogous to the process that occurs in the glomerular 

capillaries but running here in the opposite direction. In reverse filtration at the 

peritubular capillaries, we assume that the sodium is carried passively by the 

water at its local tissue concentration. This implies a relationship between the 

flux of sodium and the flow of water: 

f*Bna +f*Ana=c(x)[flAh20(x)41B1120(x)] (15) 

in the interval 0 < x < la & 

c(x f*Bna= )[f1Bh20(x)] (16)  
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in the interval la < x < lb . 

3.2.2 Soloution in the Cortical region 

Descending limb of nephron A and B:solving (2) we get 

qiA(x)ci(xa) = K; where K = qAoco (A) 

Solving (9) we get 

qiB(x)ci(xb) = K; where K = qgoco (B) 

By the product rule it follows that equation (2) & (9) can be written in the form 

- dqiA/dx c = dc/dx q1A (17) 

- dq1B/dx c = dc/dx q1B (18) 

Adding (17) + (18) we get 

dc/dx (q1A+q1B) = - (dcl1A/dx+dq1B/dx) c 

But, dcliA/dx f1Ah20 

dc1113/dx flBh20 

Therefore 

dc/dx(q1A+q1B) (flAh20+f1Bh20) c 

From eqn (15), the above eqn can be written as 

dc/dx(q1A+q1B) (f*Ana+f*Bna) (19) 

substituting the expression for q1(xa),q1(xb) and from eqn (A) & (B) and 

simplifying eqn (19) we get 

dc/dx = [f*Ana f*Bna) cii[c110)+cl1B(0)1 c0; 

which implies that 

c(xa)=coexp(fAna+f*Bna )xa)/Eq1A(0)+q0(0)] c0; *  

and in particular that 

c(la)=coexpRf*Ana+f*Bna)la)]/[qi(0)+q1B(0)] co; (20) 

Let al  = (f*Ana +f*Bna) la)/[q1(0)+q0(0)] c0 Therefore eqn (20) becomes 

c(la) = c0 exp(W); 



17 

Ascending limb of nephron A: Solving equation (5) 

q2(xa) dc2A/dx = -f*Ana (21) 

Where q2(xa) = qA0 exp(-a'); therefore equation (21) becomes 

dc2A/dx = - f*Ana exP(O/cIAO; 

Which implies that 

c2(xa) = c0exp(cc!)[1-aA] + f*Ana exp(oc9xa/qA0 (22) 

Where aA = (f*Ana la)/(qA0  c0) < 1; 

Note: ena  1 is the total rate at which sodium is actively pumped out through the 

walls of the ascending limb of Henle's loop, while q0 c0 is the rate at which the 

sodium enters the loop from the proximal tubule. Thus the ratio of these fluxes is 

always less than 1. 

In particular equation (22) can be written as 

c2A(0) = c0 exp(a1 )*[1-aA] (23) 

It is now easy to check that exp(0[1-aA] < 1 when aA is not equal to zero. Thus, 

c2A(0) < c0 and the fluid leaving the top of the ascending limb is more dilute 

than blood plasma. 

3.2.3 Soloution in the Medullary region 

Descending limb of nephron A and nephron B:In this region the nephron A is 

absent and only nephron B is present. So 

Solving (9) we get 

qiB(x)ci(xb) = K; where K = qBoco (B) 

By the product rule it follows that equation (9) can be written in the form 

- dqiB/dx c = dc/dx q1B (24) 

But 

dq1B/dx f1B1120 

Therefore 
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dc/dx(q1B) (f1B1120) c  

From eqn (16), the above eqn can be written as 

dc/dx(qiB) = - (f*Bna) (25) 

substituting the expression for q1(xb) from eqn (B)and simplifying eqn (25) 

we get 

dc/dx = [ f*Bna c]/[q1B(0)] c0; 

which implies that 

c(xb)=c(la)exp[f*Bna(x-la)]/[(q1B(1a)) c(la)]; 

and in particular that 

c(lb)=coexpRo:')+(f*Bna(lb-la))/(q1B(0))]c0 (26) 

Let aB = (f*Bnalb)/(q1B(0)c0) Therefore eqn (26) becomes 

c(lb) = c0 exp[ce+(aBln)]; 

where In = (lb-la)/lb; 

Ascending limb of nephron B: Solving equation (12) 

q2(xb) dc2B/dx = _f*ABna (27) 

Where q2(xb) = c1B0 * exp[-a'-(aBln)]; therefore equation (27) becomes 

dc2B/dx = - f*Bna  exp[ce+(aBln)]/qB0; 

Which implies that 

c2(xB)=1+m; (28) 

where 

1=c0exp[ce+(aBln)][1-ccB] 

m=f*Bna  exp[a'+ocB1n)Dxbicig0 

ari= (f*Bna lb)/(qB0 c0) < 1; 

Note: ena  1 is the total rate at which sodium is actively pumped out through the 

walls of the ascending limb of Henle's loop, while q0 c0 is the rate at which the 

sodium enters the loop from the proximal tubule. Thus the ratio of these fluxes is 

always less than 1. 
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In particular equation (28) can be written as 

c2B(0) = c0 exp[oc'+(aBln)] [1-al3] (29) 

It is now easy to check that exp[at-FaB'ln)][1-aB] < 1 when o:13 is not equal to zero. 

Thus, c2B(0) < co and the fluid leaving the top of the ascending limb is more 

dilute than the blood plasma. 

3.2.4 The Juxtaglomerular Apparatus and the renin angiotensin system 

Near the top of the ascending limb of Henle's loop there is a specialized cluster of 

cells called the juxtaglomerular apparatus. These cells monitor the tubular fluid 

and secrete a hormone, renin, into the afferent arteriole just before it enters the 

glomerulus. Renin is converted in the blood to angiotensin, a potent 

vasoconstrictor, i.e., a substance that stimulates the constriction of blood vessels. 

Although the details are not certain, it is a plausible hypothesis that the cells of 

the juxtaglomerular apparatus monitor specifically the sodium concentration at 

the top of the ascending limb and they secrete enough renin to make glomerular 

filtration, and perhaps reabsorption from the proximal tubule, proceed at 

whatever rate is needed to achieve the target concentration at that site. 

We will model this feedback mechanism in the simplest possible way: We 

assume that the inflow q1A(0) and q1B(0) to nephron A and nephron B takes on 

whatever value is needed to satisfy the equation 

c2A(0) = c A (30) 

c213(0) = c B (31) 

Where c*A and c*B are the target concentration sought by the juxtaglomerular 

apparatus. Thus we do not model the details of the renin angiotensin system. We 

assume it is working and we study its effects on the performance of the nephron. 

substituting equation (30) in (31), we get 

as = exp(ce)[1-aA] (32) 
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ab = exp[a'+(aBln)][1-aB] (33) 

Where aa= c*A/co <1 

ab= c*B/co <1 

Here aa and ab are regarded as known, so the equation for a' and aB can be 

solved,hence qiA(0),q1B(0) can also be solved. 

From equation (32) and (33) we can see that for each aa and ab such that 

0<aa,ab<1 the solution satisfies 0<aA,aB<1. Thus for small values of aa and ab, 

aA and aB are approximately equal to one. We can now rewrite the results with 

c*A & c*B as parameter in the following way: 

cj1A(0) = (f*Ana  la)/c0; 

cl2A(0) = q1A(0) exp(-a)); 

cl1B(0) = (f*Bna  lb)/c0; 

q2B(0) = q1B(0) exp[-a'-(aBln)]; 

These results summarize the behavior of the model of Henle's loop as controlled 

by the juxtaglomerular apparatus. 

4.2.5 The Distal tubule and collecting Duct 

We now come to the stage in the formation of urine where a decision has to be 

made whether to excrete a large volume of dilute urine or small volume of 

concentrated urine. The hormone that determines which possibility will occur is 

antidiuretic hormone(ADH). When ADH is absent, we assume that the distal 

tubule and the collecting ducts are simple conduits, impermeable to both salt and 

water. In these circumstances, the fluid that leaves the top of the ascending limb 

becomes urine without further modification. 

When ADH is present, The situation is more complicated. The effect of ADH is to 

make the distal tubule and the collecting duct become permeable to water. We 

assume that this permeability is so great that the equilibrium is achieved at every 
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stage. In the distal convoluted tubule then, enough water is withdrawn to make 

the sodium concentration equal to that of blood plasma. Then in the collecting 

duct enough water is withdrawn to equilibrate with c(x) at each x. 

The sodium flux is given by, 

q2A(0) c*A = co qDA for nephron A and 

cl2B(0) C*B = c0 qDB for nephron B. 

which can be written as 

qDA = q2A(0) c*A/c0; 

qDB = q2B(0) c*B/c0; 

Therefore q3(0) can be written as 

q3(0) = clDA clDB 

which implies 

q3(0)=[qA0aaexp(-al)]+[qg0abexpla'+(aBln)Il (34) 

The flow at length la of the collecting duct is given by 

q3(1a) c(la) = q3(0) c0 

which can be simplified and written as 

q3(1a)=[qAoaaexp(-20]±[qB0abexpf-2a1 -(aBln))] (35) 

The flow at length lb of the collecting duct is given by 

q3(1b) c(lb) = q3(1a) c(la) 

which can be simplified and written as 

q3(1b)=[qAoaaexp(-2ce-{2aBln})NqB0abexp{-2ce2(aBln)}] (36) 

Thus, the ADH mechanism cannot be used to regulate the total sodium content 

of the body. It can be used to regulate the total sodium concentration of the blood 

plasma by excreting varying amounts of water in response to fluctuations in the 

plasma concentration of sodium. 



CHAPTER 4 

TWO NEPHRON MODEL (CONCENTRATING MODE) 

4.1 Introduction 

From the single nephron model described in chapter 1, one can note that there is 

a substantial osmolality gradient, not only in the outer medulla, but also in the 

inner medulla. The gradient appears equally steep in both medullary regions. 

Similar results have been obtained in other animal species [2,3]. Significantly, 

measurements in the human kidney by Berlyne and Hoerni have demonstrated 

that such gradients are responsible for the concentration of urine in humans, as 

in animals. 

In this model, each nephron obeys the assumption described for the two 

nephron model in chapter 2 except, the assumption 5 is modified. The model 

equations are derived from the conservation of mass for solute and fluid. 

Numerical solution have been obtained using computer calculations. 

3.2 Model 

3.2.1 Assumptions 

We shall construct a model of two nephrons beginning with the most interesting 

part of the system, the loop of Henle (see fig(1)). The descending limb of the loop 

is designated tube 1, the ascending limb as tube 2 and the collecting duct as tube 

3. The sodium concentrations and water flows in the tubules are written Ci(x) 

and Qi(x), respectively, where i=1,2,3. The external sodium concentration is 

denoted by c(x). By our sign conventions, the flow is positive in the descending 

limb and negative in the ascending limb, since x increases downward. 

The physiological assumptions of nephron A are: 

1.We assume that the walls of the descending limb are 

permeable to water but not to sodium. This is a simplification: The walls are 

22 
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also permeable to sodium, but this is not an essential feature of the operation of 

Henle's loop, and we leave it out. Moreover, we assume that the water 

permeability is so large that the water flux makes the internal and external 

sodium concentrations equal. This gives the equations 

dq1A/ dx+fl Ah20(x)=0 (1) 

(d/dx)(q1Ac1A)=0 (2) 

c1(xa)=c(x) (3) 

2.We assume that sodium is pumped out of the ascending limb at a fixed rate 

f*Ana  per unit length. We also assume that the ascending limb is impermeable to 

water. This gives 

dq2A/dx=0 (4) 

(d/dx)(q2Ac2A ) ±fAna (5) 

3.At the turn of Henle's loop(x=la) we assume that all of the salt and water 

leaving the descending limb enter the ascending limb. This gives the boundary 

conditions 

c1(LA)=c2(LA) (6) 

q1(LA)=-q2(LA) (7) 

The physiological assumptions of nephron B are: 

1.We assume that the walls of the descending limb are 

permeable to water but not to sodium. This is a simplification: The walls are 

also permeable to sodium, but this is not an essential feature of the operation of 

Henle's loop, and we leave it out. Moreover, we assume that the water 

permeability is so large that the water flux makes the internal and external 

sodium concentrations equal. This gives the equations 

dq1ildx+f1Bh20(x)=0 (8) 

(d/dx)(q1Bc1g)=0 (9) 

ci (xb)=c(x) (10) 
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2.We assume that sodium is pumped out of the ascending limb at a fixed rate 

f*Bna  per unit length. We also assume that the ascending limb is impermeable to 

water. This gives 

dq2B/dx=0 (11) 

(d/d0q2B c2b)+f*Bna (12) 

3.At the turn of Henle's loop(x=lb) we assume that all of the salt and water 

leaving the descending limb enter the ascending limb. This gives the boundary 

conditions 

ci (LB) =c2(LB) (13) 

cI1(1-B)=-1q2(1-B) (14) 

4.At the collecting duct, we assume that the rate at which the water comes out 

when ADH is present is f3h20. This give the equations 

dq3/dx = "f3h20 (15)  

d(q3c3)/dx = 0 (16) 

5.Finally, we need an assumption about the peritubular capillaries, which pick 

up the sodium that is actively pumped out of the ascending limb and the water 

that passively flows out of the descending limb. First, we assume that the 

capillaries pick up this sodium and water locally. That is, we do not allow for 

any longitudinal flow outside of the tubules and capillaries. Since we are 

considering a steady state model, it follows that the peritubular capillaries pick 

up water at the rate flh20(x) and sodium at the rate of f*na  per unit length from 

the two nephrons. Here we assume that the interstitial fluid is picked up be a 

process of filtration analogous to the process that occurs in the glomerular 

capillaries but running here in the opposite direction. In reverse filtration at the 

peritubular capillaries, we assume that the sodium is carried passively by the 

water at its local tissue concentration. This implies a relationship between the 

flux of sodium and the flow of water: 
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f*Bna+f*Ana=c(x)[f1Ah20(x)+flBh20(x)l-f3h20(x)] (17) 

in the interval 0 < x < la & 

f*Bna= c(x)Ef1Bh20(9f31120(x)] 
(18) 

in the interval la :..< x < lb 

3.2.2 Solution in the Cortical region 

Descending limb of nephronA and nephronB :solving (2) we get 

qiA(x) ci(xa) = K; where K = qAOcO (A) 

Solving (9) we get 

qm(x) c1(xb) = K; where K = qB0c0 (B) 

Solving (16) we get 

q3(x) c3(x) = K; where K = q30c0 (C) 

By the product rule it follows that equation (2),(9)and (16) can be written in the 

form 

- dcliA/dx c .--- dc/dx qiA (19) 

- dq1B/dx c = dc/dx qth (20) 

- dq3/dx c = dc/dx q3 (21) 

Adding (19) + (20) + (21) we get 

dc/dx (q1A+q1B+c33) = - (c1q1A/dx+dq1B/dx+dq3/dx) c 

But, dqiA/dx = - flAh20 

dqm/dx = - f1Bh20 

dci3/dx = - f3h20 

Therefore 

dc/dx(q1A+q1B+q3) , (flAh2041Bh20+f3h20) c 

From eqn (17), the above eqn can be written as 

dc/dx(q1A+q1B+q3) = - (f*Ana+f*Bna) (22) 
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substituting the expression for q1(xa),q1(xb) and q3(x) from eqn (A) (B) & (C) 

and simplifying eqn (22) we get 

dc/dx = [f*Ana f*Bna) c]/[q1A(0)+q1i3(0)+q3(0)] c0; 

which implies that 

c(xa)=c0 exp(f*Ana+f*Bria)*xa)/(q1A(0)+q1B(0)+q3(0)] co; 

and in particular that 

c(la)=c0 exp[(f*Ana+f*Bna) la)]/[qi(0)+q13(0)+q3(0)] co; (23) 

Let al= (f*Ana +f*Bna) la)/[q1(0)+q1B(0)+q3(0)]c0 Therefore eqn (23) becomes 

c(la) = c0 exp(a'); 

Ascending limb of nephron A and B:Solving equation (5) 

q2(xa) dc2A/dx = -f*Ana (24) 

Where q2(xa) = qA0 exp(-a'); therefore equation (24) becomes 

dc2A/dx = - f*Ana  exp(a')/qA0; 

Which implies that 

c2(xa) = c0exp(cc')[1-aA] f*Ana exp(oe)*xa /qA0 (25) 

Where aA = (f*Ana  la)/(c1A0 c0) < 1; 

Note: f*na  1 is the total rate at which sodium is actively pumped out through the 

walls of the ascending limb of Henle's loop, while q0 c0 is the rate at which the 

sodium enters the loop from the proximal tubule. Thus the ratio of these fluxes is 

always less than 1. 

In particular equation (25) can be written as 

c2A(0) = c0 exp(a) [1-aA] (26) 

It is now easy to check that exp(as)[1-aA] < 1 when aA is not equal to zero. Thus, 

c2A(0) < co and the fluid leaving the top of the ascending limb is more dilute 

than blood plasma. 
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3.2.3 Solution in the Medullary region 

Descending limb of nephron A and B:In this region the nephron A is absent and 

only nephron B is present. So Solving (9) we get 

qiB(x) c1(xb) = K; where K = qB0c0 (B) 

q3(x) c3(x) = K; where K = q30c0 (C) 

By the product rule it follows that equation (9)and (16) can be written in the 

form 

- dq1B/dx c = dc/dx cliB (27) 

- dq3/dx c = dc/dx q3 (28) 

dc/dx (q1B+q3) - (dq1B/dx+dq3/dx) c 

dc1113/clx flBh20 

dq3/dx f3h20 

Therefore 

dc/dx(q1B+q3) (f1Bh20-431120)) c 

From eqn (16), the above eqn can be written as 

dc/dx(q1B+q3) = - (f*Bna) (29) 

substituting the expression for q1(xb) and q3(x) from eqn (B) and simplifying 

eqn (29) we get 

dc/dx = [ f*Bna  c]/[q1i3(0)+q3(0)] c0; 

which implies that 

c(xb)=c(la)exp[f*Bna*(x-la )]/[(q1B(1a)+q3(1a)) c(la)]; 

and in particular that 

c(lb)=c0 expRa1 )+(f*Bna(lb-la))/(q1B(0)+q3(0))] c0 (30) 

Let ocBi = f*Bna*lb)/[q1B(0)+q3(0)] * c0 Therefore eqn (30) becomes 

c(lb) = c0 * exp[oc'+(aann)]; 

where In = (lb-la)/lb; 

Ascending limb of nephron B: Solving equation (12) 
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q2(xb) dc2B/dx = _f*ABna 
 (31) 

Where q2(xb) = qgo exp[-a'-(a1P-1n)]; therefore equation (31) becomes 

dc2B/dx = - f*Bna  exp[a'+(ccW*1n)]/qg0; 

Which implies that 

c2(xb)=c0exp[ce+(ccIT*1n)][1-a13]+f*Bna* expfoe-1-0:1 *ln)D4-xb/qg0 (32) 

Where aB = (f*Bna *113)/(c1B0 * c0) < 1; 

Note: f*na  1 is the total rate at which sodium is actively pumped out through the 

walls of the ascending limb of Henle's loop, while q0 c0 is the rate at which the 

sodium enters the loop from the proximal tubule. Thus the ratio of these fluxes is 

always less than 1. 

In particular equation (32) can be written as 

c2B(0) = c0 exp[a'+(aB"fln)] [1-a13] (33) 

It is now easy to check that exprce+oe*ln)][1-aB] < 1 when aB is not equal to zero. 

Thus, c2g(0) < c0 and the fluid leaving the top of the ascending limb is more 

dilute than the blood plasma. 

3.2.4 The Juxtaglomerular Apparatus and the renin angiotensin system 

Near the top of the ascending limb of Henle's loop there is a specialized cluster of 

cells called the juxtaglomerular apparatus. These cells monitor the tubular fluid 

and secrete a hormone, renin, into the afferent arteriole just before it enters the 

glomerulus. Renin is converted in the blood to angiotensin, a potent 

vasoconstrictor, i.e., a substance that stimulates the constriction of blood vessels. 

Although the details are not certain, it is a plausible hypothesis that the cells of 

the juxtaglomerular apparatus monitor specifically the sodium concentration at 

the top of the ascending limb and they secrete enough renin to make glomerular 

filtration, and perhaps reabsorption from the proximal tubule, proceed at 

whatever rate is needed to achieve the target concentration at that site. 
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We will model this feedback mechanism in the simplest possible way: We 

assume that the inflow q1A(0) and q1B(0) to nephron A and nephron B takes on 

whatever value is needed to satisfy the equation 

c2A(0) = c*A (34) 

c2B(0) = c*B (35) 

Where c*A and c*B are the target concentration sought by the juxtaglomerular 

apparatus. Thus we do not model the details of the renin angiotensin system. We 

assume it is working and we study its effects on the performance of the nephron. 

substituting equation (34) in (35), we get 

aa = exp(a')[1-aA] (36) 

ab = exp[a1 +(aann)][1-aB] (37) 

Where aa= c Ano <1 

ab= c*Bno <1 

Here aa and ab are regarded as known ,so the equation for a' and aB' can be 

solved,hence A(0),q1B(0) can also be solved. 

From equation (36) and (37) we can see that for each aa and ab such that 

0<aa,ab<1 the solution satisfies 0<aA,aB<1. Thus for small values of aa and ab, 

aA and aB are approximately equal to one. we can now rewrite the results with 

c*A & c*B as parameter in the following way: 

91A(0) 
* 

na la)/c0; 

q2A(0) = 91A(0)* exp(-a'); 

9.1B(0) (f*Bna * lb)/c0; 

q2B(0) = q1B(0) * exp[-a1 -(aBi*ln)]; 

These results summarize the behavior of the model of Henle's loop as controlled 

by the juxtaglomerular apparatus. 
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3.2.5 The Distal tubule and collecting Duct 

We now come to the stage in the formation of urine where a decision has to be 

made whether to excrete a large volume of dilute urine or small volume of 

concentrated urine. The hormone that determines which possibility will occur is 

antidiuretic hormone(ADH). When ADH is absent, we assume that the distal 

tubule and the collecting ducts are simple conduits, impermeable to both salt and 

water. In these circumstances, the fluid that leaves the top of the ascending limb 

becomes urine without further modification. 

When ADH is present, The situation is more complicated. The effect of ADH is to 

make the distal tubule and the collecting duct become permeable to water. We 

assume that this permeability is so great that the equilibrium is achieved at every 

stage. In the distal convoluted tubule then, enough water is withdrawn to make 

the sodium concentration equal to that of blood plasma. Then in the collecting 

duct enough water is withdrawn to equilibrate with c(x) at each x. 

The sodium flux is given by, 

q2A(0) c A = c0 qDA for nephron A and 

q2B(0) C B = c0 qDB for nephron B. 

which can be written as 

qDA = q2A(0) c A/co; 

qDB = q2B(0) c B/co; 

Therefore q3(0) can be written as 

q3(0) = qDA qDB 

which implies 

q3(0)= [qAoaaexp (-a)] +[qBoabexp {cc'+(ocIPEln)}1 (38) 

The flow at length la of the collecting duct is given by 

q3(la) c(la) = q3(0) 
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which can be simplified and written as 

q3(1a)=[qA0aaexp(-2a')]+[qBoabexp{-2oC-(aBln)}] (39) 

The flow at length lb of the collecting duct is given by 

q3(1b) c(lb) = q3(1a) c(la) 

which can be simplified and written as 

q3(1b)=[qAoaaexp(-2a1 -12aBiln))]+[qgoabexpf-2a'-2(aBinn)11 (40) 

Thus, the ADH mechanism cannot be used to regulate the total sodium content 

of the body. It can be used to regulate the total sodium concentration of the blood 

plasma by excreting varying amounts of water in response to fluctuations in the 

plasma concentration of sodium. 



CHAPTER 5 

RESULTS 

5.1 Introduction 

The maximal concentration that a uniform countercurrent multiplier system can 

achieve is directly related to the length of the multiplier system. We should 

therefore expect the ability to concentrate the urine to be closely related to the 

length of the loops that can act as multiplier system. If only the outer zone of the 

medulla were active. a thick inner zone should not appreciably increase the 

concentrating ability. If on the other hand, the entire inner zone also acts as a 

multiplier system, one should expect the concentrating ability of the animal to be 

related to the combined thickness of the outer and inner zone of the medulla. 

The present study was undertaken primarily to determine the length of 

short and long looped nephrons that work best in both the concentrating and the 

diluting modes. To simplify the analysis for the present discussion, we illustrate 

a short loop and a long loop nephron which represents the entire population of 

loops and a collecting duct which represents the entire population of collecting 

ducts. 

The model equations are derived from the conservation of mass for solute 

and fluid. Numerical solution have been obtained using computer calculations. 

5.2 Model 

The model equations for the two population of nephrons are the following: 

dq(Eclai)/dx+Ifa11h20(x)=0 (1) 

(d/dx)(Eqajc)=0 (2) 

d(Eq2ai)/dx=0 (3) 

(d/dx)(Zcl2aic2A)+Iraina (4) 
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d(Eqbj)/dx+Efbi1h20(x)4 (5) 

(d/dx)(Eq11ic)=0 (6) 

dlq2bi/dx=0 (7) 

(d/dx)(Eq2bi c2)+If*bina=° (8)  

Due to the following assumptions : 

1.qa10 = qa0 for all the i nephrons of type A 

Therefore alai = NA qa0; 

2.gbi0 = qb0 for all the j nephrons of type B 

Therefore Igbj = NB qb0; 

= F*A for all the i nephrons of type A 3.raina 

Therefore Efaina  = NA F*a; 

4.f*bina  = F*B for all the j nephrons of type B 

Therefore Efbina  = NB F*b; 

5.fa11h20= Fa1h20 for all the i nephrons of type A. 

Therfore Efa11h20 ' NA Fa1h20; 

6.fbj11120= Fb1h20 for all the j nephrons of type B. 

Therfore Efbj1h20 = NB Fbih20; 

The above equations can be rewritten as 

dq(Nma1)/dx+NAfa1h2000=0 (1') 

(d/dx)(NAqac)=0 (2') 

d(NAq2a)/dx=0 (3') 

(d/ dx)(NAq2ac2A)+NA-f*ana (4') 

d(NBqb)/dx+NBfb 1h20(x)=1° (5')  

(d/dx)(NBq1bc)=0 (6') 

d(NBq2b)/dx=0 (7') 

(d/dx)(NBc1213c2)+NBf*bna=0 (8') 

Solving these equations one can obtain : 
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c(LA) = c0 exp(a); 

where a' = (NAF*a+NBF*b)LAANAqao+NBqb04-Q30); 

c(Lb) = c0 exp(as') 

where as' = ce+abln; 

(61 = (NBF*bLB)/(Ngclbo+Q30); 

In = (LB-LA)/LBO; 

Q30 = NAaaqa0exp(-0+NBabqboexp(-as'); 

Q3(1b) = exp(-as')Q30; 

5.2.1 Evaluation of the model based on experimental evidence 

The parameters used in our model and the experimental values of those are(for 

humans): 

Cortical Thickness/Medullary Thickness = 0.34 

Cortical Thickness = 6.0mm 

Medullary Thickness = 17.647mm 

c0 = 150meq/liter 

Number of A-type nephrons = 1720,000 

Number of B-type nephrons = 2800,00 

Fraction of A-type nephrons = 0.86 

Fraction of B-type nephrons = 0.14 

Glomerular Filtration rate = 0.1251iter/min 

The filtrate handled by the kidnney = 0.0416671iter/min 

The concentration at the top of Ascending limb 

of nephron A in the diluting mode = 45 

The concentration at the top of Ascending limb 

of nephron B in the diluting mode = 45 

The concentration at the top of Ascending limb 

34 



of nephron A in the Concentrating mode =10.2 

The concentration at the top of Ascending limb 

of nephron B in the concentrating mode = 10.2 

The rate of soloute reabsorption from the ascending limb of nephrons are 

calculated the following way: 

The percentage of short nephrons is 0.86 and that of long nephrons is 0.14 with a 

total of two million nephrons in the two kidneys. The load which the kidney 

handles is one third of the glomerular filtration rate which is equal to 

0.041667meq/l. For the kidney to reabsorb most of the salt, the rabsorption 

capacity must match the salt load (i.e.) F* LT = 1/3 GEM CO; from which we can 

calculate the sodium pump rate for the whole kidney. 

F* = (1/3 GEK c0)/LT meq/mm-min; 

= 4.0952e-07 meq/mm-min; 

F*A  = F*B  = F*; 

We use Newton Raphson method to calculate the flows from the concentration at 

the top of the ascending limb. Therefore the initial guess for the for the flow 

handled by the A-type nephron and the B-type nephron is calculated to be 

QA0  = 0.0134923181/min; 

Q130 = 0.028174961/min; 

It can be seen from the graph that the maximum flow in the diluting mode is 

achieved at LA = 4.32. It should be emphasized here that the maximum values 

for urine concentration obtained in our studies are of course approximate only. 

This may be because the model did not include the effect of urea and the effect of 

aldosterone. Moreover the variability between the individuals and the 
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Figure 2 Evaluation based on experimental evidence (Diluting Mode) 

Figure 3 Evaluation based on experimental evidence (Concentrating Mode) 



long term effects of diet and environment make it impossible to correlate any 

sharply defined upper limit for the concentrating ability with experimental 

values. There is rather good correlation between the percentage of water 

reabsorbed during the diluting mode and the experimental values. The length for 

the short nephron and long nephron for maximum flow was found to closely 

resemble the anatomical length of the short and long nephron. However in the 

concentrating mode, the length of nephron during the minimum flow conditions 

is not close to the experimental value (i.e.) during the concentrating mode, the 

length of nephron A required to minimize the collecting duct flow was 2.98F, 

compared to the experimental value of 6.0mm. 

The reasons for the models inability to closely resemble the experimental 

results are the following: 

1.The experimental value of the ratio of cortical to medullary thickness 

represented the ratio cortical/(cortical+medullary) thickness in the model. 

2.The effects of aldosterone was not considered in the model. 

3.The influence of urea in the concentrating ability of nephrons was not included 

in the model. 

5.2.2 Design Criteria for an Artificial Kidney 

In this case our goal is to find the best parameters of our model to develop an 

artificial kidney(i.e.) a fixed population of nephrons with two different lengths 

should work at its best in both the concentrating mode and the diluting mode. 

The parameters used in our model and the experimental values of those are(for 

humans): 

Cortical Thickness/Medullary Thickness = 0.1399 

Cortical Thickness = 4.16mm 

Medullary Thickness = 29.31471mm 
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c0 = 150meq/liter 

Number of A-type nephrons = 1720,000 

Number of B-type nephrons = 2800,00 

Fraction of A-type nephrons = 0.86 

Fraction of B-type nephrons = 0.14 

Glomerular Filtration rate = 0.1251iter/min 

The filtrate handled by the kidney = 0.0416671iter/min 

The concentration at the top of Ascending limb 

of nephron A in the diluting mode = 10.8 

The concentration at the top of Ascending limb 

of nephron B in the diluting mode = 109.999 

The concentration at the top of Ascending limb 

of nephron A in the Concentrating mode = 10.2 

The concentration at the top of Ascending limb 

of nephron B in the concentrating mode = 90.2 

The rate of solute reabsorption from the ascending limb of nephrons are 

calculated the following way: 

The percentage of short nephrons is 0.86 and that of long nephrons is 0.14 with a 

total of two million nephrons in the two kidneys. The load which the kidney 

handles is one third of the glomerular filtration rate which is equal to 

0.041667meq/1. For the kidney to reabsorb most of the salt, the rabsorption 

capacity must match the salt load (i.e.) F* LT = 1/3 GFR4 CO; from which we can 

calculate the sodium pump rate for the whole kidney. 

F* = (1/3 G14.K c0)/LT meq/mm-min; 

= 1.425884943e-07 meq/mm-min; 

FAA = F*B = F*; 
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Figure 4 Design criteria for an Artificial Kidney (Diluting Mode) 

Figure 5 Design criteria for an Artificial Kidney (Concentrating Mode) 



We use Newton Raphson method to calculate the flows from the concentration at 

the top of the ascending limb. Therefore the initial guess for the for the flow 

handled by the A-type nephron and the B-type nephron is calculated to be 

4A0 = 6.984578569e-031/min; 

4B0 = 8.127659021e-031/min; 

From the graphs it can be seen that there is maximum collecting duct flow 

during the diluting mode and 

minimum collecting duct flow during the concentrating mode.It should be noted 

that the percentage of water reabsorbed in the diluting mode and the 

concentrating mode are not equal to the experimental results of the real kidney. 

However this Artificial kidney is designed to work at approximately 77% 

reabsorption of water in diluting mode and approximately 90% reabsorption of 

water in the concentrating mode for the above parameters. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Discussion 

While Peskin's single nephron model can concentrate only upto a factor of e, the 

two nephron model exhibits a cascade effect that permits concentrations 

consistent with experimental measurements: solute reabsorbed from the 

ascending limbs of short-looped nephron helps concentrate fluid in the 

descending limb of long-looped nephron. This effect is particularly transparent 

in chapter 2, 3, & 5, where in chapter 5 a specific distribution of short loops are 

able to concentrate upto nearly a factor of e at the turns of their loops, because 

the damping effect of the few long loop is small. The long loops are able to 

concentrate beyond e in the region where they extend beyond the short loops. 

In kidneys with exclusively short-looped nephrons as well as in those with 

both types of nephrons, and those with long-looped nephrons only, the sodium 

concentration showed an increase to about the same value in the zone 

corresponding to the outer zone of medulla. Thus, it appears that both types of 

loops function in essentially the same manner. It is quite evident that there is a 

close correlation between relative thickness of medulla and the kidney's ability to 

concentrate the urine. 

All these models that have been developed have been used to study dynamic 

phenomena pertinent to tubuloglomerular feedback. In the models, small 

increases in nephron fluid load induce large relative increases in the salt 

concentration in cortical thick ascending limb at the macula densa. 

We believe that the spectrum of essential hypertension embodies varying 

proportions of a difference in the delicate interaction between renin secretion 

and sodium balance. However, a situation could also exist in which there is high 

plasma renin level, generated from a smaller fractional population of ischemic 
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nephrons causing the same general effect. Any loss of nephrons would further 

impair adaptive sodium excretion and would be likely to amplify the 

hypertension. 

We also believe that the system superstructure which leads to the algorithms 

is surely not unique to kidney modelling. Indeed, the analysis of most large scale 

engineering and biological systems involves detailed models of individual 

components which are somehow connected to form a whole functioning unit. 

We close by noting that the models explained here were still not 

quantitatively satisfactory, possibly because of the following reasons: 1. The 

experimental values of the ratio of cortical to medullary thickness is represenred 

as the ratio of cortical to cortical plus medullary thickness in the model. 2. The 

effects of aldosterone were not considered in the model. 3. The influence of urea 

in the concentrating ability of nephrons was not included in this model. 4. Or 

because some important aspects of concentrating mechanism has been 

overlooked. Despite the simplifying assumptions and the limitations of the 

models presented here, it is believed that they make a strong case for the 

importance of nephron distribution in the urine concentrating mechanism and 

illustrates well the problem involved in attempting to describe accurately the 

function of an organ like kidney. 

6.2 Future research 

There are numerous directions in which this model of the whole kidney can be 

extended. The author interprets these findings as indicative of the presence of a 

potent active sodium-transport system in the ascending limb of henle. On the 

other hand, similar sodium-transport characteristics have not been described 

separately in the ascending limb as thin and thick ascending limbs. Direct 

micropuncture evidence is now available that provides strong support for 
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existence of active sodium-transport in the ascending thin limb. While the 

studies provide qualitative information regarding the presence of active sodium 

transport in the ascending thin limb, they do not permit any quantitative 

assessment of the capabilities of the pump. 

The model can be modified to include the experimental ratio of cortical 

thickness to medullary thickness which could increase the maximum 

concentrating ability of the long nephron. 

Including the effects of aldosterone, urea, and increased tubular load 

would help in providing answers for the high blood pressure. 

The assumption of single collecting duct can be relaxed and the model can 

be modified to represent a specific number of collecting ducts starting at 

different levels of the cortex and medulla. 

Another proposal that has not been discussed is pressure-driven water 

transport out of the vasrecta could cause a single effect for counter current 

multiplication. 

Finally in some cases such as renin-angiotensin system, are well 

characterized whereas other systems such as renomedullary vasodepressor 

system are not well defined at present. Work over the next decade will, it is 

hoped, be directed at determining how the above mentioned characteristics will 

influence the concentrating mechanism. 
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APPENDIX 

PROGRAM FOR TWO NEPHRON MODEL (DIRECT METHOD) 

#include <stdio.h> 
#include <math.h> 

double xa,xb,cxa,cxb,cla,clb,c2xa,c2a0,c2xb,c2b0; 
double fstara=4.359e-04,1a=3.0,fstarb=1.339e-03,1b=30.0; 
double aa,ab,c0,1n; 
double alphaa,alphab,alphapri,albpri; 
double k,k1,k2,k3,qa0,qb0,q30; 
int n; 

main() 
{ 

printf(" model#1 is 2-nephron model assuming the water 
comming out of \n"); 
printf(" the collecting duct is negligible compared to 
the water comming \n"); 
printf(" out of descending limb of the nephrons. \n 
\n"); 

printf(" model#2 is 2-nephron model assuming the water 
comming out of \n"); 
printf("the collectingduct isnot negligible compared to 
the water comming \n"); 
printf(" out of descending limb of the nephrons. 
\n \ n"); 

printf("Press 1 to choose model #1 or press 2 for 
model#2 \n"); 
scanf("%d",&n); 

printf("Enter the value of xa \n"); 
scanfe%G",&xa); 
printf("Enter the value of xb\n"); 
scanf("%G",&xb); 
printf("Enter the value of cO\n"); 
scanfe%G",&c0); 
printf("Enter the value of qa0\n"); 
scanf("%G",&qa0); 
printf("Enter the value of qb0\n"); 
scanf("%G",&qb0); 

k1 = (fstarela+fstarb*la)/c0; 
k = (fstarana+fstarb*lb)/c0; 
k2 = (fstarb*lb)/c0; 
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printf("k2 = %g\n", k2); 
k3 = (fstarala)/c0; 
printf("k3 = %g\n", k3); 
if( n==1) 
}{q30=0; 

else 
q30= qa0+qb0-k; 

alphapn = k1/(.qa0+qb0+q30); 
printfC'alphapri = %g\n", alphapri); 
albpri= k2/(qb0+q30); 
printf("albpri = %g\n", albpri); 
alphaa= k3/qa0; 
alphab= k2/qb0; 
In = (lb-la) /1b; 
if (xb < la ) 
{ cxa= cO*exp((alphapri*xa)/la); 

cla= cO*exp(alphapri); 
cxb= cO*exp((alphapri*xb)/1a); 
clb= cla; 

} 
else 
{ cxa= cO*exp((alphapri*xa)/la); 

cla= cO*exp(alphapri); 
cxb= cla*exp(calbpri*(xb-la))/lb); 
clb= cla*exp(albpri*ln); 

} 
c2xa= (c0*exp(alphapri)*(1.0 
alphaa))+((fstara exp(alphapri)*xa)/qa0); 
c2xb= (c0*exp(alphapri+(albprinn))*(1.0-alphab)) + ((fstarb* 
exp(alphapn+(albpn*ln))*xbYqb0); 
c2a0= (c0*exp(alphapri)*(1.0-alphaa)); 
c2b0= (c0*exp(alphapri+(albpn*ln))*(1.0-alphab)); 
aa = c2a0/c0; 
ab = c2b0/c0; 
printf("q30 = %g\n", q30); 
printf("alphapri = %g\n", alphapri); 
printf("arDpn = %g\n", albpri); 
printf("alphaa = %g\n", alphaa); 
printf("alphab = %g\n", alphab); 
printf("cxa = %g\n", cxa); 
printf("cxb = %g\n", cxb); 
printf("cla = %g\n", clay; 
printf("clb = %g\n", clb); 
printf("c2xa = %g\n", c2xa); 
printf("c2xb = %g\n", c2xb); 
printf("c2a0 = %g\n", c2a0); 
printf("c2b0 = %g\n", c2b0); 
printf("aa = %g\n", aa); 
printf("ab = %g\n", ab); 
printf("qa0 = %g\n", ((fstarala)/(alphaa*c0))); 
printf("qb0 = %g\n", ((fstarb*lb)/(arphab*c0))); 

} 
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PROGRAM TWO NEPHRON MODEL (CONCENRATING MODE) 
(INDIRECT METHOD) 

#include <math.h> 
#include <stdio.h> 
#define ERROR_TOLERANCE 1.0e-6 
/*max allowed error between JGA relative. conc. [ aA and aB] of*/ 
/*solution input flows [ qAo = x(0) and qBo=x(1) ] and target values*/ 
/*set by JGA [aatarget = cstara/c0 and abtarget= cstarb/c0]*/ 
#define MAX NEWTON ITT 100 
/*MAX NEWTON_ ITT sets the maximum number of iterations of the Newton- 
Raphson method*/ 

#define MAX COUNTL 100 
#define TOTAL LENGTH 2.0 
#define FALSE —0 
#define TRUE 1 

/* double fstara=4.359e-04,1a=3.0,fstarb=1.339e-03,1b=30.0; */ 
double delta[2], fx[2], j[2][2], x[2],inv[2][2]; 
double fstara=1.,la,fstarb=0.5,lb,length_inc; 
double aatarget,abtarget,temp,detj; 
double alphaa,alphab,alphapr,alphabpr,alphas; 
double c2a,c2b,c0,cstara,cstarb,carel,cbrel; 
double length ratio,length_factor; 
double k,k1,1cf,k3,k4; 
double d,p,w; 
int i,iteration,count_L; 
double qazero,qbzero, qtilda,qhat,q3zero,q0total; 
double aanow, abnow; 
double derivativel,derivative2; 
int solution; 

main() 

solution = FALSE; 
printf("Enter the value of c0 \n"); 
scanf("%1G",&c0); 
printf("Enter the target JGA value of c*A\n"); 
scanf("%1G",&cstara); 
printf("Enter the target JGA value of c*B\n"); 
scanf("%lG",&cstarb); 
Length_inc = TOTAL_LENGTH/MAX_COUNTL; 
la=1; 
aatarget = cstara/c0; 
abtarget = cstarb/c0; 
/* x[0] and x[1] are initial guesses of flows in A & B 

nephron, respectively*/ 
x[0] = 1.; 
x[1] = 1.; 

/* cstara is set point conc. of JuxtaGlomerular App. in 
Nephron A*/ 
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/* cstarb is set point conc. of JuxtaGlomerular App. in 
Nephron B*/ 

/* aatarget and abtarget are set pts. in dimensionless 
form fraction of starting*/ 

/* serum conc. c0 */ 

for(count_L = 0;(count L < MAX COUNTL/2) && 
count I++) - 

I 
lb = TOTAL_LENGTH -la; 
printf(" \n la %1G \n",la); 
printf(" \n lb %1G \n",lb); 
length_ratio = la/lb; 
length factor =1 - length_ratio; 
k = (((fstara*la)- + (fstarb*lb)) / c0) ; 
k1 = ((((fstara*la) + (fstarb*la)) * 0.5) / c0); 
k2 = (fstarb*lb*0.5) / c0 ; 
k3 = (fstara*la) / c0 ; 
k4 = (fstarb*lb) / c0 ; 

/*******NEWTON RAPHSON***********/ 

for(iteration =1; (iteration < MAX NEWTON_ITT) && 
(solution == FALSE); iteration++)-  

{ 
/*printf("\n qAo guess %1G \n",x[0]); 
pnntf(" qBo guess %1G \n",x[1]);*/ 
d = x[0]1-x[11.(0.5*k); 
alphapr = kl/d; 
alphabpr = (k2*length_factor)/((0.5*x[0])+x[1]-(0.5*k)); 
w = k3*exp(alphapr)/x[0]; 
carel = exp(alphapr) ; 
aanow = carel - w;/* this is present value of 
aA */ 
fx[0] = aatarget - aanow; 
/* discrepency in aA = targetvalue of aA - 
presentvalue of aA */ 
alphas =alphapr + alphabpr; 
cbrel = exp(alphas) ; 
p = ((k4*exp(alphas))/x[1]); 
abnow = cbrel - p; 
fx[1] = abtarget - abnow; 
/*discrepency in aB = targetvalue of aB - 
presentvalue of aB */ 
/*printf(" \n aA now %1G \n",aanow); 
printf(" aA target %1G \n",aatarget); 
printn" aB now %1G \n",abnow); /* abnow is 
thepresentvalue of aB 
pnntf(" aB target %1G \n",abtarget);*/ 
/*printf(" fx[0] %1G \n",fx[0]); 
prmtf(" fx[1] %1G \n",fx[1]); 
printf(" \n cA/c0 %1G \n",carel); 
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printf(" cB/c0 %1G \n",cbrel);*/ 

if((fabs(fx[0])<ERROR_TOLERANCE)&&(fabs(fx[1])<ERROR_TO 
LERANCE)) 
solution = TRUE; 
printf(" \n\nSOLUTION after iteration=%d\n",iteration); 
printf(" \n qa0 %1G \n",x[0]); 
printf(" qb0 %1G \n",x[1]); 
alphaa = fstara*la/(c0*x[0]); 
alphab = fstarb*lb/(c0*x[1]); 
q3zero = x[0]*(1 - alphaa) + x[1] * (1 -alphab); 
q0total = x[0] + x[1]; 
printf(" flow at JGA %lg \n",q3zero); 
printf(" total inflow %lg \n",q0total); 
printf(" alpha A %lg \n",alphaa); 
printf(" alpha B %lg \n",alphab); 
printf(" \n aA now %1G \n",aanow); 
printf(" aA target %1G \n",aatarget); 
printf(" aB now %1G \n",abnow); 
/* abnow is the presentvalue of aB */ 
printf(" aB target %1G \n",abtarget); 
printf(" fx[0] %1G \n",fabs(fx[0])); 
printf(" fx[1] %1G \n",fabs(fx[1])); 
printf(" \n cA/c0 %1G \n",carel); 
printf(" \n cb/c0 %1G \n",cbrel); 
}Pend if*/ 
else{ 
/*printf(" \ n \n \n iteration =n",iteration);*/ 

/*Jacobian 2 */ 

qazero = x[0]; 
qbzero = x[1]; 
qtilda = 0.5 *(qazero - k) + qbzero; 
ghat = qtilda + 0.5 * qazero; 
derivativel = kl/(qhat*qhat); 
derivative2=k2*length_factor/(0.5 *qtilda*qtilda); 
j[0][1] = aanow * derivativel; 
/1[0] [0] =j [0][1]-aanow* k3/(qazero*(qazerok3));*/ 
j[0][0] = j[0][1] - carel *k3/(qazero *qazero); 
j[1][0] = abnow * (derivativel+derivative2); 
j[1][1]=j[1][0]+abnow(derivativek4/(qbzero(qbzero-k4))); 
j[1][1]=j[1][0]+abnow*derivative2cbrel*k4/(qbzero*qbzero); 
detj = (j[0][0]1[1][1])-(j[0][1]1[1][0]); 

/*Inverse of Jacobian */ 
inv[0][0] = j[1][1]/detj; 
inv[0][1] = (-1.01[0][1])/detj; 
inv[1][0] = (-1.01[1][0])/detj; 
inv[1][1] = j[0][0]/detj; 
/*printfr \n inv[0][0] %1G \n",inv[0][0]); 
printf(" inv[0][1] %1G \n",inv[0][1]); 
printf(" inv[1][0] %1G \n",inv[1][0]); 
nrint-ff" inv111111 %1G \n".invF11111):*/ 
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Pdelta[O]anddeltarnarethecalculatedincrementsto thelastguessed 
inputflows*/ 

delta[0] = -inv[0][0]*fx[0]-inv[0][1]*fx[1]; 
delta[1] = -inv[1][0]*fx[0]-inv[1][1]*fx[1]; 
/*printf(" \n delta qAo %1G \n",delta[0]); 
printf(" delta agl3o %1G \n",delta[1]);*/ 

9/* new guess of input flow */ 
x[0] = x[0]+delta[0]; 
x[1] = x[1]+delta[1]; 
}/*end else if*/ 
}/*end for iteration Newton Method*/ 
if ((iteration >= MAX_NEWTON_ITT) Sr Sz (solution == 
FALSE)) 
{ 

printf ("Solution is %d\n",solution); 
printf("MAX_NEWTON ITT has been exceeded 
without obtaining asolution %d \n", 
iteration); 

) 
la -= length inc; 
solution = FALSE; 
}/*end for count_L Length increment */ 

1 
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PROGRAM FOR TWO NEPHRON MODEL(DILUTING MODE) 
(INDIRECT METHOD) 

#include <math.h> 
#include <stdio.h> 

#define ERROR TOLERANCE 1.0e-6 

/*max allowed error between JGA relative. conc. [ aA and aB] of */ 
/*solution input flows [ qAo = x(0) and qBo=x(1) and target values */ 
/*set by JGA [aatarget = cstara/c0 and abtarget= cstarb/c0] 

*/ 
#define MAX_NEWTON_ITT 100 

/*MAX_NEWTON_ITT sets the maximum number of iterations of the Newton-
Raphson method*/ 

#define MAX COUNTL 100 
#define TOTAL LENGTH 2.0 
#define FALSE 0 
#define TRUE 1 

/* double fstara=4.359e-04,1a=3.0,fstarb=1.339e-03,1b=30.0; */ 
double saltout,saltin,delta[2], fx[2], j[2][2], x[2],inv[2][2]; 
double qa0,qb0,fstara=1.0,1a=1.0,fstarb=1.0,1b=1.0,1ength_inc; 
double and,totalflow,aatarget,abtarget,temp,detj; 
double percent,reab,alphaa,alphab,al-ahapr,alphabpr,alphas; 
double q31b,q3,c2a,c2b,c0,cstara,cstar13,carel,cbrel; 
double outurine,conserve,length_ratio,length_factor; 
double k,k1,k2,k3,k4; 
double d,p,w; 
int i,iteration,count_L; 
doubleqazero,qbzero, qtilda,qhat,q3zero,q0total; 
doubleaanow, abnow,qt; 
doublederivativel,derivative2; 

int solution; 

main() 
{ 

solution = FALSE; 
printf("Enter the value of c0 \n"); 
scanf("%1G",8tc0); 
printf("Enter the target JGA value of c*A\n"); 
scanf("%1G",&cstara); 
printf("Enter the target JGA value of c*B\n"); 
scanf("%1G",Szcstarb); 

length_inc = TOTAL_LENGTH/MAX_COUNTL; 
la=1.0; 
aatarget = cstara/c0; 
abtarget = cstarb/c0; 

50 



/* x[0] and x[1] are initial guesses of flows in A & B nephron, 
respectively*/ 
x[0] = 1.0; 
x[1] = 1.0; 

cstara is set point conc. of JuxtaGlomerular App. in Nephron A*/ 
/* cstarb is set point conc. of JuxtaGlomerular App. in Nephron B*/ 

aatarget and abtarget are set pts. in dimensionless form fraction of 
starting*/ 
/* serum conc. c0 */ 

for(count_L=0;(count_L<MAX_COUNTL/2)&&(iteration<100); 
count_L++) 

lb = TOTAL LENGTH -la; 
printfr %1G ",1a); 
/*printf(" %1G ",1b);*/ 
length_ratio = la/lb; 
length_factor =1 - length_ratio; 

kl = (((fstara*la) + (fstarb*la)) / c0) ; 
k2 = (fstarb*lb) / c0 ; 
k3 = (fstara*la) / c0 ; 
k4 = (fstarb*lb) / c0 ; 

/*******NEWTON RAPHSON***********/ 

for(iteration=1;(iteration<MAX NEWTON_ITT)&& 
(solution==FALSE);iteration++Y 

/*printf(" \n qAo guess %1G \n",x[0]); 
printf(" qBo guess %1G \n",x[1]);*/ 
d = x[0]+x[1]; 
alphapr = kl /d; 
alphabpr = ((k2*length factor)/x[1]); 
alphas = alphapr + alphabpr ; 
w = k3*exp(alphapr)/x[0]; 

carel = exp(alphapr) ; 
aanow = carel - w;/*thisispresentvalueofaA */ 
fx[0] = aatarget - aanow; 
/*discrepencyinaA= \ targetvalueofaApresent 
valueofaA*/ 
alphas =alphapr + alphabpr; 
cbrel = exp(alphas) ; 
p = ((k4*exp(alphas))/x[1]); 
abnow = cbrel - p; 
fx[1] = abtarget - abnow; 
/*discrepencyinaB=targetvalueofaBpresentvalue 
of aB */ 
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/*printf(" \n aA now %1G \n",aanow); 
printf(" aA target %1G \n",aatarget); 
printf(" aB now %1G \n",abnow) *11* abnow is 
the presentvalue of aB*/ 
/*printf(" aB target %1G \n",abtarget);*/ 
/* printf(" fxJ0] %1G \n",fx[0]); 
printfe fx[1] %1G \n",fx[1]);*/ 
/*printf(" \n cA/c0 %1G \n",carel); 
printf(" cB/c0 %1G \n",cbrel);*/ 

if((fabs(fx[0])<ERROR_TOLERANCE)&(fabs(fx[1])<ERROR 
TOLERANCE)){ 

solution = TRUE; 
alphaa=k3/x[0]; 
alphab=k4/x[1]; 
q3=((x[0]*aatarget*exp(- alphapr))+(x[1]*abtarget 
*exp(-alphas))); 
saltout= (c0*(exp(-alphas)*(x[0]*(1.0- 
alphaa)+x[1]*(1.0-a1phab)))); 
q31b=(exp(-alphas)*Kx[0]*(1.0-alphaa)+x[1]*(1.0- 
alphab))); 
totalflow = x[0]+x[1]; 
saltin = ((x[0]+x[1])*c0); 
and= q31b*cbrel; 
out= q31b; 
urine = out/totalflow; 
reab= and/saltin; 
percent=1-reab; 
conserve=1-urine; 
printf("%1G%1G%1G%1G%1G\n", 
conserve,q3,cbrel,totalflow,percent); 

/*printf("\n\nsoloutionafteriteration=%d\n", 
iteration);*/ 

/*printf(" \n qb0 = %1G \n",x[1]);*/ 
/*printf(" \n qa0 = %1G \n",x[0]);*/ 

}/*end if*/ 

else 
{ 

/*printf(" \ n\n \niteration=%d\ n",iteration);*/ 

/*Jacobian 2 */ 

qazero = x[0]; 
qbzero = x[1]; 
qt = qazero+qbzero; 

derivative) = 1(1 / (qt*qt); 

52 



derivative2 = k2 * length_factor/ ( 
qbzero qbzero); 

j[0][1] = aanow * derivativel; 

/1[0][0] = j[0][1]-aanow*k3/(qazero* (qazero- k3));*/ 
j[0][0] = j[0][1] - carel * k3/(qazero * qazero); 
j[1][0] = abnow * (derivative1 ); 
/1[1][11=j[1][0]+abnow*(derivative2-
k4/(cibzero*(qbzero-k4)));*/ 
j[1][1]=abnow*(derivative2+derivative1)-
((k4*cbrel)/(qbzero*qbzero)); 
detj = (j[0][0]*j[1][1]) - 0[0][1]1[1][0]); 

/*Inverse of Jacobian */ 
inv[0][0] = j[1][1]/detj; 
inv[0][1] = (-1.0*j[0][1])/detj; 
inv[1][0] = (-1.01[1][0D/de* 
inv[1][1] = j[0][0]/detj; 
/*printf(" \n j[0][0] %1G \n",j[0][0]); 
printf( j[0][1] %1G \n ",j[0][1]); 
printf(" j[1][0] %1G \n",j[1][0]); 
printf(" j[1][1] %1G \n",j[1][1]); 
*/ 
/*delta[O]anddelta[1]arethecalculated 
incrementstothelast*/ 
/* guessed input flows 

*/ 
delta[0]=inv[0][0]*fx[0]inv[0][1]*fx[1]; 
delta[1]=Mv[1][0]*fx[0]inv[1][1]*fx[1]; 
/*printf("\ndeltaqAo%1G \n",delta[0]); 
printf(" delta qBo %1G \n",delta[1]);*/ 
/*newess of input flow */ 
x[0] = x[0]

gu
+delta[0]; 

/*printf(" \n qao = %1G \n",x[0]); 
printf(" \n qbo = %1G \n",x[1]);*/ 
x[1] = x[1]+delta[1]; 

}Pend else if*/ 
}/*end for iteration Newton Method*/ 

if((iteration>=MAX_NEWTON_ITT)&&(solution==FALSE)) 
{ 
printf("MAX NEWTON ITThasbeenexceededwithout 
obtainingasoTution%d\n', 
iteration); 
} 
la -= length inc; 
solution = FALSE; 
}/*end for count_L Length increment */ 
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