
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1993

The postbus fault tolerant CLOS network The postbus fault tolerant CLOS network

Udayabhanu Sarangapani
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Sarangapani, Udayabhanu, "The postbus fault tolerant CLOS network" (1993). Theses. 1891.
https://digitalcommons.njit.edu/theses/1891

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1891?utm_source=digitalcommons.njit.edu%2Ftheses%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

The Postbus Fault Tolerant Clos Network

by

Udayabhanu Sarangapani

The trend in modern computing is to develop multiprocessor systems with

hundreds, even thousands, of processors and memory modules. The task of

providing communication paths among all these units is not a trivial one. For a

small number of functional units, direct connections could be used but for large

systems interconnection networks have to be used. Multistage Interconnection

Networks (MINs), provide a dynamic means for interconnecting processors and

memory in a multiprocessor system. These networks are built with switches in each

stage.

The Clos network is a well defined family of MINs and consists of three

stages. The ordinary Clos network has no fault tolerance capability. This thesis

work presents the design for a modified Clos network by incorporating hardware

redundancy. The excess hardware is in the form of an extra switch in the middle

stage, demultiplexers and multiplexers in the outer stages and two sets of buses.

Algorithms are developed to set the states of the demultiplexers and

multiplexers. It is shown that the proposed design is able to withstand one faulty

switch in each stage and still retain the property of full recovery, i.e., the network is

still able to realize any given input-output permutation.

THE POSTBUS FAULT TOLERANT CLOS NETWORK

by
Udayabhanu Sarangapani

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 1993

APPROVAL PAGE

The Postbus Fault Tolerant Clos Network

Udayabhanu Sarangapani

May 1993

Dr. John D. Carpinelli, Thesis Adviser Date
Assistant Professor of Electrical and Computer Engineering, NJIT.

Dr. Sotirios Ziavras, Committee Member Date
Assistant Professor of Electrical and Computer Engineering, NJIT.

Dr. Michael Palis, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT.

BIOGRAPHICAL SKETCH

Author: Udayabhanu Sarangapani

Degree: Master of Science in Electrical Engineering

Date: May 1993

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Engineering in Electronics
Bangalore University, Bangalore, India, 1990

Major: Electrical Engineering

iv

This thesis is dedicated to

my parents

v

ACKNOWLEDGMENT

I wish to express my deep felt gratitude to my advisor, Dr. John Carpinelli.

Time and again he put me back on the right track. Working with him has been an

enlightening and wonderful experience.

Special thanks are due to the members of my committee: Dr. Sotirios

Ziavras and Dr. Michael Palis. Their many suggestions have enhanced the quality of

this thesis.

I would like to acknowledge the support and encouragement of my family.

Their innumerable sacrifices have made this work possible.

Finally, I am thankful to God, without whose Grace nothing is possible.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Parallel Processing 1

1.2 The Need for Interconnection Networks 2

1.3 Fault Tolerance 3

1.4 Motivation 3

1.5 Outline 4

2 NOTATION AND FAULT MODEL 5

2.1 Notation 5

2.2 Fault Model 6

3 MIN IMPLEMENTATIONS 7

3.1 The Baseline Network 7

3.1.1 Design of the Baseline Network 7

3.1.2 Routing the Baseline Network 8

3.2 The Clos Network 10

3.2.1 Design of the Clos Network 10

3.2.2 Routing the Clos Network 10

3.3 The Benes Network 13

3.3.1 Design of the Benes Network 13

3.3.2 Routing the Benes Network 14

3.4 Other MIN Implementations 14

4 FAULT TOLERANT MINS 16

4.1 The Extra Stage Cube (ESC) Network 17

4.2 The Simple Fault Tolerant Baseline (SFTB) Network 18

4.3 The Fault Tolerant Clos (FTC) Network 20

4.4 Fault Detection and Location 21

vii

Chapter Page

5 THE POSTBUS FAULT TOLERANT CLOS (PFTC) NETWORK 22

5.1 Design of the PFTC 22

5.2 Fault Recovery on the PFTC 23

5.3 Reliability Analysis 28

5.3.1 Fundamentals of Reliability 28

5.3.2 Reliability Analysis of the PFTC 30

5.4 Discussion 32

6 CONCLUSIONS 33

6.1 Summary 33

6.2 Future Work 33

BIBLIOGRAPHY 35

viii

LIST OF FIGURES

Figure Page

3.1 Shuffling 8 Objects facing 7

3.2 8 x 8 Baseline Network facing 8

3.3 8 x 8 Omega Network facing 8

3.4 Legal states of a binary cell 9

3.5 8 x 8 Clos Network facing 10

3.6 8 x 8 Benes Network facing 13

4.1 8 x 8 Extra Stage Cube Network facing 17

4.2 8 x 8 SFTB Network facing 18

4.3 9 x 9 Fault Tolerant Clos Network facing 20

5.1 9 x 9 Postbus Fault Tolerant Clos (PFTC) Network facing 22

5.2 Reliability Curves with r = 0.98 facing 31

5.3 Reliability Curves with r = 0.99 facing 32

ix

CHAPTER 1

INTRODUCTION

1.1 Parallel Processing

As the processing capacity of computers increases, so does the complexity of the

problems that these machines are asked to solve. As a result there will always be a

demand for more computational power. In the early years of electronic computing

this advance was consistently achieved by improving the architecture of the

processor. These improvements soon brought the designers to the physical limits of

the devices and it was realized that the answer to further performance enhancement

lay in a different direction. This approach involved carrying out the computational

tasks in a parallel manner. Different avenues of achieving parallelism have been

explored and many of them are used in combination.

Software parallelism was introduced as a way of maximizing the throughput

of expensive systems. The idea was to keep the physical resources of a computer

continually busy. To this end, multiple processes were loaded onto the system and

these processes shared the resources in a manner determined by the operating

system [14]. This technique has been used on computers with a single processor to

achieve parallelism in the form of multiprogramming, multitasking, multiuser and

time-sharing capabilities.

Hardware parallelism involves the concept of having multiple functional

units. This sort of parallelism can occur at the computer level, sub-processor level

or at the processor level. When parallelism takes place at the computer level, it is

called distributed computing [12]. The computational load is distributed among

many computers. Different computers may be doing different kinds of tasks or the

load may be distributed in a symmetric manner. In either case, all these computers

are connected by a communication network and work independently and

asynchronously. They exchange data and results through the connecting network.

1

One way of achieving parallelism at the sub-processor level is by using

pipelining. In this implementation a processor performs the four basic operations on

an instruction - instruction fetch, decode, execute and write back of the result - in an

overlapped manner. An instruction is fetched and sent to the decoding unit. While it

is being decoded the first one is being executed and so on. In the steady state,

ideally, one instruction is being executed per clock cycle.

On the processor level, parallelism is achieved by having multiprocessors

[5]. There are basically two types of architectures - shared memory and message

passing [19]. In the shared memory system all the processors share the common

memory and communication between processors is achieved through shared

variables in the memory. In the message passing type of multiprocessors, each

processor has its exclusive memory and interprocessor communication is achieved

through direct connection or through a communicating network.

1.2 The Need for Interconnection Networks

The modern trend in parallel computing is massive parallelism - the use of

thousands of processors in a system. Clearly, connecting all these processors

directly is a Herculean task. In the shared memory architecture, the common

memory is divided into modules and conceptually it is possible for all processors to

share a common system bus that lets them access all the memory modules [20].

However, if the number of processors is relatively high, the system performance is

degraded, since only one processor can use the bus at a time. The alternative is to

use crossbar switches. An N X M crossbar switch has N inputs and M outputs.

Conceptually it can be thought of as two crossed sets of parallel conducting bars

placed one above the other. To complete a connection between an input and an

output, the corresponding, crossed bars are connected by a switch. The main

drawback of this scheme is its high cost for high values of N and M [9].

Between the two extremes lies the compromise candidate: the Multistage

Interconnection Network (MIN). MINs are formed by stages of small switches.

2

Each stage is connected to the next through a set of links. By the proper setting of

these switches any inlet can be connected to any outlet. These networks are similar

to those used in telephone switches and much of the basic theories derive from the

work done in early telecommunication research.

1.3 Fault Tolerance

Practical implementations of MINs involve large numbers of processors which are

used in high performance computers. Such MINs have a relatively high hardware

complexity and there is a chance that one or more of the components may fail. Any

such failure could severely degrade system performance. The network may become

unable to realize any arbitrary inlet-outlet connection. Thus there is a need for a

degree of fault tolerance. In a fault tolerant MIN the occurrence of a fault lowers

system performance but does not cause the system to crash. This is called graceful

degradation and is the basic criterion for any fault tolerance design.

1.4 Motivation

Fault tolerance is of critical importance in large systems. These systems are

generally very expensive and it is of crucial importance to reduce their down time.

The Clos network is an attractive alternative to such interconnection schemes as

point-to-point connections and crossbar switches, especially when one is

considering large systems. Hence it is critical that these networks have some degree

of fault tolerance.

Except for the work done by Nassar [29], no work has been done on fault

tolerance schemes for the Clos network. The motivation for this thesis was to find

an alternative method to make this family of networks fault tolerant, one that uses

fewer switches.

3

The following chapters describe the design and operation of the Postbus

Fault Tolerant Clos (PFTC) Network. This network can withstand one fault in each

stage and exhibits the property of graceful degradation.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 lists the symbols

used in this work, along with their meanings. The definition and various aspects of

a fault tolerance model are discussed. Chapter 3 is a survey of some of the well

known MIN implementations. The structure and routing techniques of the Baseline,

Benes and Clos networks are discussed. In Chapter 4, some of the existing fault

tolerance schemes are presented. The construction and operation of the Extra Stage

Cube (ESC), the Simple Fault Tolerant Baseline (SFI'13) and the Fault Tolerant Clos

(FTC) networks are elaborated upon. This chapter also discusses the concepts of

fault detection and location. In Chapter 5, the Postbus Fault Tolerant Clos (PFTC)

network is described in detail. The design and routing algorithms for this network

are explained. Fault recovery for the various types of faults that can occur is

analyzed. This chapter includes a reliability analysis of the PFTC. Basic concepts of

reliability are presented as background material. The PFTC is compared with the

ordinary Clos network in terms of network reliability and it is shown that the PFTC

performs more reliably than the Clos network under all circumstances. Chapter 6

lists the conclusions derived from the work done in this thesis. Suggestions for

future work in this direction are given.

4

CHAPTER 2

NOTATION AND FAULT MODEL

2.1 Notation

The following notation is used in this thesis.

i,i* : (general indices), inlet number in a permutation

*
j,j : (general indices), outlet number in a permutation

X (i,j) : switch number i in stage numberj

N : network size, number of inlets or outlets of a network

I : set of all inlets of a network

0 : set of all outlets of a network

nz : in a Clos network, the number of inputs to a first stage switch or number of
outputs from a third stage switch

11 : in a Clos network, the number of outputs from a first stage switch or number of
inputs to a third stage switch

k : in a Clos network, the number of inputs or outputs of a middle stage switch

P : (the given) permutation

P : (the translated) permutation

() : tuple corresponding to inlet i and outlet j in the given permutation P

(.*) : tuple corresponding to inlet i and outlet j in the translated permutation ?

f0: index number of faulty switch in stage 0 (integer value)

fl: index number of faulty switch in stage 1 (integer value)

f2: index number of faulty switch in stage 2 (integer value)

2.2 Fault Model

Fundamental to the design of a fault tolerant MIN is the definition of a fault

tolerance model [2,22]. It contains three elements: the fault model, the fault

tolerance criterion and the fault tolerance size.

The fault model identifies all the possible faults that can occur in the

network. Thus, the fault model states the types of faults that the proposed design

can recover from. In this work, the fault model is defined as follows.

1. Any basic network component can fail. This means that any of the switches and

links can fail. A link fails if it is disconnected from either of the switches to which it

should be connected. A switch can fail in several ways. For instance, it could be

stuck in legal state. This could happen to be the desired state, but the switch is

unresponsive to its control unit. A switch could be stuck in a partially legal state, in

which case a subset of its inputs and outputs could be connected together. It could

also happen that two inputs are connected together and two outputs are connected

together. All these cases imply that the switch is not responsive to its control unit

and are treated as switch failures.

2. The extra hardware can fail but its failure rate is incorporated into those of the

switches to which it is connected.

The fault tolerance criterion is the condition that must be met for the network

to be called fault tolerant. One criterion is full access retention. This means that after

a fault occurs, any inlet must still be able to access any outlet. This does not

guarantee that a given inlet-outlet permutation is realizable in one cycle of

operations. In this work, a stronger criterion - full recovery is used. This means

that even in the presence of a fault, any inlet-outlet permutation is realizable in one

cycle.

The maximum number of faults a system can suffer and still meet the fault

tolerance criterion defines its fault tolerance size. The proposed design can tolerate

three faults, one in each stage. Thus it is 3-fault tolerant.

6

facing 7

Figure 3.1: Shuffling 8 objects

CHAPTER 3

MIN IMPLEMENTATIONS

Since the time that research in interconnection networks started, there have been a

large number of MINs proposed. It is not possible to describe each MIN in detail,

hence only a few of the well known ones will be described. The structure and

routing of the Baseline, Benes and Clos networks are presented in this chapter.

3.1 The Baseline Network

3.1.1 Design of the Baseline Network

The shuffle family of MINs [36,41], of which the Baseline network is a member, is

characterized by the use of the same switch structure and layout. It is built up of

2 x 2 switches. For a network of size N there are g = log2 N stages, with N/2

switches in each stage. The important trait of this class of MINs is that the switches

of any stage i+1 can be interchanged so that the links between stages i and i+1,

where 0 <= i <= g-1, form a 2-shuffle of the terminals of one stage into those of

the other. This is the way in which networks with seemingly different topologies in

this family can be obtained from one another [40]. The representative networks of

this family include the Baseline [39], Omega [23], Shuffle Exchange [37],

STARANTM Flip [6] and the SW Banyan [16] networks.

Consider N objects. Let N = pq. To obtain the p-shuffle of the N objects,

proceed as follows [17]. Suppose that the pq objects are cards in a deck. Divide the

cards into p piles, each with q cards. Arrange the piles in a row, in any arbitrary

order. Starting with the first pile, remove the top card of each pile and create a new

pile by placing the cards one on top of the other in the same order in which they

were removed. Repeat this for all q cards in each pile. Now we are left with only

one pile containing pq = N cards. The ordered cards of this new pile is the

7

facing 8

Figure 3.2: 8 x 8 Baseline Network

facing 8

Figure 3.3: 8 x 8 Omega Network

p-shuffle of the original deck. If p = 2, the shuffle is called perfect. It should be

noted that a p-shuffle followed by a q-shuffle gives back the original configuration.

Figure 3.1 shows a 4-shuffle and a 2-shuffle of 8 objects.

An 8 x 8 Baseline network is shown in Figure 3.2. It consists of log2 8 = 3

stages, each stage having 8/2 = 4 switches of size 2 x 2. The stages are labeled

0,1,2 from the left and in each stage the switches are labeled from the the top as

0.1.2,3. This is the labeling scheme that is adopted in all the networks in this

thesis. The terms 'inlet' and 'outlet' refer to the network terminals and 'input' and

'output' refer to those of each individual switch. Also, for all MINs, inlets are on

the left side of the network and outlets are on the right. It should be noted,

however, that these terms are used only for ease of understanding since data flows

in either direction.

Looking at the Baseline network, it can be seen that the links between stages

0 and I form a perfect shuffle of the inputs of stage 1 into the outputs of stage 0. If

the switches 1 and 2 of stage 2 are interchanged, we get a network with a perfect

shuffle from the inputs of stage 2 into the outputs of stage 1. If the links between

the outlets and the outputs of stage 2 can now be rearranged to form a perfect

shuffle from the outputs of stage 2 and if the inlets are used as outlets and vice

versa, then the resulting network is called the Omega network [23]. Figure 3.3

shows an 8-input Omega network.

3.1.2 Routing the Baseline Network

The building blocks of a Baseline network are the 2 x 2 crossbar switches. These

are also called binary cells or binary switches. A binary cell can assume either of

two legal states. Figure 3.4 shows a binary switch. In the straight state, the upper

input is connected to the upper output and the lower input is connected to the lower

output. In the cross state, the connections are reversed: the upper input is connected

to the lower output and vice versa. The routing bit decides to which output an input

must be connected to. Normally, if the routing bit is a 0, the input is connected to

8

the upper output and if the bit is 1, it is connected to the lower output. For this

reason, the upper output is sometimes called the 0 output and the lower output is

called the 1 output. If the inputs have identical routing bits, then there is contention

Figure 3.4: Legal states of a binary cell

and one of the inputs must be blocked. This limitation makes the Baseline network

a blocking network, in the sense that not all sets of path can be established between

the inlets and outlets. The path between any given inlet and outlet is unique.

The Baseline network is self-routing. A routing tag is sent to the switches

and they assume appropriate states to connect to switches in the next stage. To

establish a path between inlet S and outlet D , we need to send the g-bit binary

representation of D on inlet S. The integer D can be represented by the bit pattern

D = d 1 d g_2 di do (3.1)

The bit di will control the switch in stage g - 1 - i, 0 <= i <= g-1. An example is

shown in Figure 3.2. Suppose that inlet 0 should be routed to outlet 5. The 3-bit

representation of 5, 101 is fed to the inlet 0, along with the data. This 3-bit string

representing the destination is called the routing tag. The bits 1, 0 and 1 control

switches in stages 0, 1 and 2 respectively. It has been shown that this type of bit

representation for the routing tag can be realized and unscrambled in (2log2N - 1)

passes or less [18].

The main disadvantage of the Baseline network is that not all permutations

can be realized. However it has been observed that the most common permutations

needed in parallel computing are realizable by this network family [26].

9

facing 10

Figure 3.5: 8 x 8 Clos Network

3.2 Clos Network

3.2.1 Design of the Clos Network

Figure 3.5 shows an 8 x 8 Clos network. This is a family of non-blocking

networks built up of three stages numbered 0, 1 and 2 [13]. A non-blocking

network is one that can realize any inlet-outlet permutation. Stages 0 and 2 are also

referred to as the outer stages and stage 1 is sometimes called the middle stage. A

network is of size N if it has N inlets and N outlets. The 0th stage is made up of

switches where each switch is of size m x n (i.e., with m inputs and n

outputs). The middle stage has n switches each of size k x k. The final stage has k

switches of size n x nz. The three stages are connected by interstage links in such a

manner that any switch in a given stage has access to all the switches in the next

stage. In general, for a Clos network, n >= nz. If n = m the resulting network is

called the Clos network or the ordinary Clos network. However, in the modified

version presented in this thesis, n > m and this gives the model some fault

tolerance.

3.2.2 Routing the Clos Network

There is a central routing unit which receives a mapping, in the form of a

permutation, and then determines the switch settings to realize it. This is not a trivial

procedure and is often a time consuming process. The only possible way to avoid

conflicts is to set the middle switches first and then the outer stage switches. There

are three approaches to solving the problem: the group theoretic approach [33], the

direct matrix decomposition approach [11] and the graph theoretic approach [27].

Only the matrix method is used in this work. An example will illustrate the

procedure.

Let the permutation to be realized be given by

= (0 1 2 3 4 5 6 7
2 3 0 1 7 6 8 4)

10

The first member of each tuple refers to the inlet and the second member to the

outlet that it should be connected to. For example, the tuple) implies that inlet

0 should be routed to outlet 5. In this example there are 9 inlets and 9 outlets,

therefore N = 9. Let in = n = 3. The direct matrix decomposition approach starts

by constructing an N X N matrix, / , from the permutation as follows:

I[i,j] = 1 if inlet i is to routed to outlet j

= 0 otherwise

where I[i,jj is the element in row i and column./ of the matrix I, 0 <= i,j < N.

Thus in the example

-0 0 0 0 0 1 0 0 0-
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

= 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

Next, we partition I into k x k sectors, each of size in x m, and construct a k x k

matrix H177 from I as follows:

Hni[i,j] = sum of the in x in elements in sector i,j of I.

In the example,

1 2 01
H3 = 2 0 1

0 1 2

The next objective is to decompose H,11 into in matrices of size k x k such that

there is only one 1 in each row or column. All other entries are Os. Each

11

decomposed matrix will give the proper settings for one of the switches of stage 1.

Once the switches in the middle stage are set, the switches in the outer stages can be

set to realize the given permutation. Many algorithms have been proposed to

decompose Hn1 in the general case, but in this work the one proposed by Neiman

[30] will be used. Its basic idea is as follows.

1. Starting with the leftmost column of Tim , a non-zero element is marked in each

column in such a way that there is no more than one marked element in each row.

The k x k matrix formed by replacing the marked elements with is and filling in Os

elsewhere represents the settings for one of the switches in the middle stage. If it is

not possible to mark an element in a particular column, that column is skipped and

the procedure is continued on the next column. In this case another pass over the

matrix is needed. This pass repeats a process of marking and unmarking elements

of the matrix until in elements are marked. This process of unmarking and marking

is continued until all columns are marked. In the example, one possible way of

marking H3 is as follows.

1* 2 0
H3 = 2 0 1*

0 1* 2

This yields one of the decomposed matrices which is given by

[1 0 01
0 0 1
0 1 0

2. In the next step, each marked element in Hm is decremented by 1 to obtain the

matrix Hm_1 and the algorithm is applied to H,12.1 to obtain the settings of a

second switch in the middle stage. Hm_2 is then formed and the algorithm is

applied recursively until H1 is obtained. This matrix itself represents the settings of

one of the middle stage switches.

12

facing 13

Figure 3.6: 8 x 8 Benes Network

In the example H2 is given by

0 2 01
R2= 2 0 0

0 0 2

The complete decomposition of H3 is obtained by decomposing H2 . Thus

1 2 0 1 0 0 [0 1 0] [0 1 0]
//3 = [2 0 1] = [0 0 1 + 1 0 0 + 1 0 0

0 1 2 0 1 0 0 0 1 0 0 1

The matrices on the right hand side give the settings of the three switches in the

middle stage. If an element in row i and column j is 1, it indicates that the ith input

is to be connected to the jth output in the switch. If the element is 0 it means the

corresponding input-output pair are not to be connected together. After the middle

stage is set, the two outer stage switches are set accordingly. For a given

permutation, once the middle stage is set, the settings of the other two stages are

straightforward to derive.

3.3 The Benes Network

3.3.1 Design of the Benes Network

The Benes network can be derived from a Clos network with n = m = 2 and

k = 2P, for some positive integer p > 1, by recursively decomposing each switch

in the middle stage into a 3-stage Clos subnetwork whose outer stage switches are

of size 2 x 2. This decomposition is continued until every switch in the network is

of size 2 x 2 [7,8]. Figure 3.6 shows an 8 x 8 Benes network.

We derive the Benes network from the Clos network shown in Figure 3.5

by replacinL, both the middle stage switches with a 3-stage Clos subnetwork. There

are 5 stages in the network, each containing 4 switches. In general, a Benes

network will have g = (2log2N - 1) stages where N is the network size. Each

13

stage has N/2 switches, each 2 x 2. The Benes network can be viewed as two back

to back Baseline subnetworks, with one of the two middle stages eliminated. This

leads one to think that similar routing techniques can be used. This is indeed the

case.

3.3.2 Routing the Benes Network

There are broadly two approaches taken to route Benes networks: distributed

routing and central routing. As was mentioned earlier, the Benes network bears a

close resemblance to the Baseline network. Hence the self-routing tag technique

could be used in this case too, albeit in a modified way. This approach does not

allow every permutation to be realized. The time complexity of the distributed

routing algorithm is 0(log,2N).

The central routing algorithm takes advantage of the fact that at any stage j,

0 <= j <= (g-1)/2, the stages between j and 2(log2N) - j -2 form two Clos

subnetworks of size N/2/ each. The most famous algorithm to adopt this approach

is known as the looping algorithm [4,31]. The name derives from the nature of the

algorithm. The algorithm is initiated by arbitrarily setting one of the outer stage

switches and recursively working towards the middle stage switches. The looping

algorithm has a time complexity of O(Nlog2N). This is higher than that of the

distributed routing algorithm; however, the advantage is that the network behaves

like a non-blocking one under this algorithm. A new approach, double coset

decomposition, is used to identify new properties of Benes networks and speed up

routing_ for some permutations [10].

3.4 Other MIN Implementations

Apart from the three MIN implementations discussed above, there are many other

types of MINs that can be found in the literature. The Gamma network is one such

network. This is a MIN with redundant paths between some inlet-outlet pairs. It has

14

a cube network as a substructure. This network is controlled by a similar routing

tag algorithm as the Baseline network.

A fairly new MIN implementation that has been proposed is the B-Network

[25]. This is derived from the Gamma network and has backward links to provide

backward paths for the requests blocked by contentions. The cube structure of the

Gamma network is preserved but the direction of all other links are reversed. The

routing technique and hardware complexity are identical to those of the Gamma

network, while its performance is enhanced.

15

CHAPTER 4

FAULT TOLERANT MINS

In this chapter, an overview of some of the main fault tolerance designs that have

been proposed will be discussed. The general concepts of fault tolerance in MINs

will be presented. The inevitable tradeoff between hardware complexity and degree

of fault tolerance can be understood from this chapter.

In general, any system can be made fault tolerant by adding extra hardware.

The extreme solution is to duplicate the system - use one system and when that

fails, switch to the other one. This approach is used when absolutely no

performance degradation is acceptable. However, the obvious disadvantage of this

solution is the high cost. It should be noted that only one system will be in use at a

given time. Thus, it is clear that duplication is not a viable alternative.

In practice, MINs are made fault tolerant by adding extra hardware, such that the

extra cost and increased size are acceptable. Adding more hardware normally

translates to less severe performance degradation under faulty conditions. The

objective in all fault tolerance schemes in MINs is to achieve graceful degradation.

This means that when a network component fails, the network should not break

down completely; it should still be functional, even though its performance may be

reduced. The second goal of fault tolerance techniques is that the performance under

normal conditions should not be adversely affected.

Most of the fault tolerance techniques proposed in the literature have been

restricted to the shuffle family. The Kappa network has been suggested as a way to

provide fault tolerance to the Gamma network by adding extra links [21]. The extra

stage Gamma network employs an extra stage to provide redundancy and is one-

fault tolerant [24]. A scheme applicable to a wide class of MINs has been

suggested [31]. This method connects switches in the same stage together, thus

providing alternate paths at every stage. Nassar has proposed a non-MIN specific

16

facing 17

Figure 4.1: 8 x 8 Extra Stage Cube Network

technique that uses bypass buses under faulty conditions [29]. He has also

proposed a fault tolerant Clos network that adds an extra switch in each stage [29].

Both these MINs are discussed later in this chapter. Also presented in this chapter

is the construction and fault model of the Extra Stage Cube, a very well known

fault tolerant MIN.

4.1 The Extra Stage Cube (ESC) Network

The Extra Stage Cube (ESC) is a fault tolerant implementation for the shuffle family

[1]. Shown in Figure 4.1 is an ESC implementation on a member of this family, the

Generalized Cube Network. Stage 0 is the extra stage. The inlets are connected to a

set of demultiplexers of size 1 x 2, One of the outputs of each demultiplexer is

connected to the corresponding switch in stage 0. The other output bypasses this

switch. It is connected to a series of multiplexers on the output side of the switch. A

similar arrangement is made for stage 3. Either of these stages can be switched on

or off at will by properly setting the states of the multiplexers and demultiplexers.

In the normal condition, stage 0 is bypassed. If a switch in stage 3 develops a fault,

that stage is disabled and stage 0 is enabled. If a switch in a stage other than 0 or 3

is faulty, that particular stage is turned off and both stages 0 and 3 are used. It

should be noted that in general, for a cube network, there are (g + 1) stages, where

g = log2N . In the example under discussion, g = 3 and there are 4 stages in the

network. The extra stage provides a set of redundant paths between any inlet-outlet

pair.

The Generalized Cube adopts a self routing technique. A routing tag is

generated by the bitwise exclusive-OR of the two integers S and D representing

the source and destination respectively. The tag has g bits. A switch in stage i

examines the ith bit of the tag and assumes one of two states, 0 or 1. A '0' implies a

straight connection, while a l' puts the switch in the crossed state. If the two

inputs of a switch have identical routing bits, contention occurs and one of the

inputs has to be blocked. However, for the ESC, there is no way of knowing

17

facing 18

Figure 4.2: 8 x 8 SFTB Network

before hand which stage is going to be disabled. In the normal working condition

stage 0 is disabled, but the occurrence of a fault in any stage forces stage 0 to be

enabled. This dictates that dynamic routing techniques be employed. The ESC

generates a dynamic (g + 1) bit routing tag T', other than the normal routing tag T,

for each inlet-outlet path. Obviously, all processors must be informed about the

location of the fault. In this thesis, it is assumed that there is some circuitry to detect

the location of a fault and to notify each processor.

The fault model for the ESC is given below.

1. Any network component can fail.

2. Any component of the extra hardware can fail. But their failure rates are

incorporated into those of the corresponding network switches.

3. Faulty components are unusable.

4. Faults occur independently.

The fault criterion is full access retention. Any inlet can be routed to any

outlet in the presence of a fault. The fault size of the ESC is 1.

The advantages of the ESC can be summarized as follows. It is made up of

simple binary cells and is easy to operate. The multiplexers and demultiplexers have

to be arranged only once after the occurrence of a fault.

The disadvantages are the following. The extra hardware complexity is

relatively high: N/2 extra switches and 4N multiplexers and demultiplexers are

needed. The ESC has a fault tolerance criterion of full access retention; any arbitrary

permutation cannot be realized in the presence of a fault. The generation of a new

routing tag after a fault occurs requires extra time. This decreases the performance.

4.2 The Simple Fault Tolerant Baseline (SFTB) Network

This is a non-MIN specific fault tolerance technique proposed by Nassar [29]. In

the following discussion, this technique is applied to the Baseline network, but in

fact, it can be applied to any MIN. The main idea behind this approach is to

combine the two types of interconnection mechanisms that can exist in a

18

multiprocessor system: a single common bus or a MIN. The MIN is the primary

interconnection mechanism and the bus is used by data that would normally pass

through the switch that develops a fault. The result is to produce a network which

has all the advantages of a MIN. Under normal working conditions, this network

behaves exactly like a MIN, with the bus being invisible.

The SFTB is shown in Figure 4.2. An external bus bypasses the network

and connects the inlet side and the outlet side. Each inlet is connected to both the

network and the bus through a 1 x 2 demultiplexer. On the other side, each outlet is

also connected to both the network and the bus through a 2 x 1 multiplexer. Under

no-fault conditions, the states of the multiplexers and demultiplexers are such that

the inlets and outlets are connected through the network. Generally, the '0' state

corresponds to this configuration. When this state is '1', the inlets and outlets are

connected through the external bus. When no faulty switch exists, the SFTB uses

the routing algorithm of the ordinary Baseline network. Upon the occurrence of a

fault, the SFTB has to be reconfigured. It is assumed that there is some mechanism

to detect and locate faults. After a faulty switch is detected, its location is broadcast

to all processors. At the start of each memory cycle, each processor must first find

if the defective switch lies in its path. If it does not, then the processor starts the

memory cycle as it would under normal conditions. If a faulty switch exists along

its path, the processor will use the standby bus to access the memory. This is done

by setting the state of the demultiplexer corresponding to the inlet to '1'. This

connects the inlet to the external bus. On the outlet side, the multiplexer

corresponding to the outlet that the particular inlet must be routed to is also set to

state F. This completes the path between the inlet and its corresponding outlet

through the bus.

It should be noted that the fault tolerance criterion for the SFTB is full

access retention. This implies that when a fault occurs, all the inlets may not be

routed to their corresponding outlets in one memory cycle. Referring to the Figure

4.2, it can be seen that if the switch corresponding to inlets 4 and 5 fails, at least

19

facing 20

Fi
g u

re
 4

. 3
: 9

 x
 9

 F
au

lt
 T

o l
er

an
t C

lo
s

N
et

w
o r

k

two cycles are needed to complete all connections.

The advantage of the SF1'B is its simplicity and ease of operation. This

technique is applicable to any MIN. Under normal conditions, the routing algorithm

of the Baseline network can be used. There are some disadvantages. The fault

tolerance criterion of the SFIB is full access retention. This implies that under

faulty conditions more than one memory cycle is needed. This problem can be

eliminated by the use of the Enhanced Sl-TB [29], in which there are two external

buses instead of one. Bus loading is also a concern for synchronous systems.

4.3 The Fault Tolerant Clos (FTC) Network

An ordinary Clos network of size N x N has k = N/m switches in stages 0 and 2

where in is the number of inputs of a first stage switch. Each switch in stage 0 is of

size in x n and each switch in stage 2 is n x in. In the middle stage there are n

switches of size k x k . The Fault Tolerant Clos (FIC) network [29] is derived from

the Clos network as follows. In the outer stages, switches with n = na + 1 are

used. This implies that an extra switch is needed for the middle stage. In addition,

an extra switch is added in each outer stage. Each switch is of the same size as the

switches of the stage to which it is added. These extra switches provide fault

tolerance to the corresponding stages by way of their redundancy. When a switch

develops a fault, the extra switch in that stage is used to perform the routing. The

network inlets are connected to the inputs of the first stage via 1 x 2 demultiplexers.

On the outlet side, the outputs of the last stage are connected to the outlets through 2

x 1 multiplexers. Figure 4.3 shows an FTC derived from a 9 x 9 Clos network.

Each switch in the original network is of size 3 x 3.

The FTC can be reconfigured in such a manner that its pre-fault connectivity

is regained. The basic idea behind the implementation is that when a switch fails in

any or all of the stages, the affected switch is disabled and the extra switch in that

stage is used. As mentioned earlier, Clos networks can be routed using matrix

decomposition methods. The FTC also uses the same approach. In the event of a

20

switch failure, the matrix generated from the original permutation is no longer valid.

The original matrix assumes m = 71 , which is not the case in the FTC. A new

permutation has to be generated from the original one, taking into account the faulty

switches in the network. The translated permutation is used in the generation of a

new matrix. This matrix is decomposed using standard matrix decomposition

techniques and the switch settings of the middle stage are extracted.

The FTC offers increased network reliability at relatively low cost_ Three

extra switches and 2k multiplexers and demultiplexers are required. The fault

tolerance criterion for the FTC is full recovery. This feature is particularly important

in Clos networks, since these networks are primarily permutation networks.

4.4 Fault Detection and Location

Fault detection and location are two important issues related to fault tolerant MINs.

There must be a method to know when and where a fault has occurred and a

scheme to pass this information to all the processors. There are two ways in which

faults can be detected and isolated: the online method and the offline method. The

offline method basically consists of applying a test pattern at the input and

comparing the output with the expected values [3,15]. This could be done at the

start of each network cycle and can slow down the performance appreciably. The

online techniques, on the other hand, are much faster but require sophisticated

hardware. The techniques employed in this case could be either parity checking [34]

or data bits checking [27]. In this thesis it is assumed that there is some mechanism

to detect and locate faults and to inform the processors of the fault location.

21

facing 22

Fi
gu

re
 5

.1
: 9

 x
 9

 P
os

tb
us

 F
au

lt
T

ol
er

an
t C

lo
s

(P
FT

C
)

N
et

w
or

k

CHAPTER 5

THE POSTBUS FAULT TOLERANT CLOS (PFTC)
NETWORK

A Clos network inherently has some fault tolerance in the middle stage. This is due

to the fact that a switch in this stage is connected to all the switches in the outer

stages. However, this only offers full access retention. Also, a fault in either of the

outer stages cannot be tolerated. The Postbus Fault Tolerant Clos (PFTC) network

design proposed in this chapter satisfies the criterion of full recovery and can also

withstand faults in the outer stages.

5.1 Design of the PFTC

A 9 x 9 PFTC is shown in Figure 5.1. The idea behind the design is to make each

stage of the network one switch fault tolerant. Fault tolerance is built into each stage

independently by treating each stage as a system by itself. This is a valid

assumption since, in all reliability and failure analyses, system components are

considered to fail independently.

For the PFTC, the fault model is defined as follows.

1. Any switch or link can fail.

2. Extra hardware in the form of multiplexers and demultiplexers and external links

can fail. Their failure rates are incorporated into those of the switches with which

they are associated.

3. Faulty components are unusable.

Consider the network Figure 5.1. N is equal to 9 and m is 3. A set of m

buses goes across from the inlet side to the outlet side, bypassing the three-stage

network. N demultiplexers interface the network inlets and the first stage of the

network. These demultiplexers are of size 1 x (in +1). In the normal condition,

when all the network switches are functional, these demultiplexers are in state 0 and

22

the inlets are connected to the first stage switches. In the case of a faulty switch,

these demultiplexers take on any of the (in +1) states. The bypass buses and the

demultiplexers provide fault tolerance to the first stage of the Clos network. It

should be noted that the terms 'multiplexers' and `demultiplexers' are conceptual;

data flows in either direction and the same piece of hardware behaves both as a

multiplexer and a demultiplexer under different contexts.

To make the second stage of the network fault tolerant, the property of the

Clos network that n >= in is put to use and n is taken to be (m +1). There is now

one extra output from each switch of stage 0 and all these outputs are fed as inputs

to an extra switch in the second stage. The fact that a switch in this stage is

connected to all the switches of stages 0 and 2 is exploited to make the middle stage

fault tolerant. If a switch goes bad, the extra switch is activated. Thus at any given

time, there are only k switches operational in stage 1.

The final stage is made fault tolerant in the following way. A set of

N 1 x +1) demultiplexers are connected to the outputs of the third stage. The

other end of the demultiplexers are connected to the set of m postbuses and a set of

N multiplexers of size (2m +1) x 1. The remaining inputs of the multiplexers form

the final network outlets. In the normal working condition the states of all the

multiplexers and demultiplexers are 0. The extra hardware is transparent to the

network and it behaves exactly like an ordinary Clos network.

5.2 Fault Recovery on the PFTC

As noted earlier, the proposed design has a fault tolerance criterion of full recovery.

In other words, even after the occurrence of a fault in each of the stages of the

network, any given inlet-outlet permutation can be realized. The occurrence of a

fault in a middle stage switch, either by itself or in conjunction with those in the

outer stages, is easily handled. All that has to be done to get around the problem is

to press the extra switch in the stage into service. Hence this case is not discussed

further. Essentially there are three non-trivial fault conditions that can exist.

23

1. First stage switch faulty, Leib exists.

2. Third stage switch faulty, i.e f2 exists.

3. A switch in each of the outer stages is faulty, i.e fo and f2 both exist.

The fault recovery mechanism is given by defining the states of the switches and the

multiplexers and demultiplexers. If the first case occurs, i.e f0 exists, then the

inputs to fo are diverted to the set of bypass buses. On the outlet side, the

corresponding multiplexers select the appropriate lines.. In the second case, the

inlets that correspond to the outputs of f2 are routed through the bypass bus and on

the outlet side the multiplexers that are associated with f2 assume appropriate states

to select the inlets. If the third case occurs, i.e a switch in each of the outer stages

fails, then the given permutation P has to be translated to obtain P*. In this case

both P and P* have to be used to solve the routing problem. Given below is an

algorithm to translate P to obtain P*.

Let the given permutation P be represented by the tuples (i,j), 0<=i,j < N.

This means that inlet i should be routed to outlet/ . The translated permutation P *

is given by the tuples (i*,j*), 0 <= i*,j* < N .

int i,j,N,i* fo, f2 ;

For each tuple (i*,j*) in P
{
IF (!(m * fo <= i < 171 * f 0 + in) OR (in * f <= i < * f + in AND m * f 2 <= j <

* f 2 + in))
RETAIN THE TUPLE (i,j) AS IT IS;
ELSE IF (in * f <= i < * f + in AND !(m * f2 <= j < in * f2 +

{ For each permutation (x, y) in P
IF (in * f2 < y < * f2 +171 AND !(m * fo < x < * f + in))

INTERCHANGE j and y

It happens that Neiman's algorithm defines the states of the switches even under

faulty conditions with minor modifications. The translated permutation is used in

the algorithm. If a middle stage switch fails, the algorithm is applied to the

24

remaining working switches plus the extra one. If an outer stage switch fails it does

not matter what its internal state is, since that switch will be bypassed. Thus all that

needs to be done to define the fault recovery mechanism is to show how the states

of the demultiplexers and multiplexers change under faulty conditions. Algorithms

to set the states of the multiplexers and demultiplexers are given below.

Case 1: First Stage Switch f0 Faulty

int i, j, N, m, f0, STATE_DEMUX[N], STATE_MUX[N];
int STATE, STATE_A, STATE_B;

/* Define the states of the first column of N demultiplexers */

for (i = 0; i < N; i++) /* scan each (i,j) tuple of the given permutation P */
{
if (i >= m * f0 && i < m * f0 + m) /* if inlet feeds a faulty switch */

STATE_DEMUX[i] = STATE; /* use the bypass bus */
STATE++;

}
else

STATE_DEMUX[i] = 0; /* use the network */
}

/* Define the states of the second column of N demultiplexers */

for (i = 0; i < N; i++)
{
if (i >. m * fo && i < m * fo + m)

STATE_DEMUX[j] = TRISTATE; /* tristate the demux on the outlet side */
else

STATE_DEMUX[j] = 0;
}

/* Define the states of the column of N multiplexers */

STATE = m;
for (i = 0; i < N; i++)
{
if (i >. m * fo && i < m * fo + m)

STATE_MUX[j] = STATE; /* take input from the bypass bus */
STATE--;

1
else

25

STATE_MUX[j] = 0; /* use regular network outputs */
}

Case 2: Third Stage Switch f2 Faulty

int i, j, N, m, f2, STATE_DEMUX[N], STATE_MLTX[N];
int STATE, STA1E_A, STATE_B;

/* Define the states of the first column of N demultiplexers */

STATE = 1;
for (i = 0; i < N; i++)
{
if (j m * f2 && j < m * f2 + m) /* if the j val. of the (i,j) tuple corr. to the

faulty switch */
{
STATE_DEMUX[i] = STATE; /* prepare to use bypass bus */
STATE++;
}
else

STATE_DEMUX[i] = 0;
}

/* Define the states of the second column of N demultiplexers */

for (i = 0; i < N; i++)
{
if (j >= m * f2 && j < m * f2 + m) /* if given outlet corr. to faulty switch */

STATE_DEMUXU1 = TRISTATE; /* tristate the output */
else

STATE_DEMUX[j] = 0;
}

/* Define the states of the column of N multiplexers */

STATE = m;
for (i = 0; i < N; i++)

if (j m * f2 && j < m * f2 + m)

STATE_MUX[j] = STATE;
STATE--;

}
else

STATE_MUX[j] = 0;
}

26

Case 3: Faulty Switches f0 and f2 in the Outer Stages

int i, j, N, m, f0, f2, STATE_DEMUX[N], STATE MUX[N];
int STATE, STAIE_A, STATE_B;

/*Define the states of the first column of demultiplexers */

STATE = 1;
for (i = 0; i < N; i++)
{
if(i>=m*fo&&i<m*fo+m)

STATE_DEMUX[i] = STATE;
STATE++;

else
STATE_DEMUX[i] = 0;

/* Define the states of the second column of N demultiplexers */

STATE = 1;
.*

for (i = 0, i* = 0; i < N; i++, ++) /* scan the given and the translated
permutations simultaneously */

{
if (j >= m * f2 && j < m * f2 + m) /* if the outlet in the given permutation corn to

faulty switch f2 */
STATE_DEMUX[j] = TRISTATE;

else

if(j!=j* &&i>=m*fo&&i<m*fo+m)
{
STATE_DEMUX[j] = STATE;
STATE++;

else
STATE_DEMUX[j] = 0;

}

/* Define the states of the column of N multiplexers */

STATE_A = m;
STATE_B = m + 1;
for (i =0, i* = 0; i < N; i++, i*++)
{
if (i >. m * fo && i < m *f0 + m)

1

27

STATE_MUX[j] = STATE_A;
STATE_A--;

1
else
1
if (j != j* && j >= m * f2 && j < m * f2 + m)

STATE MUX[j] = STATE B;
STATE1B-H-;

else
STATE_MUX[j] = 0;

}
}

5.3 Reliability Analysis

5.3.1 Fundamentals of Reliability

The reliability of a system [34,38], r(t), is defined as the probability that the system

does not fail within time t. In this work, the network reliability, R, will be defined

mathematically as follows:

R 1 - F (5.1)

where F is the probability that a system fails within time t. Note that the time factor

has been omitted in Equation (5.1). This is because we are interested in comparing

the reliabilities of two systems and since the time parameter must be the same for

both, we can ignore it.

Real systems can be considered to be made up of functional blocks. For

example, each stage in a MIN is made up of switches and the MIN itself is made up

of stages. It is assumed that these blocks are statistically independent, i.e the failure

of one does not affect those of the others. This was also the philosophy adopted in

designing the PFTC, where each stage was considered a system by itself and was

made fault tolerant independently of the other stages. Consider a system with n

blocks. If the system fails when even one block fails, then the system is considered

to be a serial one. The reliability of this system is given by:

28

R= H Ri (5.2)

i = 1

where Ri is the reliability of each block i, 1 <= i <=n. If, one the other hand, a

system with n blocks fails only when all the blocks fail, it is considered a parallel

system and the reliability of the system is the probability that at least one block is

operational. This can be derived easily by considering the probability of failure of

each of the blocks. For a system with n blocks, the probability of all the blocks

failing is given by:

n

F = 'FT Fi (5.3)
i = 1

where Fi is the probability of block i failing, 1 <= i <= n. Fi is given by:

Fi =1 - Ri (5.4)

Hence we have,

n

F =11 (1 - Ri) (5.5)
i= 1

Using the above relation in Equation (5.1), we have for the reliability of a parallel

system with n blocks

12

R =1- n (1 _ (5.6)
1=1

In most cases pertaining to fault tolerant systems, a system has n parallel

blocks, but needs at least in of them to be operational. This is a case of binomial

distribution. The reliability of the system can be computed by considering the

probability that the system fails. This can happen when the system has between 0

and in - 1 blocks defective.

This probability is given by the relation

29

in -1

F= E nCiRi (1 - R)n - i (5.7)

i= 0

where nCi is the number of combinations of n items taken i at a time. The reliability
of the system is the complementary event. Thus,

in -1

R =1 - E nCi Ri (1 - R)n - i (5.8)
1= 0

5.3.2 Reliability Analysis of the PFTC

In this section, the reliability of the PH C is computed and compared with that of an

equivalent Clos network. It is shown that the PFTC offers greater reliability for all

values of N. An ordinary Clos network has 2k + in switches. The network fails

even if one switch fails. If the reliability of each switch is denoted by r, the

reliability of the Clos network is given by

RC/os =12k + In (5.9)

To compute the reliability of the PFTC, the reliability of each stage is first computed

and then all the three individual reliabilities are multiplied together to get the system

reliability. This can be done because the PFTC can be considered to be a series

system with three blocks, each block being one stage of the network. The system

fails even if one stage fails. Thus,

RPFTC = ROR1R2 (5.10)

where R0, R land R2 represent the reliabilities of stages 0,1 and 2 respectively.

These quantities are calculated by considering F0, Fl and F2 which represent the

probabilities of failure of each of the three stages. Stages 0 and 2 have k switches

each and need at least k -1 to remain operational. In other words, they can function

with one switch being defective. Replacing n with k, in with k - 1 and R with r in

Equation (5.7), we obtain,

30

f aci n g 31

Figure 5.2: Reliability Curves with r= 0.98

k - 2

Fo = F2 = E kci if (1 - r)k (5.11)

i = 0

where r is the reliability of each switch in stages 0, 1 and 2. The reliabilities of

stages 0 and 2 are given by the complementary events, i.e

R0= 1 - Fo = 1- F2= R2 (5.12)

Thus,

k - 2

R0= R2 = - E ri (1 - r)k (5.13)
i = 0

The middle stage has in + 1 switches and needs at least m of them to remain

operational. Replacing n by in + 1 and R by r in Equation (5.7), the failure

probability of stage 1 is given by,

m- 1

F1= E (m /)c. ti (1 - r)rn ± 1 - (5.14)
i = 0

Hence the reliability of the middle stage is given by

rri -1

R1=1 -E 1)Ciri (1 - r)n 1 - (5.15)
i = 0

The reliability of the entire network is given by,

k - 2 - 1

RPFTC=EkCi>l(1r)k - 11 _E (in + 1)ci ri _ r)rn + 1 -i} (5.16)

i = 0 i = 0

The reliability curves for r = 0.98 and r = 0.99 have been plotted in Figures 5.2 and

5.3 respectively for a 9 x 9 PFTC and an equivalent Clos network. The value of in

has been taken to be equal to 6. It is seen that for the entire range of values for N,

the PFTC has a better reliability. It is also observed that as the value of N increases,

31

Figure 5.3: Reliability Curves with r= 0.99

facing
 32

the curve drops towards zero. This is to be expected, since the larger the network,

the more components it has and the lower its reliability.

5.4 Discussion

This chapter described the design and performance of a fault tolerant Clos network.

It is seen that the PFTC continues to function in the presence of faults.

Interconnection networks are made up of a large number of switches and

greater the number of switches, lesser the system reliability. The PFTC offers

increased network reliability, since it does not breakdown when a fault occurs. It

satisfies the criterion of graceful degradation in the following way. When no fault

exists, the extra hardware is transparent to the network and normal routing methods

are used. When one of the outer stages develops a fault, only the states of the

multiplexers and demultiplexers have to be set. This takes some extra time and

performance decreases. When both the outer stages develop a fault, in addition to

setting the states of the multiplexers and demultiplexers, the given permutation has

to be translated. This incurs additional time and the performance decreases further,

but the network is still functional.

32

CHAPTER 6

CONCLUSIONS

6.1 Summary

This paper has proposed a scheme to make the widely used Clos network fault

tolerant. Fault tolerance in MINs assumes greater significance today as the trend

towards massive parallelism continues. Performance under faulty conditions could

be severely degraded and the system may be rendered useless for real time

applications.

Any fault tolerance scheme should stick to two guiding principles. First, the

performance under normal conditions should not be affected significantly and

second, the cost of extra hardware should be minimal. The PFTC meets the above

two criteria. With all the demultiplexers and multiplexers in state 0 under normal

conditions, the extra hardware is not visible to the basic network and normal

performance is not significantly diminished. Also, the cost of the extra hardware,

which is in the form of demultiplexers and multiplexers, does not add much to the

total cost.

Another important feature of the PFTC is that the same routing algorithms

that are used for the ordinary Clos network are applicable here. All the advances in

this field can be taken advantage of. For the same reason similar routing time

complexities are at work.

The bypass bus makes it possible to carry out broadcast operations. Though

it is not included in this work, the algorithms for setting the states of the

demultiplexers and multiplexers should be relatively simple.

6.2 Future Work

One research area that could be explored regards the development of new routing

algorithms that take advantage of the extra hardware under normal conditions.

33

These could run in faster time.

The fundamental concept behind the PFTC is not MIN-specific. it could just

as easily be applied to any other MIN. For example, the Baseline and the Benes

networks could be made fault tolerant this way.

The algorithms to set the states of the demultiplexers and multiplexers are

implemented through software by a control unit. If they are implemented in

hardware the speed up factor would be considerable, but the cost would increase.

Reliability analysis needs to be performed to determine the probability of faults and

to see whether the increased cost would be offset by the speed up factor.

34

BIBLIOGRAPHY

1. Adams, G. and H. Siegel. "The Extra Stage Cube: A Fault Tolerant
Interconnection Network for Supersystems," IEEE Transactions on
Computers, vol. C-31, no. 5, May 1982, pp. 443-454.

2. Adams, G., D. Agrawal and H. Siegel. "A Survey and Comparison of Fault-
tolerant Multistage Interconnection Networks," Computer, June 1987,
pp. 14-27.

3. Agrawal, D. "Testing and Fault Tolerance of Multistage Interconnection
Networks," Computer, April 1982, pp. 41-53.

4. Andresen, S. "The Looping Algorithm Extended to Base 2t Rearrangeable
Switching Networks," IEEE Transactions on Communications, vol.
COM-25, no. 10, October 1977, pp. 1057-1063.

5. Baer, J. "Multiprocessing Systems," IEEE Transactions on Computers,
vol. C-25, no. 12, December 1976, pp. 613-641.

6. Batcher, K. "The Flip Network in STARANTM," Proceedings of the 1976
International Conference on Parallel Processing, 1976, pp. 65-71.

7. Benes, V. "On Rearrangeable Three-Stage Connecting Networks," The Bell
System Technical Journal, vol. XLI, no. 5, September 1962, pp. 1481-
1492.

8. . Mathematical Theory of Connecting Networks and Telephone Traffic,
New York, Academic Press, 1965.

9. . "Interconnection Networks for Parallel and Distributed Processing,"
Computer, June 1987, pp. 9-12.

10. Carpinelli, J. Interconnection Networks: Improved Routing Methods for Clos
and Benes Networks, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy,
NY, August, 1987.

11. Carpinelli, J. and Y. Oruc. "Matrix Decomposition Algorithms for Dynamic
Topology Reconfiguration in Parallel Computers," Proceedings of the 4th
International Conference on Supercomputing, April, 1989.

12. Chu, W. Advances in Computer Communications and Networking, Artech
House, Dedham, Ma., 1979.

13. Clos, C. "A Study of Non-blocking Switching Networks," Bell Systems
Technical Journal, vol. 32, no. 2, March 1953, pp. 406-424.

14. Davis, W. Operating Systems: A Systematic View, 2nd Edition, Addison-

35

Wesley, Reading, Ma., 1983.

15. Feng, T. and C. Wu. "Fault-Diagnosis for a Class of Multistage
Interconnection Networks," IEEE Transactions on Computers, vol. C-30,
no. 10, October 1981, pp. 743-758.

16. Goke, G. and G. Lipovski. "Banyan Networks for Partitioning
Multimicroprocessor Systems," Proceedings of the 1st Annual Symposium
on Computer Architecture, December 1973, pp. 21-28.

17. Golomb, S. "Permutation by Cutting and Shuffling," SIAM Review, vol. 3,
October 1961, pp. 293-297.

18. Huang and Tripathi. "Self-routing Techniques in Perfect Shuffle Exchange
Networks Using Control Tags," IEEE Transactions on Computers,
February 1988, pp. 251-256.

19. Hwang K. Advanced Computer Architecture. McGraw-Hill, Inc., 1993.

20. Kinny, L. and R. Arnold. "Analysis of a Multiprocessor System with a Shared
Bus," Proceedings of the 5th Annual Symposium on Computer
Architecture, April 1978, pp. 89-95.

21. Kothari and Prabhu. "The Kappa Network with Fault Tolerant Destination Tag
Algorithm," IEEE Transactions on Computers, May 1988, pp. 612-617.

22. Kumar, V. and S. Reddy. "Augmented Shuffle Exchange Multistage
Interconnection Network,' Computer, June 1987, pp. 30-40.

23. Lawrie, D. "Access and Alignment of Data in an Array Processor," IEEE
Transactions on Computers, vol. 24, no. 12, December 1975,
pp. 1145-1155.

24. Lee and Hegazy. " The Extra Stage Gamma Network," IEEE Transactions on
Computers, November 1988, pp. 1445-1450.

25. Lee and Yoon. "The B-Network: A MIN with Backward Links," IEEE
Transactions on Computers, July 1990, pp. 966-969.

26. Lenfant, J. "Parallel Permutations of Data: A Benes Network Control
Algorithm for Frequently Used Permutations," IEEE Transactions on
Computers, vol. 27, no. 7, July 1978, pp. 637-647.

27. Lev, G., N. Pippenger and L. Valiant. "A Fast Parallel Algorithm for Routing
in Permutation Networks," IEEE Transactions on Computers, vol. C-30,
no. 2, February 1981, pp. 93-100.

28. Lin, W. and C. Wu. "Design of a 2 x 2 Fault-Tolerant Switching Element,"
Proceedings of the 9th Annual Symposium on Computer Architecture,
1982, pp. 181-189.

36

29. Nassar, H. Fault-Tolerant Interconnection Networks for Multiprocessor
Systems, Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ,
May 1989.

30. Neiman, V. "Structure et Command Optimales de Reseaux de Connexion sans
Blocage," Annales des Telecommunications, vol. 24, July-August 1969,
pp. 232-238.

31. Nian, T., et al. "Fault-Tolerant Interconnection Networks via Chaining," IEEE
Transactions on Computers, April 1988, pp. 458-462.

32. Opferman, D. and N. Tsao-Wu. "On a Class of Rearrangeable Switching
Networks, Part I: Control Algorithm," Bell Systems Technical Journal, vol.
50, no. 5, May-June 1971, pp. 1579-1600.

33. Oruc, Y. Interconnection Networks: Group Theoretic Modeling, Ph.D. Thesis,
Syracuse University, Syracuse, NY, 1983.

34. Pages, A. and M. Gondran. System Reliability: Evaluation and Prediction in
Engineering. Springer-Verlag, New York, 1986.

35. Siegel, H. and R. McMillen. "The Multistage Cube: A Versatile Interconnection
Network," Computer, December 1981, pp. 65-76.

36. Stone, H. "Parallel Processing with the Perfect Shuffle," IEEE Transactions
on Computers, vol. C-20, no. 2, February 1971, pp. 153-161.

37. Thanawastien, S. and V. Nelson. "Interference Analysis of Shuffle Exchange
Networks," IEEE Transactions on Computers, vol. C-30, no. 8, August
1981, pp. 545-556.

38. Tobias, P. and D. Trindade. Applied Reliability. Von Nostrand Reinhold, New
York, 1986.

39. Wu, C. and T. Feng. "On a Class of Multistage Interconnection Networks,"
IEEE Transactions on Computers, vol. C-29, no. 8, August 1980, pp. 694-
702.

40. . "The Reverse-Exchange Interconnection Network," IEEE Transactions
on Computers, vol. C-29, no. 9, September 1980, pp. 694-702.

41. . "The Universality of the Shuffle-Exchange Network," IEEE
Transactions on Computers, vol. C-30, no. 5, May 1981, pp. 324-332.

37

	The postbus fault tolerant CLOS network
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Notation and Fault Model
	Chapter 3: MIN Implementations
	Chapter 4: Fault Tolerant MINs
	Chapter 5: The Postbus Fault Tolerant Clos (PFTC) Network
	Chapter 6: Conclusions
	Bibliography

	List of Figures

