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ABSTRACT 

The Postbus Fault Tolerant Clos Network 

by 

Udayabhanu Sarangapani 

The trend in modern computing is to develop multiprocessor systems with 

hundreds, even thousands, of processors and memory modules. The task of 

providing communication paths among all these units is not a trivial one. For a 

small number of functional units, direct connections could be used but for large 

systems interconnection networks have to be used. Multistage Interconnection 

Networks (MINs), provide a dynamic means for interconnecting processors and 

memory in a multiprocessor system. These networks are built with switches in each 

stage. 

The Clos network is a well defined family of MINs and consists of three 

stages. The ordinary Clos network has no fault tolerance capability. This thesis 

work presents the design for a modified Clos network by incorporating hardware 

redundancy. The excess hardware is in the form of an extra switch in the middle 

stage, demultiplexers and multiplexers in the outer stages and two sets of buses. 

Algorithms are developed to set the states of the demultiplexers and 

multiplexers. It is shown that the proposed design is able to withstand one faulty 

switch in each stage and still retain the property of full recovery, i.e., the network is 

still able to realize any given input-output permutation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Parallel Processing 

As the processing capacity of computers increases, so does the complexity of the 

problems that these machines are asked to solve. As a result there will always be a 

demand for more computational power. In the early years of electronic computing 

this advance was consistently achieved by improving the architecture of the 

processor. These improvements soon brought the designers to the physical limits of 

the devices and it was realized that the answer to further performance enhancement 

lay in a different direction. This approach involved carrying out the computational 

tasks in a parallel manner. Different avenues of achieving parallelism have been 

explored and many of them are used in combination. 

Software parallelism was introduced as a way of maximizing the throughput 

of expensive systems. The idea was to keep the physical resources of a computer 

continually busy. To this end, multiple processes were loaded onto the system and 

these processes shared the resources in a manner determined by the operating 

system [14]. This technique has been used on computers with a single processor to 

achieve parallelism in the form of multiprogramming, multitasking, multiuser and 

time-sharing capabilities. 

Hardware parallelism involves the concept of having multiple functional 

units. This sort of parallelism can occur at the computer level, sub-processor level 

or at the processor level. When parallelism takes place at the computer level, it is 

called distributed computing [12]. The computational load is distributed among 

many computers. Different computers may be doing different kinds of tasks or the 

load may be distributed in a symmetric manner. In either case, all these computers 

are connected by a communication network and work independently and 

asynchronously. They exchange data and results through the connecting network. 
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One way of achieving parallelism at the sub-processor level is by using 

pipelining. In this implementation a processor performs the four basic operations on 

an instruction - instruction fetch, decode, execute and write back of the result - in an 

overlapped manner. An instruction is fetched and sent to the decoding unit. While it 

is being decoded the first one is being executed and so on. In the steady state, 

ideally, one instruction is being executed per clock cycle. 

On the processor level, parallelism is achieved by having multiprocessors 

[5]. There are basically two types of architectures - shared memory and message 

passing [19]. In the shared memory system all the processors share the common 

memory and communication between processors is achieved through shared 

variables in the memory. In the message passing type of multiprocessors, each 

processor has its exclusive memory and interprocessor communication is achieved 

through direct connection or through a communicating network. 

1.2 The Need for Interconnection Networks 

The modern trend in parallel computing is massive parallelism - the use of 

thousands of processors in a system. Clearly, connecting all these processors 

directly is a Herculean task. In the shared memory architecture, the common 

memory is divided into modules and conceptually it is possible for all processors to 

share a common system bus that lets them access all the memory modules [20]. 

However, if the number of processors is relatively high, the system performance is 

degraded, since only one processor can use the bus at a time. The alternative is to 

use crossbar switches. An N X M crossbar switch has N inputs and M outputs. 

Conceptually it can be thought of as two crossed sets of parallel conducting bars 

placed one above the other. To complete a connection between an input and an 

output, the corresponding, crossed bars are connected by a switch. The main 

drawback of this scheme is its high cost for high values of N and M [9]. 

Between the two extremes lies the compromise candidate: the Multistage 

Interconnection Network (MIN). MINs are formed by stages of small switches. 
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Each stage is connected to the next through a set of links. By the proper setting of 

these switches any inlet can be connected to any outlet. These networks are similar 

to those used in telephone switches and much of the basic theories derive from the 

work done in early telecommunication research. 

1.3 Fault Tolerance 

Practical implementations of MINs involve large numbers of processors which are 

used in high performance computers. Such MINs have a relatively high hardware 

complexity and there is a chance that one or more of the components may fail. Any 

such failure could severely degrade system performance. The network may become 

unable to realize any arbitrary inlet-outlet connection. Thus there is a need for a 

degree of fault tolerance. In a fault tolerant MIN the occurrence of a fault lowers 

system performance but does not cause the system to crash. This is called graceful 

degradation and is the basic criterion for any fault tolerance design. 

1.4 Motivation 

Fault tolerance is of critical importance in large systems. These systems are 

generally very expensive and it is of crucial importance to reduce their down time. 

The Clos network is an attractive alternative to such interconnection schemes as 

point-to-point connections and crossbar switches, especially when one is 

considering large systems. Hence it is critical that these networks have some degree 

of fault tolerance. 

Except for the work done by Nassar [29], no work has been done on fault 

tolerance schemes for the Clos network. The motivation for this thesis was to find 

an alternative method to make this family of networks fault tolerant, one that uses 

fewer switches. 
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The following chapters describe the design and operation of the Postbus 

Fault Tolerant Clos (PFTC) Network. This network can withstand one fault in each 

stage and exhibits the property of graceful degradation. 

1.5 Outline 

The remainder of this thesis is organized as follows. Chapter 2 lists the symbols 

used in this work, along with their meanings. The definition and various aspects of 

a fault tolerance model are discussed. Chapter 3 is a survey of some of the well 

known MIN implementations. The structure and routing techniques of the Baseline, 

Benes and Clos networks are discussed. In Chapter 4, some of the existing fault 

tolerance schemes are presented. The construction and operation of the Extra Stage 

Cube (ESC), the Simple Fault Tolerant Baseline (SFI'13) and the Fault Tolerant Clos 

(FTC) networks are elaborated upon. This chapter also discusses the concepts of 

fault detection and location. In Chapter 5, the Postbus Fault Tolerant Clos (PFTC) 

network is described in detail. The design and routing algorithms for this network 

are explained. Fault recovery for the various types of faults that can occur is 

analyzed. This chapter includes a reliability analysis of the PFTC. Basic concepts of 

reliability are presented as background material. The PFTC is compared with the 

ordinary Clos network in terms of network reliability and it is shown that the PFTC 

performs more reliably than the Clos network under all circumstances. Chapter 6 

lists the conclusions derived from the work done in this thesis. Suggestions for 

future work in this direction are given. 
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CHAPTER 2 

NOTATION AND FAULT MODEL 

2.1 Notation 

The following notation is used in this thesis. 

i,i*  : (general indices), inlet number in a permutation 

* 
j,j : (general indices), outlet number in a permutation 

X (i,j) : switch number i in stage numberj 

N : network size, number of inlets or outlets of a network 

I : set of all inlets of a network 

0 : set of all outlets of a network 

nz : in a Clos network, the number of inputs to a first stage switch or number of 
outputs from a third stage switch 

11 : in a Clos network, the number of outputs from a first stage switch or number of 
inputs to a third stage switch 

k : in a Clos network, the number of inputs or outputs of a middle stage switch 

P : (the given) permutation 

P : (the translated) permutation 

( ) : tuple corresponding to inlet i and outlet j in the given permutation P 

( .*) : tuple corresponding to inlet i and outlet j in the translated permutation ? 

f0: index number of faulty switch in stage 0 (integer value) 

fl: index number of faulty switch in stage 1 (integer value) 

f2: index number of faulty switch in stage 2 (integer value) 



2.2 Fault Model 

Fundamental to the design of a fault tolerant MIN is the definition of a fault 

tolerance model [2,22]. It contains three elements: the fault model, the fault 

tolerance criterion and the fault tolerance size. 

The fault model identifies all the possible faults that can occur in the 

network. Thus, the fault model states the types of faults that the proposed design 

can recover from. In this work, the fault model is defined as follows. 

1. Any basic network component can fail. This means that any of the switches and 

links can fail. A link fails if it is disconnected from either of the switches to which it 

should be connected. A switch can fail in several ways. For instance, it could be 

stuck in legal state. This could happen to be the desired state, but the switch is 

unresponsive to its control unit. A switch could be stuck in a partially legal state, in 

which case a subset of its inputs and outputs could be connected together. It could 

also happen that two inputs are connected together and two outputs are connected 

together. All these cases imply that the switch is not responsive to its control unit 

and are treated as switch failures. 

2. The extra hardware can fail but its failure rate is incorporated into those of the 

switches to which it is connected. 

The fault tolerance criterion is the condition that must be met for the network 

to be called fault tolerant. One criterion is full access retention. This means that after 

a fault occurs, any inlet must still be able to access any outlet. This does not 

guarantee that a given inlet-outlet permutation is realizable in one cycle of 

operations. In this work, a stronger criterion - full recovery is used. This means 

that even in the presence of a fault, any inlet-outlet permutation is realizable in one 

cycle. 

The maximum number of faults a system can suffer and still meet the fault 

tolerance criterion defines its fault tolerance size. The proposed design can tolerate 

three faults, one in each stage. Thus it is 3-fault tolerant. 
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facing 7 

Figure 3.1: Shuffling 8 objects 



CHAPTER 3 

MIN IMPLEMENTATIONS 

Since the time that research in interconnection networks started, there have been a 

large number of MINs proposed. It is not possible to describe each MIN in detail, 

hence only a few of the well known ones will be described. The structure and 

routing of the Baseline, Benes and Clos networks are presented in this chapter. 

3.1 The Baseline Network 

3.1.1 Design of the Baseline Network 

The shuffle family of MINs [36,41], of which the Baseline network is a member, is 

characterized by the use of the same switch structure and layout. It is built up of 

2 x 2 switches. For a network of size N there are g = log2 N stages, with N/2 

switches in each stage. The important trait of this class of MINs is that the switches 

of any stage i+1 can be interchanged so that the links between stages i and i+1, 

where 0 <= i <= g-1, form a 2-shuffle of the terminals of one stage into those of 

the other. This is the way in which networks with seemingly different topologies in 

this family can be obtained from one another [40]. The representative networks of 

this family include the Baseline [39], Omega [23], Shuffle Exchange [37], 

STARANTM Flip [6] and the SW Banyan [16] networks. 

Consider N objects. Let N = pq. To obtain the p-shuffle of the N objects, 

proceed as follows [17]. Suppose that the pq objects are cards in a deck. Divide the 

cards into p piles, each with q cards. Arrange the piles in a row, in any arbitrary 

order. Starting with the first pile, remove the top card of each pile and create a new 

pile by placing the cards one on top of the other in the same order in which they 

were removed. Repeat this for all q cards in each pile. Now we are left with only 

one pile containing pq = N cards. The ordered cards of this new pile is the 

7 



facing 8 

Figure 3.2: 8 x 8 Baseline Network 



facing 8 

Figure 3.3: 8 x 8 Omega Network 



p-shuffle of the original deck. If p = 2, the shuffle is called perfect. It should be 

noted that a p-shuffle followed by a q-shuffle gives back the original configuration. 

Figure 3.1 shows a 4-shuffle and a 2-shuffle of 8 objects. 

An 8 x 8 Baseline network is shown in Figure 3.2. It consists of log2 8 = 3 

stages, each stage having 8/2 = 4 switches of size 2 x 2. The stages are labeled 

0,1,2 from the left and in each stage the switches are labeled from the the top as 

0.1.2,3. This is the labeling scheme that is adopted in all the networks in this 

thesis. The terms 'inlet' and 'outlet' refer to the network terminals and 'input' and 

'output' refer to those of each individual switch. Also, for all MINs, inlets are on 

the left side of the network and outlets are on the right. It should be noted, 

however, that these terms are used only for ease of understanding since data flows 

in either direction. 

Looking at the Baseline network, it can be seen that the links between stages 

0 and I form a perfect shuffle of the inputs of stage 1 into the outputs of stage 0. If 

the switches 1 and 2 of stage 2 are interchanged, we get a network with a perfect 

shuffle from the inputs of stage 2 into the outputs of stage 1. If the links between 

the outlets and the outputs of stage 2 can now be rearranged to form a perfect 

shuffle from the outputs of stage 2 and if the inlets are used as outlets and vice 

versa, then the resulting network is called the Omega network [23]. Figure 3.3 

shows an 8-input Omega network. 

3.1.2 Routing the Baseline Network 

The building blocks of a Baseline network are the 2 x 2 crossbar switches. These 

are also called binary cells or binary switches. A binary cell can assume either of 

two legal states. Figure 3.4 shows a binary switch. In the straight state, the upper 

input is connected to the upper output and the lower input is connected to the lower 

output. In the cross state, the connections are reversed: the upper input is connected 

to the lower output and vice versa. The routing bit decides to which output an input 

must be connected to. Normally, if the routing bit is a 0, the input is connected to 
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the upper output and if the bit is 1, it is connected to the lower output. For this 

reason, the upper output is sometimes called the 0 output and the lower output is 

called the 1 output. If the inputs have identical routing bits, then there is contention 

Figure 3.4: Legal states of a binary cell 

and one of the inputs must be blocked. This limitation makes the Baseline network 

a blocking network, in the sense that not all sets of path can be established between 

the inlets and outlets. The path between any given inlet and outlet is unique. 

The Baseline network is self-routing. A routing tag is sent to the switches 

and they assume appropriate states to connect to switches in the next stage. To 

establish a path between inlet S and outlet D , we need to send the g-bit binary 

representation of D on inlet S. The integer D can be represented by the bit pattern 

D = d 1  d g_2  di do (3.1) 

The bit di will control the switch in stage g - 1 - i, 0 <= i <= g-1. An example is 

shown in Figure 3.2. Suppose that inlet 0 should be routed to outlet 5. The 3-bit 

representation of 5, 101 is fed to the inlet 0, along with the data. This 3-bit string 

representing the destination is called the routing tag. The bits 1, 0 and 1 control 

switches in stages 0, 1 and 2 respectively. It has been shown that this type of bit 

representation for the routing tag can be realized and unscrambled in (2log2N - 1) 

passes or less [18]. 

The main disadvantage of the Baseline network is that not all  permutations 

can be realized. However it has been observed that the most common permutations 

needed in parallel computing are realizable by this network family [26]. 

9 



facing 10 

Figure 3.5: 8 x 8 Clos Network 



3.2 Clos Network 

3.2.1 Design of the Clos Network 

Figure 3.5 shows an 8 x 8 Clos network. This is a family of non-blocking 

networks built up of three stages numbered 0, 1 and 2 [13]. A non-blocking 

network is one that can realize any inlet-outlet permutation. Stages 0 and 2 are also 

referred to as the outer stages and stage 1 is sometimes called the middle stage. A 

network is of size N if it has N inlets and N outlets. The 0th stage is made up of 

switches where each switch is of size m x n (i.e., with m inputs and n 

outputs). The middle stage has n switches each of size k x k. The final stage has k 

switches of size n x nz. The three stages are connected by interstage links in such a 

manner that any switch in a given stage has access to all the switches in the next 

stage. In general, for a Clos network, n >= nz. If n = m the resulting network is 

called the Clos network or the ordinary Clos network. However, in the modified 

version presented in this thesis, n > m and this gives the model some fault 

tolerance. 

3.2.2 Routing the Clos Network 

There is a central routing unit which receives a mapping, in the form of a 

permutation, and then determines the switch settings to realize it. This is not a trivial 

procedure and is often a time consuming process. The only possible way to avoid 

conflicts is to set the middle switches first and then the outer stage switches. There 

are three approaches to solving the problem: the group theoretic approach [33], the 

direct matrix decomposition approach [11] and the graph theoretic approach [27]. 

Only the matrix method is used in this work. An example will illustrate the 

procedure. 

Let the permutation to be realized be given by 

= (0 1 2 3 4 5 6 7 
2 3 0 1 7 6 8 4) 
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The first member of each tuple refers to the inlet and the second member to the 

outlet that it should be connected to. For example, the tuple ) implies that inlet 

0 should be routed to outlet 5. In this example there are 9 inlets and 9 outlets, 

therefore N = 9. Let in = n = 3. The direct matrix decomposition approach starts 

by constructing an N X N matrix, / , from the permutation as follows: 

I[i,j] = 1 if inlet i is to routed to outlet j 

= 0 otherwise 

where I[i,jj is the element in row i and column./ of the matrix I, 0 <= i,j < N. 

Thus in the example 

-0 0 0 0 0 1 0 0 0- 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

= 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 0 

Next, we partition I into k x k sectors, each of size in x m, and construct a k x k 

matrix H177 from I as follows: 

Hni[i,j] = sum of the in x in elements in sector i,j of I. 

In the example, 

1 2 01 
H3 = 2 0 1 

0 1 2 

The next objective is to decompose H,11 into in matrices of size k x k such that 

there is only one 1 in each row or column. All other entries are Os. Each 
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decomposed matrix will give the proper settings for one of the switches of stage 1. 

Once the switches in the middle stage are set, the switches in the outer stages can be 

set to realize the given permutation. Many algorithms have been proposed to 

decompose Hn1  in the general case, but in this work the one proposed by Neiman 

[30] will be used. Its basic idea is as follows. 

1. Starting with the leftmost column of Tim  , a non-zero element is marked in each 

column in such a way that there is no more than one marked element in each row. 

The k x k matrix formed by replacing the marked elements with is and filling in Os 

elsewhere represents the settings for one of the switches in the middle stage. If it is 

not possible to mark an element in a particular column, that column is skipped and 

the procedure is continued on the next column. In this case another pass over the 

matrix is needed. This pass repeats a process of marking and unmarking elements 

of the matrix until in elements are marked. This process of unmarking and marking 

is continued until all columns are marked. In the example, one possible way of 

marking H3 is as follows. 

1* 2 0 
H3 = 2 0 1* 

0 1* 2 

This yields one of the decomposed matrices which is given by 

[1 0 01 
0 0 1 
0 1 0 

2. In the next step, each marked element in Hm  is decremented by 1 to obtain the 

matrix Hm_1 and the algorithm is applied to H,12.1 to obtain the settings of a 

second switch in the middle stage. Hm_2 is then formed and the algorithm is 

applied recursively until H1 is obtained. This matrix itself represents the settings of 

one of the middle stage switches. 

12 



facing 13 

Figure 3.6: 8 x 8 Benes Network 



In the example H2 is given by 

0 2 01 
R2= 2 0 0 

0 0 2 

The complete decomposition of H3 is obtained by decomposing H2 . Thus 

1 2 0 1 0 0 [0 1 0] [0 1 0] 
//3  = [2 0 1] = [0 0 1 + 1 0 0 + 1 0 0 

0 1 2 0 1 0 0 0 1 0 0 1 

The matrices on the right hand side give the settings of the three switches in the 

middle stage. If an element in row i and column j is 1, it indicates that the ith input 

is to be connected to the jth output in the switch. If the element is 0 it means the 

corresponding input-output pair are not to be connected together. After the middle 

stage is set, the two outer stage switches are set accordingly. For a given 

permutation, once the middle stage is set, the settings of the other two stages are 

straightforward to derive. 

3.3 The Benes Network 

3.3.1 Design of the Benes Network 

The Benes network can be derived from a Clos network with n = m = 2 and 

k = 2P, for some positive integer p > 1, by recursively decomposing each switch 

in the middle stage into a 3-stage Clos subnetwork whose outer stage switches are 

of size 2 x 2. This decomposition is continued until every switch in the network is 

of size 2 x 2 [7,8]. Figure 3.6 shows an 8 x 8 Benes network. 

We derive the Benes network from the Clos network shown in Figure 3.5 

by replacinL,  both the middle stage switches with a 3-stage Clos subnetwork. There 

are 5 stages in the network, each containing 4 switches. In general, a Benes 

network will have g = (2log2N - 1) stages where N is the network size. Each 
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stage has N/2 switches, each 2 x 2. The Benes network can be viewed as two back 

to back Baseline subnetworks, with one of the two middle stages eliminated. This 

leads one to think that similar routing techniques can be used. This is indeed the 

case. 

3.3.2 Routing the Benes Network 

There are broadly two approaches taken to route Benes networks: distributed 

routing and central routing. As was mentioned earlier, the Benes network bears a 

close resemblance to the Baseline network. Hence the self-routing tag technique 

could be used in this case too, albeit in a modified way. This approach does not 

allow every permutation to be realized. The time complexity of the distributed 

routing algorithm is 0(log,2N). 

The central routing algorithm takes advantage of the fact that at any stage j, 

0 <= j <= (g-1)/2, the stages between j and 2(log2N) - j -2 form two Clos 

subnetworks of size N/2/ each. The most famous algorithm to adopt this approach 

is known as the looping algorithm [4,31]. The name derives from the nature of the 

algorithm. The algorithm is initiated by arbitrarily setting one of the outer stage 

switches and recursively working towards the middle stage switches. The looping 

algorithm has a time complexity of O(Nlog2N). This is higher than that of the 

distributed routing algorithm; however, the advantage is that the network behaves 

like a non-blocking one under this algorithm. A new approach, double coset 

decomposition, is used to identify new properties of Benes networks and speed up 

routing_ for some permutations [10]. 

3.4 Other MIN Implementations 

Apart from the three MIN implementations discussed above, there are many other 

types of MINs that can be found in the literature. The Gamma network is one such 

network. This is a MIN with redundant paths between some inlet-outlet pairs. It has 
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a cube network as a substructure. This network is controlled by a similar routing 

tag algorithm as the Baseline network. 

A fairly new MIN implementation that has been proposed is the B-Network 

[25]. This is derived from the Gamma network and has backward links to provide 

backward paths for the requests blocked by contentions. The cube structure of the 

Gamma network is preserved but the direction of all other links are reversed. The 

routing technique and hardware complexity are identical to those of the Gamma 

network, while its performance is enhanced. 
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CHAPTER 4 

FAULT TOLERANT MINS 

In this chapter, an overview of some of the main fault tolerance designs that have 

been proposed will be discussed. The general concepts of fault tolerance in MINs 

will be presented. The inevitable tradeoff between hardware complexity and degree 

of fault tolerance can be understood from this chapter. 

In general, any system can be made fault tolerant by adding extra hardware. 

The extreme solution is to duplicate the system - use one system and when that 

fails, switch to the other one. This approach is used when absolutely no 

performance degradation is acceptable. However, the obvious disadvantage of this 

solution is the high cost. It should be noted that only one system will be in use at a 

given time. Thus, it is clear that duplication is not a viable alternative. 

In practice, MINs are made fault tolerant by adding extra hardware, such that the 

extra cost and increased size are acceptable. Adding more hardware normally 

translates to less severe performance degradation under faulty conditions. The 

objective in all fault tolerance schemes in MINs is to achieve graceful degradation. 

This means that when a network component fails, the network should not break 

down completely; it should still be functional, even though its performance may be 

reduced. The second goal of fault tolerance techniques is that the performance under 

normal conditions should not be adversely affected. 

Most of the fault tolerance techniques proposed in the literature have been 

restricted to the shuffle family. The Kappa network has been suggested as a way to 

provide fault tolerance to the Gamma network by adding extra links [21]. The extra 

stage Gamma network employs an extra stage to provide redundancy and is one-

fault tolerant [24]. A scheme applicable to a wide class of MINs has been 

suggested [31]. This method connects switches in the same stage together, thus 

providing alternate paths at every stage. Nassar has proposed a non-MIN specific 
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Figure 4.1: 8 x 8 Extra Stage Cube Network 



technique that uses bypass buses under faulty conditions [29]. He has also 

proposed a fault tolerant Clos network that adds an extra switch in each stage [29]. 

Both these MINs are discussed later in this chapter. Also presented in this chapter 

is the construction and fault model of the Extra Stage Cube, a very well known 

fault tolerant MIN. 

4.1 The Extra Stage Cube (ESC) Network 

The Extra Stage Cube (ESC) is a fault tolerant implementation for the shuffle family 

[1]. Shown in Figure 4.1 is an ESC implementation on a member of this family, the 

Generalized Cube Network. Stage 0 is the extra stage. The inlets are connected to a 

set of demultiplexers of size 1 x 2, One of the outputs of each demultiplexer is 

connected to the corresponding switch in stage 0. The other output bypasses this 

switch. It is connected to a series of multiplexers on the output side of the switch. A 

similar arrangement is made for stage 3. Either of these stages can be switched on 

or off at will by properly setting the states of the multiplexers and demultiplexers. 

In the normal condition, stage 0 is bypassed. If a switch in stage 3 develops a fault, 

that stage is disabled and stage 0 is enabled. If a switch in a stage other than 0 or 3 

is faulty, that particular stage is turned off and both stages 0 and 3 are used. It 

should be noted that in general, for a cube network, there are (g + 1) stages, where 

g = log2N . In the example under discussion, g = 3 and there are 4 stages in the 

network. The extra stage provides a set of redundant paths between any inlet-outlet 

pair. 

The Generalized Cube adopts a self routing technique. A routing tag is 

generated by the bitwise exclusive-OR of the two integers S and D representing 

the source and destination respectively. The tag has g bits. A switch in stage i 

examines the ith bit of the tag and assumes one of two states, 0 or 1. A '0' implies a 

straight connection, while a l' puts the switch in the crossed state. If the two 

inputs of a switch have identical routing bits, contention occurs and one of the 

inputs has to be blocked. However, for the ESC, there is no way of knowing 
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before hand which stage is going to be disabled. In the normal working condition 

stage 0 is disabled, but the occurrence of a fault in any stage forces stage 0 to be 

enabled. This dictates that dynamic routing techniques be employed. The ESC 

generates a dynamic (g + 1) bit routing tag T', other than the normal routing tag T, 

for each inlet-outlet path. Obviously, all processors must be informed about the 

location of the fault. In this thesis, it is assumed that there is some circuitry to detect 

the location of a fault and to notify each processor. 

The fault model for the ESC is given below. 

1. Any network component can fail. 

2. Any component of the extra hardware can fail. But their failure rates are 

incorporated into those of the corresponding network switches. 

3. Faulty components are unusable. 

4. Faults occur independently. 

The fault criterion is full access retention. Any inlet can be routed to any 

outlet in the presence of a fault. The fault size of the ESC is 1. 

The advantages of the ESC can be summarized as follows. It is made up of 

simple binary cells and is easy to operate. The multiplexers and demultiplexers have 

to be arranged only once after the occurrence of a fault. 

The disadvantages are the following. The extra hardware complexity is 

relatively high: N/2 extra switches and 4N multiplexers and demultiplexers are 

needed. The ESC has a fault tolerance criterion of full access retention; any arbitrary 

permutation cannot be realized in the presence of a fault. The generation of a new 

routing tag after a fault occurs requires extra time. This decreases the performance. 

4.2 The Simple Fault Tolerant Baseline (SFTB) Network 

This is a non-MIN specific fault tolerance technique proposed by Nassar [29]. In 

the following discussion, this technique is applied to the Baseline network, but in 

fact, it can be applied to any MIN. The main idea behind this approach is to 

combine the two types of interconnection mechanisms that can exist in a 
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multiprocessor system: a single common bus or a MIN. The MIN is the primary 

interconnection mechanism and the bus is used by data that would normally pass 

through the switch that develops a fault. The result is to produce a network which 

has all the advantages of a MIN. Under normal working conditions, this network 

behaves exactly like a MIN, with the bus being invisible. 

The SFTB is shown in Figure 4.2. An external bus bypasses the network 

and connects the inlet side and the outlet side. Each inlet is connected to both the 

network and the bus through a 1 x 2 demultiplexer. On the other side, each outlet is 

also connected to both the network and the bus through a 2 x 1 multiplexer. Under 

no-fault conditions, the states of the multiplexers and demultiplexers are such that 

the inlets and outlets are connected through the network. Generally, the '0' state 

corresponds to this configuration. When this state is '1', the inlets and outlets are 

connected through the external bus. When no faulty switch exists, the SFTB uses 

the routing algorithm of the ordinary Baseline network. Upon the occurrence of a 

fault, the SFTB has to be reconfigured. It is assumed that there is some mechanism 

to detect and locate faults. After a faulty switch is detected, its location is broadcast 

to all processors. At the start of each memory cycle, each processor must first find 

if the defective switch lies in its path. If it does not, then the processor starts the 

memory cycle as it would under normal conditions. If a faulty switch exists along 

its path, the processor will use the standby bus to access the memory. This is done 

by setting the state of the demultiplexer corresponding to the inlet to '1'. This 

connects the inlet to the external bus. On the outlet side, the multiplexer 

corresponding to the outlet that the particular inlet must be routed to is also set to 

state F. This completes the path between the inlet and its corresponding outlet 

through the bus. 

It should be noted that the fault tolerance criterion for the SFTB is full 

access retention. This implies that when a fault occurs, all the inlets may not be 

routed to their corresponding outlets in one memory cycle. Referring to the Figure 

4.2, it can be seen that if the switch corresponding to inlets 4 and 5 fails, at least 
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two cycles are needed to complete all connections. 

The advantage of the SF1'B is its simplicity and ease of operation. This 

technique is applicable to any MIN. Under normal conditions, the routing algorithm 

of the Baseline network can be used. There are some disadvantages. The fault 

tolerance criterion of the SFIB is full access retention. This implies that under 

faulty conditions more than one memory cycle is needed. This problem can be 

eliminated by the use of the Enhanced Sl-TB [29], in which there are two external 

buses instead of one. Bus loading is also a concern for synchronous systems. 

4.3 The Fault Tolerant Clos (FTC) Network 

An ordinary Clos network of size N x N has k = N/m switches in stages 0 and 2 

where in is the number of inputs of a first stage switch. Each switch in stage 0 is of 

size in x n and each switch in stage 2 is n x in. In the middle stage there are n 

switches of size k x k . The Fault Tolerant Clos (FIC) network [29] is derived from 

the Clos network as follows. In the outer stages, switches with n = na + 1 are 

used. This implies that an extra switch is needed for the middle stage. In addition, 

an extra switch is added in each outer stage. Each switch is of the same size as the 

switches of the stage to which it is added. These extra switches provide fault 

tolerance to the corresponding stages by way of their redundancy. When a switch 

develops a fault, the extra switch in that stage is used to perform the routing. The 

network inlets are connected to the inputs of the first stage via 1 x 2 demultiplexers. 

On the outlet side, the outputs of the last stage are connected to the outlets through 2 

x 1 multiplexers. Figure 4.3 shows an FTC derived from a 9 x 9 Clos network. 

Each switch in the original network is of size 3 x 3. 

The FTC can be reconfigured in such a manner that its pre-fault connectivity 

is regained. The basic idea behind the implementation is that when a switch fails in 

any or all of the stages, the affected switch is disabled and the extra switch in that 

stage is used. As mentioned earlier, Clos networks can be routed using matrix 

decomposition methods. The FTC also uses the same approach. In the event of a 
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switch failure, the matrix generated from the original permutation is no longer valid. 

The original matrix assumes m = 71 , which is not the case in the FTC. A new 

permutation has to be generated from the original one, taking into account the faulty 

switches in the network. The translated permutation is used in the generation of a 

new matrix. This matrix is decomposed using standard matrix decomposition 

techniques and the switch settings of the middle stage are extracted. 

The FTC offers increased network reliability at relatively low cost_ Three 

extra switches and 2k multiplexers and demultiplexers are required. The fault 

tolerance criterion for the FTC is full recovery. This feature is particularly important 

in Clos networks, since these networks are primarily permutation networks. 

4.4 Fault Detection and Location 

Fault detection and location are two important issues related to fault tolerant MINs. 

There must be a method to know when and where a fault has occurred and a 

scheme to pass this information to all the processors. There are two ways in which 

faults can be detected and isolated: the online method and the offline method. The 

offline method basically consists of applying a test pattern at the input and 

comparing the output with the expected values [3,15]. This could be done at the 

start of each network cycle and can slow down the performance appreciably. The 

online techniques, on the other hand, are much faster but require sophisticated 

hardware. The techniques employed in this case could be either parity checking [34] 

or data bits checking [27]. In this thesis it is assumed that there is some mechanism 

to detect and locate faults and to inform the processors of the fault location. 
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CHAPTER 5 

THE POSTBUS FAULT TOLERANT CLOS (PFTC) 
NETWORK 

A Clos network inherently has some fault tolerance in the middle stage. This is due 

to the fact that a switch in this stage is connected to all the switches in the outer 

stages. However, this only offers full access retention. Also, a fault in either of the 

outer stages cannot be tolerated. The Postbus Fault Tolerant Clos (PFTC) network 

design proposed in this chapter satisfies the criterion of full recovery and can also 

withstand faults in the outer stages. 

5.1 Design of the PFTC 

A 9 x 9 PFTC is shown in Figure 5.1. The idea behind the design is to make each 

stage of the network one switch fault tolerant. Fault tolerance is built into each stage 

independently by treating each stage as a system by itself. This is a valid 

assumption since, in all reliability and failure analyses, system components are 

considered to fail independently. 

For the PFTC, the fault model is defined as follows. 

1. Any switch or link can fail. 

2. Extra hardware in the form of multiplexers and demultiplexers and external links 

can fail. Their failure rates are incorporated into those of the switches with which 

they are associated. 

3. Faulty components are unusable. 

Consider the network Figure 5.1. N is equal to 9 and m is 3. A set of m 

buses goes across from the inlet side to the outlet side, bypassing the three-stage 

network. N demultiplexers interface the network inlets and the first stage of the 

network. These demultiplexers are of size 1 x (in +1). In the normal condition, 

when all the network switches are functional, these demultiplexers are in state 0 and 
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the inlets are connected to the first stage switches. In the case of a faulty switch, 

these demultiplexers take on any of the (in +1) states. The bypass buses and the 

demultiplexers provide fault tolerance to the first stage of the Clos network. It 

should be noted that the terms 'multiplexers' and `demultiplexers' are conceptual; 

data flows in either direction and the same piece of hardware behaves both as a 

multiplexer and a demultiplexer under different contexts. 

To make the second stage of the network fault tolerant, the property of the 

Clos network that n >= in is put to use and n is taken to be (m +1). There is now 

one extra output from each switch of stage 0 and all these outputs are fed as inputs 

to an extra switch in the second stage. The fact that a switch in this stage is 

connected to all the switches of stages 0 and 2 is exploited to make the middle stage 

fault tolerant. If a switch goes bad, the extra switch is activated. Thus at any given 

time, there are only k switches operational in stage 1. 

The final stage is made fault tolerant in the following way. A set of 

N 1 x +1) demultiplexers are connected to the outputs of the third stage. The 

other end of the demultiplexers are connected to the set of m postbuses and a set of 

N multiplexers of size (2m +1) x 1. The remaining inputs of the multiplexers form 

the final network outlets. In the normal working condition the states of all the 

multiplexers and demultiplexers are 0. The extra hardware is transparent to the 

network and it behaves exactly like an ordinary Clos network. 

5.2 Fault Recovery on the PFTC 

As noted earlier, the proposed design has a fault tolerance criterion of full recovery. 

In other words, even after the occurrence of a fault in each of the stages of the 

network, any given inlet-outlet permutation can be realized. The occurrence of a 

fault in a middle stage switch, either by itself or in conjunction with those in the 

outer stages, is easily handled. All that has to be done to get around the problem is 

to press the extra switch in the stage into service. Hence this case is not discussed 

further. Essentially there are three non-trivial fault conditions that can exist. 
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1. First stage switch faulty, Leib exists. 

2. Third stage switch faulty, i.e f2 exists. 

3. A switch in each of the outer stages is faulty, i.e fo and f2 both exist. 

The fault recovery mechanism is given by defining the states of the switches and the 

multiplexers and demultiplexers. If the first case occurs, i.e f0 exists, then the 

inputs to fo are diverted to the set of bypass buses. On the outlet side, the 

corresponding multiplexers select the appropriate lines.. In the second case, the 

inlets that correspond to the outputs of f2 are routed through the bypass bus and on 

the outlet side the multiplexers that are associated with f2 assume appropriate states 

to select the inlets. If the third case occurs, i.e a switch in each of the outer stages 

fails, then the given permutation P has to be translated to obtain P*. In this case 

both P and P*  have to be used to solve the routing problem. Given below is an 

algorithm to translate P to obtain P*. 

Let the given permutation P be represented by the tuples (i,j ), 0<=i,j < N. 

This means that inlet i should be routed to outlet/ . The translated permutation P *  

is given by the tuples (i*,j*  ), 0 <= i*,j*  < N . 

int i,j,N,i* fo, f2 ; 

For each tuple (i*,j*  ) in P 
{ 
IF (!(m * fo <= i < 171 * f 0 + in) OR (in * f <= i < * f + in AND m * f 2 <= j < 

* f 2 + in)) 
RETAIN THE TUPLE (i,j ) AS IT IS; 
ELSE IF (in * f <= i < * f + in AND !(m * f2 <= j < in * f2 + 

{ For each permutation (x, y ) in P 
IF (in * f2 < y < * f2 +171 AND !(m * fo < x < * f + in )) 

INTERCHANGE j and y 

It happens that Neiman's algorithm defines the states of the switches even under 

faulty conditions with minor modifications. The translated permutation is used in 

the algorithm. If a middle stage switch fails, the algorithm is applied to the 
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remaining working switches plus the extra one. If an outer stage switch fails it does 

not matter what its internal state is, since that switch will be bypassed. Thus all that 

needs to be done to define the fault recovery mechanism is to show how the states 

of the demultiplexers and multiplexers change under faulty conditions. Algorithms 

to set the states of the multiplexers and demultiplexers are given below. 

Case 1: First Stage Switch f0 Faulty 

int i, j, N, m, f0, STATE_DEMUX[N], STATE_MUX[N]; 
int STATE, STATE_A, STATE_B; 

/* Define the states of the first column of N demultiplexers */ 

for ( i = 0; i < N; i++) /* scan each (i,j) tuple of the given permutation P */ 
{ 
if (i >= m * f0 && i < m * f0 + m) /* if inlet feeds a faulty switch */ 

STATE_DEMUX[i] = STATE; /* use the bypass bus */ 
STATE++; 

} 
else 

STATE_DEMUX[i] = 0; /* use the network */ 
} 

/* Define the states of the second column of N demultiplexers */ 

for (i = 0; i < N; i++) 
{ 
if (i >. m * fo && i < m * fo + m) 

STATE_DEMUX[j] = TRISTATE; /* tristate the demux on the outlet side */ 
else 

STATE_DEMUX[j] = 0; 
} 

/* Define the states of the column of N multiplexers */ 

STATE = m; 
for (i = 0; i < N; i++) 
{ 
if (i >. m * fo && i < m * fo + m) 

STATE_MUX[j] = STATE; /* take input from the bypass bus */ 
STATE--; 

1 
else 
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STATE_MUX[j] = 0; /* use regular network outputs */ 
} 

Case 2: Third Stage Switch f2 Faulty 

int i, j, N, m, f2, STATE_DEMUX[N], STATE_MLTX[N]; 
int STATE, STA1E_A, STATE_B; 

/* Define the states of the first column of N demultiplexers */ 

STATE = 1; 
for (i = 0; i < N; i++) 
{ 
if (j m * f2 && j < m * f2 + m) /* if the j val. of the (i,j) tuple corr. to the 

faulty switch */ 
{ 
STATE_DEMUX[i] = STATE; /* prepare to use bypass bus */ 
STATE++; 
} 
else 

STATE_DEMUX[i] = 0; 
} 

/* Define the states of the second column of N demultiplexers */ 

for (i = 0; i < N; i++) 
{ 
if (j >= m * f2 && j < m * f2 + m) /* if given outlet corr. to faulty switch */ 

STATE_DEMUXU1 = TRISTATE; /* tristate the output */ 
else 

STATE_DEMUX[j] = 0; 
} 

/* Define the states of the column of N multiplexers */ 

STATE = m; 
for (i = 0; i < N; i++) 

if (j m * f2 && j < m * f2 + m) 

STATE_MUX[j] = STATE; 
STATE--; 

} 
else 

STATE_MUX[j] = 0; 
} 
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Case 3: Faulty Switches f0 and f2 in the Outer Stages 

int i, j, N, m, f0, f2, STATE_DEMUX[N], STATE MUX[N]; 
int STATE, STAIE_A, STATE_B; 

/*Define the states of the first column of demultiplexers */ 

STATE = 1; 
for (i = 0; i < N; i++) 
{ 
if(i>=m*fo&&i<m*fo+m) 

STATE_DEMUX[i] = STATE; 
STATE++; 

else 
STATE_DEMUX[i] = 0; 

/* Define the states of the second column of N demultiplexers */ 

STATE = 1; 
.* 

for (i = 0, i* = 0; i < N; i++, ++) /* scan the given and the translated 
permutations simultaneously */ 

{ 
if (j >= m * f2 && j < m * f2 + m) /* if the outlet in the given permutation corn to 

faulty switch f2 */ 
STATE_DEMUX[j] = TRISTATE; 

else 

if(j!=j* &&i>=m*fo&&i<m*fo+m) 
{ 
STATE_DEMUX[j] = STATE; 
STATE++; 

else 
STATE_DEMUX[j] = 0; 

} 

/* Define the states of the column of N multiplexers */ 

STATE_A = m; 
STATE_B = m + 1; 
for (i =0, i*  = 0; i < N; i++, i*++) 
{ 
if (i >. m * fo && i < m *f0 + m) 

1 
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STATE_MUX[j] = STATE_A; 
STATE_A--; 

1 
else 
1 
if (j != j*  && j >= m * f2 && j < m * f2 + m) 

STATE MUX[j] = STATE B; 
STATE1B-H-; 

else 
STATE_MUX[j] = 0; 

} 
} 

5.3 Reliability Analysis 

5.3.1 Fundamentals of Reliability 

The reliability of a system [34,38], r(t), is defined as the probability that the system 

does not fail within time t. In this work, the network reliability, R, will be defined 

mathematically as follows: 

R 1 - F (5.1) 

where F is the probability that a system fails within time t. Note that the time factor 

has been omitted in Equation (5.1). This is because we are interested in comparing 

the reliabilities of two systems and since the time parameter must be the same for 

both, we can ignore it. 

Real systems can be considered to be made up of functional blocks. For 

example, each stage in a MIN is made up of switches and the MIN itself is made up 

of stages. It is assumed that these blocks are statistically independent, i.e the failure 

of one does not affect those of the others. This was also the philosophy adopted in 

designing the PFTC, where each stage was considered a system by itself and was 

made fault tolerant independently of the other stages. Consider a system with n 

blocks. If the system fails when even one block fails, then the system is considered 

to be a serial one. The reliability of this system is given by: 
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R= H Ri (5.2) 

i = 1 

where Ri is the reliability of each block i, 1 <= i <=n. If, one the other hand, a 

system with n blocks fails only when all the blocks fail, it is considered a parallel 

system and the reliability of the system is the probability that at least one block is 

operational. This can be derived easily by considering the probability of failure of 

each of the blocks. For a system with n blocks, the probability of all the blocks 

failing is given by: 

n 

F = 'FT Fi (5.3) 
i = 1 

where Fi is the probability of block i failing, 1 <= i <= n. Fi is given by: 

Fi =1 - Ri (5.4) 

Hence we have, 

n 

F =11 (1 - Ri) (5.5) 
i= 1 

Using the above relation in Equation (5.1), we have for the reliability of a parallel 

system with n blocks 

12 

R =1- n (1 _ (5.6) 
1=1 

In most cases pertaining to fault tolerant systems, a system has n parallel 

blocks, but needs at least in of them to be operational. This is a case of binomial 

distribution. The reliability of the system can be computed by considering the 

probability that the system fails. This can happen when the system has between 0 

and in - 1 blocks defective. 

This probability is given by the relation 
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in -1 

F= E nCiRi (1 - R)n - i (5.7) 

i= 0 

where nCi is the number of combinations of n items taken i at a time. The reliability 
of the system is the complementary event. Thus, 

in -1 

R =1 - E nCi Ri (1 - R)n - i (5.8) 
1= 0 

5.3.2 Reliability Analysis of the PFTC 

In this section, the reliability of the PH C is computed and compared with that of an 

equivalent Clos network. It is shown that the PFTC offers greater reliability for all  

values of N. An ordinary Clos network has 2k + in switches. The network fails 

even if one switch fails. If the reliability of each switch is denoted by r, the 

reliability of the Clos network is given by 

RC/os =12k + In (5.9) 

To compute the reliability of the PFTC, the reliability of each stage is first computed 

and then all the three individual reliabilities are multiplied together to get the system 

reliability. This can be done because the PFTC can be considered to be a series 

system with three blocks, each block being one stage of the network. The system 

fails even if one stage fails. Thus, 

RPFTC = ROR1R2 (5.10) 

where R0, R land R2 represent the reliabilities of stages 0,1 and 2 respectively. 

These quantities are calculated by considering F0, Fl and F2 which represent the 

probabilities of failure of each of the three stages. Stages 0 and 2 have k switches 

each and need at least k -1 to remain operational. In other words, they can function 

with one switch being defective. Replacing n with k, in with k - 1 and R with r in 

Equation (5.7), we obtain, 
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k - 2 

Fo = F2 = E kci  if (1 - r)k (5.11) 

i = 0 

where r is the reliability of each switch in stages 0, 1 and 2. The reliabilities of 

stages 0 and 2 are given by the complementary events, i.e 

R0= 1 - Fo = 1- F2= R2 (5.12) 

Thus, 

k - 2 

R0= R2 = - E ri (1 - r)k (5.13) 
i = 0 

The middle stage has in + 1 switches and needs at least m of them to remain 

operational. Replacing n by in + 1 and R by r in Equation (5.7), the failure 

probability of stage 1 is given by, 

m- 1 

F1= E (m /)c. ti (1 - r)rn ± 1  - (5.14) 
i = 0 

Hence the reliability of the middle stage is given by 

rri -1 

R1=1 -E 1)Ciri (1 - r)n 1 - (5.15) 
i = 0 

The reliability of the entire network is given by, 

k - 2 - 1 

RPFTC=EkCi>l(1r)k - 11 _E (in + 1)ci ri _ r)rn + 1 -i} (5.16) 

i = 0 i = 0 

The reliability curves for r = 0.98 and r = 0.99 have been plotted in Figures 5.2 and 

5.3 respectively for a 9 x 9 PFTC and an equivalent Clos network. The value of in 

has been taken to be equal to 6. It is seen that for the entire range of values for N, 

the PFTC has a better reliability. It is also observed that as the value of N increases, 
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Figure 5.3: Reliability Curves with r= 0.99 

facing
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the curve drops towards zero. This is to be expected, since the larger the network, 

the more components it has and the lower its reliability. 

5.4 Discussion 

This chapter described the design and performance of a fault tolerant Clos network. 

It is seen that the PFTC continues to function in the presence of faults. 

Interconnection networks are made up of a large number of switches and 

greater the number of switches, lesser the system reliability. The PFTC offers 

increased network reliability, since it does not breakdown when a fault occurs. It 

satisfies the criterion of graceful degradation in the following way. When no fault 

exists, the extra hardware is transparent to the network and normal routing methods 

are used. When one of the outer stages develops a fault, only the states of the 

multiplexers and demultiplexers have to be set. This takes some extra time and 

performance decreases. When both the outer stages develop a fault, in addition to 

setting the states of the multiplexers and demultiplexers, the given permutation has 

to be translated. This incurs additional time and the performance decreases further, 

but the network is still functional. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

This paper has proposed a scheme to make the widely used Clos network fault 

tolerant. Fault tolerance in MINs assumes greater significance today as the trend 

towards massive parallelism continues. Performance under faulty conditions could 

be severely degraded and the system may be rendered useless for real time 

applications. 

Any fault tolerance scheme should stick to two guiding principles. First, the 

performance under normal conditions should not be affected significantly and 

second, the cost of extra hardware should be minimal. The PFTC meets the above 

two criteria. With all the demultiplexers and multiplexers in state 0 under normal 

conditions, the extra hardware is not visible to the basic network and normal 

performance is not significantly diminished. Also, the cost of the extra hardware, 

which is in the form of demultiplexers and multiplexers, does not add much to the 

total cost. 

Another important feature of the PFTC is that the same routing algorithms 

that are used for the ordinary Clos network are applicable here. All the advances in 

this field can be taken advantage of. For the same reason similar routing time 

complexities are at work. 

The bypass bus makes it possible to carry out broadcast operations. Though 

it is not included in this work, the algorithms for setting the states of the 

demultiplexers and multiplexers should be relatively simple. 

6.2 Future Work 

One research area that could be explored regards the development of new routing 

algorithms that take advantage of the extra hardware under normal conditions. 
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These could run in faster time. 

The fundamental concept behind the PFTC is not MIN-specific. it could just 

as easily be applied to any other MIN. For example, the Baseline and the Benes 

networks could be made fault tolerant this way. 

The algorithms to set the states of the demultiplexers and multiplexers are 

implemented through software by a control unit. If they are implemented in 

hardware the speed up factor would be considerable, but the cost would increase. 

Reliability analysis needs to be performed to determine the probability of faults and 

to see whether the increased cost would be offset by the speed up factor. 
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