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ABSTRACT 

Radiation from 
A Tapered Dielectric Rod Antenna 

by 
Anil P rab h akar 

The radiation fields from a cylindrical dielectric taper is studied. The numerical 

results of a theoretical model for a taper excited by the dominant HEn  mode is 

compared with experimental measurements. A theoretical mode] for the next propa-

gating mode in the structure. the TE01  mode. is investigated and numerical results 

based on this proposed model are generated. The theoretical models are based 

upon the combination of the exact modal field solutions for a step profile cylindrical 

dielectric rod waveguide. local mode Hum-T. and the equivalence principle for the 

determination of equivalent current densities. 

The far-zone radiation field is considered to be the summation of the two 

radiative components in the dielectric rod/cone structure. The -aperture-  of the 

uniform dielectric rod at the transition plane (rod/cone interface) and the dielectric 

taper itself. In the former case. the field is obtained from the equivalent surface 

current densities on the aperture surface. whereas in the latter case. the field is 

obtained from the equivalent volume polarization current density induced in the 

conical structure. 

Numerical results are obtained using a number of different input data sets. 

where the parameters such as the free-space wavelength A, the refractive index of 

the dielectric n l  and the length of the taper are varied. These are then compared 

against the experimental observations and a. satisfactory agreement. between the two 

sets of data is achieved. 
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CHAPTER 1 

INTRODUCTION 

The dielectric rod antenna consists of a dielectric cylinder excited by a microwave 

guide. usually a hollow waveguide. The radiation characteristics of such an antenna 

have been studied extensively over a long period. It was observed that by shaping 

the radiating end of the dielectric rod. the radiation characteristics improved consid-

erably giving better directivity and beam-width. However. these studies were 

conducted on a dielectric rod excited with the TEn  mode from a hollow waveguide 

[1]. The fundamental propagating mode in a cylindrical dielectric structure is the 

HETI mode which has no cut-off frequency. The next propagating mode is the TEm  

mode [2]. Efforts have also been made to study the radiation pattern due to these 

modes. 

Yaghjian and hornhauser [3] studied the problem of a circular semi-infinite 

dielectric rod antenna excited by the hybrid HEn  mode from a hollow waveguide. 

Based on the postulation that the tapering of the radiating end would match the 

impedance of the dielectric rod to that of free space. Georghiades [4] and Hoydal [3] 

predicted the radiation patterns of the dielectric tapered rod antenna excited by the 

HETI  mode. They made use of the local mode theory in conjunction with equivalent 

surface and volume current distributions. Previous studies indicate that the local 

mode theory is quite useful in applications involving tapered geometries. 

The results of the methods used in [4] and [3] are compared here with the 

experimentally measured radiation patterns of the tapered dielectric rod antenna.. 

The local mode theory has also been used to extend this formulation to the next 

propagating mode and thereby predict the radiation patterns for dielectric antennas 

excited by the TE01  mode. The observation of a main lobe along the axis of the 

dielectric cone. in the case of the HETI  mode, supports the assumptions made of 

1 
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an adiabatic tapering of the dielectric. The conical structure is approximated by 

a series of thin concentric cylinders. The radiation field is then synthesized as the 

superimposition of the fields from the dielectric-rod and from the conical taper. The 

tapering must be sufficiently slow so as to avoid higher-order coupling effects. 

The model for the excitation by the TEm  mode predicts the existence of 

multiple lobe formations. While the lobes near the axis of the cone are well defined. 

those that are oriented at an angle to the axis are thin and somewhat random 

in shape. The angular distribution of the far-field radiation pattern is dependent 

on various parameters like the length of the taper. frequency of operation and the 

refractive index of the material. Further studies are necessary to understand the 

higher order mode radiation in tapered environments due to the complex transitions 

involving propagating and evanescent fields. 



CHAPTER 2 

FORMULATION OF THE PROBLEM 

Consider the combined dielectric rod/cone geometry depicted in Fig.2.1. It consists 

of a uniform dielectric rod with core radius a and refractive index ni  immersed in an 

infinite medium of refractive index n 2 . At z = 0 the dielectric rod begins to taper 

linearly into a cone. In order to consider only the guided modes in the rod, the 

condition n i  > n 2  must be satisfied. In general, the waveguide can support multiple 

modes depending on the media parameters n1. n 2. the free-space wavelength A and 

the rod radius a. The HE11  mode is called the fundamental mode of a cylindrical 

dielectric waveguide because it is the only mode without a cutoff condition. The 

next propagating mode is the TE01  mode that has a cutoff for a wavelength defined 

by parameters such as the radius of the rod and the refractive indices of the rod and 

the medium surrouding it. 

Let represent the incident vector fields of a possible mode propagating 

in the direction. As this incident surface wave propagates into the tapered region. 

a fraction of the field is reflected back in the direction while the rest is considered 

to be transmitted further and will be referred to as scattered fields in the text. The 

scattered fields are represented by E:. Hr in the < 0 region and E. IL+ in the 

> 0 region. Hence. the total fields for z < 0 can be written as 

Et = Ei E; Ht = Hi + 11; (2.1) 

and for > > 0 

= Ei = 111  + 11;F (2.2) 

The far field in (2.2) consists mainly of the scattered fields E. Hs  since the incident, 

fields Ei, Hi do not contribute to the far field radiation. Hence, the far field radiation 

can be determined by finding the total scattered fields due to the rod/cone geometry. 

These fields are evaluated by decomposing the rod/cone structure into two separate 

3 
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Figure 2.1 Tapered uniform cylindrical dielectric rod/cone geometry. 

regions as shown in Fig.2.2 . and then using fictitious equivalent surface and volume 

currents as sources to account for the scattered fields in the > 0 region. 

In Fig.2.2(a). let the fields be for < 0. 

E; = Ei. H; = Hi (2.:3) 

andfor>> 0  

E; = 0. if; = 0 (2.4) 

To support these fields the .surface equirak- na theorem. introduced by Schelkunoff. 

states that there may exist fictitious electric and magnetic ..surfac( currEnt 

J., and M, on the .7.- = 0 plane such that: 

J, = x (11Ja-  — H;) = —2 x 1-1; (2.3) 

Ms  = —11 x(Ea— E„-) = 2 x (2.6) 

The total fields must equal the superposition of the fields in Fig.2.2(a) and 2.2(1)). 

Therefore, the fields in Fig.2.2(b) are given by: 

ET, = Et — Ei = = Ht — Hi = Ht, (2.7) 

for < 0. and 

= — 0 = + Ei, Hh=Ht —0=H++Hi (2.8) 
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Figure 2.2 Decomposition of the dielectric rod/cone structure: (a.) The dielectric 
rod in the < 0 region. (b) The tapered dielectric in the > > 0 region. 

for z- > 0. Again according to the 81111a CE cquivalcIlff theorem. these fields yield 

fictitious suifacy cru7rcrrf dcii.Oics J and MI, in the z = 0 plane. The superposition 

of the fictitious surface currents in Figs.2.2(a) and 2.2(b) must produce a null field. 

Hence. 

Jts.  = J, + = 0 4 = —J, (2.9) 

Mt = Ms  + M = 0 > M = —Ms (2.10) 

Thus for Fig.2.2(b) the equivalent surface currents are 

= x Hi, x Ei (2.11) 

which are known. From J, and Mis  the unknown fields Es  and 1-1, can be evaluated. 

The equivalent surface currents 4 and Mis  account for only a part of the total 

scattered field. The remaining scattered field is due to the unknown field E, in the 

cone as depicted in Fig.2.3(a). This scattered field can now be found by introducing 

an equivalent electric V 0111111C  current dinsify Jv  as seen in Fig.2.3(b). The equi-

valent volume current J, "exists" only within the space previously occupied by the 

=0 

(a) 
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Figure 2.3 The dielectric cone: (a) Actual problem. (b) Volume equivalence model. 

dielectric cone where it radiates into a free-space environment. By manipulating 

Maxwells equations. valid within the dielectric cone. it can be shown that 

x Es  = (2.12) 

x Hs  = J, + jwe2Es (2.1:3) 

where 

= j,-,)(2(1/ — 1 )Ec (2.14) 

and where E, is the unknown E-field within the dielectric cone. However. E, which 

is dependant on the radius of the cone. can be determined using the local 'Mode theory 

and the principle of pow( r con.!,,crcalion. 



CHAPTER 3 

THE CYLINDRICAL DIELECTRIC WAVEGUIDE 

The problem of electromagnetic waves propagating along a perfect dielectric cylinder 

of infinite length embedded in an infinite and homogeneous medium has a well known 

exact analytical solution [2]. The general modal field solutions to Maxwell's equations 

are obtained under the appropriate boundary conditions to yield the eigenvalue 

equation for determining the modal propagation constant. The mode properties 

and the modal power flow for the fundamental HEn  [5] mode and the succeeding 

TEoi  mode are derived below. 

3.1 Modal Field Solutions of the Cylindrical Waveguide 

A perfectly cylindrical dielectric waveguide of infinite length is shown in Fig.3.1(a). It 

consists of a rod of uniform refractive index n l  and radius a surrounded by a medium 

of refractive index a 2. the refractive index profile being as shown in Fig.3.1(b). 

Assume that the time harmonic fields have the form TO% y. where IP 

represents the E- or H-field. The time dependence for all the field components is of 

the form The time harmonic form of :Maxwell s cquation.s in a source free linear 

isotropic medium leads to 

72‘11+ k2 AP = 0 (3.1) 

where k2  = ;.:: 2 /70c. The parameter c is the permittivity (e = 712 c0 ) of the medium 

which experiences a. step discontinuity at p = a where 77 changes between 711  and 77 2 . 

The parameter p is the permeability of the medium and since both the rod and the 

medium are considered to be non-magnetic, p = po  in both regions. 

By expanding the vector wave equation (3.1) in cylindrical coordinates (p, 

and reducing it. to three scalar wave equations for the i. Q. and .f.= components, it 

7 
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771. 

71 (P) 
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Figure 3.1 (a) Infinitely long uniform cylindrical rod vaveguide (b) Refractive index 
profile. 

yields 

2 0c,,, 1 
= 0 (3.2) • 

p- do 
2 P .

— 
1 , c = 0 (3.3) 

p2  

+ , = n (3.4) 

where 

02  ui 1 0 ui 1 .02  ti' j  
• 7 = Jp- pcp p- do- 0:2  

These equations are uncouplul second-order partial differential equations which can 

be solved analytically for the geometry shown in Fig.3.1 

Assume fields of the form 

E(p. z) = Eo(p, 

, = Ho(P, (3.5) 

where the term c —i13-= represents a mode propagating in the +z direction. The 

propagation constant /3 is the z component. of the vector wavenumber, and will be 

determined from the eigenvalue equation. 

— 
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By substituting the assumed fields of (3.5) into 1\laxwell's equations. the 

transverse field components Ep. E„, H. and H, can be expressed in terms of the 

longitudinal fields E, and II,: 

( OE- ,..vto  OH,) 
Ep = 4T;-- p 7

c
7 

j 3 OE, OH,) 
= — (— — 

P 
j OE, ) 

H p  = _7 p a
c5 

 

OH, 0E-) 
= —j -- 64..(  

P 00 Op 

(3.6) 

(3.7) 

(3.8) 

(:3.0 

where i can take the value of 1 or 2. 

qi = 
- 2 = ,2 

) = 112. p<0  
h 1  (3.10) 

and. 

2 32 = 5 2  = — tt; 2  p > (3.11) 

By substituting the component of (3.5) into (3.4) we get 

02 1_•_ 1 01.,_ 1 „ 
 +  0 

P" 

p p 2 02 (3.12) 

which is then solved by the method of separation of variables. The solutions adopted 

here follow Snyder's notation [2] for the azimuthal variations. incorporating both 

even and odd modes: for p < a, 

E„.1 = E,„„1.1,,( )1.1,( ) (3.1:3) 

H,1  = IlroaJ1,(ap)g„(6)e —j' 3: (3.14) 

and, for p > a, 

E z2 = ErnedK v(zeP)f,(6)( —J13: (3.13) 

Hz2 = Hmf d K v(17 1.  P)g ch)c — (3.16) 
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.f„( 
cosva for cren modes 
sin /Jo for odd modes 

(3.17) 

sin vth for frcn modes 
gi,(6) = (3.18) 

— cos vo for odd modes 

In the above equations. the azimuthal index v has to be an integer (I) = 3....) 

for . f.„(o) and g,,(6) to be angular periodic solutions. Furthermore in order to have 

finite fields at the rod axis (p = 0). 13e8SCI functions of the First Kind. J„(vp). are 

chosen for the rod region (p < a). In the surrounding medium (p > a). illodificd  

Be-sscl . fitnctions of the-  Second Kind. K„(wp). are chosen because they exhibit the 

desired evanescent behavior. 

By substituting (3.14) and (3.16) into (3.9) the transverse fields can be written 

as: 

Eo  = —2- (.3ET „,i ft (tip) +"."' Hr,„1.1„(up)).f„( ) 
ti up 

Er.-,1  = l— (---511  Erc„ar(up)+ ,.::polirodf„(up09,(0)(' II up 

Ho  = -L( H,,,if((1 p) + i, a 
,-,-'civ 

Er,-,,,q),01 nOch,(6)(' up 
j ( 

o  

37/ 
-11,1 = —

a  —
Hrod,1„(up) -1- ,,ciErod-1,0110).fA .) -J13:  p 

for p < a. and 

i ( :, L--, 7.,/ i  
Er-,  = — (J-1-.-medil iAl( .P) + "1(°1/  Ze \ 

Hn„ d Kv  ( we)).ft,( )e
— j'3: 

up 

E62. = —
j (.

— E,„,(1 K,,( ( rp)+.710 11„,, d K:,(wp)) g„(6)f -ji -3' 
3v 
— 

It ((, p 

H p2 = .1  /3.11,,,„dA„(t ( P)+ '
,-.(21) Em.,d K„(wp) g„(0)€ -J 3: 

w -erp 

, —timedn•vorp)  + 4:4) E2Em6d1\ v Ul(7  P )) JO 01c- -- "3:  
..j 

(thJ 
r , , 7 , I , ‘ r i _1\ i 

te wp 

3: 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

for p > a. The primed Bessel functions indicate differentiation with respect to their 

arffument s 



Hfli Ed = Ii~v(1l.. )11  rod = 
v
(li.)) 1.-Erod 

where Yu = wave admittance, and the eigenvalue equation [2] for the HE„,, and EH., 

modes (v > 1): 

1, )2 

Hrod = Enid = YvErod (:3.29) 
i-‘:110(Fv(U) G „(ii' )) 

v(r) - (3.:30) 

11 

3.2 General Eigenvalue Equations 

The boundary condition of a cylindrical dielectric waveguide demands that all the 

tangential field components be continuous over the boundary at p = a. These four 

boundary conditions are 

= 

Ed, = Ecy) 

H :-1  = H 

Hai = Ha.) (3.27) 

where the subscripts 1 and 2 represent the rod and the medium. respectively. Substi-

tution of the tangential field components in (3.22) and (3.26) into (3.27) at p = a 

result in a set of four equations. with four unknown coefficients Erc,d• EmEd• Hr od and 

H„,,,j. The non-trivial solutions of this set of linear equations are as follows: 

•Jec u)  
Emfd = • Erod 

K„(11") 
(3.28) 

4 //.) 
(F„(r) G„(11))(Fp(U) = ()- 

) 
(:3.:31) 

for TEom  modes (v = 0): 

Fo(U)+ = 0 

and finally for Tillom  modes (v = 0): 

n2 

Fo(U) = 0 
121 

(3.32) 

(3.3:3) 
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where 

J: (U) K:,(  IV)  
Fg) = ' G„(1r) =  (3.34) 

UJi,( ( 7 ) II11",,(II") 

U = no --= (1\114 — 3' (3.35) 

li" = wa . a\132  — 1,-3 (3.36) 

2,, a  
n , V(72 = Va2 _9 = Normalized Frequency (3.37) 

A 

= k, = = kn, (3.38) 

The eigenvalue equations (3.31) to (3.33) are complicated transcendental equations 

and must be solved numerically or graphically. 

The hybrid HE„,„ and EH,,,„ are twofold degenerate (even and odd) modes 

consisting of all six field components and without any circular symmetry. The 

dominant longitudinal field component E:  or H, determines the designation EH 

or HE. respectively. The only circular symmetric modes are the TE and TM modes 

( v = 0). Each mode is labeled by two subscripts. The first subscript 11 is the order. 

while the second subscript in denotes the 77th  root of the eigenvalue equation. The 

roots are ordered so that M = 1 corresponds to the root with the smallest value of t: 

for a given value of v. The values of i for all bound modes take only discrete values 

within the range 

k2 < 3 < k1 (3.39) 

and the solution of the eigenvalue equation for any particular mode completely 

characterizes the mode. 

The recurrence relations for the Bcsscl functions are given by [6]: 

(z) = Ji,(,:)K (:) = — ,11"„(z) (3.40) 

By substituting (3.28-3.30) into (3.22) and (3.26) and by using the above recurrence 

relations the modal field solutions with only one unknown excitation coefficient Enid 



take the final form [5]: 

13 

(3.41) 
up 

_ jEr„,„, v(3 
(3.42) ( up) + J1,( 1/P)]fiv(6)f -j' 3  

jErod [ 

= E,,-,dJ,(i(P).fe(0)(-  

— 33 -„) 

(3.43) 

(3.44) 
(
up) + li,(11Pdgi,(0)( -13:  

Hoi = 
Er  ,,d 

up 

v( 3Y, 
(3.45) 

—
p 

p) Pl.ft,(6) 
u 

=-)c,E,,,,i<L,(up)g„(0)(-j'3' 

for p < a. and 

(3.46) 

Er2 := 
i E,,,,i J,(r-) , 1/(3 — ..,:p).;,) 

(3.47) 
w 1' (Ii' ) ) 

[ 4 , 
K,,(wp)1,f„(a)(-.1d: '' -A.  i,--11,11•p) + 

wp 

i E, ,a Jz, (t -  ) Ec 2 = . [-'1101,,Kv_1(1cp) 
1 i(,. 4. poY„ - .5) 

' 
.  

-Jr  Ar(tudg,(0)( -1'-':  (3.48) w K„(11- ) wp 

JAI - ) 
E,2 Ei.,.,4 

il, v
oi.)K,,,(wp)f i,(o)(-.' (3.49) = 

jE,,„1 1,,(U ) 
11,2 = i) 

[, , 1/(3.1.,, —.,...62)  
Kv(wP1g,(6)e -* /  (3 )-50 u 

1
1„

(11.) „11,,_ 1 (w p) + 
up 

11 ,, 2  = -.1":" (3.51) 
w K„(ii") .-4"e2-11 

[ 
i—i(t( P) + Ki,(wp)] . f1,(6)( 

wp 

J,(U) 11,2 Y„Er,-,4 Ki,(wP)gi, (0)( -  = z (3.52) 
Ki,(11") 

for p > a. 

3.3 HEn  Modal Fields and Eigenvalues 

By letting v = 1 in the general modal field solutions. the HElm  and EHin, modal 

fields are obtained [5]: 

E
vl 
 = 

[, 
/34( (1 p) + 

— ) 
Ji ( 0)c-i13:  '3 p 

j'E c'd  ,c//o-1401P) (
-;.3: 

it up 

E..1 = ErodJi(up)fl(ci)f-j13' 



Th( 0) = — cos o for odd modes 
sin o for c ii a modes 

(3.56) 

and 

1' 
 

(Fi ( ( 7 ) + G1  (I i 
(3.59) 
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Erod 
pl — [_ 

Y J001 P) (""61 33 .1 ) 3 J1( 11 P)]gi(o)( -  " 3:  
p 

j ( 3Yi  — I ) 
I- = — p) J1(11 Pl.fi(0)( 

11 p 

11,1 jErod Ji (ap)gi (o) 

for p < a. and 

j E r„,1  .11 (U ) { , , , 3 — ,,,.7 3 ) E,, =  dA0(wp) + Ki(wPd.f1( ) w Ki  (IV) wp 

E C' 2  = j Er  ''' d  J1 (1. ) {-4-"PoYiK0(1cP) + (-71°' — 3 )K1 (zep)] m (o)c —.''' 
W -k1(11-  ) ic p 

J )((- )  
rod 

Ki(1i_ 
 )11'1(11.1),f1( ) 

11 p2  = 
j ET,-,d Ji(U)  [ 3, . , . , , + (33 -1 — ,,,'(2) ,. , Th./10/cm  /11( 1(P)1M( 0)e w A i  (IV) wp 
j E rod  J I  (11 (..:.:(.-, — 3Y1 ) 

11 
tc Iii (li -  )[— - ' " tc p 

,,..2  = (.41' (wp) + - Ki(wPd.f1( 0)(''' 

J1(L- ) H:, = Al(wp)91(0)(-  
' ) 

for p > a. where 

cos o for c 11 modes 
11( : ) sin o for odd modes 

and 

1:: 

(3.53) 

(3.54) 

(3.55) 

Furthermore. the HE1i  and EHin, eigenvalue equation becomes: 

, 
3 )2(  v  y 

(Fi (U) Gi(Ir)) (F1(1) ;- (-71(11 ) = 

Where 

(3.57) 

.-11V 7 )  Fi (U) = 
U.I1( 

K;(w)  Glor) = (3.58) 



15 

The propagation constant 3 as determined by the eigenvalue equation (3.57) 

dictates the functional dependency of the HEim  and Effb, modes. The solution for 

the //En  mode is obtained using the first root of the eigenvalue equation. 

3.4 TE01  Modal Fields and Eigenvalues 

The TEui  mode is circularly symmetric about the axis of the waveguide. A rigorous 

solution of Madweirs ((potions for this mode yields the vanishing results for the 

E p1.E0.E,i .E.,7.Hca  and H6,2 components. The only non-zero field components are 

E„.11r  and II, [2]. 

In the rod i.e. for p < a 

Ho = — J101  PLHrc„if 
11 

= Jo(t(P)11rodc —J°- (3.60) 

For p> a. 

Ent = 

.- • 
HH,,2 3 

2 = —,30A 1 (wp)Hr„,i( -.i3: 
tr 

H:2= K 0(11.101-  I urie —  / 

The eigenvalue equation has the form 

Ji (va) 

vJu (aa) tilio(tra) 

Nv here. a = ✓ — 32 and tc = V.12  — kz 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

3.5 Modal Power Flow 

The power flow of a mode in the direction is evaluated by integrating the 

component of the Poynting vcctor S over the cross-section: 

Par  = f S • ds (3.65) 
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where S = x H- ). and ds = 2 pdpd 6. The electromagnetic energy of a bound 

mode in a cyhndrical dielectric waveguide is carried partly in the rod and partly in 

the surrounding medium. This is due to the fact that the transverse field components 

at the dielectric boundary p = a are nonzero. 

3.5.1 HETI  mode 

Using the expressions for Epi.E0.Eoi-E62. Hp1-Up2,Ho1 and Ho  from (3.53) and 

(3.54). we obtain the power flow for the HETI  mode in the rod [5] as 

a 2r 
P1 = f f Rt (Epi — Ets,1 11' )prlodp 

o o 
(3.66) 

which leads to. 

= 
2 ErCd ‘''' 

J 
[ 2 2 

0 010+ — c.)).112(aa) (3.67) 
4 

) 

while in the surrounding medium the power flow is given by 

1 x  
P2 = — I RE ( E ,I-1' — Ec,211*,)pdodp 2 P - a • 

(3.68) 

which results ill. 

== 
77 

4 

„d Ji(1( a ) [Er  2  

C30 + C4 2  K (wa) — C3o K 02  (wa ) 
[( 2 

(3.69) 
(e/ii  (era) 

1 

where. 

CI  = f + ) C2 = 7f72- (-<-' 61 — .31.1)(i — Po) ) 

C3 = „c';3(62 + C4 = t+2  h 2 — (,3 — 

Thus. the total power carried by the HRH  mode in the dielectric waveguide is given 

by: 

r 1 
Pz<0  = — 

{ v

2   
Ci a 2J02  (w) (Cia2 

- C2)../12(vo) 

2 a 1 
C3a C K (it,a) — C3a 2  A' 02  etva) 

R 2

l
l

I 
(3.70) 

Ji(v

(wa)  [  Te K

) 

77 
P-<0 = P1 + P2 = 4 

772 
r od 1-0 (3.71) 
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3.5.2 TE01  mode 

For the TE01  mode. the power in the rod and surrounding medium is obtained by 

substituting (3.60) to (3.63) into integral equations for power as above. In the rod. 

1 a 2r 
P1 = 2 

o 
f f Re(—E,I. H p-i )pdpdo 

After analytical evaluation. (3.72) yields 

(3.72) 

P1  1177,., 4  2112 J12(tia)— Jo(lio)J2(tra)] (3.7:3) 

   

In the surrounding medium. 

P2 = 
fx. i2r 

( —E0211172 )pdpdo (3.74) 

which reduces it to. 

= 
--,:;// 0 30=a 2  

2w2  
[ d  Iii(we)  Ko(tee)K,(wel (3.75) 

   

where o =  In order to evaluate the integrals leading to the above equations. ./..-()0(::::,)) • 

the following integral properties of BE ssfl functions were used [6] 

I J,2„(a:)— 

J :K,27,(a:)d:= - [K2 ( Km-i(az- )Km+i(a:) (3.76) 

  

The total power carried by the TEoi  mode in the dielectric waveguide is then 

given by 

pz<0  = P1 + P2  = 77":11() Hr2c'd 12 (1,2(ua)— Jo(ua)J2(uo)) 
u   

n

22 ( Iii (um) — Ko (2va)A-2(wa)) (3.77) 

  



CHAPTER 4 

THE DIELECTRIC TAPER 

In the case of a slow change in the profile of the dielectric rod. it is possible to use the 

results obtained in Chapter 2 to approximately evaluate the modal field solutions of 

Maxwell's equations within local regions [2]. These local mods are governed by the 

local field solutions and the principle of cons(rration of powt- r. Since such a solution 

assumes a negligible change in the power of the local mode. it is often called the 

adiabatic approximation. 

4.1 Local Mode Field Solutions 

The local mode field solutions are constructed by approximating the dielectric cone 

by a series of cylindrical sections as shown in Fig. 4.1. The profile is independent of 

within each section and is defined at the center = The local mode field solutions 

within each flail( section are approximated by the modal fields of an infinitay long 

rod having radius a(.-_-) equal to the radius at the center of the section. Assuming 

that the length of the section is large compared to the length scale of the fields 

within such an approximation is fairly accurate. 

As a local mode propagates. its phase increases across each section by the 

product of /3(:.--.„) and the section length S:. Consequently, the phase at an arbitrary 

position along the nonuniform dielectric rod is the sum of such products. However, 

the slow variation of the dielectric rod means that the propagation constant 3(:) 

varies only slightly between adjacent sections. Hence the sum of the phase contri-

butions from each section can be approximated by [2]. 

= 
Jo 

/3(e)de (4.1) 

where e is a dummy- variable. The local mode fields in the conical structure for the 

HEn  mode can thus be obtained by replacing the phase term in (3.53) by the above 
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Figure 4.1 The approximate model for the dielectric cone. 

integral [51: 

E
pi  = lE,-4(:)[3(:)  J

0
( ..)

)+(.-,•710) -1(:) — 5(:)) 
 J1(!) .fi(e)f -.; ) --.; Jo  3(0 ,k 

u(:) 11 (:)P(:-- ) 

z.___ i -E',.„1(:-
)1_7 1

0.
1

(
:

)
.
j
u

( .., )  + (3(z) — -:://o) -1(z)) j
i (_,, dgi

(
o

) e-i fr .1(fl,I ,  E,-,1  
11(:) [ 11 (:)P(.:) 

E,i = ET,i(z)Ji(i).fi(0)(-' fo-  .i(al 

i.E (.-,..fi — 3(--)) To  -i( ),it: 1(:)) 1 „,-,,i(:)r  . , . 
H1 =— im=0] = 1(:).J0(-;)+ „( ,)p( ,) Jic-Jigi(0)e 

(3(-70 -1(:)—,,,•(1)  1-1,,1 = [—.61J0( -;)+ 
0(z) 11(-)P(-)

J1( -, )].filo)e .1 .1c; .3(E),] 

H,1  = Yi(.:- )Er,„](:).11(1)gi(0)( —dfoTh(od  

where -) = u(:)p(:). while E„d. 3.21 and Yi  all become functions of since they 

are directly related to the radius a(z) which is a linear function of in the conical 

region. The amplitude of the fields within the conical dielectric taper. Erod(:)  is to 

be determined by the principle of C0118Crrati on of pow( r. 

Similarly. the local fields for the TEui  mode are determined by substituting 

(4.1) into (3.60) to give 

Eft 
= 11( j ) 

 ii(11(:)1)(--)):11011„d(z) — 3 fp 13(0d 

Hp1 = uj J1(`1!(-- )P(:))/3(:)Hrod 
r3()d 

(:) 

H..1 =  Jo(u(z.)P(z))Hrod(z) 
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(4.2) 

—j fo:  /3(),g (4.3) 
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Again. the amplitude term Hrod (:) is to be determined using power conservation. 

4.2 Power Conservation 

The local mode fields derived in the previous section are very accurate approxi-

mations to Maxwell's equations in .slowly varying waveguides. However since it is 

not an exact solution. the local mode will suffer some loss of power as it propagates 

along the conical region. This loss of power can be attributed to coupling to radiation 

modes and higher order local modes. Even though the fields expressed by (4.2) and 

(4.3) vary as the radius a(z) varies from section to section. the power of the local 

mode must be conserved along the dielectric rod/cone structure. This principle of 

power con.,:frration can be expressed as 

<0 = >0 (4.4) 

where P,.<0  is the total average power carried by the mode in the uniform cylindrical 

dielectric Ivaveguide as given by (3.70) for the HE11  mode and (3.77) for the TE01  

mode. The power flow in the tapered region. represented by ./3,>0  for the HE11  mode 

is [51: 

132>u = 4  E„,i(:){
.2(:) 

[Ci(:)(12  (-:).1j, ("ra) + (Ci(:)0 2 — C2(:)).1i( -,a)] 

ji ( -)° ). (C'3(z)a 2(z) C4(z)) Ki((a) —  C3(:)02(:)K,2,((0)1} (4.5) 
tr(:,. )Ki((a) 

where )„ a(z)a(z) and (,, = w(:)0(:). while the parameters u . w. Cl . C.). C3  and 

C4  are also shown to be functions of since they all change as the profile changes. 

In the case of the TEin  mode. a. similar evaluation yields, 

7"71u 3( z )(12( z )112 
0 
d(z) 

1
`  (Jill(z)a(z)) — Jo(u(:)a(=N201(:)a(:))) 

0 2( .7.1 ( 
nu(.-.7)u(z-.)) — Ko(w(z)a (z))Ii2(w(:-..)0.(:))14.6) 
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By substituting the (3.70) and (4.5). and then (3.77) and (4.6) for the power 

flow. in the rod and cone respectively into (4.4). the following relationships between 

Erc i(z.).E„,„1  [5] and li„,,,(z).Hrod  are obtained: 

Erod(:) 1=1 Erod 

1 1=1 Hrod 1 

P0  

Po(:) 

P0  

Po( z) 

(4.7) 

(4.8) 

where I ET ,„I  I and are the constant field amplitudes in the dielectric rod. In 

order to simplify further calculations, the unknown excitation coefficients are chosen 

so as to normalize the directive gain to unity (0 dB) at the maximum of the main 

radiation lobe. 



CHAPTER 5 

FAR FIELD RADIATION 

The far fields generated by the rod/cone structure of the dielectric can be evaluated 

as a combination of surface and volume current densities as formulated in Chapter 2. 

J and M introduced in (2.11) and J, introduced in (2.14) represent the surface and 

volume current densities. respectively. The radiation due to these equivalent current 

densities is expressed in terms of magnetic and electric vector potentials.  A(r) and 

F(r) defined as [7] 

H 7 x A and E —7 x F (.5.1) 

While considering the far field radiation. the equivalent sources 4. Ms' and J, can 

be considered as radiating spherical waves in the outward is. direction. These fields 

are TEM to 1% The magnetic far field is related to the electric field by: 

.E„ 
H= — 

W 7/0  
(5.2) 

where I/O = 0/ 0 /(0  is the intrinsic impedance in free space. The total electric far 

fields are expressed in terms of the rectangular components of the vector potentials 

A(r) and F(r) as [7] 

cos o.4, cos 0 sin — sin B.4_) — .-jk0(— sin 6Fr + cos of -;,) 

Eff = —j,cp(— sin giA, + cos 0Ay k0( COS 0 cos OF, + cos 0 sin thFy — sin OF, )(5.3 ) 

xvhere 

jk o r 
I I .1 I 

A l  =  .(ri )(jk0( pi Sin 9 COS (0 —1,1  zi  cos 0) dp do (l 

47r J J Isourc E  
—jko r 

f  ( 7 )6  iko (pi sin ecos(0-6')+,-: cost)) p dpi' d©' 7  
47-r J sovrcE 

and where the prime denotes the source coordinates, r the distance from the origin - 

to the observation point, and i denotes any of the rectangular coordinates x,y,z. 
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(5.4) 



e — iko 1' 2 7 x f 
A 
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5.1 Far Field Radiation due to the Surface Currents .L1 .1\1' 

The far field due to the equivalent surface current densities J:„ and M located at 

the = 0 plane can be evaluated using (2.1 1 ) 

J= x Hi = 2 x ( + 71, 21-/,) = Hp — 

= x Ei = x (j)E, c;E6  + 2E, ) c;E„ (5.5) 

which in rectangular coordinates become 

J,„ = — sin 01.11„— cos 671, 

Jsy  = cos ei Hn  — sin 9 H, 

11,3.= cos oi  E„-}-- sin 61 E, 

Msy  = sin o'Er, — cos 91 E, (5.0) 

Since J1, and M, are INvo-dimensional surface current densities with no components. 

the fields in (5.3) become 

E•6 j,,,7t(cos0 cos 6A.,. + cos 0 sin 6Ay  ) — jko( — sin OF, + cos ()Fp ) 

—ju://(— sin 6A, + cos 0.4y ) + jko (cos 0 cos 6F, + cos A sin 6Fy  ) (5.7) 

while the vector potentials A and F become 

(5(—sinC/H p  — cos 0' Ho ) + ST (cos a' — sin Ol f/(,)} 

.6:iko n' sin 0 cos d p p (10 
r •rx: 

F =  [R.(cos 0 4+ sin O'Ep ) k(sin. — cos 0E7 p )] 
471' 0 0 

elk° p sin 0 cos ( — ) p
, dp' d9 (5.8) 

where the volume integrals have been reduced to surface integrals since the equivalent 

source consists of the surface currents .11, and Ms' located in the plane = 0. 



5.1.2 TE01  mode 

A similar evaluation of the vector potentials and surface currents for the TE01  

using the field expressions derived in Chapter 3, yields 

1 Hrud  l c  --jkor „4:110 /27 ,, {fa J101'; )p' ,, [ 
EH —  sin(0 — 9 WO f(p , ) 

47r u 

•(i3 cos 9 + ko )d pi  + f o (tePI)f;  (p .6 )(13 cos 0 + ko )(1 pi } (5.11) 
a 

mode 
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5.1.1 HE11  mode 

Evaluation of the expressions for the vector potentials using the fields for the 

RE11  mode as obtained in Chapter 3 yield the following radiation fields due to the 

equivalent surface currents J and Ms [5]. 

Erc,d e — jk°' /2 7 1 fa 

47 Jo 11 0r 
{[—Aip Jo(up ) — .4 2.11(u )igi( ) sin (6 — 6') 

, 
+[.43/iJo ( up' ) — .47.11 (u p' )]. fi (O') cos (O — 0')}eilw sin eicos(c,--.-, )dp' 

Ji  Ow 

we)  

) /,,, { 
+

wrITi  ( 
, i [—Al p' Ko (te p' ) — .44 K1 (14 )1gi (c-; ) sin (6 — 6') 

J,, 

+[45p Ko ( wp ) — .44 K i (wp' )if i (o' ) cos (o — t (5)}cikoP sin° cos (o—oi  ) d p' (761 (5.9)  

E . = 1 12' — r  r 
lip ) — B2 Ji  (op (0 ) cos (0 — ') 

4-,7,• .10 o 

—[B3 pi  10(e ) — )].f1 ( o) sin (o — )1 flk°P sin cus  ( C dp 

J'(' "" ) {[— Ii0(u• ) — B4 K ) (te ) cos (p — o') — 
w A' 1 ( we) . a 

—[B5 pi  Ko(wp' ) — B4 K i (ti• )] 0) sill 0 — O' )1 sl" ( p' poi  (5.10) 

where 

-41  =-‘-7101 -1(ko cos 0) 
A2 = 1 (.43 — Al) 

A:3 = "0 :5 ki2 cos 0 
I = — A5) 

A5 = + COS 0 

B1  = ko  cos 0) 
B2 = (B3 — B1) 
B3 = 1,'p -3 COS 0 + kl  
B4 = 1(B1 — B5 ) 
B5 = ko,3 cos e + 4-3 

and where f1 (0') and 91 (0' ) are given by (3.17) and (3.18) respectively. with 0 

replaced by o'. 

Eos = 
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I Hrod I f — Jk°r..4:110[1.27  
s , Ec, = cos(c) — )doi  

r Ji(uni )91  f(
p

i . 0  ) 
lJo 

• ( + ko  cos OW + f oRi(wP)P1  .f( )(V I + ko  cos 0)(1p1 } (5.12) 
a tc 

5.2 Far Field Radiation due to the Volume Current Density J, 

The far-field due to the equivalent "fictitious-  volume current density Jv  within the 

dielectric cone can he evaluated by (2.14): 

J. = — 1)E, = L.::(0(1)2  — )(1)E/A e;E,A  4- 2E:1) = 1$J,, c;,/, + ( 5.13 ) 

which in terms of rectangular components becomes 

Jv  = J..::(0 (14 — 1)[(5: cos 0' + S' sin o )En + (-5c sin c; + ST cos oi + (5.14) 

The far field can now be evaluated from (5.3). Since there is no magnetic current 

distribution M defined in the conical region. the vector potential F = 0 in this region. 

Thus. (5.3) reduces to 

EH = —j,;:p(cos 0 cos 9_43- + cos 0 sin — sin ) 

E;., = sin + cos 0.-13,) (5.15) 

where 

A = j,,,e0 (1? .2 1) (-jk°r T27 
A .1 

T a ( zi  ) [X-(cos ,C1' Epc  — sin o' 
=l4-,7 0 r  

(n— ,')+ '̀ 
+ST' (sin oi  E + cos oi  E,,) + E si n (5.16) 

5.2.1 HE11  mode 

Evaluation of (5.15) using (4.2) yield the expressions for the radiation field due to 

the volume current density Jv  [5]: 



—.ikor L f27- 
Eo  = kL2,(14 

7,- r Jo Jo Jo 
— 1) ) u (jzt , ){[— 3( -  4  

•p(:- ).10( -1) + (•-) )].fi(0) cos e cos (0 — 01) + ) Joh) 

)191 ( ) cos 0 sin (o — ) —
p( 

),11( ; ) sin 0 cos o 

.E.lkoP
eI 

 )sill cos ( 6-0' )d d e.i[koz cos 6— for (e)d 

( —.ikor f L f27 i a (7..) 
Ec:., = Co' (ni 1)   I Er,d(: ) I  477,  Jo Jo Jo t/(..:) 

{ • [-5Hp'(:).Joh ) — pl./1h 1 .ii ( 0) sin (0 — 0') 

}

+[p,.:.:ZE p (:. ).10 (--; ) + Di  Ji (-))] • gi (oi  ) cos (o — o') 

-  
I I

)sin ) 
,„ , 

— 
 • _ „, 

p firc,s (0-6 9 7 'N (70..“1J (7 
( 

, 

op ) 0 0 0 Oti..) 
 

(5.17) 

(5.1S) 

where 

Di ( ) 3 —  

and -) = ) as adopted in Chapter 4. 

5.2.2 TEw  mode 

To obtain the radiation fields due to the volume current density for the TE01  mode. 

(5.15) is evaluated using (4.3) which results in 
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_j( —Jkor 
L  H rod( ) I c- —fc; .3()de , 

ko2 01.2 
f 

1 ),.,T o  cos 0 (1,z- 
=17r 

c 

fo2r 
sin(O — )doi  f a(s  ) J1

h )pi fi ko pf sine cos c, hi' ) d pf 

— j  ( 
—jkor L I Hi.,4 ( :: ) i kozi  cos0-10:  ,3V)cl , 

c  = k 2  
4zr u fo ti(z') 6 

i 
27 

.10 cos(o —  0),,161  f a o:  p Ili ( ,/ ) jko  pi  (.7 1  )sin 0 cos(6-0' ) d p' (:) 
0 

where again. y = 

EF = 

(5.19) 

(5.20). 
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5.3 Directive Gain 

The directive gain is defined as the ratio of the radiation intensity in a certain 

direction to the average radiation intensity of an isotropic source. 

Gd (0. = 
L' Q, 

where 

at = 
Prod Pin 

477 477 

considering a lossless dielectric. For the far field. the expression becomes 

U(0. o) ti 7)-7,
[1 E0(0. o) I 2  + 1 E6(e • 0 )12 ] 

where 7/ 0  = 0/ 0 /60 is the intrinsic impedance in free space. Thus. the directive gain 

for a lossless tapered dielectric rod becomes 

GAO. 
= 27[1 E,,(0. 0)12  + 1 Et-1(0 • 0 ) 1 21 

(5.21) 

where Pi„ = P,<0  is the power accepted by the dielectric waveguide as calculated in 

Chapter 4. 

U(0. o) 



CHAPTER 6 

NUMERICAL AND EXPERIMENTAL RESULTS 

The theoretical predictions of the previous chapters were compared with the far field 

radiation pattern generated by dielectric cones excited with the fundamental TUT 

mode. In order to ensure the accuracy of the experiment. it was necessary to test 

the radiating patterns of the various waveguides used against suitable theoretical 

models. The experiments were conducted in an anechoic chamber so as to reduce 

wave reflections off surrounding objects in the room. 

The experimental set-up consisted of a signal generator that excited the fields 

inside a waveguide of rectangular cross-section. This cross-section was gradually 

converted into a circular cross-section. thereby forming an open-ended circular 

waveguide. A mode converter was then attached to the circular waveguide. 

a cylindrical dielectric rod with tapered ends was inserted into the mode converter. 

Fig. (3.1 shows the antenna assembly used in the experiment. 

6.1 Radiation Pattern of a Circular Guide 

A circular waveguide is excited at one end with the TEn  mode and its far field 

radiation pattern is observed. The angular distribution of the emitted radiation 

signal 

dielectric taper circular errs-section 

rectangular cross-section 

I 

1 

 mode converter 

joint 

Figure 6.1 Experimental antenna assembly 
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oi  
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is compared with the directive gain as predicted by Marcuvitz [8]. The following 

expression is used to determine the directive gain in the horizontal plane. 

G (O. 
41 (12 

31 

where is defined by ./;(7 31 ) = 0 and. 

y ) = 
+ 05/2 Ey 

.1.  + -oa 12 1 il .()0 

y 
j .42  12  

- y 

I r tilt  

Vi  / 2   -4-  • e 

t 
arct an , 

, t 

=1, ,s= hit   arc an ). 
E. 

t
( . ;I/ 

7 0 Vt. t2 +y 

Ntr y 

The angular distribution as obtained by the above expressions at c) = = is 

plotted along Nvith the observed far field patterns in Fig.6.2. Similar matching 

patterns were observed over a wide range of frequencies. confirming the excitation of 

the TEn  mode in the circular waveguide. The radiation pattern from hollow pipes 

has been studied and documented extensively by Chu [9]. 

6.2 HEn  Mode Radiation Pattern 

A mode converter is attached to the section of waveguide described above. The 

TEli  field in the circular waveguide is thus converted to a propagating HE_„ mode. 

The mode converter used in this experiment was designed by Pietrangelo [10] for a 

frequency of 15 GIlz. Again. the radiation pattern emitted by the open-ended mode 

converter was compared against. the theoretical radiation pattern for the HEn  mode 

as predicted by Thomas [11]. The far field components of the radiating hybrid HE„ 

mode have the following form: 

(6.2) 
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Figure 6.2 TE11 mode far field radiation pattern from a semi-infinite circular 
waveguide with aperture radius=7.5mm at 15GHz. 

= 1,Y1 r; (1 + 1";  cos u) (L'2- + cos c) K 2] 

EMI') = ka[(1 y cos c)A-1  + + cos ts)R-2] (6.:3) 

where 

J. et. ) • im(11.14,01—*Jrn u.)  
111 = m J02 ( u a ) • 2 = 

7.F.  ) 2 ( 

and the generalized radiation angle v = ka sin t!.. For the axially symmetric. HEn  

mode. in = 1 and v = 0 along the axial direction. The theoretical results are plotted 

along with the experimentally observed radiation patterns in Fig 6.3. There is a 
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good agreement between the two sets of data indicating a satisfactory conversion of 

the TE11  mode into the HEn  mode . 

The analysis and the design of mode converters using corrugated waveguides 

has been discussed by various authors. In particular. the reader is referred to articles 

by Clarricoats[12]. James[13]. Doane[14] and Narasimlian[15]. 
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Figure 6.3 HE„ mode far field radiation pattern from an open-ended mode 
converter with guide radius=l.•5mm 
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6.3 Radiation from the Tapered Dielectric 

The far field radiation patterns from a tapered dielectric cone excited by the HEn 

mode were determined previously by Hovdal [5]. An attempt has been made to 

support his theoretical model with experimental data. For this purpose. a set of 

three taper lengths was used with two different materials. teflon (n = 1.449) and 

plexiglass (n = 1.6). The taper lengths under study were 2.8cm. 1.9cm and 1.5cm 

long. Figs. 6.5 to 6.10 show the far field radiation patterns for each of the dielectric 

cones at various frequencies. These patterns are plotted along with the theoretical 

angular distribution predicted by the discussion ill earlier chapters. The surrounding 

medium in each case is air (o = 1.0). Readings were taken for :3 frequencies. 12G11z. 

15GHz and 18GHz. 

The observations were made in an anechoic chamber using steps of one degree 

on a rotating stage UR 100PP. Klinger. controlled by a GPIB board and accom-

panying software. The controlling program was capable of setting the frequency and 

power  ou tput of the IIPS350B Strc(p 0.!q-'illator. controlling the 1/otion Mast( r 2000 

motor and triggering system and the Boor/ion 4:200 RF lficrowattincicr to take a 

reading. The data was then collected and normalized with respect to the OdBin level 

and plotted along with the corresponding theoretical radiation pattern. 

As can be seen from the plots. longer tapers- favor the formation of a main lobe 

along the axis of the dielectric. However. it was not possible to obtain tapered lengths 

greater than 2.8cm clue to machining difficulties. In order to work with relatively 

longer tapers, higher frequencies of operation were attempted. Beyond 18GHz. it was 

no longer feasible to take accurate readings since the base noise level in the anechoic 

chamber began to interfere with the radiations from the dielectric cone. It was found 

that 12GHz and 18GHz were the extreme limits of operating frequency possible in 

this experimental set-up. Readings were taken at each of these 3 frequencies. The 

higher refractive index of plexiglass allowed better guiding within the dielectric cone 
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and thus generated more well-defined central lobes. Very good agreement is found 

between the theoretical and observed data for the plexiglass taper of length 2.Scm. 

Since the experiments were conducted in a poorly furnished anechoic chamber. the 

reflections off the walls of the chamber caused distortions in the envelope of the 

radiation pattern. 
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Figure 6.4 HEii  mode far field radiation pattern for plexiglass L = 2.8cm. n = 1.6. 
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Figure 6.5 HE11  mode far field radiation pattern for plexiglass L = 1.9cm n = 1.6. 
a = 7 .5mm. r = lm. o = 0" 
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Figure 6.6 REll  mode far field radiation pattern for plexiglass L = 1.5cm. n = 1.6. 
(I = 7.5mna. r = lm. o = 0' 
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Figure 6.7 HE11  mode far field radiation pattern for teflon L = 2.8cm, ii = 1.449. 
= 7.511 m. r = 1111. n = 0' 
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Figure 0.8 HE11  mode far field radiation pattern for teflon L = 1.9cm. n = 1.449. 
a = 7.5mm, r = lm. = O' 
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Figure 6.9 I/En  mode far field radiation pattern for teflon L = 1.5cm. n = 1.449. 
a= 7.5mm. 7' = 1111. th = 0' 
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6.4 TEcn  Mode Radiation Pattern 

Using the theoretical model presented in earlier chapters. the radiation pattern for 

the TE01  mode is obtained. A computer program written in FORTRAN uses the 

Regula Falsi method [17] to compute the root of the eigenvalue equation (3.64). 

The integrals used in (5.10), (5.12). (5.18) and (5.20) were evaluated using the 

Romberg Quadrature technique [18]. Although some of the expressions involve 

complex numbers. the program was implemented so as to reduce the number of 

operations in the complex domain. This reduced the run time involved in generating 

the data for the following plots. 

It was necessary to use approximate expressions for the root of the eigenvalue 

equation when very close to and when very far from cut-off. The cut-off for the TEcn 

mode is at V = 2.405. The approximation used far from cut-off is [22]. 

U(V) = U(Dc.)(.4 

where /:( = 3.832 is the second root of the Bessel function. 

and close to cut-off is [22] 

s = 00 —1 

(- -(I ) = Ucexp ( .sin-1— — .,,in -1L-- 
I' 

where (. = 2.405 is the cut-off value for the normalized frequency. 

Keeping in mind the principles that governed the experiments of the previous 

section. the radiation pattern for the TE01  mode have been plotted for the two 

frequencies. 15GHz and 18GHz. (It has not been possible to work at 12GHz because 

the frequency does not fall in the regime of a propagating mode. For the TEoi  mode 

to propagate, the normalized frequency parameter V must be greater than 2.405.) 

The refractive indices used are for teflon (n = 1.45) and plexiglass (ii = 1.6) while 

the surrounding medium is air (n = 1.0). Since we have to ensure that V > 2.405.  

throughout the length of the cone. we are forced to stop our integration at a length 
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(kilo away from the tip of the cone. This reduces the accuracy of our calculations 

considerably since the integrals are evaluated till as little as 30% of the actual length 

of the taper. This being the next propagating mode in the dielectric. after the 

fundamental HEu  mode. one observes that a lot of power is radiated out at an angle 

to the axis of the dielectric in the form of lobes. Once again. the formation of lobes 

is favored by longer tapers and higher refractive indices. 

Further work is necessary to keep track of the TE01  mode as it undergoes cut-

off and the evanescent nature of the field has to be built into the model for the 

remainder of the taper. Experimental verification also has its difficulties. since the 

source coupling has to be changed to accommodate this particular mode. 
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CHAPTER 7 

CONCLUSIONS 

The use of the local mod( theory and the principles of power con.servation to model the 

linear tapering of a cylindrical dielectric rod has produced satisfactory results when 

theory is compared with experimental measurements. However, the results have 

been studied purely in the microwave frequency range. The major reason for being 

unable to extend our study to optical wavelengths was the inability of the computer 

program to generated numerically accurate data when working with extremely short 

wavelengths as encountered in the optical region. The highly oscillatory nature of 

the integrals combined with the high degree of accuracy required (double precision 

proved insufficient to check underfloor errors) proved to be a hurdle that is still to be 

overcome. It has been suggested that in order to evaluate the surface current and 

volume current density integrals. one should take advantage of the oscillatory nature 

and attempt to apply .stationary pha8( solutions. 

Another aspect that has been sidelined is the possibility of multiple reflections 

off the surface of each concentric cylinder. the combination of concentric cylinders 

forming the adiabatic approximation to the taper. It appears that such reflections 

are relatively small for frequencies in the microwave region. When one begins to 

operate in the optical domain. the extremely short wavelengths. as compared to the 

dimensions of the taper. may make these reflections significant and may have to be 

given due consideration by incorporating more accurate models based on the proper 

treatment. of discontinuities [23]. 

The program for the HE11 mode takes about 2 seconds of CPU-time for each 

reading while executing on a DEC system 5900 (RISC processor). This run-time is 

considerably reduced for the TE01  mode. which takes about 1 second of CPU-time for 

each reading. This saying in execution time is largely due to the cylindrical symmetry 

of the TEm  that results in much simpler expressions for the eigenvalue equations and 
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the integrals. Since the data wa.s being generated for the microwave frequencies. 

the execution times involved were bearable. It is suggested that the programs be 

modified to take advantage of the optimization capabilities of the compiler before 

being run in the optical regime. The run-times involved for optical wavelengths 

are as high as 4 seconds of CPU-time for each reading. Profiling information for 

the programs reveals that most of the execution time (up to 70%) is spent in the 

evaluation of ./3(..s.f4 and Modified Bessel functions. It may be worthwhile to rewrite 

these subroutines in a more efficient manner. As mentioned in Chapter 6. efforts 

were made to rewrite the programs using real numbers. Since each operation in the 

complex domain actually averages to about 5 operations with real numbers. the use 

of complex numbers in time-consuming routines should definitely be avoided. 

From the experimental aspect. the inaccuracies in the readings that arise from 

the reflections off the walls of the anechoic chamber can be avoided by using a larger 

chamber with more efficient absorbers. Due to the intrinsic noise level at -50dBm. 

readings could not be taken at frequencies higher than 1S GHz since the power 

readings began to fall below the noise level. It is expected that at higher frequencies. 

the observed angular distribution of power closely matches the theoretical prediction 

because of the increasing accuracy of the adiabatic approximations made. Judging 

from the nature of the graphs obtained at the current frequencies. one can hope to 

attaM near perfect correlation between the observed and predicted angular radiation 

patterns. 
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