
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

1-31-1993 

Protocol conformance test generation using circular UIO with Protocol conformance test generation using circular UIO with 

overlapping overlapping 

Sesharao Patchipala 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Databases and Information Systems Commons, and the Management Information 

Systems Commons 

Recommended Citation Recommended Citation 
Patchipala, Sesharao, "Protocol conformance test generation using circular UIO with overlapping" (1993). 
Theses. 1886. 
https://digitalcommons.njit.edu/theses/1886 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1886?utm_source=digitalcommons.njit.edu%2Ftheses%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

PROTOCOL CONFORMANCE TEST GENERATION 
USING CIRCULAR UIO WITH OVERLAPPING 

by 

Sesharao Patchipala 

The purpose of the protocol conformance testing is to ensure that protocol 

implementations are consistent with their specifications. After the U-method was 

introduced, several test methods based on the Unique Input/Output (UI0) sequences 

which were the main concept in the U-method have been proposed, namely, the RCP-

method, MUIO-method, MUIO with overlapping method, B-method, C-method. A good 

test sequence must be short and have wide fault coverage. By comparing the test 

sequences generated by the above test methods based on experimental results, reveals 

that the test sequences by the MUIO with overlapping method are the worst in quality but 

their lengths are the shortest in general. In this paper, code is implemented for UI0 

sequences and a new method, the C-UIO with overlapping method which combines the 

merits of both methods, is presented and compared with other methods based on the 

experimental results. 



PROTOCOL CONFORMANCE TEST GENERATION 
USING CIRCULAR UIO WITH OVERLAPPING 

by 

Sesharao Patchipala 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

Department of Computer & Information Science 

January, 1993 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 

Protocol Conformance Test Generation 
Using Circular WO with Overlapping 

Sesharao Patchipala 

Dr. Daniel Yuh Chao, Thesis Adviser 
Assistant Professor of Computer and Information Science, 
NJIT 

David'Wang 
Assistant Professor of Computer and Information Science, 
NJIT 

Dung Dao Chuan 
Assistant Professor of Computer and Information Science, 
NJIT 



BIOGRAPHICAL SKETCH 

Author: Sesharao Patchipala 

Degree: Master of Science in Computer and Information Science 

Date: January, 1993 

Date of Birth: 

Place of Birth 

Undergraduate and Graduate Education: 

• Master of Science in Computer and Information Science, 
New Jersey Institute of Technology, Newark, NJ, 1993 

• Bachelor of Engineering in Mechanical Engineering, 
Osmania University, Hyderabad, India, 1990 

Major: Computer Science 

iv 



ACKNOWLEDGEMENT 

I would like to thank my Thesis Advisor, Dr. Daniel Yuh Chao for his help and 

guidance in completing this thesis. His constructive criticism coupled with the time he 

spent every week on the thesis helped me a great deal in doing this thesis. The group 

meetings and the presentations held every week helped to improve my knowledge in the 

field of Communication Protocols and X Windows. 

v 



TABLE OF CONTENTS 

Chapter Page 

1 INTRODUCTION     1 

2 OVERVIEW OF THE TEST METHODS  3 

3 THE C-UIO WITH OVERLAPPING METHOD   10 

4 X WINDOW ENVIRONMENT    13 

5 AN EXPERIMENT ON THE TEST SEQUENCES    20 

6 ANALYSIS OF THE EXPERIMENTAL RESULTS  21 

7 CONCLUSION  22 

APPENDIX  23 

REFERENCES  70 

vi 



LIST OF TABLES 

Table Page 

1 The complete set of shortest F-UIO sequences for the FSM in Figure 1. . . . 5 

2 B-UIO sequences for the FSM in Figure 1  5 

3 The F-UIO, B-UIO, and C-UIO sequences for the FSM in Figure 1  6 

4 The compound edges for the FSM in Figure 1  12 

vii 



LIST OF FIGURES 

Figure Page 

1 A transition diagram for an FSM  4 

2 General usage of a UIO sequence  7 

3 An illustration of the overlapped edge sequences for the FSM in Figure 1  8 

4 The initial transition sequence  12 

viii 



CHAPTER 1 

Introduction 

A communication protocol is a set of rules which define all possible interactions among 

the communicating entities. A protocol standard, in general, can lead to different 

implementations which necessitates the needs for conformance testing of an 

implementation to its standard. A protocol specification (the control portion) is typically 

modeled as a finite state machine (FSM). An FSM is represented by a directed graph 

called transition diagram. A directed edge labeled x,y in the FSM represents a state 

transition which outputs the symbol y if and only if the input symbol is x. Its starting and 

ending points respresent the starting and the ending states of the transition respectively 

Figure 1. 

A common approach to conformance testing is to apply a sequence of inputs to the 

Implementation Under Test (IUT) and observe if the output sequence is the desired 

output sequence. The sequence of input and desired output pairs is called a test 

sequence. However, the general conformance testing problem is an unsolvable problem. 

In other words, there is no algorithm which can generate a test sequence for a given FSM 

such that any faulty IUT would be identified by this sequence. Despite the difficult 

nature of the problem, people use heuristic methods to generate test sequences which 

would catch errors in the NT with high probability. Among them, the U-method is a 

milestone which greatly shortens the test lengths. Based on the U-method, the RCP-

method, MUIO-method, MUIO with overlapping method, B-method, C-method have 

recently been proposed. As we know, the length and quality (fault coverage) of a test 

sequence are the two main factors which affect the applications of these testing 

techniques. The experimental results show that the C-method produces test sequences 

with the best quality, while the MUIO with overlapping method generates the poorest 

sequences. However, the overlapping technique greatly shortens test sequences. It is 

1 



interesting to know if we can integrate the overlapping technique into the C-method to 

reduce the lengths of test sequences, while maintaining the high quality. 

In this paper, we introduce a new protocol generation method called the C-UIO 

with overlapping method. A general procedure for generating test sequences is 

presented. Our experimental results show that the fault coverage of the test sequences by 

the new method is competitive with that by the C-method and the lengths are shortened 

by about 10% - 30% compared with the original C-method. 

The rest of this paper is organized as follows. Chapter 2 reviews two test 

generation methods and introduces some related notations and terminologies. Chapter 3 

presents the C-UIO with overlapping method. Chapter 4 gives an introduction to X 

Window system and introduces some related notations and terminologies. Chapter 5 

describes about an experiment on the test sequences. Chapter 6 gives detailed analysis of 

the experimental results. Chapter 7 concludes this paper. 

2 



CHAPTER 2 

Overview of the Test Methods 

2.1 Preliminaries 

An n-state FSM can be represented by a labeled directed graph with n vertices, G = 

(V,E), which is called transition diagram. The graph is always assumed to be strongly 

connected and minimal. An example of an FSM is shown in Figure 1, where state 1 is 

the initial state. 

All test generation methods follow a common scheme which is to test each edge in 

an FSM one by one in a systematic manner. Thus, a test sequence consists of many 

subsequences, one for each edge. Such a subsequence called an edge-sequence consists 

of three parts. The first part is to lead the IUT to the starting state, the second part is the 

input/output label on this edge, and the third part is used to verify the ending state. A 

protocol test sequence is the concatenation of all the edge-sequences. 

A UIO sequence of a state is an input/output behavior which cannot be observed 

except that it is applied to this state. Because of the uniqueness, a UIO sequence of a 

state can be used to verify this state. For example, b,e a,b is a U10 sequence for state 1 in 

Figure 1. A UIO sequence is also called an F-UIO (forward UIO) sequence for 

distinguishing from a B-UIO (backward U10) sequence discussed later. A state may 

have more than one shortest UIO sequence as shown in Table 1, where the complete set 

of shortest UIO sequences for the FSM in Figure 1 is given. 

A B-UIO sequence for a state is an input/output behavior which can be observed 

only if the corresponding state transitions end up at this state. B-UIO sequences for the 

FSM in Figure 1 are shown in Table 2. 

3 



4 

Figure 1. A transition diagram for an FSM. 



Table 1. The complete set of shortest F-UIO sequences for 
the FSM in Figure 1. 

state F-UIO Sequence Tail State 

1 b,e a,b 1 

1 a,b c,f 3 

1 b,e b,e 4 

2 c,f 3 

3 b,e c,d 1 

3 a,b a,b 2 

3 a,b b,e 3 

4 c,d 1 

Table 2. B-UIO sequences for the FSM in Figure 1. 

state B-UIO Sequence 
Starting 
State 

1 c,d 4 

2 a,b a,b 3 

3 c,f 2 

4 b,e b,e 1 

A circular UIO (C-UIO) sequence for a state is an F-UIO sequence for this state 

followed by a B-UIO sequence for the same state. The C-UIO sequences for the FSM in 

Figure 1 are shown in Table 3. Because the starting and the ending states are the same 

for a C-UIO sequence, it will go back to the same state after an application to this state. 

Note that a state will be verified twice each time when a C-UIO for this state is 

applied while it is verified only once by an F-UIO sequence in other methods. 

5 



Table 3. The F-UIO, B-UIO, and C-UIO sequences for the FSM in Figure 1. 

State F-UIO Sequence B-UIO sequence C-UIO sequence 

1 b,e b,e c,d b,e b,e c,d 

2 c,f a,b a,b c,f a,b a,b 

3 a,b a,b c,f a,b a,b c,f 

4 c,d b,e b,e c,d b,e b,e 

2.2 The MUIO with/without Overlapping Method 

The general concept of using UIO sequence is illustrated in Figure 2, where edge from vi 

to vj is a state transition and the UIO sequence is used to verify the ending state vj. 

The multiple UIO (MUIO) method allows each edge to choose one F-UIO 

sequence from several choices such that the length of the overall test sequence wil be 

minimized. It is observed that some edge sequences are completely contained in one ( or 

a sequence) of other test sequences. The basic idea of MUIO with overlapping method is 

to select an F-UIO sequence for each edge in G such that maximum overlap occurs 

among the resulting edge sequences. 

Taking the FSM in Figure 1 as an example, Figure 3 shows the six edges together 

with their F-UIOs and the overlapping patterns. 

After eliminating the overlapped parts, we obtain the following test sequence: b,e 

b,e c,d a,b c,f a,b b,e a,b which contains only 8 pairs. 

2.3 The C-method 

Based on C-UIO sequences, the C-method is defined as the following test generation 

procudure: 

Step 1. Compute the complete set S of the shortest F-UIO sequence for each state v, 

using the algorithm in the U-method. 

6 



Figure 2. General usage of a IJI0 sequence. 



Figure 3. An illustraion of the overlapped edge sequences for the FSM in Figure 1. 



Step 2. For each shortest F-UIO sequence in S which begins at state v and ends at state x, 

compute the shortest B-UIO sequence from x to v, using the algorithm in the B-

method, to obtain a C-UIO sequence for the state v. 

Step 3. Choose the shortest among all the C-UIO sequences for state v. 

Step 4. Compute a Chinese Postman tour (CP-tour) for the FSM. A Chinese Postman 

tour is a tour on the graph which passes each edge at least once, minimizing the 

total length of the tour. 

Step 5. Insert a corresponding C-UIO sequence after each state transition along the CP-

tour. 

For example, a CP-tour for the FSM in Figure 1 is b,e a,b a,b c,f b,e c,d, and the 

test sequence by the C-method is b,e C3 a,b Cl a,b C2 c,f C3 b,e C4 c,d Cl , where Ci 

(1 < Ci < 4) represents the C-UIO sequence for state i. This sequence contains 24 pairs: 

b,e a,b a,b c,f a,b b,e b,e c,d a,b c,f a,b a,b c,f a,b a,b c,f b,e c,d b,e b,e c,d b,e b,e c,d. 

9 



CHAPTER 3 

The C-UIO with Overlapping Method 

Faced with several protocol conformance test generation methods, which one generates 

the test sequence with the highest quality? conducted an experiment to evaluate several 

protocol conformace test methods. Several different FSMs were used. The experimental 

results show that the C-method generates the test sequences with the best fault coverage 

but the length of the test sequences are longer than the multiple UIO (with or without 

overlapping) methods. The MUIO with overlapping method generates the test sequences 

with the poorest quality, but the length of the test sequences is the shortest among the test 

sequences generated by the six methods. This gives us a hint: can we pick up the 

advantages from both test methods and obtain short test sequences with higher quality? 

A new method, called the circular UIO (C-UIO) with overlapping method, tries to 

extract the merits and get rid of the drawbacks in these two methods. The C-UIO with 

overlapping method insists on using circular UIO sequence bacause it is the core idea of 

the C-method. A C-UIO sequence verifies the corresponding state twice with its F-UIO 

and B-UIO sequences, while other methods only verify each state once. That is the 

reason why test sequences generated by the C-method achieve the highest fault coverage 

than others. The C-UIO with overlapping method uses single C-UIO sequence for each 

edge. 

The C-UIO with overlapping method uses the basic idea of overlapping technique 

but different construction procedure. We develop a transition sequence called 

overlapped transition sequence (OTS). A compound edge is defined as a state transition 

together with its C-UIO sequence. All compound edges in an FSM are marked as 

UNVERIFIED initially. The C-UIO with overlapping method first chooses one of the 

compound edges of the initial state as the initial transition sequence and marks it as 

VERIFIED. Then, in each subsequent iteration, it checks all remaining UNVERIFIED 

10 



compound edges and attempts to find one which has the maximum overlapping with the 

current OTS. 

The following procedure shows detailed steps of this method: 

Step 1. Compute the set S of C-UIO sequences, one for each state. 

Step 2. Each edge is appended with its C-UIO sequence to form a compound edge. Each 

compound edge is marked UNVERIFIED. Suppose there are m compound edges 

in the FSM. 

Step 3. Pick one of compound edges starting from the initial state as the initial transition 

sequence (OTS) and mark it VERIFIED. 

Step 4. For number_edge := 1 to m-1 do 

Step 5. Search among the UNVERIFIED compound edges and try to find one which has 

the maximum match between the rear part of the OTS and the front part of the 

compound edge. Two cases will happen: 

• If the maximum match is found, mark the corresponding compound edge 

VERIFIED and append the unmatched part to the OTS. 

• If no match is found, extend the OTS to a starting state of a UNVERIFIED 

compound edge whose distance from the OTS is the shortest. Then append this 

compound edge to the OTS and mark it VERIFIED. 

Step 6. Go back to the Step 4 if there is any UNVERIFIED compound edge. 

Taking the FSM in Figure 1 as an example, the compound edges are shown in 

Table 4. First, we pick one of the compound edges of the initial state, b,e a,b a,b c,f as 

initial transition sequence. 

Then, we compare the rest five UNVERIFIED compound edges and try to find the 

one which has the maximum match with the transition sequence. Here, by match, we 

mean that not only should the input/output pairs be identical but so are the states. 

Compound edge a,b c,f a,b a,b has been chosen because it has two edges which match the 

11 



transition sequence. Next, the compound edge c,f a,b a,b c,f has been chosen. The 

compound edge has three edges which match the transition sequence. 

Table 4. The compound edges for the FSM in Figure 1. 

Edge Set Compound edge E Starting State Tail State 

a,b (1,2) a,b c,f a,b a,b 1 2 

b,e (1,3) b,e a,b a,b c,f 1 3 

c,f (2,3) c,f a,b a,b c,f 2 3 

a,b (3,1) a,b b,e b,e c,d 3 1 

b,e (3,4) b,e c,d b,e b,e 3 4 

c,d (4,1) c,d b,e b,e c,d 4 1 

12 

c,f 

 

Figure 4. The initial transition sequence. 

Now we could not find any compound edges which matches the rear part of the 

transition sequence. We append the compound edge b,e c,d b,e b,e to the OTS because 

the starting state of this compound edge (state 3) happens to be the tail of the OTS. 

Finally, We get the test sequence b,e a,b a,b c,f a,b a,b c,f b,e c,d b,e b,e c,d a,b c,f 

a,b b,e b,e c,d which contains 18 pairs. 

The length of the test sequence generated by the C-UIO with overlapping method 

is shorter compared with 24 pairs by the C-method in this example. It is slightly longer 

than the test sequence generated by the multiple U10 method (16 steps). 



CHAPTER 4 

X WINDOW ENVIRONMENT 

4.1 INTRODUCTION 

The X Window System is an industry-standard software system that allows programmers 

to develop portable graphical user interfaces. One of the most important features of X is 

its unique device-independent architecture. X allows programs to display windows 

containing test and graphics on any hardware that supports the X protocol without 

modifying, recompiling, or relinking the application. It is also network transparent, thus 

allowing software to reside on one network workstation and create screens on another 

network workstation that might have been made by a different manufacturer. The device 

independence, network transparency, along with X's position as an industry standard, 

allows X-based applications to function in a heterogeneous environment consisting of 

mainframes, workstations, and personal computers. To utilize these advantages to the 

maximum, the graphical user interface is developed using X windows. 

The X Window System was designed as a distributed, network transparent, device 

independent, multi-tasking windowing and graphics system. It permits the display of 

multiple applications on the same screen, and allows multiple windows to be used by a 

single application. It also supports overlapping and hidden windows, text with soft fonts, 

and two dimensional graphics drawing. X window achieves some device independence 

by splitting the job of drawing windows into two parts using the familiar client-server 

model. 

In X, a client-server term refers to a single process, known as server, which is 

responsible for all input and output devices, and a client, which is an application that 

makes use of the facilities provided by the server. The server creates and manipulates 

windows on the screen, produces text and graphics, and handles input devices such as the 

keyboard and mouse. The server provides a portable layer between all applications and 

13 



the display hardware. The X server typically runs on a workstation or personal computer 

with a graphics display or on a dedicated X terminal that implements all or part of server 

via a network connection using a byte-stream protocol. X supports many network 

protocols, including TCP/IP, DECnet, Chaos, OSI protocols. Multiple clients can 

connect to a single server concurrently, and an individual client can connect to multiple 

servers. 

4.2 Componets of the X Window System 

4.2.1 X Client 

The client further consists of several layers of software. At the lowest level are routines 

used to provide a functional interface to the X Window protocol. These routines are 

referred to as the X library or Xlib. The layer above Xlib provides routines that manage 

higher level user interface objects called Widgets. This layer is referred to as the toolkit 

layer. Above this layer exists the application layer. 

4.2.2 X Server 

The primary function of the X server is to act as an intermediary between users and X 

applications. The server performs the job of collecting input such as mouse movements, 

pointer device input, or keystrokes from a keyboard and passes this information to 

appropriate X client(s). It also handles output from X clients that are destined for video 

display or other clients (as in inter-client communications). 

A single workstation may have several screens driven by the same server, or a 

single computer might run more than one server with different graphics terminals 

attached. More likely, each workstation will have its own X server. Since a single X 

server can service requests from many client applications, the screen might have several 

windows containing the output from different programs. The client programs might be 

14 



running on the server machine or on several others on the network. Equally, programs 

running on the local machine or workstation may open windows on other workstations. 

The X server's primary job is to share scarce resources among the client 

applications that request them. The two principal resources are processor time, for 

drawing and test manipulation, and screen space. An intermediary program, the window 

manager allots screen space. The server is responsible for scheduling work performed on 

behalf of the client programs, for memory management, and for such subsidiary 

processes as maintaining communication links with each client. 

From the structural point of view, an X server consists of a device-independent 

layer that receives and translates client request messages in the X protocol format, an 

operating system-dependent layer that interfaces to a particular operating system, and a 

device-dependent layer that is a collection of device drivers for the specific hardware 

supported. 

4.2.3 X protocol 

X protocol requests are variable length data packets that begin with an 8-bit op code that 

identifies the type of request, followed by a 16-bit field specifying length, and one or 

more bytes of additional data. The added data might be numeric parameters or 

coordinates, text strings to write, or raw bit-map data in scan line order. 

4.2.4 Xlib Layer 

Xlib contains a library of graphics and windowing functions. Xlib contains about 300 

routines that map to X protocol requests or provide utility functions. What Xlib actually 

does is convert the C language function calls to the X protocol request that implements 

the given function, such as XPutlmage to draw an image. The functions include creating, 

destroying, moving and sizing windows; drawing lines and polygons; setting background 

patterns; and tracking the mouse. Xlib also allows you to access windows in a variety of 

15 



ways, including overlapping and simultaneous output to multiple windows. It supports 

multiple fonts, common raster operations, line drawing, and both color and monochrome 

applications. The Xlib functions are available in C, Pascal, FORTRAN, modula-2, and 

Ada. 

4.3 Xt Intrinsics Layer 

Xt Intrinsics layer resides above the Xlib layer. It is made up of sets of prefabricated 

routines built out of Xlib routines, and is responsible for the management of higher level 

interface objects called widgets. Such widgets provide a specific user interface service 

and posses a distinctive visual appearance and a well defined response to user input. The 

Xt Intrinsics supports many different widget sets. The Xt Instrisics provides functions 

that allow an application to create, modify, and destroy widgets, and a framework that 

allows the programmer to combine these components to provide a complete user 

interface. 

In a sense, the Xt Intrinsic layer is a part of the X Toolkit layer. The X Toolkit 

layer contains a set of predefined widgets. The Xt Intrinsic layer is considered as the low 

level application interface responsible for the widget management. The X Toolkit layer 

is considered as the high level application interface containing widget sets. 

4.4 X Toolkit Layer 

Motif provides widgets for user-interface elements including labels, pushbuttons, menus, 

dialog boxes, scroll bars, and text entry or display areas. There are also other widgets, so 

that the application does not have to worry about details of widget placement when the 

application is moved or resized. Motif supports independent development of new or 

extended widgets. All these widgets can be used either independently or in combination 

to create complex applications. A widget operates independently of the application, 

except through prearranged interactions. 

16 



Motif user-interface is created using Motif Xm library and the Intrinsics Xt library. 

Xt provides functions for creating and setting resources on widgets and Xm provides the 

widgets themselves, plus an array of utility and convenience functions for creating 

groups of widgets that are used collectively as a single type of user-interface element. 

For example, the Menu Bar is not implemented as one particular widget but as a 

collection of smaller widgets put together by one convenience function. 

Writing Motif Widget Programs involves nine steps in sequence: 

I. Include the required header files 

2. Initialize Xt Intrinsics 

3. Add additional toplevel windows 

4. Setup argument list for widget 

5. Create widget 

6. Add callback routines 

7. Realize widgets and loop 

8. Link relevant libraries 

9. Create defaults file 

Steps 4-6 should be repeated for each widget. 

4.5 Application Layer 

Application layer contains the application which utilizes the widget sets available in the 

lower layer. The application can also create, modify, or destroy widgets. The application 

can also construct their own custom widgets using the sets of predefined routines 

available in the Xt Intrinsic layer. 

4.6 Window Manager 

Window manager is a special client that manages the positions and sizes of the main 

windows of the applications on a server's display. The window manager is just another 

17 



client, but by convention it is given special responsibility to mediate competing demands 

for the physical resources of the display, including screen space, color resources, and the 

keyboard. The window manager allows the user to move windows around on the screen, 

resize them, and usually start new applications. The window manager also defines much 

of the visible behavior of the window system, such as whether windows are allowed to 

overlap or are forced to tile (side by side), or whether the keyboard focus simply follows 

the pointer from one window to the other, or whether the user must click a pointer button 

in a window to change the keyboard focus. 

4.7 TERMINOLOGY 

4.7.1 Windows 

A window is a rectangular area on a workstation's video screen. They let the user view 

output, and they give application a rationale way of managing the use of space on the 

screen. Whenever an X application generates visible graphical output, it must specify a 

particular window to receive the output. Windows may overlap or windows may nest 

inside other windows. 

4.7.2 Display 

A dispaly is a set of one or more screens that are driven by a single X server. Before a 

client can communicate with the X server it must open a connection to the server. 

4.7.3 Screen 

A screen is a single hardware output device. 

4.7.4 Event 

An X event is a data structure sent by the server that describes something that just 

happened that may be of interest to the application. There are two major categories of 

18 



events: user input and window system side effects. For example, the user presses a 

keyboard key or clicking a mouse button generates an event; a window being moved on 

the screen also generates events-possibly in other applications as well, if the movement 

changes the visible portions of their windows. It is the server's job to distribute events to 

the various windows on the screen. 

4.7.5 Widget 

A Widget is a basic object in a toolkit. A widget includes both code and data, and can 

therefore serve as an input or output object. Widgets consist of an X Window along with 

some procedures that operate on the window. Examples of widgets include pushbuttons, 

scrollbars, menus, and dialog boxes. 

4.7.6 Gadget 

Gadgets are identical to widgets, except that they have no windows of their own. The 

main objective of providing a set of gadgets is to improve the performance, both in 

execution time and data space. A gadget must display text or graphics in the window 

provided by its parent, and must also rely on its parent for input. Because reducing the 

number of windows in an application reduces the number of server requests, using 

gadgets can make an application much more efficient. 

4.7.7 Callback 

A callback is an application function registered with a widget by the application using 

either of the calls XtAddCallback or XtAddCallbacks or through an argument list. A 

widget declares one or more callbaks lists as resources; applications add functions to 

these lists in order to link widgets to application code. 

19 



CHAPTER 5 

An experiment on the Test Sequences 

The ability of a test sequence to decide whether a protocol implementation conforms to 

its specification solely relies upon the range of faults that it can capture. A common 

method to evaluate the fault coverage of a test sequence is to apply this sequence to IUTs 

with various faults to see how many such IUTs can be caught by this sequence. 

We conducted an experiment to evaluate the MUIO with overlapping method, C-

method and C-UIO with overlapping methods. Several different FSMs were used. For 

each FSM, the faulty IUTs were randomly generated by performing one or more 

following operations on the FSM. (Those IUTs which did not define an FSM were 

identified and discarded.) 

• Randomly change the ending state(s) of one or more edges. 

• Randomly change the starting state(s) of one or more edges. 

• Randomly change the output(s) of one or more edges. 

• Randomly add edge(s) between states and randomly assign the input/output 

labels too. 

20 



CHAPTER 6 

Analysis of the Experimental Results 

The experimental results show that the test sequences generated by the C-method or C-

UIO with overlapping method achieve almost the same fault coverage. 

On the other hand, the overlapping technique does shorten the test sequences. In 

general, the length of a test sequence by the C-UIO with overlapping method is shorter 

by 10% to 30% compared with that by the original C-method. The percentage of 

reduction depends on how complex the FSM is. 

The complexity of the algorithm used by the test generation method should also be 

concerned. The algorithm used by the C-UIO with overlapping method is little bit 

complicated than the one used by the C-method but much simpler than the one used by 

the MUM with overlapping method. It is not difficult to develop a program which will 

automatically generate test sequences by using the C-UIO with overlapping method. 

21 



CHAPTER 7 

Conclusion 

In this paper, we have implemented the C code to find the F-UIO sequence, B-UIO 

sequence, and C-UIO sequences. A Graphical User Interface (GUI) is given using Motif 

under X-Windows environment. We have shown a new protocol test generation method, 

the C-UIO with overlapping method. As can be seen from the experimental results that 

the test sequences generated by the C-UIO with overlapping is as good as the test 

sequences by the C-method which provide the highest fault coverage among the existing 

methods. The lengths of the test sequences have been reduced about 10% to 30% 

compared with those by the C-method. 

22 



APPENDIX 

23 

#include <stdio.h> 

#include <string.h> 

#define YESA 1 

#define NOA 0 

struct hblock{ 

int startpt; 

char cir; 

struct hblock *next; 

struct dblock *down; 

struct dblock{ 

int endpt; 

char input; 

char output; 

struct dblock *down; 

struct input{ 

char inp; 

struct input *next; 

struct stateA { 

int edge; 

int status; 

char bluff; 

struct stateA *next; 



}; 

struct nodeA{ 

char input; 

char flag; 

struct nodeA *parent; 

struct class *left; 

struct nodeA *child; 

struct nodeA *next; 

struct class{ 

struct member *sub; 

struct class *next; 

struct member{ 

int start; 

int end; 

char out; 

struct member *next; 

}; 

typedef struct hblock HNODE; 

typedef struct dblock DNODE; 

typedef struct stateA STATE; 

typedef struct input INPUT; 

STATE *statelist; 

STATE *rstatelist; 

INPUT *inputlist; 

INPUT *rinputlist; 

24 



char fr; 

int z=0; 

int over(); 

HNODE *hptr; 

HNODE *hihi; 

HNODE *riri; 

HNODE *rhptr; 

DNODE *hope(); 

DNODE *finals; 

void deep(); 

void prints(); 

void creats(); 

void update(); 

void final(); 

void circular(); 

void separate(); 

void get_input(); 

void convert(); 

void put_output(); 

char check_end(); 

struct member *find(); 

struct nodeA *subclass(); 

struct class *class_init(); 

struct nodeA *create_sequence(); 

#include "petri-net.h" 

HNODE *create_hnode() ( 

HNODE *temp; 

25 



temp=((HNODE *)malloc(sizeof(HNODE))); 

if(!temp)printf("INSUFFICENT MEMORY\n"); 

temp->startpt=0; 

temp->next=NULL; 

temp->cir='n'; 

temp->down=NULL; 

return temp; 

1 

DNODE *create_dnode() { 

DNODE *tempi; 

templ=((DNODE *)malloc(sizeof(DNODE))); 

if(!temp 1 )printf("1NS UFFICENT MEMORY\n"); 

templ->endpt=0; 

temp 1 ->input=' '; 

temp 1 ->output="; 

temp 1->down=NULL; 

return temp 1; 

) 

STATE *creat_state() { 

STATE *temp2; 

temp2=(STATE *)malloc(sizeof(STATE)); 

if(!temp2)printf("INSUFFICENT MEMORY\n"); 

temp2->edge=0; 

temp2->next=NULL; 

temp2->status=NOA; 

temp2->bluff='n; 

return temp2; 

26 



) 

INPUT *creat_input() { 

INPUT *temp3; 

temp3=(INPUT *)malloc(sizeof(INPUT)); 

if(!temp3)printf("INSUFFICENT MEMORY\n"); 

temp3->inp=\0'; 

temp3->next=NULL; 

return temp3; 

} 

struct nodeA *create_node() { 

struct nodeA *temp; 

temp=(stxuct nodeA *)malloc(sizeof(struct nodeA)); 

if(!temp)printf("INSUFFICENT MEMORY\n"); 

temp->parent=NULL; 

temp->input=1 \01; 

temp->flag='n'; 

temp->left=NULL; 

temp->child=NULL; 

temp->next=NULL; 

return temp; 

}; 

struct class *create_class() { 

struct class *temp; 

temp=(struct class *)malloc(sizeof(struct class)); 

if(!temp)printf("ThISUFFICENT MEMORY\n"); 

temp->sub=NULL; 

temp->next=NULL; 

27 



return temp; 

1; 

struct member *create_member() 

struct member *temp; 

temp=(struct member *)malloc(sizeof(struct member)); 

if(!temp)printf("INSUFFICENT MEMORY\n"); 

temp->start=0; 

temp->end=0; 

temp->out= \01; 

temp->next=NULL; 

return temp; 

1; 

extern char *seshfilename; 

void search(); 

struct nodeA *create_sequence(pptr,fr) 

struct nodeA *pptr; 

char fr; 

struct nodeA *cumode; 

INPUT *curinput; 

if(fr == T) 

curinput=inputlist; 

else 

curinput=rinputlist; 

while(curinput != NULL){ 

if(pptr->child==NULL) { 

pptr->child=create_node(); 

28 



pptr->child->input=curinput->inp; 

pptr->child->parent=pptr; 

} 

else{ 

cumode=pptr->child; 

while(curnode->next != NULL) 

cumode=curnode->next; 

curnode->next=create_node(); 

cumode=curnode->next; 

curnode->input=curinput->inp; 

cumode->parent=pptr; 

} 

curinput=curinput->next; 

} 

return(pptr); 

1 

void separate(classptr) 

struct class *classptr; 

i 

struct class *cur; 

struct class *end; 

struct class *head; 

struct class *active,*extra; 

struct member *mhead; 

struct member *mcur; 

struct member *destiny; 

int flag; 

29 



int DONE; 

if(classptr)( 

if(classptr->sub) { 

flag=-1; 

head=classptr; 

end=classptr; 

while(end->next != NULL) 

end=end->next; 

cur=end; 

while(flag<1 ){ 

if(head==end) 

flag++; 

mhead=head->sub; 

mcur=mhead->next; 

while(mcur != NULL){ 

if(mhead->out != mcur->out){ 

active=cur; 

DONE=O; 

while(active->next != NULL && !DONE){ 

destiny=active->next->sub; 

if(mcur->out==destiny->out) { 

while(destiny->next != NULL) 

destiny=destiny->next; 

destiny->next=mcur; 

mhead->next=mcur->next; 

mcur=mcur->next; 

destiny->next->next=NULL; 

30 



DONE= 1; 

} 

else 

active=active->next; 

} 

if(!DONE) { 

active->next=create_class(); 

active->next->sub=mcur; 

mhead->next=mcur->next; 

mcur=mcur->next; 

active->next->sub->next=NULL; 

} 

} 

else{ 

mcur=mcur->next; 

mhead=mhead->next; 

} 

1 

while(cur->next != NULL) 

cur=cur->next; 

if(head->next != NULL){ 

if(head->next->sub==NULL) 

{ 

while(head->next && head->next->sub == NULL) { 

extra=head->next; 

head->next=head->next->next; 

extra->next=NULL; 

31 



free(extra); 

if(head->next != NULL) 

head=head->next; 

1 

} 

else 

head=head->next; 

1 

if(flag==0) 

flag++; 

1 

1 

1 

} 

struct class *class_init(fr) 

char fr; 

( 

struct class *class_ptx; 

struct member *cur; 

struct member *temp; 

STATE *curstate; 

class_ptr=create_class(); 

if( fr == 'f) 

curstate=statelist; 

else 

curstate=rstatelist; 

while(curstate != NULL) { 

32 



temp=create_member(); 

temp->start=curstate->edge; 

temp->end=curstate->edge; 

temp->out= V1; 

if(class_ptr->sub==NULL) 

class_ptr->sub=temp; 

else{ 

cur=class_ptr->sub; 

while(cur->next != NULL) 

cur=cur->next; 

cur->next=temp; 

temp=NULL; 

} 

curstate=curstate->next; 

} 

return class_ptr; 

} 

struct member *find(memptr,take,fr) 

struct member *memptr; 

char take; 

char fr; 

( 

HNODE *curhnode; 

DNODE *curdnode; 

struct member *temp; 

if(fr == I') 

curhnode=hptr; 

33 



else 

curhnode=rhptr; 

while(curhnode->startpt != memptr->end) 

curhnode=curhnode->next; 

curdnode=curhnode->down; 

while(curdnode->down != NULL && curdnode->input != take) 

curdnode=curdnode->down; 

temp=NULL; 

if(curdnode->input == take) { 

temp=create_member(); 

temp->start=memptr->start; 

temp->end=curdnode->endpt; 

temp->out=curdnode->output; 

} 

return temp; 

} 

struct nodeA *subclass(nodeptr) 

struct nodeA *nodeptr; 

{ 

struct nodeA *parent; 

struct class *sclass,*tclass; 

struct member *cmember,*tmember,*csmember; 

parent=nodeptr->parent; 

if(parent != NULL){ 

sclass=parent->left; 

while(sclass != NULL){ 

if(nodeptr->left==NULL) { 

34 



nodeptr->left=create_class(); 

tclass=nodeptr->left; 

} 

else{ 

tclass->next=create_class(); 

tclass=tclass->next; 

} 

csmember=sclass->sub; 

while(csmember != NULL){ 

tmember=find(csmember,nodeptr->input,fr); 

if(tmember) { 

if(tclass->sub==NULL) { 

tclass->sub=tmember; 

cmember=tmember; 

else{ 

cmember->next=tmember; 

cmember=cmember->next; 

csmember=csmember->next; 

sclass=sclass->next; 

while(nodeptr->left != NULL && nodeptr->left->sub == NULL){ 

tclass=nodeptr->left; 

nodeptr->left=nodeptr->left->next; 

35 



free(tclass); } 

if(nodeptr->left) { 

tclass=nodeptr->left; 

sclass=tclass->next; 

while(sclass){ 

if(sclass->sub == NULL){ 

tclass->next=tclass->next->next; 

sclass->next=NULL; 

free(sclass); 

} 

tclass=tclass->next; 

if(tclass) 

sclass=tclass->next; 

else 

sclass=NULL; 

} 

} 

} 

return nodeptr; 

1 

int over(fr) 

char fr; 

{ 

int done; 

STATE *cur; 

done=1; 

if(fr == 'f) 

36 



cur=statelist; 

else 

cur=rstatelist; 

while(cur != NULL && done){ 

if(cur->status==N0A) 

done=NOA; 

cur=cur->next; 

return done; 

void update(classptr,curnode,fr) 

struct class *classptr; 

struct nodeA *curnode; 

char fr; 

{ 

struct class *curclass; 

STATE *curstate; 

curclass=classptr; 

while(curclass != NULL){ 

if(curclass->sub->next == NULL) { 

if(fr == 'f) 

curstate=statelist; 

else 

curstate=rstatelist; 

while(curstate->edge! =curclass->sub->start) 

curstate=curstate->next; 

curstate->status=YESA; 

37 



search(curclass->sub->start,curnode,fr); } 

curclass=curclass->next; 

1 

} 

void creats(cnode) 

struct nodeA *cnode; 

{ 

if(cnode)( 

if(!(cnode->child) && cnode->left && cnode->flag =='n') 

cnode=create_sequence(cnode,fr); 

else if(cnode->child) 

creats(cnode->child); 

if(cnode->next) 

creats(cnode->next); 

} 

} 

void deep(dnode) 

struct nodeA *dnode; 

{ 

if(dnode) { 

if(!dnode->child && !dnode->left && dnode->flag =='n'){ 

dnode=subclass(dnode); 

if(dnode->left) { 

separate(dnode->left); 

update(dnode->left,dnode,fr); 

dnode->flag=check_end(dnode->left); 

} 

38 



1 

else if (dnode->child) 

deep(dnode->child); 

if(dnode->next != NULL) 

deep(dnode->next); 

} 

) 

struct nodeA *resultA(fnode) 

struct nodeA *fnode; 

{ 

while(!over(fr)){ 

creats(fnode); 

deep(fnode); 

final(fr); 

} 

return fnode; 

1 

void search(status,snode,fr) 

struct nodeA *snode; 

int status; 

char fr; 

{ 

struct class *class2; 

struct member *curmember; 

int found=0; 

STATE *curstate; 

if(snode){ 

39 



class2=snode->left; 

search (status, snode->parent,fr); 

while(class2 != NULL && !found) { 

curmember=class2->sub; 

while(curmember != NULL && !found) { 

if(curmember->start==status) { 

if(fr == 'f) 

cur state=stateli st; 

else 

cur state=rstateli st; 

while(curstate->edge != status) 

curstate=curstate->next; 

if(curstate->bluff !='y'){ 

if(fr=='f) 

put_output(curmember->start,curmember->end, snode>input, 

curmember->out); 

else 

put_output(curmember->start,curmember->end,snode 

>input,curmember->out); 

1 

found=1; 

1 

curmember=curmember->next; 

class2=class2->next; 

40 



char check_end(classptr) 

struct class *classptr; 

{ 

struct class *temp; 

char flag='y'; 

if(classptr) 

temp=classptr; 

while(temp != NULL && flag=='y') 

if(temp->sub->next != NULL) 

flag='n'; 

temp=temp->next; 

return flag; 

void final(fr) 

char fr; 

STATE *cur; 

if(fr == 'f ) 

cur=statelist; 

else 

cur=rstatelist; 

while(cur != NULL){ 

if(cur->status == YESA) 

cur->bluff=ty'; 

41 



cur =cur->next; 

} 

1 

void get_input() 

int start,end; 

char j 1 ,j2,j3,j4,j5,j6,str[80]; 

char inpt,string,outpt; 

HNODE *hcur; 

DNODE *dcur,*temp; 

STATE *curstate; 

INPUT *curinput; 

HNODE *rhcur; 

DNODE *rdcur; 

STATE *rcurstate; 

INPUT *rcurinput; 

FILE *fp,*ofp,*tfp; 

fp=fopen(seshfilename,"r"); 

if(!fp){ 

printf("can't open %s file\n",seshfilename); 

exit(1); 

1 

while(!feof(fp)){ 

fscanf(fp,"%s",str); 

if(!feof(fp))( 

sscanf(str,"%c%c%d%c Tod%c%c%c%c%c",&j 1,&j2,&start,&j3,&end, 

&j4,&j5,&inpt,&j6,&outpt); 

42 



if(!feof(fp)){ 

if(hptr==NULL) { 

hptr=create_hnode(); 

hptr->startpt=start; 

hcur=hptr; 

while(hcur->next != NULL && hcur->startpt != start) 

hcur=hcur->next; 

if(hcur->startpt != start) { 

hcur->next = create_hnode(); 

hcur = hcur->next; 

hcur->startpt = start; 

} 

temp=create_dnode(); 

temp->endpt=end; 

temp->input=inpt; 

temp->output=outpt; 

if(hcur->down==NULL){ 

hcur->down=temp; 

temp=NULL; 

} 

else 

dcur=hcur->down; 

while(dcur->down! =NULL) 

dcur=dcur->down; 

43 



dcur->down=temp; 

temp=NULL; 

} 

if(inputlist==NULL) { 

inputlist=creat_input(); 

inputlist->inp=inpt; 

} 

curinput=inputlist; 

while(curinput->next != NULL && curinput->inp != inpt) 

curinput=curinput->next; 

if(curinput->inp != inpt){ 

curinput->next = creat_input(); 

curinput = curinput->next; 

curinput->inp = inpt; 

} 

if(rhptr==NULL){ 

rhptr=create_hnode(); 

rhptr->startpt=end; 

} 

rhcur=rhptr; 

while(rhcur->next != NULL && rhcur->startpt != end) 

rhcur=rhcur->next; 

if(rhcur->startpt != end){ 

rhcur->next = create_hnode(); 

rhcur = rhcur->next; 

rhcur->startpt = end; 

} 

44 



temp=create_dnode(); 

temp->endpt=start; 

temp->input=outpt; 

temp->output=inpt; 

if(rhcur->down==NULL){ 

rhcur->down=temp; 

temp=NULL; 

} 

else 

{ 

rdcur=rhcur->down; 

while(rdcur->down!=NULL) 

rdcur=rdcur->down; 

rdcur->down=temp; 

temp=NULL; 

} 

if(rinputlist==NULL){ 

rinputlist=creat_input(); 

rinputlist->inp=outpt; 

} 

rcurinput=rinputlist; 

while(rcurinput->next!=NULL && rcurinput->inp !=outpt) 

rcurinput=rcurinput->next; 

if(rcurinput->inp != outpt){ 

rcurinput->next = creat_input(); 

rcurinput = rcurinput->next; 

45 



rcurinput->inp = outpt; 

1 

} /* while feof */ 

statelist=creat_state(); 

cur state=statelist; 

hcur=hptr; 

while(hcur != NULL){ 

curstate->edge=hcur->startpt; 

hcur=hcur->next; 

if(hcur != NULL){ 

curstate->next=creat_state(); 

curstate=curstate->next; 

} 

1 

rstatelist=creat_state(); 

rcurstate=rstatelist; 

rhcur=rhptr; 

while(rhcur != NULL){ 

rcurstate->edge=rhcur->startpt; 

rhcur=rhcur->next; 

if(rhcur != NULL){ 

rcurstate->next=creat_state(); 

rcurstate=rcurstate->next; 

1 

1 

46 



void convert(data) 

graphics_data *data; 

{ 

int i,start,end; 

char j 1, j2,j3 ,j4,j5,j6, str[ 80] ,test[50] ; 

char inpt,string,outpt; 

char *rs,*rs 1 ; 

HNODE *hcur; 

DNODE *dcur,*temp; 

STATE *curstate; 

INPUT *curinput; 

HNODE *rhcur; 

DNODE *rdcur; 

STA'I'N *rcurstate; 

INPUT *rcurinput; 

FILE *fp,*ofp,*tfp; 

for (i=0; i<data->next_pos; i++) { 

if(data->buffer[i].name[0]==11] II 

data->buffer[i].name[0]=='A') 

{ 

strcpy(test,data->buffer[i].name); 

rs=test; 

strcpy(rs,strtok(rs+2,"P")); 

start=atoi(rs); 

sta-cpy(test,data->buffer[i].name); 

rs=test; 

strcpy(rs,strtok(strstr(rs+2,"P"),"@")); 

47 



end = atoi(rs+1); 

strcpy(test,data->buffer[i].name); 

strcpy(test,strstr(test, "$")); 

rs=test+1; 

strtok(rs, 7); 

inpt=rs[0]; 

stscpy(test,data->buffernname); 

strcpy(test,strstr(test, ",")); 

rs=test+1; 

outpt=rs[0]; 

if(hptr==NULL)1 

hptr=create_hnodeQ; 

hptr->startpt=start; 

1 

he ur=hptr; 

while(hcur->next != NULL && hcur->startpt != start) 

hcur=hcur->next; 

if(hcur->startpt != start){ 

hcur->next = create_hnodeQ; 

hcur = hcur->next; 

hcur->startpt = start; 

1 

temp=create_dnode(); 

temp->endpt=end; 

temp->input=inpt; 

temp->output=outpt; 

48 



if(hcur->down==NULL){ 

hcur->down=temp; 

temp=NULL; 

} 

else 

{ 

dcur=hcur->down; 

while(dcur->down!=NULL) 

dcur=dcur->down; 

dcur->down=temp; 

temp=NULL; 

if(inputlist==NULL){ 

inputlist=creat_input(); 

inputlist->inp=inpt; 

curinput=inputlist; 

while(curinput->next != NULL && curinput->inp != inpt) 

curinput=curinput->next; 

if(curinput->inp != inpt){ 

curinput->next = creat_input(); 

curinput = curinput->next; 

curinput->inp = inpt; 

if(rhptr==NULL) { 

rhptr=create_hnode(); 

rhptr->startpt=end; 

49 



rhcur=rhptr; 

while(rhcur->next != NULL && rhcur->startpt != end) 

rhcur=rhcur->next; 

if(rhcur->startpt != end){ 

rhcur->next = create_hnode(); 

rhcur = rhcur->next; 

rhcur->startpt = end; 

temp=create_dnodeQ; 

temp->endpt=start; 

temp->input=outpt; 

temp->output=inpt; 

if(rhcur->down==NULL){ 

rhcur->down=temp; 

temp=NULL; 

else 

{ 

rdcur=rhcur->down; 

while(rdcur->down!=NULL) 

rdcur=rdcur->down; 

rdcur->down=temp; 

temp=NULL; 

} 

if(rinputlist==NULL) { 

rinputlist=creat_input(); 

50 



rinputlist->inp=outpt; } 

rcurinput=rinputlist; 

while(rcurinput->next != NULL && 

rcurinput->inp != outpt) 

rcurinput=rcurinput->next; 

if(rcurinput->inp != outpt){ 

rcurinput->next = creat_input(); 

rcurinput = rcurinput->next; 

rcurinput->inp = outpt; 

} /* while feof */ 

statelist=creat_state(); 

curstate=statelist; 

hcur=hptr; 

while(hcur != NULL)( 

curstate->edge=hcur->startpt; 

hcur=hcur->next; 

if(hcur != NULL){ 

curstate->next=creat_state(); 

curstate=curstate->next; 

} 

rstatelist=creat_state(); 

rcurstate=rstatelist; 

rhcur=rhptr; 

while(rhcur != NULL){ 

51 



rcurstate->edge=rhcur->startpt; 

rhcur=rhcur->next; 

if(rhcur != NULL){ 

rcurstate->next=creat_state(); 

rcurstate=rcurstate->next; 

} 

} 

1 

void put_output(start,end,inpt,outpt) 

int start,end; 

char inpt,outpt; 

{ 

HNODE *hcur; 

DNODE *dcur,*temp; 

if(fr == T){ 

if (inpt==\01){ 

if(hihi==NULL){ 

hihi=create_hnode(); 

hihi->startpt=start; 

hcur=hihi; 

} 

else{ 

hcur=hihi; 

while(hcur->next != NULL ) 

hcur=hcur->next; 

hcur->next = create_hnode(); 

hcur = hcur->next; 

52 



hcur->startpt = start; 

} 

1 

else if(inpt != \0') 

{ 

hcur=hihi; 

while(hcur->next != NULL) 

{ 

if(hcur->startpt == start) 

tail=hcur; 

hcur=hcur->next; 

} 

if(hcur->startpt == start) 

tail=hcur; 

temp=create_dnode(); 

temp->endpt=end; 

temp->input=inpt; 

temp->output=outpt; 

if(tail->down==NULL){ 

tail->down=temp; 

temp=NULL; 

} 

else 

{ 

dcur=tail->down; 

while(dcur->down!=NULL) 

dcur=dcur->down; 

53 



dcur->down=temp; 

temp=NULL; 

} 

} 

} 

else if(fr == 'r'){ 

if(inpt== \0')1 

if(riri==NULL)1 

riri=create_hnode(); 

riri->startpt=start; 

hcur=riri; 

} 

else{ 

hcur=riri; 

while(hcur->next != NULL ) 

hcur=hcur->next; 

hcur->next = create_hnode(); 

hcur = hcur->next; 

hcur->startpt = start; 

I 

} 

else if(inpt !='\0') 

{ 

hcur=riri; 

while(hcur->next != NULL) 

{ 

if(hcur->startpt == start) 

54 



tail=hcur; 

hcur=hcur->next; 

} 

if(hcur->startpt == start) 

tail=hcur; 

temp=create_dnodeO; 

temp->endpt=end; 

temp->input=outpt; 

temp->output=inpt; 

if(tail->down==NULL) { 

tail->down=temp; 

temp=NULL; 

} 

else 

{ 

dcur=tail->down; 

while(dcur->down! =NULL) 

dcur=dcur->down; 

dcur->down=temp; 

temp=NULL; 

} 

) 

} 

} /* while feof */ 

void prints(hptr,choice) 

HNODE *hptr; 

char choice; 

55 



HNODE *hcur; 

HNODE *tail,*temp; 

DNODE *tcur; 

DNODE *dcur; 

FILE *fpt; 

hcur=hptr; 

system("rm result.dat"); 

fpt=fopen("result.dat","w"); 

while(hptr != NULL){ 

if(choice == 'c'){ 

if(hptr->cir =='y'){ 

fprintf(fpt,"%d (",hptr->startpt); 

dcur=hptr->down; 

while(dcur != NULL) { 

if(dcur->down != NULL) 

fprintf(fpt," %c,%c ", dcur->input,dcur->output); 

else 

fprintf(fpt," %c,%c ) \n", dcur->input,dcur->output); 

dcur=dcur->down; 

1 

} 

else{ 

fprintf(fpt,"%d (",hpli-->startpt); 

dcur=hptr->down; 

while(dcur != NULL) { 

56 



if(dcur->down != NULL) 

fprintf(fpt," %c,%c ", dcur->input,dcur->output); 

else 

fprintf(fpt," %c,%c ) %cl\n", dcur->input, 

dcur->output,dcur->endpt); 

dcur=dcur->down; 

} 

} 

hptr=hptr->next; 

1 

fclose(fpt); 

} 

void circular() 

{ 

int ffirst,flast,gotit; 

int bfirst,blast; 

HNODE *fhcur,*bhcur; 

DNODE *fdcur,*bdcur; 

fhcur=hihi; 

while(fhcur != NULL) 

1 

ffirst=fhcur->startpt; 

flast=\0'; 

fdcur=fhcur->down; 

gotit=0; 

if(fdcur) { 

while(fdcur->down != NULL) 

57 



fdcur=fdcur->down; 

flast=fdcur->endpt; 

1 

bhcur=riri; 

while(bhcur != NULL && !gotit) 

{ 

if(bhcur->startpt == ffirst) 

{ 

bdcur=bhcur->down; 

if(bdcur){ 

while(bdcur->down != NULL) 

bdcur=bdcur->down; 

if(bdcur->endpt == flast && ffirst!=flast) 

( 

fdcur->down=hope(bhcur->down); 

gotit=1; 

finals=NULL; 

} 

} 

} 

bhcur=bhcur->next; 

} 

if(gotit) 

fhcur->cir=ty'; 

fhcur=fhcur->next; 

} 

} 

58 



DNODE *hope(dnodeptr) 

DNODE *dnodeptr; 

{ 

DNODE *rhead; 

if(dnodeptr){ 

if(dnodeptr->down) 

finals=hope(dnodeptr->down); 

{ 

if(finals==NULL){ 

finals=create_dnode(); 

finals->endpt=dnodeprr->endpt; 

finals->input=dnodeptr->input; 

finals->output=dnodeptr->output; 

finals->down=NULL; 

} 

else{ 

rhead=finals; 

while(rhead->down != NULL) 

rhead=rhead->down; 

rhead->down= create_dnode(); 

rhead=rhead->down; 

rhead->endpt=dnodeptr->endpt; 

rhead->input=dnodeptr->input; 

rhead->output=dnodeptr->output; 

rhead->down=NULL; 

} 

59 



} 

} 

return finals; 

} 

UIO_fun( answer,data) 

graphics_data *data; 

char answer; 

struct nodeA *first; 

struct nodeA *second; 

system("rm result.dat"); 

convert(data); 

switch ( answer) { 

case 'F' : 

fr=T; 

first = create_node(); 

first->left = class_init(fr); 

first=resultA(first); 

prints(hihi,'f); 

break; 

case 'B' : 

fr='r'; 

second = create_node(); 

second->left = class_init(fr); 

second=resultA(second); 

prints(riri,'r'); 

break; 

60 



case 'C' : 

fr='f; 

first = create_node(); 

first->left = class_init(fr); 

first=resultA(first); 

fr='r; 

second = create_node(); 

second->left = class_init(fr); 

second=resultA(second); 

circular(); 

prints(hihi,'c'); 

break; 

} 

} 

#include <Xm/ScrollBar.h> 

#include <Xm/Text.h> 

#include <Xm/PushB.h> 

#include <Xm/Label.h> 

#include <Xm/DialogS.h> 

#include <sys/stat.h> 

#include "petri-net.h" 

#include "place.bitmap" 

#include "trans.bitmap" 

#include "h_trans.bitmap" 

#include "arrow.bitmap" 

#include "extplace.bitmap" 

#define PLACE data->Petri.place_t 

61 



#define TRANS data->Petri.trans_t 

#define plce_arr PLACE 

#define trns_arr TRANS 

#define stg2 data2->Stg 

#define SCALE MAX 10 

#define SCALE_MAX1 100 

#define SCALE FMAX 1000 

void input_uio(); 

void forward_uio(); 

void backward_uio(); 

void circular_uioO; 

int sesh_flag = 0; 

char *seshfilename; 

extern UIO_funO; 

Widget 

GettopShell( w) 

Widget w; 

{ 

while ( w && !XtIsWMShell( w)) 

w = XtParent( w); 

return( w); 

} 

void 

exitd( w, d) 

Widget w,d ; 

{ 

XtDestroyWidget( d); 

62 



} 

Widget 

create_popup( w) 

Widget w; 

{ 

Widget txt, dialog, form, pb; 

Arg xargs[10]; 

int n; 

dialog = XtVaCreatePopupShell ( "dialog", 

topLevelShellWidgetClass, GettopShell( w), 

XmNdeleteResponse, XmDESTROY, 

NULL ); 

form = XtVaCreateManagedWidget( "form", 

xmFormWidgetClass, dialog, 

XmNwidth, 500, 

XmNheight, 500, NULL ); 

n = 0; 

XtSetArg( xargs[n], XmNwidth, 500 ); n++; 

XtSetArg( xargs[n], XmNheight, 400 ); n++; 

XtSetArg( xargs[n], XmNscrollHorizontal, False); n++; 

XtSetArg( xargs[n], XmNblinkRate, 0); n++; 

XtSetArg( xargs[n], XmNeditable, False); n++; 

XtSetArg( xargs[n],XmNcursorPositionVisible,False);n++; 

txt = XmCreateScrolledText( form, "text", xargs, n); 

XtVaSetValues( XtParent( txt), 

XmNleftAttachment, XmATTACH_WIDGET, 

XmNleftWidget, XtParent( txt), 

63 



XmNtopAttachment, XmATTACH_WIDGET, 

XmNtopWidget, XtParent( txt), 

XmNrightAttachment, XmATTACH_WIDGET, 

XmNrightWidget, XtParent( txt), 

NULL ); 

XtManageChild ( txt); 

pb = XtVaCreateManagedWidget( "pb", 

xmPushButtonWidgetClass, form, 

XmNlabelString, XmStringCreateSimple ("OK"), 

XmNwidth, 80, 

XmNheight, 40, 

XmNx, 210, 

XmNy, 430, 

NULL ); 

XtAddCallback ( pb, XmNactivateCallback, exitd, dialog); 

XtPopup( dialog, XtGrabNone); 

return txt; 

1 

void 

readfile( fs, client_dat, cbs) 

Widget fs; 

XtPointer client_dat; 

XmFileSelectionBoxCallbackStruct *cbs; 

1 

XmStringGetLtoR( cbs->value, XmSTRING_DEFAULT_CHARSET, &seshfilename); 

if ( !*seshfilename ) 

printf("Error: Select the input file\n"); 

64 



else { 

sesh_flag = 100; 

printf("Selected Input File = %s\n",seshfilename); 

} 

XtUnmanageChild( fs); 

} 

void input_uio(w,data,client_data) 

Widget w; 

graphics_data *data; 

caddr_t client_data; 

Widget dialog; 

dialog = XmCreateFileSelectionDialog( w, "filesb", NULL, 0); 

XtAddCallback( dialog, XmNcancelCallback, 

XtUnmanageChild, NULL ); 

XtAddCallback( dialog, XmNokCallback, readfile, NULL ); 

XtManageChild( dialog); 

display_result( text_w, outputfilename) 

Widget text_w; 

char outputfilename[]; 

{ 

struct stat statb; 

char *text; 

FILE *fptr; 

stat( outputfilename, &statb); 

fptr = fopen( outputfilename, "r"); 

65 



if (! (text = XtMalloc((unsigned)(statb.st_size+1)))){ 

printf("can't alloc enought space for %s", outputfilename); 

XtFree( outputfilename); 

return; 

} 

if (!fread(text,sizeof(char),statb.st_size+1,fptr)) 

printf("Warning: may not have read entire file!\n"); 

text[statb.st_size]=0; 

XmTextSetString( text_w, text); 

XtFree( text); 

XtFree( outputfilename); 

} 

void forward_uio(w,data,client_data) 

Widget w; 

graphics_data *data; 

caddr_t client_data; 

{ 

Widget text; 

sesh_flag = 100; 

if ( sesh_flag == 100) { 

UIO_fun( 'F',data); 

text = create_popup( w); 

display_result( text, "result.dat"); 

printf("forward code \n"); 

sesh_flag = 0; 

} 

else 

66 



printf( "ERROR: Select the input file and try forward\n"); 

void backward_uio(w,data,client_data) 

Widget w; 

graphics_data *data; 

caddr_t client_data; 

Widget text; 

sesh_flag = 100; 

if ( sesh_flag == 100) { 

UIO_fun( 'B',data); 

text = create_popup( w); 

display_result( text, "result.dat"); 

printf("backward code \n"); 

sesh_flag = 0; 

else 

printf( "ERROR: Select the input file and try backward\n"); 

void circular_uio(w,data,client_data) 

Widget w; 

graphics_data *data; 

caddr_t client_data; 

Widget text; 

sesh_flag = 100; 

if ( sesh_flag == 100) { 

67 



UIO_fun( 'C',data); 

text = create_popup( w); 

display_result( text, "result.dat"); 

printf("Circular code \n"); 

sesh_flag = 0; 

) 

else 

printf( "ERROR: Select the input file and try Circular UIO\n"); 

68 

} 



REFERENCES 

Chan, W., and S.T. Vuong. 1989. "An Improved Protocol Test Generation 
Procedure Based on UI0s." First Edition. Vol. 19, 4:283-292. 

Holzmann, Gerard J. 1987. "Design and Validation of Computer Protocols." 
AT&T Bell Laboratories. Princeton Hall Software Series. 300- 340. 

Sabnani, K., and A. Dahbura. 1974. "A Protocol Test Generation Procedure." 
Computer Networks and ISDN Systems, volume 15. 4: 285-297. 

Yang, B. 1983. "Protocol Conformance Test Generation Using Multiple UIO 
Sequences with Overlapping." 2:118-125. 

69 


	Protocol conformance test generation using circular UIO with overlapping
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: 
Overview of the Test Methods
	Chapter 3: 
The C-UIO with Overlapping Method
	Chapter 4: X Window Environment
	Chapter 5:  An experiment on the Test Sequences
	Chapter 6: 
Analysis of the Experimental Results
	Chapter 7: 
Conclusion
	Appendix
	References

	List of Tables
	List of Figures

