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ABSTRACT

PREEMPTIVE EFFICIENT QUEUEING FOR SCHEDULING
DEADLINE-BOUND DATA CENTER FLOWS

by
VinayKrishna GopalaKrishna

This thesis introduces a new deadline aware flow scheduling scheme called Preemptive

Efficient Queuing (PEQ). Unlike other schemes which use policies like EDF, SJF or

fair share, this scheme aims to procrastinate flows as much as they can afford to, while

keeping with their deadlines. Thereby, PEQ prioritizes more urgent flows that have

shorter time to procrastinate, or cushion time. Results of PEQ are compared with

state-of-the-art schemes for the transport of data-center flows, such as Preemptive

Distributed Quick (PDQ) and Deadline-Driven Delivery (D3). The results show that

PEQ outperforms D3 and PDQ. We identify results of an optimal scheme and show

that PDQ’s performance is close to that, yet not quite the same. Therefore, PEQ

is a heuristic scheme with the equivalent complexity of PDQ but its performance is

closer to the optimal solution than that of PDQ. The presented results show that

when short flows have longer deadlines and long flows have stricter deadlines, the

performance of PEQ, measured in terms of application throughput (i.e., the number

of flows completed on time), is about twice that of PDQ.
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CHAPTER 1

INTRODUCTION

Data centers are warehouses with large number of servers and networking equipment,

logically connected. They not only provide data for businesses, but also assure

security, safety and scalability for managing large amounts of data. It is very

important to ensure the servers in a data center communicate with each other

efficiently. Hence, Data Center Networks (DCN) are crucial for attaining these

communications [3]. Businesses may keep their data on a third party infrastructure

to increase security, reduce management costs, or to overcome the lacking of own

cyber infrastructure. These third party infrastructure providers own data centers

and are expected to ensure that they provide the required level of performance [14].

Businesses and infrastructure providers have Service Level Agreements (SLA) which

stipulates the negotiated quality of service required [11] [19] [33]. Therefore, data

center transport protocols must to meet these performance requirements as great

portion of the performance depends on it [20]. Data center transport protocols are

different from transport protocols in the Internet, as the traffic properties differ from

traffic of campus networks.

The end user’s quality of experience depends a lot on the performance of the

data centers. For instance, when a user requests a new facebook page, the page has

to be displayed at least within a couple of seconds. This request is broken down into

multiple sub-requests in the data center. In the Partition-Aggregate model (Figure

1.1) used in most data centers, the aggregator assigns these sub-requests to “worker”

servers, which are served parallelly. Intra data center traffic is usually characterized

in terms of number of flows [29], each of which is a sequence of packets belonging to

the same application and end-to-end servers [28]. The aggregator receives flows back
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from the worker servers. These flows have assigned deadlines to be transferred to

the aggregator. Deadlines are generally found in the order of a few milliseconds.

Therefore, the protocol used to transfer flows to the aggregator determines the

achieved performance. If this transfer protocol is not efficient enough to transfer

flows on time, many flows will miss their deadlines.

Figure 1.1 Example of Partition-Aggregate model [35].

There are several DCN architectures recently proposed. They are mainly

classified as switch centric, server centric and hybrid structures [17] [40] [7] [34] [8]. In

the switch centric architecture, switches are used to forward packets; in Server centric

architecture, servers with multiple network interface cards (NICs) are used to forward

packets and a hybrid architecture combines both. Examples of these architectures

are described in the following section.

2



1.1 DCN Architectures

1.1.1 Three-Tier

This is one of most commonly used architectures. It consists of three layers: access,

aggregation and core layers [18]. Servers are usually connected to the access-layer

switches. Each access-layer switch is connected to two aggregation-layer switches.

Further, these aggregation-layer switches are connected to two core-layer switches.

This architecture is shown in the Figure 1.2. Core switches provide several services

like load balancing, firewall, etc.

Figure 1.2 Three-tier architecture [29].

1.1.2 Fat Tree

This DCN consists of three layers: edge, aggregation, and core layers. The number

of ports is k, which is same for all switches in a DCN. At the edge, there are k pods,

or groups of servers, each pod has k2/4 servers. Each edge switch is connected to

k/2 servers, and the other k/2 ports of the switch are connected to k/2 aggregation

switches. The total number of core switches in the network is (k/2)2. Every core

switch has one port connected to each of the k pods. A Fat Tree architecture with

k-port switches can accommodate k3/4 servers. Figure 1.3 shows an example of a

Fat Tree DCN.
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Figure 1.3 Example of a Fat Tree architecture [29].

1.1.3 VL2

This is a hierarchical fat-tree based architecture. The VL2 network uses three different

types of switches: intermediate, aggregation, and ToR switches. Intermediate and

aggregation switches have different port numbers denoted by Di and Da, respectively.

The network uses Da/2 intermediate switches. Di aggregation switches and (Da*Di)/4

ToR switches. This type of network can support up to 20*Da*Di/4 ToR servers. This

architecture is shown in Figure 1.4

Figure 1.4 Example of a VL2 architecture [29].
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1.1.4 CamCube

CamCube is a server centric architecture [10] [2]. It uses a 3D-Torus topology

to connect servers directly to each other as shown in Figure 1.5. As it can

be seen, there are no switches/routers in this architecture. Instead, CamCube

allows applications running on servers to implement routing protocols by providing

Application Programming Interfaces (APIs). Servers need to have multiple NICs to

be part of this network. This architecture has high application-level performance.

Also, because there are no switches/routers, its cost is low.

Figure 1.5 Example of a CamCube architecture [29].

1.1.5 DCell

DCell is a hybrid architecture [16]. It uses both switches and servers for packet

forwarding. DCell uses a basic building block called DCell0 to construct larger DCells
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like DCell1, DCell2, etc. In general, DCell k (k > 0) is used to denote a level-k

DCell that is constructed by combining n+1 DCell k-1s, where n denotes the number

of servers in DCell0. DCell0 has n (n <= 8) servers and a commodity switch to

interconnect them. Moreover, each server in a DCell0 is directly connected to a

server in a different DCell0. The interconnection of all DCell0s forms a complete

graph if each DCell0 is considered as a large virtual node. Figure 1.6 shows a

DCell1, constructed with five DCell0s and 4-port commodity switches.

Figure 1.6 Example of a DCell architecture [29].

1.1.6 BCube

BCube is also a hybrid architecture [15]. BCube employs both servers and switches

as forwarding elements. The scalability of this architecture is limited compared to

Fat Tree, VL2, and DCell. However, BCube provides high bisection bandwidth and a

graceful degradation of throughput under equipment failures. A bisection is created
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by partitioning a network into two equally sized sets of nodes. The bandwidth of a

bisection is found by summing all of the link capacities between two partitions and

the smallest bandwidth of all those partitions is the bisection bandwidth [13]. Similar

to DCell, BCube also uses a basic building block usually named BCube0 to construct

larger networks, which simply consists of n servers connected to an n-port switch. In

BCube, n BCube0s and n n-port switches build a BCube1 network and so on. Figure

1.7 shows the architecture for n = 4 and Figure 1.8 shows the generic architecture.

Figure 1.7 Example BCube architecture [29].

1.1.7 Traffic Patterns in DCNs

Traffic in data centers follow different distributions. Here, we discuss those

distributions which are relevant for our experiments in this thesis. The first one

is the uniform distribution. Uniform distribution means that values from an infinite

or finite range can occur with equal probability. Traffic can be distributed among

a number of servers or switch ports or in other words, are equally probable. Hence,

uniform distribution can be as shown in Figure 1.9. Where p is the probability of

occurrence which is same for all values. In our examples, we use uniform distribution

to generate flows with random sizes. We assume that all packets are of fixed size that

7



Figure 1.8 Example BCube architecture [29].

of 1KBytes.The flow sizes are between 2 to 198 packets. Generating flows of any size

in this range are equally probable.

Figure 1.9 A general representation of a uniform distribution.

Unlike uniform distribution, in normal distribution, the probability of occur-

rences of values are not equal. For a finite range of values, values which are closer

to the mean of the value set, including the mean, have higher probability. The
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probability decreases as we go farther from the mean, in both directions. Normal

distribution is often illustrated using a bell curve as shown in Figure 1.10. The

probability of occurrence of the mean value is the highest. Of all values, 68 percent

are within one standard deviation from the mean ( Figure 1.10), 95 percent are

within two standard deviations from the mean (Figure 1.11) and 99.7 percent are

within three standard deviations from the mean (Figure 1.12). The mean divides

the bell curve into two parts with equal area.

Figure 1.10 One standard deviation in a normal distribution [1].

Figure 1.11 Two standard deviations in a normal distribution [1].
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Figure 1.12 Three standard deviations in a normal distribution [1].

For understanding exponential distribution, we need to understand Poisson

process. Poisson process is a process where events occur continuously and indepen-

dently at a constant rate. The probability distribution that describes the time

between events in a Poisson process is called exponential distribution. A sample

exponential distribution is as shown in Figure 1.13

Figure 1.13 Example of exponential distribution.
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1.2 Transmission Control Protocol

Transmission Control Protocol (TCP) is one of the main protocols in the Internet

Protocol suite. It is the standard transport protocol used in the Internet for reliable

data transfer services. TCP and many of its variants customized specifically for data

centers have been used in data centers. Some of these protocols are Data Center TCP

(DCTCP), Multipath TCP (MCTCP), Deadline Aware DCTCP (D2TCP).

Before the actual data transfer starts, TCP end points have to establish a

connection. TCP uses a three way handshake as connection establishment procedure.

The initiator sends a SYN message to which the other end point sends an ACK.

The initiator sends an ACK for the received ACK. TCP tracks every byte of data

transferred by assigning them a sequence number. The ACK for data transfer carries

the sequence indicating the byte number that is expected to receive. If there is any

data missing, then the receiver detects it and requests for retransmission using the

sequence number of the missing byte in the ACK.

TCP also provides error detection and timeout based retransmission services.

Flow control is another feature of TCP where the sender sends data at a rate the

receiver can handle. The receiver can inform the sender if the sender is sending at

a rate which is overwhelming the receiver. In other words, the receiver can ask the

sender to slow down to its own rate, thereby avoiding any packet loss. TCP achieves

this by a technique called sliding window. TCP also defines congestion window as the

maximum amount of data that can be sent without getting an ACK. If there is no

congestion in the network, the congestion window increases enabling the end point

to send more data for one ACK. When a congestion is detected, TCP reduces the

congestion window exponentially, thereby reducing the number of data bytes sent for

one ACK.

11



1.2.1 The TCP Incast Problem

The use of TCP is not as widespread in data centers as it is in the Internet [31]. One of

the many reasons for this is the TCP incast issue [26] [38]. In the Partition-Aggregate

model used in most data centers, an aggregator may request data which may be spread

across many servers. The servers send responses what the aggregator combines. When

the servers send their responses, if the buffer at the switch overflows, there will be

packet loss. The TCP Retransmission Time Out (RTO) in the servers, which is about

200ms, will cause the server not to retransmit the lost packet until the RTO occurs.

Since the aggregator has not received responses from all the designated servers, it

will not issue new requests. As a result, those servers whose responses are received

without packet loss will be idle. This causes the throughput at the aggregator side to

drastically reduce. This phenomenon is called the TCP incast problem [39]. Figure

1.14 shows the collapse of throughput due to incast as the number of servers increases.

This is because as the number of servers increases, the buffers at the switch fill up at

a faster rate and the probability of packet loss increases.
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Figure 1.14 Throughput collapse in TCP Incast.
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1.3 Scheduling Disciplines

Scheduling disciplines are algorithms used in computing systems and computer

network equipment, such as in switches and routers, where incoming packet traffic

has to be forwarded but there is no capacity to send all packets at the same time and

some have to be sent first and other must wait. Scheduling, in this context is about

deciding which among the pending requests have to be served and in what order,

in an efficient way and in certain cases, fair [22] [27]. There are many well-known

scheduling disciplines. Here, we will introduce some of those disciplines which will

be helpful in describing the transport schemes we use in DCNs, and discussed in this

thesis.

1.3.1 First Come First Serve (FCFS)

This is one of the basic scheduling schemes. To decide which request has to be served

next, this scheme chooses request arrival time as the criteria. The first arrived request

is served first. In other words, requests will be served in the same order in which they

arrive. This is same as First in First Out (FIFO). FCFS is used in the scheduling

scheme Deadline Driven Delivery D3 which is one of the schemes we use to compare

the results of our proposed scheme PEQ.

1.3.2 Earliest Deadline First (EDF)

This scheduling discipline applies to those requests with a time limit on the time they

must be served. This time is called the deadline. The request is of no use if it is not

served completely before its deadline. Hence, this scheme first schedules the request

that has the smallest deadline. This scheme seeks the request that is closest to its

deadline as the most urgent request and hence prioritizes it first. PDQ is one of the

transport schemes that uses EDF. This scheme is considered an optimal scheme for

serving requests with deadlines. However, as we will show in the subsequent sections

13



that EDF is not optimal always. Also, we will show that considering other parameters

can outperform EDF.

1.3.3 Shortest Job First (SJF)

This scheduling scheme considers the size of the requests to decide which request is

selected to be served next. In the current context, size can be defined as the processing

time required. Hence, this scheme selects requests with the least processing time. One

of the advantages of this scheme is that it minimizes the average waiting time for all

of its requests [30]. Since we deal with flows, we define flow completion time (FCT)

as the time required to serve a flow completely. Using SJF a smaller average FCT

may be achieved.

1.4 State of the Art

The main objective of most of the data center transport schemes are to either solve the

TCP incast problem or to minimize flow latency. Transport schemes for minimizing

flow latency are of broadly two types, flow deadline agnostic or flow deadline aware.

For the deadline aware schemes, the most important performance parameter is

the application throughput. Hence PEQ, which is also a deadline-aware scheme,

focuses on improving the application throughput as its most important performance

parameter.

There are many schemes focusing on minimizing the FCT [24] [5] [37] [36], like

Rate Control Protocol (RCP), Data Center TCP(DCTCP), Router Assisted Capacity

Sharing (RACS). RCP is a scheme used to control congestion in DCNs [12]. It is a

deadline agnostic scheme. RCP achieves this by emulating Process Sharing (PS) at

each router. Process sharing is a service policy where every job receives an equal

share of the available service capacity [9]. RCP routers simply assign a single rate to

all the flows that pass through them. The router calculates the value of this rate on

14



the basis of the current queue occupancy and the aggregate input traffic rate. This

single rate, R(t), is calculated and updated every RTT. Thus, RCP may maintain

near-constant queue occupancy.

DCTCP is a scheme that uses Explicit Congestion Notification (ECN) to control

congestion [4]. ECN is an extension to the TCP which allows end-to-end notification

of network congestion. It uses most of the algorithms in TCP except those for

congestion control. DCTCP issues ECN messages indicating the extent of congestion

instead of just indicating if there is congestion or not. ECN is typically used with

an active queue management technique such as Random Early Detection (RED) at

switches/routers. ECN uses a field in the IP header with two bits, called ECN

codepoints, to inform the receiver that end hosts are ECN-capable and about the

incipient congestion. The ECN codepoint “11” is assigned to indicate congestion

and is called the Congestion Experienced (CE) codepoint. Any router along the

path between the source and the destination sets the CE codepoint if its average

queue length is above a predefined threshold. In this case, the receiver generates an

Acknowledgement (ACK) packet marked with an ECN Echo flag (ECE) in the TCP

header to reflect the encountered congestion upon receiving the packet with the CE

codepoint set. The sender’s TCP reacts by halving the congestion window (cnwd)

and reducing the value of the slow-start threshold (ssthresh).

The RACS scheme [25] was proposed to emulate the Shortest Remaining

Processing time (SRPT) policy, which is similar to the SJF policy discussed

previously. SRPT selects the job with the shortest remaining time first. In RACS,

every flow is assigned a weight corresponding to either the remaining processing

time or the residual flow size. This information is updated periodically so that

routers re-allocate the rate for each flow after each update. A RACS switch allocates

bandwidth in proportion to the flow’s weight.
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There are numerous deadline aware schemes for flow scheduling like Deadline

Driven Delivery (D3), Preemptive Distributed Quick (PDQ), Deadline-Aware Datacenter

TCP (DDTCP) etc

DDTCP, like DCTCP, controls its congestion window proportional to the extent

of congestion in the network [32] [29]. The switch monitors the queue length. When it

increases beyond a threshold, it marks CE codepoint and when the receiver receives

packets with CE codepoint enabled, it sends a ECN feedback to the sender. The

sender then adjusts its congestion window. If no congestion is detected, the sender

increases its congestion window.

D3 uses a greedy approach for serving flows [35]. Each flow passing through

one or more aggregator switch requests its sending rate every RTT based on its size

and deadline. The switch has fixed capacity. If the remaining capacity at the switch

is more than the requested rate, the switch allocates the requested rate. Along with

the requested rate allocation, if the remaining capacity had to be equally shared by

all the started flows, also known as fair share, is allocated to the current flow. If

the switch does not have enough capacity to serve the flow at its requested rate, D3

allocates all of its remaining capacity to the flow. D3 picks flows greedily, or on a

FCFS basis. D3 does not maintain any kind of state information about the flows at

the switch. The senders calculate the requested rate every RTT. If the flow is not

served, the requested rate in the next RTT increases. The main drawback of D3 is

that it selects flows on a FCFS basis, which may not be always effective.

PDQ uses two scheduling policies, EDF and SJF. Here, EDF has a higher

priority [21]. Flows with tighter deadlines are considered more critical and are

prioritized for serving. In case of a tie, the flow with the smallest size would be

selected. Hence, SJF is used as a tie breaker for EDF. The switch maintains the state

of the flows currently being served. At the beginning of every time slot, there may be

new flows arriving. Out of the newly arriving flows, PDQ selects flows starting with
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smallest or earliest deadline and so on. If there is a tie, PDQ resolves it by prioritizing

the flow with smaller size. By doing so PDQ creates an ordered list according to which

PDQ starts serving the flows, starting from the head of the list, as per the available

bandwidth. The flows in this list will be updated when new flows arrive or any flow

in the list finishes. New flows may preempt existing flows. The flows which are not

being served currently will have to wait. Since their deadlines are fixed, some of the

waiting flows may become invalid. These invalid flows are removed from the list every

time slot. This process is called as Early Termination. EDF may yield a near optimal

scheduling in terms of average FCT when deadline-constrained flows are considered.

However, PDQ may not produce a near-optimal or optimal flow scheduling if the only

criteria to schedule the flows is their deadlines. Figure 1.15(a) shows 4 flows with

their sizes and deadlines given in unit time.

Since PDQ uses EDF, the flows are ordered as shown in Figure 1.15(b). EDF

policy schedules the flows with shorter deadlines first without considering their sizes.

Therefore, f2 and f1, which have larger sizes than f4 and f3, are served before f4 and

f3. By the time f2 and f1 finish, the deadlines of f4 and f3 are violated as indicated

in red, in Figure 1.15(b)

If, however, flows, who can afford to wait and be completed before their

deadlines, wait, as for f1 in this example, the number of flows completed could be

increased from two to three. Consider the following order of flows as in Figure 1.15(c)

Here, flow f1 has its size as 10 time slots and deadline as 23 time slots. So the

latest time slot at what f1 can be started and still be completed successfully is the

13th time slot. If the flow starts after the 13th time slot, it cannot be completed

before its deadline expires. Hence, we try to fit in as many small flows as possible

within 13 time slots. In the example, we schedule flows f4 and f3. Flows f4 and f3

complete after 7 time slots, hence f1 is also be able to be completed since it starts
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(a) Example of arriving flows.

(b) Flows ordered as per EDF.

(c) Improvement over EDF.

before the 13th time slot. If f2 is scheduled anywhere before or in between f4, f3 and

f1, the overall throughput decreases, hence f2 is not scheduled. This is a trade off.
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CHAPTER 2

PREMPTIVE EFFICIENT QUEUEING

2.1 Protocol Description

In PEQ we define an attribute that we call “cushion.” It is the difference of a flow’s

deadline and its transmission time. It indicates how long the flow can afford to wait

before being transmitted and without violating its deadline. The bigger the cushion,

the larger the number of other flows may be transmitted before the flow is transmitted.

At the beginning of every time slot, there may be new flows arriving. Every

flow is assigned an ‘H’ value upon arrival. This is calculated as follows

H = ατ + β(τ/D) (2.1)

where τ is remaining flow transmission time in time slots, D is remaining flow deadline

in time slots, α a weight factor for the transmission time and is assigned a constant

value of 0.6, β the weight factor for the cushion of the flow and is assigned a constant

value of 0.4

The first term indicates the flow size. The second term, τ/D, is the relative

cushion and it shows how large is the flow transmission time compared to its deadline.

The coefficients α and β serve as weights for the first and second term respectively.

The values are chosen such that the flow size or transmission time carries more weight

than the relative cushion. So smaller flows usually have lower H value and vice versa.

PEQ generates an ordered list of flows to serve in decreasing order of flows’ H

value; smaller H values first.
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2.2 Handling of Incoming Flows

The following is a step-by-step description of PEQ operation. SelectPEQFlow is a

function to select a flow with minimum H value among all the other flows at the

beginning of a time slot. PEQEnqueue implements a function to insert flows Id in

the service queue.

• At the beginning of a time slot, all newly arrived and queued flows are

considered. PEQ calculates the H value for each flow using the flow’s

transmission time and deadline as described previously.

• The flow with the minimum H value is picked by SelectPEQFlow. This flow is

given to PEQEnqueue as input.

• Because this is the first flow, it is added to the service queue managed by

PEQEnqueue.

• SelectPEQFlow picks the flow with smallest H value out of the unscheduled

flows and passes it to PEQEnqueue.

• PEQEnqueue may have already created a service queue with one or more flows.

The flow(s) in the queue can be seen as a single flow with a transmission time

equal to the sum of transmission times of all the flows in the queue. We call

this as aggregated transmission time. The cushion of the new flow is checked.

If the cushion of the new flow is large enough to accommodate the aggregated

transmission time, then the flow is added as the new tail flow of the service

queue.

• If the cushion of the new flow is not large enough to accommodate the

aggregated transmission time, then check the cushion of the scheduled flows,

starting from the tail flow in the service queue each, to the head flow in the

service queue. To check any flow in the queue, all the other flows in front
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of it and the new flow are seen as a single large flow with transmission time

equal to aggregated transmission time until that last flow. If the aggregated

transmission time fits in the cushion of the flow being checked, then the new

flow is inserted in front of it.

• Check PEQEnqueue if the flow’s deadline would be expired or not by inserting

it in that specific position. If the deadline would not be expired, then the new

flow is inserted. Else Step 6 is repeated with the next queued flow in front of

the current flow.

• If the flow cannot be inserted in the list (as that may force one or more of the

queued flows violate its deadline), then the new flow is discarded. Therefore,

cushions of flows closer to the head of the queue are no checked.

• Repeat Step 4 and the following steps until all the newly arrived flows are

checked for insertion.

The pseudo code of the description above is as shown in Algorithm 1. PEQ does

not maintain the state of the flows at the switch. This feature simplifies the scheme

considerably. At the beginning of a new RTT, the flows picked up or/and served

in the previous RTT are considered along with newly arrived flows. This property

allows new flows to preempt a flow which was previously being served but that it

may not longer remain in high priority for service. There is an exception for the flow

being currently served, all other flows have to wait. Therefore, their remaining time

to deadlines decrease. At some point few flows may become expired (or will expire

before been completed). Such flows are checked and removed every RTT.

Also, as the pseudo code shows we compare the new flow starting from the tail

of the queue rather than from the head. If the comparison had started with the head

flow and if the new flow is inserted at a particular position, then the flows below the

newly inserted flow may be delayed and this delay may make the flows to violate
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their deadlines. To avoid this, we start the comparison with the tail flow, so for any

particular position in the queue, we ensure that the insertion of the new flow will not

disturb complying with deadlines of the flows below.

Table 2.1 Variables used in the Pseudo Code.
Variable Name Description

nF low new flow returned from SelectPEQFlow

nTailF lag Flag to indicate the new flow will be the new tail of the queue.

insertionInd Indicates the position where the new flow will be inserted.

fPtr A flow pointer to iterate through the queue.

qHead Pointer to the head of the queue

qTail Pointer to the tail of the queue

τa Aggregated transmission time
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if queue is empty then

create a flow entry and populate flow attributes;

return;

else

for fPtr = qTail to qHead do

if ((fPtr==qTail) and (nFlow.D - nF low.τ ≥ fPtr.τa)) then
insertionInd=NULL;

nTailF lag=1;

break;
else if (fPtr.D - fPtr.τa ≥ nF low.τ) then

if (fPtr.τa - fPtr.τ) + nF low.τ ≤ nFlow.D then
insertionInd = fPtr; //Remember this position

continue;
else

continue;

end

else
break;

end

end

if ((insertionInd == NULL) and (nTailF lag)) then
insert the nFlow as the new tail flow of the queue;

else if insertionInd ̸= NULL then
insert the nFlow at index pointed by insertionIndex;

else
discard nFlow;

Algorithm 1: PEQEnqueue: PEQ handling of new incoming flows.
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CHAPTER 3

EVALUATION

Typically there are two types of flows in data centers. Deadline unconstrained long

flows and deadline constrained short flows [23] [6]. Here we consider only deadline

constrained short flows. Hence, our main performance parameter is application

throughput. We also evaluate FCT.

3.1 Formal Properties and Assumptions

We use the typical partition-aggregate topology as our test environment.

We define a flow by a set of parameters: flow size, transmission time, deadline,

rate and H value. The units for all the flow parameters are time slots. We assume a

fixed packet size of 1Kb. Also, one packet or data equivalent to 1Kb can be transferred

in one time slot. Hence, we consider the size of short flows to be in the range of 2

to 198 timeslots. Flow sizes follow a uniform distribution. Flow deadlines follow

an exponential distribution. Rate is fixed to 1 packet per timeslot. We assume we

have long queues in the switch and the servers so that the system is lossless. In our

evaluation, RTT=1 time slot.

3.2 Implementation

We have developed all the simulators listed below in C language, on Linux operating

system:Ubuntu.

• PEQ

• PDQ

• D3: Two different versions of D3 are implemented. One version where the

switch running D3 does not maintain any flow state information. This D3
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mode is as per the specifications mentioned in [35]. In the other version of

D3, the switch maintains flow state information. Here the switch maintains

the list of flows currently being served. Every RTT, these flows are served first

and new flows are added as the serving flows are being completed. If available

capacity allows additional flows, only then new flows are included. We call this

scheme Statefull D3 and it is our own proposed modification to D3 to make

it a more fair comparison to PEQ as Statefull D3 is expected to achieve the

maximum performance of D3 original working principle [35]. We will see later

that effectively this enhancement significantly improves the performance of D3.

• Optimal Scheme: A scheme which performs optimal flow scheduling by

evaluating all possible combinations for a set if incoming flows.

Before presenting the various evaluation scenarios, we elaborate on the example

in presented in Section 1.3. If larger flows have tighter deadlines while small flows

have longer deadlines, PDQ’s performance deteriorates significantly. As PDQ uses

EDF, it starts serving the bigger flows and early termination eliminates the short flows

gradually. We observed the impact of number of such flows on application throughput.

We generate flows once, at the beginning of the simulation and the schemes schedule

and serve those flows. We varied the number of flows while measuring the application

throughput. Figure 3.1 shows the results. It can be seen that the application

throughput of PEQ is considerably larger than that of PDQ. As the number of flows

increases, PEQ’s application throughput is larger than twice that of PDQ. For the

same test scenario, we also measured the time taken by PEQ and PDQ for completing

the flows constituting the achieved application throughputs. It can be seen from the

Figure 3.2 that PEQ completes more flows than PDQ while taking almost half

the time PDQ takes. This is because PDQ spends time on longer flows which may

not count towards its application throughput while PEQ starts with smaller flows
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and flows with large cushions which are more likely to count towards its application

throughput.
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Figure 3.1 Application throughput comparison of PEQ.

We repeated the above experiment by generating new sets of flows after every

fixed number of time slots, called flow generation interval. We define flow generation

interval as the number of time slots after which new set of flows generated. We varied

the flow generation interval from 5 time slots to 30 time slots for 24 servers, each

generating one flow. Figure 3.3 shows the results.

It can be seen from Figure 3.3 that as the flow generation increases interval,

the percentage application throughput of PEQ increases as compared to that of

PDQ. When flow generation interval is very small, due to preemption, more flows are

partially served hence decreasing the application throughput. As the flow generation

interval becomes larger, the performance of PDQ and PEQ tend towards that of one

time flow generation, as shown in Figure 3.1.
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Figure 3.2 Flow completion time comparison of PEQ.

3.3 Comparison with Optimal Flow Scheduling Scheme

We implemented the Optimal Scheduling scheme as a simulation program that

calculates all possible combinations of flows and evaluates the throughput for each

combination. The program stores the combination which yields the maximum

application throughput and the actual application throughput. For a set of flows,

this is the best possible scheduling. If some flows fail in this case, it means that it is

not possible that that those flows can succeed.

Here, we compare PEQ and PDQ with the Optimal flow scheduling scheme. A

set of flows is generated only once at the beginning of the simulation. The optimal

scheme, PDQ, and PEQ all schedule the same set of flows and serve them. We assume

that there is no preemption in this experiment. The results show that PDQ is very

close to the optimal scheme already. But PEQ is even closer to the optimal scheme

than PDQ. Because PDQ is close to optimal scheme, the apparent small improvement

in application throughput of PEQ over PDQ that we discuss in all the experiments

discussed in the next sections, is not trivial.
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Figure 3.3 Application throughput comparison of PEQ (varying flow generation
intervals).

In this experiment, we vary the number of flows generated and observe the

application throughput of the Optimal scheme, PDQ, and PEQ. The application

throughput of PDQ and PEQ are given in comparison with the that of the Optimal

scheme. Hence the application throughput of the Optimal scheme is always 100

percent as we use admissible number of flows, flow sizes, and deadlines. Figure 3.4

shows the results.

3.4 Effect of Deadline on Application Throughput

In this experiment, we observe the impact of flow deadlines on application throughput.

The flow sizes are uniformly distributed in the range of 2 to 198 time slots. The

deadlines are exponentially distributed with the means in the range of 20 to 120 time

slots. A mean value set to 20 causes the flows to have smaller (and tighter) deadlines.

As the mean value is increased, the flow deadlines also increase making them longer

(with more time for the flow to be completed). We also perform the experiment for

different number of servers. The application throughput is evaluated for 40 to 100

servers, with step increases of 20 servers. Figures 3.5, 3.6, 3.7, and 3.8 show this.
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Figure 3.4 Application throughput comparison of Optimal Scheme, PDQ, and
PEQ.

It can be seen from the graph that PEQ achieves higher application throughput than

other schemes for all number of servers. Increasing the mean value allows all schemes

to finish more flows on average and hence the results show the application throughput

for all schemes to be non-decreasing

3.5 Effect of Overloading the Switch Output Link on Application

Throughput

We consider the system to be overloaded when there are more flows generated than

that can be served by the switch throughout the duration of simulation. For all

the remaining experiments conducted, the simulation duration is 1 million time

slots. Because the flow size is uniformly distributed from 2 to 198 timeslots and by

considering the average flow size, we can find out how many such flows can possibly

be served in 1 million timeslots. This number of flows when generated makes the

system fully loaded. If the number of flows exceed this number, then the system

is considered overloaded. We can set the amount of system load by controlling the

number of flows generated. One way is to increase the number of servers and the
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Figure 3.5 Application throughput comparison as a function of flow deadline (40
servers).

other is by generating more flows (increasing the generation rate). As mentioned

earlier each server can have utmost one active flow at a time. Only after the current

active flow is completed can the server generate a new flow. When the server is idle,

it generates a flow with probability p, which we call the flow generation probability.

Therefore, for a given p we can increase the number of servers or else, explicitly

increasing p. In the following experiments, we overload the system in using these two

strategies and observe the impact on the application throughput.

Initially, we overload the system by increasing the number of servers. We adjust

the system to be fully loaded for 40 servers and increase the servers from 40 to 120, in

steps of 10 servers. Figures 3.9, 3.10 and 3.11 show this. As the number of servers

increases, they generate more flows and the load at the aggregator switch increases.

We repeat the experiment for three different classes of flow deadlines namely tight,

moderate and relaxed. For tight flow deadlines, we set the mean of the exponential

distribution as 30 (Figure 3.9). For moderate deadlines, we set the mean as 90

(Figure 3.10 ), and for relaxed deadlines, we set the mean as 120 (Figure 3.11). It
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Figure 3.6 Application throughput comparison as a function of flow deadline (60
servers).

can be seen from the graphs that for all three types of flow deadlines, PEQ achieves

higher application throughput than PDQ, Statefull D3, and D3.

Next, we overload the system by keeping the number of servers constant at 180.

The flow deadlines are also made tight by setting the mean for exponential distribution

as 30. The probability is gradually increased enabling servers to generate flows more

frequently and thereby increase the load at the switch. We observe the impact on

the application throughput. As the load increases, the application throughput of all

the schemes decreases overall. It can also be seen that PEQ has higher application

throughput compared to the other schemes. We repeat this experiment for the three

different classes of flow deadlines, namely tight deadlines with a mean for exponential

distribution as 30 (Figure 3.12), moderate (mean = 90, Figure 3.13) and relaxed

(mean = 120, Figure 3.14).

3.6 Effect of Flow Size on Application Throughput

For most of the testing, we have considered flow sizes to be uniformly distributed in

the range 2 to 198 timeslots [21]. In this test, the flow size is varied and its impact
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Figure 3.7 Application throughput comparison as a function of flow deadline (80
servers).

on the application throughput is observed. The deadlines are fixed, i.e. they are

exponentially distributed with the mean set as 100 times slots. The upper limit of

the range of flow sizes is varied from 2 to 50 times slots, until 190 time slots in steps

of 20 time slots. For fixed deadlines, when the flow sizes are between 2 and 50 time

slots, there is a large number of short flows that can be completed. As flow sizes

increase, it takes more time for the flows to be completed and hence the number

of flows completed successfully comes down comparatively. Therefore, the average

application throughput decreases as the flow size increases. Figure 3.15 shows the

results for 40 servers. Initially, the system is optimally loaded for 40 servers. The

upper limit for flow size is varied and the application throughput is recorded. This

experiment is repeated for 100 servers (Figure 3.16). It can be seen from the results

that PEQ achieves a higher application throughput than the other schemes for all

flow sizes.
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Figure 3.8 Application throughput comparison as a function of flow deadline (100
servers).
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Figure 3.9 Application throughput comparison under overloaded link (tight flows).
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Figure 3.10 Application throughput comparison under overloaded link (moderate
flows).
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Figure 3.11 Application throughput comparison under overloaded (relaxed flows).
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Figure 3.12 Application throughput comparison under overloaded link (tight
deadlines).
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Figure 3.13 Application throughput comparison under overloaded link (moderate
deadlines).
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Figure 3.14 Application throughput comparison for overloaded link (relaxed
deadlines).
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Figure 3.15 Impact of flow size on application throughput (40 servers).
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Figure 3.16 Impact of flow size on application throughput (100 servers).
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CHAPTER 4

CONCLUSIONS

In this thesis, we introduced a new deadline aware flow scheduling scheme for data

centers called PEQ. Unlike other schemes which uses well-known scheduling disciplines

like FCFS, EDF, SJF, etc., PEQ uses a new paradigm to schedule flows. This new

paradigm is based on a flow’s cushion. Cushion is defined as the difference of the flow’s

remaining deadline and its transmission time or size. A flow’s cushion indicates how

long a flow can be procrastinated without risking its failure. PEQ procrastinates a

flow to accommodate more urgent flows, that is flows with tighter deadlines.

In our simulation the flow sizes are uniformly distributed in the range 2 to

198 times slots and the flow deadlines are exponentially distributed with mean being

varied between 20 to 120 time slots depending on the evaluation type. We use the

typical partition-aggregate model used in data centers as the test scenario, modeled

in software. The number of servers/workers is configurable starting from 20 and up

to 180. Each server can have only one active flow in the system at a time. Our main

performance parameter is the average application throughput. We show, through

various testing conditions, that PEQ outperforms PDQ by about 1 to 2 percent, and

D3 by 15 to 20 percent, on average. We also show that the application throughput of

PDQ is about 98.5 percent whereas the application throughput of PEQ is about 99

percent, and therefore approaching to the optimal scheme. We perform various types

of testing where we observe the impact of flow deadlines on application throughput

and the impact of overloading on application throughput. Our test results show

that under these conditions PEQ maintains higher application throughput than other

state-of-the-art schemes. Under a specific category of flows, where larger flows have

stricter deadlines and smaller flows have bigger deadlines than larger flows, we have
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shown that PDQ’s performance deteriorates while PEQ’s application throughput is

about twice the application throughput of PDQ. In addition to this, PEQ’s flow

completion time is smaller than that of PDQ. Our results show that PEQ is able to

complete more flows before their deadlines than PDQ, but also it finishes those flows

quicker than PDQ.

We have also proposed a comparable and improved version of D3 and call

it Statefull D3. We also show that Statefull D3 actually boosts the application

throughput of the scheme by about 15 to 20 percent of the original D3 scheme.
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