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ABSTRACT

LARGE DEVIATION THEORY IN STOCHASTIC PROCESSES:
APPLICATIONS TO BIOLOGICAL MODELING

by
Moshe C. Silverstein

This dissertation delves into developing and applying stochastic models to analyze

complex biological systems. It leverages Large Deviation Theory (LDT) to gain

insights into these systems, focusing on two key examples: neural networks and

calcium signaling dynamics. Traditional deterministic methods frequently fail to

capture biological processes’ randomness and inherent variability. Meanwhile, many

stochastic approaches struggle to be mathematically tractable or provide accessible

insights. The approach introduced in this study provides rigorous mathematical

frameworks to enhance understanding of these stochastic behaviors while remaining

tractable and insightful.

A stochastic model for a random biological neural network is constructed that

addresses the dependencies and variabilities in neural connectivity. Applying LDT,

significant theoretical results are derived from the large deviations in the system’s

dynamics, providing a deeper understanding of the probabilistic behaviors and events

in neural activity.

The study next focuses on calcium signaling in biological cells, where a one-

dimensional stochastic model is developed to simulate calcium dynamics. A Piecewise-

deterministic Markov process (PDMP) model is implemented to capture the system’s

stochastic and deterministic nature. This model is validated by comparing experimental

data from in vitro and in vivo studies via Maximum Likelihood Estimation and

stochastic simulations. LDT is used to derive the Euler-Lagrange equations and

identify optimal trajectories in calcium signaling, offering predictive insights into the

system’s behavior under stochastic mechanisms.



The findings of this study demonstrate the power of LDT in biological modeling,

providing a robust framework for analyzing the probabilistic nature of complex

biological systems. While the models incorporate several simplifications, such as one-

dimensional assumptions in calcium signaling, they pave the way for more sophisticated

and accurate representations of biological processes.

This work advances the application of stochastic processes and LDT in

mathematical biology, offering enhancements to methodologies and insights that

can be extended to other complex systems. The proposed approach opens up new

avenues for understanding and predicting the behavior of stochastic biological systems,

with potential applications in fields such as neuroscience, cell biology, and systems

biology.
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CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Rare events are often some of the most interesting. In any system, they can hold a

special allure as they offer us a unique window into the inner workings of a complex

system. These events can provide us with genuinely one-of-a-kind insights, which

are not attainable from studying more common occurrences. By delving into these

rare events, we can deepen our understanding of the underlying mechanisms and

dynamics of the system. This knowledge can be invaluable for various fields such as

science, engineering, and economics. Whether it is a rare natural phenomenon or an

unexpected outcome in a controlled experiment, studying these events paves the way

for discoveries and advancements in our understanding.

Biological systems are genuinely fascinating due to their intricate and sophis-

ticated mechanisms. The interaction between dynamical and stochastic effects on

different scales makes these systems incredibly complex and often chaotic, which

presents a significant challenge for scientists and mathematicians aiming to model and

comprehend them. These systems can present a delicate interplay between discrete

events and continuous processes, requiring advanced mathematical tools to accurately

capture and forecast their dynamics. Studying such systems provides insight into

the fundamental workings of life and offers an opportunity to push the boundaries of

scientific understanding.

In this work, we will study the stochastic modeling of biological systems. We will

use Large Deviation Theory (LDT) to gain insight into the nature of these systems by

analyzing aspects in light of rare events. We will focus on two examples: biological

neural networks and calcium signaling.
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While the literature extensively explores these systems, existing models are

either primarily deterministic and overlook the observed stochastic nature of these

systems or present stochastic models that may be too abstract for direct biological

application or too complex for direct biological insight.

The present work hopes to contribute to this literature by presenting rigorous

mathematical results of biologically motivated models that are mathematically

tractable and readily give insight into the systems under study.

To this end, we present a balanced random neural network model to capture

neuronal firing dynamics. We leverage Large Deviation Theory (LDT) to study this

system’s convergence of a probability measure (distribution). The derived Large

Deviation Principle (LDP) allows us to transfer results from a simplified uncoupled

network to a more realistic and complex coupled model. This technique rigorously

facilitates studying complex and stochastic neurological models from simplified systems

and fundamental biological principles.

For calcium cell signaling, we build a Piecewise-deterministic Markov process

(PDMP) model to capture both the deterministic diffusion of calcium and the stochastic

opening and closing of calcium channels. This hybrid model is validated by fitting

the results to experimental data. A Large Deviation Principle (LDP) is derived

in the context of Piecewise-deterministic Markov process (PDMP)s and specifically

for the case of calcium signaling, which captures calcium spiking as a rare event

within the context of rapidly and highly randomized opening and closing of calcium

channels. Although this model is naive in its simplicity, its ability to accurately

capture experimental dynamics and its rigorous derivation of a stochastic explanation

for spiking phenomena is inspiring. It paves the way for more complex modeling and

analysis of this nature.

The results confirm the effectiveness of LDT in analyzing the stochastic modeling

of biological systems. This work offers new perspectives on existing models for these
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complex systems, providing valuable insights into modeling and analyzing biological

systems with broad applications to other fields.

1.2 Structure of the Dissertation

This dissertation is organized into nine chapters, each structured to progressively build

the theoretical foundation and practical applications of stochastic modeling and LDT

in biological systems.

Chapter 1, Introduction, begins with an Overview and Motivation section,

introducing the primary problems addressed in this dissertation, their significance,

and the novel approaches undertaken. This chapter also includes a brief outline of the

dissertation’s structure, providing a roadmap for the reader.

Chapter 2, Mathematical Foundations, lays the theoretical groundwork necessary

for understanding the subsequent chapters. It discusses topics from probability

theory and analysis, such as Skorohod Space, including its definitions, topology, and

critical theorems relevant to the rest of this work. This chapter also covers empirical

measures, PDMPs, and a brief exposition of LDT, introducing essential theorems

such as Cramér’s, Varadhan’s, Bryc’s, Sanov’s, and the essentials of Freidlin-Wentzell

theory.

Chapter 3, Biological Contexts and Applications, focuses on the application

domains of the developed models. The first section provides an overview of neural

physiology and historical mathematical models used to understand neural networks.

The second section examines calcium physiology and reviews traditional models for

calcium signaling in biological cells.

Chapter 4, Neural Network Model, presents the notation and detailed description

of the neural network model. It concludes with the main theoretical results.

Chapter 5, Large Deviation Principles for Neural Networks, delves into the large

deviation properties of the neural network model. It begins with analyzing large
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deviations in the uncoupled system, followed by a discussion on exponential tightness

and regularity estimates. It then extends the large deviation to the coupled system

and finally establishes a convergence of measure.

Chapter 6, Calcium Signaling Model, develops a one-dimensional PDMP model

for calcium signaling. It includes methods for maximum likelihood parameter

estimation and simulation of the model. The chapter presents and analyzes

experimental data in vitro and in vivo and corresponding numerical results.

Chapter 7, Large Deviation Principles for Calcium Signaling, applies LDT to

PDMPs with a specific focus on calcium signaling. This chapter derives Euler-Lagrange

equations and provides numerical results for optimal trajectories in calcium dynamics.

Chapter 8, Current and Future Research Directions, discusses ongoing research

and potential future directions stemming from the findings of this dissertation.

Chapter 9, Conclusion, summarizes the key findings, their significance, and the

implications of this research. It also reflects on the limitations and areas for further

investigation.

The appendices provide supplementary material to support the main text.

Appendix A: Bounding Fluctuations of the Noise includes supplementary proofs for

the LDP analysis in neural networks. Appendix B: Proofs for LDP for PDMP contains

detailed proofs for applying LDT to PDMPs.

The dissertation ends with a comprehensive list of all references cited throughout,

offering a robust framework for further reading and context.
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CHAPTER 2

MATHEMATICAL FOUNDATIONS

This chapter presents a brief overview of essential topics from probability theory,

analysis, and Large Deviation Theory (LDT) that are relevant and necessary for the

rest of the analysis.

2.1 Stochastic Processes

A stochastic process is a collection of random variables indexed by a set T . Formally,

let (Ω,F ,P) be a probability space, where Ω is the sample space, F is a σ-algebra of

events, and P is a probability measure. A stochastic process is a family of random

variables {Xt : t ∈ T} such that for each t ∈ T , Xt is a measurable function from

(Ω,F) to a measurable space (S,S). Here, T is called the index set, and S is called

the state space of the process.

In other words, a stochastic process can be viewed as a function

X : T × Ω → S

such that for each fixed t ∈ T , the mapping Xt : Ω → S defined by Xt(ω) = X(t, ω)

is a random variable.

Typically, the index set T represents time and can be discrete, such as T =

{0, 1, 2, . . .}, or continuous, such as T = [0,∞). The state space S can be various sets

such as R, Rd, or other more abstract spaces.

2.1.1 Brownian Motion

A stochastic process W = (Wt, t ∈ [0,∞)) is called (standard) Brownian motion or a

Wiener process if the following conditions are satisfied: (i) It starts at zero W0 = 0.
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(ii) It has stationary, independent increments. (iii) For every 0 ≤ s < t, Wt −Ws is

distributed as N(0, t − s), and Wt −Ws is independent of Wr if r < s. (iv) It has

continuous sample paths.

2.1.2 Poisson Process

A Poisson process is a stochastic process that models a series of events occurring

randomly over time. A Poisson process with rate (or intensity) λ > 0 is a counting

process {N(t) : t ≥ 0} that satisfies the following properties:

(i) N(0) = 0: The process starts at zero. (ii) Independent increments: The

number of events occurring in any disjoint time intervals are independent. (iii)

Stationary increments : The number of events occurring in any time interval of length

t only depends on t and not on the specific position of the interval. Formally, for any

s, t ≥ 0,

N(t+ s)−N(s) ∼ Poisson(λt).

(iv) No simultaneous events : The probability of more than one event co-occurring is

zero. Formally,

P(N(t+ h)−N(t) ≥ 2) = o(h) as h → 0.

From these properties, it follows that the number of events N(t) in a Poisson

process over the interval [0, t] is Poisson distributed with parameter λt:

P(N(t) = k) =
(λt)ke−λt

k!
, k = 0, 1, 2, . . .

Additionally, the inter-arrival times Ti (the times between consecutive events)

in a Poisson process are independent and identically distributed (i.i.d.) exponential

random variables with parameter λ:

P(Ti > t) = e−λt, t ≥ 0.
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The Poisson process is widely used to model random events over time in various

fields, such as queueing theory, telecommunications, and reliability engineering.

2.2 Stochastic Differential Equation

A stochastic differential equation (SDE) is an equation used to model systems that

are influenced by white noise. The general form of an SDE is:

dXt = a(Xt, t) dt+ b(Xt, t) dWt

where:

Xt is the stochastic process, a(Xt, t) is the drift term, which represents the deterministic

part of the system, b(Xt, t) is the diffusion term, which represents the random part of

the system, dWt is the increment of a Wiener process (also called a Brownian motion).

Classic introductory texts on the study of SDEs include Oksendahl [114], Evans

[52], and Lawler [95].

2.3 Skorohod Space

The space of continuous function, C, is unsuitable for describing processes that

must contain jumps, like the Poisson processes, in contrast to Brownian motion.

This section introduces the Skorohod Space, which includes (certain) discontinuous

functions. Proofs will be omitted for brevity. The following outline is based on

Billingsley [17]; the interested reader is directed to that excellent resource for a

complete treatment of this material.

2.3.1 Definition

Let D = D[0, 1] be the set of real functions on [0, 1] that are right-continuous and

have left-hand limits. Such functions are termed càdlàg functions. Specifically, for

0 ≤ t < 1, the right-hand limit x(t+) exists and equals lims↓t x(s), and for 0 < t ≤ 1,

7



the left-hand limit x(t−) exists and equals lims↑t x(s). A function has a discontinuity

of the first kind at t if x(t−) and x(t+) exist but differ, with x(t) lying between them.

Any discontinuities in a càdlàg function are of the first kind, and the requirement

x(t) = x(t+) serves as a convention.

2.3.2 Topology

The space of càdlàg functions is usually endowed with the Skorohod topology. The

Skorohod topology allows for small deformations in both the function values and the

time scale. This topology is particularly useful when exact measurements of time

are not possible. The Skorohod metric d(z, y) is defined using the space of strictly

increasing continuous mappings of [0, 1] onto itself denoted by Λ, such that for λ ∈ Λ

then λ0 = 0 and λ1 = 1. d(z, y) quantifies the “inf-sup” difference between z(t) and

y(λt) and between t and λt. Specifically,

d(x, y) := inf
λ∈Λ

{||λ− I|| ∨ ||x− λy||} (2.1)

Where I is the identity map on [0, 1], the metric d satisfies properties such as non-

negativity, symmetry, and triangle inequality, making it a valid metric. Convergence

in the Skorohod topology requires that there exist functions λn such that zn(λnt)

converges uniformly to z(t) and λnt converges uniformly to t. The Skorohod topology

coincides with the uniform topology when restricted to continuous functions.

We can define a new metric d0 in D, equivalent to d and providing completeness

to D. This metric helps in characterizing compact sets. The definition of d0 involves a

time-deformation function λ that must be near the identity function, with the slope of

its chords close to 1, or equivalently, the logarithm of the slope close to 0. The norm

∥λ∥◦t = sup
s<t

∣∣∣∣ log λ(t)− λ(s)

t− s

∣∣∣∣ (2.2)
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is introduced to measure this closeness. If ∥λ∥◦ is finite, λ is continuous, strictly

increasing and belongs to Λ. The metric

d◦(x, y) := inf
λ∈Λ

{||λ||◦ ∨ ||x− yλ||} (2.3)

is defined as the infimum of positive ϵ for which there exists a λ ∈ Λ with ∥λ∥◦ < ϵ.

2.3.3 Key theorems

The following are some important theorems that will be relevant in the forthcoming

analysis.

The separability and completeness of D.

Theorem 2.3.1. The space D is separable under d and d◦ and is complete under d◦.

Compactness in D.

Theorem 2.3.2. A necessary and sufficient condition for a set A to be relatively

compact in the Skorohod topology is that

sup
x∈A

||x|| < ∞ (2.4)

and

lim
δ→0

sup
x∈A

w′
x(δ) = 0. (2.5)

were for min1≤i≤v(ti − ti−1) > δ, and 0 ≤ δ ≤ 1,

w′
x(δ) = inf

{ti}
max
1≤i≤v

wx[ti−1, ti), (2.6)

for the modulus of continuity of x given by,

wx(δ) = sup
0≤t≤1−δ

sup
s,t∈T

|x(s)− x(t)|, for |t− s| ≤ δ. (2.7)
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The Poisson Limit.

Theorem 2.3.3. Suppose that E ∈ D and T0 is a countable, dense set in [0, 1], and

let Pn be the probability measure of a Poisson process with rate n. Suppose further

that, if x, xn ∈ E and xn(t) → x(t) for t ∈ T0, then xn → x in the Skorohod topology.

If Pn(E) = P (E) = 1 and Pnx
−1
t1,...,tk

→ Px−1
t1,...,tk

for all k-tuples in T0, then

Pn → P .

These theorems allow us to define a sense of (weak) convergence in probability

space. The space,D, is named after the mathematician Anatoliy Skorokhod. It plays

a significant role in the theory of random processes and will be used throughout this

work.

2.4 Empirical Measure

The empirical measure is one of the most popular means of obtaining a low-dimensional

representation of high-dimensional stochastic systems. Intuitively, it is a ‘discrete

population density,’ and (in this dissertation) in the large N limit, it converges to a

continuum population density.

Given a sample of n observations X1, X2, . . . , Xn from a probability space

(Ω,F ,P) with values in a measurable space (S,S), the empirical measure P̂n is a

random measure that assigns equal probability to each observed data point. Formally,

the empirical measure P̂n is defined as:

P̂n =
1

n

n∑
i=1

δXi
,

where δXi
denotes the Dirac delta measure centered at Xi.
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For any measurable set A ∈ S, the empirical measure P̂n assigns a probability

given by:

P̂n(A) =
1

n

n∑
i=1

1A(Xi),

where 1A is the indicator function of the set A, defined as:

1A(x) =


1 if x ∈ A,

0 if x /∈ A.

Thus, P̂n(A) represents the proportion of observations X1, X2, . . . , Xn that fall

within the set A.

The empirical measure provides a non-parametric estimate of the underlying

distribution from which the sample is drawn. Empirical measures are significant in

mathematical statistics. The underlying probability measure is often unknown, so

empirical measures are examined. By gathering observations and calculating relative

frequencies, we can estimate the measure or a related distribution function using

the empirical measure or the empirical distribution function. These estimates are

uniformly reliable under certain conditions.

2.5 Piecewise Deterministic Markov Processes

PDMP are a general class of non-diffusion stochastic processes. They were first fully

categorized by Davis in his seminal 1984 paper [40]. PDMP (also known as stochastic

hybrid systems) are used to model systems with multiple timescales [6, 71]. They are

also referred to as slow-fast systems. These processes enjoy numerous applications,

particularly in biology [19, 20, 126]. For instance, they have been used to model

excitable membranes in neuroscience [96, 121], population dynamics in ecology [73],

run-and-tumble dynamics of bacteria [14], and stochastic models of calcium signals

[88, 118, 119].
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A PDMP is a stochastic process characterized by random jumps occurring at

specific moments, with deterministic evolution governed by an ordinary differential

equation (ODE) between these jumps. In other words, PDMPs contain two types of

random variables: one with a discrete state space and one with a continuous state

space.

The state of the process at time t, denoted by Xt = (vt, ξt), is determined by

several components:

Vector Fields : Each subset Mv ∈ Rd (i.e., Mv represents the region in the state

space where the process evolves deterministically under the influence of a vector field

associated with v) is associated with a vector field Xv that dictates the deterministic

evolution of the process within Mv. The flow generated by these vector fields ensures

unique integral curves, meaning that the solutions to the ODEs do not exhibit

’explosions’ (i.e., they do not become unbounded in finite time).

Jump Rate Function: The function λ : E → R+ specifies the rate at which

jumps occur. For any state (v, ξ) ∈ E, λ(v, ξ) represents the rate at which the process

jumps out of the current deterministic trajectory.

The process Xt evolves according to the following rules: Deterministic Flow :

Between jumps, the process follows the deterministic flow Φt, defined by the vector

fields Xv. Specifically, if Xt = (v, ξ) at time t, then for a short time interval [t, t+ δt),

the state evolves according to the ODE:

dξt
dt

= Xv(ξt).

Jumps: A jump occurs at time τ . The jump rate λ determines the likelihood of

jumping in infinitesimally small intervals, ensuring that λ is integrable over small

intervals.
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In summary, a PDMP is fully defined by the following components: Deterministic

Flow Φ: Governs the continuous evolution between jumps. Jump Rate λ: Determines

the frequency of jumps.

These elements combine to provide a rich framework for modeling systems

exhibiting deterministic and stochastic behavior.

2.6 Radon-Nikodym Theorem and Derivative

Let (Ω,F) be a measurable space, and let P and Q be two σ-finite measures on this

space. The Radon-Nikodym derivative of P with respect to Q, denoted by dP
dQ

, is a

measurable function that satisfies the Radon-Nikodym theorem.

2.6.1 Radon-Nikodym Theorem

The Radon-Nikodym theorem states that if P is absolutely continuous with respect

to Q (denoted P ≪ Q), then there exists a unique (up to Q-almost everywhere

equivalence) non-negative measurable function dP
dQ

such that for any measurable set

A ∈ F ,

P (A) =

∫
A

dP

dQ
dQ.

Formally, the Radon-Nikodym derivative dP
dQ

is the function that satisfies

P (A) =

∫
A

dP

dQ
dQ for all A ∈ F .

The Radon-Nikodym derivative dP
dQ

is often interpreted as the density of the

measure P with respect to the measure Q.

2.6.2 Properties of the Radon-Nikodym derivative

Uniqueness: If there exist a f and g such that for any A, P (A) =
∫
A
fdQ =

∫
A
gdQ,

then f = g a.s. (almost surely) and you denote it dP/dQ.
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Linearity : If P1 and P2 are absolutely continuous with respect to Q, and a, b

are positive real numbers, then

d(aP1 + bP2)

dQ
= a

dP1

dQ
+ b

dP2

dQ
.

Chain Rule: If P ≪ Q ≪ R, then

dP

dR
=

dP

dQ
· dQ
dR

R-almost everywhere.

The existence and uniqueness of the Radon-Nikodym derivative are guaranteed

by the Radon-Nikodym theorem.

2.7 Relative Entropy

The relative entropy (or Kullback-Leibler divergence) between two probability measures

P and Q defined on the same probability space (Ω,F) is a measure of how one

probability distribution diverges from a second, expected probability distribution [27].

If P is absolutely continuous with respect to Q (denoted P ≪ Q), the relative

entropy R(P∥Q) is defined as:

R(P∥Q) =

∫
Ω

log

(
dP

dQ

)
dP,

where dP
dQ

is the Radon-Nikodym derivative of P with respect to Q.

Alternatively, if P and Q have probability density functions p and q respectively

with respect to a common reference measure (e.g., the Lebesgue measure), then the

relative entropy can be expressed as:

R(P∥Q) =

∫
Ω

p(x) log

(
p(x)

q(x)

)
dx.
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Relative entropy is always non-negative, i.e., R(P∥Q) ≥ 0, and it is zero if

and only if P = Q almost everywhere. It is a fundamental concept in information

theory, statistics, and LDT, where it quantifies the “distance” between two probability

distributions.

2.8 Large Deviation Theory

In this section, I will briefly summarize topics from Large Deviation Theory (LDT) that

are relevant and necessary for the rest of the analysis. Proofs will be omitted for brevity.

The interested reader is directed to the works of Rassoul-Agha and Seppalainen [120],

Dembo [45], and Freidlin and Wentzell [61] for a thorough treatment of this material.

We also refer to an article by Touchette for a gentle introduction [134].

Limit Superior and Limit Inferior

Large Deviation results are asymptotic and are expressed in terms of the limit superior

and limit inferior. The lim sup (limit superior) of a sequence (an) is defined as follows:

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am

In words, it is the limit of the supremum of the tail ends of the sequence as n goes to

infinity. It can be intuitively understood as the greatest value that the sequence gets

arbitrarily close to infinitely often.

The lim inf (limit inferior) of a sequence (an) is defined as follows:

lim inf
n→∞

an = lim
n→∞

inf
m≥n

am
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In words, it is the limit of the infimum of the tail ends of the sequence as n goes to

infinity. It can be intuitively understood as the smallest value that the sequence gets

arbitrarily close to infinitely often.

2.8.1 Large Deviation Principle

Large Deviation Theory estimates the probability of rare events [27, 89]. For example,

one may be interested in the probability of extinction of a species in population

dynamics or chemical reaction networks [23] or the spontaneous and stochastic

production of waves or pulses [86].

The probability of system-wide rare events in high-dimensional stochastic systems

typically decays exponentially in the size of the system. LDT determines the leading

order coefficient for the exponential decay rate (the coefficient is known as a ‘rate

function,’ defined below). This concept is referred to as Large Deviation Principle

(LDP). A precise definition of a LDP is as follows [120]:

Theorem 2.8.1. Let I : x → [0,∞] be a lower semicontinuous function and rn ↑ ∞

a sequence of positive real constants. A sequence of probability measures {µn} ⊂ P(X )

is said to satisfy a LDP with rate function I and normalization rn if the following

holds:

lim sup
n→∞

1

rn
log µn(F ) ≤ − inf

x∈F
I(x) ∀ closed F ⊂ X, (2.8)

lim inf
n→∞

1

rn
log µn(G) ≥ − inf

x∈G
I(x) ∀ open G ⊂ X, (2.9)

where X is a Hausdorff topological space and P(X ) is the space of probability measures

on the (X,B) were B is the Borel σ-algebra.

2.8.2 Cramer’s Theorem

One of the earliest results in LDT is Cramer’s Theorem. Introduced by Harald Cramér

in 1938, this theorem characterizes the exponential decay of probabilities associated
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with sums of independent identically distributed (i.i.d.) random variables deviating

significantly from their expected value. Specifically, Cramer’s Theorem quantifies the

rate at which the probability of such deviations decreases, using the rate function,

or Cramér function, derived from the cumulant generating function of the random

variables.

Let {Xn}n≥1 be i.i.d., real-valued random variables, and let X be another random

variable with the same distribution. The moment generating function is written as

M(θ) = E[eθX ], for θ ∈ R. Notice that M(θ) > 0 always and M(θ) = ∞ is possible.

In Cramer’s Theorem, the rate function is the Fenchel-Legendre transform of the

moment generating function, i.e.,

I(x) = sup
θ∈R

{θx− logM(θ)}. (2.10)

Since M(0) = 1, I : R → [0,∞] is a well-defined function.

Theorem 2.8.2 (Cramer’s Theorem). Let {Xn} be a sequence of i.i.d. real-valued

random variables. Let µn be the distribution of the sample mean Sn/n. Then the LDP

is satisfied with I defined in Equation 2.10.

2.8.3 Varadhan’s Theorem

Varadhan’s theorem, a seminal result in LDT, extends the foundational principles

laid out by earlier work in the field. This theorem, named after the mathematician

S. R. Srinivasa Varadhan, provides a comprehensive framework for understanding

the asymptotic probabilities of rare events in more complex settings, particularly for

sequences of random variables with dependent structures. The practical application of

this theorem is evident in its ability to evaluate the asymptotic value of exponential

moments, providing a generalization of Laplace’s method to more abstract probability

spaces.
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Theorem 2.8.3 (Varadhan’s Theorem). Suppose a LDP holds for µn, rn, and I. Let

f : X → [−∞,∞] be a continuous function, and

lim
b→∞

lim sup
n→∞

1

rn
log

∫
f≥b

ernfdµn = −∞ (2.11)

Then

lim
n→∞

1

rn
log

∫
ernfdµn = sup

x:f(x)∧I(x)<∞
{f(x)− I(x)} (2.12)

2.8.4 Bryc’s Theorem

Named after the mathematician Wlodzimierz Bryc, the following theorem offers an

alternative approach to verifying the conditions under which a sequence of random

variables satisfies a LDP. Bryc’s theorem establishes that if a sequence of random

variables has exponential moment generating functions that converge to a limiting

function, which is convex and lower semicontinuous, then the sequence satisfies an LDP

with a specific rate function. This theorem is especially valuable due to its practical

applicability in various complex systems, where checking the standard conditions for

an LDP can be challenging.

Theorem 2.8.4 (Bryc’s Theorem). Let {µn} be a sequence of probability measures on

a metric space X. Assume {µn} is exponentially tight with nomalization rn. Suppose

the limit

Γ(f) = lim
n→∞

1

rn
log

∫
ernfdµn

for all f ∈ Cb(X). Then, a LDP holds with the tight rate function

I(x) = sup
f∈Cb(X)

{f(x)− Γ(f)} (2.13)
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2.8.5 Sanov’s Theorem

Named after the mathematician Ilya Sanov, the following theorem addresses the

large deviation properties of the empirical measure (see Section 2.4) of a sequence

of independent and i.i.d. random variables. Specifically, Sanov’s Theorem quantifies

the exponential rate at which the probability that the empirical distribution of these

variables diverges from a given probability distribution decays. This rate is described

by the relative entropy (or Kullback-Leibler divergence, see Section 2.7) between the

empirical distribution and the true underlying distribution.

Theorem 2.8.5 (Sanov’s Theorem). Let S be a Polish space (complete, metrizable,

separable) and ρn the distribution of the empirical measure Ln, then a LDP holds

on the space P(S) with convex rate function R(ν) = R(ν|λ), where R is the relative

entropy of ν relative to λ given by

R(ν|λ) =


∫
ϕ log ϕdλ if ν ≪ λ and ϕ = dν

dλ

∞ otherwise

(2.14)

2.8.6 Freidlin-Wentzell Theory

Named after the mathematicians Mark Freidlin and Alexander Wentzell, the following

theory extends the principles of large deviations to stochastic differential equations

(SDEs) driven by vanishingly small noise. The central result, often referred to as

the Freidlin-Wentzell Theorem, characterizes the exponential decay rates of the

probabilities that the trajectories of these stochastic processes deviate significantly

from their deterministic paths. The key theorem states that if Xϵ
t is a family of

stochastic processes driven by small noise, then the probability that Xϵ
t deviates from

the solution of the corresponding deterministic system can be described by a rate

function I, derived from a variational principle. Formally, the fundamental theorem

can be stated as follows:
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Consider a family of stochastic processes {Xϵ
t }ϵ>0 described by the stochastic

differential equation (SDE)

dXϵ
t = b(Xϵ

t ) dt+
√
ϵ σ(Xϵ

t ) dWt,

where b : Rd → Rd is the drift term, σ : Rd → Rd×d is the diffusion term, ϵ is a small

parameter, and Wt is a standard d-dimensional Wiener process.

The Freidlin-Wentzell Theorem provides a LDP for the trajectories of Xϵ
t as

ϵ → 0.

Let C([0, T ];Rd) denote the space of continuous functions from [0, T ] to Rd

equipped with the uniform topology. The rate function I : C([0, T ];Rd) → [0,∞] is

defined as

I(ϕ) =


1
2

∫ T

0

∣∣∣ϕ̇(t)− b(ϕ(t))
∣∣∣2
σ−1(ϕ(t))

dt if ϕ ∈ H1([0, T ];Rd)

+∞ otherwise,

where H1 :=
{∫ t

0
f(s)ds : f ∈ L2([0, 1])

}
, i.e., the space of all absolutely continuous

functions with value 0 at 0 that possess a square intergrable derivative, equipped

with the norm ||g||H1 =
[∫ 1

0
|ġ(t)|2dt

]1/2
, and |ϕ̇(t) − b(ϕ(t))|σ−1 := (ϕ̇(t) −

b(ϕ(t)))
′
(σ(ϕ(t))σ

′
(ϕ(t)))−1(ϕ̇(t) − b(ϕ(t))), i.e., the norm induced by the inverse

of the diffusion matrix σ. The theorem states that:

Theorem 2.8.6 (Freidlin-Wentzell Theorem). The family of measures {PXϵ}ϵ>0 on

C([0, T ];Rd) satisfies the LDP with the rate function I. That is, for any Borel set

A ⊂ C([0, T ];Rd),

− inf
ϕ∈A◦

I(ϕ) ≤ lim inf
ϵ→0

ϵ logP(Xϵ
t ∈ A◦) ≤ lim sup

ϵ→0
ϵ logP(Xϵ

t ∈ A) ≤ − inf
ϕ∈A

I(ϕ),

(2.15)

where A◦ and A denote the interior and closure of A, respectively.
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This theorem provides a rigorous framework for understanding the asymptotic

behavior of the probabilities of rare events for the stochastic process Xϵ
t .
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CHAPTER 3

BIOLOGICAL CONTEXTS AND APPLICATIONS

This chapter presents a brief but comprehensive summary of the critical biological and

physiological aspects of each system that we will model and study in this dissertation.

In addition, we will provide an overview of the historical research in the field that

forms the basis for the work presented.

3.1 Neuroscience

The first example system that we will explore is the biological neural network found

in the brain.

3.1.1 Physiology

The brain, a marvel of nature, is a vast and diverse network of neurons. The

brain is intricately organized both anatomically and functionally, consisting of the

spinal cord along with various regions, including the medulla oblongata, pons,

cerebellum, midbrain, diencephalon, and cerebral hemispheres [117]. Fundamental

structures include the thalamus and hypothalamus in the diencephalon and the basal

ganglia, hippocampus, and amygdaloid nucleus within the cerebral hemispheres [81].

The cerebral cortex is divided into frontal, parietal, occipital, and temporal lobes,

responsible for sensory, cognitive, and voluntary motor functions. Each lobe specializes

in distinct functions: the frontal lobe in planning and organization, the occipital lobe

in vision, the parietal lobe in sensory information, and the temporal lobe in hearing

and language [90]. Each hemisphere primarily controls sensory and motor functions on

the opposite side of the body, with sensory information organized topographically in

the somatosensory cortex, allocating more space to sensitive regions like the fingers and
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mouth. Cognitive functions such as language are localized in specific areas, including

Wernicke’s area for understanding speech and Broca’s area for speech production [51].

Neurons are specialized cells with three main components: dendrites (inputs),

soma (cell body), and axon (output). The axon can extend up to 1 meter and is

insulated by a myelin sheath for faster signal propagation [9]. Neurons generate

electrical signals called action potentials that travel down the axon in an all-or-none

fashion with consistent amplitude and duration. Stronger stimuli produce higher firing

frequencies to encode information, and neurons can exhibit various firing patterns

such as bursting [51].

Neurons communicate at synapses, which can be chemical or electrical. Chemical

synapses are most common in the mammalian brain, where neurotransmitters released

from the pre-synaptic neuron bind to receptors on the postsynaptic neuron, causing

either excitatory (depolarizing) or inhibitory (hyperpolarizing) effects. Synapses can

be direct/fast or indirect/slow based on the receptor type. Each neuron receives

inputs from approximately 1000 other neurons on average, forming complex synaptic

architectures that enable specialized brain functions. Synapses can amplify or modulate

signals, and their connections can be modified through processes such as learning [51].

Neurons collectively form an extensive and highly diverse interconnection network.

The brain is estimated to contain around 86 billion neurons [74] and approximately

100 trillion nonuniform connections [145]. Furthermore, in addition to this immense

complexity, a considerable degree of stochasticity is also observed [123]. Even if one

focuses solely on examining a specific brain region, such as the visual cortex, the level

of complexity remains beyond current computational capabilities [97].

3.1.2 Overview of historical mathematical modeling

In 1963, Alan Lloyd Hodgkin and Andrew Fielding Huxley were awarded the Nobel

Prize in Physiology or Medicine for their groundbreaking Hodgkin-Huxley model [76].

This mathematical framework offered a simplified portrayal of single-neuron dynamics
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during an action potential, drawing upon principles from electrical circuits, thereby

revolutionizing our comprehension of neuronal communication and paving the way for

further research in neuroscience and computational neuroscience.

Their seminal work laid the groundwork for “bottom-up” approaches, which

endeavor to construct neural function models based on individual neuron descriptions,

beginning with a highly accurate microscopic model and then deriving macroscopic

equations through analysis. However, incorporating the Hodgkin-Huxley equations

directly into large-network models proves computationally impractical due to their

intricate nature. It can potentially hinder insight into fundamental physiological

mechanisms. Consequently, significant analytic efforts have focused on reducing

complexity and deriving effective equations that faithfully represent large ensembles

of neurons [21, 24, 25]. Noteworthy examples of such models include the Morris-Lecar

model [110], the FitzHugh-Nagumo model [58], and the Integrate-and-fire model [28,

41]. This avenue of research remains vibrant, as exemplified by endeavors like the

Human Brain Project [106].

However, despite the simplifications introduced by these models, the bottom-up

approach still presents challenges and disadvantages. Computational complexity, data

fitting, and the interpretability of results still present significant challenges. On the

scale of modeling the number of neurons in the human brain, the complexity of even

the most streamlined model approaches that of the brain itself. For a more detailed

discussion of these triumphs and challenges, the reader is directed to [42] and [49].

An alternative method is commonly referred to as the “top-down” approach.

Inspired by statistical mechanics, this approach aims to model neuronal behavior

at a statistical level [43]. The resulting models produce what are called neural field

equations (sometimes also ambiguously referred to as neural mass models, mean

field models, and neural population models, but some make distinctions between

them [34]). These models segregate cortical tissue en masse into populations with

24



shared statistical properties [143]. A typical partition would be into excitatory and

inhibitory populations [79]. These models typically describe the average activity

across a region of space, which significantly reduces the theoretical complexity [18].

Furthermore, these models tend to be well suited for interpretability with physiological

measurements such as local field potentials (LFPs), electroencephalography (EEG),

or magnetoencephalography (MEG) [122].

The origins of neural field equations can be traced back to Beurle [16] and

Griffith [66, 67, 68]. However, modern canonical models of neural field theory are

believed to truly begin with the work of Freeman [60], Wilson [143], Wilson and Cowan

[142], Nunez [113], Lopes da Silva et al. [101] and Amari [2, 3].

A subset of models are known as balanced network models. It has been proposed

that observations such as temporal variability in neuron firing can be produced from

such equations when modeled as an approximately balanced state between excitatory

and inhibitory inputs [64, 129]. Characteristics of such models are net excitation

much greater than the firing threshold, balanced by inhibition input, and requiring

substantial fluctuations above the long time mean to fire. Early exploration was due

to Sompolinsky [135], see also [98, 124].

The complex and chaotic dynamics inherent in cellular and subcellular

interactions among extensive neuron populations suggest the suitability of stochastic

models, aligning with a prevalent theme in mathematical biology. Stochastic

neural fields, a significant area of neural field modeling, stem from two primary

methodologies: stochastic extensions of traditional neural field frameworks and

population density approach emphasizing microscale neuron interactions [22]. These

models excel in capturing randomness arising from neuron variability, providing a

more phenomenological perspective conducive to quantifying neural activity [78, 107,

115, 132]. Notably, they elucidate phenomena related to finite-size population effects

and rare events [23, 55, 92, 94]. By leveraging stochastic abstractions, these models
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better match experimental data, fostering data-driven research in neural dynamics

[13, 80, 128].

A popular means of studying high dimensional balanced neural networks is by

taking the connections to be static random variables [133]. These models utilize a

discrete matrix operator rather than a continuous spatial kernel to describe neuron

connectivity, treating the dynamics as a directed graph with non-linearly coupled

neural mass models. This approach uses random matrix theory to handle large-scale

complexity and compute the statistical properties of the system. Early work by Van

Vreeswijk, Crisanti, and Sompolinsky [135, 138] strongly suggested a phase transition

to chaotic dynamics as the network size increases. Key findings include the critical

role of connectivity parameters in phase transitions and using Dynamical Mean-field

theory to simplify large network dynamics into a manageable stochastic process. Early

work by Sompolinsky et al., [132] anticipated that low-dimensional population density

type equations could accurately describe such systems. These models were originally

developed for ‘spin glass’ systems [32, 108, 109, 116, 137]. Crisanti, Horner, and

Sommers performed the initial derivation of correlation-response equations applicable

to symmetric random neural networks [38], followed shortly afterward by Cugliandolo

and Kurchan[39]. The correctness of these equations was subsequently confirmed

by Ben Arous, Dembo, and Guionnet [12], who used concentration inequalities from

probability theory to produce a thorough and detailed proof.

As N becomes large, a process usually applied to dynamical systems would be to

calculate the fixed points and linearize the system around them to assess local stability;

however, this becomes computationally intractable for random neural networks due

to nested nonlinear coupling functions. Sompolinsky, Crisanti, and Sommers have

made significant advances in the literature on large N-limiting equations for such

networks. They proposed that Path Integral methods could yield limiting dynamical

equations [132] and subsequently published their derivation [37]. Physicists use Path
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Integral methods to derive population density equations by identifying where the

probability measure for the N-dimensional system concentrates. In probability theory,

Large Deviation Theory (LDT) is a potent tool for addressing this question [44]. The

pioneering papers of Ben Arous and Guionnet [10, 11, 70] utilized LDT to analyze

spin-glass dynamics. They obtained the first rigorous results regarding the large N

limit of random neural networks. Following this work, Grunwald applied LDT to

derive correlation/response equations for random neural networks with randomly

flipping spins between discrete states [69]. Moynot and Samuelides explored the

non-Gaussian case [111], while Faugeras and MacLaurin extended the work of Ben

Arous and Guionnet to incorporate correlations in connectivity [53]. Touboul and

Cabana determined the limiting equations for spatially extended systems [29, 30], and

Faugeras, Soret, and Tanre [54] derived novel integral equations to describe the state

of these systems. MacLaurin established limiting equations for jump-Markov spin

glass systems [103].

For a comprehensive overview of the critical stages of the history and development

of neural field theory, mean-field equations, and contemporary uses of this branch of

mathematical neuroscience, the reader is directed to the article by Cook et al. [34]

and the monograph by Helias and Dahmen [72].

3.2 Calcium Signaling

The second example system we will explore is the regulation of calcium signaling in

biological cells.

3.2.1 Phsyiology

Approximately one percent of the calcium (Ca2+) in the human body is found within

the cells. This calcium functions as an essential signaling molecule. It is necessary

for excitation-contraction coupling in muscles [50], excitation-secretion coupling in
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synapses [83], exocytosis [127], fluid transport elasticity in presynaptic and postsynaptic

neurons [91], gene regulation and differentiation [15], and cell movement and cell death

[33].

At equilibrium, most of the cells’s calcium resides within inner cell structures,

such as the endoplasmic reticulum. The concentration in the cytoplasm is several

orders of magnitude lower. Energy-consuming active pumps pump calcium into the

Endoplasmic Reticulum (ER). Channels on the surface of the ER can open to allow

calcium to flow into the cytoplasm. More specifically, when an agonist binds to a G

protein-coupled receptor (GPCR), it activates a G protein, activating phospholipase C

(PLC). PLC then splits phosphatidylinositol bisphosphate (PIP2) into diacylglycerol

(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 can then freely move within the cell

cytoplasm. Upon binding to IP3 receptors (IPR) located predominantly on the ER

membrane, IP3 triggers the release of calcium from the ER. The endoplasmic reticulum

is the primary internal compartment for calcium dynamics, with contributions from

mitochondrial stores and other inner cell structures playing a secondary role [47].

Calcium signaling is organized hierarchically [31, 62, 84]. Calcium dynamics

in cells exhibit threshold behavior similar to other excitable systems, where small

perturbations return to a steady state unless a significant disturbance causes a large

transient response, known as a calcium spike. These spikes manifest as oscillations

or waves across the cell, appearing smooth at a macroscopic level but resulting from

stochastic events at a microscopic scale. Specifically, the random opening and closing of

calcium channels (IPR channels) lead to localized releases referred to in the literature as

blips. These blips can aggregate into larger releases known as puffs, which collectively

generate cell-wide calcium waves. There is considerable evidence that calcium puffs

and waves are nonlinear stochastic phenomena: it has been observed, for instance,

that IP3 channels can be highly active even when the average open probability is

less than half its maximum [130]. The presence of abortive calcium waves indicates
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the stochastic origins of the phenomena. Indeed, clusters have a 60–100 nanometers

diameter, whereas the distance between clusters is much larger: 3–7 micrometers

[84]. Thus, calcium signaling fundamentally relies on stochastic interactions of these

channels influencing the overall calcium distribution in the cell’s cytoplasm.

One standard tool for measuring calcium concentration in a cell is via fluorescence

data. A fluorescent agent that binds to calcium is introduced and observed under

a microscope. Fluorescence ratio data is not a precise measurement of calcium

concentration, and calculating calcium concentration from the florescence ratio is

imprecise [77]. However, fluorescence data can give us an accurate measure of the

increase or decrease of calcium and can, therefore, record calcium spikes within the

cell.

3.2.2 Overview of historical mathematical modeling

Calcium signaling models, like many real-world models, are categorized into four

primary groups. The initial division distinguishes between deterministic and stochastic

models, while the second separates spatially homogeneous models from spatially

distributed ones. Classical models of calcium signaling are almost entirely deterministic

[47]. These models typically assume that the calcium concentration (and signaling

molecules such as IP3) within the cell can be well-approximated as homogeneous and

the dynamics can be accurately described by ordinary differential equations for the

evolution of their concentrations in time [84]. However, recent experimental evidence

and mathematical analysis have called this into question [35, 65, 87, 96, 118, 121,

125]. Data shows that (i) the interspike interval can show significant variability, and

(ii) intracellular calcium concentrations show steep gradients. It is, therefore, widely

postulated that much of the emergent phenomena are, in fact, stochastic in nature

[118, 125]. The well-established literature examines how spatially distributed calcium

waves and patterns can arise from microscopic stochastic models.
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Some of the earliest work is in the Fire-Diffuse-Fire model of Keizer and Smith

[87, 88]. In this model, Ryanodine Receptors open (and release calcium) once the

ambient calcium exceeds a threshold before closing, entering a refractory state, and

then opening again. Keizer and Smith demonstrated that this model exhibits spatially

distributed waves. Coombes, Hinch, and Timofeeva [35, 36] developed a similar model.

They estimated the release probability for a cluster of channels and determined that it

is approximately a sigmoidal function of the local calcium concentration. Keener [85]

further extended these works by taking the opening and closing of individual channels

to be stochastic.

There have been some efforts towards a detailed derivation of effective

macroscopic equations from a microscopic model. Hinch and Chapman, for example,

[75] used exponential asymptotic methods to determine the relative frequency of

calcium sparks. Falcke et al. employed approximations to determine estimates for

the approximate probability of calcium puffs (given the frequency of blips) and also

estimates for the probability of a wave throughout the cell [84, 121].
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CHAPTER 4

NEURAL NETWORK MODEL

This chapter concerns the high-dimensional dynamics of asymmetric random neural

networks of the form, for j ∈ IN = {1, 2, . . . , N}

dxj
t =

(
−xj

t/τ + βN−1/2

N∑
k=1

J jkλ(xk
t )

)
dt+ σtdW

j
t (4.1)

Where λ is a Lipschitz function, τ is a constant, and {J jk}j,k∈IN are sampled

independently from a centered normal distribution of variance 1, {W j
t }j,k∈IN are

Brownian Motions. We study the convergence of the double measure (a probability

measure on the path space of the system)

N−1
∑
j∈IN

δ(zj
[0,T ]

,Gj
[0,T ]

) (4.2)

where

Gj
t = N−1/2

N∑
k=1

J jkλ(xk
t )

This work follows the approach of Ben Arous and Guionnet see Subsection 3.1.2.

We employ the theory of Large Deviations to determine the large N limit of the

empirical measure. The main novelty of our approach is as follows. We study the

double empirical measure, which includes information on both the spins and the fields.

Using a double empirical measure has several advantages: it facilitates accurate finite-

dimensional approximations of the dynamics and a broader class of disorder-dependent

initial conditions. Grunwald determined the Large Deviations of the Double Empirical

Measure for Spin-Glass Dynamics of Jump-Markov Systems [69]. We also include

Replicas (i.e., M copies of the system with the same connectivity but independent
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Brownian Motions), which broadens the class of admissible disorder-dependent initial

conditions. Taillefumier et al. have employed replicas to study mean field neural

networks [7, 8, 144]. Lastly, the function λ can be unbounded, and the diffusion

coefficient σt can vary over time. The time-varying nature of σt is essential for studying

how periodic environmental noise in the brain shapes the dynamics of random neural

networks. The novelty of implementing these various elements in unison allows us to

gain unique insight, mathematical rigor, and tractability.

4.1 Notation and Definitions

Let IN = {1, 2, . . . , N} be the set of neuron indices. For any Polish space X , let P(X )

denote all probability measures over X . The space C([0, T ],R) is always endowed with

the supremum topology (unless indicated otherwise), i.e.

∥∥x[0,T ]

∥∥ = sup
t∈[0,T ]

|xt|

For y ∈ RN , ∥y∥ is the Euclidean norm. For any probability measures µ and ν over a

Polish Space, let R(µ||ν) denotes the relative entropy of measure µ with respect to ν.

For any two measures on the same metric space with metric d, dW (·, ·) indicates the

Wasserstein distance, i.e.

dW (µ, ν) = inf
ζ
Eζ
[
d(x, y)

]
, (4.3)

where the infimum is taken over all ζ on the product space such that the marginal

of the first variable is equal to µ and the marginal of the second variable is equal to

ν. In the particular case that µ, ν ∈ C([0, T ],RM), the distance is (unless otherwise

indicated) d(x, y) = supt∈[0,T ] supp∈IM

∣∣xp
t − ypt

∣∣.
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For any µ ∈ P
(
C([0, T ],RM)2

)
, we write µ(1), µ(2) ∈ P

(
C([0, T ],RM)

)
to be the

marginals over (respectively) the first M variables and last M variables.

4.2 Model Description

We are going to rigorously determine the limiting dynamics of multiple replicas (with

identical connections J, but with independent initial conditions and independent

Brownian Motions). We let the superscript a denote replica a ∈ IM = {1, 2, . . . ,M},

and consider the system

dza,jt =
(
− za,jt /τ +Ga,j

t

)
dt+ σtdW

a,j
t where (4.4)

Ga,j
t =N−1/2

∑
k∈IN

J jkλ(za,kt ). (4.5)

We assume that λ ∈ C2(R) and that the first derivative is uniformly bounded: this

means, in particular, that there is a constant Cλ such that |λ(x)− λ(y)| ≤ Cλ|x− y|.

The noise intensity t → σt is taken to be continuous and non-random, and such that

for constants σ and σ̄,

0 < σ ≤ σt ≤ σ̄. (4.6)

Our primary motivation for time-varying diffusivity lies in neuroscience: often, synaptic

noise exhibits particular rhythms. It has been of significant interest how these rhythms

shape pattern formation [26].

The connectivities {J jk} are taken to be independent centered Gaussian variables,

with variance

E
[
J jkJ lm

]
= δ(j, l)δ(k,m).

Let γN ∈ P
(
RN2)

be their joint probability law.
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4.3 Initial Condition Assumptions

One can assume that the initial conditions (zj0)j∈IN are (i) independent of the connec-

tivity and (ii) sampled independently from a RM -valued probabilistic distribution of

bounded variance. This distribution is written as κ̂ ∈ P(RM).

4.4 Main Theoretical Results

Our main result is that the empirical measure converges to a fixed point of a mapping

Φ : U → U . Here U ⊂ P
(
C([0, T ],RM )2

)
will be defined to consist of (i) a broad class

of measures with nice regularity properties, and (ii) such that the empirical measure

inhabits U with unit probability.

One first defines
(
Gp

t

)
p∈IM #t∈[0,T ]

to be a centered Gaussian system such that

E
[
Gp

tG
q
s

]
= Eµ

[
λ(zpt )λ(z

q
s)
]
.

(zp0)p∈IM is independent of
(
Gp

t

)
p∈IM #t∈[0,T ]

and is distributed according to κ̂. For

Brownian Motions
(
W p

[0,T ]

)
p∈IM

, that are independent of Gµ, zpt is the strong solution

of (4.4).

Theorem 4.4.1. There exists a well-defined mapping Φ for all µ ∈ U . Furthermore

there exists a unique probability measure ξ ∈ P
(
C([0, T ],RM)2

)
such that with unit

probability,

lim
N→∞

N−1
∑
j∈IN

δ(zj
[0,T ]

,Gj
[0,T ]

) = ξ. (4.7)

ξ is the unique measure such that Φ(ξ) = ξ. Furthermore,

ξ = lim
n→∞

ξ(n), (4.8)

where ξ(n+1) = Φ(ξ(n)) and ξ(1) is any measure in U .
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The proof of this theorem will be provided in Chapter 5. This theorem is

valuable because it offers an efficient method to determine the large N limiting

equations through the repeated application of the mapping Φ. Given that the limiting

system is Gaussian, solving for its covariance matrix suffices. For an alternative

formulation of the limiting covariance function in terms of a PDE, refer to Helias

and Dahmen [72]. In addition, Faugeras, Tanré, and Soret studied the asymptotic

behavior of a network of linear Hopfield neurons with random synaptic connections.

They demonstrated that the system converges in distribution to the sum of initial

values and centered Gaussian processes. They showed that these processes, which are

not Markovian, can be expressed using modified Bessel functions [56].
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CHAPTER 5

LARGE DEVIATION PRINCIPLES FOR NEURAL NETWORKS

The main goal of this section is to prove Theorem 4.4.1 employing the theory of Large

Deviations [45]. The method - similar to the original work by Ben Arous and Guionnet

[10] - is to (i) prove a Large Deviations Principle for the uncoupled system and then

(ii) perform an exponential change-of-measure using Girsanov’s Theorem to obtain

the Large Deviations Principle for the coupled system, before (iii) proving that the

rate function has a unique zero.

The main differences between this work and the early papers of Ben Arous and

Guionnet are that we (i) study the convergence of the double empirical measure (4.2)

(whereas Ben Arous and Guionnet study the convergence of the ‘annealed empirical

measure’ in their earlier papers [10]. In the later works [11, 12] quenched asymptotics

are determined) and (ii) we employ replicas.

5.1 Large Deviations of the Uncoupled System

We start by stating a LDP for the uncoupled system. Define the uncoupled dynamics,

yp,jt = zp,j0 +

∫ t

0

σsdW
p,j
s , (5.1)

and let PN
z0

∈ P
(
C([0, T ],RM)N

)
be the law of {yj[0,T ]}j∈IN , conditioned on y0 being

equal to z0.

We establish a LDP for the uncoupled system by locally freezing the dependence

of the fields {G̃p,j
t } on the empirical measure. To do this, we must first define a

regular subset Qa (for a positive integer a ≫ 1) that is such that (i) the empirical

measure µ̂N (y) = N−1
∑

j∈IN δyj
[0,T ]

∈ P
(
C([0, T ],RM )

)
inhabits with high probability
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and (ii) there exist uniform bounds on the fluctuations in time. To this end, writing

Ka to be the compact set specified in Lemma A.2, define the set

Qa =

{
µ ∈ P

(
C([0, T ],RM)

)
: µ ∈ Ka and sup

p∈IM
Eµ[ sup

t∈[0,T ]

(ypt )
2
]
≤ a and

For all integers m ≥ a it holds that sup
0≤i≤m

Eµ
[
sup
p∈IM

(wp

t
(m)
i+1

− wp

t
(m)
i

)2
]
≤ ∆1/4

m

}
(5.2)

where ∆m = T/m and t
(m)
i = iT/m. Write

Q =
⋃
a≥1

Qa. (5.3)

Lemma 5.1.1. For any L > 0, there exists a > 0 such that

lim
N→∞

N−1 logP
(
µ̂N(y) /∈ Qa

)
≤ −L (5.4)

The above lemma is proved in the Appendix A. Next, for any ν ∈ Q, we define

a centered Gaussian law βν ∈ P
(
C([0, T ],R)M

)
as follows. We stipulate that βν is the

law of Gaussian random variables {Gν,p
t }t∈[0,T ],p∈IM with covariance structure

Eβν
[
Gν,p

s Gν,q
t

]
= Eν

[
λ(xp

s)λ(x
q
t )
]

(5.5)

This definition will be useful because for any j ∈ IN , the law of G̃j
[0,T ] under γ

N is

βµ̂N (y). In the following Lemma we collect some regularity estimates for the Gaussian

Law βν .

Lemma 5.1.2. (i) βν is a well-defined Gaussian probability law. (ii) Furthermore,

the map t → Gν,p
t is ‘uniformly continuous’ for all measures in Ua, in the following
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sense. For any a > 0, and any ϵ > 0, there exists δ(a, ϵ) such that for all ν ∈ Ua,

sup
ν∈Ua

sup
p∈IM

Eβν

[
sup

s,t∈[0,T ]#|s−t|≤δ(a,ϵ)

∣∣Gν,p
s −Gν,p

t

∣∣] ≤ ϵ (5.6)

Write QN = γN ⊗ PN to be the law of the random variables (y,G), and for any

ν ∈ Q, define Sν ∈ P
(
C([0, T ],RM)2

)
to be Sν = P ⊗ βν .

We then arrive at the following LDP for the uncoupled system,

Theorem 5.1.3. Let A,O ∈ B
(
P
(
C([0, T ],RM )2

))
, such that O is open and A closed.

Then

lim
N→∞

N−1 logQN
(
µ̂N(y[0,T ],G[0,T ]) ∈ A

)
≤ − inf

µ∈A
R
(
µ||Sµ(1)

)
(5.7)

lim
N→∞

N−1 logQN
(
µ̂N(y[0,T ], G̃[0,T ]) ∈ O

)
≥ − inf

µ∈O
R
(
µ||Sµ(1)

)
. (5.8)

Here the rate function µ → R
(
µ||Sµ(1)

)
is lower semi-continuous and has compact

level sets.

5.2 Large Deviations of the Coupled System

We now specify the operator Φ̃ : U → U . Fix µ ∈ U and define Φ̃(µ) to be the law of

processes
(
zp[0,T ], G

p
[0,T ]

)
p∈IM #t∈[0,T ]

. One first defines
(
Gp

t

)
p∈IM #t∈[0,T ]

to be a centered

Gaussian system such that

E
[
Gp

tG
q
s

]
= Eµ

[
λ(zpt )λ(z

q
s)
]
.

(zp0)p∈IM is defined to be independent of
(
Gp

t

)
p∈IM #t∈[0,T ]

and distributed according to

κ̂. Letting
(
W p

[0,T ]

)
p∈IM

be Brownian Motions that are independent of Gµ , we define
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(zpt )p∈IM #t∈[0,T ] to be the strong solution to the stochastic differential equation

dzpt =
(
− τ−1zpt +Gµ,p

t

)
dt+ σtdW

p
t . (5.9)

We now arrive at the LDP for the coupled system and our main result on the

convergence of the empirical measure for the system µ̂ to a unique measure ξ as given

in Theorem 4.4.1.

Theorem 5.2.1. For any ϵ > 0,

lim
N→∞

N−1 logP
(
dW (µ̂N(z,G), ξ) ≥ ϵ

)
< 0. (5.10)

Thanks to the Borel-Cantelli Lemma, this implies that with unit probability,

lim
N→∞

µ̂N(z,G) = ξ. (5.11)

Furthermore,

ξ = lim
n→∞

ξ(n), (5.12)

where ξ(n+1) = Φ̃(ξ(n)) and ξ(1) is any measure in U .

We have divided the proofs into four main sections. In Section 5.3, we prove

general regularity properties of the stochastic processes. In Section 5.4, we prove that

the empirical measure inhabits a compact set with arbitrarily high probability. In

Section 5.5, we prove the LDP for the uncoupled system. In Section 5.6, we determine

the limiting dynamics of the coupled system.

5.3 Regularity Estimates and Compactness

We first prove Lemma 5.1.2.
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Proof. We first check that the covariance function is positive definite (when restricted

to a finite set of times). Let {ti}1≤i≤m ⊂ [0, T ] be a finite set of times. Then evidently

for any constants {αp
i }p∈IM ,1≤i≤m, it must be that

∑
p,q∈IM

∑
1≤i,j≤m

αp
iα

q
jEν
[
λ
(
xp
ti

)
λ
(
xq
tj

)]
= Eν

[( ∑
p∈IM

∑
1≤i≤m

αp
iλ
(
xp
ti

))2] ≥ 0. (5.13)

This means that there exists a finite set of centered Gaussian variables

{Gν,p

t
(m)
i

}p∈IM #1≤i≤m such that (5.5) holds. It then follows from the Komolgorov Extension

Theorem that βν is well-defined on any countably dense subset of times of [0, T ]. It

remains for us to demonstrate continuity, i.e., that a Gaussian probability law exists

such that (5.5) holds for all time. We do this using standard theory for the continuity

of Gaussian Processes (following Chapter 2 of [1]).

First, we notice that as Gν,p
t are given to be centered Gaussian variables, therefore

they have bounded second moment (finite variance) by definition of the variance of

Gaussian variables, so we have

sup
p∈IM

sup
t∈[0,T ]

E
[
(Gν,p

t )2
]
< ∞. (5.14)

Now define the canonical metric,

d̄p(s, t) =E
[(
Gν,p

s −Gν,p
t

)2] 1
2 = Eν

[(
λ(xp

s)− λ(xp
t )
)2] 1

2 (5.15)

≤Const sup
p∈IM

Eν
[∣∣xps − xpt

∣∣2] 1
2 ≤ a (t− s)

1
4 (5.16)

thanks to properties of the set Qa, for all s, t such that |s− t| is smaller than some

constant depending on a. It follows from Theorem 1.4.1 of [1] that the Gaussian

Process (Gν,p
t )t∈[0,T ] is almost-surely continuous.

Write Bt(ϵ) =
{
s ∈ [0, T ] : d̄(s, t) ≤ ϵ

}
to be the ϵ-ball about t, and let N (ϵ)

denote the smallest number of such balls that cover T . We see that there exists a
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constant ca > 0 such that

N (ϵ) ≤ caϵ
−4. (5.17)

Writing H(ϵ) = logN (ϵ), it follows from Theorem 1.3.5 in [1] that there exist M

Gaussian Processes (Gν,p
t )t∈[0,T ] such that t → Gν,p

t is almost-surely continuous, and

there exists a universal constant K > 0 and a random η > 0 such that for all δ < η,

sup
p∈IM #s,t≤T #d̄(s,t)≤δ

∣∣Gν,p
s −Gν,p

t

∣∣ ≤ K

∫ δ

0

H1/2(ϵ)dϵ (5.18)

≤ K

∫ δ

0

(
4 log

(
ϵ−1
)
+ log ca

) 1
2dϵ, (5.19)

and we note that the above goes to 0 as δ → 0+. This also implies (5.6).

The following bound on the operator norm of the connectivity matrix is well-

known (and the proof is omitted).

Lemma 5.3.1. For any L > 0, there exists ℓ such that

lim
N→∞

N−1 logP
(
∥JN∥ ≥ ℓ

)
≤ −L, (5.20)

where JN ∈ RN×N has (j, k) entry

JN,jk = N−1/2J jk

Lemma 5.3.2. For any ℓ > 0, there exists L > 0 such that for all p ∈ IM and all

N ≥ 1,

N−1 logP
(
Ac , sup

t∈[0,T ]

∑
j∈IN

(zp,jt )2 ≥ Nℓ
)
≤ −L (5.21)

41



where

Ac =

{
∥JN∥ ≤ c , sup

p∈IM

∑
j∈IN

(zp,j0 )2 ≤ NEκ[(zp0)
2] +N

}
.

Proof. Write

ut = N−1
∑
j∈IN

(zp,jt )2.

If the event Ac holds, then thanks to Ito’s Lemma it must be that

dut =
{
− 2τ−1ut + 1 + 2N−1

∑
j∈IN

zp,jt Gp,j
t

}
dt+ 2N−1

∑
j∈IN

zp,jt dW p,j
t (5.22)

≤
{
− 2τ−1ut + 1 + cCλut

}
dt+ 2N−1

∑
j∈IN

zp,jt dW p,j
t , (5.23)

since N−1
∑

j∈IN λ(zp,jt )2 ≤ C2
λut. Write

vt = sup
s∈[0,t]

2N−1

∣∣∣∣ ∑
j∈IN

∫ t

0

zp,js dW p,j
s

∣∣∣∣, (5.24)

and define the stopping time for a constant A > 0,

τA = inf
{
t ≥ 0 : vt ≥ exp(At) + A

}
. (5.25)

Gronwall’s Inequality implies that for all t ≤ τA,

ut ≤
(
A+ u0 + t

)
exp

(
c̃t
)

where c̃ = A+ cCλ − 2τ−1. The quadratic variation of x(t) := N−1
∑

j∈IN

∫ t

0
zp,js dW p,j

s

is

(QV )Nt = N−2
∑
j∈IN

∫ t

0

(zp,js )2ds. (5.26)
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For all t ≤ τA,

(QV )Nt ≤ N−1c̃−1
(
A+ u0 + t

)
exp

(
c̃t
)
:= N−1ht, (5.27)

and notice that ht is independent of the Brownian Motions. Now define the stochastic

process w(t) to be such that

w(t) =x
(
αN
t

)
where (5.28)

αN
t = inf

{
s ≥ 0 : (QV )Ns = t

}
(5.29)

Thanks to the time-rescaled representation of a stochastic integral, w(t) is a Brownian

Motion [82]. Writing f(t) = exp(At) + A, it follows that

P
(

There exists s ≤ T such that
∣∣x(s)∣∣ ≥ f(s)

)
≤P
(

There exists s ≤ T such that
∣∣w(N−1hs)

∣∣ ≥ f(s)

)
≤P
(

There exists s ≤ T such that
∣∣w(N−1hs(m))

∣∣ ≥ f(s(m))

)

and we have written

s(m) = inf
{
t(m)
a : t(m)

a ≥ s
}

(5.30)

s(m) = sup
{
t(m)
a : t(m)

a ≤ s
}
. (5.31)

and we recall that t
(m)
a = Ta/m. Employing a union-of-events bound,

P
(

There exists s ≤ T such that
∣∣w(hs(m))

∣∣ ≥ f(s(m))

)
≤

m−1∑
a=0

{
P
(
w
(
N−1h

t
(m)
a+1

)
≥ f

(
t(m)
a

))
+ P

(
w
(
N−1h

t
(m)
a+1

)
≤ −f

(
t(m)
a

))}
(5.32)
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Now since w(t) is centered and Gaussian, with variance of t,

N−1 logP
(
w
(
N−1h

t
(m)
a+1

)
≥ f

(
t(m)
a

))
=− N

2
f
(
t(m)
a

)2(
h
t
(m)
a+1

)−1
+O

(
logN

)
(5.33)

N−1 logP
(
w
(
N−1h

t
(m)
a+1

)
≤ −f

(
t(m)
a

))
=− N

2
f
(
t(m)
a

)2(
h
t
(m)
a+1

)−1
+O

(
logN

)
. (5.34)

We fix m = A and take A to be arbitrarily large. Then

lim
A→∞

inf
0≤a≤m−1

f
(
t(m)
a

)2(
h
t
(m)
a+1

)−1
= ∞.

We thus find that, for large enough A,

lim
N→∞

N−1 logP
(
Ac, There exists s ≤ T such that

∣∣x(s)∣∣ ≥ f(s)

)
≤ −L. (5.35)

We have already demonstrated in the course of the proof that if the event Ac holds,

and sups∈[0,T ] |x(s)| ≤ f(s), then there exists a constant such that supt∈[0,T ] ut ≤ Const.

We have thus established the Lemma.

The following L2-Wasserstein distance provides a very useful way of controlling

the dependence of the fields (Gν
t ) on the measure ν. Define d

(2)
t (·, ·) to be such that

for any µ, ν ∈ U ,

d
(2)
t (µ, ν) = inf

ζ
Eζ

[ ∑
p∈IM

∫ t

0

{
(yps − ỹps)

2 + (Gp
s − G̃p

s)
2
}
ds

]1/2
, (5.36)

where the infimum is over all ζ ∈ P
(
C([0, T ],R2M )× C([0, T ],R2M

)
, such that the law

of the first 2M processes is given by µ, and the law of the last 2M processes is given

by ν. Let d(2)(µ, ν) := d
(2)
T (µ, ν).
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Lemma 5.3.3. For any a > 0, d(2)(·, ·) metrizes weak convergence in Ua. Furthermore,

lim
ϵ→0+

sup
{
dW (µ, ν) : µ, ν ∈ Ua and d(2)(µ, ν) ≤ ϵ

}
= 0. (5.37)

Proof. Since Ua is compact, Prokhorov’s Theorem implies that for any ϵ̃ > 0, there

exists a compact set Dϵ ⊂ C([0, T ],RM)2 such that for all µ ∈ Ua,

µ
(
Dϵ

)
≥ 1− ϵ̃. (5.38)

Since Dϵ is compact, it follows from the Arzela-Ascoli Theorem that for any δ > 0,

there exists υ(ϵ, δ) such that for all f, g ∈ Dϵ such that for all p ∈ I2M ,

∫ T

0

(fp(t)− gp(t))2dt ≤ υ(ϵ, δ), (5.39)

it necessarily holds that

sup
p∈IM

sup
t∈[0,T ]

∣∣fp(t)− gp(t)
∣∣ ≤ δ. (5.40)

Let ζ be any measure that is within η ≪ 1 of realizing the infimum in (5.36). Then,

writing

Aϵ = χ
{
For each p ∈ IM , yp, ỹp, gp, g̃p ∈ Dϵ

}
,

we have the bound

Eζ

[
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣]

≤ Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)Aϵ

]
+

Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)(1−Aϵ

)]
(5.41)
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Now we take d(2)(µ, ν) → 0+, and η → 0+ too. Since Aϵ is closed, thanks to the

Portmanteau Theorem, we thus find that for any ϵ > 0,

Eζ

[
Aϵ

∑
p∈IM

∫ T

0

{
(yps − ỹps)

2 + (Gp
s − G̃p

s)
2
}
ds

]
→ 0. (5.42)

which in turn implies that (making use of the uniform convergence over Dϵ in (5.40))

Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)Aϵ

]
→ 0. (5.43)

For the other term on the RHS of (5.41), for b > 0, write

Bb = χ

{
For each p ∈ IM , sup

t∈[0,T ]

∣∣ypt ∣∣ ≤ b , sup
t∈[0,T ]

∣∣ỹpt ∣∣ ≤ b ,

sup
t∈[0,T ]

∣∣gpt ∣∣ ≤ b , sup
t∈[0,T ]

∣∣g̃pt ∣∣ ≤ b

}

Then,

Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)(1−Aϵ

)]
≤ Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)(1−Aϵ

)
Bb

]
+ Eζ

[(
sup
p∈IM

sup
t∈[0,T ]

∣∣yp(t)− ỹp(t)
∣∣+ sup

p∈IM
sup

t∈[0,T ]

∣∣gp(t)− g̃p(t)
∣∣)(1−Aϵ

)(
1− Bb

)]
.

(5.44)

Thanks to the fact that, for all µ ∈ Ua,

sup
p∈IM

Eµ
[
sup

t∈[0,T ]

(ypt )
2
]
≤ a,
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one finds that the second term on the RHS of (5.44) goes to 0 as b → ∞, uniformly for

all ϵ > 0 and all µ, ν ∈ Ua . For any fixed b ≫ 1, the first term on the RHS of (5.44)

must go to zero as ϵ → 0+, thanks to (5.38). We have thus proved the Lemma.

For µ ∈ Q, we define d
(2)
t (µ, ν) analogously to (5.36).

Lemma 5.3.4. There exists a constant C > 0 such that for all µ, ν ∈ Q and all

t ∈ [0, T ],

d
(2)
t (βν , βµ) ≤ Cd

(2)
t (ν, µ). (5.45)

Also for all µ, ν ∈ Q such that for some b > 0, det(Vµ,0), det(Vν,0) ≥ b > 0, there

exists a constant Cb such that

d
(2)
t

(
βν,g, βµ,g

)
≤ C̃b(1 + ∥g∥)d(2)t (ν, µ), (5.46)

and ∥·∥ is the Euclidean norm on RM .

5.4 Exponential Tightness

To prove a Large Deviation Principle, one requires that the empirical measure inhabits

a compact set with arbitrarily high probability. For any y ∈ C([0, T ],RM)N , write

γ̃N
y ∈ P

(
C([0, T ],RM)N

)
to be the law of the random variables (G̃p,j

t )j∈IN #p∈IM #t∈[0,T ].

The following lemmas are needed for this proof.

Lemma 5.4.1. For any L > 0, there exists a compact set C̃L ⊂ P
(
C([0, T ],RM )

)
such

that the following holds. For any N ≥ 1, and any {yj
[0,T ]}j∈IN such that µ̂N(y) ∈ QL,

N−1 log γ̃N
y

(
µ̂N(G) /∈ C̃L

)
≤ −L. (5.47)
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For µ ∈ P
(
C([0, T ],R)M × C([0, T ],R)M

)
, write µ(1) ∈ P

(
C([0, T ],R)M

)
to be

the marginal of µ over its first M variables, and µ(2) to be the marginal of µ over its

last M variables. Next, define the set

Ua =

{
µ ∈ P

(
C([0, T ],R)M × C([0, T ],R)M

)
: µ(1) ∈ Qa, µ

(2) ∈ C̃a and

sup
t∈[0,T ]

sup
p∈IM

Eµ[(Gp
t )

2] ≤ C2
λa, for all 0 ≤ s, t ≤ T,

sup
p∈IM

Eµ[(Gp
t −Gp

s)
2] ≤ aC2

λ|t− s|1/2
}
,

(5.48)

and let

U =
⋃
a≥0

Ua. (5.49)

It follows immediately from the above definition that dW (µ, ν) < ∞ for any µ, ν ∈ U .

We can now prove an ‘exponential tightness’ result.

Lemma 5.4.2. For any a ≥ 0, Ua is compact. For any L > 0, there exists a > 0 such

that

lim
N→∞

sup
(z0,g0)∈YN

N−1 logQN
z0,g0

(
µ̂N /∈ Ua

)
≤ −L. (5.50)

Proof. Since the sets Qa and C̃a are compact, this follows almost immediately from

Lemma 5.4.1.

5.5 Proof of Large Deviations of the Uncoupled System

In this section, we prove Theorem 5.1.3.

48



For some ν ∈ Q, let QN
ν ∈ P

(
C([0, T ],RM)N × C([0, T ],RM)N

)
be the joint law

of the uncoupled system, i.e.

QN
ν =

(
βν ⊗ Pz

)⊗N
. (5.51)

Define the empirical measure µ̃N ∈ P
(
C([0, T ],R)M × C([0, T ],R)M

)
to be

µ̃N = N−1
∑
j∈IN

δyj
[0,T ]

,G̃ν,j
[0,T ]

, (5.52)

where we recall that

ypt = zp0 +

∫ t

0

σsdW
p
s . (5.53)

Lemma 5.5.1. Fix some ν ∈ U . Let A,O ⊆ P
(
C([0, T ],RM )2

))
, such that O is open

and A closed. Then

lim
N→∞

N−1 logQN
ν

(
µ̃N(y[0,T ],G

ν
[0,T ]) ∈ A

)
≤ − inf

µ∈A
R(µ||Sν) (5.54)

lim
N→∞

N−1 logQN
ν

(
µ̃N(y[0,T ],G

ν
[0,T ]) ∈ O

)
≥ − inf

µ∈O
R(µ||Sν). (5.55)

Furthermore µ → R(µ||Sν) is lower semi-continuous, and has compact level sets.

Proof. This is a consequence of Sanov’s Theorem [44].

We will now prove Theorem 5.1.3 as follows.
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Proof. We start with the upper bound (5.7). We write µ̂N := µ̂N (y[0,T ],G[0,T ]). Using

a union-of-events bound, for any a > 0,

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ A

)
≤

max

{
lim

N→∞
N−1 logQN

z0,g0

(
µ̂N ∈ A ∩ Ua

)
,

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N /∈ Ua

)}
≤ max

{
lim

N→∞
N−1 logQN

z0,g0

(
µ̂N ∈ A ∩ Ua

)
,−L

}
, (5.56)

for any L > 0, as long as a is sufficiently large, thanks to the exponential tightness

proved in Lemma 5.4.2. By taking a → ∞, it thus suffices that we prove that for

arbitrary Ua such that A ∩ Ua ̸= ∅,

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ A ∩ Ua

)
= − inf

µ∈A∩Ua

R
(
µ||Sµ(1)

)
. (5.57)

Since A ∩ Ua is compact, for any ϵ > 0, we can always find an open covering of

the form, for some positive integer Nϵ, {ζi}1≤i≤Nϵ ⊆ A ∩ Ua,

A ∩ Ua ⊆
Nϵ⋃
i=1

Bϵ(ζi). (5.58)

We thus find that

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ A ∩ Ua

)
≤ sup

1≤i≤Nϵ

{
lim

N→∞
N−1 logQN

z0,g0

(
µ̂N ∈ Bϵ(ζi)

)}
. (5.59)
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Thus, employing Lemma 5.1.2 in the third line below,

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ Bϵ(ζi)

)
= lim

N→∞
N−1 logEPN

z0

[
γN
y,g0

(
µ̂N ∈ Bϵ(ζi)

)]
= lim

N→∞
N−1 logEPN

z0

[
γ̃N
µ̂N (y),g0

(
µ̂N ∈ Bϵ(ζi)

)]
≤ lim

N→∞
N−1 logEPN

z0

[
sup

ν∈Bϵ(ζi)

γN
ν(1),g0

(
µ̂N ∈ Bϵ(ζi)

)]
= − inf

µ,ν∈Bϵ(ζi)
R(µ||Sν),

(5.60)

thanks to Lemma 5.5.1. We thus find that

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ A ∩ Ua

)
≤ − inf

1≤i≤Nϵ

inf
ν,µ∈Bϵ(ζi)

R(µ||Sν). (5.61)

Now, it is proved in Lemma 5.3.4 that ν → Qν,z0,g0 is continuous. Since the Relative

Entropy is lower-semi-continuous in both of its arguments, we thus find that the

following map is lower-semi-continuous,

(ν, µ) → R(µ||Sν).

Thus taking ϵ → 0+, we obtain that

lim
ϵ→0+

inf
1≤i≤Nϵ

inf
ν,µ∈Bϵ(ζi)

R(µ||Sν) = inf
µ∈A∩Ua

R
(
µ||Sµ(1)

)
, (5.62)

and we have proved (5.57).

Turning to the lower bound (5.8), consider an arbitrary open set O. If O∩U = ∅,

then

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ O

)
= −∞ = − inf

µ∈O
R
(
µ||Sµ(1)

)
(µ),

since R
(
µ||Sµ(1)

)
is identically ∞ outside of U . In this case, its clear that (5.55) holds.

51



We can thus assume that O∩U ≠ ∅. Let µ ∈ O be such that µ is in the interior

of Ua, for some a > 0. We can thus find a sequence of neighborhoods {Ni}i≥1 of µ

such that Nj ⊆ O ∩ Ua ∩Bj−1(µ). We thus find that for any j ≥ 1,

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ O

)
≥ lim

N→∞
N−1 logQN

z0,g0

(
µ̂N ∈ Nj

)
. (5.63)

Similarly to the bound for the closed sets, we obtain that

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ Nj

)
≥ − sup

ν∈Nj

inf
µ∈Nj

R(µ||Sν). (5.64)

Taking j → ∞, since (ν, µ) → R(µ||Sν) is lower semicontinuous, it must be that

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ Nj

)
≥ −R

(
µ||Sµ(1)

)
. (5.65)

Since µ ∈ O is arbitrary, it must be that

lim
N→∞

N−1 logQN
z0,g0

(
µ̂N ∈ O

)
≥ − inf

µ∈O
R
(
µ||Sµ(1)

)
. (5.66)

5.6 Proof of Large Deviations of the Coupled System

Girsanov’s Theorem implies that

dPN
J,z0

dPN
z0

∣∣∣∣
FT

(y) = exp
(
NΓN

J,T (y)
)

(5.67)

where ΓN
J,T : RMN → R is

ΓN
J,T (y) = N−1

∑
j∈IN #p∈IM

∫ T

0

σ−2
s

(
G̃p,j

s −τ−1yp,js

)
dyp,js −1

2
σ−2
s

(
G̃p,j

s −τ−1yp,js

)2
ds. (5.68)
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We wish to specify a map Γ : U → R with (i) as nice regularity properties as possible,

and (ii) such that with unit probability

ΓN
J,T (y) = Γ

(
µ̂N(y,G)

)
. (5.69)

It is well-known that the stochastic integral is not a continuous function of the driving

Brownian motion (considered as an object in C([0, T ],R), and endowing this space

with the topology of uniform convergence). Thus, we define the map Γ to be a limit

of time-discretized approximations, and we will show that this limit must always

converge for any measure in U .

Our precise definition of Γ : U → R is as follows. We first define a time-discretized

approximation to Γ. Γ(m) : U → R+,

Γ(m)(µ) =
∑
p∈IM

m−1∑
a=0

Eµ

[
σ−2

t
(m)
a

(
Gp

t
(m)
a

− τ−1zp
t
(m)
a

)(
zp
t
(m)
a+1

− zp
t
(m)
a

+∆mτ
−1zp

t
(m)
a

)
− 1

2
σ−2

t
(m)
a

∆m

(
Gp

t
(m)
a

− τ−1zp
t
(m)
a

)2]
. (5.70)

where ∆m = T/m and t
(m)
i = iT/m. We now define Γ : U → R to be such that (in

the case that the following limit exists)

Γ(µ) = lim
j→∞

Γ(mj,j)(µ), (5.71)

where mj,j is a positive integer defined further below in Lemma 5.6.2. If the above

limit does not exist, then we define Γ(µ) = 0 (in fact, we will see that the limit always

exists if µ ∈ U). It may be observed that Γ is a well-defined measurable function.

Lemma 5.6.1. For every N ≥ 1, every (z0,g0) ∈ κ̂, and for QN
z0,g0

(the law of the

random variables (y,G) conditioned on z0, g0) almost every (y,G), the following limit
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exists

lim
j→∞

Γ(mj,j)
(
µ̂N(y,G)

)
(5.72)

With unit probability, the Radon-Nikodym Derivative in (5.67) is such that

dPN
J,z0

dPN
z0

∣∣∣∣
FT

= exp
(
Γ
(
µ̂N(y,G)

))
(5.73)

Also for any ϵ, L > 0, there exists k ∈ Z+ such that for all N ≥ 1,

sup
j≥k

N−1 logQN
z0,g0

(∣∣Γ(mj,j)
(
µ̂N(y,G)

)
− Γ

(
µ̂N(y,G)

)∣∣ ≥ ϵ

)
≤ −L (5.74)

Proof. Define the set

Aj =
{
µ ∈ U :

∣∣Γ(mj,j)(µ)− Γ(mj+1,j+1)(µ)
∣∣ ≥ 21−j

}
(5.75)

Thanks to a union-of-events bound, for any N ≥ 1, and using the bound in Lemma

5.6.2,

sup
z0,g0∈YN

QN
z0,g0

(
µ̂N ∈

⋃
j≥k

Aj

)
≤

∞∑
j=k

exp
(
−N2j

)
. (5.76)

It thus follows from the Borel-Cantelli Lemma [5, 57] that for each N ≥ 1, there must

exist a random k such that µ̂N /∈ Aj for all j ≥ k, and so the limit in (5.72) exists

(almost surely). (5.74) follows analogously. As the time-discretization tends to 0, the

summation must converge to the stochastic integral, hence (5.73) must be true too.
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Lemma 5.6.2. (i) Γ(m) : U → R is continuous. (ii) Moreover, for any a, j ∈ Z+,

there exists ma,j such that for all m ≥ ma,j and all n ≥ m,

sup
z0,g0∈YN

N−1 logQN
z0,g0

(∣∣Γ(m)
(
µ̂N(y,G)

)
− Γ(n)

(
µ̂N(y,G)

)
≥ 2−j

)
≤ −2a. (5.77)

Proof. (i) The continuity of Γ(m) is immediate from the definition.

(ii) For any t ∈ [0, T ], write t(m) = sup{t(m)
b : t

(m)
b ≤ t}. Starting with the

discrete approximation to the stochastic integral, we can thus write

m−1∑
b=0

σ−2

t
(m)
a

(
Gp

t
(m)
b

− τ−1zp
t
(m)
b

)(
zp
t
(m)
b+1

− zp
t
(m)
b

)
=

∫ T

0

σ−2
t(m)

(
Gp

t(m) − τ−1zp
t(m)

)
dzpt . (5.78)

Hence,

m−1∑
b=0

Eµ

[
σ−2

t
(m)
b

(
Gp

t
(m)
b

− τ−1zp
t
(m)
b

)(
zp
t
(m)
b+1

− zp
t
(m)
a

)]
−

n−1∑
ab=0

Eµ

[
σ−2

t
(n)
b

(
Gp

t
(n)
b

− τ−1zp
t
(n)
b

)(
zp
t
(n)
b+1

− zp
t
(n)
b

)]
= Eµ

[ ∫ T

0

{
σ−2
t(m)

(
Gp

t(m) − τ−1zp
t(m)

)
− σ−2

t(n)

(
Gp

t(n) − τ−1zp
t(n)

)}
dzpt

]
= Eµ

[ ∫ T

0

∑
p∈IM

(fp

t(m) − fp

t(n))dz
p
t

]
(5.79)

where fp
t = σ−2

t

(
Gp

t − τ−1zpt
)
. Writing

fp,j
t = σ−2

t

(
Gp,j

t − τ−1zp,jt

)
, (5.80)

we obtain that

Eµ̂N

[ ∫ T

0

∑
p∈IM

(fp

t(m) − fp

t(n))dz
p
t

]
= N−1

∑
j∈IN #p∈IM

∫ T

0

(
fp,j

t(m) − fp,j

t(n)

)
dyp,jt . (5.81)
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The quadratic variation of this stochastic integral is

(QV )
(m,n),N
t = N−2

∑
j∈IN #p∈IM

∫ t

0

(
fp,j

s(m) − fp,j

s(n)

)2
σ2
sds (5.82)

By definition of the set Ua, if µ̂
N ∈ Ua, then for any δ > 0, one can find mδ such that

as long as m,n ≥ mδ, necessarily

(QV )
(m,n),N
T ≤ N−1δ.

Then writing w(·) to be a standard Brownian Motion, using the Dambin-Dubins-

Schwarz [82] time-rescaled representation of the stochastic integral, as long as (m,n) ≥

mδ,

P
(
µ̂N ∈ Ua ,

∣∣∣∣ ∫ T

0

∑
p∈IM

(fp

t(m) − fp

t(n))dz
p
t

∣∣∣∣ ≥ ϵ

2

)
≤P
(∣∣w(N−1δ

)∣∣ ≥ ϵ
)

(5.83)

= exp
(
−Nϵ2/(8δ)

)
≤ exp(−NL),

(5.84)

as long as we choose δ sufficiently small.

The other terms in

Γ(m)
(
µ̂N(y,G)

)
− Γ(n)

(
µ̂N(y,G)

)
are treated similarly (observe that they are just Riemann Sums, so it is straightforward

to control their difference from the limiting integral).

We now prove Theorem 5.2.1.
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Proof. We start by proving that for any ϵ > 0, there must exist a measure µ ∈ U such

that

lim
N→∞

N−1 logP
(
dW (µ̂N(z,G), µ) ≤ ϵ

)
= 0. (5.85)

Write U = Ua, where a is large enough that

lim
N→∞

sup
(z0,g0)∈YN

N−1 logQN
z0,g0

(
µ̂N(y, G̃) ∈ Ua

)
< −C.

where C is the upperbound for Γ in Lemma 5.6.3. This is possible thanks to the

Exponential Tightness.

Lemma 5.6.3. There exists a constant C > 0 such that

lim
N→∞

N−1 logP
(
ΓN
J,T (z) ≥ C

)
< 0. (5.86)

Proof. For any ℓ > 0,

lim
N→∞

N−1 logP
(
ΓN
J,T (z) ≥ C

)
≤ max

{
lim

N→∞
N−1 logP

(
∥JN∥ > ℓ

)
,

lim
N→∞

N−1 logP
(
∥JN∥ ≤ ℓ,ΓN

J,T (z) ≥ C
)}

(5.87)

Thanks to Lemma 5.3.1, lim
N→∞

N−1 logP
(
∥JN∥ > ℓ

)
converges to −∞ as ℓ → ∞. It

thus suffices that we prove that, for arbitrary ℓ > 0, there exists Cℓ > 0 such that

lim
N→∞

N−1 logP
(
∥JN∥ ≤ ℓ,ΓN

J,T (z) ≥ Cℓ

)
< 0. (5.88)

Now, leaving out the negative-semi-definite terms, we find that

ΓN
J,T (z) ≤ N−1

∑
j∈IN #p∈IM

∫ T

0

σ−2
s

(
G̃p,j

s − τ−1yp,js

)
dyp,js (5.89)

57



Furthermore, writing hp
s = σ−2

s

(
G̃p,j

s − τ−1yp,js

)
, and assuming that ∥JN∥ ≤ ℓ, one

finds that

∑
j∈IN

(hp,j
s )2 ≤2σ−4

s

∑
j∈IN

{
(G̃p,j

s )2 + τ−2(yp,js )2
}

(5.90)

≤2σ−4
s

∑
j∈IN

{
ℓλ(yp,js )2 + τ−2(yp,js )2

}
(5.91)

≤2σ−4
s

∑
j∈IN

{
ℓC2

λ(y
p,j
s )2 + τ−2(yp,js )2

}
. (5.92)

We thus find that, for any L > 0 there exists a constant C̄L > 0 such that

lim
N→∞

N−1 logP
(
sup
p∈IM

∑
j∈IN

(hp,j
s )2 ≥ NC̄L

)
≤ −L. (5.93)

Write

HN =

{
sup
p∈IM

∑
j∈IN

(hp,j
s )2 ≤ NC̄L

}
.

We thus find that,

lim
N→∞

N−1 logP
(
∥JN∥ ≤ ℓ , HN , ΓN

J,T (z) ≥ Cℓ

)
≤ max

{
lim

N→∞
N−1 logP

(
Hc

N

)
,

lim
N→∞

N−1 logP
(
∥JN∥ ≤ ℓ , HN , ΓN

J,T (z) ≥ Cℓ

)}
≤ max

{
− L, lim

N→∞
N−1 logP

(
∥JN∥ ≤ ℓ , HN , ΓN

J,T (z) ≥ Cℓ

)}
(5.94)
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Furthermore, using the Dambins-Dubins Schwarz Theorem [82], and writing w(t) to

be 1D Brownian Motion,

lim
N→∞

N−1 logP
(
∥JN∥ ≤ ℓ , HN , ΓN

J,T (z) ≥ Cℓ

)
≤ lim

N→∞
N−1 logP

(
sup

s∈[0,T ]

∣∣w(C̄N−1s
)∣∣ ≥ Cℓ

)
≤ −L, (5.95)

as long as Cℓ is sufficiently large, using standard properties of Brownian Motion.

Thanks to the Radon-Nikodym derivative identity in (5.69), we thus find that

lim
N→∞

N−1 logP
(
µ̂N(z, G̃) /∈ U

)
< 0. (5.96)

Thus, for (5.85) to hold, it suffices that we prove that there exists µ ∈ U such that

lim
N→∞

N−1 logP
(
µ̂N(z,G) ∈ U , dW (µ̂N(z,G), µ) ≤ ϵ

)
= 0. (5.97)

Since U is compact, for any ϵ > 0, we can obtain a finite covering of U of the form

U ⊆
Nϵ⋃
i=1

Bϵ(µi), (5.98)

where µi ∈ U. By a union of events bound,

0 = lim
N→∞

N−1 logP
(
µ̂N(z, G̃) ∈ U

)
(5.99)

≤ max
1≤i≤Nϵ

{
lim

N→∞
N−1 logP

(
µ̂N(z, G̃) ∈ Bϵ(µi)

)}
(5.100)

If our proposition in (5.97) were false, then (5.100) would be strictly negative, which

would be a contradiction.

59



Write µ(k) ∈ U to be such that

lim
N→∞

N−1 logP
(
dW (µ̂N(z,G), µ(k)) ≥ k−1

)
= 0. (5.101)

Let µ ∈ U be any measure such that for some subsequence (pk)k≥1, limk→∞ µ(pk) = µ

(this must be possible because U is compact).

We next claim that

lim
ϵ→0+

lim
N→∞

N−1 logP
(
dW
(
µ̂N(z,G), µ

)
≤ ϵ
)
= −R

(
µ||Sµ(1)

)
+ Γ(µ) (5.102)

Indeed writing Aϵ =
{
dW
(
µ̂N(z,G), µ

)
≤ ϵ
}
,

P
(
dW
(
µ̂N(z,G), µ

)
≤ ϵ
)
=Eγ

[ ∫
RMN

PN
J,x(Aϵ)ρ

N
J (x)dx

]
=Eγ

[ ∫
RMN

EPN
x
[
exp

(
NΓ(µ̂N)

)
χ{Aϵ}

]
ρNJ (x)dx

]
=

∫
RMN

Eγ

[
EPN

x
[
exp

(
NΓ(µ̂N)

)
χ{Aϵ}

]
ρNJ (x)

]
dx

=

∫
RMN

Eγ

[
Eγ

[
EPN

x
[
exp

(
NΓ(µ̂N)

)
χ{Aϵ}

]
ρNJ (x)

∣∣∣∣ G0

]]
dx

(5.103)

and in this last step, we first perform the conditional expectation, for γ conditioned

on the values of {Gp,j
0 }j∈IN #p∈IM .

Now, recall that

ρNJ (z0) = (ZN
J )−1χ

{
µ̂N(z0,G0) ∈ BδN (κ)

}
.

Furthermore, writing

uN = N−1 logE[ZN
J ],
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our assumption on the initial condition dictates that for any δ > 0,

lim
N→∞

N−1 logP
(∣∣N−1 logZN

J − uN

∣∣ ≥ δ
)
< 0. (5.104)

Next, we claim that

lim
ϵ→0+

inf
ν∈U∩Aϵ

Γ(ν) = Γ(µ). (5.105)

Indeed (5.105) is a consequence of Lemma 5.6.1: this Lemma implies that Γ can be

approximated arbitrarily well by continuous functions over U.

We thus obtain that

lim
ϵ→0+

lim
N→∞

inf
(z0,G0)

N−1 log
(
dW
(
µ̂N(z,G), µ

)
≤ ϵ
)
=

Γ(µ) + lim
ϵ→0+

lim
N→∞

{
− uN +N−1 log

∫
RMN

Eγ
[
QN

x,G0

(
Aϵ

)]
χ
{
µ̂N(z0,G0) ∈ BδN (κ)

}
dx
}

= Γ(µ)− lim
ϵ→0+

inf
ν∈A(ϵ)

R
(
µ||Sν

)
,

(5.106)

since (by definition)

N−1 log

∫
RMN

Eγ
[
χ
{
µ̂N(z0,G0) ∈ BδN (κ)

]
dz0 = uN ,

and we have employed the uniform lower bound in (5.8). The lower semi-continuity of

R implies that

lim
ϵ→0+

inf
ν∈A(ϵ)

R
(
µ||Sν

)
= R

(
µ||Sµ(1)

)
.

We thus obtain (5.102), as required.

The theorem now follows from Corollary 5.1.3. Since the relative entropy is only

zero when its two arguments are identical [27], any zero must be a fixed point of the

operator Φ. It is proved in the following Lemma that there is a unique zero.
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Lemma 5.6.4. There exists a unique fixed point ξ of Φ in U . Furthermore ξ is such

that for any µ ∈ U , writing ξ(1) = µ and ξ(n+1) = Φ(ξ(n)), it holds that

ξ = lim
n→∞

ξ(n) (5.107)

Proof. We start by considering the following restricted map Φ̃ : Q → Q (Q is as

defined in Equation 5.3). For some µ ∈ Q, write Φ(µ) to be the law of the following

random variables (z,G). First, it is stipulated that (z0,G0) have probability law κ.

Second, conditionally on (z0,G0), the distribution of (z[0,T ],G[0,T ]) is given by Sµ,z0,g0 .

Define d
(2)
t : Q×Q → R+ to be such (as above in Equation 5.36) that for any

µ, ν ∈ Q,

d
(2)
t (µ, ν) = inf

ζ
Eζ

[ ∑
p∈IM

∫ t

0

{
(yps − ỹps)

2 + (Gp
s − G̃p

s)
2
}
ds

]1/2
, (5.108)

where the infimum is over all ζ ∈ P
(
C([0, T ],R2M )× C([0, T ],R2M

)
, such that the law

of the first 2M processes is given by µ, and the law of the last 2M processes is given

by ν.

We are going to demonstrate that there is a constant c > 0 such that for all

µ, ν ∈ Q,

d
(2)
t

(
Φ̃t(µ), Φ̃t(ν)

)
≤ c

√
td

(2)
t (µ, ν). (5.109)

That is, for any µ, ν ∈ Q, we construct a particular ζ that is within η ≪ 1 of realizing

the infimum in the definition of the Wasserstein distance in (5.36). To do this, we

employ the construction of Lemma 5.3.4. Let Gµ,Gν be C([0, T ],RM )-valued random

variables (in the same probability space), with joint probability law βµ,ν . Then for
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Brownian motions
(
W p

t

)
p∈IM

, define

dzν,pt =
(
− τ−1zν,pt +Gν,p

t

)
dt+ σtdW

p
t (5.110)

dzµ,pt =
(
− τ−1zµ,pt +Gµ,p

t

)
dt+ σtdW

p
t . (5.111)

The initial conditions are identical: zν,p0 = zµ,p0 . We immediately see that

d

dt

(
zν,pt − zµ,pt

)
= −τ−1

(
zν,pt − zµ,pt

)
+Gν,p

t −Gµ,p
t , (5.112)

and hence

d

dt

(
zν,pt − zµ,pt

)2
= −2τ−1

(
zν,pt − zµ,pt

)2
+ 2
(
zν,pt − zµ,pt

)(
Gν,p

t −Gµ,p
t

)
and thus

(5.113)(
zν,pt − zµ,pt

)2
=

∫ t

0

exp
(
2(s− t)/τ

)
2
(
zν,ps − zµ,ps

)(
Gν,p

s −Gµ,p
s

)
ds. (5.114)

It follows from this that there exists a constant c > 0 such that for all t ∈ [0, T ],

d
(2)
t

(
Φ̃t(µ), Φ̃t(ν)

)
≤ ctd

(2)
t

(
βµ, βν

)
(5.115)

≤ cCλtd
(2)
t (µ, ν), (5.116)

using Lemma 5.3.4. Thus, for a small enough t, there is a unique fixed point of Φ̃t

(the mapping up to time t). Iterating this argument, we find a unique fixed point for

Φ̃. The uniqueness for Φ̃, in turn, implies uniqueness for Φ, thanks to the identity in

Lemma 5.3.4.

To see why (5.107) holds. First, consider arbitrary ν(1) ∈ Q, and define ν(n+1) =

Φ̃(ν(n)). The above bound in (5.116) implies that necessarily
(
ν(n)
)
n≥1

is Cauchy. It

then immediate follows that for any ξ(1) ∈ U with first marginal equal to ν(1), and

writing ξ(n+1) = Φ(ξ(n)), it must be that
(
ξ(n)
)
n≥1

is Cauchy.
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Finally, we note that d(2) metrizes weak convergence, thanks to Lemma 5.3.3.
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CHAPTER 6

CALCIUM SIGNALING MODEL

One of our fundamental aims is to develop an accurate microscopic model of

calcium signaling (which is thoroughly stochastic) and then use statistical mechanical

techniques to determine effective macroscopic equations. The complex nature of

cellular processes often makes it challenging to characterize them directly, requiring

sophisticated modeling techniques to uncover the underlying mechanisms. This work

investigates the analysis and modeling of calcium dynamics in the cytoplasm, a critical

aspect of cell function. The focus is on a Piecewise-deterministic Markov process

(PDMP), a modeling framework known for its deterministic flows between events,

switching rates that control transitions between states, and a probability measure

that defines these transitions. The deterministic flow of calcium is explained by a set

of differential equations that distinguish between the open and closed states of the

calcium channel. The components of the flow, such as calcium influx, active pumping,

and passive leakage, are elucidated. We utilize a nondimensionalized version of the

deterministic flow equation to make our model adaptable to various experimental

measurements, especially fluorescence data from Dr Gaetan Barbet’s lab. The model

in this paper fully couples the calcium concentration to the opening/closing of the

channel. It thus allows a more detailed estimation of how the feedback between the

opening/closing of channels and the local calcium concentration leads to calcium

waves.

6.1 Model Description

A one-dimensional approach is well understood not to be biologically accurate; however,

it serves as a useful approximation because calcium diffusion in the cytoplasm is
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observed to occur rapidly over short distances [139]. Therefore, local variations are

quickly evened out, making it sufficient to understand the average, or mean-field,

behavior.

With this model, we aim to address whether we can accurately determine

(through direct expression or simulation) the distribution of the time intervals between

successive whole-cell calcium spikes by modeling the stochastic nature of individual

calcium channels and the deterministic diffusion of calcium between spikes.

Our Piecewise-Deterministic Markov Process (PDMP) model is characterized by

deterministic flow between events, a switching rate governing state transitions, and a

probability measure defining state transitions.

Our model is a closed-cell model, meaning it does not account for calcium

entering or exiting the cell. Calcium transport across the cell’s plasma membrane

seems to have minimal impact on calcium oscillations [131], primarily driven by release

from internal structures like the ER [46, 47]. Furthermore, studying oscillations in

closed-cell models allows for examining long-term oscillations since calcium is not lost

from the cell.

Positive feedback of calcium concentration is crucial to the model’s behavior. The

flux through the open channel is proportional to the difference in calcium concentration

between the cytoplasm and the ER. The proportionality constant, kf , is a scaling

factor that controls the maximum total flux and can be considered to represent the

Inositol trisphosphate receptors (IPR) density. Its value is sourced from the literature

[47]. The assumption that channel flux is linearly dependent on calcium concentration

across the entire observed concentration range is dubious. However, this assumption

is the simplest and is sufficiently accurate for most models [47].

Our expression for the Sarcoplasmic/endoplasmic reticulum calcium ATPase

(SERCA) pump flux term is an example of a unidirectional model found in the

literature [47, 99, 100, 119] and represents the consumption of one ATP molecule to
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transfer two calcium ions from the cytoplasm to the ER. This expression incorporates

a form of positive cooperation, where the binding of the first ion accelerates the

binding of the second ion. This expression is a good approximation when the calcium

concentration is small relative to the ratio of reaction rates given by K2. Parameters

for the SERCA pump expression are taken from the literature [47] and are based on

Lytton et al. [102], who demonstrated that the pumping rate for various such pumps

is well modeled by a Hill function with a coefficient of approximately 2.

In our current model, calcium buffering is not explicitly modeled; however, its

effects are incorporated into the diffusion coefficients and scaling factors, assuming

fast, linear buffering.

The leak term is necessary to achieve a steady state when the channel is closed

when implementing a unidirectional SERCA pump [63, 112].

The dynamics of calcium concentration, denoted as c, is governed by the following

differential equation:

dc

dt
= f(c, σ) (6.1)

Here, f(c, σ) describes the rate of change in calcium concentration, which depends

on the state of the system σ ∈ (o, cl). We consider two possible states of the system:

the open state (o) and the closed state (cl). The expressions for f(c, σ) in these states

are as follows:

Open state: f(c, o) = Jchannel(c)− Jpump(c) + Jleak(c) (6.2)

Closed state: f(c, cl) = −Jpump(c) + Jleak(c) (6.3)

The terms Jchannel(c), Jpump(c), and Jleak(c) represent the fluxes associated with

calcium channels, pumps, and leaks, respectively. These are defined as follows:
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Jchannel(c) = −kfc

Jpump(c) =
Vsc

2

K2
s + c2

Jleak(c) = kleak(−c) = −ckleak

Jchannel(c) represents the calcium flux through the channels, where kf is the

rate constant for channel flux. Jpump(c) describes the calcium efflux due to pumps,

modeled by a Michaelis-Menten-type kinetics with parameters Vs (maximum rate)

and Ks (half saturation constant). Jleak(c) accounts for calcium leak, proportional to

the concentration with rate constant kleak.

All constants in these expressions are calibrated for the calcium concentration

measured in micromolar (µM).

To facilitate comparison with experimental data, particularly fluorescence

measurements that may use different scales or units, we employed a nondimensionalized

version of Equation 6.1. Introducing a nondimensional calcium concentration c̃, the

transformed equation is now:

dc̃

dt
= −kf c̃−

(
Vs

Ks

)
c̃2

1 + c̃2
− kleakc̃ (6.4)

This nondimensionalized form ensures that the model can be applied to various

experimental setups, allowing for a consistent analysis of calcium dynamics across

different measurement techniques. Nondimensionalizing is justified due to the linear

relationship between calcium concentration and fluorescence measurement [77].

The system switches between states o (open) and cl (closed) with rate λ. Where

λσ(c) = ασc (6.5)
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That is, the system switches between the channels in the open and closed state at a

rate proportional to the amount of calcium in the cytoplasm. The rate constant for

going from closed to open is given by αo and for open to closed by αcl.

6.2 Maximum Likelihood Estimation

To validate our model with experimental data, the model parameters αo and αcl were

fitted using the Maximum Likelihood Estimate (MLE) based on the data provided.

The MLE for interspike times in our model aims to maximize the likelihood function

L, defined as:

L =
M∏
j=1

ρ(τ
(j)
i , σ

(j)
i )Ni=0 (6.6)

for M samples, where

ρ(τi, σi)
N
i=0 =

N∏
i=0

λ(σ, c) exp

(
−
∫ τi+1

τi

λ(σ, s)ds

)
(6.7)

for N events in a given sample.

In this context, events represents the opening and closing of the calcium channel.

Figure 6.1 illustrates an example of these sample events. The circles represent the

time of switching from a closed state to an open state, while the x-s represent the

time of switching from an open state to a closed state. The red portion of the signal

corresponds to the period when the channel is open, and the blue represents when the

channel is closed. The y-axis is given in units of normalized fluorescence. Although

acknowledged as an approximation to the true dynamics of the system, it is effective.

Crucially, the number of events that occur in a time interval is independent of the

number of events that occur in another interval that is disjoint from the first one.

The MLE-derived parameters are tabulated in Table 6.2.
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Figure 6.1 Example of system events.

6.3 Model Simulations

Once the parameters were fitted for each sample, a stochastic simulation was performed

for the model with those parameters, based on [136]. For each run of the simulation

in inter-event times, τk, were sampled such that

P (τk ≥ t) = exp

[
−
∫ t

r=0

λ
{
Φr(ztk−1

)
}
dr

]
. (6.8)

Where Φr(ztk−1
) is the deterministic flow of the calcium, see Section 6.1.

The calcium concentration was then found by solving the deterministic ODEs

between events [136].

The results of these simulations are plotted along with the corresponding

experimental data. In each case, the model fits well with the experimental data.

Statistical metrics such as mean and skewness for experimental and simulated data

are provided in Table 6.3.

Markov chain Monte Carlo (MCMC) simulations were performed using the

Python package emcee (https://emcee.readthedocs.io/en/stable/) [59] in order to

quantify the error in parameter fitting for each sample. Corner plots for each run are

displayed below the corresponding sample, and the 16th, 50th, and 84th percentile

values are tabulated in Table 6.4.
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6.4 In Vitro Experimental Data Analysis

We collaborated with experimentalist Dr. Gaetan Barbet and the Barbet laboratory

of Robert Wood Johnson Medical School, The Child Health Institute of NJ, Rutgers

University, to analyze data derived from the average responses of multiple bone

marrow-derived dendritic cells (BMDCs). Cells were exposed to two different

strains of Escherichia coli (DH5α and MC4100) and Listeria innocua. Both E.

coli strains and L. innocua are non-virulent. The subsequent analysis focuses on

in vitro calcium concentration fluorescence data in response to both Live and Heat

Killed (HK) pathogens. Figure 6.2 shows examples of fluorescent data captured

by the microscope of calcium spiking due to the stimulation of the pathogen in

bone-marrow-derived dendritic cells, BMDCs (innate immune cells also referred to as

mononuclear phagocytes), the activation of the three cells is due to the bacteria (red

dots).

Figure 6.2 Fluorescent imaging.

The data sets subjected to analysis are described in Table 6.1.

Figures 6.3, 6.4, and 6.5 present the spiking data for each sample, with the

spiking time interval defined from 100 seconds to 250 seconds for each data set. This

interval was carefully chosen through visual inspection, ensuring a consistent selection

capturing the spiking response of each sample while mitigating the initial non-spiking

71



Table 6.1 Data Statistics for the In Vitro Data Analyzed

Sample Statistics

Sample Name
Duration of
Recording

Sampling
Frequency

Number of
Samples

Ecoli DH5a (HK) 301 s 1.0 Hz 169
Ecoli DH5a (Live) 301 s 1.0 Hz 223
Ecoli MC4100 (HK) 301 s 1.0 Hz 174
Ecoli MC4100 (Live) 301 s 1.0 Hz 202

Listeria (HK) 301 s 1.0 Hz 212
Listeria (Live) 301 s 1.0 Hz 226

response and tail inaccuracies inherent in the sample measurement process. Observe

the markedly stochastic nature of the resulting calcium signaling.

Figure 6.3 Calcium concentration spiking in response to E.Coli DH5a. Left: Live
pathogen. Right: HK pathogen.

Figure 6.4 Calcium concentration spiking in response to E.Coli MC4100. Left: Live
pathogen. Right: HK pathogen.
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Figure 6.5 Calcium concentration spiking in response to Listeria. Left: Live
pathogen. Right: HK pathogen.

Data preprocessing was performed for each sample to ensure that the resulting

stochasticity reflects the inherent variability of the biological process rather than the

experimental measurement.

We began by mitigating the trend in the data by subtracting the rolling mean[140],

using a window size of 0.1 times the sample length. This window size was chosen based

on visual inspection to optimize data processing. Figure 6.6 presents an illustrative

example in which the raw data are colored black, and the data with the subtracted

trend line is colored blue.

Following this, the data was smoothed using a Hanning window [140] with a

length of 9 data points. Similarly to rolling mean subtraction, the choice of this window

size was made by visual assessment for optimal data processing. The smoothed data

are red in Figure 6.6.

This preprocessing step facilitates accurately identifying calcium spikes and their

corresponding timings.

Spike identification was performed using the find peaks function from Python’s

Scipy library’s signal module (https://docs.scipy.org/doc/scipy/reference/signal.html).

Initially, we determined the prominence and width for all spikes across all samples

within a given treatment condition (e.g., Live E.Coli DH5a). Then, the mean and
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Figure 6.6 Example of data preprocessing.

standard deviation of width and prominence were calculated. Subsequently, spikes

within X standard deviations of the mean were selected, where X was varied for

different analyses, as described below. This rigorous selection minimizes the potential

influence of aberrant signals within the dataset. See Figure 6.7 for an example using

1, 2, and 3 standard deviations.

Figure 6.7 Example of peak selection. Spikes selected within 1, 2, and 3 standard
deviations (SDV) from the mean.

To assess the distribution of the number of spikes across the samples, refer to

Figures 6.8, 6.9, and 6.10. The selection process ensures consistent spike counts across

samples, contributing to the reliability of subsequent analyses.
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The Interspike interval (ISI) was calculated for each pair of spikes, i.e., the time

between subsequent spikes. The resulting distribution is plotted in Figures 6.8, 6.9,

and 6.10 alongside the distribution of the number of spikes across each sample. Spikes

that fell within one standard deviation of the mean width and height of the spikes in

each sample were selected. A difference between the Live and Heat Killed appears

consistent across the samples.

Figure 6.8 E.Coli DH5a. Left ISI distribution. Right, Spike counts across samples.

Figure 6.9 E.Coli MC4100. Left ISI distribution. Right, Spike counts across samples.

A comprehensive frequency analysis was performed to determine potential

differences in signal patterns between data sets; for each sample, the time domain

data were transformed into the frequency domain using Python’s rfft function

(https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html).

Subsequently, the average power spectral density and frequencies were computed across

multiple samples within each condition. The power spectra convey the distribution of
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Figure 6.10 Listeria. Left ISI distribution. Right, Spike counts across samples.

signal power across various frequencies, while the frequency distributions portray the

occurrence of specific frequencies within each data set. The resulting distributions

and power spectral densities for specific datasets are presented in Figures 6.11, 6.12,

and 6.13. In addition, violin plots of the frequency distributions show the statistical

significance of the difference between distributions. To get the significance level, a

Mann-Whitney U rank test for two independent samples was performed using Python’s

Scipy Stats library (https://docs.scipy.org/doc/scipy/reference/stats.html). There

appears to be a consistent difference between the Live and HK samples, with the HK

samples comprising a wide range of significant frequencies, which can be associated

with greater randomness in the spiking.

Figure 6.11 Power spectral density (left), frequency distribution (center) and violin
plot (right) for E.Coli DH5a.

A comparison between the frequency analysis for the DH5a versus Listeria Live

samples indicates a statistically significant, although smaller, difference between the
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Figure 6.12 Power spectral density (left), frequency distribution (center) and violin
plot (right) for E.Coli MC4100.

Figure 6.13 Power spectral density (left), frequency distribution (center), and violin
plot (right) for Listeria.

two samples, as can be seen in Figure 6.14

Figure 6.14 Power spectral density (left), frequency distribution (center), and violin
plot (right) for DH5a compared to Listeria.

In contrast, no significant differences are observed between the frequency

distribution of the MC4100 and DH5a Live samples frequency distribution as seen in

Figure 6.15.
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Figure 6.15 Power spectral density (left), frequency distribution (center), and violin
plot (right) for MC4100 compared to DH5a.

6.5 In Vitro Numerical Results

The model’s parameters αo (the rate constant for the opening of channels) and αcl (the

rate constant for the closing of channels) were determined numerically by calculating

the MLE as described in Subsection 6.2. Table 6.2 summarizes the parameter values

obtained.

Table 6.2 Parameter Values From MLE Results

αo [
1
s
] αcl [

1
s
]

DH5a HK 0.436932 0.358845
DH5a Live 0.377017 0.362093
MC4100 HK 0.465579 0.360245
MC4100 Live 0.400927 0.366744
Listeria HK 0.478608 0.373902
Listeria Live 0.410899 0.361924

Stochastic simulations were performed once the parameters were obtained as

outlined in Subsection 6.3 above. The results of ISI obtained from these simulations are

plotted along with the distribution of the ISI obtained directly from the experimental

data in Figures 6.16, 6.17, and 6.18. The goodness of fit indicates that the model

captures, at least, the first-order dynamics of the system. Table 6.3 presents a statistical

comparison between the experimental data and the simulated data generated by the

stochastic model for each sample, key statistical measures such as the number of data

points, minimum, maximum, mean, variance, skewness, and kurtosis are provided.
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Markov Chain Monte Carlo (MCMC) simulations assessed the uncertainty in the

parameter estimates. The 16th, 50th, and 84th percentile values of the parameters αo

and αcl are reported in Table 6.4. These percentiles provide a measure of the variability

and reliability of the parameter estimates obtained from the simulations. The results

from the MCMC simulations indicate that the parameter estimates are reasonably

well-constrained, with narrow intervals between the 16th and 84th percentiles (i.e., a

standard deviation). This suggests a good confidence level in the estimated parameters

derived from the MLE.

Figure 6.16 Simulation (orange) versus Experimental (blue) ISI distributions for
Dh5a. Left: HK. Right Live. Below each distribution are the results of the MCMC
showing the distribution for the parameters αo and αcl.
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Figure 6.17 Simulation (orange) versus Experimental (blue) ISI distributions for
MC4100. Left: HK. Right Live. Below each distribution are the results of the MCMC
showing the distribution for the parameters αo and αcl.
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Figure 6.18 Simulation (orange) versus Experimental (blue) ISI distributions for
Listeria. Left: HK. Right Live. Below each distribution are the results of the MCMC
showing the distribution for the parameters αo and αcl.
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The comparison between experimental and simulated data (Table 6.3) demon-

strates that the stochastic model reasonably approximates the experimental obser-

vations across different bacterial strains and conditions. Notably, the means and

variances of the simulated data are in close agreement with those of the experimental

data. However, there are discrepancies in the skewness and kurtosis values, which

may indicate areas for further model refinement but may also be inherent to the

stochastic nature of the simulation, the amount of experimental data, and the overall

stochasticity of the system. The model fits for the Live sample appears better than

for the HK samples, which may be further indicative of less structured dynamics for

the HK samples.
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Table 6.3 Statistics Comparing the Experimental and Simulated Data

Data points Minimum Maximum Mean Variance Skewness Kurtosis

DH5a HK Experimental 1231 4 100 14 106 3 13
Simulated 50014 4 111 16 106 2 5

DH5a Live Experimental 1399 4 100 16 136 2 8
Simulated 50012 4 156 17 133 2 6

MC4100 HK Experimental 1347 4 71 14 77 2 8
Simulated 50009 4 122 15 94 2 5

MC4100 Live Experimental 1369 4 75 16 83 2 5
Simulated 50006 3 113 16 122 2 6

Listeria HK Experimental 1673 4 107 13 72 3 14
Simulated 50017 4 100 15 93 2 5

Listeria Live Experimental 1552 4 91 15 119 3 10
Simulated 50007 4 143 16 118 2 6
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The parameter estimates from the MLE and their respective uncertainties from

the MCMC (Tables 6.2 and 6.4) show consistency across different strains and conditions.

These results validate the robustness of the stochastic model in capturing the dynamics

of calcium concentration in cells, providing a solid foundation for future studies and

potential model improvements.

Table 6.4 16th, 50th and 84th Percentile Parameter Values From the MCMC

αo αcl

16th 50th 84th 16th 50th 84th

DH5a HK 0.428141 0.437171 0.446455 0.352003 0.358821 0.365775
DH5a Live 0.369815 0.377209 0.384409 0.355974 0.362125 0.368510
MC4100 HK 0.456408 0.465706 0.474710 0.354025 0.360308 0.366852
MC4100 Live 0.393421 0.401310 0.408892 0.360105 0.366815 0.373528
Listeria HK 0.470267 0.478335 0.487188 0.367825 0.373851 0.380103
Listeria Live 0.403597 0.411012 0.418652 0.356017 0.362072 0.368369

Overall, the statistical analysis and parameter estimation underscore the

effectiveness of the stochastic modeling approach in replicating experimental calcium

concentration data, paving the way for more detailed investigations into the underlying

biological processes.

To determine whether there is a significant difference between the Live and HK

samples, we compared the parameter values αo and αcl obtained from the Maximum

Likelihood Estimation (MLE) and their respective uncertainties from the Markov

Chain Monte Carlo (MCMC) simulations across all samples.

For the parameter αo, which represents the rate constant for calcium channels

opening, the MLE results show that Live samples consistently have lower values

compared to HK samples across all strains. DH5a: 0.377017 (Live) vs. 0.436932 (HK).

MC4100: 0.400927 (Live) vs. 0.465579 (HK). Listeria: 0.410899 (Live) vs. 0.478608

(HK).
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The MCMC results further support this observation, indicating non-overlapping

or minimally overlapping 16th to 84th percentile ranges for the ’Live’ and ’HK’ samples,

suggesting a statistically significant difference.

For the parameter αcl, which represents the rate constant for calcium channels

closing, the differences between Live and HK samples are less pronounced. DH5a:

0.362093 (Live) vs. 0.358845 (HK). MC4100: 0.366744 (Live) vs. 0.360245 (HK).

Listeria: 0.361924 (Live) vs. 0.373902 (HK).

The MCMC results show overlapping a standard deviation for Live and HK

samples, indicating that the differences in αcl are not statistically significant. This

leads us to conclude that there is a significant difference in the parameter αo between

’Live’ and ’HK’ samples, with ’HK’ samples consistently showing higher αo values.

There is no significant difference in the parameter αcl between ’Live’ and ’HK’ samples,

as the values are comparable and their uncertainty ranges overlap.

To further highlight this difference, Figures 6.19, 6.20, and 6.21 plot the

probability of a channel opening or closing over time for the respective parameters.

The consistent difference between Live and HK across all samples is observed.

Figure 6.19 Opening and closing probabilities for optimal parameters for DH5a.

This analysis indicates that cell viability significantly impacts the dynamics of

calcium channel opening, specifically αo, across different bacterial strains. In contrast,

the dynamics of calcium channel closing, αcl, remain relatively unaffected.

85



Figure 6.20 Opening and closing probabilities for optimal parameters for MC4100.

Figure 6.21 Opening and closing probabilities for optimal parameters for Listeria.

Similar to what we saw in the frequency analysis, the MLE values and the

percentile ranges from MCMC suggest that αo is higher in Listeria Live samples

compared to DH5a Live samples. The 16th to 84th percentile ranges for αo do not

overlap significantly, indicating a statistically significant difference between the two

samples. The MLE values and the percentile ranges from MCMC indicate that αcl

values for DH5a Live and Listeria Live are very close, overlapping the 16th to 84th

percentile ranges. This overlap suggests no statistically significant difference in the

rate constants for calcium channel closing between the two samples. This leads to

the conclusion that there is a statistically significant difference in the parameter αo

between Live DH5a and Live Listeria samples, with Listeria Live having a higher rate

constant for calcium channel opening. There is no statistically significant difference in

the parameter αcl between Live DH5a and Live Listeria samples, as the values are

comparable and their uncertainty ranges overlap.
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In contrast to the frequency analysis, the MLE values and the percentile ranges

from MCMC suggest that αo is slightly higher in MC4100 Live samples compared

to DH5a Live samples. The 16th to 84th percentile ranges for αo do not overlap

significantly, indicating a slight statistically significant difference between the two

samples. The MLE values and the percentile ranges from MCMC indicate that αcl

values for DH5a Live and MC4100 Live overlap the 16th to 84th percentile ranges. This

overlap suggests no statistically significant difference in the rate constants for calcium

channel closing between the two samples. There is a statistically significant difference

in the parameter αo between Live DH5a and Live MC4100 samples, with MC4100 Live

having a higher rate constant for calcium channel opening. Although this difference is

less significant than that of the Listeria sample, There is no statistically significant

difference in the parameter αcl between Live DH5a and Live MC4100 samples, as the

values are comparable and their uncertainty ranges overlap.

6.6 In Vivo Experimental Data Analysis

In addition to the above dataset, we were fortunate to receive an in vivo dataset

from our collaborators. Calcium variation over time was measured in dendritic cells

within the spleen of mice after injection of bacteria. Once again, we have Live and

HK samples.

The data sets subjected to analysis are described in Table 6.5:

Table 6.5 Data Statistics for the In Vivo Data Analyzed

Sample Statistics

Sample Name
Duration of
Recording

Sampling
Frequency

Number of
Samples

Ecoli DH5a (HK) 270 s 1.0 Hz 128
Ecoli DH5a (Live) 418 s 1.0 Hz 179

Listeria (HK) 690 s 1.0 Hz 164
Listeria (Live) 276 s 1.0 Hz 162
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Figures 6.22 and 6.23 present the spiking data for each sample, with the spiking

time interval defined from 100 seconds to 250 seconds for each data set. This is

consistent with what was done for the in vitro data. Observe the markedly stochastic

nature of the resulting calcium signaling. We note that a time shift mapping was

performed on these datasets to align them with the in vitro data.

Figure 6.22 Calcium concentration spiking in response to E.Coli DH5a. Left: Live
pathogen. Right: HK pathogen.

Figure 6.23 Calcium concentration spiking in response to E.Coli MC4100. Left:
Live pathogen. Right: HK pathogen.

The preprocessing and spike selection were performed identically to that

performed for the in vitro data.

The ISI was calculated for each pair of spikes, i.e., the time between subsequent

spikes. The resulting distribution is plotted in Figures 6.24 and 6.25 alongside the

distribution of the number of spikes across each sample. Spikes that fell within one
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standard deviation of the mean width and height of the spikes in each sample were

selected. A difference between the Live and Heat Killed appears consistent across the

samples. We note that there is less consistency in the number of spikes across the

samples for the in vivo samples when compared to the in vitro samples.

Figure 6.24 E.Coli DH5a. Left ISI distribution. Right, Spike counts across samples.

Figure 6.25 Listeria. Left ISI distribution. Right, Spike counts across samples.

Similarly, as with the in vitro data, a comprehensive frequency analysis was

performed to determine potential differences in signal patterns between data sets. The

resulting distributions and power spectral densities for specific datasets are presented

in Figures 6.26 and 6.27. violin plots of the frequency distributions show the statistical

significance of the difference between distributions. There appears to be no statistical

difference between the Dh5a Live and HK samples. A small significant difference is

observed between the Listeria Live and HK samples.
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Figure 6.26 Power spectral density (left), frequency distribution (center) and violin
plot (right) for E.Coli DH5a.

Figure 6.27 Power spectral density (left), frequency distribution (center), and violin
plot (right) for Listeria.

A comparison between the frequency analysis for the DH5a versus Listeria Live

can be seen in Figure 6.28. No statistically significant difference is observed between

the samples.

Figure 6.28 Power spectral density (left), frequency distribution (center), and violin
plot (right) for DH5a compared to Listeria.

6.7 In Vivo Numerical Results

The model’s parameters αo (the rate constant for the opening of channels) and αcl (the

rate constant for the closing of channels) were determined numerically by calculating
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the MLE as described in Subsection 6.2. Table 6.6 summarizes the parameter values

obtained.

Table 6.6 Parameter Values From MLE Results

αo [
1
s
] αc [

1
s
]

DH5a HK 0.489308 0.374295
DH5a Live 0.523938 0.378663
Listeria HK 0.462825 0.387598
Listeria Live 0.522040 0.403095

Stochastic simulations were performed once the parameters were obtained as

outlined in Subsection 6.3 above. The results of ISI obtained from these simulations are

plotted along with the distribution of the ISI obtained directly from the experimental

data in Figures 6.29 and 6.30. The goodness of fit indicates that the model captures,

at least, the first-order dynamics of the system. Table 6.7 presents a statistical

comparison between the experimental data and the simulated data generated by the

stochastic model for each sample, key statistical measures such as the number of data

points, minimum, maximum, mean, variance, skewness, and kurtosis are provided.

Markov Chain Monte Carlo (MCMC) simulations assessed the uncertainty in

the parameter estimates. The 16th, 50th, and 84th percentile values of the parameters

αo and αcl are reported in Table 6.8. These percentiles provide a measure of the

variability and reliability of the parameter estimates obtained from the MCMC

simulations. The results from the MCMC simulations indicate that the parameter

estimates are reasonably well-constrained, with narrow intervals between the 16th and

84th percentiles (i.e., a standard deviation). This suggests a good confidence level in

the estimated parameters derived from the MLE.
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Figure 6.29 Simulation (orange) versus Experimental (blue) ISI distributions for
Dh5a. Left: HK. Right Live. Below each distribution are the results of the MCMC
showing the distribution for the parameters αo and αcl.
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Figure 6.30 Simulation (orange) versus Experimental (blue) ISI distributions for
Listeria. Left: HK. Right Live. Below each distribution are the results of the MCMC
showing the distribution for the parameters αo and αcl.
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Table 6.7 Statistics Comparing the Experimental and Simulated Data

Data points Minimum Maximum Mean Variance Skewness Kurtosis

DH5a HK Experimental 261 4 65 13 67 3 9
Simulated 50019 4 123 15 89 2 5

DH5a Live Experimental 321 4 70 12 65 3 12
Simulated 50016 4 128 14 81 2 5

Listeria HK Experimental 504 4 68 14 75 2 8
Simulated 50012 4 129 15 101 2 5

Listeria Live Experimental 144 5 82 12 73 5 30
Simulated 50001 4 100 15 86 2 5

9
4



Table 6.8 16th, 50th and 84th Percentile Parameter Values From the MCMC

αo αcl

16th 50th 84th 16th 50th 84th

DH5a HK 0.467998 0.489768 0.511232 0.360290 0.374866 0.389398
DH5a Live 0.503293 0.524894 0.546767 0.365501 0.378915 0.392719
Listeria HK 0.449229 0.463869 0.478328 0.376750 0.387855 0.399115
Listeria Live 0.493171 0.523821 0.554447 0.382678 0.403914 0.425749

Comparison of the rate constants for the opening (αo) and closing (αcl) of the

calcium channel between the DH5a Live and DH5a HK samples show no significant

difference. For αo, DH5a Live has a higher MLE value (0.523938) than DH5a HK

(0.489308), but the 16th to 84th percentile ranges overlap slightly, suggesting no

statistically significant difference. For αcl, the MLE values for DH5a Live (0.378663)

and DH5a HK (0.374295) are very close, with overlapping percentile ranges, indicating

that there is no statistically significant difference in the rate constants for the closing

of the calcium channel between the two samples.

Comparison of the rate constants for the opening (αo) and closing (αcl) of

calcium channels between the Live and HK Listeria and Listeria samples has revealed

significant differences. For αo, Listeria Live has a higher rate constant (0.522040

MLE) than Listeria HK (0.462825 MLE), with non-overlapping 16th to 84th percentile

ranges, indicating a statistically significant difference. Similarly, for αcl, Listeria Live

also shows a higher rate constant (0.403095 MLE) than Listeria HK (0.387598 MLE),

again with non-overlapping percentile ranges, suggesting a significant difference in the

rate constant for channel closing between the two samples.

Based on the analysis, the following conclusions can be drawn from the in vivo

data. For the DH5a sample, we did not observe a significant increase in the rate

constant for the calcium channel opening (αo) in the Live samples compared to the

HK samples. In addition, there is no significant difference in the rate constant for the

calcium channel closure (αcl). For the Listeria sample, there are statistically significant
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increases in the rate constants for calcium channel opening (αo) and calcium channel

closing (αcl) in Live samples compared to HK samples.

To highlight the resulting rate functions further, Figures 6.31 and 6.32 plot the

probability of a channel opening or closing over time for the respective parameters.

Figure 6.31 Opening and closing probabilities for optimal parameters for DH5a.

Figure 6.32 Opening and closing probabilities for optimal parameters for Listeria.
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CHAPTER 7

LARGE DEVIATION PRINCIPLES FOR CALCIUM SIGNALING

7.1 Large Deviation of PDMP

This section establishes a LDP for Piecewise-deterministic Markov process (PDMP).

We derive specific Euler-Lagrange equations to calculate the most likely trajectory by

which the system produces a stochastic calcium puff.

The simplicity of the new proof lies in its original approach. By transforming the

PDMP system into a group of homogeneous Poisson Processes using a time-rescaling

technique, we directly link to the known LDP for the Poisson Processes through

the Inverse Contraction Principle. Furthermore, we identify the specific form of the

Euler-Lagrange equations, which is essential for determining the optimal first-hitting

times. These equations allow us to formulate the problem as an optimization problem

over the period [0, T] under the constraint imposed by the slow processes.

7.1.1 Notation and Definitions

Let ∥·∥t denote the supremum norm over [0, t], i.e.

∥z∥t = sup
s∈[0,t]

|zs|.

Let D([0, t],R) be the càdlàg space of real functions from [0, t] to R that are right-

continuous and have left-hand limits. Define Λt as the class of strictly increasing

continuous mappings of [0, t] onto itself (so that any λ ∈ Λt is such that λ(0) = 0 and

λ(t) = t. Following Billingsley [17], for any λ ∈ Λ, define

∥λ∥◦t = sup
s<t

∣∣∣∣ log λ(t)− λ(s)

t− s

∣∣∣∣ (7.1)
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Define the Skorohod Metric on Dt,

d◦t (x, y) = inf
λ∈Λt

{
∥λ∥◦t ∧ sup

s∈[0,t]
|x(s)− y(λj(s))|

}
. (7.2)

It is proved in Billingsley [17] that d◦t is a metric and that Dt is complete and separable

with respect to the topology induced by d◦t . Next, for a ∈ Z+ define the pseudometric

d̃◦a : D([0,∞),R)×D([0,∞),R) → R+ to be

d̃◦a(x, y) =d◦a(gax, gay) where (7.3)

ga(t) =


1 if t ≤ a− 1

0 if t ≥ a

a− t if a− 1 ≤ t ≤ a

(7.4)

Then define the metric d◦∞ : D([0,∞),R)×D([0,∞),R) → R+ to be

d◦∞(x, y) =
∞∑
a=1

inf
{
2−a, d̃◦a(x, y)

}
. (7.5)

It is proved in Billingsley [17] that d◦∞ metrizes convergence over D([0,∞),R).

7.1.2 Large Deviation Principle for PDMPs

A chemical reaction network [4] consists of the following triple: Species S , which are

the chemical components whose counts we wish to model dynamically. Complexes C

which are nonnegative linear combinations of species that describe how the species

can interact, and Reactions R which describe how to convert one complex to another.

Let ξα ∈ Rd be the reaction vector corresponding to the αth reaction (it takes

values in Z), assuming that there are M reactions overall. The intensity of the nth

reaction is defined to be

Nλn

(
x(t), u(t)

)
, (7.6)
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where λn : Rd × Rm → R+ is continuous and bounded. It is assumed that reactions

cannot produce a negative concentration: that is, it is assumed that if x ∈ Rd
+ and

u ∈ Rm, and α ∈ R are such that x+N−1ξα /∈ Rd
+, then necessarily λα(x, u) = 0.

The ordinary differential equation takes values in a state space Rm and is such

that

du

dt
= A

(
u(t), x(t)

)
, (7.7)

where A : Rm × Rd → Rd is continuous. The initial conditions are taken to be

non-random constants, i.e.

u(0) := ûN
0 and x(0) := x̂N

0 . (7.8)

and it is assumed that the following limits exist

lim
N→∞

ûN
0 = û0 (7.9)

lim
N→∞

x̂N
0 = x̂0. (7.10)

Finally, it is assumed that the initial jump rates are always non-zero in the large N

limit, i.e., it is assumed that

inf
α∈R

λα

(
x̂0, û0

)
> 0. (7.11)

We assume the following uniform growth bounds: for all t ≥ 0, and u ∈ Rm, and all

1 ≤ n ≤ M ,

∥A(u,X)∥ ≤ K
(
1 + ∥u∥+ ∥X∥

)
(7.12)∣∣λn

(
X, u

)∣∣ ≤ K. (7.13)
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Second, we assume that A and λn are both uniformly Lipschitz in their arguments:

that is,

∥∥∥A(u,X)− A
(
ũ, X̃

)∥∥∥ ≤ C
{
∥u− ũ∥+ ∥X − X̃∥

}
(7.14)

sup
n∈R

∥λn

(
u,X

)
− λn

(
ũ, X̃

)
∥ ≤ C

{
∥u− ũ∥+ ∥X − X̃∥

}
. (7.15)

Standard ODE theory dictates that for any particular value of x, there is a unique

solution to the ODE in (7.7).

Let Zα(t) count the total number of α ∈ R reactions across the network. The

linearity of Poisson Processes ensures that Zα(t) can be represented as, writing

{Yα(t)}α∈R to be independent unit-intensity Poisson Processes [4],

Zα(t) =Yα

(
N

∫ t

0

λN
α

(
x(s), u(s)

)
ds

)
(7.16)

zα(t) =N−1Zα(t) with initial condition (7.17)

zα(0) =0. (7.18)

Writing yα(t) = N−1Y N
α (Nt), it may be observed that

zα(t) = yα

(∫ t

0

λα

(
x(s), u(s)

)
ds

)
(7.19)

and we have that

X(t) =
∑
α∈R

Zα(t)ξα and we define the scaled number of reactions (7.20)

x(t) = N−1X(t) =
∑
α∈R

zα(t)ξα. (7.21)

The main result of this paper is the following theorem. Further below in Equation

7.25, we specify Υ to be the state space in which the triple (z, x, u) lives (and we also

100



define a topology). The sequence of probability laws of (z, x, u) satisfies the following

asymptotic estimate on the space Υ as N → ∞. The proof of this theorem is given in

Appendix B.

Theorem 7.1.1. Suppose that O,A ⊂ Υ, with O open and A closed, are such that

for any T > 0,

inf
(z,x,u)∈A∪O

inf
α∈R

inf
s∈[0,T ]

λα(x(s), u(s)) > 0. (7.22)

Then there exists a function J : Υ → R (specified in Subsection 7.1.3) that is

(i) lower-semicontinuous and (ii) has compact level sets such that

lim
N→∞

N−1 logP ((z, x, u) ∈ A) ≤ − inf
β∈A

J(β) (7.23)

lim
N→∞

N−1 logP ((z, x, u) ∈ O) ≥ − inf
β∈O

J(β) (7.24)

7.1.3 Topological Definitions

Before we state our main result, we must briefly note the topological space to which

our variables belong. Write the state space for (z, x, u) as Υ, i.e.,

Υ :=
{
(z, x, u) ∈ D([0,∞),R+)M ×D([0,∞),R+)d × C1([0,∞),R)m

where

(i)
∑
α∈R

zα(t)ζα = x(t),

(ii) for all t ≥ 0,
du

dt
= A(u(t), x(t)) and u(0) = û

}
(7.25)

and endow Υ with the product topology. Since the values of x and u are effectively

determined by z, we only need to metrize the convergence of z. The following lemma

captures this.

Lemma 7.1.2. Υ is a closed subset of D([0,∞),R+)M×D([0,∞),R+)d×C1([0,∞),R)m.

In addition, Υ is separable and metrizable. Furthermore for any t > 0, there exists
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ct > 0 such that for all δ > 0,

{
(z, x, u), (z̃, x̃, ũ) ∈ Υ×Υ : sup

α∈R
d◦t (zα, z̃α) ≤ δ

}
⊆
{
(z, x, u), (z̃, x̃, ũ) ∈ Υ×Υ : d◦t (z, z̃) ≤ δ

and sup
0≤s≤t

|x(s)− x̃(s)| ≤ ctδ

and sup
0≤s≤t

|u(s)− ũ(s)| ≤ ctδ
}

(7.26)

We can now define the rate function J(z, x, u) : Υ → R+,

J (z, x, u) : Υ → R+, (7.27)

starting by stipulating that it is infinite in the case that zα : R+ → R+ is not absolutely

continuous for any α ∈ R. Next, we stipulate that J (z, x, u) = ∞ in the case that

(z, x, u) /∈ Ῡ, where Ῡ is the closure of Υ̂ ⊂ Υ, that is,

Υ̂ = {(z, x, u) ∈ Υ : There exists y ∈ H1 such that Equation 7.19 is satisfied}.

(7.28)

Otherwise, if

(i) (z, x, u) ∈ Ῡ and

(ii) zα is absolutely continuous for every α ∈ R (which means that it must have a

derivative żα for Lebesgue almost every time),

for any realization of z, define the set

V(z, x, u) = {t ∈ R+ : For any α ∈ R, żα(t) ̸= 0 and λα(x(t), u(t)) = 0} (7.29)

102



and define the rate function J(z, x, u) = ∞ if V(z, x, u) is of nonzero Lebesgue

Measure, else otherwise

J (z, x, u) =
∑
α∈R

∫
R+\V(z,x,u)

ℓ

(
żα(r)

λα(x(r), u(r))

)
λα(x(r), u(r)) dr (7.30)

where

ℓ(a) = a log a− a+ 1. (7.31)

7.1.4 Euler-Lagrange Equations

In this section, we determine the structure of the Euler-Lagrange equations that

determine the most likely trajectory followed by the system in attaining a specified

state. Computing estimates for first-hitting times is one of the most important

applications of Large Deviations Theory. For the application of Large Deviations

Theory to first-hitting-time estimates, see, for example, [48, 65, 104]. The ‘fast

processes’ (i.e., the ODE in u(t)) are implemented as a constraint (with Lagrange

multipliers). We start by describing the problem in terms of reaction fluxes; that is,

we wish to determine the most likely trajectory followed by the system to reach a

target reaction flux z∗ ∈ (R+)|R| at time T . We must determine the trajectory,

(z, x, u) ∈ C1(R)M × C1(R)d × C1(R)m

such that JT is minimized, where

JT =
∑
α∈R

∫ T

0

L
(
ż(s), x(s), u(s)

)
ds, (7.32)
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where L : RM ×Rd×Rm → R+ is the integrand of the rate function in (7.30), that is,

L
(
q, x, u

)
=
∑
α∈R

ℓ
(
qα/λα(x, u)

)
λα(x, u)

ℓ(a) = a log a− a+ 1.

(7.33)

subject to the following constraints and boundary conditions

du

dt
=A(u, x)

x(t) =x(0) +
∑
α∈R

zα(t)ξα.

u(0) =û

zα(0) =0

zα(T ) =z∗α.

(7.34)

We introduce Lagrange Multipliers {ηi(t)}1≤i≤m corresponding to the m constraints

dui
t

dt
= Ai(ut, xt). (7.35)

Our task is now to find the critical points of the functional

J̃T (z, u, η) =

∫ T

0

L̃
(
ż(s), x(s), u(s)

)
ds where (7.36)

L̃
(
ż(s), x(s), u(s)

)
=L
(
ż(s), x(s), u(s)

)
−

m∑
i=1

ηi(s)
{
u̇i(s)− Ai(u(s), x(s))

}
such that

(7.37)

x(t) =x̂(0) +
∑
α∈R

zα(t)ξα. (7.38)

We now take the Frechet Derivative of (7.36), that is, for w ∈ C1([0, T ],R)M and

v ∈ C1([0, T ],R)m, and κ ∈ C1([0, T ],R)m, with boundary conditions w(0) = 0, w(T ) =

0, v(0) = 0, and the boundary conditions for κ are not yet clear. Thanks to the
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constraint in (7.38), we have that

d

dzα
=

d∑
i=1

∂

∂xi
ξiα. (7.39)

We, therefore, find that

DJ̃T (z, u, η) · (w, v, κ) := lim
ϵ→0+

ϵ−1
{
J̃T (z + ϵw, u+ ϵv, η + ϵκ)− J̃T (z, u, η)

}
=
∑
α∈R

∫ T

0

wα(t)

{ d∑
i=1

(
∂L

∂xi
ξiα +

m∑
k=1

ηk
∂Ak

∂xi
ξiα

)
− d

dt

∂L

∂żα

}
dt

+
m∑
i=1

∫ T

0

vi(t)

{
∂L

∂ui
+

dηi

dt
+

m∑
k=1

ηk
∂Ak

∂ui

}
− κi

{
dui

dt
− Ai(u(t), x(t))

}
dt

+
∑
α∈R

{
wα(T )

∂

∂żα
L(ż(T ), x(T ), u(T ))− wα(0)

∂

∂żα
L(ż(0), x(0), u(0))

}

−
m∑
i=1

{
ηi(T )vi(T )− ηi(0)vi(0)

}
,

and to obtain the above expression, we have used integration by parts to write

∑
α∈R

∫ T

0

ẇα(t)
∂L

∂żα
dt =

∑
α∈R

{
wα(T )

∂

∂żα
L(ż(T ), x(T ), u(T ))

− wα(0)
∂

∂żα
L(ż(0), x(0), u(0))−

∫ T

0

wα(t)
d

dt

∂L

∂żα
dt

}
(7.40)

and

m∑
i=1

∫ t

0

ηi(t)v̇i(t)dt =
m∑
i=1

{
ηi(T )vi(T )− ηi(0)vi(0)−

∫ t

0

η̇i(t)vi(t)dt
}

(7.41)
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Setting the coefficients of wα, v and κi to zero, we obtain the equations

d∑
i=1

(
∂L

∂xi
ξiα +

m∑
k=1

ηk
∂Ak

∂xi
ξiα

)
− d

dt

∂L

∂żα
= 0

∂L

∂ui
+

dηi

dt
+

m∑
k=1

ηk
∂Ak

∂ui
= 0

dui

dt
− Ai(u(s), x(s)) = 0

ηi(T ) = 0.

(7.42)

Noting that ℓ̇(a) = log a, we compute that ∂L
∂żα

= log żα
λα(x(t),u(t))

, and therefore

d

dt

∂L

∂żα
=

d

dt

(
log

żα
λα(x(t), u(t))

)
=
z̈α
żα

− 1

λα(x(t), u(t))

d

dt
λα(x(t), u(t)).

(7.43)

Thus in the case that λα(x, u) > 0, the Euler Lagrange equations are such that for

1 ≤ j ≤ m, α ∈ R and 1 ≤ i ≤ d,

z̈α
żα

=
1

λα

dλα

dt
+

d∑
i=1

ξiα
∂L

∂xi

−
d∑

k=1

m∑
j=1

ηj(t)
∂Aj

∂xk
t

ξkα

dηj

dt
=− ∂L

∂uj
−

m∑
k=1

ηk
∂Ak

∂uj

xi(t) =xi(0) +
∑
α∈R

zα(t)ξ
i
α for all t ≥ 0

ηj(T ) =0

zα(0) =0

z(T ) =z∗.

(7.44)
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For the sake of completeness, we note that

dλα

dt
=
∑
β∈R

d∑
i=1

∂λα

∂xi
ξiβ żβ +

m∑
i=1

∂λα

∂ui
Ai(u(t), x(t)) (7.45)

∂L

∂ui
=
∑
α∈R

∂λα

∂ui

(
1− żα

λα

)
(7.46)

It can be seen that this system amounts to an ODE boundary value problem. One

way one may attempt to solve this problem is via the shooting method [48]. At time

0, the unknowns are {żα(0)}α∈R and {ηj(0)}1≤j≤m. The shooting method requires

guessing the values of unknowns at time 0, (ii) integrate the equations forward to time

T , and then (iii) implement the constraints {żα(T ) = ż∗,α}α∈R and {ηj(T ) = 0}1≤j≤m.

7.1.5 Simplified Euler-Lagrange Equations

Usually, one wants to know the first-hitting-time for the concentrations {xi(T )}1≤i≤d,

rather than the first hitting time for the reaction fluxes. That is, for a fixed x∗ ∈ Rd,

one wishes to estimate the probability that xT ≃ x∗ and also determine the optimal

(most likely) path followed by the system in attaining this point. For this reason, it

can be simpler to eliminate the reaction fluxes and reduce the problem to one purely

in terms of concentrations and ODE variables {ui(T )}1≤i≤m. To this end, for any

ẋ ∈ Rd, x ∈ (R+)d, and u ∈ Rm, define the set

Ξ(ẋ, x, u) =
{
ż : ẋp =

∑
α∈R

ξpαżα
}
⊂ (R+)M (7.47)

Then, define the function

L̂
(
ẋ(s), x(s), u(s)

)
= inf

{
L(ż, x(s), u(s)) : ż ∈ Ξ(ẋ, x, u)

}
(7.48)
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In the case that Ξ(ẋ, x, u) = ∅, define L̂
(
ẋ(s), x(s), u(s)

)
= ∞. Thus, one can define

the contracted rate function,

J̃T :Cac([0, T ], (R+)d
)
× Cac([0, T ],Rm

)
→ R

J̃T (x, u) =

∫ T

0

L̃
(
ẋ(s), x(s), u(s)

)
ds,

(7.49)

and it is immediate from the Contraction Principle [45] that J̃T governs the Large

Deviations of (x, u). The following convexity property makes it easier to compute

optimal trajectories.

Lemma 7.1.3. L̃ is convex in its first argument.

Proof. This is because Ξ is linear in ẋ, and L is convex in its first argument.

Next, we outline the Euler-Lagrange equations for J̃T . The derivation parallels

that of the previous section. Our task is to find the critical points of the functional

J̀T (x, u, η) =

∫ T

0

L̀
(
ẋ(s), x(s), u(s)

)
ds, where

L̀
(
ẋ(s), x(s), u(s), η(s)

)
=L̃
(
ẋ(s), x(s), u(s)

)
−

m∑
i=1

ηi(s)
{
u̇i(s)− Ai(u(s), x(s))

}
,

(7.50)

and ηi ∈ C1([0, T ],R) is the Lagrange Multiplier.

We now take the Frechet Derivative of (7.50), i.e. for w ∈ C1([0, T ],R)M and

v ∈ C1([0, T ],R)m, and κ ∈ C1([0, T ],R)m, with boundary conditions w(0) = 0, w(T ) =
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0, v(0) = 0, and the boundary conditions for κ are not yet clear,

DJ̀T (x, u, η) · (w, v, κ) := lim
ϵ→0+

ϵ−1
{
J̀T (x+ ϵw, u+ ϵv, η + ϵκ)− J̃T (x, u, η)

}
=

∫ T

0

d∑
i=1

wi(t)

{(
∂L̂

∂xi
+

m∑
k=1

ηk
∂Ak

∂xi

)
− d

dt

∂L

∂ẋi

}
dt

+
m∑
i=1

∫ T

0

vi(t)

{
∂L̂

∂ui
+

dηi

dt
+

m∑
k=1

ηk
∂Ak

∂ui

}
− κi

{
dui

dt
− Ai(u(t), x(t))

}
dt

−
m∑
i=1

{
ηi(T )vi(T )− ηi(0)vi(0)

}
The Euler-Lagrange equations are thus, for 1 ≤ i ≤ d and 1 ≤ j ≤ m,

∂L̂

∂xi
+

m∑
k=1

ηk
∂Ak

∂xi
− d

dt

∂L̂

∂ẋi
= 0

∂L̂

∂uj
+

dηj

dt
+

m∑
k=1

ηk
∂Ak

∂uj
= 0

dui

dt
− Ai(u(s), x(s)) = 0

ηi(T ) = 0.

(7.51)

For the sake of completeness, we note that the derivative assumes the form

d

dt

∂L̂

∂ẋi
=

d∑
j=1

{
∂2L̃

∂ẋi∂ẋj
ẍj +

∂2L̂

∂ẋi∂xj
ẋj

}
+

m∑
j=1

∂2L̂

∂ẋi∂uj

duj

dt
(7.52)

7.2 Application to Calcium Signaling

In this section, we apply the theory of Section 7.1 to determine estimates for the typical

time it takes for cells with stochastically opening and closing calcium channels to

change from most of the channels being closed to most being open [47]. To begin with,

we must outline a simple microscopic model of stochastic calcium effects. Following,
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for example, [36, 85, 118, 119], we employ a hybrid model: with the calcium diffusion

modeled deterministically, the IP3 concentration constant throughout the cell, and the

channel opening and closing modeled stochastically; see Chapter 6 for more details.

Our primary aim is to determine the probability of calcium puffs and waves by studying

a stochastic model similar to [36, 85, 118, 119]. The calcium and IP3 concentration

throughout the cluster is assumed to be homogeneous to calculate the probability of a

calcium puff in a cluster. However, there is a feedback effect on the opening/closing

of the channels: when these bind or unbind the calcium / IP3, they alter the local

concentration. Thus, the opening and closing of channels within a cluster are not

independent because the channels communicate via the calcium / IP3 concentrations.

We assume the system requires a critical number of channels to open together to cause

a spike in the cell’s overall calcium. In that case, we aim to find the path the system

will likely take through the probability space for such an event.

7.2.1 PDMP Model of Calcium Dynamics

The following model is based on the one derived in Chapter 6 fitted for the subsequent

formulation. We assume that there are N channels distributed on the cell membrane.

The spatial effects are assumed to be negligible, so calcium concentrations can be

modeled as approximately spatially homogeneous using ODEs. Let u1 be the calcium

concentration in the cellular cytosol and u2 be the (explicate) calcium concentration

in the endoplasmic reticulum.

We take the number of stochastic variables corresponding to each channel to

be 1. That is, Zi
t = 1 if the channel is open and Zi

t = 0 if the channel is closed.

Employing a standard model [47] for the calcium dynamics, we obtain (as before) that

du1

dt
=kfx(t)(u2 − u1)− Jserca(u) + Jleak := A1(u, x)

du2

dt
=γJserca(u1)− γkfx(t)(u2 − u1)− γJleak := A2(u, x),

(7.53)
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Where

Jserca(u1) =
Vs(u1)

2

K2
s + (u1)2

Jleak(u) =kleak(u2 − u1)

One may observe that

d

dt

(
γu1 + u2

)
= 0, (7.54)

which means that we can eliminate u2 from the dynamics, and write u := u1(t), and

A(t) := A1(u, x).

Now

x(t) =
1

N

N∑
j=1

Zj
t . (7.55)

The Markovian switching of the channel that goes from 1 to 0 with intensity λ1(u, x) =

α−1x (a constant) and stoichiometric constant is ζ1 = −1, and the switching from 0

to 1 with intensity λ2(u, x) = α1u1(1− x) with stoichiometric constant is ζ2 = 1.

Let z1(t) count the number of times that reaction 1 occurs and z2(t) count the number

of times that reaction 2 occurs. Then it must be that

x(t) = x(0) + z2(t)− z1(t). (7.56)

7.2.2 Large N Limiting Dynamics

As N → ∞, it is a classical result that the concentration of open channels converges

to the following ODE [93].

dz

dt
= λ2(u, x)− λ1(u, x). (7.57)
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We compute the fixed point analytically. That is, solve (7.57) and (7.53). Take this

fixed point as the starting point for your Euler-Lagrange equations.

7.2.3 Euler-Lagrange Equations

Working with the contracted rate function in (7.48) seems easier. We first find a much

simpler form for the contracted rate function.

Lemma 7.2.1.

L̂
(
ẋ, x, u

)
= ℓ

(
ż1

λ1(x, u)

)
λ1(x, u) + ℓ

(
ẋ+ ż1
λ2(x, u)

)
λ2(x, u) (7.58)

where ż1 is such that

ż1
(
ẋ+ ż1

)
= λ1(x, u)λ2(x, u). (7.59)

One must choose the root of the above quadratic that is such that ż1 ≥ 0.

Proof. It must be,

ẋ = ż2 − ż1.

Thus, upon substitution, the Lagrangian assumes the form in (7.58). We must choose

ż1 to minimize (7.58), subject to the constraint 0 ≤ ż1 ≤ ẋ. We obtain the following

by differentiating (7.58) with respect to ż1 and setting the derivative to zero.

log

(
ż1

λ1(x, u)

)
+ log

(
ż1 + ẋ

λ2(x, u)

)
= 0. (7.60)

Exponentiating both sides, we obtain (7.59).
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Adapted to the calcium signaling model of this section, the original Euler-

Lagrange equations in (7.51) are thus, for i ∈ {1, 2},

∂L̂

∂x
+

2∑
k=1

ηk
∂Ak

∂x
=

d

dt

∂L̂

∂ẋ

∂L̂

∂u
+

dηi

dt
+

2∑
k=1

ηk
∂Ak

∂u
= 0

du

dt
− A(u(t), x(t)) = 0

ηi(T ) = 0.

(7.61)

The following lemmas are needed to continue the calculation. The first-order derivatives

are,

Lemma 7.2.2. First-order derivatives

∂L̂

∂ẋ
= log

(
ż1

λ1(x, u)

)
∂ż1
∂ẋ

+ log

(
ẋ+ ż1
λ2(x, u)

)(
1 +

∂ż1
∂ẋ

)
where

∂ż1
∂ẋ

= − ż1
2ż1 + ẋ

.

(7.62)

Notice also that the derivative assumes the form

d

dt

∂L̂

∂ẋ
=

∂2L̂

∂ẋ2
ẍ+

∂2L̂

∂ẋ∂x
ẋ+

2∑
j=1

∂2L̂

∂ẋ∂uj

duj

dt
(7.63)

and the second-order derivatives are,
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Lemma 7.2.3. Second-order derivatives

∂2ż1
∂ẋ2

=
ż1

(2ż1 + ẋ)2

(
1 +

ẋ

2ż1 + ẋ

)
∂2L̂

∂ẋ2
= 2

∂2ż1
∂ẋ2

log

(
ż1(ẋ+ ż1)

λ1(x, u)λ2(x, u)

)
+

λ1(x, u)

ẋ+ ż1

(
1 +

∂ż1
∂ẋ

)
∂2L̂

∂ẋ∂x
= −∂λ1(x, u)

∂x

1

λ1(x, u)

∂ż1
∂ẋ

− ∂λ2(x, u)

∂x

1

λ2(x, u)

(
1 +

∂ż1
∂ẋ

)
∂2L̂

∂ẋ∂ui

= −∂λ1(x, u)

∂ui

1

λ1(x, u)

∂ż1
∂ẋ

− ∂λ2(x, u)

∂ui

1

λ2(x, u)

(
1 +

∂ż1
∂ẋ

)
(7.64)

Equations (7.61) now lead to second-order systems of ODEs,

du1

dt
= kfx(u2 − u1)−

Vsu
2
1

k2
s + u2

1

+ kleak(u2 − u1)

du2

dt
= −γ

du1

dt
dη1
dt

=
ẋ+ ż1
u1

+ (η1 − γη2)

(
kfx+

2KsVsu1

(K2
s + u2

1)
2
+ kleak

)
− α1(1− x)

dη2
dt

= (γη2 − η1)(kfx+ kleak)

dẋ

dt
= (2ż1 + ẋ)×(
α−1 −

ż1
x

− α1u1 +
(ẋ+ ż1)

(1− x)
+ η1kf (u2 − u1)

− η2γkf (u2 − u1)−
(

1

(1− x)

)
ẋ+

(
1

u1

)
du1

dt

)

(7.65)

7.2.4 Optimal Trajectories

We wish to predict the probability for the proportion of open calcium channels being

significantly greater than its equilibrium value at some time T . We write the ’target’

proportion of the channels as x̂ ∈ (x∗, 1]. We thus wish to compute the trajectory

(x, u) ∈ A ⊂ C2([0, T ],R)× C1([0, T ],R2) such that

J̃T (x, u) = inf
{
J̃T (y, v) : (y, v) ∈ A

}
(7.66)
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and A ⊂ C2([0, T ],R)× C1([0, T ],R2) consists of all (x, u) such that

x(0) = x∗(0),

x(T ) = x̂,

u(0) = u∗,

(7.67)

and for all t ∈ [0, T ]

du

dt
= A(u(t), x(t)). (7.68)

The trajectory that minimizes J̃T indicates the most likely means that a significant

proportion of calcium channels open over the time interval [0, T ] due to stochastic

effects. The second order ODE for x(t) is stated previously in Subsection 7.2.3. The

dynamics of the Lagrange multiplier η(t) is given by, and the boundary value at time

T is

η1(T ) = 0,

η2(T ) = 0.

(7.69)

Our system thus amounts to a boundary value ODE. It is solved using the shooting

method. The unknown derivatives at time 0 (which must be solved for using the

shooting method) are η̇1(0), η̇2(0), ẋ(0). Three constraints at time T are used to

solve for the unknowns at time 0 and for the boundaries given in Equation 7.67 and

Equation 7.69.

7.2.5 Numerical Results

Figure 7.1 shows an example of the numerical solution for a path trajectory. We have

demonstrated that LDT can be used to compute the most likely trajectory followed

by N stochastic channels / diffusing calcium to make the spark-to-wave transition

[47]. The final time, Tf = 46 ms and x̂ = 0.9 were chosen to clearly show the system

115



finding a path for any (even exaggerated) given conditions. The orange lines represent

the equilibrium trajectories. The green line shows the shortest path to contrast with

the optimal path.

Figure 7.1 Example 1: Numerical results of optimal path trajectory.

To further highlight that the optimal path is calculated for a given set of

boundary conditions, Figure 7.2 shows another solution for the optimal path, this

time for Tf = 1 ms. Note the difference in the system’s path trajectory to achieve the

desired result.
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Figure 7.2 Example 2: Numerical results of optimal path trajectory.
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CHAPTER 8

CURRENT AND FUTURE WORK

One notable advantage of working with biological systems is the perpetual opportunity

to enhance the complexity and biological relevance of the models. This inherent

flexibility provides numerous avenues for further research and model refinement,

critical for advancing our understanding of complex biological phenomena.

This dissertation presented the neural network model under connectivity-

independent initial conditions. This simplification has allowed us to develop

foundational insights into the model’s behavior. However, it is also desirable to

consider connectivity-dependent initial conditions, as the primary motivation is that

over longer timescales (that diverge in N), the system will attain other parts of the

random energy landscape, so this would be necessary to understand better how this

affects the dynamics. This scenario is inherently more complex, necessitating a uniform

Large Deviation Principle (LDP) for the conditioned probability laws. Our forthcoming

paper [105] (submitted to Annals of Applied Probability at the time of this writing)

will address this challenge, comprehensively analyzing connectivity-dependent initial

conditions, in addition to those mentioned in this work. This extension is expected to

yield more profound insights into the neural network’s dynamics, mainly how initial

connectivity influences long-term behavior and emergent properties. Addressing these

complexities will enhance the accuracy and applicability of our predictive models,

making them more relevant to real-world neural systems.

Our current efforts focus on developing a specially extended version of the

calcium signaling model that captures a broader range of biological phenomena

and interactions. The existing one-dimensional model has laid the groundwork for

understanding fundamental signaling dynamics. Nevertheless, extending the model
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will allow us to incorporate additional biological details, such as spatial heterogeneity

and temporal dynamics. The Barbet laboratory’s experimental data reveal that the

wave has a clear spatial aspect and is also very spatially heterogeneous, highlighting

the value of this work.

Concurrently, we are establishing a LDP for this extended model. The numerical

validation process is critical to our ongoing research. This process is computationally

intensive for the spatially extended model and requires significant resources, but it is

essential to verify the robustness and applicability of our model. This validation will

ensure the model accurately reflects biological reality and can be used confidently in

further studies and applications.

These ongoing and future projects are expected to significantly contribute to

the field by providing more precise and comprehensive models that better reflect

the complexities of biological systems. These models’ continuous development and

validation will facilitate discoveries and a deeper understanding of the underlying

biological processes. Ultimately, this work will contribute to the broader goal of

developing predictive, mechanistic models that can be used to design experiments,

interpret data, and generate new hypotheses in studying biological systems.

By pushing the boundaries of current modeling approaches and addressing the

complexities inherent in biological systems, we aim to provide tools and insights

to drive future research and innovation in the field. The progress outlined here

underscores the importance of an iterative approach to model development, where

theoretical advancements and numerical validations work in tandem to enhance our

understanding of complex biological phenomena.
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CHAPTER 9

CONCLUSION

This dissertation focused on developing stochastic models and applying the Large

Deviation Theory (LDT) to them, with a particular emphasis on biological systems.

Exploring two key examples, random neural networks and calcium signaling in

biological cells, provided significant insights into the behavior of complex stochastic

processes.

The primary contributions included establishing a Large Deviation Principle

(LDP) for a spin glass type system and developing one for a PDMP) modeled system.

In the first example, a random neural network was analyzed using LDT. By examining

systems with independent Brownian Motions, the large N limit of the empirical

measure was determined, and convergence to a fixed point was shown. This analysis

afforded a relatively concise macroscopic description of the behavior of a large ensemble

of neurons. Additionally, the dissertation demonstrated a uniform LDP for uncoupled

systems and derived an LDP for the coupled system by performing an exponential

change of measure using Girsanov’s Theorem.

The second example focused on calcium signaling in biological cells. A PDMP

model for calcium concentration dynamics was developed and characterized by

deterministic flow, switching rates, and probability measures. This model was validated

through parameter fitting and Markov chain Monte Carlo (MCMC) analysis, accurately

representing observed calcium dynamics. Applying LDT to this model enabled the

estimation of probabilities for cell-wide calcium waves, providing detailed insights

into the spark-to-wave transition and identifying the most likely trajectories for this

critical biological process. The transformation of the PDMP system into homogeneous

Poisson processes via time-rescaling was linked to the general LDP through the
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Inverse Contraction Principle. This technique framed the problem as a constrained

optimization task and allowed the derivation of Euler-Lagrange equations for optimal

trajectories, advancing the theoretical framework of LDT.

In summary, this dissertation advanced the theoretical framework of stochastic

modeling and large deviation theory, applying these concepts to complex biological

systems. Integrating theoretical models with experimental data underscored the

practical relevance of this work and its potential impact across various scientific

domains. The insights gained from analyzing random neural networks and calcium

signaling provided a solid foundation for future research in computational neuroscience

and cellular biology, highlighting the utility of mathematical modeling in understanding

intricate stochastic processes.
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APPENDIX A

BOUNDING FLUCTUATIONS OF THE NOISE

This appendix provides a detailed proof of the Lemma 5.1.1 stated in the main body

of the text in Subsection 5.1, which is crucial for our subsequent analysis. The lemma

asserts that for any given L > 0, there exists a positive constant a such that

lim
N→∞

N−1 logP
(
µ̂N(y) /∈ Qa

)
≤ −L. (A.1)

Here, µ̂N(y) represents an empirical measure associated with a sample y of size N ,

and Qa denotes a specified set parameterized by a. This Lemma essentially provides a

large deviation bound indicating that the probability of the empirical measure µ̂N(y)

falling outside the set Qa decays exponentially with rate at least L.

For the processes (yj
[0,T ])j∈IN that are defined in (5.53), define the empirical

measure

µ̂N(y) = N−1
∑
j∈IN

δyj
[0,T ]

∈ P
(
C([0, T ],RM)

)
. (A.2)

Next, we bound the probability of the empirical being in the set Qa, defined in (5.2),

which we recall

Qa =

{
µ ∈ P

(
C([0, T ],RM)

)
: sup

m≥a
sup

0≤i≤m
Eµ
[
sup

M∈IM
(wp

t
(m)
i+1

− wp

t
(m)
i

)2
]
> ∆1/4

m and

µ ∈ Ka and sup
p∈IM

Eµ[ sup
t∈[0,T ]

(ypt )
2
]
≤ a

}
(A.3)

where ∆m = T/m and t
(m)
i = iT/m. The main result of this section is the following.
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Lemma A.1. For any L > 0, there exists a ∈ Z+ such that for all N ≥ 1,

sup
(z0,g0)

N−1 logPN
z0

(
µ̂N(y) /∈ Qa

)
≤ −L. (A.4)

Proof. Employing a union-of-events bound, or any (z0,g0) ∈ YN ,

N−1 logPN
z0

(
µ̂N(y) /∈ Qa

)
≤ N−1 log

{
PN
z0

(
sup
p∈IM

N−1
∑
j∈IN

sup
t∈[0,T ]

(yp,jt )2 > a

)
+ PN

z0

(
sup

0≤t≤∆m

∑
j∈IN

sup
0≤i≤m−1

sup
p∈IM

∣∣yp,j
t+t

(m)
i

− yp,j
t
(m)
i

∣∣2 ≥ Na∆m

)
+ PN

z0

(
µ̂N(y) /∈ Ka

)}
.

(A.5)

To bound the first term on the RHS, since yp,j0 = zp,j0 ,

(yp,jt )2 ≤ 2
(
yp,jt − yp,j0

)2
+ 2(zp,j0 )2.

Thus, for a positive constant b > 0,

EPN
z0

[
exp

(
b sup
p∈IM

∑
j∈IN

sup
t∈[0,T ]

(yp,jt )2
)]

≤ EPN
z0

[
exp

(
2b sup

p∈IM

∑
j∈IN

(zp,j0 )2 + 2b
∑
j∈IN

sup
t∈[0,T ]

(yp,jt − zp,j0 )2
)]

. (A.6)

Thus, thanks to Chernoff’s Inequality,

N−1 logPN
z0

(
sup
p∈IM

N−1
∑
j∈IN

sup
t∈[0,T ]

(yp,jt )2 > a

)
≤ 2b

N
sup
p∈IM

∑
j∈IN

(zp,j0 )2 (A.7)

+N−1 logEPN
z0

[
exp

(
2b
∑
j∈IN

sup
t∈[0,T ]

(yp,jt − zp,j0 )2
)]

− ba. (A.8)

The first term on the RHS is bounded for all N and all (z0, g0) ∈ YN . For the second

term on the RHS, standard theory on stochastic processes implies that the exponential
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moment exists as long as b is small enough. Thus, taking a → ∞, the RHS can be

made arbitrarily small. We thus find that

lim
a→∞

sup
N≥1

sup
(z0,g0)∈YN

N−1 logPN
z0

(
sup
p∈IM

N−1
∑
j∈IN

sup
t∈[0,T ]

(yp,jt )2 > a

)
= −∞. (A.9)

The Lemma now follows from applying (A.9), Lemma A.3 and Lemma A.2 to (A.5).

The following result is well-known. Nevertheless, we sketch a quick proof for

clarity.

Lemma A.2. For any L > 0, there exists a compact set KL such that for all N ≥ 1,

sup
(z0,g0)∈YN

N−1 logPN
z0

(
µ̂N(y) /∈ KL

)
≤ −L (A.10)

Proof. The following property follows straightforwardly from properties of the

stochastic integral (noting that the diffusion coefficient is uniformly bounded): for

any ϵ > 0, there exists a compact set Cϵ ⊂ C([0, T ],RM) such that for all j ∈ IN such

that ∥zj0∥ ≤ ϵ−1,

sup
j∈IN

PN
z0

(
yj[0,T ] /∈ Cϵ

)
≤ ϵ. (A.11)

Write

uN
ϵ = sup

(z0,g0)∈YN

N−1
∑
j∈IN

χ{∥yj
0∥ ≥ ϵ−1}, (A.12)

and note that our assumptions on YN dictates that

lim
ϵ→0+

lim
N→∞

uN
ϵ = 0. (A.13)
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For any m ∈ Z+, define the set Lm,δ ⊂ P
(
C([0, T ],RM)

)
to be such that

Lm,δ =
{
µ ∈ P

(
C([0, T ],RM)

)
: µ(Cm−1) ≥ δ

)}
(A.14)

We claim that for any m ≥ 1, there exists δm > 0 such that

sup
N≥1

sup
(z0,g0)∈YN

N−1 logPN
z0

(
µ̂N
(
y
)
/∈ Lm,δm

)
≤ −m (A.15)

To see this, employing a Chernoff Inequality, for a constant b > 0, for any (z0, g0) ∈ YN ,

N−1 logPN
z0

(
µ̂N
(
y
)
/∈ Lm,δ

)
≤EPN

z0

[
exp

(
b
∑
j∈IN

χ{yj
[0,T ] /∈ Cm−1} −Nbδ

)]
(A.16)

≤− bδ +N−1 log
{
(ϵ+ uN

ϵ )
(
exp(b)− 1

)
+ 1
}N

(A.17)

=− bδ + log
{
(ϵ+ uN

ϵ )
(
exp(b)− 1

)
+ 1
}

(A.18)

Taking ϵ to be sufficiently small and b sufficiently large, we obtain (A.15).

Now, for an integer mL to be specified further below, define KL =
⋂

m≥mL
Lm,δm .

Prokhorov’s Theorem implies that KL is compact. Employing a union-of-events bound,

we obtain that

PN
z0

(
µ̂N(y) /∈ KL

)
≤
∑

m≥mL

exp(−mN) (A.19)

≤ exp(−mLN) sup
n≥1

∞∑
j=0

exp(−jN). (A.20)

We thus find that, for large enough mL,

sup
N≥1

N−1 logP
(
µ̂N(y) /∈ KL

)
≤ −L,

as required.
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Lemma A.3. There exists a constant C such that for any positive integer m and any

a > 0, writing ∆m = Tm−1 and t
(m)
i = Ti/m, for any N ≥ 1,

sup
(z0,g0)∈YN

N−1 logPN
z0

(
sup

0≤t≤∆m

∑
j∈IN

sup
0≤i≤m−1

sup
p∈IM

∣∣yp,j
t+t

(m)
i

− yp,j
t
(m)
i

∣∣2 ≥ Na∆m

)
≤

C+ logm− a

4

(A.21)

Proof. Define, for t ∈ [0,∆m),

fN
t =

∑
j∈IN

sup
0≤i≤m−1

sup
p∈IM

(
yp,j
t+t

(m)
i

− yp,j
t
(m)
i

)2
Notice that t → fN

t is a submartingale. Thus, writing a = (4∆m)
−1, exp

(
afN

t

)
is a

submartingale. Therefore, thanks to Doob’s Submartingale Inequality,

P
(
fN
t ≥ Nx

)
≤ E

[
exp

(
afN

T − aNx
)]

(A.22)

≤
{
mM

(
1− 2∆mσ̄a

)−1/2}N
exp(−aNx) (A.23)

=
{
mM21/2

}N
exp

(
−Nx/(4∆m)

)
(A.24)
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APPENDIX B

PROOFS FOR LDP FOR PDMP

In this appendix, we prove Theorem 7.1.1 found in the main body of the text in

Subsection 7.1.2. The statement of the theorem is as follows:

Suppose that O,A ⊂ Υ, with O open and A closed, are such that for any T > 0,

inf
(z,x,u)∈A∪O

inf
α∈R

inf
s∈[0,T ]

λα(x(s), u(s)) > 0.

Then there exists a function J : Υ → R (specified in Subsection 7.1.3) that is (i)

lower-semicontinuous and (ii) has compact level sets such that

lim
N→∞

N−1 logP ((z, x, u) ∈ A) ≤ − inf
β∈A

J(β)

lim
N→∞

N−1 logP ((z, x, u) ∈ O) ≥ − inf
β∈O

J(β)

We apply the contraction principle to the Large Deviation Principle (LDP) for

the independent system. In other words, we will perform a change of variable, which

will transfer known results for the Large Deviations of independent Poisson Processes

[141, Chapter 6]. We first recount the Large Deviations for independent Poisson

Processes (recalling the definition of {yα(t)}α∈R in (7.19)).

Theorem B.1. The sequence of probability laws of (yα)α∈R ∈ D̃([0,∞),R+)M satisfy

a LDP with good rate function.

That is, for O,A ⊂ D̃([0,∞),R+)M , with O open and A closed,

lim
N→∞

N−1 logP
(
y ∈ A

)
≤ − inf

α∈A
I(α) (B.1)

lim
N→∞

N−1 logP
(
y ∈ O

)
≥ − inf

α∈O
I(α), (B.2)
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and the so-called ‘local rate function’ is

I(y) =

 ∞ in the case that yα is not absolutely continuous for some α ∈ R∑
α∈R

∫∞
0

ℓ
(
ẏα(r)

)
dr otherwise,

where

ℓ(r) = r log r − r + 1.

(B.3)

Furthermore, the level sets of I are compact.

Proof. The Large Deviations Principle for arbitrarily long finite time intervals is

proved in [141, Chapter 5], with corresponding rate function

I(y) =
∑
α∈R

∫ ∞

0

ℓ
(
ẏα(r)

)
dr. (B.4)

The first result we must prove is that the Large Deviations Principle must hold

for sets with reaction rates bounded away from zero.

Lemma B.2. Suppose that O,A ∈ B(Υ), with O open and A closed, are are such

that for any T > 0,

inf
(z,x,u)∈A∪O

inf
α∈R

inf
s∈[0,T ]

λα(x(s), u(s)) > 0. (B.5)

Then the sequence of probability laws of
(
z, x, u

)
satisfy a LDP on the space Υ, i.e.

lim
N→∞

N−1 logP
(
β ∈ A

)
≤ − inf

β∈A
J (β) (B.6)

lim
N→∞

N−1 logP
(
β ∈ O

)
≥ − inf

β∈O
J (β). (B.7)

J is lower-semi-continuous and the level sets of J are compact.
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Proof. We will prove the LDP using a contraction principle. To this end, define a

mapping Ψ : Υ → D̃([0,∞),R+)M as follows. For any (z, x, u) ∈ Υ, define

Λα(t) =

∫ t

0

λα(x(s), u(s))ds. (B.8)

Let Λ−1
α ∈ D̃([0,∞),R+ be such that

Λ−1
α (t) = inf

{
s ≥ 0 : Λα(s) = t

}
. (B.9)

Note that if infs∈[0,t] λα(x(s), u(s)) > 0, then Λ−1
α is the function inverse of Λα. Write

τα = lim
t→∞

Λα(t), (B.10)

and note that τα could be ∞. We define Ψ(z, x, u) =
(
wα

)
α∈R

, where for any t < τα,

wα(t) = zα
(
Λ−1

α (t)
)
. (B.11)

In the case that τα < ∞, for all t ≥ τα, we define wα(t) = lims→τ−α
wα(s). One

observes that over sets of the form (B.5), Ψ is continuous and one-to-one. Furthermore,

wα(t) = yα(t). The lemma thLemmallows from the Inverse Contraction Principle [45],

and Lemmas B.1 and B.4.

Lemma B.3. Over any set Aϵ of the form

Aϵ = inf
(z,x,u)∈Υ

inf
α∈R

inf
s∈[0,T ]

λα(x(s), u(s)) ≥ ϵ. (B.12)

Ψ is one-to-one.
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Proof. Let (z, x, u), (ẑ, x̂, û) ∈ Υ. Write

Λα(t) =

∫ t

0

λα(x(s), u(s)) ds (B.13)

Λ̂α(t) =

∫ t

0

λα(x̂(s), û(s)) ds (B.14)

wα(t) = zα(Λ
−1
α (t)) (B.15)

ŵα(t) = ẑα(Λ̂
−1
α (t)). (B.16)

(B.17)

It is noted in Lemma 7.1.2 that there is a constant Ct > 0 such that

sup
α∈R

Λα(t) ≤ Ct. (B.18)

We are going to demonstrate that for any t ≥ 0, there exists a constant cϵ,t such that

for all s ≤ t,

d̃◦s(zα, ẑα) ≤ d̃◦Cs(wα, ŵα) + cϵ,td̃
◦
s(zα, ẑα). (B.19)

An application of Gronwall’s Inequality to Equation B.19 implies that if wα = ŵα for

all α ∈ R, then necessarily zα = ẑα. This implies the Lemma.

Lemmathe aim of proving Equation B.19, it follows from Calculus that

Λ−1
α (t) =

∫ t

0

λ−1
α (x(s), u(s)) ds (B.20)

Λ̂−1
α (t) =

∫ t

0

λ−1
α (x̂(s), û(s)) ds. (B.21)
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Our assumptions on the set Aϵ imply that

Λ−1
α (t) ≤ tϵ−1 (B.22)

Λ̂−1
α (t) ≤ tϵ−1. (B.23)

Define

z̃α(t) = wα(Λ̂(t)). (B.24)

The triangle inequality implies that

d̃◦t (zα, ẑα) ≤ d̃◦t (zα, z̃α) + d̃◦t (z̃α, ẑα). (B.25)

The definition of the Skorohod metric implies that

d̃◦t (zα, z̃α) ≤ sup
s≤t

∣∣∣∣∫ s

0

λα(x(r), u(r))

λα(x̂(r), û(r))
dr − s

∣∣∣∣ . (B.26)

Our assumption that the reaction rates and functions are Lipschitz, together with

Lemma 7.1.2 implies that there is a constant C̄ϵ,t > 0 such that

sup
s∈[0,t]

sup
α∈R

|λα(x(s), u(s))− λα(x̂(s), û(s))| ≤ C̄ϵ,t sup
s∈[0,t]

sup
α∈R

|zα(s)− ẑα(s)|

≤ C̄ϵ,t sup
α∈R

d̃◦t (zα, ẑα).

(B.27)

Since the reaction rates are (by assumption in the statement of the Lemma) bLemmad

from below, we thus obtain that there is a constant ℓCϵ,t such that for all s ≤ t̄,

sup
α∈R

d̃◦s(zα, z̃α) ≤ ℓCϵ,t̄
sup
α∈R

d̃◦s(zα, ẑα). (B.28)
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The definition of the Skorokhod metric, together with the bounds in Equation B.22,

also implies

d̃◦t (z̃α, ẑα) ≤ d̃◦Ct
(wα, ŵα). (B.29)

The following exponential tightness result is a standard requirement for LDPs.

Lemma B.4. For any L > 0, there exists a compact set KL ⊂ Υ such that

lim
N→∞

N−1 logP
(
(z, x, u) /∈ KL

)
≤ −L. (B.30)

Proof. We can equivalently formulate the system in terms of an empirical measure,

and the exponential tightness is an immediate consequence. In more detail, write

µ̂N = N−1
∑
j∈IN

δwj ∈ P
(
D
(
[0, T ],Z+

)|R|)
. (B.31)

Here wj :=
(
wj

α

)
α∈R

⊂ D
(
[0, T ],Z+

)|R|
are inhomogeneous counting processes, i.e.

they are such that

P
(
wj

α(t+∆) = wj
α(t) + 1 | Ft

)
≃ ∆λα(x(t), u(t)) +O(∆2) (B.32)

P
(
wj

α(t+∆) = wj
α(t) | Ft

)
≃ 1−∆λα(x(t), u(t)) +O(∆2). (B.33)

Here

x(t) =x(0) +N−1
∑
j∈IN

∑
α∈R

ξαw
j
α(t) (B.34)

du

dt
=A(u(t), x(t)) (B.35)
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We then find that substituting zα(t) = N−1
∑N

j=1 w
j
α(t), the above system has the same

probability law as the original system. Write D∗
(
[0, T ],Z+

)|R|) ⊆ D
(
[0, T ],Z+

)|R|
to

consist of all processes that are (i) equal to 0 at time 0, (ii) non-decreasing.

More precisely, we see that there exists a continuous mapping

Ψ : P
(
D∗
(
[0, T ],Z+

)|R|)
such that (z, x, u) = Ψ

(
µ̂N
)
, with unit probability. For a

positive number L > 0, we are going to define a compact set KL ⊆ P
(
D∗
(
[0, T ],Z+

)|R|)
such that

lim
N→∞

N−1 logP
(
µ̂N /∈ KL

)
≤ −L. (B.36)

This suffices for the lemma beLemma the continuity of Ψ then implies that Ψ(KL) is

compact.

For a positive integer p ≥ 1, write Up,T ⊆ D∗
(
[0, T ],Z+

)|R|
to consist of all paths

that are less than or equal to p at time T . It is easy to check that Up is compact

with respect to the Skorohod Topology (there are at most p ‘spike times,’ and these

spike times must be in the compact time interval [0, T ]). Write Y p,j
α to be independent

counting processes of unit intensity. Thus, time-rescaled representation of Poisson

Processes [4] means that we can write

wj
α(t) = Y j

α

(∫ t

0

λα(x(s), u(s))ds

)
(B.37)

For another number bp > 0, we find that

P
(
µ̂N(w)(Up,T ) < 1− bp

)
≤ P

(
µ̂N(Y)

(
Up,KT

)
< 1− bp

)
. (B.38)
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since λ ≤ K uniformly. Thanks toChernoff’ss Inequality, for a constant c > 0,

P
(
µ̂N(Y)

(
Up,KT

)
< 1− bp

)
≤ P

(
sup
α∈R

N−1

N∑
j=1

χ
{
wj

α(KT ) > p
}
≥ bp

)

≤
∣∣R∣∣E[ exp(c N∑

j=1

χ
{
wj

α(KT ) > p
}
−Ncbp

)]

=
∣∣R∣∣{1 + P

(
wj

α(KT ) > p
)(

exp(c)− 1
)}N

exp
(
−Ncbp

)
(B.39)

Through taking p large enough, and 1 ≪ c ≪ − logP
(
wj

α(KT ) > p
)
, we find that

P
(
µ̂N(w)(Up,T ) < 1− bp

)
≤ exp

(
− pN

)
. (B.40)

Now define KL to consist of all measures µ such that for all p ≥ pL (for an integer pL

to be specified below),

µ(Up,KT ) ≥ bp. (B.41)

We thus find through a union of events bound that

P
(
µ̂N /∈ KL

)
≤

∞∑
p=pL

P
(
µ̂N(Y)

(
Up,KT

)
< 1− bp

)

≤
∞∑

p=pL

exp
(
− pN

)
.

(B.42)

Thus for large enough pL, it must be that for all N ≥ 1,

N−1 logP
(
µ̂N /∈ KL

)
≤ −L. (B.43)

We finally note the proof of Lemma 7.1.2.
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Proof. It is clear from the definition of x that there is a universal constant such that

∥x(s)− x̃(s)∥ ≤ C sup
α∈R

|zα(s)− z̃α(s)|. (B.44)

It is demonstrated in Billingsley [17] that convergence in the Skorohod metric implies

convergence in the supremum norm, i.e., as d◦∞(z, z̃) → 0, it must be that

sup
α∈R

sup
0≤s≤t

|zα(s)− z̃α(s)| → 0 (B.45)

The Lemma now follows from a standard application of Gronwall’s Inequality.
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[5] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory. Academic Press,
San Diego, CA, USA, 1st edition, 2000.
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[54] O. Faugeras, E. Soret, and E. Tanré. Asymptotic behaviour of a network of neurons
with random linear interactions. Preprint HAL Id: hal-01986927, 2019.

[55] O. Faugeras and J. Maclaurin. Asymptotic description of stochastic neural networks.
i. existence of a large deviation principle. Comptes Rendus. Mathématique,
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