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ABSTRACT

CERTIFYING STABILITY IN RUNGE-KUTTA SCHEMES:
ALGEBRAIC CONDITIONS AND SEMIDEFINITE PROGRAMMING

by
Austin Juhl

Numerical stability is a critical property for a time-integration scheme. In the context

of Runge-Kutta methods applied to stiff differential equations, A-stability is one of

the most basic and practically important notions of stability. Dating back to the work

of Dahlquist, it has been known that A-stability is equivalent to the Runge-Kutta

stability function satisfying a particular convex feasibility problem. Specifically, up to

a transformation, the stability function lies in the convex cone of positive functions. In

recent years, sum-of-squares optimization and semidefinite programming have become

valuable tools in developing rigorous certificates of stability in dynamical systems.

Therefore, it is natural to employ these convex optimization tools for the purpose of

rigorously certifying A- and A(α)-stability in Runge-Kutta methods.

Two distinct convex feasibility problems defined by linear matrix inequalities

are introduced. The first approach employs sum-of-squares programming applied to

the Runge-Kutta E-polynomial, making it applicable to both A- and A(α)-stability.

The second approach refines the algebraic conditions for A-stability, as developed

by Cooper, Scherer, Türke, and Wendler (CSTW), to incorporate the Runge-Kutta

order conditions. The theoretical enhancement of the algebraic conditions facilitates

the practical application of the refined conditions for certifying A-stability within a

computational framework.

Additionally, a new theoretical perspective is provided, relating the algebraic

conditions for A-stability to continued fraction approximations of the exponential.

This perspective involves the introduction of a new transform defined in a recently

established class of polynomials orthogonal with respect to a linear functional.



The E-polynomial and CSTW methodologies are utilized to obtain rigorous

stability certificates for several implicit Runge-Kutta schemes proposed in the

literature. Specific attention is given to certifying the implicit Runge-Kutta schemes

utilized in the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers

(SUNDIALS).
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CHAPTER 1

INTRODUCTION

Numerical stability is a critical property for a time-integration scheme. In the context

of Runge-Kutta (RK) methods applied to stiff differential equations, A-stability (or

the related A(α)-stability), introduced by Dahlquist [16], is one of the most basic

and practically important notions of stability. As a result of the reduced degrees

of freedom in the Butcher coefficients, Runge-Kutta methods that are A-stable

with stability functions that are near-optimal order approximations have been well

characterized [11, 26, 39, 48] (cf. [29] for algebraically stable methods). However,

many existing and newly developed Runge-Kutta methods in the literature admit a

diagonally implicit structure and lie outside the application of these previous results.

While one strategy for verifying A-stability is via Sturm sequences [30], our approach

here is rooted in convex optimization.

In recent years, sum-of-squares optimization and semidefinite programming have

become valuable tools in developing rigorous certificates of stability in dynamical

systems. Such certificates are useful in developing reliable algorithms and software.

Examples range from stochastic linear-quadratic control [49], switched stability of

nonlinear systems [1], reinforcement learning [31], stability in partial differential

equations [23], and applications for robotic control [38]. Additionally, control

systems have benefited from analogous certification techniques, including verifying

the stability of reinforcement learning policies [19] or variable step-size convergence

bounds for gradient descent [25]. In this work, we adopt a similar strategy to establish

rigorous certificates for A- and A(α)- stability in Runge-Kutta methods through the

computational solution of linear matrix inequalities via semi-definite programming.
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Chapter 1 will introduce the background of Runge-Kutta methods, covering the

linear stability of RK schemes and the order conditions. These concepts are central to

the main ideas explored in this dissertation. The chapter concludes with descriptions

of linear matrix inequalities and semidefinite programming feasibility problems, the

primary tools we use to obtain rigorous certificates of A-stability for RK schemes.

1.1 Runge-Kutta Background

Numerical time integration of an ordinary differential equation (V = Rm or Cm)

u′(t) = f
(
t,u(t)

)
, u(0) = u0 ; u ∈ V , f : R× V → V , (1.1)

results in a discrete-in-time dynamical system — one of the most common being a

Runge-Kutta (RK) method. Runge-Kutta methods, discretize (1.1) with s stages as

hi = un +∆t
s∑

j=1

aij f(tn + cj∆t,hj) , i = 1, 2, . . . , s (1.2a)

un+1 = un +∆t
s∑

j=1

bj f(tn + cj∆t,hj) , (1.2b)

where un ≈ u(tn) and tn = n∆t denotes the nth time step. The RK scheme is defined

by coefficients

A = [aij]
s
i,j=1 , b = [b1, . . . , bs]

T , c = [c1, . . . , cs]
T := Ae ; and e = [1, . . . , 1]T .

1.1.1 Linear stability in RK schemes.

It is standard practice to assess the stability of a RK scheme by examining the scalar

linear case where f(u) = λu with λ ∈ C and fixed ∆t. The Runge-Kutta dynamics

(1.2) applied to the scalar linear problem are expressed as:

un+1 = W (z)un, where z := λ∆t .

2



Here W (z) is the stability function of the scheme given by:

W (z) := 1 + zbT (I − zA)−1e =
det(I − zA+ zebT )

det(I − zA)
=

N(z)

D(z)
. (1.3)

In equation (1.3), N(z) and D(z) represent polynomials of degree at most s, sharing

no common factors, and I is the identity matrix.

A method exhibits a degenerate stability function if degN ≤ s−1 and degD ≤

s − 1; otherwise, the stability function is considered non-degenerate. Degenerate

stability functions occur when det(I − zA+ zebT ) and det(I − zA) share a common

root.

The dynamics (1.2) are stable for a given z if |W (z)| ≤ 1. We will primarily be

concerned with numerical schemes (A, b) that are A-stable, i.e., those where

(A-stability) |W (z)| ≤ 1 for z ∈ C− = {z ∈ C : Re z ≤ 0} . (1.4)

The A-stability criteria ensures that the discrete dynamics (1.2) are stable whenever

the linear ODE (1.1) is stable. For schemes that are not A-stable, it is useful to

characterize the largest α > 0 for which the RK dynamics are stable for all z in the

sector Sα opening into the left-half plane with angle α

(A(α)-stability) |W (z)| ≤ 1 for z ∈ Sα = {z ∈ C : | arg(−z)| ≤ α} . (1.5)

Note that A-stability is equivalent to A(α)-stability with α = π
2
.

The primary goal of this dissertation is to refine and leverage existing theory

and computational tools to obtain a rigorous certificate of A- or A(α)-stability for

RK schemes.

1.1.2 Accuracy and order conditions.

The notion of accuracy and order conditions will play a direct role in certifying the

stability of RK methods within a computational framework. For an RK scheme to

3



achieve (classical) order p on linear, autonomous problems, the stability function

must approximate the exponential function to order p, such that

W (z) = ez +O(zp+1) as z → 0. (1.6)

This approximation is achieved provided the RK coefficients (A, b) satisfy the tall-tree

order conditions of order p:

bTAj−1 e =
1

j!
for 1 ≤ j ≤ p , (1.7)

as outlined in [27]. Additional RK order conditions, i.e., the non-tall-tree conditions,

are further required to achieve accuracy of order p on general (nonlinear) ODEs.

1.2 Linear Matrix Inequalities and Semidefinite Programming

The computational tools used to certify the stability of RK schemes involve using

linear matrix inequalities to define a feasible set within a semidefinite program.

Given matrices P ,N 1, . . . , Nn, in the set Sn of n×n real symmetric matrices,

a linear matrix inequality (LMI) is defined as:

F (η) := P +
d∑

j=1

ηjN j ⪰ 0 , (1.8)

where F ⪰ 0 indicates that F is positive semi-definite (F ≻ 0 indicates that F

is positive definite). The LMI (1.8) is feasible if there exists a vector η such that

F (η) ⪰ 0; otherwise the LMI is infeasible. The linearity of F (η) ensures that the

set:

C = {η ∈ Rd : F (η) ⪰ 0} ,

containing all η that satisfy the LMI (1.8), is convex. Thus, assessing the feasibility

of F (η), in other words, determining whether C is non-empty, is a convex feasibility

problem that can be solved via semidefinite programming.

4



Due to the matrix structure of (1.8), the feasible set C may lie in an affine plane

with a dimension less than d, potentially resulting in C having an empty interior. The

affine hull of a convex set is defined as the smallest affine space containing C, meaning

it is the intersection of all affine sets containing C [10]. The affine hull can also be

defined as the set of all affine combinations of points in C:

aff(C) :=

{
r∑

j=1

µjxj : r > 0, xj ∈ C,
r∑

j=1

µj = 1, µj ∈ R

}
.

Note that in the definition of aff(C), the number of points r in C can be arbitrary.

Furthermore, since aff(C) defines an affine space, by construction, it has the following

form:

aff(C) = x0 + V,

where x0 is in C and V is a vector space. With this construction, the set C can be

assigned a dimension as follows:

Definition 1.2.1 (Dimension of a convex set [10]). Let C be a convex set with affine

hull aff(C) and associated vector space V. Then the dimension of C, written dim(C),

is defined to be the dimension of V.

A convex program characterized by a constant objective function and constrained

by LMIs is called a semidefinite programming (SDP) feasibility problem and takes the

form
Minimize: 1

Subject to: F (η) := P +
∑d

j=1 ηjN j ⪰ 0 .
(P1)

5



CHAPTER 2

ALGEBRAIC CONDITIONS FOR STABILITY

Dating back to the work of Dahlquist (e.g., [17]), it has been known that A-stability of

(1.2) is equivalent to the RK stability function satisfying a particular convex feasibility

problem. Specifically, up to a transformation, the stability function lies in the convex

cone of positive functions [30, Chapter IV.5]. Subsequent convex feasibility conditions

for A-stability include: (1) the RK E-polynomial lying in the convex cone of non-

negative polynomials, and (2) the existence of a symmetric matrix that satisfies a

set of algebraic conditions depending on the RK scheme coefficients. These algebraic

conditions, referred to as the CSTW conditions, were developed by Cooper [13],

Scherer and Türke [42], and Scherer and Wendler [43]. The CSTW conditions form a

feasibility problem over the convex cone of semidefinite matrices. Semidefinite matrix

conditions also exist for stronger notions of stability, such as algebraic stability (or

the related concept of B-stability) for Runge-Kutta schemes [30, Chapter IV.12], and

G-stability [18] for linear multistep methods.

This chapter focuses on algebraic conditions for stability in Runge-Kutta

schemes. We begin by detailing the use of sum-of-squares optimization for certifying

A- and A(α)-stability via testing the non-negativity of the E-polynomial. We then

explore the existing CSTW conditions. The main contributions of this chapter are

twofold.

First, we provide a theoretical contribution that sharpens the CSTW conditions.

The CSTW conditions do not account for the fact that the stability function is a pth

order approximation to the exponential, which ultimately limits their practical use

in providing rigorous certificates via computer-assisted means. Our theoretical result

(Theorem 2.3.3 and Theorem 2.3.6) modifies the CSTW conditions to account for the

6



RK order conditions and singular coefficient matrix A, thereby enabling the rigorous

certification of stability via computational approaches.

Second, we introduce new algebraic conditions for A-stability derived from a

new class of orthogonal polynomials. The chapter concludes with a brief review of

Dahlquist’s algebraic conditions for G-stability of Linear Multistep Methods.

2.1 E-polynomial Stability Conditions for A− and A(α)-stability

To certify the stability of Runge-Kutta schemes, we utilize linear matrix inequalities in

two approaches. The first approach, suitable for both A- and A(α)-stability, leverages

the non-negativity of the (generalized) E-polynomial:

E(y;α) = |D(ye−iα)|2 − |N(ye−iα)|2 where 0 < α ≤ π

2
, y ∈ R . (2.1)

A scheme is then A(α)-stable if (for α = π
2
see [30, Chapter IV.3]) W (z) is

analytic in the interior of Sα and

E(y;α) ≥ 0 for all y ≥ 0 . (2.2)

The condition (2.2) guarantees A(α)-stability by ensuring |W (z)| ≤ 1 for all z ∈ ∂Sα.

As W (z) is analytic within the interior of Sα, the maximum modulus principle implies

that |W (z)| is maximized on ∂Sα, confirming A(α)-stability.

2.1.1 Non-negative polynomials as SOS Linear Matrix Inequalities.

Condition (2.2) enables RK schemes to be certified A- and A(α)-stable by determining

whether a polynomial, the E-polynomial, is non-negative. This section uses the

relationship between non-negative polynomials and sum-of-squares (SOS) to convert

condition (2.2) into an equivalent LMI.

Let R[y] denote the set of single-variable polynomials with real coefficients.

Two convex cones within R[y] include the set of non-negative polynomials, satisfying
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p(y) ≥ 0 for all y ∈ R, and the set of SOS polynomials, where each polynomial can be

expressed as
∑ℓ

j=1 q
2
j (y) for some {qj}ℓj=1 ∈ R[y]. In one dimension, these two cones

coincide, meaning that a polynomial p(y) ∈ R[y] is non-negative if and only if it

can be decomposed into a sum-of-squares [37, Theorem 2.5]. For general multivariate

polynomials, every SOS polynomial is non-negative; however, the converse is not true.

Determining whether a polynomial is SOS and non-negative can be formulated

as a LMI. Consider the subspace Nm of m×m symmetric matrices Sm defined by:

Nm :=
{
N ∈ Sm : yTNy = 0

}
, where y = [1, y, . . . , ym−1]T . (2.3)

The components (ni,j)
m
i,j=1 of a symmetric matrix N ∈ Nm must satisfy:

m∑
i+j=r

ni,j = 0 for r = 2, 3, . . . , 2m.

Any polynomial p ∈ R[y] can then be expressed non-uniquely in factorized form as:

p(y) = p0 + p1y + . . .+ p2m−2 y
2m−2 = yT (P +N )y , (2.4)

where N ∈ Nm and

P =



p0
1
2
p1

1
2
p1 p2

. . .

. . .
. . . 1

2
p2m−3

1
2
p2m−3 p2m−2


∈ Rm×m . (2.5)

The polynomial p, described in (2.4), is a sum-of-squares if and only if there exists

an N ∈ Nm such that P +N ⪰ 0. If QTQ = P +N is a Cholesky factorization,

then defining qj(y) = eT
j Qy, where ej is the jth unit vector, admits

p(y) = ∥Qy∥2 =
m∑
j=1

q2j (y) .
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Conversely, if p is an SOS, the coefficients of qj define a positive definite matrix

(P +N ).

To solve subsequent SDPs, it is useful to define a basis for Nm, which has

dimension

d :=
1

2
(m− 1)(m− 2). (2.6)

First, consider the index set

Sm :=
{
(i, j) ∈ N2 | 1 ≤ i ≤ m− 2 , i+ 2 ≤ j ≤ m

}
for m ≥ 1 ,

which has d elements and is empty for m = 1 or 2. A basis for Nm is given by

{N ℓ}dℓ=1:

N ℓ = eie
T
j + eje

T
i − e⌊ i+j

2 ⌋e
T

⌈ i+j
2 ⌉ − e⌈ i+j

2 ⌉e
T

⌊ i+j
2 ⌋ , (2.7)

where

(i, j) ∈ Sm and ℓ = m(i− 1)− 1

2
i(i+ 3) + j .

For example, m = 3 has the basis matrix:

N 1 =

0 0 1

0 −2 0

1 0 0

 ,

while m = 4 has three basis matrices:

N 1 =


0 0 1 0

0 −2 0 0

1 0 0 0

0 0 0 0

, N 2 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

, N 3 =


0 0 0 0

0 0 0 1

0 0 −2 0

0 1 0 0

.
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With these notations, a polynomial p(y), given by (2.4), is non-negative if and

only if there exists η ∈ Rd such that the following LMI is satisfied:

F (η) := P +
d∑

ℓ=1

ηℓ N ℓ ⪰ 0 . (2.8)

2.1.2 The E-polynomial LMI for A(α)-stability.

An LMI for A(α)-stability can be derived immediately by applying the LMI for general

non-negative polynomials (2.8) to E(y;α) in (2.2).

In particular, if α = π
2
, the pth order conditions (1.7) imply that E(y; π

2
) admits

a factor of y2j [30, Chapter IV.3]:

E
(
y;

π

2

)
= O(y2j) , as y → 0 where, j ≥ κ :=

⌊p
2

⌋
+ 1 . (2.9)

In general for α < π
2
, the polynomial (as implied by the calculations in [13])

E (y;α) = O(y) , as y → 0 . (2.10)

Building on the asymptotics (2.9)–(2.10), let F (y) be the polynomial from which the

largest even monomial (ensured by the order conditions) has been factored out:

If α =
π

2
: F (y) := y−2κ E(y;

π

2
) ,

If α <
π

2
: F (y;α) := y−2E(y2;α) .

In both cases, F (y) is an even polynomial:

F (y) = p0 + p2 y
2 + . . .+ p2m−2 y

2m−2 , (2.11)

where the coefficients of F (y) are polynomial functions of the RK scheme coefficients

and, in the case of α < π
2
, polynomial functions of β := cos(α). F (y) can then be
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expressed in a factorized form as in (2.4)

F (y) = yT (P +N )y

where P is a diagonal matrix whose diagonal components are the coefficients of F (y)

and N ∈ Nm as defined in (2.3).

Combining the polynomial F (y) and the LMI (2.8), it follows:

Lemma 2.1.1. A RK scheme (A, b) is A(α)-stable if:

1. A has no eigenvalues inside Sα (so that W (z) is analytic in Sα); and

2. The LMI (2.8) is feasible for the polynomial F (y) in (2.11) or equivalently the

E-polynomial in (2.1).

2.1.3 Stability certification with the E-polynomial LMI.

The first example demonstrates the SOS LMI approach to verify A-stability for an

idealized example that satisfies the tall tree order conditions and is known to be

A-stable. The second example demonstrates the SOS LMI approach to verify A(α)-

stability for an idealized example that satisfies the tall tree order conditions.

Example 2.1.1 (A-stability certification for SDIRK(5,4)). The scheme is a Diagonally

Implicit RK scheme, represented by the following Butcher tableau [30, Table 6.5,

Chapter IV.6].

A =



1
4

1
2

1
4

17
50

− 1
25

1
4

371
1360

− 137
2720

15
544

1
4

25
24

−49
48

125
16

−85
12

1
4


, b =



25
24

−49
48

125
16

−85
12

1
4


. (2.12)

The SDIRK(5,4) scheme in (2.12) has an E-polynomial

E(y) = y6(9y4 − 64y2 + 512),
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which after factoring out the largest monomial factor, yields

F (y) := 9y4 − 64y2 + 512 = yT F (η)y ,

where

F (η) =

512 0 0

0 −64 0

0 0 9

+ η

0 0 1

0 −2 0

1 0 0

 . (2.13)

For this example, the space N3 (introduced in § 2.1.1) has dimension d = 1 and

is spanned by the second matrix in (2.13). We then factorize F (η) = LDLT with

L,D ∈ Q3×3.

F (−32) =

 512 0 −32

0 0 0

−32 0 9

 = LDLT ,

where

L =


1 0 0

0 1 0

− 1
16

0 1

 , and D =


512 0 0

0 0 0

0 0 7

 ⪰ 0 .

This results in the following SOS representation of E(y), certifying A-stability:

E(y) = y6
(
7y4 + 512( 1

16
y2 − 1)2

)
.

Example 2.1.2 (A(α)-stability certification for ESDIRK(5,4)). The scheme is known

to be A(α)-stable for α ≤ 89.5o and is an Explicit first stage Singly Diagonally Implicit
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Runge-Kutta scheme (ESDIRK), represented by the following Butcher tableau [45].

A =



0

1
6

1
6

1
6

1
3

1
6

11
24

−1
4

5
8

1
6

11
36

−1
6

11
12

−2
9

1
6

1
8

3
8

3
8
− 1

12
1
24

1
6


, b =



1
8

3
8

3
8

− 1
12

1
24

1
6


. (2.14)

The ESDIRK(5,4) scheme in (2.14) has an E-polynomial

E(y;
π

2
) = y6(y4 + 144y2 − 2592),

which is negative near the origin and therefore not A-stable. The E-polynomial at

β = 1
8
(α ≈ 82.8o) is

E(y2, 1
8
) = y2(y18 + 15

2
y16 + 333

2
y14 + 5319

4
y12 − 4779

16
y10 + 2624643

32
y8

+ 177147
2

y6 + 2125764 y4 + 1259712 y2 + 15116544) .

Removing the largest monomial factor then yields

F (y2; 1
8
) := yT F (η)y , with F (η) := P +

d∑
ℓ=1

ηℓ N ℓ ,

where the diagonal matrix P is characterized by the coefficients of the polynomial

E(y2, 1
8
) and N ℓ, defined by (2.7), are the basis matrices which span the space N10

with dimension d = 36. Even though the solution lives in a space with dimension 36,

for this example, we can define a simple solution F (η) with a single basis matrix

F (−4779
32

) = P + −4779
32

N 15 = LDLT ,
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where

L =



1

1

1
. . .

1

− 59
497664

1


and D = diag



15116544

1259712

2125764
177147

2
2624643

32

0
5319
4

333
2
15
2

193127
196608



⪰ 0.

This results in the following SOS representation of E(y2; 1
8
), certifying A(α)-stability

for α ≤ 82.8o :

E(y2; 1
8
) = y2

(
193127
196608

y18 + 15
2
y16 + 333

2
y14 + 5319

4
y12 + 2624643

32
y8 + 177147

2
y6

+ 2125764 y4 + 1259712
(
y − 59

497664
y9
)2

+ 15116544
)
.

This example highlights the approach for bounding α. Subsequent values of β can be

used to obtain bounds closer to the reported maximum α of 89.5o.

2.2 The CSTW Algebraic Conditions for A-stability

Closely related to the E-polynomial approach is an LMI based on algebraic conditions

for A-stability, laid out in a line of work by Cooper [13], Scherer and Türke [42]

and Scherer and Wendler [43]. We contribute theory that sharpens these algebraic

conditions, which enables their practical use within an SDP framework.

2.2.1 Cooper factorization of the E-polynomial.

Cooper [13] initially established sufficient algebraic conditions for A-stability by

factorizing the E-polynomial into a quadratic form. For the purposes of factorizing
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the E-polynomial, let the vectors:

p = [p0, . . . , pr−1]
T and Z = [1, z, . . . , zr−1]T .

Additionally, define the matrices:

M = [e,Ae, . . . ,Ar−1e] and P =



1 pr−1 pr−2 · · · p2 p1

0 1 pr−1 · · · p3 p2

0 0 1 · · · p4 p3
...

...
...

. . .
...

...

0 0 0 · · · 1 pr−1

0 0 0 · · · 0 1


.

The integer r and the elements of the vector p come from expressing Are as a linear

combination of the preceding vectors in the sequence e,Ae,A2e, . . .. Specifically, r

is the smallest positive integer such that:

Are+Mp = 0.

The minimal polynomial pe of A for e, the smallest degree monic polynomial for

which pe(A)e = 0, is then defined by:

pe(z) = zr +ZTp

and the transformed polynomial D(z), which is also the denominator of the rational

form of the stability function W (z), is given by:

D(z) = 1 + pr−1z + · · ·+ p1z
r−1 + p0z

r.

Theorem 2.2.1 (Cooper [13]). A method is A-stable if and only if D(z) is not zero

in C− and there exists a real symmetric matrix R such that MT (Re− b) = 0 and

E(y) := ZT (z̄)P TMT (RA+ATR− bbT )MPZ(z) ≥ 0 ∀z = iy, y real.

This inequality is independent of R.
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2.2.2 Scherer–Türke, and the application of the KYP Lemma to RK
stability functions.

Scherer and Türke [42] later re-derived almost identical conditions by applying the

Kalman-Yakubovich-Popov (KYP) Lemma to the stability function W (z). Note,

a function f is positive if it is analytic in C+ and Re (f) > 0 for all z satisfying

Re (z) > 0. The set of positive functions form a convex cone.

Lemma 2.2.2 (KYP). A nondegenerate rational function f(z) = uT (zI + Y )−1v

(u,v ∈ Rs, Y ∈ Rs×s) is positive if and only if there exists RT = R (∈ Rs×s) such

that

R ⪰ 0 and Rv = u and RY + Y TR ⪰ 0 . (2.15)

The application of the KYP lemma to the RK stability function provided necessary

and sufficient algebraic conditions for RK schemes with nondegenerate stability

functions.

Theorem 2.2.3. (Scherer–Türke, Theorem 4.1 in [42]) Consider a RK scheme (A, b)

having nondegenerate stability function W (z) from (1.3). Then the scheme is A-stable

if and only if there exists a matrix R ∈ Ss such that
Re = b ,

X = RA+ATR− bbT ,

R ≻ 0 ,

X ⪰ 0 .

(2.16)

Corollary 4.2 in [42] states that the conditions (2.16) are sufficient for RK

schemes with a degenerate stability function. Subsequent work by Scherer and

Wendler [43] provided even more general algebraic conditions applicable to degenerate

stability functions.
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2.2.3 Scherer–Wendler and the Kalman decomposition for non-degenerate
stability functions.

Degenerate stability functions are, in fact, used in practice. Recently, Runge-Kutta

schemes with degenerate stability functions have been used to avoid order reduction

via the weak stage order conditions (also known as parabolic order conditions) [7, 8,

9].

In this section, we utilize a concept from control theory called the Kalman

decomposition, as in [43], to analyze the stability function. This decomposition

provides a useful perspective in situations where the stability function is degenerate.

To begin, we introduce the concept of invariant subspaces. A subspace V ⊂ Rn

is said to be A-invariant if Av ∈ V for all v ∈ V . Let the columns of a matrix V

form a basis for an A-invariant space V , with V ′ being a complementary basis so that

W := [V V ′] is a square invertible matrix. Then A has a block form:

W−1AW =

[
Avv Avv̄

0 Av̄v̄

]
. (2.17)

Next, we introduce two invariant subspaces related to the coefficient matrix A

via the controllability matrix

Qcon :=
[
e Ae . . . As−1e

]
(2.18)

and the observability matrix

Qobs :=


bT

bTA
...

bTAs−1

 . (2.19)

Let col Qcon denote the column space of Qcon and kerQobs denote the null space (or

kernel) of Qobs. By construction,

V1 := col Qcon and V2 := kerQobs (2.20)
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are both A-invariant subspaces. It then follows that both V1 ∩ V2 and V1 + V2 are

A-invariant subspaces where

V1 + V2 := {v1 + v2 : v1 ∈ V1, v2 ∈ V2}.

This motivates the definition of four (not necessarily unique) vector spaces

X1, X2, X3, X4 ∈ Rs defined as:

X1 = col Qcon ∩ kerQobs, (2.21)

X1 ⊕X2 = col Qcon, (2.22)

X1 ⊕X3 = kerQobs. (2.23)

The space X4 is chosen so that:

Rs = X1 ⊕X2 ⊕X3 ⊕X4 .

The symbol ⊕ denotes an algebraic direct sum i.e., X1, X2, X3, and X4 are disjoint

and their linear span is Rs; every vector x ∈ Rs has a unique decomposition

x = x1 + x2 + x3 + x4

with x1,x2,x3,x4 in X1, X2, X3, X4 respectively [4, Chapter I.3]. A basis for the

subspaces in an algebraic direct sum must be linearly independent, but are not

required to be orthogonal.

Consider a basis for X1, X2, X3, X4, denoted by matrices T 1,T 2,T 3,T 4 respec-

tively, and set

T =
[
T 1 T 2 T 3 T 4

]
. (2.24)
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With T , we perform a change of basis for A, resulting in

T−1AT =


A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 . (2.25)

The zero blocks in (2.25) follow from (2.17) combined with the fact that X1⊕X2 and

X1 ⊕X3 are both A-invariant.

Furthermore, since e ∈ col Qcon and bT ⊥ kerQobs, we have:

T−1e =


G1

G2

0

0

 and bTT =
[
0 H2 0 H4

]
where H i = bTT i .

In situations where the stability function is degenerate, we can use the matrices

produced by T to obtain a minimal/non-degenerate stability function. Starting from

W (z) = 1 + zbT (I − zA)−1e

= 1 + zbTTT−1(I − zA)−1TT−1e

= 1 + zbTT (I − zT−1AT )−1T−1e ,

we obtain

W (z) = 1 + z

[
0 H2 0 H4

]

I − z



A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44





−1 

G1

G2

0

0


= 1 + zH2 (I − zA22)

−1G2. (2.26)

Thus, a scheme is A-stable if and only if the reduced (minimal) representation in

(2.26) is A-stable. Applying the KYP Lemma 2.2.2 to the stability function (2.26),
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we get that a scheme is A-stable if and only if there exists a matrix R ∈ Ss such that

RG2 = HT
2 and RA22 +AT

22R−HT
2H2 ⪰ 0 .

A conceptually straightforward approach to testing degenerate schemes for A-

stability is to first compute the Kalman decomposition to obtain the block matrices

defining (2.26), and then test for A-stability on the minimal representation of W (z).

However, this approach may not always be computationally attractive.

The Scherer-Wendler result [43] requires only a partial Kalman decomposition.

Instead of computing every block of T , it suffices to compute a basis that includes

the span of col [T 1 T 2] and is contained in col [T 1 T 2 T 3]. Specifically, a basis for the

space col Qobs can be computed to define a matrix M , which can then be used to

apply the KYP lemma.

Theorem 2.2.4. (Scherer–Wendler, Theorem 6.1 in [43]) Let M be any matrix

whose column space is equal to the span of [e,Ae,A2e, . . . ,As−1e]. The RK scheme

(A, b) is A-stable if and only if there exists a matrix R ∈ Ss such that
Re = b ,

X = RA+ATR− bbT ,

MTRM ⪰ 0 ,

MTXM ⪰ 0 .

(2.27)

Note that Theorem 2.2.4 does not require the stability function W (z) to be

nondegenerate. We refer to (2.27) as the CSTW conditions.

Remark. When W (z) is nondegenerate, the matrix M can be the identity matrix I.

If W (z) is degenerate, then (2.27) with M = I provides a sufficient condition for

A-stability, but it may not be necessary. In the degenerate case, M may be chosen as

[e,Ae, . . . ,Ar−1e], where r is the smallest number for which Are can be expressed

in terms of the vectors [e,Ae, . . . ,Ar−1e].
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2.2.4 Formulating the CSTW LMI.

The set of all matrices R that satisfy the CSTW conditions (2.27) is convex and the

set is readily converted into an LMI by parameterizing the equality constraints. Let

B := diag

[
b1, b2, . . . , bs

]
,

and

N ij := nijn
T
ij where nij = ei − ej , (2.28)

for 1 ≤ i < j ≤ s with ei being the ith unit vector. Then by construction, N ij is a

basis for the vector space {N ∈ Ss : Ne = 0} (cf. [43]). For example, s = 2 has the

basis matrix:

N 12 =

[
1 −1

−1 1

]
,

while s = 3 has three basis matrices:

N 12 =

 1 −1 0

−1 1 0

0 0 0

, N 13 =

 1 0 −1

0 0 0

−1 0 1

, N 23 =

 0 0 0

0 1 −1

0 −1 1

.
Using the basis matrices N ij, we can parameterize R as:

R = B +N (η) where N (η) =
s−1∑
i=1

s∑
j=i+1

ηijN ij . (2.29)

Combining the parameterization (2.29) with the inequalities from the CSTW

conditions (2.27) yields the conditions in the form of an LMI:B 0

0 BA+ATB − bbT

+
s−1∑
i=1

s∑
j=i+1

ηij

N ij 0

0 N ijA+ATN ij

 ⪰ 0 . (2.30)
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2.3 Sharpening the CSTW Conditions

In order to motivate the theoretical developments in this section, we must first

introduce the A-stability certification algorithm at a high level. A detailed outline of

the algorithm will be provided in Chapter 3.

Given a fixed pair (A, b), we define the following convex set:

R(A, b) :=
{
η ∈ Rs(s−1)/2 : The LMI (2.30) holds

}
. (2.31)

The CSTW conditions in Theorem 2.2.4 are equivalently stated in the following

corollary.

Corollary 2.3.1. A scheme (A, b) is A-stable if and only if R(A, b) is non-empty.

The A-stability certification algorithm uses computational optimization tools to

find an element of R(A, b). The algorithm involves six main steps:

1. Using the RK coefficients and CSTW conditions to create a symbolic version of

the parameterized LMI (2.30).

2. Converting the symbolic LMI to double precision.

3. Employing the double precision LMI within the semidefinite feasibility problem

(P1), implemented using a convex programming modeling system known as

CVX [15].

4. Solving the feasibility problem using CVX, which outputs double precision

parameters η∗.

5. Passing the CVX output η∗ back to the symbolic LMI matrix.

6. Certifying the symbolic LMI matrix as A-stable through a symbolic LDL

factorization.
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Figure 2.1 The diagram shows the general flow of the A-stability certification
algorithm.

The convex set R(A, b) has a dimension of at most s(s − 1)/2 (see Definition

1.2.1), since R lies in an affine space of symmetric matrices satisfying the linear

constraint Re = b. Practically, we must parameterize the affine hull of R(A, b) in

step 1 to ensure that steps 5 and 6 in the algorithm yield a rigorous certificate.

Unfortunately, the CSTW equality conditions (2.27) are insufficient to param-

eterize the affine hull of R(A, b) and therefore the upper bound on dim(R(A, b))

of s(s − 1)/2 is not sharp. Without characterizing the affine hull of the LMI (2.30)

(or equivalently R(A, b)), step 4 will yield an η∗ in a larger dimensional space than

the affine hull, and steps 5 and 6 are unlikely to generate a positive certificate. The

phenomena described in this paragraph can be visualized in Figure 2.2.
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Figure 2.2 The blue capsule represents the affine hull parameterized by the
equality constraints and bounded by the inequality constraints of the CSTW
conditions (2.27). CVX produces a double precision η∗ in an extension of the blue
capsule (pink capsule). The CVX output η∗ is passed to the symbolic LMI, F ,
projecting the solution onto the blue capsule. Since the set R(A, b) is a lower
dimensional set (red line) the algorithm did not successfully find an element of
R(A, b) and has not produced a certificate of stability.

The following subsections describe additional structure in the CSTW conditions

(2.27) that reduce the upper bound of the dimension of the feasible set. Identifying

this structure allows us to sharpen the CSTW conditions (2.2.4) for use within the

A-stability certification algorithm.

2.3.1 Null vectors associated with the Tall-Tree order conditions.

The authors in [43] observe, though do not resolve, that zero eigenvalues of X may

limit the practical application of the algebraic conditions (2.27). The following lemma

shows that the order conditions result in X always having a family of zero eigenvalues

whenever the CSTW LMI is feasible.

Lemma 2.3.2. Let the RK scheme (A, b) satisfy the tall-tree order conditions (1.7)

with order p ≥ 2. If R ∈ Ss satisfies Re = b and X ⪰ 0 where

X := RA+ATR− bbT ,
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then X has the null vectors Aj−1e, that is:

XAj−1e = 0 for 1 ≤ j ≤
⌊p
2

⌋
.

The proof utilizes the fact that for any matrix X ⪰ 0,

if v TXv = 0 , then Xv = 0 .

For instance, the Cholesky factorization X = QTQ shows that vTXv = ∥Qv∥2 = 0.

Proof. To simplify notation, let

vj = Aje j ≥ 0 .

We show that for all

0 ≤ n ≤
⌊p
2

⌋
− 1 ,

the expression

vT
nXvn = 0 .

Since X ⪰ 0, it follows that Xvn = 0. For n = 0, the tall-tree conditions are

bTe = 1 and bTv1 =
1
2
, hence:

vT
0Xv0 = bTv1 + vT

1 b− (eTb)2

= 0 .

We now proceed by strong induction: Let n ≤ ⌊p
2
⌋ − 1 be any positive integer, and

assume that Xvk = 0 for all 0 ≤ k ≤ n− 1. We show that vT
nXvn = 0, which then

completes the proof.

By hypothesis and the pth order tall-tree conditions, we have that

bTvj =
1

(j + 1)!
for j = 0, . . . , 2n+ 1 , (2.32)

as 2n+ 1 ≤ p− 1 by the choice of n.
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The first step is to obtain an expression for Rvn. Substituting the definition of

X in terms of R into the induction hypothesis Xvk = 0, yields the recursion relation

Rvk+1 = bbTvk −ATRvk for 0 ≤ k ≤ n− 1 , (2.33)

so that Rvk+1 is written in terms of Rvk. Setting k = n − 1 in (2.33), we can use

the conditions (2.32) on dot products bTvk and iteratively eliminate Rvj to express

Rvn in the basis {b,ATb, . . . , (AT )n−1b}:

Rvn =
n∑

j=0

(−1)j

(n− j)!
(AT )j b . (2.34)

We then have:

vT
nXvn = vT

n

(
RA+ATR− bbT

)
vn ,

= 2vT
n+1Rvn −

1

(n+ 1)!2
(since Avn = vn+1) ,

= 2
n∑

j=0

(−1)j

(n− j)!(n+ j + 2)!
− 1

(n+ 1)!2
(via (2.32) and (2.34)) ,

=
(−1)n

(2n+ 2)!

2n+2∑
j=0

2n+ 2

j

 12n+2−j(−1)j

︸ ︷︷ ︸
=(1−1)2n+2

,

= 0 .

Remark. Lemma 2.3.2 can be viewed as a generalization of the fact that algebraically

stable methods admit a set of null vectors in their algebraic stability matrix BA +

ATB − bbT . For further reference, see the proof of [30, Lemma 13.14].

The following theorem sharpens the original CSTW conditions to incorporate

the null vectors of X from Lemma 2.3.2. Incorporating the null vectors from
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Lemma 2.3.2 provides a tighter bound on the affine hull of the original CSTW

conditions (2.27).

Theorem 2.3.3 (Modified CSTW Conditions). Let M be any matrix whose column

space is equal to the span of [e,Ae,A2e, . . . ,As−1e]. The pth order RK scheme

(A, b) is A-stable if and only if there exists a matrix R ∈ Ss that satisfies the CSTW

conditions (2.27) and the condition matrix X satisfies

XAj−1e = 0 for j = 1, . . . ,
⌊p
2

⌋
. (2.35)

Proof. Note that the proof of Lemma 2.3.2 holds if X ⪰ 0 is replaced with

MTXM ⪰ 0 for any matrix M whose columns span the null vectors Aj−1e for

j ≤
⌊
p
2

⌋
.

Remark. The benefit of Theorem 2.3.3 is that the additional equality constraints

(2.35) sharpen the affine hull of R(A, b).

An LMI for the modified CSTW conditions, defined by (2.27) and (2.35), can be

obtained by parameterizing the ηij variables in (2.29) to satisfy the additional affine

constraints (2.35). The parameterization is then substituted back into (2.30).

2.3.2 Null vectors associated with singular coefficient matrix A.

There is an additional null space that can arise for the matrix X in settings where

A has a nontrivial null space. Let

J :=
{
v ∈ Rs : bTv = 0 ,Av = 0

}
.

By the definition of J we have the following.

Lemma 2.3.4. If X ⪰ 0, then Xv = 0 for all v ∈ J .

Proof. Immediately one has

vTXv = vTRAv + vTATRv − (vTb)2 = 0 ,
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which, combined with X ⪰ 0, gives the desired result.

Since DIRK coefficient matrices have non-zero entries along the diagonal, the

corresponding subspace J is the trivial subspace, and Lemma 2.3.4 provides no new

information.

The situation changes when an RK scheme has an explicit first stage; in other

words, the first row ofA is the zero vector. For example, an EDIRK has the first stage

of the Butcher matrix explicit, such that a11 = 0 and ajj ̸= 0 for 2 ≤ j ≤ s. In this

instance, the coefficient matrix A has a nontrivial null vector v ∈ ker(A). Moreover,

the null vector v lies in the space spanned by {Aje} and may be constructed as

follows.

First, let r be the smallest integer for which Are can be written as a linear

combination of smaller powers Aje, i.e., for some set of coefficients pj,

(
Ar + pr−1A

r−1 + · · ·+ p1A+ p0I
)
e = 0 . (2.36)

Taking the inner product of (2.36) with e1 from the left, and using the fact that, for

RK schemes with an explicit first stage, eT
1A = 0, yields p0 = 0. Thus, one has

A
(
Ar−1 + pr−1A

r−2 + · · ·+ p1I
)
e︸ ︷︷ ︸

=v

= 0 , (2.37)

so that Av = 0. In (2.37), v ̸= 0, otherwise, this would violate the definition of r as

being the smallest integer for which (2.36) holds.

These observations lead to the following lemma.

Lemma 2.3.5. Given (A, b), let the first row of A be the zero vector, and let b be

in the row space of A. If R ∈ Ss and X := RA+ATR− bbT ⪰ 0, then

Xv = 0 with v = Mpr ,
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where

M = [e,Ae, . . . ,Ar−1e] and pr = [1, pr−1, pr−2, . . . , p2, p1]
T ,

are the coefficients defining the (minimal) polynomial in (2.36).

It is useful to look at the origin of the vector v in Lemma 2.3.4 in the context

of the Kalman decomposition. In the Kalman decompositon, the space sp{v} is a

subspace of X1, where

X1 = kerQobs ∩ spQcon.

The spaceX1, and hence v, can be projected out to obtain a minimal stability function

involving only a subspace X2. By computing the full Kalman decomposition first and

then applying the CSTW conditions to a minimal stability function, introducing this

zero eigenvalue could be avoided. However, as mentioned in Section 2.2.3, computing

the full decomposition may not always be computationally attractive. Instead, we

may add the null vectors from Lemma 2.3.5 to the modified CSTW conditions.

Theorem 2.3.6 (Modified CSTW Conditions for Explicit First Stage Schemes). Let

(A, b) be a pth order RK scheme with the first row of A equal to the zero vector

and b in the row space of A. Let M be any matrix whose column space equals the

span of [e,Ae,A2e, . . . ,As−1e]. The scheme (A, b) is A-stable if and only if there

exists a matrix R ∈ Ss that satisfies the modified CSTW conditions (2.27), (2.35),

and condition matrix X satisfies

XMpr = 0 where pr = [1, pr−1, pr−2, . . . , p2, p1]
T (2.38)

are the coefficients defining the (minimal) polynomial in (2.36).

Proof. The proof follows directly from Lemma 2.3.5.
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2.3.3 Stability certification with the CSTW LMI.

In this section, we provide examples highlighting the significance of Lemmas 2.3.2 and

2.3.5. The examples demonstrate that without incorporating the affine constraints

from Lemmas 2.3.2 and 2.3.2, computational approaches are unlikely to provide

rigorous certifications for A-stability.

The convex set R has dimension at most s(s − 1)/2 (i.e., the dimension of

symmetric matrices minus the number of constraints imposed by Re = b). However,

Theorem 2.3.3 indicates that combining the order conditions (1.7) with the inequality

constraint X ⪰ 0 (or MTXM ⪰ 0) further reduces the upper bound for the

dimension ofR(A, b), and ifA is singular then Theorem 2.3.6 indicates that the upper

bound for the dimension of R(A, b) is reduced further. Consequently, computational

approaches that seek η ∈ R will not be able to project the double precision solution

back onto the exact feasible set without correctly characterizing the affine hull aff(R)

— which is provided by Theorems 2.3.3 and 2.3.6.

The first example demonstrates how the zero eigenvalues of X reduce the upper

bound for the dimension of the convex set R. The second example demonstrates how

a singular A reduces the upper bound for the dimension of R even further. The final

example shows why X ⪰ 0 is a necessary hypothesis in both Lemmas.

Example 2.3.1 (SDIRK(3,2)). This example constructs the set R(A, b) defined by

(2.31) for the following SDIRK 3-stage p = 2 method

A =

1 0 0
1
2

1 0

1 −1 1

, b =

 1

−1

1

 .
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The set R(A, b) consists of the set of parameters η = [η12, η13, η23]
T which

simultaneously satisfy the two LMIs R(η) ⪰ 0 and X(η) ⪰ 0 where

R(η) = B + η12N 12 + η13N 13 + η23N 23 ,

X(η) = (BA+ATB − bbT ) + η12 (N 12A+ATN 12)

+ η13 (N 13A+ATN 13) + η23 (N 23A+ATN 13) .

Here B := diag b = diag(1, −1, 1), while N ij are defined in (2.28).

The CSTW conditions indicate that the dimension of R(A, b) is at most 3.

However, Theorem 2.3.3 further bounds the dimension of R(A, b) to be at most

1. Since p = 2, Theorem 2.3.3 implies that R(A, b) may equivalently include the

constraint Xe = 0, i.e.,

R(A, b) =
{
η ∈ R3 : R(η) ⪰ 0 , X(η) ⪰ 0 ,Xe = 0

}
.

The constraintXe = 0 imposes two independent linear equations on η whose solution

forces η12 = 3 and η23 = 2. Thus,

R(A, b) =
{
η ∈ R3 : η12 = 3 , η23 = 2 , R(η13) ⪰ 0 , X(η13) ⪰ 0

}
,

where

R(η13) =

 4 −3 0

−3 4 −2

0 −2 3

 +η13

 1 0 −1

0 0 0

−1 0 1

 ,

X(η13) =

 4 −5 1

−5 11 −6

1 −6 5

 +η13

 0 1 −1

1 0 −1

−1 −1 2

 .

Figure 2.3 visualizes the non-empty set R(A, b). Note that dim(R(A, b)) = 1, and

when parameterized in terms of η12, η13, η23 it has an empty interior.
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Figure 2.3 The blue line is a visualization of R(A, b) for SDIRK(3,2) in
Example 2.3.1. Note the set R has dimension 1 (as defined in Definition 1.2.1)
which is lower than the three-dimensional upper bound from Theorem 2.2.4. In this
example, the null vectors for X in Theorem 2.3.3 provide a complete
characterization of the affine hull of R.

Example 2.3.2 (ARK2-DIRK-3-1-2 (M)). In this example, we analyze the set

R(A, b) for an ESDIRK 3-stage, p = 2 order scheme, with a singular matrix A.

A =


0 0 0

2−
√
2

2
2−

√
2

2
0

√
2
4

√
2
4

2−
√
2

2

 , b =


√
2
4
√
2
4

2−
√
2

2

 . (2.39)
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The set R(A, b) is parameterized by η = [η12, η13, η23]
T such that R(η) ⪰ 0 and

X(η) ⪰ 0, where:

R(η) = B + η12N 12 + η13N 13 + η23N 23 ,

X(η) = (BA+ATB − bb) + η12 (N 12A+ATN 12)

+ η13 (N 13A+ATN 13) + η23 (N 23A+ATN 13) ,

with B = diag(b). The vectors e, Ae, and A2e are linearly independent, thus M is

the identity matrix.

According to the CSTW conditions, the dimension of R(A, b) is at most 3.

However, Theorem 2.3.3 includes the constraint Xe = 0 for p = 2, therefore the

dimension is at most 1:

R(A, b) =
{
η ∈ R3 : R(η) ⪰ 0 , X(η) ⪰ 0 ,Xe = 0

}
.

The constraint Xe = 0 results in the equations

η12 =
√
2
2
η23 +

1−
√
2

4
and η13 = (1−

√
2) η23 +

2
√
2−3
2

.

Therefore, the set can be expressed as:

R(A, b) =


η12 =

√
2
2
η23 +

1−
√
2

4
,

η ∈ R3 : η13 = (1−
√
2)η23 +

2
√
2−3
2

,

R(η23) ⪰ 0, X(η23) ⪰ 0

 ,

where

R(η23) =


4
√
2−5
4

√
2−1
4

3−2
√
2

2√
2−1
4

1
4

0
3−2

√
2

2
0

√
2−1
2

 +η23


2−

√
2

2
−

√
2
2

√
2− 1

−
√
2
2

√
2+2
2

−1√
2− 1 −1 −

√
2− 2

 ,

X(η23) =


12

√
2−17
8

5
√
2−7
8

24−17
√
2

8
5
√
2−7
8

3−2
√
2

4
4−3

√
2

8
24−17

√
2

8
4−3

√
2

8
5
√
2−7
2

 +η23


4−3

√
2

2
3−2

√
2

2
5
√
2−7
2

3−2
√
2

2
2−

√
2

2
3
√
2−5
2

5
√
2−7
2

3
√
2−5
2

2
(
3− 2

√
2
)
 .
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Since A is singular, Theorem 2.3.6 includes the additional constraint XMpr =

0, reducing R(A, b) to a single element:

R(A, b) =
{
η ∈ R3 : η12 =

√
2−2
4

, η13 = η23 =
4−3

√
2

4
, R ⪰ 0 , X ⪰ 0

}
,

where

R =


2−

√
2

4
2−

√
2

4
3
√
2−4
4

2−
√
2

4
2−

√
2

4
3
√
2−4
4

3
√
2−4
4

3
√
2−4
4

3
√
2−4√
2

 , X =


17−12

√
2

8
17−12

√
2

8
12

√
2−17
4

17−12
√
2

8
17−12

√
2

8
12

√
2−17
4

12
√
2−17
4

12
√
2−17
4

17−12
√
2

2



Figure 2.4 The set R(A, b) for ARK2-DIRK-3-1-2 (M) is visualized as a single
point (red). Note that the original CSTW conditions bound the dimension of
R(A, b) to be at most 3. The blue line visualizes the affine constraint on R(A, b)
characterized by Theorem 2.3.3, showing that R(A, b) has at most dimension 1.
Theorem 2.3.6 further restricts the dimension of R(A, b) to be at most zero.

Example 2.3.3 (Hammer & Hollingsworth). This example demonstrates why X ⪰ 0

is required as a hypothesis in Lemma 2.3.2 for X to have zero eigenvalues. The
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Hammer & Hollingsworth two stage p = 4 method [27, Table II.7.3] is represented as

A =

[
1
4

1
4
−

√
3
6

1
4
+

√
3
6

1
4

]
, b =

[
1
2
1
2

]
.

The scheme yields the following stability function and E-polynomial

W (z) =
1 + z/2 + z2/12

1− z/2 + z2/12
and E(y) = 0 .

Since E(y) ≥ 0, the scheme is A-stable.

For this example, s = 2 so that the set R(A, b) is characterized by the one-

dimensional set η ∈ R for which X(η) ⪰ 0 and R(η) ⪰ 0 where,

R(η) =
1

2
I + η

[
1

−1

] [
1 −1

]
, X(η) = −

√
3

2
η

[
1 0

0 −1

]
.

The only value of η for which X(η) ⪰ 0,R(η) ⪰ 0 is η = 0. Since R(0) = 1
2
I ⪰ 0,

we have that R(A, b) = {0}. This shows that R is non-empty and provides a second

proof that the scheme is A-stable.

This example highlights that the hypothesis of X ⪰ 0 in Lemma 2.3.2 is

necessary. For any value η ̸= 0, the matrix X is invertible and thus neither e or

Ae are null vectors. When η = 0 and X ⪰ 0, Lemma 2.3.2 implies X has two null

vectors {e,Ae}, and is consistent with the fact that X must be the zero matrix.

2.4 Algebraic Conditions for A-Stable Continued Fraction
Approximations of the Exponential

Early work in the Runge-Kutta literature, as discussed in Hairer and Wanner’s

Chapter IV.3–5 [30], focused on characterizing which rational functions simulta-

neously approximate the exponential function and are A-stable. This includes the

work of Birkhoff and Varga [6], Ehle [20], Ehle and Price [21], and Nørsett [39, 40].

In 1977 Butcher, parameterized all A-stable rational approximations of order

p ≥ 2s−2 [11]. Building on the work of Butcher, a general characterization of rational

functions which are A-stable and pth order approximations of the exponential was

35



provided by Hairer [26], and Hairer and Türke [28]. They showed that the stability

function W (z) is A-stable and a pth order approximation of the exponential if and

only if it has a continued fraction form that mirrors the continued fraction form of

the exponential up to a remainder function Ψν−1(z).

We begin this section by briefly outlining the relevant analytic theory of

continued fractions and its relation to positive functions and A-stability. We then

combine several results from Hairer and Wanner [29, 30], introducing a general change

of basis that allows us to express the remainder function Ψν−1(z) as a matrix-vector

expression. This framework enables us to assess the stability of RK schemes through

another set of algebraic conditions.

2.4.1 Continued Fraction Approximations for the Exponential

In a slight abuse of notation, we use W (z) in this subsection to denote an arbitrary

rational function whose numerator and denominator have degrees ≤ s, which is not

necessarily defined in terms of a matrix-vector pair (A, b) as in (1.3).

The exponential function admits the following continued fraction expansion:

ez = 1 +
z

1− 1
2
z +

ξ21z
2

1 +
ξ22z

2

1 +
. . .

, where ξ2n :=
1

4(4n2 − 1)
(n ≥ 1) . (2.40)

For W (z) to be a pth order approximation of the exponential, it must match

the first convergents, or levels, of the continued fraction in (2.40). Specifically, as

shown in [28, Lemma 3],

W (z) =
1 + 1

2
Ψ0(z)

1− 1
2
Ψ0(z)

, if p = 1, 2 , (2.41)
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and

W (z) = 1 +
z

1− 1
2
z +

ξ21z
2

1 +
ξ22z

2

. . . +
ξ2ν−2z

2

1 + ξ2ν−1zΨν−1(z)

, for p ≥ 3 , (2.42)

where

ν :=

⌊
p+ 1

2

⌋
. (2.43)

The functions Ψν−1(z) can be obtained from W (z) via repeated long division

of polynomials. Since W (z) is rational, Ψν−1(z) is also rational with numerator and

denominator polynomials of degree at most s− ν + 1. Note that Ψν−1(z) satisfies:

Ψν−1(z) = z + Cz2 +O(z3) as z → 0 , (2.44)

where C ̸= 0 if p is odd and C = 0 if p is even.

The function W (z) is a pth order approximation of the exponential if and only if

it has the form (2.41)–(2.44). Therefore, whether W (z) is A-stable and approximates

the exponential to order p depends solely on the function Ψν−1(z). Remarkably,

characterizing A-stability is “compatible” with continued fractions of the form (2.42);

historically, in the context of RK schemes, this characterization has been done in terms

of a positive function.

Theorem 2.4.1 (Theorem 5.22 Chapter IV.5 [30]). The function W (z) given by

(2.41)–(2.42) is A-stable if and only if −Ψν−1(−1/z) is a positive function.

Utilizing Theorem 2.4.1, known results on the theory of positive functions can then

be used to prove A-stability.

We conclude with some basic intuition on Theorem 2.4.1. Starting with

W (z), it can always be written in the form (2.41) as the composition of a Möbius
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transformation, z → (1 + 1
2
z)/(1− 1

2
z), which maps C− into the open unit disk with

Ψ0(z). Thus, Ψ0(z) is uniquely determined by W (z), and a scheme is A-stable if and

only if −Ψ0(−1/z) is positive. Equation (2.42) can be obtained by relating Ψ0(z) to

Ψν−1(z) through a sequence of functions:

1

Ψk(z)
= 1 + ξ2k+1z

2Ψk+1(z) , k ≥ 0 . (2.45)

Properties of positive functions can then be used to show that −Ψk(−1/z) is positive

if and only if −Ψk+1(−1/z) is positive, from which Theorem 2.4.1 follows.

2.4.2 Block triangular matrices for rational functions that approximate
the exponential.

We discuss here the known and partial results for which a matrix-vector pair (A, b)

define an A-stable W (z) that approximates ez, i.e., satisfies (2.42) and Theorem 2.4.1.

For p ≥ 1, let

Y :=



0 −ξ1

ξ1 0 −ξ2

ξ2
. . .

. . .

. . . 0 −ξν−1

ξν−1

Y ν−1


∈ Rs×s , (2.46)

where Y ν−1 is a square matrix of size s − ν + 1 and (Y ν−1)11 = 0 if p is even. We

collect several results from Hairer and Wanner and summarize them into one Lemma.

Lemma 2.4.2 (Hairer and Wanner [29]; cf. Chapter IV.5 [30]). If there exists a

matrix U that satisfies:

U−1e = e1 , bTU = eT
1 , e1 = [1, 0, · · · , 0]T , (2.47)
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and

U−1AU = Y +
1

2
e1e

T
1 , (2.48)

where Y has the form (2.46), then the function W (z) in (1.3) is a pth order

approximation to ez with the continued fraction form (2.41)–(2.42) where

Ψ0(z) = zeT
1 (I − zY ) e1 and Ψν−1(z) = zeT

1 (I − zY ν−1)e1 . (2.49)

Lemma 2.4.2 introduces a general change of basis that allows us to express the

remainder function Ψν−1(z) as a matrix-vector expression. Applying the generalized

KYP Lemma to Ψν−1(z) gives the following corollary.

Corollary 2.4.3. Given the function Ψν−1(z) defined in (2.49), −Ψν−1(−1/z) is a

positive function if there exists an RT = R satisfying

Re1 = e1 , MTRM ⪰ 0 , MT
(
RY ν−1 + Y T

ν−1R− e1e
T
1

)
M ⪰ 0 ,

where M is any matrix whose columns span [e1,Y ν−1e1, . . . ,Y
s−ν+1
ν−1 e1].

The framework presented in Corollary 2.4.3 enables us to assess the stability of

RK schemes through another set of algebraic conditions.

2.5 Algebraic Conditions for A-Stability Derived
from Orthogonal Polynomials

For RK schemes satisfying a set of simplifying conditions on (A, b), known in the

literature as conditions C(k), D(l), Hairer and Wanner [29] constructed a change of

basis matrix W , referred to as the W -transform, that exactly satisfies the conditions

in Lemma 2.4.2. The W -transform enabled a characterization of all B-stable (i.e.,

algebraically stable) RK schemes [30, Theorem 13.15], and a notion of equivalence

for A- and B-stable schemes [28]. However, the condition C(k), upon which the
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W -transform relies, is somewhat restrictive for fully implicit (non-DIRK) RK schemes.

DIRK schemes are limited to C(1), with EDIRK schemes satisfying C(2).

In this section, we introduce a change of basis on the matrix A, defined in

terms of a class of orthogonal polynomials with respect to a linear functional. The

formal examination of these polynomials was first introduced in [8]. We show that

the new basis, referred to as the HW -transform, converts the upper left block of

A into a tridiagonal form. This transformation yields a representation of W (z) as

a continued fraction approximation to the exponential function and identifies the

minimal variables in (A, b) responsible for A-stability.

Our approach parallels and produces a result analogous to the W -transform

(defined in terms of the shifted Legendre polynomials) of Hairer and Wanner, but

under a weaker set of assumptions. Here, we only assume W (z) is a pth order

approximation to the exponential, while theW -transform assumes a set of simplifying

conditions (e.g., conditions C(η), D(ξ)) which can only be satisfied for fully

implicit RK schemes. Furthermore, our approach generalizes the characterization

of A-stability by Butcher [11], which is valid under 2s− p ≤ p ≤ 2s. In contrast, we

make no assumption on p relative to s.

2.5.1 A class of polynomials orthogonal with respect to a linear functional.

Here, we introduce the polynomials {qn}n≥0 used to define the change of basis

on A. These polynomials are orthogonal with respect to a linear functional L(·).

Specifically, let (µn)n≥0 be a sequence of real numbers, and L(·) be a linear functional

on polynomials defined by L(xn) = µn.

Definition 2.5.1. A family of polynomials {qn}n≥0 are orthogonal with respect to a

linear functional L if:

1. deg(qn) = n for n ≥ 0

2. L(qnqm) = Knδnm for n ̸= m, where Kn ̸= 0.
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A reference to polynomials orthogonal with respect to a linear functional can be found

in [14, 47].

Let L(·) be the linear functional on monomials xn withmoments (µn)n≥0 defined

as

L (xn) := µn, where µn :=
1

(n+ 1)!
, for n ≥ 0 . (2.50)

The choice of µn is motivated by the order conditions (1.7) and the generating function

(ez − 1)/z. For example,

L
(
1 + 2x+ 3x2

)
= L

(
1
)
+ 2L

(
x
)
+ 3L

(
x2
)

= 1 + 2
1

2!
+ 3

1

3!
=

4

5
.

The functional L(·) also naturally extends to products of polynomials. For instance,

L
(
(1 + x)(1− 3x)

)
= L

(
1
)
− 2L

(
x
)
− 3L

(
x2
)

= −1

2
.

It is important to note that while L(p(x)q(x)) does define a bilinear form on p and

q, it is not positive definite and does not define an inner product. For example,

L ((1− 2x)2) = −1
2
.

Fixing q0(x) = 1, we define qn(x) (n ≥ 0) to be the unique family of polynomials

qn(x) = αnnx
n + . . .+ αn0 , with αnn > 0 . (2.51)

The construction of {qn}n≥0 parallels the application of Gram-Schmidt on basis

vectors {xn}n≥0 using L(q(x)p(x)) in lieu of an inner product. Demanding that qn be

“orthogonal”, with respect to L, to every polynomial of degree less than n requires

L(qnxj) = 0 for j ≤ n − 1. This conditions yields a linear system on αnj involving
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Hankel matrices:

Hn := (µi+j−2)
n
i,j=1 =



µ0 µ1 µ2 . . . µn

µ1 µ2

. . . µn+1

µ2

. . .
. . .

...

... µ2n−2 µ2n−1

µn µn+1 . . . µ2n−1 µ2n


∈ R(n+1)×(n+1) n ≥ 0 .

A general formula for monic polynomials Qn(x) that are orthogonal with respect

to L, can be obtained by setting Q0(x) = µ0 and replacing the last column of Hn

with monomials to be used in the following formula:

Qn(x) :=
1

detHn−1

det



µ0 µ1 µ2 . . . 1

µ1 µ2

. . . x

µ2

. . .
. . .

...

... µ2n−2 xn−1

µn µn+1 . . . µ2n−1 xn


n ≥ 1 . (2.52)

The Qn(x) are then orthogonal with respect to L. The identity L(xkQn) = 0 (0 ≤ k ≤

n−1) follows because L(xkQn(x)) is the ratio of two determinants as in (2.52), where

the last column in the numerator determinant (i.e., the monomials) is replaced with

the (k + 1)th column. The determinant vanishes since it has two repeated columns,

showing that Qn(x) is orthogonal to every polynomial of degree less than n, including

Qj(x) for j < n.

Appendix B in [8] established several key quantities related to Qn(x). For

µn = 1/(n+ 1)!, the Hankel determinants are given by the explicit formula:

detHn = σ(n)
c(n)2

c(2n)
, where c(n) := Πn−1

i=1 i! , (2.53)

and σ(n) :=

 1, if n ≡ 0, 1 mod 4,

−1, if n ≡ 2, 3 mod 4,
.
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A consequence of (2.53) is that detHn ̸= 0 and Qn(x) is well-defined.

In addition, the polynomials satisfy the normalization condition [8, Appendix B]

L
(
QiQj

)
= ζiδij where ζn =

detHn+1

detHn

.

Using (2.53), the values of ζn can be computed as

|ζn|1/2 =
n!

(2n)!

1√
2n+ 1

and sign(ζn) =
σ(n+ 1)

σ(n)
= (−1)n for n ≥ 0 .

(2.54)

The polynomials qn(x) are then the unique normalized polynomials with positive

leading coefficients

qn(x) :=
1

|ζn|1/2
Qn(x) =

(2n)!

n!

√
2n+ 1Qn(x) . (2.55)

The three-term recurrence for Qn(x) was established in [8, Appendix B] as

Qn+1(x) = xQn(x) + ξ2nQn−1(x) n ≥ 1 . (2.56)

Using the fact that

ζn
ζn−1

= −ξ2n ,

in (2.56), along with the definition of qn(x) in (2.55), yields

ξn+1qn+1(x) = xqn(x) + ξnqn−1(x) for n ≥ 1 . (2.57)

Lastly, the identity

x = ξ1q1(x) +
1

2
q0(x) , (2.58)

follows from x = Q1(x) +
1
2
Q0(x) combined with the normalization factor ξ1 = |ζ1|1/2

(since ζ0 = L(Q2
0) = 1).

43



In addition to q0(x) = 1, the first few polynomials are as follows:

q1(x) = 2
√
3
(
x− 1

2

)
, q3(x) = 120

√
7
(
x3 − 1

2
x2 + 1

10
x− 1

120

)
,

q2(x) = 12
√
5
(
x2 − 1

2
x+ 1

12

)
, q4(x) = 5040

(
x4 − 1

2
x3 + 3

28
x2 − 1

84
x+ 1

1680

)
.

When W (z) approximates ez to order p, the order conditions (1.7) combined

with (2.50) implies that

bTAje = L(xj) for 0 ≤ j ≤ p− 1 . (2.59)

The identity (2.59) implies

bT q(A)e = L
(
q(x)

)
for any deg q ≤ p− 1 ,

and hence

bT qi(A)qj(A)e = L(qiqj) = (−1)iδij if i+ j ≤ p− 1 . (2.60)

A less obvious fact is that (2.60) fails for every pair i+ j = p, i.e.,

bT qi(A)qj(A)e ̸= (−1)iδij whenever i+ j = p . (2.61)

In particular, the value of

α := bT qi(A)qp−i(A)e for any choice 0 ≤ i ≤ p ,

uniquely defines bTApe since bTApe can be written in terms of α, the coefficients of

qi, and values of bTAje for j ≤ p − 1, which are exactly the pth order conditions.

The value α agrees with (2.60) if and only if the (p + 1)th order condition holds

bTApe = 1/(p + 1)!. Thus, (2.61) follows from the definition of p as the largest

integer in (1.7).

Remark. Several classical orthogonal polynomials have been used to study W (z).

These include Laguerre polynomials [39] and shifted Lengendre polynomials [30].
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Unlike classical orthogonal polynomials, the qn used here are not orthogonal with

respect to an inner product. Instead, they are orthogonal with respect to a linear

functional L(·). As a result, the roots of qn need not be real.

2.5.2 The HW -transform.

In this section, we use the polynomials {qn}n≥0 to define a transformation matrix

U that satisfies (2.47)–(2.48). This will yield new formulas for the function Ψν−1 in

terms of A, which can then be used to test for A-stability.

The orthogonality relation (2.60) can first be re-cast into matrix form. For

j ≥ 0, let

hj := qj(A) e , (2.62)

and

wj := (−1)j qj(A
T ) b . (2.63)

Define the matrices

H :=

[
h0 h1 . . . hν−1

]
∈ Rs×ν , (2.64)

and

W :=

[
w0 w1 . . . wν−1

]
∈ Rs×ν . (2.65)

Since the orthogonality relation (2.60) holds for i, j ≤ ν− 1, with ν defined in (2.43),

we have

W TH = I . (2.66)

Equation (2.66) also shows that the columns of both H and W are linearly

independent. The linear independence follows because Hx = 0, or analogously
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Wx = 0, admits only the trivial solution; for instance, Hx = 0 implies W THx =

x = 0.

Now introduce the s× s matrix

U =

[
H H̃

]
=

[
h0 h1 . . . hν−1 H̃

]
, (2.67)

which is obtained by augmenting H with any matrix H̃ ∈ Rs×(s−ν) whose columns

span the space orthogonal to col(W ). The columns of H̃ are linearly independent,

so that rank(H̃) = s−ν, and H̃
T
W = 0. We then have the following result for U−1.

Lemma 2.5.1 (Inverse of U ). Let (A, b) be an RK scheme with stability function

W (z) that is a pth (p ≥ 1) order approximation to ez. Let ν =
⌊
p+1
2

⌋
as defined in

(2.43). Then any matrix U of the form (2.67) is invertible and with inverse of the

form

U−1 =

[
W W̃

]T
, (2.68)

where W̃ satisfies W̃
T
H = 0 and H̃

T
W̃ = I, with H and W defined as in (2.64)–

(2.65).

Proof. We first show Ux = 0 admits only the zero solution, thus ensuring that U−1

exists. In block form, Ux = 0 is

[
H H̃

]xu

xℓ

 = 0 where x =

xu

xℓ

 . (2.69)

Multiplying (2.69) through by W T , and using the fact that W TH = I and W TH̃ =

0, shows that xu = 0. Equation (2.69) then becomes H̃xℓ = 0. Since the columns of

H̃ are linearly independent, we have xℓ = 0. Hence, U is invertible. The block form

of U−1 in (2.69) then follows since W is the unique matrix which satisfies W TH = I

and W TH̃ = 0.
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As outlined in the previous Lemma, the orthogonality of qn demands that the

top block of U−1 be prescribed in terms of qj. The 3-term recurrence relation

(2.57) provides another useful identity on U involving the columns of H and W .

Substituting x = A into (2.57) – (2.58) and multiplying by e or bT yields the

identities:

Ah0 = ξ1 h1 +
1

2
h0 and AT w0 = −ξ1w1 +

1

2
w0 . (2.70)

For all j ≥ 1 (i.e., j is not limited to ν − 1):

Ahj = ξj+1 hj+1 − ξj hj−1 , (2.71)

and

AT wj = ξj wj−1 − ξj+1wj+1 . (2.72)

With these identities, U transforms the upper block of A into a tridiagonal matrix

characterized as follows.

Lemma 2.5.2 (Formula for U−1AU). Let W (z) be a pth order approximation to ez

defined by (1.3) with ν, H, W and U defined in (2.43) and (2.64)–(2.67). Then U

satisfies the conditions of Lemma 2.4.2, that is

U−1AU =



1
2

−ξ1

ξ1 0 −ξ2

ξ2
. . .

. . .

. . . 0 −ξν−1

ξν−1

Y ν−1


, if p ≥ 3 (ν ≥ 2) , (2.73)
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and U−1e = e1, and bTU = eT
1 . Here,

Y ν−1 =

w T
ν−1

W̃
T

A

[
hν−1 H̃

]
(2.74)

is a square matrix of size s− ν + 1.

Proof. Let X := U−1AU . Then the bottom (s− ν + 1)× (s− ν + 1) block of X is

exactly Y ν−1.

To show equation (2.73), expand AU = UX in block form, e.g.,

A

[
h0 h1 . . . hν−1 H̃

]
=

[
h0 h1 . . . hν−1 H̃

]
X .

The vector identities (2.70) and (2.71) define the first (ν − 1) columns of X, which

are exactly those given by the matrix on the right-hand side of (2.73).

Similarly, expanding out U−1A = XU−1 in block form yields:[
w0 w1 . . . wν−1 W̃

]T
A = X

[
w0 w1 . . . wν−1 W̃

]T
.

Again, the identities (2.70) and (2.72) prescribe the first (ν − 1) rows of X. When

written in matrix form, these rows are exactly the first (ν − 1) rows of the matrix on

the right-hand side of (2.73).

The top left value of Y ν−1 will play a role in how W (z) approximates ez to

order p. To unify the cases when ν = 1 and ν > 1, we introduce Y by subtracting

the 1/2 appearing in the top left entry of U−1AU :

Y = U−1AU − 1

2
e1e

T
1 . (2.75)

Note that Y j is the minor of Y with the first j (0 ≤ j ≤ ν − 1) columns and rows

removed. With this notation, Y 0 = Y and Y ν−1 is defined in (2.74).
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Lemma 2.5.3. Let W (z) be a pth (p ≥ 1) order approximation of ez of the form

(1.3) with Y defined by (2.75). Then the top left entry of the minor Y ν−1 of Y is

(Y ν−1)11 ̸= 0 if p is odd ,

(Y ν−1)11 = 0 if p is even .

Proof. The top left entry of Yν−1 is:

(Y ν−1)11 = w T
ν−1Ahν−1 −

1

2
δν1 ,

where δν1 is the Kronecker delta. Using the identity (2.70) when ν = 1 and the 3-term

recursion (2.71) when ν ≥ 2, we get:

(Y ν−1)11 =

 ξ1
(
w T

0 h1

)
+ 1

2

(
w T

0 h0

)
− 1

2
if ν = 1 ,

ξν
(
w T

ν−1hν

)
− ξν−1

(
w T

ν−1hν−2

)
if ν ≥ 2 ,

. (2.76)

Since 2ν−3 ≤ p−1, equation (2.60) implies the second large round brackets in (2.76)

vanish. The first round brackets in (2.76) vanish when p is even, since 2ν − 1 = p− 1

and (2.60) applies, and does not vanish when p is odd, since 2ν − 1 = p and (2.61)

applies.

We can summarize the results in the following theorem.

Theorem 2.5.4. Let the RK scheme (A, b) be given with stability function W (z) a

pth order approximation of the exponential. Let U be the HW -transform. Then the

RK scheme is A-stable if and only if there exists an R ⪰ 0 such that

Re1 = e1 and RY ν−1 + Y T
ν−1R ⪰ 0 (2.77)

where Y ν−1 is the bottom block of (2.73). Furthermore, when p is even, the condition

(2.77) can be reduced to

Re1 = e1 ,
(
RY ν−1 + Y T

ν−1R
)
e1 = 0 , and RY ν−1 + Y T

ν−1R ⪰ 0.
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Example 2.5.1 (SDIRK(3,2)). This example constructs an HW-transform matrix

U and uses Theorem 2.5.4 to certify A-stability for the SDIRK 3-stage p = 2 scheme:

A =

1 0 0
1
2

1 0

1 −1 1

, b =

 1

−1

1

 .

First, we construct the H and W matrices as in (2.64) and (2.65), respectively, using

the polynomial family {qn}n≥0 defined in Section 2.5.2:

H = q0(A)e = e and W = q0(A
T )b = b.

Next, we construct H̃ such that W TH̃ = 0:

H̃ =

1 −1

1 0

0 1

.
We then combine H and H̃ to get the HW-transform matrix

U = [H H̃ ] =

1 1 −1

1 1 0

1 0 1

 with U−1 = [W W̃ ]T =

 1 −1 1

−1 2 −1

−1 1 0

.
Applying the HW-transform yields:

Y = U−1AU − 1

2
e1e

T
1 =

0 −1
2
−1

2

1 2 0
1
2

1
2

1
2

.
Since p = 2, we have that ν = 1, and therefore Y ν−1 = Y 0 = Y . We then

parameterize the equality constraints from Theorem 2.5.4 and get:

R(η) =

1 0 0

0 1
4
(η + 1) −1

2
(η − 1)

0 −1
2
(η − 1) η

 and RY + Y TR =

0 0 0

0 1
2
(η + 3) −1

4
(3η − 5)

0 −1
4
(3η − 5) η

.
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If we select η = 1, then Theorem 2.5.4 is satisfied, and the scheme is A-stable:

R(1) =

1 0 0

0 1
2

0

0 0 1

 ≻ 0 and

R(1)Y + Y TR(1) =

0 0 0

0 2 1
2

0 1
2

1

 =

1 0 0

0 1 0

0 1
4

1


0 0 0

0 2 0

0 0 7
8


1 0 0

0 1 1
4

0 0 1

 ⪰ 0.

Example 2.5.2 (SDIRK(5,4)). This example constructs an HW-transform matrix

U and then uses Theorem 2.5.4 to certify A-stability for the SDIRK 5-stage p = 4

scheme

A =



1
4

0 0 0 0

1
2

1
4

0 0 0

17
50

− 1
25

1
4

0 0

371
1360

− 137
2720

15
544

1
4

0

25
24

−49
48

125
16

−85
12

1
4


, b =



25
24

−49
48

125
16

−85
12

1
4


.

First, we construct matrices H and W using the polynomial family {qn}n≥0 defined

in Section 2.5.2:

H = [q0(A)e q1(A)e] =



1 −
√
3
2

1
√
3
2

1
√
3

10

1 0

1
√
3


, W = [q0(A

T )b − q1(A
T )b] =



25
24

−41
√
3

96

−49
48

−17
√
3

192

125
16

25
√
3

64

−85
12

0

1
4

√
3
8


.
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We then construct H̃ such that W TH̃ = 0:

H̃ =



− 675
1217

1445
1217

243
1217

8625
1217

−6970
1217

546
1217

1 0 0

0 1 0

0 0 1


.

Combining H and H̃ , we obtain the HW-transform matrix:

U = [H H̃ ] =



1 −
√
3
2

− 675
1217

1445
1217

243
1217

1
√
3
2

8625
1217

−6970
1217

546
1217

1
√
3

10
1 0 0

1 0 0 1 0

1
√
3 0 0 1


,

U−1 = [W W̃ ]T =



25
24

−49
48

125
16

−85
12

1
4

−41
√
3

96
−17

√
3

192
25

√
3

64
0

√
3
8

−877
960

2011
1920

−887
128

85
12

−23
80

−25
24

49
48

−125
16

97
12

−1
4

23
96

247
192

−575
64

85
12

3
8


.

Next, we apply the HW-transform to get the matrix:

Y = U−1AU − 1

2
e1e

T
1 =



0 −ξ1 0 0 0

ξ1 0 −6225
√
3

38944
45475

√
3

233664
−1603

√
3

77888

0
√
3

600
−13561

77888
447389
778880

218541
3894400

0 2
√
3

255
− 585

1217
2099
2434

3297
103445

0
√
3
6

18675
38944

−45475
77888

4809
77888


.
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Since p = 4, we have ν = 2, and therefore

Y ν−1 = Y 1 =



0 −6225
√
3

38944
45475

√
3

233664
−1603

√
3

77888
√
3

600
−13561

77888
447389
778880

218541
3894400

2
√
3

255
− 585

1217
2099
2434

3297
103445

√
3
6

18675
38944

−45475
77888

4809
77888


.

We then parameterize the equality constraints from Theorem 2.5.4. By selecting

η =
[
46524
125

− 2039
131

442
609

]
, Theorem 2.5.4 is satisfied, indicating that the scheme is

A-stable:

R(η) = LRDRL
T
R ≻ 0 and R(η)Y 1 + Y T

1R(η) = LYDYL
T
Y ⪰ 0.

See Appendix A.1.1 for the full LDL factorization.

Example 2.5.3 (ERK4, [27]). This example constructs and applies an HW-transform

matrix U to the explicit RK 4-stage p = 4 scheme

A =



0 0 0 0

1
2

0 0 0

0 1
2

0 0

0 0 1 0


, b =



1
6

1
3

1
3

1
6


.

Following the same process as in previous examples, we have the HW-transform

matrix

U =



1 −
√
3 0 1

1 0 −1 −1

1 0 1 0

1
√
3 0 1


and U−1 =



1
6

1
3

1
3

1
6

−
√
3
6

0 0
√
3
6

−1
6

−1
3

2
3

−1
6

1
3

−1
3

−1
3

1
3


.
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Applying the transform yields

Y = U−1AU − 1

2
e1e

T
1 =



0 −ξ1 0 0

ξ1 0
√
3
6

0

0
√
3
6

−1
2

−1
2

0
√
3
6

1
2

0



with Y ν−1 = Y 1 =


0

√
3
6

0
√
3
6

−1
2

−1
2

√
3
6

1
2

0

 .

Example 2.5.4 (Verner-8-5-6, [46]). This example constructs and applies an HW-

transform matrix U to an explicit RK 8-stage p = 6 scheme

A =



0 0 0 0 0 0 0 0
1
6

0 0 0 0 0 0 0
4
75

16
75

0 0 0 0 0 0
5
6

−8
3

5
2

0 0 0 0 0

−165
64

55
6

−425
64

85
96

0 0 0 0
12
5

−8 4015
612

−11
36

88
255

0 0 0

− 8263
15000

124
75

−643
680

− 81
250

2484
10625

0 0 0
3501
1720

−300
43

297275
52632

− 319
2322

24068
84065

0 3850
26703

0


, b =



3
40

0
875
2244

23
72

264
1955

0
125

11592

43
616


.
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Following the same process as in previous examples, we have the HW-transform

matrix

U =



1 −
√
3

√
5 0 −3984

4393
0 29625

61502
−2881

2674

1 −2
√
3

3
0 1 0 0 0 0

1 −7
√
3

15
−13

√
5

75
0 1672176

3843875
0 − 84337

430514
1157173
2339750

1
√
3
3

−
√
5
3

0 −16272
21965

0 5675
61502

− 7611
13370

1 2
√
3

3

√
5
6

0 1 0 0 0

1
√
3

√
5 0 0 1 0 0

1 −13
√
3

15
47

√
5

75
0 0 0 1 0

1
√
3

√
5 0 0 0 0 1


,

U−1 =



3
40

0 875
2244

23
72

264
1955

0 125
11592

43
616

−3
√
3

40
0 −1225

√
3

6732
23

√
3

216
176

√
3

1955
0 −325

√
3

34776
43

√
3

616

11
√
5

100
0 −175

√
5

4488
−43

√
5

360
12

√
5

425
0 −25

√
5

504
43

√
5

616

− 9
40

1 −5075
6732

− 23
216

88
1955

0 − 1025
34776

43
616

− 1
60

0 175
26928

−187
432

1293
1955

0 3425
69552

− 989
3696

−2
5

0 525
1496

− 1
24

−1068
1955

1 1025
3864

−387
616

−461
750

0 −3325
4488

199
600

516
48875

0 1443
1288

− 989
9240

−2
5

0 525
1496

− 1
24

−1068
1955

0 1025
3864

229
616


.
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Applying the transform yields

Y = U−1AU − 1

2
e1e

T
1 =



0 −ξ1 0 0 0 0 0 0

ξ2 0 −ξ2 0 0 0 0 0

0 ξ2 0 0 −23022
√
5

768775
0 33345

√
5

1722056
−65059

√
5

1871800

0 0
√
5

10
0 − 664

4393
0 9875

123004
− 2881

16044

0 0 −149
√
5

90
55
6

−363387
307510

0 2574625
20664672

−4409779
4492320

0 0 137
√
5

90
−8 3225602

2306325
0 − 437635

1722056
16956577
16846200

0 0 −49
√
5

150
124
75

12605422
19219375

0 −1469581
8610280

19616299
46795000

0 0 1729
√
5

1290
−300

43
7596186
6611465

0 − 6761975
74048408

319099
374360



with Y ν−1 = Y 2 =



0 0 −23022
√
5

768775
0 33345

√
5

1722056
−65059

√
5

1871800√
5

10
0 − 664

4393
0 9875

123004
− 2881

16044

−149
√
5

90
55
6

−363387
307510

0 2574625
20664672

−4409779
4492320

137
√
5

90
−8 3225602

2306325
0 − 437635

1722056
16956577
16846200

−49
√
5

150
124
75

12605422
19219375

0 −1469581
8610280

19616299
46795000

1729
√
5

1290
−300

43
7596186
6611465

0 − 6761975
74048408

319099
374360


.

2.6 Stability Conditions in Linear Multistep Methods

In this section, we revisit the problem of characterizing numerical stability for Linear

Multistep Methods (LMMs). Similar to A- and A(α)-stability for RK schemes, we

can cast G-stability of LMMs as a Linear Matrix Inequality over the convex cone

of semi-definite matrices. Dahlquist characterized how the order conditions reduce

the dimension of the LMIs for stability. These observations allowed Dahlquist to

characterize all two step G-stable methods.

We use the algebraic characterization of G-stable LMMs to parameterize the

implicit part of a family of IMEX schemes introduced by Rosales, Seibold, Shirokoff

and Zhou in [44].
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2.6.1 Background on Linear Multistep Methods

Linear multistep methods (LMMs) are a common class of integrators which discretize

(1.1) with k steps as:

k∑
j=0

αj un+j = ∆t

k∑
j=0

βj f(tn+j,un+j) . (2.78)

and time stepping coefficients α = [αk, . . . , α0]
T and β = [βk, . . . , β0]

T . In the scheme

(2.78), un ≈ u(tn) represents the numerical approximation of the ODE solution at

the nth timestep, where tn = n∆t denotes the time after n equally spaced intervals.

Linear Stability Given a set of fixed time-stepping coefficients, the stability of the

dynamics defined by (2.78) is influenced by the function f and the time step size ∆t,

as detailed in [30].

For a linear function f , the multistep dynamics (2.78) admit linear mode

solutions of the form un = ξnu0, where ξ satisfies the characteristic equation:

ρ(ξ)− zσ(ξ) = 0, where z := λ∆t. (2.79)

In the characteristic equation (2.79), ρ and σ are the generating polynomials, defined

by the LMM coefficients as

ρ(ξ) =
k∑

j=0

αj ξ
j , σ(ξ) =

k∑
j=0

βj ξ
j . (2.80)

The linear dynamics (2.78) evolve with growth factors given by ξ for LMM’s. The

dynamics (2.78) are considered stable for a given z if all roots of the characteristic

equation (2.79) meet the root condition, which requires that the roots lie within the

unit disk with boundary roots being simple. The region of absolute stability, S, is the

set of z values for which the linear dynamics (2.78) are stable:

S :=
{
z ∈ C : ρ(ξ)− z σ(ξ) satisfies the root condition

}
.
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A numerical scheme, defined by (α,β), is A-stable if S contains the left half of

the complex plane, C−. The A-stability criteria ensures that the discrete dynamics,

(2.78), remain stable whenever the linear ODE (1.1) is stable.

A-stability: S ⊃ C− = {z : Re z ≤ 0} , (2.81)

For irreducible LMMs, i.e. ρ and σ share no common factors, a necessary and

sufficient condition for A-stability is

Re

(
ρ(ξ)

σ(ξ)

)
> 0 for |ξ| > 1 .

Under condition (2.81), an LMM attains A-stability only if no solution ξ to the

characteristic equation (2.79) satisfies |ξ| > 1 when z is within C−. Thus, ρ(ξ)/σ(ξ)

must lie outside C− whenever |ξ| > 1.

Accuracy and Order Conditions For an LMM characterized by (α,β) to achieve

order p, the local error must equal O(∆tp+1). The method is of order p, if and only if

eTα = 0 and αTvq = q βTvq−1 for q = 1, . . . , p (2.82)

are satisfied, where v = [k, k-1, . . . , 0]T .

2.6.2 Nonlinear stability in LMMs

A stronger form of stability is achievable for a class of functions f , linear or nonlinear,

that satisfy a one-sided Lipschitz condition:

〈
f(t,u)− f(t, û),u− û

〉
≤ 0 for all u, û ∈ V , t ≥ 0 . (2.83)

Differential equations (1.1) with f satisfying condition (2.83) are contractive, meaning

the distance between any two solutions does not increase over time. Numerical

methods that preserve contractivity for associated discrete-in-time schemes are

classified as G− stable for LMMs.
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G-stability for LMMs is defined in terms of the stability of the associated 1-leg

method:

k∑
j=0

αjũn+j = ∆t f

(
k∑

j=0

βjũn+j

)
, with Un := [ũT

n+k−1, . . . , ũ
T
n ]

T , (2.84)

An LMM (α,β) is G-stable if there exists a real, symmetric, and positive definite

matrix G such that solution pairs Un and Ûn (2.84) satisfy

||Un+1 − Ûn+1||G ≤ ||Un − Ûn||G , (2.85)

for all differential equations satisfying (2.83) and any step size ∆t > 0. The G-norm

is defined as

||Un||2G :=
k∑

i=1

k∑
j=1

gij⟨un+i−1,un+j−1⟩ , (2.86)

where ⟨·, ·⟩ is the inner product on V used in (2.83). Dahlquist’s work in [17] shows

that while the original LMM dynamics {un}n≥0 may not be contractive, G-stability

guarantees their stability.

Note that G−stability implies A−stability. For instance, when f(u) = λu with

Reλ ≤ 0 then f satisfies condition (2.83), the 1-leg dynamics (2.84) are identical to

the LMM dynamics and solutions {un} are bounded for all n. Futhermore,

Theorem 2.6.1. (Dahlquist 1978) if a LMM is irreducible, then it is A-stable if and

only if the corresponding one-leg method is G-stable.

2.6.3 The G-Stability LMI

Theorem 2.6.2. The method (α,β) is G-stable, if and only if

G ⪰ 0 and (P −Q) ⪰ 0 , (2.87)

where

P = αTβ + βαT , Q = R1GRT
1 −R0GRT

0 , R1 = [Ik , 0]
T , R0 = [0 , Ik]

T .
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Theorem 2.6.3. Suppose that the pth order method (α,β) is G-stable with

βTe = αTv = 1. (2.88)

Then

(P −Q)e = 0 for p ≥ 1 and (P −Q)v = 0 for p ≥ 2. (2.89)

Proof. In a slight abuse of notation, we will use e to represent the vector of ones in

all dimensions. Applying e to both sides of P −Q, we have

eT (P −Q)e = eTα
0

βTeT + eβαTe
0

−eTGe+ eTGe = 0. (via (2.82))

Since the scheme is G-stable (P −Q) ⪰ 0, therefore (P −Q)e = 0 and we get the

following condition on G.

(P −Q)e = αβTe

1

+βαTe
0

−R1Ge+R2Ge = 0 (via (2.82) and (2.88))

⇐⇒ (R1 −R0)Ge = α. (2.90)

For the case when p ≥ 2, we will use the following notation.

v0 = R0v = [k − 1, k − 2, . . . , 0]T and v1 = v0 + e = R1v = [k, k − 1, . . . , 1]T .

Applying v to both sides of P −Q, we have

vT (P −Q)v = vTα
1

βTv + vβαTv
1

−vTR1GRT
1 v

T + vTR0GRT
0 v

= 2βTv − (2v0 + e

v2
1−v2

0

)TGe

= αTv2 − v2T (R1 −R0)Ge

α

(via (2.82) and (2.90))

= 0.

Therefore, (P −Q)v = 0.
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The complete LMI for G-stability is then

Theorem 2.6.4 (Dahlquist Conditions with order conditions). Let (α,β) be a pth

order LMM with βTe = 1. Then the method is G-stable if and only if there exists a

matrix G ∈ Ss such that 
G ⪰ 0 ,

(P −Q) ⪰ 0 ,

(P −Q)e = 0 for p ≥ 1 ,

(P −Q)v = 0 for p ≥ 2 .

(2.91)

2.6.4 Examples

Example 2.6.1 (BDF2). The first example demonstrates how to determine if the

second order Backward Differentiation Formula (BDF2) is G-stable by finding a

positive semidefinite matrix G that satisfies Theorem 2.6.4. The scheme coefficients

are as follows.

α =

[
3
2

−2 1
2

]T
and β =

[
1 0 0

]T
First, we will satisfy the condition

(P −Q)e =


 3 −2 1

2

−2 0 0
1
2

0 0

−

 g1,1 g1,2 0

g1,2 g2,2 − g1,1 −g1,2

0 −g1,2 −g2,2



 1

1

1

 = 0

resulting in

g1,1 =
3

2
− g1,2 and g2,2 = −g1,2 −

1

2
.

Next we will satisfy

(P −Q)v =


 3 −2 1

2

−2 0 0
1
2

0 0

−


3
2
− g1,2 g1,2 0

g1,2 −2 −g1,2

0 −g1,2 g1,2 +
1
2



 2

1

0

 = 0
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resulting in

G =

 5
2

−1

−1 1
2

 and P −Q = wwT where w =

[
1√
2

−
√
2 1√

2

]T
.

Since g1,1 > 0 and det(G) = 1
4
> 0, by Sylvester’s criterion G ≻ 0. The only nonzero

eigenvalue of (P −Q) is wTw = 3, therefore (P −Q) ⪰ 0 and BDF2 is G-stable.

Example 2.6.2 (Rosales, Seibold, Shirokoff, Zhou 2nd Order IMEX [44]). The

second example demonstrates how to determine if the implicit part of a family of

second-order IMEX schemes is G-stable by finding a positive semidefinite matrix G

that satisfies Theorem 2.6.4. The normalized scheme coefficients are

α =

[
−δ − 4

2 δ

2 δ − 4

δ
−3 δ − 4

2 δ

]T
and β =

[
1

δ2
2 δ − 2

δ2
(δ − 1)2

δ2

]T
for δ ∈ (0, 1]. First, we will satisfy the condition (P −Q)e = 0 with

P =


−δ+4
δ3

−δ2+7 δ−8
δ3

−(δ−2)3

2 δ3

−δ2+7 δ−8
δ3

2 (2 δ−2) (2 δ−4)
δ3

2 δ3−11 δ2+17 δ−8
δ3

−(δ−2)3

2 δ3
2 δ3−11 δ2+17 δ−8

δ3
−(3 δ−4) (δ−1)2

δ3


resulting in

g1,1 = −δ + 2 δ g1,2 − 4

2 δ
and g2,2 = −2 δ g1,2 − 3 δ + 4

2 δ
.

Next we will satisfy (P −Q)v = 0 resulting in

G(δ) =

 (10 δ2−3)2+1
20 δ2

− δ2−5 δ+5
δ2

− δ2−5 δ+5
δ2

5 δ2−14 δ+10
2 δ2

 and P −Q =

(
2− δ

δ

)3

wwT

Since g1,1 > 0 and det(G(δ)) = (δ−2)2

4 δ2
> 0, by Sylvester’s criterion G ≻ 0. The

only nonzero eigenvalue of (P − Q) is
(
2−δ
δ

)3
wTw = 3

(
2−δ
δ

)3
which is positive for

δ ∈ (0, 2), therefore (P −Q) ⪰ 0 and IMEX is G-stable.
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CHAPTER 3

CERTIFYING STABILITY VIA SEMIDEFINITE PROGRAMMING

In this chapter, the algebraic conditions represented as LMIs in Chapter 2 are used

within a convex feasibility problem to rigorously certify stability for several recently

devised schemes in the literature. We begin with an overview in Section 3.1, detailing

the A-stability certification algorithm. Next, we apply the algorithm to idealized

examples that satisfy the tall-tree order conditions exactly in Section 3.2.

Additionally, we examine A-stability for several recently devised schemes

developed via numerical software [2, 9]. Although these schemes do not satisfy the

tall-tree order conditions exactly, they exhibit a residual of typical size O(10−15).

The chapter concludes with examples that establish rigorous bounds on α for

A(α)-stability.

3.1 Computational Details for Rigorous Certification.

This section describes the computational details for rigorously verifying stability via

the feasibility of an LMI, proceeding through three main steps.

Building the symbolic LMI functions

First, we initialize as symbolic variables the scheme coefficients A, b and other

necessary variables such as B, I,M , e, etc. Next, the LMI’s are parameterized.

The process for building the symbolic LMI functions differs slightly between the

E-polynomial and CSTW SDP approaches.

For the E-polynomial SDP, the symbolic stability function W (z) is created

with the given symbolic coefficient matrix A and vector b. The stability function is

converted to a rational form that produces the symbolic numerator and denominator
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functions, N(z) andD(z), as in (1.3). The symbolic E-polynomial is then constructed

with N(z), D(z), and its coefficients are used to define the symbolic diagonal matrix

P from (2.5). The free variables η for the E-polynomial LMI are introduced via

the general symbolic symmetric matrix NE which is constructed in the manner

described in (2.7), satisfying yTNEy = 0. The matrix NE is then converted into a

symbolic function NE(η). Combining P +NE(η) gives the E-polynomial symbolic

LMI function.

In the CSTW approach, the free variables η are introduced via the general

symbolic symmetric matrix N which is constructed as in (2.29) so that Ne = 0. The

matrix N is then used to define the symbolic matrices R = B+N and X = RAT +

AR − bbT . The equality conditions (i.e. the null space of X) are parameterized by

solving Xv = 0 for the free variables introduced by N , where v is defined by the null

vectors in Theorems 2.3.3 and 2.3.6. The matrices R and X are then converted into

symbolic functions R(η) and X(η), which are the CSTW symbolic LMI functions.

Solving the SDP

We then use the symbolic LMI functions to create double-precision LMI functions that

are used as constraints within optimization software. Specifically, CVX, a package

for specifying and solving convex programs [15, 24], is used to numerically solve the

relevant semi-definite programming problems:

To demonstrate the non-negativity of the E-polynomial, i.e., assess the

feasibility of (2.8), we solve:

Minimize: 1

Subject to: F (η) = P +
∑d

j=1 ηj N j ⪰ 0 ,
(P2)

where P +
∑d

j=1 ηj N j is represented in Matlab as a double-precision function.
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For assessing the feasibility of the modified CSTW approach (2.35), we solve:

Minimize: 1

Subject to: Re = b ,

X = RA+ATR− bbT ,

XAj−1e = 0 , for j = 1, . . . ,
⌊
p
2

⌋
,

MTRM ⪰ 0 ,

MTXM ⪰ 0 ,

(P3)

where the constraints of (P3) are entirely represented in Matlab by double precision

functions. Additionally,M is any matrix containing the columns where r is the largest

integer for which Are can be written as a linear combination of [e,Ae, . . . ,Ar−1e].

While not a proof, a positive output from CVX provides numerical evidence

that the convex set in question is feasible.

LDL Factorization

Finally, the output of CVX, η∗, is used to construct a rigorous certificate of stability

in settings where P ∈ Qm×m, or A ∈ Qs×s, b ∈ Qs. The double-precision output η∗

is passed to the symbolic LMI functions, producing symbolic rational matrics. Exact

symbolic LDL factorizations are then performed to yield matrices L,D with rational

entries. A rigorous certificate is ensured provided D ⪰ 0.

For example, CVX yields η∗ ∈ Qd in the case of the E-polynomial; substituting

η∗ back into the LMI and symbolically computing an LDL factorization yields:

F (η∗) = LDLT with L,D ∈ Qm×m .

For presentation and simplicity, the output values of CVX η∗j are often rounded to

nearby η̄j ∈ Q with integer numerators and denominators having fewer digits, yet

still yielding positive certificates of feasibility.

Remark. Throughout this section, coefficient matrices are presented wherever possible.

However, in several practical examples, the coefficients of various matrices, e.g., P ,X,
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etc., as well as the LDL factorizations of F or X,R, admit rational values exceeding

100 digits.

Remark. If the coefficients of P or A, b lie in a field extension F of Q, the LDL

factorization also admits matrices L,D in F. Therefore, this approach generalizes

as long as one can determine the sign of any element x ∈ F, such as with

interval arithmetic. Additionally, schemes A, b with irrational entries may have

E-polynomials with rational entries and coefficient matrices P , allowing this approach

to apply without further modification (e.g., the scheme (3.5) has coefficients in Q[
√
2]

but an E-polynomial with coefficients in Q).

The following code are general Matlab implementations of the two SDPs. Note,

the function ldls() performs a symbolic LDL factorization, but it is not a native

Matlab function. For details on the ldls() function see Appendix A.3.

E-polynomial SDP Code:

1 % Initialize Variables
2 A = sym (...); b = sym (...); % Symbolic coefficients
3 s = length(b); p =... ; % Stage number and order
4 e = sym(ones(s,1)); I = sym(eye(s));
5

6 % E-polynomial Conditions
7 syms z; syms y real;
8

9 % Determine N and D functions
10 [N(z),D(z)] = numden (1 + z*b’*(I - z*A)^(-1)*e);
11

12 % Create E-polynomial
13 E(y) = collect(expand(D(1i*y)*D(-1i*y) - N(1i*y)*N(-1i*y)));
14

15 % Create symbolic P matrix
16 k = coeffs(E(y)); P = diag(k); m = length(k);
17

18 % Create monomial vector
19 ys = sym(ones(m,1));
20 for i = 1:r-1
21 ys(i+1) = y^i;
22 end
23

24 % Define N such that y‘Ny==0
25 n = triu(sym(‘n’,[m m],‘real ’) ,2);
26 N = sym(zeros(m,m));

66



27 Ir = sym(eye(m));
28 for i = 1:m-2
29 for j = i+2:m
30 c = ceil((i+j)/2);
31 f = floor ((i+j)/2);
32 N = N + n(i,j)*(Im(:,i)*Im(:,j)’ + Im(:,j)*Im(:,i)’ -

Im(:,f)*Im(:,c)’ - Im(:,c)*Im(:,f)’);
33 end
34 end
35

36 % Create symbolic function for N
37 inputs = sort(n(n ~= 0));
38 Ns = symfun(N,inputs);
39

40 % Create double precision matrix P and function N
41 Pd = double(P); Nd = matlabFunction(N);
42

43 % E-poly SDP
44 cvx_precision high
45 cvx_begin sdp quiet
46 variable eta
47 minimize 1
48 subject to
49 in = num2cell(eta);
50 Pd+Nd(in{:}) >= 0;
51 cvx_end
52

53 % Symbolic LDL factorization of F
54 F = P + Ns(in{:});
55 [LF,DF] = ldls(F);

CSTW SDP Code:

1 % Initialize Variables
2 A = sym (...); b = sym (...); % Symbolic coefficients
3 s = length(b); p =... ; % Stage number and order
4 e = sym(ones(s,1)); I = sym(eye(s));
5 B = diag(b);
6 M = sym(ones(s));
7 for i = 1:s-1
8 M(:,i+1) = A^i*e;
9 end

10 r = rank(M);
11

12 % Parameterize Ne=0
13 n = triu(sym(‘n’,[s s],‘real ’) ,1);
14 N = sym(zeros(s,s));
15 for i = 1:s-1
16 for j = i+1:s
17 v = I(:,i) - I(:,j);
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18 N = N + n(i,j).*(v*v’);
19 end
20 end
21

22 % Define R and X wrt N
23 R = B + N;
24 X = R*A + A’*R - b*b’;
25

26 % Parameterize null vectors Xv=0 and update N,R,X
27 % Null vectors from order conditions
28 X_nullity = floor(p/2);
29 for i = 1: X_nullity
30 in = struct2cell(solve(X*M(:,i), n(i,i+1:s)));
31 Ns = symfun(N, n(i,i+1:s));
32 N = Ns(in{:});
33 R = B + N;
34 X = R*A + A’*R - b*b’;
35 n(i,i+1:s) = 0 ;
36 end
37

38 % Null vectors from EDIRK
39 if all(A(1,:) ==0)
40 X_nullity = X_nullity +1;
41 k = sym(’k’,[r 1],’real’);
42 k = cell2sym(struct2cell(solve(A^r*e+M(:,1:r)*k)));
43 p_r = flip(k(2:r));
44 in = struct2cell(solve(X*M*p_r , n(X_nullity ,X_nullity +1:s)

));
45 Ns = symfun(N, n(X_nullity ,X_nullity +1:s));
46 N = Ns(in{:});
47 R = B + N;
48 X = R*A + A’*R - b*b’;
49 n(X_nullity ,X_nullity +1:s) = 0 ;
50 end
51

52 % Degrees of freedom
53 dof = nchoosek(s-X_nullity ,2);
54

55 % Create symbolic functions for R,X
56 inputs = sort(n(n ~= 0));
57 Rs = symfun(R,inputs);
58 Xs = symfun(X,inputs);
59

60 % Create double precision MATLAB functions for R,X
61 Rd = matlabFunction(R);
62 Xd = matlabFunction(X);
63

64 % SDP feasibility problem
65 cvx_begin sdp quiet
66 variable eta(dof ,1)
67 minimize 1

68



68 subject to
69 in = num2cell(eta);
70 Rd(in{:}) >= 0;
71 Xd(in{:}) >= 0;
72 cvx_end
73

74 % Symbolic LDL factorization of X,R
75 X = Xs(in{:});
76 [LX,DX] = ldls(X);
77 R = Rs(in{:});
78 [LR,DR] = ldls(R);

3.2 Certifying Idealized Schemes via SDP.

To demonstrate the hybrid computational-analytic LMI solution approach to verify

A-stability, we begin with idealized examples that satisfy the tall-tree order conditions

exactly and are known to be A-stable.

Example 3.2.1 (SDIRK(5,4)). First, we revisit the SDIRK(5,4) scheme represented

by the Butcher tableau (2.12) [30, Table 6.5, Chapter IV.6]. We provide two proofs:

one using the E-polynomial LMI and a second based on modified CSTW LMI

conditions.
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E-ploynomial SDP

The SDIRK(5,4) scheme in (2.12) has an E-polynomial

E(y,
π

2
) = y6(9y4 − 64y2 + 512),

which after factoring out the largest monomial factor, yields

F (y) := 9y4 − 64y2 + 512 = yT F (η)y ,

where

F (η) =

512 0 0

0 −64 0

0 0 9

+ η

0 0 1

0 −2 0

1 0 0

 . (3.1)

For this example, the space N3 (introduced in § 2.1.1) has dimension d = 1 and

is spanned by the second matrix in (3.1). The numerical solution (P2) for F (η) yields

the following output:

η∗ = −61.786375823904734 .

The fact that CVX obtains a solution is numerical evidence suggesting E(y) ≥ 0,

indicating that the scheme is A-stable. This numerical evidence can be converted

into a rigorous proof by substituting η∗ into the symbolic LMI F (η) and factorizing

exactly F (η∗) = LDLT with L,D ∈ Q3×3 to yield D ⪰ 0.

We would like to remark that the value of η∗ lies in the interior of the convex set

defined by the LMI (P2), and is not the only value that yields a positive certificate

of stability. For example, values of η close to η∗ also yield positive certificates as

demonstrated by the following example where η = −60 is used:

F (−60) =

 512 0 −60

0 56 0

−60 0 9

 = LDLT ,
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where

L =


1 0 0

0 1 0

− 15
128

0 1

 , and D =


512 0 0

0 56 0

0 0 63
32

 ⪰ 0 .

This results in the following SOS representation of E(y), certifying A-stability:

E(y) = y6

(
512

(
15

128
y2 − 1

)2

+ 56y2 +
63

32
y4

)
.

Modified CSTW SDP

Using the SDIRK(5,4) scheme in (2.12), this example highlights several key differences

in the modified CSTW approach relative to the E-polynomial.

Since p = 4, Theorem 2.3.3 adds two linear constraints on X (corresponding

to null vectors e and Ae) into the associated LMI. Consequently, problem (P3) has

three degrees of freedom, denoted by the vector η. The rounded numerical solution

of (P3) yields matrices

X∗ =



729823
97920

-348733
195840

875727
21760

-334871
7200

237
400

-348733
195840

170083
391680

-1259867
130560

160397
14400

- 57
400

875727
21760

-1259867
130560

5678645
26112

-241217
960

16
5

-334871
7200

160397
14400

-241217
960

1045211
3600

-1479
400

237
400

- 57
400

16
5

-1479
400

19
400


, R∗ =



195061
16320

-42157
10880

416905
6528

−72 11
10

-42157
10880

131641
65280

-324335
13056

1259
48

-11
20

416905
6528

-324335
13056

4888637
13056

-99107
240

73
10

−72 1259
48

-99107
240

34459
75

-391
50

11
10

-11
20

73
10

-391
50

11
50


,

which then admits LDL factorizations of the form

X∗ = LXDXL
T
X , R∗ = LRDRL

T
R ,

where the matrices have coefficients in Q with

DX = diag

[
729823
97920

2466451
280252032

7352143
246645100

0 0

]
,

DR = diag

[
195061
16320

28479739
37451712

3647946461
341756868

3800443925
43775357532

103805
2104052

]
.
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The fact that DX admits two zero eigenvalues is by construction and follows

from Theorem 2.3.3. The certification of A-stability is thus confirmed as the pair

X∗,R∗ satisfy the CSTW condition in exact arithmetic.

Example 3.2.2 (ESDIRK32I5L2SA-5-2-3). Next, we examine the ESDIRK32I5L2SA-

5-2-3 scheme represented by the following coefficients:

A =



0 0 0 0 0

9
40

9
40

0 0 0

19
72

14
45

9
40

0 0

3337
11520

233
720

207
1280

9
40

0

7415
34776

9920
30429

4845
9016

− 5827
19320

9
40


, b =



7415
34776

9920
30429

4845
9016

− 5827
19320

9
40


(3.2)

E-ploynomial SDP

The scheme (3.2) has an E-polynomial

E(y; π
2
) = γy4

(
y4 − 6684332800

387420489
y2 + 21314560000

129140163

)
,

with γ = 387420489. After factoring, we obtain

F (y) := y4 − 6684332800
387420489

y2 + 21314560000
129140163

= yT F (η)y ,

where

F (η) =


21314560000
129140163

0 0

0 −6684332800
387420489

0

0 0 1

+ η

0 0 1

0 −2 0

1 0 0

 . (3.3)

The numerical solution (P2) for F (η) yields:

η∗ = −8.626715661390847 .

CVX’s solution suggests E(y) ≥ 0, indicating A-stability.
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We round η∗ to η = −3342166400
387420489

and obtain:

F (−3342166400
387420489

) =


21314560000
129140163

0 −3342166400
387420489

0 0 0

−3342166400
387420489

0 1

 = LDLT ,

where

L =

 1 0 0

0 1 0

− 1044427
19982400

0 1

 , and D =


21314560000
129140163

0 0

0 0 0

0 0 2656838970463
4838494487121

 ⪰ 0 .

This results in the following SOS representation of E(y), certifying A-stability:

E(y) = γy4
(

2656838970463 y4

4838494487121
+ 21314560000

129140163

(
1044427
19982400

y2 − 1
)2)

.

Modified CSTW SDP

Since p = 3, Theorem 2.3.3 adds the linear constraintXe = 0 to the LMI. The scheme

is stiffly accurate (i.e., bT is equal to the last row of A) and A is singular; therefore,

Theorem 2.3.6 adds a second constraint XMpr = 0 to the LMI. Consequently,

problem (P3) has three degrees of freedom, denoted by the vector η. The rounded

numerical solution of (P3) yields matrices

X∗ =



11146204166203
40789637296128000

−8407940321693
35690932634112000

−1709258255729
705006076723200

6382644745231
1616256052992000

−65346943
41828572800

−8407940321693
35690932634112000

3860202003949
7807391513712000

10728355669307
3084401585664000

−2435250853211
353556011592000

2306359393
732000024000

−1709258255729
705006076723200

10728355669307
3084401585664000

2487396506157
88441622528000

−122606540519369
2374499633408000

1217622669
54222224000

6382644745231
1616256052992000

−2435250853211
353556011592000

−122606540519369
2374499633408000

1903581383743
19080800625600

−525072881
11619048000

−65346943
41828572800

2306359393
732000024000

1217622669
54222224000

−525072881
11619048000

508689
24056000



R∗ =



21573785741
201072844800

34973549813
307892793600

117719341
3923763200

− 1029173
30544920

− 443
111600

34973549813
307892793600

37811272673
269406194400

109440859
858323200

− 2726113
30544920

3773
111600

117719341
3923763200

109440859
858323200

12760225893
27466342400

− 9
34

9
50

− 1029173
30544920

− 2726113
30544920

− 9
34

227522041
987619080

−14
97

− 443
111600

3773
111600

9
50

−14
97

47959
300700


,
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which then admits LDL factorizations of the form

X∗ = LXDXL
T
X , R∗ = LRDRL

T
R ,

where the matrices have coefficients in Q with

DX = diag



11146204166203
40789637296128000

947079461269957489
3250768152664772544000

0

37459168241287633057
35861184932577354052288

0


, DR = diag



21573785741
201072844800

6894617926234393
343114320952869984

0

3311480780425235177
43042455579626615400

1642980924432777139
26491846243401881416


.

The fact that DX admits two zero eigenvalues is by construction and follows

from Theorems 2.3.3 and 2.3.6. The certification of A-stability is thus confirmed as

the pair X∗,R∗ satisfy the CSTW condition in exact arithmetic.

Table 3.1 consists of a set of idealized RK schemes from the SUNDIALS library

of implicit RK methods. They have been certified A-stable via observation of positive

E-polynomial coefficients, or both SDPs (P2) and (P3).

Table 3.1 Idealized A-stable Schemes and the Method of Certification

Scheme Certification Method

ARK2-DIRK-3-1-2 (M)[22] + coefficients

ARK2-DIRK-3-1-2 (E)[22] + coefficients

ARK436L2SA-DIRK-6-3-4 (M)[32] E-poly & CSTW SDPs

ARK436L2SA-DIRK-6-3-4 (E)[32] + coefficients

ESDIRK325L2SA-5-2-3 (M)[33] E-poly & CSTW SDPs

ESDIRK325L2SA-5-2-3 (E)[33] E-poly & CSTW SDPs

ESDIRK32I5L2SA-5-2-3 (M)[33] E-poly & CSTW SDPs

ESDIRK32I5L2SA-5-2-3 (E)[33] + coefficients
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Scheme Certification Method

ESDIRK436L2SA-6-3-4 (M)[33] E-poly & CSTW SDPs

SDIRK-2-1-2 (M) + coefficients

SDIRK-2-1-2 (E) + coefficients

SDIRK-5-3-4 (M)[30] E-poly & CSTW SDPs

TRBDF2-3-3-2 (M)[3] + coefficients

We formalize the results in the following Lemma.

Lemma 3.2.1. The RK schemes listed in Table 3.1 satisfy the tall-tree order

conditions, have nonnegative E-polynomials, and satisfy Theorem 2.3.3 or Theorem 2.3.6.

Therefore, the schemes are A-stable.

3.3 Schemes Failing to Satisfy the Tall-Tree Order Conditions.

Building on the idealized example from the previous subsection, we now focus on

certifying stability for RK schemes developed from numerical solutions of the order

conditions (i.e., using numerical optimization software). The schemes considered

here have coefficients that do not exactly satisfy the tall-tree order conditions (1.7).

Instead, the coefficients produce the right-hand side of (1.7) with a small residual. The

tall-tree conditions play a special role when certifying A-stability (which is a property

of the stability function W (z)) as they are exactly the conditions that ensure W (z) is

a pth order approximation to ez. Failing to satisfy the tall-tree order conditions leads

to two complications: the E-polynomial no longer satisfies (2.9) but instead includes

low-degree monomials with small coefficients; additionally, the matrix X, used in the

CSTW conditions, no longer admits exact zero eigenvalues, but rather small nonzero

ones.

We test schemes from two sources:
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• Diagonally implicit Runge-Kutta schemes with weak stage order [9] (cf. [7,

8]). These schemes were developed to alleviate the effects of order reduction

on stiff problems, primarily arising from spatial discretizations of linear partial

differential equations. The schemes are denoted as WSO DIRK(s,p,q), where

s, p, and q denote the number of stages, classical order, and weak stage order,

respectively.

• (Very high order) Diagonally implicit Runge-Kutta schemes with additional

practical properties, developed in [2].

It is worth noting that while both [2, 9] provide strong numerical evidence for A-

stability (e.g., a solution with small residual was provided for the CSTW LMI in [2])

neither work provides a rigorous certificate in the form of an exact solution to one of

the LMI’s.

We adopt two strategies for testing A-stability, outlined as follows:

Strategy 1

The Butcher coefficients (A, b) are reported as decimal expansions, typically to 16

digits of accuracy (e.g., the accuracy of double-precision floating-point arithmetic

from which they were obtained). Treating the coefficients as rational values, we

test for the non-negativity of the associated E-polynomial, which also has rational

coefficients. This strategy determines whether the dynamics (1.2) are A-stable despite

the coefficients not exactly satisfying the tall-tree order conditions.

In contrast to the E-polynomial approach, challenges arise when using the

CSTW approach to obtain a rigorous certificate of A-stability. The modified CSTW

conditions depend on the exact satisfaction of the tall-tree order conditions. However,

in cases where the Butcher coefficients approximate these conditions with a small

residual, the null vectors of X are no longer applicable constraints in the SDP,

and the original CSTW conditions must be used. The feasible set of the CSTW
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conditions may then take the form of a tubular domain of a low-dimensional set,

thereby introducing computational challenges to the numerical solution.

Strategy 2

To overcome the challenges in Strategy 1 due to approximations in the tall-tree order

conditions, we assess the A-stability of perturbed schemes (Ã, b̃) that simultaneously:

• Have coefficients in Q, satisfy the tall-tree order conditions (1.7) in exact

arithmetic, and in the case where A is singular satisfy bTMpr = 0;

• Are perturbations of the reported scheme (A, b) in the literature, satisfying an

error bound

|bi − b̃i| < ϵb and |aij − ãij| < ϵA for i, j = 1, . . . , s . (3.4)

• Satisfy the pth non-tall tree order with residuals of size O(ϵb) + O(ϵA) + O(ϵ)

where ϵ is the residuals of the unperturbed scheme (A, b).

The general approach to creating the scheme (Ã, b̃) involves initializing the

vector b̃ with symbolic free variables and then solving the conditions you would like

to enforce exactly, such as the tall-tree order conditions. Structural components must

also be considered when perturbing the scheme (A, b). For example, SDIRKs must

preserve the same value along the diagonal of Ã, stiffly accurate schemes must ensure

that b̃
T
is the last row of Ã, and zero entries must remain zero.

Since the perturbed schemes, (Ã, b̃), satisfy the tall-tree order conditions, their

E-polynomials satisfy (2.9) and the associated X matrix in the CSTW approach

admits null vectors (in exact arithmetic) characterized by Theorem 2.3.3. Thus, both

the E-polynomial and CSTW approaches provide pathways for certifying A-stability

for (Ã, b̃).
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Several schemes that fail to achieve rigorous certificates of A-stability after

Strategy 1 are shown to be (ϵA, ϵb)-close to schemes that attain rigorous A-stability

certificates by Strategy 2.

3.3.1 Certification of A-stability via Strategy 1

Here, we verify A-stability of three schemes using Strategy 1. Since the schemes do

not satisfy the order conditions exactly, the E-polynomial (α = π
2
) has the form:

E(y) = y2yTF (η)y, with F (η) = P +
d∑

j=1

ηjN j ,

where P and N j are as in § 2.1.1. The details for each scheme are as follows:

1. WSO DIRK(12,5,4) developed in [9]: A symbolic computation of E(y) yields a

diagonal matrix P , containing the coefficients of E(y). Since P ⪰ 0, it follows

that F (η) ⪰ 0 trivially when η = 0. Consequently, no SDP is required, as the

LMI is immediately satisfied.

2. WSO DIRK(7,4,4), also developed in [9]: A symbolic computation of E(y) =

y2yTPy, yields a diagonal matrix P ∈ Q7×7 with two negative coefficients

p6 < 0 , p8 < 0 .

Since F (0) does not satisfy the LMI, we seek solutions to the LMI (which has

dimension d = 15) via an SDP. The E-polynomial SDP identifies a candidate

feasible solution η∗, which for computational simplicity, we round to η̄, resulting

in the matrix:

F (η̄) = P − 108420N 10 + 20N 12 − 3420N 13 − 30N 15 = LDLT ,

with L,D ∈ Q7×7 and D ≻ 0.
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3. DIRK(13,8)[1]A[(14,6)A] developed in [2]: Similar to the previous case,

symbolic computation of the E-polynomial yields P ∈ Q13×13 with two negative

coefficients

p14 < 0 , p22 < 0 ,

requiring an SDP to find a potential sum of squares representation for E(y).

The E-polynomial LMI has dimension d = 66, and the corresponding SDP

identifies a feasible solution η∗, which upon rounding yields η̄ (reported in

Appendix A.1.2), resulting in the matrix F (η̄) = LDLT , where the diagonal

matrix D ≻ 0.

Table 3.2 contains RK schemes from [9] and [2], as well as schemes from the

SUNDIALS library that fail to satisfy the tall-tree conditions. They were certified

A-stable with Strategy 1.

Table 3.2 A-stable Schemes that Approximate the Tall-Tree Conditions and the
Method of Certification

Scheme Certification Method

ARK437L2SA-DIRK-7-3-4 (M)[35] E-poly SDP

ARK548L2SA-ESDIRK-8-4-5 (M)[33] + coefficients

ARK548L2SAb-DIRK-8-4-5 (M)[35] + coefficients

ARK548L2SAb-DIRK-8-4-5 (E)[35] + coefficients

Billington-3-3-2 (M)[5] + coefficients

Cash-5-2-4 (M)[12] + coefficients

Cash-5-3-4 (M)[12] + coefficients

Cash-5-3-4 (E)[12] + coefficients

ESDIRK324L2SA-4-2-3 (M)[34] + coefficients

ESDIRK324L2SA-4-2-3 (E)[34] + coefficients
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Scheme Certification Method

ESDIRK437L2SA-7-3-4 (M)[34] E-poly SDP

Kvaerno-4-2-3 (E)[36] + coefficients

Kvaerno-5-3-4 (M)[36] + coefficients

Kvaerno-5-3-4 (E)[36] + coefficients

Kvaerno-7-4-5 (M)[36] + coefficients

Kvaerno-7-4-5 (E)[36] + coefficients

WSO DIRK (7,4,4)[9] E-poly SDP

WSO DIRK(12,5,4)[9] + coefficients

DIRK(13,8)[1]A[(14,6)A][2] E-poly SDP

The complete set of coefficients for η̄,L,D, as well as generating Matlab code,

can be found in the supplemental material.

The results are formalized with the following Lemma.

Lemma 3.3.1. The E-polynomials for the schemes listed in Table 3.2 are non-

negative, and therefore, the schemes are A-stable.

3.3.2 Certification of A-stability via Strategy 2

We now apply Strategy 2 to certify A-stability for schemes where Strategy 1 fails due

to the E-polynomial for (A, b) being negative near the origin or as |y| → ∞.

Throughout, tildes denote quantities for the perturbed scheme (Ã, b̃), e.g., P̃

is the matrix containing the coefficients of the E-polynomial Ẽ(y).

1. DIRK(6,6)[1]A[(7,5)A] developed in [2]: The original scheme’s E-polynomial,

E(y) = y2yTPy, possesses three negative coefficients in P

p0 < 0, p2 < 0, p4 < 0 .
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Given that p0 < 0, E(y) is negative for values of y near the origin, indicating

that the scheme is not A-stable. This inability to achieve A-stability directly

follows from the failure to satisfy the tall-tree order conditions — which, if

satisfied, would ensure p0 = p2 = p4 = 0.

We introduce the perturbed scheme

Ã =



33128226
109158329

-254432096
909477001

51289103
102571593

33289838
118645151

- 825218320
1881654059

130993323
602959172

- 13583292
200438515

156154430
158643099

- 65409371
245235917

81765600
330141853

16354062
130133299

-247816720
248961507

169383005
222482121

- 49241043
234166886

79900588
92184791

-34719176
94331171

-155737141
155748342

42945649
80312134

- 50573402
289227347

678237381
1102812170

31879369
45767530


,

where the coefficient vector b̃ ∈ Q6 are chosen to exactly satisfy the tall-tree

conditions (1.7) with p = 6. The pair (Ã, b̃) satisfy the error bound (3.4) with

ϵA = 5 · 10−17, and ϵb = 6 · 10−15.

A-stability for the perturbed scheme is certified via two approaches:

• The E-polynomial Ẽ(y) = y8yT P̃ y ≥ 0 follows immediately since P̃ ∈

Q3×3 satisfies P̃ ⪰ 0.

• The modified CSTW approach (P3) yields an LMI in 3 variables. The

numerical solution produces a solution pair:

X̃
∗
= L̃XD̃XL̃

T

X and R̃
∗
= L̃RD̃RL̃

T

R ,

with D̃X ⪰ 0 (D̃X has 4 zero eigenvalues by Theorem 2.3.3), and D̃R ⪰ 0.

2. SDIRK(9,6)[1]SAL[(9,5)A] developed in [2]: Similar to the previous example,

this scheme is not A-stable as the E-polynomial is negative near the origin.
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This is reflected in the matrix P ∈ Q9×9 having negative coefficients

p0 < 0, p2 < 0, p4 < 0 ,

a consequence of failing to satisfy the tall-tree order conditions. A perturbed

scheme (Ã, b̃), defined in Appendix A.1.3, satisfies the error bound (3.4) with

ϵA = ϵb = 8 · 10−15.

Similar to DIRK(6,6), A-stability for the perturbed scheme (Ã, b̃) is certified

through two approaches:

• The E-polynomial Ẽ(y) = y8yT P̃ y ≥ 0, with P̃ ∈ Q6×6, is immediately

non-negative since P̃ ⪰ 0, avoiding the need for solving an SDP.

• The modified CSTW approach, which utilizes an LMI with 15-degree-of-

freedom, is solved via SDP. The numerical solver identifies optimal pairs

(R̃
∗
, X̃

∗
), yielding exact LDL factorizations over Q, with all matrices D

being positive semidefinite.

3. WSO DIRK(12,5,5) developed in [9]: Similar to the previous two examples,

this scheme also fails to be A-stable due to the lowest order terms in the E-

polynomial having negative coefficients

p0 < 0, p2 < 0,

implying that E(y) < 0 for small y. A perturbed scheme (Ã, b̃) is defined in

Appendix A.1.3 and satisfies (3.4) with ϵA = ϵb = 9 · 10−15.

For (Ã, b̃), the E-polynomial has the form Ẽ(y) = y6yT F̃ (η)y, where P̃ ∈

Q10×10 is not positive definite. The associated LMI for the non-negativity of

F̃ contains dimN10 = 36 degrees of freedom. The Appendix A.1.3 presents

a solution η̄ that yields F̃ (η̄) = L̃D̃L̃
T
, with D̃ ⪰ 0, thereby certifying A-

stability.
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Table 3.3 contains schemes that satisfy the tall-tree conditions and are ϵ-close

(as described in (3.4)) to RK schemes from [9] and [2], as well as schemes from the

SUNDIALS library. They were certified A-stable with Strategy 2.

Table 3.3 A-stable ϵ-Schemes, the Order of Perturbation, and the Method of
Certification

ϵ-Scheme ϵ Certification Method

ARK324L2SA-DIRK-4-2-3 (M)[32] 9 · 10−27 + coefficients

ARK324L2SA-DIRK-4-2-3 (E)[32] 2 · 10−26 + coefficients

ARK437L2SA-DIRK-7-3-4 (M)[35] 6 · 10−25 E-poly & CSTW SDPs

ARK548L2SA-ESDIRK-8-4-5 (E)[33] 5 · 10−25 + coefficients

Cash-5-2-4 (E)[12] 4 · 10−13 + coefficients

ESDIRK436L2SA-6-3-4 (E)[33] 5 · 10−26 E-poly & CSTW SDPs

ESDIRK437L2SA-7-3-4 (E)[34] 3 · 10−24 E-poly & CSTW SDPs

ESDIRK547L2SA-7-4-5 (M)[33] 3 · 10−25 E-poly & CSTW SDPs

ESDIRK547L2SA-7-4-5 (E)[33] 2 · 10−25 + coefficients

ESDIRK547L2SA2-7-4-5 (M)[34] 1 · 10−24 E-poly & CSTW SDPs

ESDIRK547L2SA2-7-4-5 (E)[34] 7 · 10−25 E-poly & CSTW SDPs

Kvaerno-4-2-3 (M)[36] 3 · 10−15 + coefficients

QESDIRK436L2SA-6-3-4 (M)[33] 2 · 10−25 E-poly & CSTW SDPs

QESDIRK436L2SA-6-3-4 (M)[33] 9 · 10−24 E-poly & CSTW SDPs

ESDIRK43I6L2SA-6-3-4 (M)[33] 2 · 10−25 E-poly SDP

DIRK(6,6)[1]A[(7,5)A][2] 6 · 10−15 + coefficients & CSTW SDP

SDIRK(9,6)[1]SAL[(9,5)A][2] 8 · 10−15 + coefficients & CSTW SDP

WSO DIRK(12,5,5)[9] 9 · 10−15 E-poly SDP

We formalize the result in the following Lemma.

83



Lemma 3.3.2. There exist perturbed schemes (Ã, b̃) for all RK schemes listed in

Table 3.3 which satisfy the error bound (3.4) with ϵA, ϵb = O(10−15). These schemes

simultaneously satisfy the tall-tree conditions and are A-stable.

3.4 Certifying A(α)-Stability.

We now shift attention and establish rigorous bounds on α, for A(α)-stability of two

schemes that are not A-stable.

First note that E(y2; β), where β := cos(α), is a bivariate polynomial in y, β

with rational coefficients. An initial rational value of β is fixed, and the associated

E-polynomial SDP (P2) is solved to determine whether the associated feasible set is

nonempty. The value of β is incrementally decreased until (P2) indicates that the

feasible set is empty. The last β value before the feasible set is reported non-empty

is β∗. The corresponding α∗ = cos−1(β∗) is the lower bound for the maximal angle α

at which the scheme is confirmed to be A(α)-stable. An exact rational certificate in

the form of an LDL factorization is then reported.

The result is formalized as follows:

Lemma 3.4.1. The schemes (3.5) and (3.8) are A(α)-stable for some maximum

angle α that is bounded below by the angle α∗, where α∗ = cos−1 β∗ and β∗ is defined

in (3.7) and (3.9) respectively.

Example 3.4.1 (The IRK(4,4) Scheme of Ramos and Vigo). The following scheme,

developed by Ramos and Vigo, is a 4-stage, 4th order fully implicit method based on

a BDF-type Chebyshev approximation [41]:

A =


22−

√
2

96
5−8

√
2

48
22−7

√
2

96
−1
16

4+3
√
2

24
1
6

4−3
√
2

24
0

22+7
√
2

96
5+8

√
2

48
22+

√
2

96
−1
16

1
3

1
3

1
3

0

 , b =


1
3
1
3
1
3

0

 . (3.5)
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By defining β := cos(α), the generalized E-polynomial (2.1) becomes the following

bivariate polynomial in y and β:

E(y2; β) =y2
(
y14 + 22βy12 + (272β2 − 16)y10 + (1920β3 + 96β)y8

+ (6144β4 + 3840β2)y6 + (36864β3 + 10752β)y4 + 73728βy2 + 294912β
)
.

(3.6)

When β = 0 (corresponding to α = π
2
), the E-polynomial

E
(
y;

π

2

)
= y6 (y2 − 16) ,

is negative for |y| < 4, and the scheme is not A-stable.

Instead, we determine a lower bound for the maximal value of α for which

E(y2; β) ≥ 0. The last β value before reaching an empty feasible set is the bound

β∗ =
19699132

4466212691
(α∗ ≈ 89.74728o) . (3.7)

Solving Problem (P2) with the value β∗ (details provided in Appendix A.2.1)

produces the positive certificate

E(y2; β∗) = y2yTF (η̄)y ≥ 0

where F (η̄) = LDLT , and the diagonal matrix D ≻ 0, certifying the scheme is

A(α)-stable for maximal angle α ≥ α∗.
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Example 3.4.2 (The ESDIRK(8,6) Scheme of Skvortsov). We examine the 8-stage,

6th order ESDIRK scheme of Skvortsov [45] characterized by its Butcher matrix:

A =



0

1
6

1
6

11
96

- 1
32

1
6

1
12

-1
4

1
2

1
6

- 2015
15072

-6987
5024

3271
1884

175
471

1
6

-326531
573678

-114988
31871

1208156
286839

132950
286839

68
203

1
6

- 331717945
2106545616

-480525599
416107776

2240951089
1404363744

394951619
2808727488

- 5160553
26834976

35815
352512

1
6

16264655341
73026914688

9786099235
14425069568

-34306812733
48684609792

-15985588007
97369219584

37652437
930279168

- 340747
12220416

1
26

1
6

7
90

0 0 0 16
45

- 4
45

2
15

16
45

1
6



(3.8)

The scheme is stiffly accurate, with bT being the last row of A.

The generalized E-polynomial is

E(y, β) = y2
15∑
j=0

q2j(β) y
2j where β = cos(α) ,
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with polynomial coefficients of β:

q30(β) = 1

q28(β) = 96β

q26(β) = 4032β2 + 61415271
616225

q24(β) = 96768β3 + 73235232
3925

β

q22(β) = 1451520β4 + 3567255552
3925

β2 − 91554624
3925

q20(β) = 13934592β5 + 14120096256
785

β3 + 9673437312
3925

β

q18(β) = 83607552β6 + 158718486528
785

β4 + 70172863488
785

β2 − 3175034112
3925

q16(β) = 286654464β7 + 1149206704128
785

β5 + 985309774848
785

β3 + 136916137728
785

β

q14(β) = 429981696β8 + 5111514906624
785

β6 + 8045011279872
785

β4 + 694870576128
157

β2 − 4152010752
785

q12(β) =
10416951558144

785
β7 + 41311620145152

785
β5 + 34328744275968

785
β3 + 5012232804864

785
β

q10(β) =
650132324352

5
β6 + 232190115840β4 + 121899810816β2

q8(β) =
3064909529088

5
β5 + 835884417024β3 + 121899810816β

q6(β) = 2298682146816β4 + 1671768834048β2

q4(β) = 6269133127680β3 + 1253826625536β

q2(β) = 9403699691520β2

q0(β) = 5642219814912β .

Similar to the scheme of Ramos and Vigo, this scheme fails to be A-stable.

When β = 0 (α = π
2
), the E-polynomial simplifies to:

E
(
y;

π

2

)
= y8

(
y8 + 61415271

616225
y6 − 91554624

3925
y4 − 3175034112

3925
y2 − 4152010752

785

)
.

Since the lowest order monomial term is negative, e.g., −4152010752/785 < 0, the

polynomial E(y; π/2) is negative for values of y near the origin.

After iterating through values of β, we establish the bound:

β∗ =
2218472195

100000000000
(α∗ ≈ 88.7288o) . (3.9)

This value is consistent with the α bound reported in [45] and is now accompanied

by a rigorous certificate.
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The E-polynomial produced by β∗ can be written as

E(y2; β∗) = y2yTF (η)y , with F (η) = P +
105∑
j=1

ηjN j ,

where P ∈ Q16×16 is a diagonal matrix containing three negative coefficients and

d = 105 is the dimension (2.6). Numerically solving Problem (P2) yields a solution

η∗, which again we round for simplicity to a nearby rational value η̄ presented in

Appendix A.2.2. Substituting η̄ into the LMI and factorizing yields

E(y2; β∗) = y2yTLDLTy ≥ 0 , (3.10)

where D,L ∈ Q16×16 with D being diagonal with non-negative entries.

Remark. Even though η∗ has been rounded to a nearby rational value η̄ with fewer

digits, which we report in the Appendix, the matrix and D in (3.10) contains integer

denominators with up to 548 digits.

Data Availability

Certificates of stability and the supporting numerical code are available online from

https://github.com/ajuhl/Algebraic-Conditions-for-Stability-Certified-via-SDP.
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CHAPTER 4

CONCLUSION

Contributions to the stability theory and practical application in Runge-Kutta

methods are presented in this dissertation. Two key theoretical enhancements

are provided. First, the CSTW conditions were modified to account for the

Runge-Kutta order conditions in Theorem 2.3.3 and the singular coefficient matrix

A in Theorem 2.3.6. These modifications address practical limitations introduced

by zero eigenvalues of CSTW conditions matrix X, enabling rigorous certification

of stability through computational approaches. Second, new algebraic conditions for

A-stability were introduced, derived from a novel class polynomials orthogonal with

respect to a linear functional. This development leads to a representation of W (z)

as a continued fraction approximation to the exponential function and identifies the

minimal variables in (A, b) responsible for A-stability.

Incorporating the sum-of-squares representation of the E-polynomial and

the modified CSTW conditions into linear matrix inequalities enabled rigorous

certification of stability via semidefinite programming. This approach has practical

applications, particularly in validating and constructing stable time-stepping schemes

for potential implementation in industrial software.

Looking ahead, the approaches and perspectives developed in this dissertation

could be useful in certifying stability in other time-integration schemes. For example,

Dahlquist’s algebraic conditions for G-stability of Linear Multistep Methods were

explored in Section 2.6. Semidefinite programming can be applied in other settings

where algebraic conditions for stability are known, such as the algebraic stability of

general linear methods. Alternatively, there are settings, such as A-stability in general
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linear methods, where, to the best of our knowledge, algebraic conditions for stability

have yet to be formulated, providing opportunities for future work.
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APPENDIX A

ADDITIONAL MATERIALS FOR RK METHODS

A.1 Supplemental Details for A-stable Schemes

Here, we present coefficients verifying A-stability.

A.1.1 SDIRK(5,4)

The HW-transform was used to verify A-stability of the SDIRK(5,4) scheme in

Example 2.5.2. The following are the full LDL factorizations:

LR =



1 0 0 0

0 1 0 0

0 −1749629661547257
1466793482401430

1 0

0 14609948848175
293358696480286

− 166559936112545213
1322607221174555535

1


,

DR =



1 0 0 0

0 146679348240143
561186228540

0 0

0 0 112421613799837220475
374154375230100448976

0

0 0 0 1131787522590904
15560084954994771


,

LY =



1 0 0 0

0 1 0 0

0 −112954617902918094189
96686712121760382200

1 0

0 4850830510515448919
96686712121760382200

829170978394227987318402689
22937559852461082330738635621

1


,

DY =



0 0 0 0

0 16670122779613859
75361505118144

0 0

0 0 1349268226615357784161096213
32911228613810865201210880000

0

0 0 0 827873853161678860082674738
530262413059835609175310811709


.
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A.1.2 DIRK (13,8)[1]A[(14,6)]A

The scheme has E-polynomial E(y) = y2yTF (η̄)y where

F (η̄) = P +
66∑
j=1

ηjN j ⪰ 0 , (A.1)

with coefficients of η̄ given by:

η1 = −8470700 η23 = −2465700 η45 = 16400

η2 = 0 η24 = 665333207306300 η46 = 4362777200

η3 = −3700 η25 = −639200 η47 = 0

η4 = −17219137300 η26 = −27185350128356800 η48 = 2843900

η5 = −2500 η27 = −58914800 η49 = −1564541946300

η6 = 1552662793500 η28 = 540480365078400 η50 = −4500

η7 = 1100 η29 = −3060809665186300 η51 = 338036200

η8 = −291771102600 η30 = 933800 η52 = 26403742783600

η9 = 3000 η31 = −101765843690800 η53 = −61100

η10 = 5801136200 η32 = 0 η54 = −20078540400

η11 = −10101540029400 η33 = −16794400 η55 = 0

η12 = −949900 η34 = 0 η56 = −256500

η13 = 45726880755500 η35 = 3600 η57 = 294637386500

η14 = 244100 η36 = 19168235300 η58 = 600

η15 = −2222445564500 η37 = 0 η59 = −63663500

η16 = −3000 η38 = −14572100 η60 = −1286411886200

η17 = −1556643190544700 η39 = 0 η61 = 200

η18 = 1744900 η40 = 18000 η62 = 978576800

η19 = 292506767260200 η41 = 16836266900 η63 = 0

η20 = −1976300 η42 = 0 η64 = −5871439100

η21 = −5815692149200 η43 = −3637800 η65 = 0

η22 = −13689040894555700 η44 = −5738476103900 η66 = 1269200
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A.1.3 The perturbed schemes from § 3.3.2

In this appendix, we report the coefficients of the perturbed schemes (Ã, b̃) for which the lemmas in § 3.3.2 were established.

SDIRK(9,6)[1]SAL[(9,5)A]: The perturbed scheme coefficients are

Ã =



87518253
401224696

- 109147862
1208036163

87518253
401224696

70447391
407323275

- 60128027
170018875

87518253
401224696

258011928
503929669

32776647
1131632696

- 13636148
946751265

87518253
401224696

2139251
459753907

- 18361775
242765601

13889605
63926963

- 17789601
861400843

87518253
401224696

48479320
54097599

222681723
1598951647

- 6683180
35754039

14834219
220428796

- 67840169
193336343

87518253
401224696

67080581
121311880

-401007739
912707597

169517869
507988720

- 10552416
310889555

- 54396621
357996284

12212839
571158716

87518253
401224696

176730716
279920507

185311713
255696311

-40314204
93283073

92464054
154464243

-281536253
397040384

-15560941
32151589

170501635
450595763

87518253
401224696

0 b̃2 b̃3 b̃4 b̃5 b̃6 b̃7 b̃8
87518253
401224696


where b̃j (3 ≤ j ≤ 8) is provided by solving for the tall tree conditions (1.7) (for p = 6), leaving a free variable b̃2 which is

selected to minimize the ℓ2 difference b− b̃.

9
3



WSO DIRK(12,5,5) The perturbed scheme coefficients are

Ã =



10747729
261281103

39255733
244819013

19264472
289086473

- 63980223
186836899

70601555
81544818

48699329
492234648

757656751
80284215

-5452955845
500830197

261637874
98954371

86994158
471217857

-290059410
846787661

142027951
274596637

63720572
69536691

8719292
166871841

230505997
1977768146

-96530823
46089059

278501442
108044467

186959114
327745145

31757051
261668409

- 65608216
138056009

50822223
96152122

110645970
326232259

- 52198210
186593643

48069176
46243347

36028733
602611029

- 42230947
197997752

11234921
134641567

339062341
1406835502

432515173
73254485

1037694284
327224921

-1241126819
100347987

- 76295713
152911958

155195477
71832145

268359096
140054533

309243168
155550259

266682747
1194765721

131193951
284188360

- 74904386
387416395

- 136922649
1129220324

46345993
695639065

61016892
143403385

74333617
94618599

157610940
188314681

31846751
198449271

305893355
845914548

- 82024283
115728139

91013047
140744863

63214225
132835881

-178521351
694495505

96297873
85736426

97069417
174996915

25465272
79767817

11384038
31516593

232759857
396742103

83426711
354434193

100055236
234642175

213090564
161088509

96986289
228435568

-174464145
68947184

- 67238506
859605737

2068579853
1961737581

170367931
366730407

198092237
172991608

312091183
725567705

159786147
106558690

9565123
660600961

5486027
454369097

9757227
18810635

62278071
555407431

- 1694527
341651848

-133046372
98916929

323864293
952870301

261379716
320347663

b̃8 b̃9 b̃10 b̃11 b̃12


The coefficients b̃j ∈ Q (8 ≤ j ≤ 12) are chosen to satisfy the order conditions exactly (1.7) for p = 5.
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The E-polynomial E(y) = y2yTF (η)y = LDLT ≥ 0 where η · 10−3 has
coefficients:

η1 = −6922561820555 η13 = −550 η25 = 692417

η2 = −6159041 η14 = −1017731680875 η26 = −2928211

η3 = 401988060958 η15 = −1687736 η27 = −2

η4 = 209390 η16 = 8353405937 η28 = −5711

η5 = −3199255341 η17 = 14765 η29 = 3

η6 = −4095 η18 = −10433650 η30 = 143788

η7 = 3934894 η19 = −40414145977 η31 = −10

η8 = −6775128853059 η20 = −57578 η32 = −40848

η9 = −4571676 η21 = 139245638 η33 = 0

η10 = 142233029108 η22 = 147 η34 = 859

η11 = 198557 η23 = −553788073 η35 = 0

η12 = −490076976 η24 = −636 η36 = −3

A.2 Supplemental Details for A(α)-stable Schemes

Here, we present numerical coefficients verifying A(α)-stability.

A.2.1 The IRK(4,4) scheme of Ramos and Vigo

The scheme has E-polynomial E(y2, β∗) = y2yTF (η̄)y where

F (η̄) = P +
21∑
j=1

ηjN j ⪰ 0 , (A.2)

with coefficients of η̄ given by: η2 = η4 = η6 = η8 = η10 = η13 = η15 = η17 = η20 = 0

η1 = −343818785
387257

η7 = −1002782638
963823

η12 = −140623753
190944

η18 =
1407711
121108

η3 =
44352332
270307

η9 =
26195675
165379

η14 =
19205029
233487

η19 = −23169437
338293

η5 = −7044484
1620291

η11 = −526928
268115

η16 = −55546025
187031

η21 = −2727674
410745

A.2.2 ESDIRK(8,6) Skvortsov scheme in §3.4.2

We present coefficients for the scheme in subsection 3.4.2.
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Solution coefficients η̄ for non-negativity of E(y, β∗).

η1 = −544417542815
1496

η28 = −12225979229715
323

η55 = −3023415560208
431

η82 =
2813400132854

117

η3 =
29842486335

2687
η30 =

433008073700
13

η57 =
667361119609

1153
η84 = −958434399311

491

η5 = −49740795
931

η32 = −8424611000191
98

η59 = −15606394145
932

η85 =
11434535023

204

η7 = −28918182864
1151

η34 = −25273367886229
395

η61 =
70764854

907
η87 = −220302170

863

η9 =
699763151

1893
η36 =

9262966388511
292

η63 = −6003091166555
1293

η89 =
9715693027109

1173

η11 = −611431235
606

η38 = −11180085898009
131

η65 =
145331883768

577
η91 = −261194717165

607

η13 =
4436247

898
η40 = −10519983461815

799
η67 = −2769061905

757
η93 =

5649757805
927

η15 = −20553023
989

η42 = −13505692581791
106

η69 =
2674611184492

349
η95 = −5175464369937

284

η17 = −184449
1142

η44 =
13635317782915

474
η70 = −435375081998

497
η96 =

1361933288513
864

η19 = −5040480296101
64

η46 = −22015444860842
179

η72 =
28638357917

941
η98 = −161915093932

3421

η21 = −20253725215145
857

η48 = −23644956443647
379

η74 = −18964563
119

η100 =
405541643

1810

η23 =
240883590679

566
η50 = −2159073125275

1597
η76 = −883878192398

307
η102 = −4892528411838

1501

η25 =
4696001199805

754
η51 =

58606387358
645

η78 =
38657713081

326
η103 =

127826367589
733

η27 = −26257051251763
262

η53 = −2209952042
1439

η80 = −1721374819
1269

η105 = −1622486899
642

All ηj = 0 for any j = 1, . . . , 105 not defined above.
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A.3 ldls() Definition

1 function [L,D] = ldls(M)
2 %Symbolic LDL factorization
3

4 % Initialize L and D
5 l = length(M);
6 L = sym(eye(l));
7 D = sym(zeros(l));
8

9 % LDL^T decomposition
10 for j = 1:l
11 % Diagonal D entries
12 sumD = 0;
13 for k = 1:j-1
14 sumD = sumD + L(j,k)^2*D(k,k);
15 end
16 D(j,j) = M(j,j) - sumD;
17

18 % Off -diagonal L entries
19 for i = j+1:l
20 sumL = 0;
21 for k = 1:j-1
22 sumL = sumL + L(i,k)*L(j,k)*D(k,k);
23 end
24 if(D(j,j)~=0)
25 L(i,j) = (M(i,j) - sumL)/D(j,j);
26 end
27 end
28 end
29 end
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