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ABSTRACT

TIME SERIES FORECASTING WITH APPLICATIONS TO FINANCE

by
Viswapriya Misra

In finance, many phenomena are modeled as time series. This thesis investigates

time series forecasting problems in finance, precisely the stock price prediction

problem. We employ and compare traditional statistical algorithms like MA, ARIMA,

and ARMA-GARCH with newly developed deep learning-based algorithms such

RNNs, LSTMs, GRUs, TCNs, and bidirectional LSTMs and GRUs for predicting

stock prices. We perform a comprehensive study and present all the experimental

results on different datasets. We find that ARIMA and GRU perform better for

single-step stock price prediction than other deep learning architectures. Adding

market and economic indicators do not improve the performance of the deep

learning models. In the case of multistep forecasting, ARIMA outperforms multistep

GRU/TCN and Seq2Seq GRU/TCN. Also, transfer learning helps to improve the

performance of the deep learning models.
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CHAPTER 1

INTRODUCTION

Stocks are one of the most important asset classes for any investor. There are several

advantages while investing in stocks. Historically seen, stocks provide liquidity and

a good return over time. The 5 year Nasdaq Composite return is 171.64 percent[1].

Also, publicly traded companies are by regulation mandated to disclose their financial

status; this provides a lot of information for investing. Share markets are also

regulated, which prevents different kinds of risks in financial transactions.

Since stocks are such an important asset class due to their advantages, it is

essential to know when to buy and sell the stock to make a profit. To do so, one needs

to predict the price of the stock accurately. The methods to predict the stock price are

mainly divided into two categories, fundamental analysis and technical analysis[2].

There is a widely held belief in finance that the fundamental value of the

share is nothing but the present value of future benefits. All demand and supply

of shares are supposed to originate from the expected future benefits from the stocks.

If the prevailing price of the share is below the fundamental value, the shareholder

considers it a good buy. If the current price is greater than the fundamental value, the

shareholder would like to sell the stock. The process of dealing with the estimation

of the fundamental value is known as fundamental analysis[3].

Another type of analysis is called technical analysis. Technical analysts believe

that the current stock price contains all the information. The technical analysis

avoids human subjectivity and emotion and relies upon various graphs, charts, and

mathematical methods like linear regression, ARIMA, GARCH, etc. Many factors

influence stock price like historical prices, market trends, global economy, industry

trends, etc. These factors can be used to predict the price of the stock. If only the
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one-time price is used to predict the future price, then it is a univariate time series

prediction problem. If more than one factor is used to indicate the price, then it is a

multivariate time series problem.

This study provides an analysis of different time series prediction methods and

compares the performances. With the recent advancement in deep learning, it has

become very promising to use deep learning methods for time series prediction.

Therefore, a comparison of traditional statistical methods with the current deep

learning methods is studied. The performance of the deep learning models has been

compared with the performance of Simple Moving Average, Exponential Moving

Average, ARIMA, and ARMA GARCH for stock price prediction. The deep

learning models considered for the study include Recurrent Neural Networks(RNN)

and its variants like LSTM, GRU, Bi-GRU, and Bi-LSTM. Convolution Neural

Networks(CNN) has also been used to model the data as suggested by some

previous research work [4], and the performance has been compared. Also, a

variant of the CNN model explicitly used for time series modeling called Temporal

Convolutional Networks or (TCN) has been employed for predictions. Moreover,

various combinations above models have also been used, and the performances of

these models are discussed.

The study includes univariate single-step forecasting, multivariate single-step

forecasting, univariate multi-step forecasting analysis, and analyzing the effect of

transfer learning for stock price prediction. Under each section of the study, there are

a few more minor research questions that we answer. We are studying the stock price

data of three companies, namely, Apple, Tesla, and Facebook, over six years from

2015 until 2020. The stock price is time-series data, and it follows some patterns.

Through our modeling techniques, we try to learn these patterns and see whether

or models can capture more signal than noise. We split the data in a 70:30 ratio

for training and testing. We aim to predict the stock’s closing price based on the

2



historical closing price for the univariate time series model; for multivariate time

series problems, open, high, close, volume, and market indices are considered.
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CHAPTER 2

LITERATURE REVIEW

Traditionally statistical time series models have been used frequently for stock price

prediction. The most popular time series forecasting method in finance is the ARIMA

model, which is generalized by Box and Jenkins[5]. ARIMA model stands for Auto-

Regressive Integrated Moving Average model. It includes both an Auto-Regressive

component and a Moving Average component with differencing. The main benefit of

using the ARIMA model is to transform a non-stationary series into a series without

seasonality or trend by applying finite differencing of data points.

The authors of [6] have looked into the critical limitations of MA models like

ARIMA, SARIMA, and ARIMAX. The major hurdles for these models are that they

are regression-based approaches, and hence they are seldom able to model data with

non-linear relationships between parameters. In addition to this, they require certain

statistical assumptions about the data to be held in order to have a meaningful insight,

for instance, the constant standard deviation in error terms.

An ARIMA model, when integrated with a Generalized Auto-regressive Conditional

Heteroskedasticity (GARCH) model, provides the benefit of relaxing the assumption

of a constant standard deviation in errors. While this limitation is overcome, the

optimization of a GARCH model and its parameters might be puzzling and tricky

[7]. Another type of model that can be used for stock price prediction is the ARMA

GRACH model. Garcia et al. [8] had used the ARMA GARCH model to effectively

predict the day ahead electric prices in Spain and California. In this study, both the

ARIMA model and ARMA GRACH model are used to predict the stock price.

New techniques in deep learning have come up to solve problems related to

sequential data. LSTM (Long Short-Term Memory), which is a particular case of the
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Recurrent Neural Network (RNN) method introduced by Hochreiter and Schmidhuber

[9], solves the vanishing gradient problem[10] of RNNs. LSTM architecture has proven

to be stable and robust for long-range modeling dependencies in various previous

studies [11,12].

Selvin et al. [4] applied three different neural networks like LSTM, RNN, and

CNN to predict NSE-India-listed conglomerates. The authors evaluated the proposed

methods using the sliding window approach. The results showed that CNN was able

to capture the dynamical change of data when compared to other models.

Siami-Niamini et al. [13] conducted a comparative study between LSTM and

ARIMA. The authors used historical monthly financial time series from Jan 1985 to

Aug 2018 from the Yahoo finance Web. The experiment results showed that LSTM,

compared to the ARIMA model, facilitated the best overall performance, confirmed

through RMSE values. Peter Yamak et al.[14] compared ARIMA, LSTM, and GRU

networks for bitcoin price prediction. They found that ARIMA outperforms the deep

learning models, and GRU performs better than LSTM.

In the above papers of Siami-Niamini et al. and Selvin et al., a small collection

of models are tested on different datasets. In our study, we aim to test a wide array

of models and compare their performance on three given datasets. It will help us

to know which model performs well and are best suited for the problem of stock

price prediction. We also compare hybrid models like CNN GRU and LSTM GRU.

Each of these hybrid models has advantages of its own due to the unique individual

characteristics.

Siami-Niamini et al. had implemented LSTM with a window size of one.

Whereas Chen et al. [15] had implemented LSTM on Chinese stocks with a window

size of 30. Window size is the length of past data the network uses as a feature to

forecast the next day’s price. We aim to compare the performance of our model with

different window sizes and try to see what impact window size has on the results.
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Sirignano et al. [16] reported a universal price formation mechanism in stock

markets. We use this knowledge to test whether a single model trained on multiple

datasets can outperform models trained for specific stocks. The aim is to pre-train

a single deep learning model on different datasets and fine-tune its parameters by

training on a specific stock before predicting the prices for that stock. This process

is called as transfer learning, and we try to implement transfer learning both in the

case of univariate price prediction and multivariate stock price prediction.

Jaydip Sen et al. [17] had implemented a multistep one-week forecast for the

Nifty 50 Index using CNN and LSTM. We do a similar study but on stock prices and

for 3 days, 5 days, and 7 days forecast horizon. The models considered for multistep

forecast comparison are ARIMA, GRU and Sequence to Sequence GRU model.

Shaojie Bai et al. [18] conclude that the usual association between recurrent

networks and sequence modelling should be revised and Convolutional Networks

should be considered as an obvious starting point for sequence modeling tasks.

Shumin Deng et al.[19] observed that TCNs significantly outperformed baseline

models like ARIMA, LSTM, and CNN on the stock trend prediction tasks. It achieves

much better performance than either traditional ML models, or deep neural networks

(such as LSTM and CNN), suggesting that TCN has a more obvious edge in sequence

modeling and classification problems. Hence, they employed TCN as their basic

prediction model in this paper.
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CHAPTER 3

METHODS

3.1 Background

The study tries to compare different models for stock price prediction and attempts

to find which model can best learn the data structure and make the most accurate

predictions. The best overall model is then used further for different use cases

like multi-step prediction and multivariate prediction on the same dataset. We

also perform transfer learning to test whether a model can learn from other stock

price movements and improve prediction accuracy when further fine-tuned on a given

stock. There are two traditional statistical methods used, namely - ARIMA and

ARMA GARCH model. We also use moving averages as a baseline for checking the

performance of a model. The deep learning models included in the study are RNN,

LSTM, GRU, Bi-LSTM, Bi-GRU, LSTM GRU, CNN, and CNN GRU.

The advantages of ARIMA are that it is simple to implement, does not require

any parameter tuning, and is quick to run. The benefits of RNN are that it requires no

pre-requisites like stationarity, and it can model non-linear functions. Also, statistical

models are probabilistic, whereas deep learning models try to capture the structure

in the data.

In deep learning models, RNNs are better suited for stock price prediction than

fully connected deep learning networks because, firstly, RNNs can take variable-length

input. Secondly, it can model long-range dependencies. Fully secured neural networks

have independent parameters, whereas, in RNNs, parameters are shared across time

steps that help in learning across time.

We also compare the usefulness of applying Temporal convolutional networks

(TCN). This framework employs casual convolutions and dilations.
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3.1.1 Moving Average

Moving averages are very commonly used technical indicators in financial trading.

There are many types of moving averages; the most common ones are the simple

moving average(SMA) and exponential moving average(EMA)[18].

A simple moving average of order n is the average of the past n values. Since

it is an average, it averages out noise in the data and captures the movement of the

time series without the fluctuations.The formula for SMA is as follows:

SMA =
A1 + A2 + .....An

n
(3.1)

where A1, A2, .....An are the asset prices for n period.

Short-term averages are more sensitive to price changes as compared to long-

term moving averages. Hence long-term SMA curves are smoother than short-term

SMA curves. The most common use case of SMA is to identify if an asset is in an

uptrend or downtrend.

The other type of moving average is the Exponential Moving Average(EMA).

In EMA, the maximum weight is given to the current asset price, and the weights

decrease exponentially as we move back in the time series. An exponential moving

average is more sensitive to recent price changes as it gives more weight to current

prices. Due to this, EMA follows the actual price trend more closely than SMA. The

formula for EMA is as follows:

EMAToday = (V alueToday∗(
Smoothing

1 +Days
))+(EMAY esterday∗(1−

Smoothing

1 +Days
)) (3.2)

According to Appel (2005)[19], the exponential moving average is better than

the simple moving average for identifying trends in a price series. For further details

on the simple moving average, see Vandewalle et al. (1999)[20].
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The study uses SMA and EMA as the baseline while comparing the performance

of various time series models. In the survey, SMA and EMA of order 1 and order 60

are used to compare. An order of 60 is used because specific deep learning models

use the past 60 day stock price as a feature to predict the next day’s stock price.

3.1.2 ARIMA Model

ARIMA stands for AutoRegressive Integrated Moving Average. The ARIMA model

is a generalization of the ARMA model that is suited to elucidate non-stationary

time-series. The main advantage of using the ARIMA model is that it transforms

a non-stationary series into a series without seasonality or trend by applying finite

differencing of data points[5].

A stationary time series has its statistical properties constant over time. If it

has no trend, its variance is around its mean and has a constant amplitude. Also, its

autocorrelations remain constant over time. Based on these assumptions, a stationary

time series could be considered a combination of signal and noise. The ARIMA

model after separating the signal from noise, outputs a single step-ahead to produce

forecasts.

An ARIMA model has three components, the Autoregression (AR) component,

the Moving Average (MA) component, and the Integrated(I) differencing component

[21].

Autoregression is a type of regression in which past lagged values determine

the current value. The order of the lag can be determined by looking into the plots

for autocorrelation or partial autocorrelation. The differencing component makes

the time series stationary, and the differenced values replace the actual values. The

Moving average (MA) part incorporates the dependency between an observation and

a residual error that is obtained from a moving average model applied to lagged

observations. The order of each of the three components is denoted by the terms p,
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d, and q. Here p is the number of lag observations required in the AR model, d is

the number of times the raw data needs to be differenced to make it stationary, and

q is the size of the moving average window.

The full model can be written as:

y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt. (3.3)

where y′ is the differenced series (it may have been differenced more than once).

The right side of the equation include the lagged values of y′ and the lagged errors.

In the study, the ARIMA model is implemented in Python with the help of the

stat model library and the auto ARIMA library. ARIMA is used for both single-step

forecast and multiple step forecast using the historical price as the only variable.

3.1.3 ARMA GARCH Model

The generalized autoregressive conditional heteroscedasticity (GARCH) was designed

to model the volatility of financial assets. The equation of the GARCH model has two

parts the conditional mean part and the conditional variance part. By representing

the conditional mean equation as an ARMA(Autoregressive Moving Average) process,

we can combine ARMA and GARCH to obtain an ARMA-GARCH model that can

be used to predict the stock price.

To clearly understand the ARMA-GARCH model, one must understand the

difference between unconditional mean and variance and conditional mean and

variance. The unconditional mean and variance are the mean and variance of the

time series distribution, which is constant over the time period considered.

In an ARMA-GARCH model, the prediction made is not the same as the current

estimates. Instead, they are higher or lower than the mean over a short period of time;

as the prediction horizon increases, the forecasts converge to long-term unconditional

values.
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The conditional mean equation of a GARCH model can be formulated in various

ways. In our study, we expect that the series follows an autoregressive moving average,

ARMA, model developed by Box and Jenkins. The GARCH model was introduced

by Bollerslev[22], which is a generalization of the ARCH model, developed initially

by Engle[23]. The ARCH model allows for many lags in the conditional variance, and

the GARCH model extends it by also allowing for lags in the error terms.

The GARCH error parameter measures the reaction of the conditional volatility

to market shocks. When the parameter is significant, the volatility is very sensitive to

market changes. The GARCH lag parameter measures the persistence in conditional

volatility, irrespective of the market. The sum of the two parameters determines the

rate of convergence of the conditional volatility to the long-term average level.

The ARMA-GARCH model used ARMA for the linear part and GARCH for

the residual part.

The GARCH error parameter, measures the reaction of the conditional volatility

to market shocks. When the parameter is large, the volatility is very sensitive to

market changes. The GARCH lag parameter, measures the persistence in conditional

volatility, irrespective of the market. The sum of the two parameters determines the

rate of convergence of the conditional volatility to the long-term average level

The ARMA-GARCH model used ARMA for the linear part and GARCH for

the residual part.

σ2
t = ω +

q∑
i=1

αiε
2
i−1 + +

p∑
i=1

βiσ
2
i−1 (3.4)

εt = σtet (3.5)

X t
i = c+ εi +

p∑
i=1

ψiXt−i +
q∑

i=1

θiεt−i (3.6)
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where parameters in equation 3.6 are given by ARMA and 3.4 are given by

GARCH.

3.1.4 Recurrent Neural Network (RNN)

Recurrent Neural Networks is a class of deep neural networks designed to work on

sequential data[24]. The usual fully connected deep neural networks are not designed

for sequential data since the input size is fixed. The weights for each node at each

layer are different, so they don’t capture time-dependent features; hence deep neural

networks can’t remember information from the past. Recurrent Neural Networks

have an internal state for every time step. At each time step in a recurrent neural

network has two inputs, the previous internal state, and the new information. Both

the internal state and the new data are multiplied by a weight matrix and stacked.

Actual world tasks like stock market prediction or Natural Language Processing make

use of sequential information. These real-world tasks cannot be handled by traditional

neural networks since simple feed-forward neural networks or ANN assume that all

inputs (and outputs) are independent. Hence, they would perform poorly with regards

to predicting the next time-steps of the sequential information. Therefore to overcome

such problems, researchers came up with the idea of Recurrent Neural Networks or

RNNs. They called these neural architectures as RNNs because they perform the

same task for every element of the sequence, with the output being dependent on

the previous computations. In theory, these RNNs have the capability of making use

of information in arbitrarily long sequences, however, in practice, they suffer from

exploding or vanishing gradient problem that limits them to looking back only a few

steps.

Unlike a traditional deep neural network, that uses different parameters at each

layer, an RNN shares the same parameters (Whh,Wxh above) across all steps, as

shown in Figure 3.1. This fact indicates that the RNNs perform the same task at
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Figure 3.1 The image shows that the same weight is used for every time step.

each stage, just with different inputs. It dramatically reduces the total number of

parameters the RNN needs to learn.

Training an RNN is similar to preparing a traditional Neural Network but with

a bit of surprise. As the parameters are shared across all time steps in the network,

the gradient at each output relies not only on the calculations of the current time step

but also on the previous time steps. Vanilla RNNs trained with Back Propagation

Through Time have difficulties learning long-term dependencies viz. dependencies

between actions that are far apart) due to what is known as the vanishing/exploding

gradient problem.

The Vanishing Gradient Problem RNNs have difficulties learning long-range

dependencies - the interactions between inputs several time steps apart[9]. This is

because the 2-norm of the Jacobian matrix has an upper bound of 1. We also see

that the activation functions like tanh and sigmoid have derivatives of 0 at both ends

of the real number line. Thus they have zero gradients and drive other gradients in

previous layers to zero. Hence with small values in the matrix and the multiple matrix

multiplications, the gradient values shrink fast and eventually, after a few time steps

tend to zero. And the state at those steps that are far behind do not contribute to

what we are learning.
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To overcome the difficulties of the vanishing gradient problem, we need to

initialize the weight matrices W of the RNN unit properly. Proper regularization

techniques can also come in handy in solving the vanishing gradient problem. A

much more desirable solution is to use ReLU in place of tanh or sigmoid activation

functions. The derivative of ReLU is a constant of either zero or one; hence it is

not probable to suffer from vanishing gradients. An even more popular solution is to

deploy either Long Short - Term Memory (LSTM) or Gated Recurrent Unit (GRU)

architectures. LSTMs came into existence in 1997 and are most widely used in NLP

applications today. GRUs, first proposed in 2014, are simplified versions of LSTMs.

Both of these RNN architectures were explicitly designed to deal with vanishing

gradients and efficiently learn long-range dependencies.

3.1.5 Long Short Term Memory (LSTM)

Figure 3.2 The LSTM Unit showing various gates.
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The challenge to preserve long-term information and short-term input skipping

existed for a long time. The earliest approaches to address this challenge were laid

forward by Hochreiter Schmidhuber in the year 1997[9]. LSTM’s design is motivated

by the logic gates of a computer. The design lends control to manage the memory

cell through several gates. As we look into Figure 3.2, we try to understand the

implications of the gates and their mechanism. A gate is required to capture the

entries from the cell. We refer to this gate as the output gate represented by the

letter ”o” in figure 3.2. A second gate is required to decide when to read data into

the cell. This gate, referred to as the input gate, is represented by the letter ”g” in

figure 3.2. Finally, a mechanism to reset the cell’s content is managed by a forget gate

of the ”f” gate, as shown in figure 3.2. The input at the current time step and data

from the hidden state of the previous time step passes into the LSTM gates. Three

fully connected layers process them with a sigmoid activation function to compute

the values of the input, forget and output gates. The values of the three gates lie in

the range (0,1).

The first step is to decide what information is to be discarded away from the cell

state and this is done by the sigmoid layer which is called the forget gate. This gate

looks at the vectors from previous hidden state and the current input, and outputs

a value between zero and one for each number in the cell state from previous time

step. A ”one” represents retaining information from previous time steps in the cell

state while a ”zero” accounts for the information to be forgotten entirely.

The next step for the LSTM architecture lies in deciding what new information

we are going to store in the cell state, and this is achieved in two stages. Firstly, a

sigmoid layer called the ”input gate layer” allows which values to update. Secondly,

a tanh layer creates a vector of new candidate values, that gets added to the state.

And the next step lies in combining the computations as mentioned earlier to update

the state.

15



To finally update the old cell state into a new cell state, we multiply the old

state by the output of the forget layer , omitting the things we decided to omit earlier.

At the same time, we add the output of the input layer at time step (t) with the vector

containing new candidate values.

The value of the hidden state depends upon the three gates, namely - the forget

gate, the input gate, and the output gate. The forget gate is element-wise multiplied

by the previous cell state and added to the output of element-wise multiplication

between the input at time step (t) and the vector for new candidate values.

A slight variation of the LSTM is the Gated Recurrent Unit, or GRU, introduced

by Cho, et al. (2014)[25]. The model design combines the forget and input gates into

a single ”update gate.” Furthermore, it even incorporates the cell state and hidden

state and makes some other changes. The final model is more straightforward than

standard LSTM models.

3.1.6 Gated Recurrent Unit (GRU)

In RNNs, a long product of matrices can lead to vanishing/exploding gradients. In

practice, such gradient anomalies would be unfit to capture a logical breakdown

between a bear and a bull market for securities. Then in such cases, it would be

more meaningful to have a method of resetting our internal state representation. In

GRUs [25], as seen in Figure 3.3, the hidden states have gates that permit for update

and reset of the internal state portrayal.

The Reset Gate allows us to control how much of the previous state we might

want to retain. This gate captures short-term dependencies.

The Update Gate allows us to control how much of the new state is just a copy

of the old state. Unlike the reset gate, this gate captures long-term dependencies.

The reset gate and the update gate are both set to be vectors in the range

between zero and one to perform convex combinations.
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Figure 3.3 GRU

The reset gate and the update gate are both sigmoid layers. The sigmoid

function transforms inputs between zero and one.

The following equation gives the candidate hidden state, and the elementwise

Hadamard operator operates between the reset gate and the hidden state from the

previous time step. We use the tanh nonlinearity to keep the values between -1 and 1.

The influence of the previous state can be reduced with the elementwise multiplication

of the reset gate and the hidden state of the previous time step. Whenever the entries

in the reset gate are close to 1, we redeem a vanilla RNN. For entries of the reset gate

that are close to 0, the candidate hidden state results from an MLP. Any pre-existing

hidden state is thus reset to defaults.

Finally, we need to introduce the effect of the update gate Zt. This gate helps us

determine how the new hidden state is similar to the old hidden state and the degree to

which the new candidate state would be utilized. The aforesaid purpose can be solved

by using convex combinations between ˜Ht and Ht. When Zt is close to one, we retain

the old state and skip the current input Xt for that time step in the dependency chain.

In contrast, when Zt is close to zero, the new latent state approaches the candidate
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latent state. These designs can help us alleviate the vanishing gradient problem in

RNNs and better capture dependencies for sequences with large time step distances.

Suppose for the entire time step of a subsequence; the update gate has been close to

1, then the old hidden state at the time step of its beginning will be easily captured

and passed to its end, notwithstanding the length of the subsequence.

3.1.7 Bidirectional-LSTM/Bidirectional-GRU

In sequence learning, so far, our goal was to model the subsequent output given a set

of historical data in the paradigm of a time series. While it is a typical scenario, it is

not the only one we encounter.

Bidirectional RNNs(LSTMs) as shown in Figure 3.4 were introduced by

[Schuster Paliwal, 1997][28].

In a bidirectional RNN, information from both ends of the sequence estimates

the output. In training the model, we use both the past and the future observations

to predict the current one. In practice, however, we do not have the privilege of

looking into the future time steps of the sequences. It creates a limitation in the

BRNN models, and hence the model will underperform during testing In addition

to this, BRNNs are very slow to train. The prominent reasons for this are that the

forward propagation requires both forward and backward recursions in bidirectional

layers. The backpropagation depends on the outcomes of the forward propagation.

Hence, gradients would have a very long dependency chain.

Bidirectional layers are seldom in use due to computation expense from an

application’s point of view. Its applications lie, namely filling in missing words,

annotating tokens (e.g., for named entity recognition), and encoding sequences

wholesale as a step in a sequence processing pipeline (e.g., machine translation).
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Figure 3.4 BI-LSTM

3.1.8 Temporal Convolutional Network

Temporal Convolutional Networks (TCNs) are a class of time-series models that

overcame the earlier hurdles by capturing long-range patterns using the order of

temporal convolutional filters. There are essentially two types of TCNs: The

EncoderDecoder TCN(ED-TCN) that makes use of an order of temporal convolutions,

pooling, and upsampling but can competently capture long-range temporal patterns.

A Dilated TCN employs dilated convolutions in place of pooling and upsampling

and includes skip connections between layers. TCNs are an adaptation of the recent

WaveNet [29] model. The Dilated TCN has more layers, but each uses dilated filters

that only operate on a small number of time steps.

We define TCNs which have the following properties: (1) computations are

layer-wise, meaning every time-step is updated simultaneously, instead of updating

sequentially per-frame (2) convolutions compute across time, and (3)predictions at

each frame are a function of a fixed length of time and referred to as the receptive

field.

The TCN relies upon two principles: Firstly, the network’s output is of the same

length as that of the input. Secondly, there is no information leakage from the future
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time steps to the past. The TCN employs a 1D fully-convolutional network (FCN)

architecture, and each hidden layer is of the same length as that of the input layer.

Zero paddings of size (kernel size-1) maintain succeeding layers of the same length as

previous ones. Also, TCNs, through causal convolutions, convolve an output at time

t only with elements from time t and earlier in the previous layer. Simply put: TCN

= 1D FCN + causal convolutions.

Figure 3.5 Dilated Temporal Convolutional Network (TCN)

Dilated Convolutions A significant drawback of a simple causal convolution is

that it can only access a history of time steps linearly in size with the depth of the

network. It makes it demanding to apply the aforementioned causal convolution on

sequence tasks, especially those requiring more extended history. To overcome this

drawback, we employ dilated convolutions that let an exponentially larger receptive

field. In other words, for a 1-D sequence input xεRn and a filter f : {0, ..., (k− 1)} ⇒

R, the dilated convolution operation F on element s of the sequence is defined as

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i).x(s−d).i (3.7)
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here d is the dilation factor, k is the filter size, and s d ·i holds for the direction of

past time steps. Dilation is hence parallel to introducing a fixed step between every

two adjacent filter taps. When d = 1, a dilated convolution reduces to a regular

convolution. Using larger dilation facilitates an output at the top level to represent

a broader range of inputs, therefore effectively expanding the receptive field of a

ConvNet. It thus provides us with a pair of ways to increase the receptive field of

the TCN: choosing larger filter sizes k and increasing the dilation factor d, where

the adequate history of one such layer is (k-1)d. As is usual, while using dilated

convolutions, we increase d exponentially with the depth of the network (i.e., d =

O(2i) at level i of the network). This makes it possible that there is at least some

filter that maps each input within the effective history while also permitting for an

extremely large effective history using deep networks. We provide an illustration in

Figure 1(a).

There are notable advantages to using TCNs, and they are as follows :

• Parallelism: Convolutions come with an inherent advantage, i.e., it can be done

in parallel as the same filter is used in each layer. Hence, in both training and

evaluation, along input sequence can be operated as a whole in TCN, instead

of sequentially as in RNN.

• Flexible receptive field size: TCNs confer the unique ability to control the

model’s memory size better and are simple to adapt to different domains. We

can manipulate TCNs receptive field size through stacking more dilated (causal)

convolutional layers, using more significant dilation factors increasing the filter

size are viable options.

• Stable gradients: TCN has a backpropagation path different from the temporal

direction of the sequence. Hence, it can overcome the problem of exploding/vanishing

gradients, a unique challenge in RNNs.
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• Low memory requirement for training: Owing to the model architectures of

LSTMs and GRUs, they quickly use a lot of memory to store the partial results

of their multiple cell gates. While, in a TCN, the filters are shared across a layer,

with the backpropagation depending only on network depth. So in practice, a

gated RNN architecture is likely to use multiplicative factor more memory than

TCNs.

• Variable-length inputs: Just like RNNs, which model inputs with arbitrary

lengths in a recurrent way, TCNs can also take in inputs of variable sizes by

sliding the 1D convolutional kernels. As a result, TCNs could be replacements

for RNNs for sequential variable-length data.

While there are also two significant disadvantages to using TCNs and they are

as follows:

• Data storage during evaluation: RNNs in order to generate a prediction

only need to maintain a hidden state and take in a current input xt. A synopsis

of the entire history is provided by the fixed-length set of vectors ht, while the actual

observed sequence can be eliminated. While TCNs works to take in the raw sequence

up to the effective history length, therefore possibly requiring more memory during

evaluation/testing.

• Potential parameter change for a transfer of domain: Different domains have

their own requirement on the amount of past time-steps the model gets trained on

in order to predict accurately. So while transferring a model from one domain where

little memory is required (i.e., small k and d) to a domain where much longer memory

(i.e., much larger k and d) is required, TCN may not perform as expected for not

having large enough receptive field.
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3.1.9 Transfer Learning

Transfer learning improves a learner from one domain by transferring information

from a related field [29]. Many machine learning applications use transfer learning,

including text sentiment classification, image classification, human activity classifi-

cation, and multi-language text classification.

Here we use data of other technology companies to learn the price movements,

and then we use the pre-trained model to predict the price for our test data. The

transfer of knowledge occurs by learning the price movement of other technology

companies and using it to predict the prices of given technology stock. Transfer

learning relaxes the hypothesis that the training data must be independent and

identically distributed (i.i.d.) with the test data, which motivates us to use transfer

learning to solve the problem of insufficient training data[30]. There are only 253 data

points (trading days) per year; hence it is a small dataset, and we can use Transfer

Learning to learn about price movements from similar stocks.

According to Sirignano et al. [16], it is better to fit a single model to multiple

stock price data and use that single model to make predictions. The universal model

trained on data from all stocks outperforms, in terms of out-of-sample prediction

accuracy[16], asset-specific linear and nonlinear models that get trained on time

series of any given stock, show that the universal nature of price formation weighs

in favor of pooling together financial data from various stocks, instead of designing

asset or sector-specific models as usually done. It is assumed that the stock price of

different companies have similar underlying dynamics. The model tries to learn these

underlying dynamics to predict the price for a given stock better.

Our study took stock of ten of the largest technology companies and trained

our models on the historical prices of these ten stocks. The trained model is then

used to predict the prices for Apple, Tesla, and Facebook.
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3.2 Data

In the study mainly the data of three technology companies are used namely, Apple,

Facebook and Tesla. The data ranges from 1st January 2015 to 22nd December 2020

and it includes the daily prices of each of the stocks. Below are the plots of the stock

price for each company over the six year time period.

Figure 3.6 Apple Stock Price from beginning of 2015 till end of 2020

Figure 3.7 Facebook Stock Price from beginning of 2015 till end of 2020
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Figure 3.8 Tesla Stock Price from beginning of 2015 till end of 2020

Since it is time series data we use various time series modelling techniques to

predict the stock price. For the analysis the data is split into 70:30 ratio for training

and testing.

3.2.1 Data for Univariate Models

For modelling by sequential deep learning models the data is converted into fragments

of window of size 60. So to predict the price of the 61st day we look into the values

of the past 60 days. For example, if we consider Apple, then there are 1503 rows

of data in total. For training we consider 70 percent of it, that is 1052 rows. For

univariate time series modelling the only feature considered is the historical closing

price. Thus the shape of the input data is [No. of trainig rows - 60, 60, 1]. Therefore,

in the case of Apple Inc.,the input vector for training our deep learning model build in

Keras is a 3D vector of the shape [992,60,1]. The performance of the best performing

model is compared for different window sizes to look for trends in window size versus

performance of the model. The result of it is discussed in the results section.
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We deploy two other deep learning models, namely, CNN and CNN-GRU. For

these two models the input shape is different as compared to all of the other deep

learning models as described in the previous paragraph. In CNN-GRU, the CNN

layer comes first, followed by the GRU layer. A 1D convolution operation acts in

both the architectures on each slice of the input vector. Meaning, for every time step,

a convolution operation is performed. The shape of the input vector for the one-time

step is [60,1] as we take a window size of 60.

For statistical modelling like ARIMA and ARMA GARCH, the data is

differenced to make it stationary for modelling. In ARIMA, there is little difference

in performance if we use just the past 60 days or the entire history to predict the

stock price.

3.2.2 Data for Multivariate Models

For multivariate modeling, three different datasets are picked to improve the accuracy

of our prediction. The datasets included are the Nasdaq Composite Index, the

Nasdaq Technology 100 index, and the ten-year yield of a treasury bill. The Nasdaq

Technology 100 index comprises 100 technology companies that represent the internet,

software, electronics, and other fields. The Nasdaq Technology 100 index dataset is

incorporated as there is usually a correlation between the stock price movement of a

technology company and the change in the price of the related market index. The

Nasdaq 100 Technology index is an index specific to the Technology sector, whereas

the Nasdaq composite index represents every sector in the market.

The Nasdaq composite can be considered a representation of how well a

country’s economy is doing and whether the market is in a bull run or bear run.

The final dataset chosen is the ten-year yield data; this dataset shows the people’s

confidence in the United States economy. If the people are confident that the United

States economy will do well, they will not invest in treasury bills resulting in a fall
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in the price of the bills and an increase in yield. Treasury bills are considered a safe

investment, and hence when the economy does well, the investors like to take risks in

stock markets rather than invest in the safe Treasury bills, which have a low return.

All these datasets are chosen to keep in mind that market and economic factors affect

the price of a stock. The results of the analysis are presented in the results section.

3.3 Analysis

3.3.1 Single Step Forecasting

Several different architectures are considered for univariate single-step forecasting. All

the different models are presented one after the other. First, the statistical models

are presented, followed by the deep learning models.

ARIMA Model We find out the parameters of the ARIMA model using the auto

arima library in Python. The parameters are chosen based on AIC values. The model

which has the least AIC is selected.

The model is fitted on the historical data, and the stock price is predicted for

the next day. As we predict the stock price for each day, we add the stock’s actual

price on that day to the historical data and fit the model again to make the following

prediction. The advantage of the ARIMA model is that it fits the data very quickly;

hence fitting the model at each step is not time taking.

ARMA GARCH Model For fitting the ARMA GARCH model. The time-series

data are differenced to make it stationary. An ARMA model is fit for the mean

equation, and a GARCH model is fit for the variance part. The stats model library

and the arch library in Python are used to model the data. The different parameters

of the model are derived from this two-equation. The model is used to predict the

log return rate, which is then inverse transformed to predict the stock price.
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RNN/LSTM/GRU/Bi-LSTM/Bi-GRU Model The models were implemented

in Keras. A single layer of LSTM was used to model the given time series from three

companies namely - Apple, Tesla, and Facebook. The LSTM layer had seven hundred

units, and the input shape had a 60-day window for each time step. A dropout layer

with a dropout parameter of 0.1 was added to the architecture. Dropout is proposed

to inject noise into the network layer before calculating the subsequent hidden units

during training. This idea enforces regularization. The method is called dropout

because we drop out ten percent of neurons during training.

Figure 3.9 LSTM Architecture and it’s parameters.

The model was compiled using the Adam optimizer, and loss was reported as a

mean squared error loss. Adam realizes the gains of both SGD with momentum and

RMSProp.Precisely, the Adam optimizer calculates an exponential moving average

of the gradient and the squared gradient while the parameters β1 and β2 control the

decay rates of these moving averages.

LSTM GRU Model We combine both the LSTM and the GRU models into a

single model to take advantage of both the LSTM layer and the GRU layer. The idea

behind this is that it may be possible that the LSTM may underperform, whereas

the GRU over-predicts the price. To compensate for the shortcomings of each layer,

we combine the two layers.
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Figure 3.10 LSTM Architecture and it’s parameters.

In this architecture we employ the LSTM layer first and then the GRU layer.

We also determined that the alternate arrangement, i.e., the GRU layer first and then

the LSTM layer, and observed that it underperformed the prediction task.

CNN Model The Convolutional Neural Network Model is implemented to check

whether there is any temporal dependence in the data. IF the data does not have

temporal dependence, then the CNN will be able to model the data and predict the

next day’s price.

Figure 3.11 CNN Architecture and its parameters.

In the model architecture, a time-distributed 1D convolution is applied. The

time distributed layer helps to apply convolution to each time step of the data. The

1D convolution layer is followed by a max pool layer and a dense layer to predict the

next day’s price. The 1D convolution layer applies 128 filters with a kernel size of 11.

These hyperparameters were selected after tuning the deep learning model to achieve

better performance.
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CNN GRU Model A CNN-GRU model is implemented to extract features from

the time series through the CNN layer and then pass the output features to a GRU

layer. We prefer the GRU layer over an LSTM layer as the GRU layer performs better

as compared to the LSTM layer in the univariate single-step forecasting problem.

Figure 3.12 CNN GRU Architecture and it’s parameters.

Similar to the previous CNN architecture, the CNN-GRU architecture has a

time distributed 1D convolution layer followed by a GRU layer. The convolution

layer extracts features from the time series and passes it on to the GRU layer. The

GRU layer is followed by a dense layer that predicts the next day’s price.

TCN Model The model uses only one TCN stack as more stacks are not needed.

A kernel of size four is used to cover the window length, and the maximum dilation is

16. The number of filters is kept as 64 after testing with a different number of filters.

There are no skip connections in the TCN model as the skip connections reduce the

model’s performance.

Figure 3.13 TCN Architecture and it’s parameters.
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GRU + TCN Model The model has two branches, namely, a GRU branch and

a TCN branch. The same input is given to both the branches and the embedding

of each of these branches is then concatenated to form a single output which is then

passed through a single dense unit to give the output of the model. This model tries

to take advantage of both the sequential GRU model and the hierarchical convolution

model.

Figure 3.14 GRU + TCN Architecture and it’s parameters.

3.3.2 Multivariate Forecasting

As mentioned in the Data section, we have considered three more datasets (Nasdaq

Composite, Nasdaq 100 Technology Index, ten-year Treasury Bill yield) to help us

determine the price of the stocks. Together with the three different datasets, the open,

high, low, volume, and adjusted close columns for each stock are also considered

features. In total, there are nine features to predict the stock price. The best

performing univariate model is chosen for the multivariate analysis. Below is a
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snapshot of the network model and input shape used for multivariate stock price

prediction. The result of this analysis, along with a comparison with the univariate

model performance, is provided in the results section.

Figure 3.15 Multivariate Model Architecture with nine input features.

3.3.3 Multi Step Forecasting

From the results of single-step forecasting, we come to know the best performing

networks for most of the cases. We compare the performance of these networks with

different modifications suited for making a multistep prediction.

In the study, we predict the stock price for the next 3 days, 5 days, and 7 days.

The error is measured by the mean absolute error and mean squared error metrics.

Multistep ARIMA We use the stats model library to build the ARIMA model.

The parameters of the model are chosen with the help of AIC. We fit the model into

the complete historical data and predict the value for the next seven days. As we

walk forward, we add the actual price to the historic price, fit the model again, and

predict the next horizon.

Multistep GRU For multistep prediction using GRU, we change the number of

units in the final dense layer to be equal to the number of days we want to predict.

Seq - Seq GRU A sequence to sequence network consists of an encoder and

decoder. The encoder encodes the information and reduces the dimension of the
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input data. The decoder takes the reduced information and tries to recreate the

original data. Here we use a similar network to input historical prices and output a

sequence of futures prices.

Figure 3.16 Using Seq - Seq GRU for multistep forecasting.

The network architecture consists of a GRU encoder, followed by several repeat

vectors once for each time step in the output sequence. This sequence of vectors will be

presented to the GRU decoder. The decoder layer has 700 units, and time-distributed

dense layers follow it. In general, we expect the sequence to sequence model to perform

better than the multistep GRU model as it is a more complex architecture.

Multistep TCN For multistep prediction using TCN, we change the number of

units in the final dense layer to be equal to the number of days we want to predict.

3.3.4 Transfer Learning

In transfer learning, the model is first trained on other stock datasets to learn the

parameters and then make predictions for that specific stock. In our study, we try

to find which model out of TCN and GRU is better able to learn the price dynamics

and predict the stock price of a given company. We train the GRU and the TCN

models on ten different technology stocks and then use the trained model to make the

predictions. The models used are the same as the GRU and TCN models previously
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used. The GRU model has a single GRU layer with 700 units. The TCN model has

a single stack with 64 filters and maximum dilation of 16.

Figure 3.17 GRU Transfer Learning Model Architecture.
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CHAPTER 4

RESULTS

4.0.1 Univariate Single Step Forecasting

We would look into the results of Apple Inc., followed by Facebook Inc., and finally

into the results for Tesla Inc. The Red-colored Line represents the actual price in

each subplot, while the Blue-colored line shows the predicted price. Each subplot has

a caption that informs about the model it represents, the mean absolute error, and

the root mean squared error.

Apple Stock Price Prediction As we see in Figure 4.1, the best models are

ARIMA (e), GRU(i), LSTM GRU (j), Bi-GRU(l), and CNN GRU (n). The mean

absolute error for each of these models is less than the MA(1) and EMA(1) baseline

models. From the deep learning model performances, we can note that the GRU layer

can learn the dynamics of price movement better than any other layer. This may be

attributed to the structure of the GRU cell.
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(a) MA(1) (1.61,2.37) (b) MA(60) (9.34,11.51)

(c) EMA(1) (1.61,2.37) (d) EMA(60) (8.29,10.11 )

(e) ARIMA (1.30,1.99) (f) ARMA GARCH (28.45,32.75)

(g) RNN(2.39,4.29) (h) LSTM(1.65,2.54)
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(i) GRU(1.49,2.11) (j) LSTM-GRU(1.29,1.99)

(k) Bi-LSTM(2.80,3.94) (l) Bi-GRU(1.52,2.24)

(m) CNN (2.50,3.62) (n) CNN-GRU (1.32,2.09)

(o) TCN (2.11,3.10) (p) GRU + TCN (2.04,3.03)

Figure 4.1 Apple Stock Price prediction. (a) to (d) showcase the performance of

the baseline models, (e) represents the ARIMA model. (g) to (p) represent the deep

learning architectures.
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Table 4.1 Comparative Table for Apple Stock Price Prediction

Algorithm MAE RMSE

ARIMA 1.30 1.99

ARMA-GARCH 28.45 32.75

SMA(1) 1.61 2.37

EMA(1) 1.61 2.37

SMA(60) 9.34 11.51

EMA(60) 8.29 10.11

RNN 2.39 4.29

LSTM 1.65 2.54

GRU 1.49 2.11

Bi-LSTM 2.80 3.94

Bi-GRU 1.52 2.24

LSTM-GRU 1.29 1.99

CNN 2.50 3.62

CNN-GRU 1.32 2.09

TCN 2.11 3.10

GRU + TCN 2.04 3.03

Facebook Stock Price Prediction As we see in Figure 4.2, the best models are

ARIMA (e), GRU(i), Bi-GRU(l), TCN(o) and GRU+TCN (p). The mean absolute

error of only the ARIMA models is equal to the MA(1) and EMA(1) baseline models.

Here too, the GRU architecture outperforms the other deep learning architectures.

This is a common trend across all three stocks. The TCN models also have a low

error, and the performance is comparable to that of GRU models
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(a) SMA(1) (4.04,5.81) (b) SMA(60) (19.86,24.92)

(c) EMA(1) (4.04,5.81) (d) EMA (60) (17.08,21.10)

(e) ARIMA(3.73,7.43) (f) ARMA GARCH(58.15,70.85)
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(g) RNN (54.36,61.39) (h) LSTM(6.51,8.53)

(i) GRU(3.67,5.29) (j) LSTM-GRU(7.88,9.19)

(k) Bi-LSTM(4.55,6.37) (l) Bi-GRU(4.033,5.60)
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(m) CNN(7.59,9.99) (n) CNN-GRU(4.16,5.59)

(o) TCN(4.13,5.69) (p) GRU + TCN(3.90,5.52)

Figure 4.2 Facebook Stock Price prediction. (a) to (d) showcase the performance

of the baseline models, (e) represents the ARIMA model. (f) represents the ARMA

GARCH model and it underforms as compared to the ARIMA model. (g) to (p)

represent the deep learning architectures.
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Table 4.2 Comparative Table for Facebook Stock Price Prediction

Algorithm MAE RMSE

ARIMA 3.73 7.43

ARMA-GARCH 58.15 70.85

SMA(1) 4.04 5.81

EMA(1) 4.04 5.81

SMA(60) 19.86 24.92

EMA(60) 17.08 21.10

RNN 54.36 61.39

LSTM 6.51 8.53

GRU 3.67 5.29

Bi-LSTM 4.55 6.37

Bi-GRU 4.033 5.60

LSTM-GRU 7.88 9.19

CNN 7.59 9.99

CNN-GRU 4.16 5.59

TCN 4.13 5.69

GRU + TCN 3.90 5.52

Tesla Stock Price Prediction As we see in Figure 4.3, the best models are

ARIMA (e), GRU(i), Bi-GRU(l), TCN(o) and GRU+TCN (p). The mean absolute

error of only the ARIMA models is equal to the MA(1) and EMA(1) baseline models.

Here as well the GRU arhitecture outperforms the other deep learning architectures.

It is a common trend across all the three stocks. The TCN models also have low error

and the performance is comparable to that of GRU models.
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(a) MA(1) (2.87,5.35) (b) MA(60) (2.87,5.35)

(c) EMA(1) (2.87,5.35) (d) EMA(60) (2.87,5.35)

(e) ARIMA (2.87,5.35) (f) ARIMA-GARCH (40.94,66.09)
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(g) RNN(25.02,38.88) (h) LSTM(6.28,11.22)

(i) GRU (3.29,5.87) (j) LSTM-GRU(5.39,8.83)

(k) Bi-LSTM(7.94,13.62) (l) Bi-GRU(3.16,5.86)

44



(m) CNN(8.94,16.01) (n) CNN-GRU(4.19,6.69)

(o) TCN(3.86,6.65) (p) GRU + TCN(3.40,5.91)

Figure 4.3 Tesla Stock Price prediction. (a) to (d) showcase the performance of

the baseline models, (e) represents the ARIMA model. (f) represents the ARMA

GARCH model and it underforms as compared to the ARIMA model. (g) to (p)

represent the deep learning architectures.
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Table 4.3 Comparative Table for Tesla Stock Price Prediction

Algorithm MAE RMSE

ARIMA 2.87 5.35

ARMA-GARCH 40.94 66.09

SMA(1) 2.87 5.35

EMA(1) 2.87 5.35

SMA(60) 19.59 28.39

EMA(60) 17.40 25.57

RNN 25.02 38.8

LSTM 6.28 11.22

GRU 3.29 5.87

Bi-LSTM 7.94 13.62

Bi-GRU 3.16 5.86

LSTM-GRU 5.39 8.83

CNN 8.94 16.01

CNN-GRU 4.19 6.69

TCN 3.86 6.65

GRU + TCN 3.40 5.91

From the error metrics, one can determine that for Apple Inc., the best model

is LSTM GRU. The other GRU-related models like CNN-GRU, Bi-GRU, and simple

GRU perform well too. The ARIMA model also performs equally well. Concerning

Facebook Inc., the GRU model performs the best, followed by the ARIMA model,

the GRU+TCN model, and the TCN model, respectively. Regarding Tesla Inc, the

ARIMA model performs slightly better than the GRU and the BI-GRU models. The

GRU+TCN model also performs well. Overall the ARIMA models and the GRU
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models are best suited for the univariate single-step stock price prediction problem

followed by the TCN models. The GRU models are the best model for two out of

the three stocks under consideration. Our results align with that of [14], where the

ARIMA and GRU models are the best fit for price predictions.

The advantage of ARIMA is that it is quick to run, and the model can be

easily updated with new data while making forecasts. On the other hand, the Deep

Learning models are hard to update while performing predictions. Hence in the case

of ARIMA, we kept on updating the model while performing predictions. Whereas

in Neural Networks, the models were trained only once and then used for prediction.

While training the model, different hyperparameters were chosen to improve

the performance. In the GRU model, the best performance was obtained only with

a single GRU layer having seven hundred units and a dropout of 0.1. In the TCN

model, a single stack of TCN layer was used, with 64 filters, kernel size of 4, and

maximum dilation of 16.

We use GRU and TCN models for all of our further analyses as these models

have performed considerably better than other deep learning models.
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4.0.2 Comparing Different Window Sizes

The authors of [15] presented a long short-term memory (LSTM) model for predicting

the return of Chinese shares. The authors considered 30-day sequences of historical

data for predicting the returns. Whereas the authors of [13] have used a single day

window to predict the value for next day. In this part the results of the performance

for different window sizes is provided for each dataset. The model chosen to do the

analysis are the GRU model and the TCN model as these two models performs the

best across all the three datasets.

(a) Apple Inc. Window Size (1) :

(1.62,2.47)

(b) Apple Inc. Window Size (30) :

(1.48,2.2)

(c) Apple Inc. Window Size (60) :

(1.46,2.17)

(d) Apple Inc. Window Size (30) :

(1.89,2.65)
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(e) Facebook Inc. window

size(1):(4.61,6.06)

(f) Facebook Inc. window

size(30):(3.79,5.43)

(g) Facebook Inc. window size (60) :

(4.83,6.5)

(h) Facebook Inc. Window Size(90) :

(3.76,5.37)

(i) Tesla Inc. Window Size(1) :

(2.82,4.98)

(j) Tesla Inc. Window Size(30) :

(3.08,5.18)
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(k) Tesla Inc. Window Size(60) :

(2.84,5.05)

(l) Tesla Inc. Window Size(90) :

(3.07,5.45)

Figure 4.4 Stock Price Prediction for Different Window Sizes - GRU Architecture

Table 4.4 Comparative Table of Different Window-Size Used With GRU for

Stock-Price Prediction

Stocks

Window
1 30 60 90

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Apple (1.62, 2.47) (1.48,2.2) (1.49,2.11) (1.89, 2.65)

Facebook (4.61, 6.06) (3.79, 5.43) (3.67, 5.29) (3.76, 5.37)

Tesla (2.82, 4.98) (3.08, 5.18) (3.29, 5.87) (3.07, 5.45)

Table 4.5 Comparative Table of Different Window-Size Used With TCN for

Stock-Price Prediction

Stocks

Window
1 30 60 90

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Apple (1.99, 2.71) (2.06,2.76) (2.11,3.10) (1.61, 2.35)

Facebook (4.60, 6.10) (6.49, 8.09) (4.13, 5.69) (4.31,5.95)

Tesla (2.90, 5.37) (3.09,5.41) (3.86, 6.65) (4.27, 7.29)
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We compared different window sizes for the GRU model on each of the three

datasets. Looking at the results given in the table there is no clear trend that the

error decreases or increases with the window size. In this study mostly a window size

of 60 is used to predict the 61st day stock price as for two out of the three stocks the

60 day window size has the least error. In the case of TCN model, we do not see any

clear trend.
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4.0.3 Univariate Multi Step Forecasting

In the case of Apple, the RMSE(Root Mean Squared Error) of Seq2Seq GRU,

Multi-Step GRU and TCN are less than that of ARIMA whereas ARIMA has the

least MAE(Mean Absolute Error). Suggesting ARIMA predicts more extreme values

as compared to Multistep GRU or Seq2Seq GRU. In the case of Facebook ARIMA

performs the best for most of the metrics, similary for Tesla too ARIMA performs

better as compared to Multistep GRU, Seq2Seq GRU and TCN.

Algorithms

Days
3 5 7

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

ARIMA (1.87, 4.52) (2.23,5.01) (2.54,5.12)

Multi-step GRU (2.79, 4.06) (3.40, 4.80) (3.27, 4.87)

Seq2Seq GRU (2.88, 3.85) (2.69, 3.87) (3.70, 5.09)

TCN (3.04, 4.47) (3.28, 4.45) (3.04, 4.47)

Table 4.6 Error Metric of Apple Stock Prices in Multi-Step Forecasting

Algorithms

Days
3 5 7

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

ARIMA (5.01, 8.37) (6.09, 9.61) (6.68,10.26)

Multi-step GRU (5.29, 7.50) (7.26, 9.78) (8.94, 11.72)

Seq2Seq GRU (5.49, 7.79) (6.58, 9.17) (9.58, 12.71)

TCN (5.89, 8.09) (7.102, 9.74) (8.69, 11.369)

Table 4.7 Error Metric of Facebook Stock Prices in Multi-Step Forecasting
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Table 4.8 Error Metric of Tesla Stock Prices in Multi-Step Forecasting

Algorithms

Days
3 5 7

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

ARIMA (4.29, 8.04) (5.80,14.58) (6.47,13.78)

Multi-step GRU (6.08, 10.44) (7.69, 13.25) (9.05, 15.78)

Seq2Seq GRU (6.04, 11.47) (5.6, 15.65) (11.46, 20.64)

TCN (6.21, 10.00) (6.13, 10.68) (7.71, 14.01)
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4.0.4 Transfer Learning for Single Step Forecasting

The advantage of a deep learning model over a statistical model is that a deep learning

model can learn from similar datasets and perform predictions on a given data. This

is called as transfer learning. In transfer learning we first train the GRU model and

the TCN model on other stock prices data. Once the parameters are trained we use

the model to predict the stock price of a given stock. Below we have included the

plots of the predicted and real stock price values for each of the three datasets. The

plots are followed by a table showcasing the error metrics in each case.

(a) Prediction of Stock Prices for Apple

Using Transfer Learning - GRU

(b) Prediction of Stock Prices for Apple

Using Transfer Learning - TCN

(c) Prediction of Stock Prices for FB

Using Transfer Learning - GRU

(d) Prediction of Stock Prices for FB

Using Transfer Learning - TCN
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(e) Prediction of Stock Prices for Tesla

Using Transfer Learning - GRU

(f) Prediction of Stock Prices for Tesla

Using Transfer Learning - TCN

Figure 4.5 Single step stock price Prediction via transfer learning.

Table 4.9 Reported Errors of Transfer Learning on Stock Price Prediction - GRU

Architecture

Learning Method

Stocks
Apple Facebook Tesla

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Without Transfer Learning-GRU (1.49, 2.11) (3.67, 5.29) (3.29, 5.87)

With Transfer Learning-GRU (1.35, 2.06) (2.93, 5.40) (3.56, 5.15)

Table 4.10 Reported Errors of Transfer Learning on Stock Price Prediction - TCN

Architecture

Learning Method

Stocks
Apple Facebook Tesla

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Without Transfer Learning-TCN (2.11, 3.10) (4.13, 5.69) (3.86, 6.65)

With Transfer Learning-TCN (1.39, 2.19) (3.83, 5.47) (3.17, 5.89)

From our experimental study we find that Transfer Learning improves the

performance of both the GRU model and the TCN model for all the three stocks. If
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we add more datasets to train our model we may achieve an even higher accuracy

and a lesser error rate.
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4.0.5 Multivariate Single Step Forecasting

We conduct the Multivariate analysis in two parts. First we perform general

multivariate analysis with variables like open, close, high, volume, market indices,

interest rate, etc. Then we perform the same analysis but with the help of transfer

learning. The plots and table for both the analysis are presented below.

(a) Prediction of Apple Stock Prices

Using GRU model

(b) Prediction of Apple Stock Prices

Using TCN model

(c) Prediction of Facebook Stock Prices

Using GRU model

(d) Prediction of Facebook Stock Prices

Using TCN model
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(e) Prediction of Tesla Stock Prices Using

GRU model

(f) Prediction of Tesla Stock Prices Using

TCN model

Figure 4.6 Multivariate Stock Price Prediction - a comparison between GRU and

TCN Architecture

Table 4.11 Univariate and Multivariate GRU error metrics for Stock Price

Prediction

Learning Method

Stocks
Apple Facebook Tesla

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Univariate-GRU (1.49, 2.11) (3.67, 5.29) (3.29, 5.87)

Multivariate-GRU (1.71, 2.50) (3.48, 5.09) (4.09, 8.58)

Table 4.12 Univariate and Multivariate TCN error metrics for Stock Price

Prediction

Learning Method

Stocks
Apple Facebook Tesla

(MAE, RMSE) (MAE, RMSE) (MAE, RMSE)

Univariate-TCN (2.11, 3.10) (4.13, 5.69) (3.86, 6.65)

Multivariate-TCN (4.48, 5.92) (9.72, 13.28) (3.80, 4.80)
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In the case of Facebook multivariate GRU is performing better as compared to

univariate GRU to predit the next day’s stock price but in the case of Apple and

Tesla the multivariate GRU model does not improve the performance.
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CHAPTER 5

DISCUSSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH

In our study, we not only compared ARIMA with simple LSTM, GRU, and RNN

but also compared it with TCNs, Bi-LSTM, and Bi-GRU and models derived by

combining two different architectures. We find that ARIMA and GRU-related

architectures perform well for stock price prediction from the experimental studies.

The advantage of deep learning models over a statistical model is that there are

no pre-requisites like stationarity, one can model non-linear data and deep learning

models are flexible enough to include different datasets and it can also perform transfer

learning which statistical time series methods cannot.

While training the neural networks, some crucial conclusions were that more

epochs did not improve the model’s accuracy. Besides that, adding more layers also

reduced the accuracy of the model. Initially, we tested with four layers (Stacked

RNN/LSTM) model, and as we reduced the number of layers to one, the accuracy

kept on increasing. One of the reasons for this is that the more complex model has

far more parameters to train, and with the small dataset we have, it is not enough to

train a large number of parameters. Hence, as we reduced the number of layers, the

performance went up.

The time taken to train LSTM and GRU was less than RNN due to improved

gradient flow. Bidirectional GRUs and LSTMs took considerably more time to

prepare than simple LSTM, RNN, and GRUs because information flows in both

directions, and the models are more complex. Our findings could not proclaim that

training the sequential data twice and learning from the future and the past time-steps

would help achieve better forecasts of the stock prices. The results obtained by

60



us reveal that Bi-LSTMs and Bi-GRUs perform comparably to regular LSTMs and

GRUs.

In our analysis we found that ARIMA, GRU and TCN are one of the best

performing model for univariate single step price prediction. In the multi-step

analysis, it was expected that the Seq2Seq model would outperform the ARIMA

model and the multi-step GRU/TCN model. Yet, the ARIMA multi-step model

outperformed the other models. Only in the cases of Apple Inc. and Facebook Inc.,

the RMSE of the Seq2Seq model is less than the RMSE of ARIMA, suggesting that

it predicts lesser extreme values than the ARIMA model.

In our multivariate analysis, we do not use technical indicators (Moving

Average) as features because they are derived from the stock price itself, and they can

have co-founding pitfalls. The dataset used in the multivariate analysis is based on

the financial theory that market price movement and economic factors can influence

the stock price of the company. Still, from our research, we see that adding these

datasets did not improve the prediction.

To improve the performance of the prediction algorithm, Transfer Learning is

used. Transfer Learning enhances the performance of model for univariate single step

price prediction. This shows that the model can learn the typical price dynamics

across the datasets. We expect that the performance of Deep Learning models will

improve if more datasets were included to pre-train the models. The GRU model

performs better as compared to the TCN model in the task of transfer learning.

Future research work may include the following improved Multivariate and

Multi-step time series prediction with Transfer Learning. Furthermore, Natural

Language Processing methods can be used to understand the effect of positive and

negative news on stock prices.

Also the future of the research can be extended towards Generative Adversarial

Networks(GANs). The GAN network can be used to make representations of time
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series. It has been observed that there is no significant difference between GAN and

usually used LSTM. We can explore different GAN architectures to simulate time

series, especially those that involve structures traditionally used for time series in

deep learning, such as LSTM.
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