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ABSTRACT 

ENHANCING COMMUNITY FLOOD RESILIENCE BY INCORPORATING 

LANDSCAPE HYDROLOGICAL SENSITIVITY AND CONNECTIVITY 

 

by 

Wenlong Feng 

Rapid urban expansion and dramatic climate change have significantly increased the 

intensity and frequency of floods worldwide. With rising flood risks, conventional flood 

defense strategies that rely on structural measures become ineffective. The present 

designations for flood-prone areas, such as FEMA’s flood maps, are becoming unreliable. 

Flood risk management is shifting toward enhancing community flood resilience, 

highlighting the importance of non-structural approaches. Landscape resilience has 

become a foundation of community flood resilience. However, past urban development 

typically undermined natural hydro-ecological functions and landscape resilience because 

of poor recognition of landscapes' ecological role, hydrological sensitivity, and 

hydrological connections. This study aims to enhance flood resilience by incorporating 

landscape hydrology concepts in flood management strategies. The study has two main 

objectives: first, to empirically examine the impacts of incongruent landscape alterations 

on flood losses and property values; second, to develop a proactive flood management 

strategy that integrates hydrological sensitivity. 

The study first reviewed 31 hedonic pricing studies about floodplain’s impacts on 

property values in the United States. Subsequently, the effects of Hydrologically Sensitive 

Areas (HSAs) on property values were analyzed in Hillsborough and Montgomery, New 

Jersey, by hedonic pricing models. Moreover, the study employed multiple linear 



 

 

regression models to analyze the impacts of impervious surface and development 

restriction areas on flood losses in the Raritan region from 2010 to 2020. This study also 

discussed the significance of HSAs for landscape resilience and provided suggestions on 

landscape planning, design, management, and flood insurance reformation. 

The literature review of hedonic pricing studies revealed diverse patterns of 

floodplain impacts on property prices across the United States, with inland and 100-year 

floodplains having more adverse effects than coastal and 500-year floodplains. The study 

found that the impact of floodplains on property values was a compound effect of flood 

risk, insurance premiums, and local amenities. Hedonic pricing analysis in Hillsborough 

and Montgomery confirmed that properties in HSAs experience significant price discounts 

(-2%). The impact of HSAs on property values was independent of the impact of 

floodplains. The regression analysis in the Raritan River Basin region showed that 

increased impervious surfaces in landscapes lead to higher flood insurance claims, while 

effective land development restrictions reduce these claims.  

These findings highlight the need for comprehensive flood risk assessments and 

better land use planning to enhance flood resilience. This research contributes valuable 

insights for policymakers, urban planners, and communities aiming to mitigate flood risks 

and build resilient landscapes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Floods are one of the most widely distributed and frequently occurring natural disasters 

across the world, causing numerous damages to property, disturbances of economic and 

social activities, and degradation of the natural environment (Flood Defenders, 2022; 

Jonkman et al., 2024; WMO, 2021). Nearly 41 million people in the United States live in 

the 100-year floodplain (Wing et al., 2018). According to the World Meteorological 

Organization's report (WMO, 2021), floods were the world's most frequent type of disaster, 

occupying 44% of record events in the past 50 years. These flood disasters caused 0.33 

million deaths and $1.12 trillion in economic losses. Flood hazards affected over 2 billion 

people from 1998-2017. In 2017, flooding caused more than $ 60 billion in loss and 135 

casualties in the United States, which was the severest in the 2007-2017 period (NOAA, 

2017). 2021 was also a remarkable year of flood hazards. In the middle of July, extreme 

precipitation events and unprecedented flooding occurred in several European countries, 

causing more than two hundred mortalities and $11.8 billion in damage ("2021 European 

Floods," 2022). Between July 17 and 31, China's Hena Province experienced a catastrophic 

storm and flooding, resulting in nearly 400 deaths and approximately $12.7 billion in 

damage (Xinhua, 2021). New Jersey also suffered heavy rainfall and flooding from 

Hurricane Ida in early September, killing 29 people and causing over $8 billion in damage 

(NOAA, 2022).  
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Flood events have various causes, including storms, spring thawing, snowmelt 

runoff, coastal storm surges, and dams or levees breaking; storms are the main cause of 

most flood events. The ongoing climate change is increasing the global temperature, 

shifting the precipitation pattern, and raising sea levels, increasing the intensity and 

frequency of flood events worldwide (Banholzer et al., 2014; Kulp & Strauss, 2019; Liu et 

al., 2021). The northeastern US is projected to face more flood hazards in the future 

(Armstrong et al., 2014; Kirshen et al., 2008; Reidmiller et al., 2017; Wing et al., 2018).  

Along with the increasing trend in flood events, there is considerable uncertainty in 

flood risk. Previous flood controls that heavily rely on structural measures (levees, dykes, 

and dams) have become less effective in facing unprecedented flood risks. As flood risks 

escalate, it is essential to implement more effective measures to help communities prepare 

for, mitigate the impacts of, and recover from floods. Enhancing community flood 

resilience has been suggested as one of the best strategies to deal with flood risk augmented 

by the uncertainty associated with climate change (Jongman, 2018; Liao, 2014; 

Zevenbergen et al., 2020). In 2020, the New Jersey Department of Environmental 

Protection (NJDEP) started the Protecting Against Climate Threats (PACT) initiative to 

reduce greenhouse gas and climate pollutant emissions and enhance the resilience of 

natural and built environments. The pace of this program was dramatically accelerated after 

the tragic flooding caused by Hurricane Ida in 2021 (CSG, 2022).  
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1.2 Flood Resilience Framework 

1.2.1 Concept of flood resilience 

Flood resilience is defined as the capacity of a community to absorb, recover from, and 

adapt to the adverse effects associated with flood events in a rapid time (Bulti et al., 2019). 

Since the resilience concept was introduced into disaster management, dozens of resilience 

measurement frameworks have been developed to evaluate resilience (Bulti et al., 2019; 

Cai et al., 2018; Nguyen & Akerkar, 2020). Most of these frameworks attribute resilience 

to the compound effect of society, economy, community, physical condition, resources, 

and infrastructure and develop various indices to evaluate resilience quantitively and 

qualitatively (Nguyen & Akerkar, 2020).  

One popular resilience framework specific to community flood resilience is the '5C-

4R' framework created by the Zurich Flood Resilience Alliance (Atreya & Kunreuther, 

2020; Keating et al., 2014, 2017). The community's resilience is closely related to five 

sources of capital ('5C'): physical, natural, financial, human, and social capital (Keating et 

al., 2014, 2017). Atreya and Kunreuther (2020) add the political capital to this framework 

to characterize the community's ability to influence decisions and obtain and utilize outside 

resources to build resilience. Each source of resilience capital can be assessed with four 

properties: robustness, rapidity, redundancy, and resourcefulness ('4R'). To implement the 

framework, Keating et al. (2017) further specified 88 sources of resilience under '5C'. This 

resilience assessment framework and its variations have been used in at least 118 

communities across nine countries (Campbell et al., 2019; Szoenyi et al., 2020).  
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Figure 1.1 Zurich flood resilience measurement framework. 
Source: Keating et al., 2017 

 

1.2.2 Concept of landscape resilience 

Landscape resilience is one dimension of the social-ecological system resilience. It is 

defined as the capacity of a landscape to maintain essential ecological functions, support 

robust native biodiversity, and uphold critical landscape processes over time under 

changing conditions and various stressors and uncertainties (Beller et al., 2015). This 

concept focuses on creating diverse, sustainable, and adaptable ecosystems that can long-

term support both natural and human communities. Biodiversity, connectivity, adaptability, 

multifunctionality, and sustainability are key features of resilient landscapes (Ahern, 2013; 

Beller et al., 2015; Huang et al., 2022). Healthy and robust landscapes can provide essential 
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ecosystem services, such as stormwater storage, habitats, clean water and air, fertile soil, 

and recreational opportunities. 

Landscape resilience is a crucial foundation for building community flood 

resilience. It leverages natural processes to mitigate flood risks and enhances the 

community's ability to recover from flood events. By preserving and incorporating green 

infrastructure and natural resources, such as rain gardens, retention/detention basins, 

wetlands, forest lands, riparian buffers, and floodplains into landscape design, it is possible 

to enhance the ability of an area to absorb and manage floodwaters. Wetlands, rain gardens, 

and retention/detention basins absorb excess water during heavy rain events, enhance water 

infiltration, and slowly release it to streams, which helps to reduce the severity of floods 

(Acreman & Holden, 2013; Stefanakis, 2019). Riparian buffers, which are vegetated areas 

along waterways, can slow down water flow, trap sediments, and filter pollutants, 

improving water quality and reducing flood risks (Huang et al., 2022). Forest lands can 

intercept rainwater, increase evapotranspiration, and facilitate infiltration, temporarily 

storing stormwater and reducing runoff's peak flow, thereby mitigating the flood intensity 

(M. Kim et al., 2021; B. Zhang et al., 2015). Additionally, preserving and restoring 

floodplains allows rivers to overflow naturally, spreading out water and reducing the 

impact on developed areas (Huang et al., 2022; Palazzo & Wang, 2022). By integrating 

these systems into urban planning and landscape design, communities can create more 

resilient environments that protect against flooding and support ecological health. 

1.2.3 Community rating system 

In the United States, the Community Rating System (CRS) is a well-known practical 

community flood resilience assessment system (Atreya & Kunreuther, 2020; Highfield & 
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Brody, 2017; Sadiq et al., 2020; Tyler et al., 2019). The CRS was established in 1990 by 

the Federal Emergency Management Agency (FEMA) as an incentive program of the 

National Flood Insurance Program (NFIP), which encourages participating communities 

(i.e., municipalities or counties with land use regulatory authority) to implement more 

rigorous flood-prone area management. This program provides a 5-45% annual flood 

insurance discount to NFIP policy holders in those communities that successfully 

implement flood preparation, mitigation, and recovery measures.  

CRS is a tool to boost community flood resilience comprehensively and contains 

several measures to enhance resilient landscapes. NFIP insurance specialists rate a 

community's CRS score based on credit activities that the community takes. Table 1.1 

displays 19 credit activities and their corresponding maximum possible points, categorized 

into four classes: public information, mapping and regulations, flood damage reduction, 

and flood preparedness. Among these activities, open space preservation, floodplain 

mapping, floodplain management planning, and acquisition and relocation are measures to 

build resilient landscapes. The top three resilience activities with the highest possible points 

are building acquisition and relocation, higher regulatory standards, and open space 

preservation. Communities that invest more effort in these three activities tend to obtain 

higher CRS scores. As of 2017, over 22,200 communities across the United States 

participate in the NFIP, and nearly 1500 of them participate in the CRS (Sadiq et al., 2020). 

New Jersey has 109 communities participating in the CRS, and their average rate class is 

7, indicating moderate resilience in general (FEMA, 2022). 
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Table 1.1 Credit Points Awarded for CRS Activities 

Activity Maximum 

possible 

points 

% of 

communities 

credited 

300 Public Information 

    310 Elevation Certification 116 96 

    320 Map Information Service 90 85 

    330 Outreach Projects 350 93 

    340 Hazard Disclosure 80 84 

    350 Flood Protection Information 125 87 

    360 Flood Protection Assistance 110 41 

    370 Flood Insurance Promotion 110 4 

400 Mapping & Regulations 

    410 Floodplain Mapping 802 55 

    420 Open Space Preservation 2,020 89 

    430 Higher Regulatory Standards 2,042 100 

    440 Flood Data Maintenance 222 95 

    450 Stormwater Management 755 87 

500 Flood Damage Reduction 

    510 Floodplain Management Planning 622 64 

    520 Acquisition and Relocation 2,250 28 

    530 Flood Protection 1,600 13 

    540 Drainage System Maintenance 570 43 

600 Flood Preparedness 

    610 Flood Warning and Response 395 20 

    620 Levees 235 0.5 

    630 Dams 160 35 
Source: FEMA 

 

Previous studies suggest that participation in the CRS can effectively enhance 

community flood resilience, even though it is less comprehensive than those newly 

established flood resilience frameworks. Atreya and Kunreuther (2020) find that the CRS 

credit activities are associated with six types of community capital and a positive 

correlation between the CRS and the 6C-4R flood resilience measurement framework (a 

variation of the 5C-4R framework). A working paper (Michel-Kerjan et al., 2016) also 

mapped the CRS credit activities to 88 sources of resilience in the Zurich Flood Alliance's 

5C framework. Participating in the CRS significantly reduces the mean flood damage, 
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claims, and flood-related casualties (Highfield & Brody, 2017; Kousky & Michel-Kerjan, 

2017; Petrolia et al., 2013; Zahran et al., 2008). Additionally, Burton (2015) suggests that 

participation in the CRS significantly improved the communities' recovery after Hurricane 

Katrina.  

1.2.4 Limitations in current flood resilience frameworks 

Although previous frameworks address various social, economic, human, and 

infrastructural factors relevant to flood resilience, there are several limitations in practices 

of fortifying resilience. Communities intensively adopt physical measurements (e.g., 

levees, dams, drainage systems, and stormwater management systems) to enhance flood 

resilience but seldom recognize the role of natural capital in increasing resilience (Mehryar 

& Surminski, 2021; Michel-Kerjan et al., 2016). Although disaster resilience frameworks 

regularly advocate anticipatory measures (i.e., risk assessment and risk reduction), most 

resources and funds are assigned to reactive measures (i.e., disaster response and recovery) 

in reality, which are highly inefficient for building long-lasting flood resilience (Mehryar 

& Surminski, 2021; Surminski & Thieken, 2017; Tanner et al., 2015).  

Secondly, the CRS did not include a valid hydrological theory or model in its 

framework, which makes the evaluation of flood resilience in the CRS constrained by 

community administrational boundaries, ignores the connectivity among nearby 

communities, and distorts the continuous natural characteristics of flood over space. 

Additionally, the CRS implementation depends on the FEMA floodplain maps 

delineating Special Flood Hazard Areas (SFHA, 100-year flood plains) in communities. 

However, the flood risk management and resilience measurement focus on floodplains fails 

to capture flood damage outside the floodplain and from local flood hazards caused by 
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small storms. The present floodplain maps have coarse spatial resolution and incomplete 

coverage. FEMA floodplain map ignores small catchments (<10,000 km2) and only covers 

30% of the length of rivers in the United States (Association of State Floodplain Managers, 

2020; Wing et al., 2018). Several studies suggest that the 100-year floodplain did not 

capture about 25% of flood losses nationwide (Blessing et al., 2017; Highfield et al., 2013). 

In addition, the FEMA floodplain map is outdated in many areas and cannot accurately 

reflect the current flood risk. The NJDEP found that the existing flood hazard maps were 

based on outdated records and did not perform as expected in response to Hurricane Ida 

(CSG, 2022). 

 

1.3 Landscape Hydrologic Sensitivity and Connectivity 

1.3.1 Concept of variable source area hydrology 

This study attempts to incorporate variable source area (VSA) hydrology into landscape 

planning, management, and design to enhance flood resilience. VSA hydrology is an 

extension of the saturation excess overland flow (runoff) process. Runoff has two primary 

mechanisms: infiltration excess overland flow and saturation excess overland flow. 

Infiltration excess overland flow describes the runoff generation process when 

precipitation intensity surpasses the soil’s infiltration capacity (Horton, 1933, 1940). This 

process generally occurs in areas with very low soil infiltration capacity and little 

vegetation during highly intensive storm events. In contrast, saturation excess overland 

flow occurs when precipitation volume exceeds the soil’s capacity to store water (Dunne 

et al., 1975; Hewlett & Hibbert, 1967; Hursh, 1944). Additional rainwater in saturated areas 

generates runoff. This process commonly occurs in humid, well-vegetated, topographically 
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steep areas with high soil infiltration capacities and low soil capacity to store water. These 

areas typically have shallow soils or a high water table, indicating a propensity for 

saturation. Previous studies suggested that saturation excess overland flow is the dominant 

runoff mechanism within natural landscapes in the Northeast United States (Agnew et al., 

2006; Anderson et al., 2015; Walter et al., 2003). VSA hydrology argues that the size of 

saturated areas for runoff generation varies with landscape wetness over time, and the 

variation occurs on multiple temporal scales ranging from a single storm to seasonal 

fluctuations (Dunne et al., 1975; Dunne & Black, 1970; Hewlett & Hibbert, 1967). During 

a period with abundant rainfall, the extent of saturation expands around saturation-prone 

areas, whereas the extent of saturation shrinks in a dry period.  

1.3.2 Concept of hydrologically sensitive areas 

Hydrologically Sensitive Area (HSA) is a crucial concept in VSA hydrology. It refers to a 

region within a watershed that has a higher propensity to generate runoff than other places 

(Agnew et al., 2006; Walter et al., 2000). HSAs commonly have direct hydrological links 

to surface waterbodies so that runoff from these areas can flow to perennial waterways in 

a short time, transporting water-borne pollutants and sediments to surface waterbodies 

(Walter et al., 2000). HSAs are usually delineated by the probability of soil saturation, 

which is significantly correlated with the soil topographic index. Therefore, many studies 

use the soil topographic index to derive the extent of HSAs (Agnew et al., 2006; Anderson 

et al., 2015; Qiu et al., 2014, 2020; Walter et al., 2000). As VSA hydrology defines, the 

extent of HSAs also varies recurrently over time following the soil wetness changes.  

Incorporating the hydrological theory and models into the community flood 

resilience assessment and implementation has many benefits. The hydrological theory and 
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models can make the resilience assessment more objective and scientifically defensible. 

Furthermore, they can help stakeholders identify critical areas, anticipate flood risk, and 

implement flood preparation and mitigation. Recent flood risk management efforts tend to 

control the flood event at the source. The HSA can help stakeholders find the source of 

surface runoff and improve the efficiency of flood risk management. Introducing the high 

spatial resolution maps of HSA into community resilience assessment would enhance open 

space preservation and provide prioritized locations for the acquisition and relocation 

measures. 

Although studies have shown that HSAs are closely related to runoff generation, 

no study has connected the distribution of HSAs to flood damage and discussed how HSAs 

can be used to enhance community flood resilience. This study helps fill this research gap. 

 

1.4 Research Objectives and Hypotheses 

This study provides a proactive flood management strategy to enhance community flood 

resilience by incorporating landscape hydrological sensitivity and connectivity. The central 

hypothesis of this study is that landscape alterations dictated by human decisions are 

incongruent with the hydro-ecological function of the natural landscape as urbanization 

and associated infrastructure development fail to recognize such an ecologically 

functioning landscape and ignore landscape hydrological sensitivity and unique 

hydrological connections. 

The objectives of the study are twofold. First is to examine the impacts of 

incongruent landscape alterations on community flood risk. Specifically, we empirically 

distinguished and tested the influence of landscape alterations in HSAs on property values 
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and flood damage. There are two underlying hypotheses in this objective. Hypothesis 1 is 

that the home sale price implicitly incorporates the local hydrological sensitivity; the 

homes inside HSAs are subject to higher flood risks and are priced lower than their 

counterparts outside HSAs. Hypothesis 2 is that the encroachment of development into 

HSAs significantly increases flood risk, and so, structures in HSAs experience higher flood 

losses. The second objective is to develop a flood management framework that explicitly 

recognizes the landscape hydrological sensitivity and connectivity to enhance flood 

resilience. We discussed the significance of HSAs to landscape resilience and provided 

HSAs-oriented suggestions to enhance community flood resilience through building 

resilient landscapes.   
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CHAPTER 2 

UNDERSTANDING THE FLOODPLAIN IMPACTS: A LITERATURE REVIEW 

 

2.1 Introduction 

Floods are the costliest natural hazards, causing numerous casualties and economic 

damages (Flood Defenders, 2022; NOAA, 2021). From 1970 to 2019, 44% of reported 

natural disasters across the globe were flood disasters, causing nearly 330,390 deaths and 

1.12 trillion US dollars of economic losses (WMO, 2021). Over 2 billion people were 

affected by flood hazards from 1998-2017 (Wallemacq et al., 2018). In the United States, 

90% of natural disasters are associated with flooding (GAO, 2005). About 41 million 

people in the United States are estimated to live in a floodplain with a probability of 

flooding of at least 1% annually (Wing et al., 2018). According to the natural hazard 

statistics of the National Oceanic and Atmospheric Administration (NOAA), flood hazards 

caused 2279 deaths and $193.80 billion of economic damages from 1997 to 2022. The 

costliest flood hazard in the past two decades happened in 2017, which caused more than 

$ 60 billion in loss and 135 casualties (NOAA, 2017). The exposure of properties and 

populations to flood hazards is increasing because of the population and economic growth 

in flood-prone areas, and the flood risk is expected to exacerbated by the sea-level rise and 

the increasing extreme precipitation events (Cigler, 2017; Wing et al., 2018).  

Besides direct losses caused by flooding, people are also concerned with property 

value changes affected by flood risk. Housing properties are not only a component of 

personal wealth but also an important source of taxation for governments, playing a 

significant role in economic activities (N. Miller et al., 2011). Theoretically, prices of 
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properties inside a floodplain are supposed to be lower than that of equivalent properties 

outside a floodplain as a result of a higher probability of exposure to flood hazards (Beltrán 

et al., 2018), as flood hazards can damage the structure of properties and facilities, 

undermine public services, and disorder local economy. The property price difference 

across floodplain borders reflects people’s perspective on local flood risks. A clear impact 

of flooding on housing prices raises stakeholders’ awareness of flood hazards and is often 

used in cost-benefit analyses of flood risk management. Because of the above significance, 

dozens of studies have been conducted to analyze flood risk in the estate market in different 

places since the 1980s. The foremost property-evaluating method employed in these 

studies is the hedonic pricing method (Beltrán et al., 2018; Daniel et al., 2009).  

The hedonic pricing method is one of the most commonly used economic 

approaches for goods and services evaluation. Lancaster’s consumer theory (Lancaster, 

1966) and Rosen’s model (Rosen, 1974) are two main theoretical sources of this method. 

They consider the price of a good as an aggregated price of its inherent attributes. These 

attributes are objectively measurable and affect the utility or satisfaction of the good. The 

hedonic pricing method regresses the sellable price of a good against its attributes. 

Although individual attributes are not selling in the market, their implicit prices can be 

estimated through their coefficients in the hedonic regression. For residential properties, 

attributes analyzed in a hedonic pricing model generally consist of structural, locational, 

and neighborhood attributes (Aladwan & Ahamad, 2019; Chau & Chin, 2003). Structural 

attributes describe the physical configuration of housing properties, such as living areas 

and room numbers. Locational attributes refer to characteristics related to the site of 

properties, such as block number, aesthetic view, and proximity to local amenities. 
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Neighborhood attributes reflect the surrounding conditions of properties, including socio-

economic variables, public services and facilities, and other externalities such as crime 

rates, noise conditions, and air pollution. When the hedonic pricing method is employed to 

evaluate ecosystem or environmental services, the housing attributes related to physical 

environmental characteristics are sometimes specifically separated from location and 

neighborhood attributes as environmental attributes. For hedonic pricing studies in the 

flood hazard field, housing attributes related to the floodplain designation, flood insurance 

rate, or flood damage are introduced into the analysis in addition to former housing attribute 

categories(Beltrán et al., 2018; Gibson & Mullins, 2020).  

Most flood-related studies using the hedonic pricing method analyze the impact of 

floodplains on property prices. More than 80% of the previous flood-related hedonic 

pricing studies were conducted in the United States, and they predominantly use the Flood 

Insurance Rate Maps (FIRMs) designated floodplain as a flood-related attribute in analysis 

(Beltrán et al., 2018; Daniel et al., 2009). The FIRMs are official maps delineating flood-

prone areas at the United States community level, drawn and maintained by the Federal 

Emergency Management Agency (FEMA). They are designed to implement the National 

Flood Insurance Program (NFIP) regulations and requirements. Flood-prone areas in these 

flood maps are classified into two main classes: the 100-year floodplain and the 500-year 

floodplain. The former delineates areas with an annual flooding probability of no less than 

1%, and the latter represents additional areas with an annual flooding probability between 

0.2% and 1%. The 100-year floodplain is further split into the A zone (including A, AE, 

AH, AO, AR, and A99) and the V zone (i.e., V and VE). Compared to the A zone, the V 

zone is subject to additional hazards associated with storm waves. The NFIP designates all 
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100-year floodplains as the Special Flood Hazard Areas (SFHA). Within the SFHA, 

homeowners who finance their purchase via federally regulated lenders must purchase 

flood insurance through the NFIP. local land use authorities are required to implement 

stringent floodplain regulation in these areas. Outside the SFHA, the NFIP does not have 

a mandatory regulation requirement but encourages the State and local governments to 

implement floodplain management based on local conditions. Therefore, the floodplain 

impact on property values is a compound effect of flood risk and flood insurance premiums 

(Bin et al., 2008; de Koning et al., 2019). 

After over three decades of study, researchers have found that the impact of 

floodplains on property values varies over space and time. Daniel et al. (2009) investigated 

the economic impacts of flood risk on housing values through meta-analyzing 19 hedonic 

pricing studies in the U.S. between 1987 and 2008. They found that house prices within 

the 100-year floodplain varied between -52% and +58% relative to house prices outside 

the floodplain, with an average value of -0.6%. The actual occurrence of a flood or changes 

in disclosure rules can slightly affect house prices. The marginal willingness to pay for 

reduced risk exposure increased over time but was slightly lower in areas with higher per 

capita income. The authors also highlighted the importance of distinguishing between 

positive amenities (e.g., scenic views) and negative risks (e.g., flood risk) associated with 

proximity to water. Beltrán et al. (2018) reviewed 37 papers of flood-related hedonic 

pricing studies before 2013 across the globe, and they found that the magnitude of the 

floodplain impact ranges from -75.5% to +61.0%. The meta-regression analysis of this 

paper suggested that the properties in the 100-year floodplain generally experience a price 

discount, with an overall estimation of this price discount for a meta-analysis of -4.6%. 



17 

However, significant variations in the price impact existed between inland and coastal 

regions. Properties exposed to inland flooding have a price discount of -5.6%, while those 

exposed to coastal flooding enjoy a price premium of +13.4% (Beltrán et al., 2018). The 

meta-analysis also identified publication bias in studies related to coastal flooding. Studies 

showing significant positive effects of coastal location on property values were more likely 

to be published, contributing to an overrepresentation of such findings in the literature. 

Beltrán et al. (2018) attributed the positive correlation between property prices and coastal 

floodplain location to omitted variable bias rather than a true lack of price discount for 

flood risk. This study also summarized the temporal variation of the price discount for 

floodplain properties. It is more pronounced immediately following a flood event and tends 

to decrease over time as the memory of the flood fades and properties are repaired or 

improved. 

This chapter reviewed the flood-related hedonic pricing studies published in peer-

reviews journals by 2023. The reviewed studies were analyzed and summarized from three 

aspects: variable selection, modeling methods, and patterns in floodplain impacts on 

property values. The factors affecting the floodplain impact were discussed in this study. 

At the end of this chapter, limitations on previous flood risk economic impact studies are 

also pointed out. 
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Figure 2.1 Flow chart of literature search. 

 

2.2 Literature Searching Method 

This literature review focused on hedonic pricing studies about the impact of floodplains 

in the United States. We used the Scopus database to search for papers related to hedonic 

pricing method applications in the flood hazard field before May 2023. Our paper search 

has three steps. First, we searched for “Hedonic price” and “flood” in titles, keywords, and 

abstracts of papers. The initial search found 104 papers, subsequently filtered to peer-

reviewed journal articles in the United States by setting the Scopus searching conditions. 

Forty-six articles passed the filtering and were then manually reviewed. During the manual 

review, we kept articles that explicitly related to the hedonic pricing method and the 

floodplain impact and filtered off review papers and meta-analysis studies from the review 

list. Finally, we refined the list to thirty-one studies, as shown in Table 2.1. The following 

sections summarize our findings in detail.  
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Table 2.1 List of Reviewed Journal Articles on Flood-Related Hedonic Pricing Studies 

No. Papers Locations Research period 

1 Atreya & Ferreira, 2015 Albany, Georgia 1985-2007 

2 Atreya et al., 2013 Dougherty County, Georgia 1985-2004 

3 Bakkensen et al., 2019 Florida State 2002-2012 

4 Bin & Kruse, 2006 Carteret County, North Carolina 2000-2004 

5 Bin & Landry, 2013 Pitt County, North Carolina Sep 1992 - Aug 2008 

6 Bin & Polasky, 2004 Pitt County, North Carolina 1992-2002 

7 Bin et al., 2008 Carteret County, North Carolina 2000-2004 

8 Chandra Putra, 2017; 

Chandra-Putra & Andrews, 

2020 

Monmouth County, New Jersey 2010-2015 

9 de Koning et al., 2018 Pitt County, North Carolina 1992 - 2002 

10 de Koning et al., 2019 Beaufort, North Carolina 2001 -2004 

11 Donnelly, 1989 La Crosse, Wisconsin Jan 1984 - Dec 1985 

12 Fonner et al., 2022 Orting, Washington 2005-2017 

13 Fu et al., 2016 Tampa-St. Petersburg Metropolitan Area By 2015 

14 Gibson & Mullins, 2020 New York City, New York 2003-2017 

15 Hennighausen & Suter, 2020 Boulder County, Colorado 2009-2017 

16 Kousky & Walls, 2014 St. Louis County, Missouri 2008-2012 

17 Lee & Li, 2009 College Station, Texas By 2006 

18 Livy, 2023 Hamilton County, Ohio 2009-2017 

19 Meldrum, 2016 Boulder County, Colorado 1995-2012 

20 Miller & Pinter, 2022 Benton County, Oregon; Boulder 

County, Colorado; Cass County, North 
Dakota 

2009-2013 

21 A. Morgan, 2007 Santa Rosa County, Florida Jan 2000 - Dec 2006 

22 J. D. Morgan et al., 2022 Pinellas County, Florida 2000 - 2015 

23 Netusil et al., 2019 Portland, Oregon 1988-2014 

24 Pope, 2008 Wake County, North Carolina Jan-Sep in 1995 and 
1996 

25 Posey & Rogers, 2010 St. Louis County, Missouri 2000-2007 

26 Qiu et al., 2006 St. Louis, Missouri Jan 2000- Sep 2001 

27 Shilling et al., 1989 Baton Rouge, Louisiana Dec 1982 - Feb 1984 

28 Shultz & Fridgen, 2001 Fargo-Moorhead Metropolitan 1995-1998 

29 Troy & Romm, 2004 California State 1997-1999 

30 Zhang & Leonard, 2019 Fargo-Moorhead Metropolitan 2007-2013 

31 Zhang, 2016 Fargo-Moorhead Metropolitan 2000-2013 
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2.3 Variables in Hedonic Models 

2.3.1 Response variable 

Almost all reviewed studies used the single-family home sale price as the response variable 

for hedonic pricing models. Most reviewed studies used the semi-log function in modeling, 

i.e., the natural logarithm of selling price is the main format of response variables. Only 

Donnelly (1989) and J. D. Morgan et al. (2022) used the untransformed sale price as the 

response variable. In a hedonic pricing model that uses the semi-log function, a coefficient 

of an explanatory variable can be converted to a percentage change in sale prices by 

Equation (2.1).  

 

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑎𝑙𝑒 𝑝𝑟𝑖𝑐𝑒 = (exp(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) − 1) × 100% (2.1) 

 

2.3.2 Explanatory variables 

The explanatory variables of hedonic pricing models in previous studies are very diverse. 

Nearly 190 kinds of explanatory variables are found in the reviewed papers, and these 

variables were coarsely grouped into structural, location, neighborhood, and environmental 

characteristics. Sirmans et al. (2005) provide a more detailed classification system for 

explanatory variables, including eight categories: structural characteristics, internal 

features, external features, natural environment characteristics, neighborhood and location 

characteristics, public service characteristics, marketing characteristics, and financial 

issues. We modified this classification system to describe explanatory variables in the 

reviewed studies. Variables are first grouped into property characteristics, community 

characteristics, natural environment characteristics, and flood-related characteristics. The 
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property characteristics are divided into three sub-classes, and the community 

characteristics are split into four. Table 2.2 shows 43 commonly used variables in groups 

of community, environmental, and property characteristics.  

 

Table 2.2 Common Variables of Community, Environmental, and Property Characteristics 

Groups 
Variable 

categories 
Variables Counts Paper No. 

Community 

Characteristics 

Economic Local median household income 5 [1], [2], [8], [20], [29]. 

Community 

Characteristics 

Facility Distance to nearest highway / 

major road 

12 [1], [2], [3], [5], [6], [7], [9], [15], [16], 

[17], [19], [29]. 

Community 

Characteristics 

Facility Distance to the nearest park, 

recreation forest, or game land 

11 [1], [2], [3], [5], [6], [7], [9], [16], [17], 

[24], [28]. 

Community 
Characteristics 

Facility Distance to the nearest 
downtown area (CBD) 

9 [5], [6], [7], [9], [19], [20], [23], [29], 
[30]. 

Community 

Characteristics 

Facility Distance to the closest railroad 7 [1], [2], [3], [5], [6], [9], [19]. 

Community 
Characteristics 

Facility Distance to the closest airport 5 [3], [5], [6], [9], [30]. 

Community 

Characteristics 

Facility Distance to the closest school 4 [1], [2], [8], [17]. 

Community 
Characteristics 

Facility Dummy variable for abutting 
park 

3 [17], [30], [31]. 

Community 

Characteristics 

Facility Dummy variable for abutting 

golf course 

3 [28], [30], [31]. 

Community 
Characteristics 

Neighborhood  City/Township 4 [4], [6], [7], [15]. 

Community 

Characteristics 

Neighborhood  Census tract 3 [3], [21], [24]. 

Community 
Characteristics 

Social Percent of nonwhite  4 [1], [2], [4], [24]. 

Environment 

Characteristics 

Environmental Distance to nearest 

stream/creek/river 

10 [1], [2], [3], [5], [6], [8], [9], [12], [19], 

[26]. 

Environment 
Characteristics 

Environmental Distance to the nearest coastline 5 [3], [8], [13], [22], [29]. 

Environment 

Characteristics 

Environmental Distance to closest 

lake/waterbody 

5 [1], [2], [15], [22], [24]. 

Environment 
Characteristics 

Environmental Elevation of structure 5 [1], [2], [12], [13], [15]. 

Environment 

Characteristics 

Environmental Dummy variable for abutting 

river 

3 [28], [30], [31]. 

Environment 
Characteristics 

Environmental Dummy variable for abutting 
coastline 

3 [7], [8], [22]. 

Property 

Characteristics 

Housing 

information 

Dummy variable for vacant 

home 

3 [5], [6], [9]. 

Property 
Characteristics 

Structural Property age 26 [2], [3], [4], [5], [6], [7], [8], [9], [10], 
[11], [12], [13], [15], [17], [18], [19], 

[20], [21], [22], [23], [24], [25], [27], 

[28], [30], [31]. 
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Table 2.2 Common Variables of Community, Environmental, and Property Characteristics 

(continued) 

Groups 
Variable 

categories 
Variables Counts Paper No. 

Property 

Characteristics 

Structural Total structure square footage 

(living area) 

25 [2], [3], [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13], [15], [16], [18], [19], 

[20], [21], [23], [25], [27], [28], [29], 
[30], [31]. 

Property 

Characteristics 

Structural Lot size 22 [1], [2], [4], [5], [7], [9], [10], [11], [12], 

[13], [15], [16], [19], [20], [23], [24], 
[26], [27], [28], [29]. 

Property 

Characteristics 

Structural Number of bathrooms 17 [3], [4], [6], [7], [12], [13], [17], [18], 

[20], [21], [24], [25], [26], [28], [29], 
[30], [31]. 

Property 

Characteristics 

Structural Number of bedrooms 16 [1], [2], [3], [6], [9], [10], [12], [15], [17], 

[19], [20], [21], [26], [29], [30], [31]. 

Property 
Characteristics 

Structural Condition of buildings (quality) 8 [5], [6], [8], [9], [15], [19], [22], [24]. 

Property 

Characteristics 

Structural Dummy variable for Brick 

Exterior 

8 [1], [2], [5], [6], [9], [18], [22], [24]. 

Property 
Characteristics 

Structural Dummy variable of air-
conditioning (AC)  

8 [1], [2], [8], [11], [18], [28], [30], [31]. 

Property 

Characteristics 

Structural Dummy variable of fireplace 7 [5], [6], [8], [9], [11], [30], [31]. 

Property 
Characteristics 

Structural Dummy variable for new home 6 [6], [7], [12], [21], [24], [29]. 

Property 

Characteristics 

Structural Size of garage 6 [11], [24], [26], [28], [30], [31]. 

Property 
Characteristics 

Structural Number of floors (stories) 5 [18], [22], [25], [30], [31]. 

Property 

Characteristics 

Structural Size of heated area 5 [1], [2], [17], [22], [24]. 

Property 
Characteristics 

Structural Number of Full bathrooms 4 [1], [2], [15], [19]. 

Property 

Characteristics 

Structural Dummy variable of hardwood 

floor 

4 [5], [6], [9], [24]. 

Property 
Characteristics 

Structural Dummy variable of garage 4 [1], [2], [15], [19]. 

Property 

Characteristics 

Structural Type of Structural foundation 4 [8], [22], [30], [31]. 

Property 
Characteristics 

Structural Number of half-bathrooms 3 [1], [2], [19]. 

Property 

Characteristics 

Structural Number of fireplaces 3 [1], [2], [24]. 

Property 
Characteristics 

Structural Dummy variable for Gas heating 3 [5], [6], [9]. 

Property 

Characteristics 

Structural Dummy variable for basement 3 [15], [18], [19]. 

Property 
Characteristics 

Structural Dummy variable of deck 3 [8], [30], [31]. 

Property 

Characteristics 

Temporal  Sale year 12 [1], [2], [3], [4], [7], [11], [18], [20], [21], 

[23], [30], [31]. 

Property 

Characteristics 

Temporal  Sale month (month-year) 5 [8], [18], [19], [30], [31]. 

Note: The paper number refers to the sequence numbers in Table 2.1. 
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2.3.2.1 Property characteristics. Property characteristics are the physical 

configuration, selling information, and other housing attributes related to specific houses, 

including structural, temporal, and housing information subclasses. It is the largest and 

most frequently used variable group in hedonic pricing modeling. There are 25 variables 

in this group used in at least three studies, including the top three frequently used variables 

(age of property, squared footage, and lot size). Structural variables refer to the physical 

configuration of a house, such as the number of bedrooms, number of bathrooms, lot size, 

square footage, and stories. Temporal variables relate to the sale date of a property, such 

as sale year, sale month, and temporal trend of prices. Housing information contains other 

property attributes, such as the property tax and dummy variables for the home vacancy, 

owner-occupied house, and conventional financing.  

2.3.2.2 Community characteristics. Community characteristics depict the economic, 

social, and demographic conditions surrounding a house, further classified into 

neighborhood, facility, social, and economic variables. It is the second largest variable 

group, including 12 commonly used variables. The neighborhood variable indicates a 

house's position or administrative region designations, such as block number, census tract, 

and tax district. The neighborhood variable is often used to denote the spatial fixed effects. 

The facility variable depicts the accessibility of a house to nearby infrastructures and public 

services, such as distances to the closest highway, railway, commercial district, school, and 

park. Social variables are attributes that relate to the demographic features of a community, 

such as the percentage of vacant houses, the percentage of nonwhite population, and the 

total household size of a community. Economic variables consist of various economic 
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indicators for a community, including local property tax rate, total rent, percent of owner-

occupied housing, and median household income.  

2.3.2.3 Environmental characteristics. Environmental characteristics reflect the 

natural amenities and disamenities near a house. They are the smallest variable group, with 

only six commonly used variables. Most variables in this group vary over space, so they 

are often shown in some format of proximity to natural surroundings, such as the distance 

to the closest stream and the distance to the nearest waterfront. However, flood-related 

hedonic pricing studies seldom use environmental variables to assess air quality, noise, 

water quality, biodiversity, and aesthetic views. 

2.3.2.4 Flood-related characteristics. The flood-related characteristic is an iconic 

explanatory variable group for flood-related hedonic pricing studies. The reviewed studies 

apply 26 kinds of flood-related variables (Table 2.3). Only one-third of these variables are 

used in more than two studies. This group of variables can be generally split into two 

subtypes. One subtype is the flood-prone area designation, such as floodplains, flood zones, 

inundation areas, and the distance to floodplains. Another subtype is the variable indicating 

certain events or factors that can affect the floodplain impact, such as major flood events, 

flood damage, flood insurance reformation, and flood risk information disclosure. 

According to reviewed studies, dummy variables for the floodplain designation and home 

sales after flood events are the most frequently used flood-related variables.  
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Table 2.3 Flood-Related Variables 

Variables Counts  Variables Counts 

Dummy variable for 100-year floodplain  22   Dummy variable for Sandy flooding 1 

Dummy variable for 500-year floodplain 15 
 

Dummy variable for a sale after a levee 

setback 
1 

Dummy variable for a sale after a major 
flood /hurricane event  

10 
 

Dummy variable for the new floodplain 1 

Dummy variable for inundation 4 
 

Dummy for sale after the issue of the new 

floodplain maps 
1 

Dummy variable for flood zone A / AE 4 
 

Average flood damage by census block 1 

Years after the local flood event 3 
 

Distance to the 100-year floodplain (buffer 

rings) 
1 

Dummy variable for floodplain (merge 100-

year and 500-year floodplains) 
3 

 

Product of a floodplain and property's tax 

liability 
1 

Dummy variable for property built after 

FIRM /NFIP 
3 

 

Dummy variable for near-miss (properties in 

a floodplain but not inundated) 
1 

Flood depth 3 
 

Dummy variable for sale after an elevated 
river level (non-destructive flood) event 

1 

Dummy variable for flood zone V / VE 2 
 

Dummy variable for flood insurance 1 

Dummy variable for a sale after the 

hurricane cluster event 
1 

 
Annual flood insurance payment 1 

Dummy variable for the old floodplain 1 
 

Dummy variable for property in 100-year 
floodplain built before FIRM 

1 

Dummy variable for sale after the passage of 
the Biggert-Waters Act (raise of flood 

insurance premium) 

1 

  

Dummy variable for sales within a month 

after Hurricane Sandy 
1 

 

2.4 Modeling Methods 

The early stage of the hedonic pricing method uses multiple linear regressions to estimate 

property sale prices (e.g., Donnelly, 1989; A. Morgan, 2007; Shilling et al., 1989). With 

the development of the hedonic pricing method, a couple of modeling techniques were 

applied to hedonic pricing analysis, especially the difference-in-differences framework and 

spatial analysis models (Table 2.4). We discussed these methods in the following 

subsections.  
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Table 2.4 Modeling Methods of Reviewed Articles on the Hedonic Pricing Model 

Papers 

Multiple 

Linear 

Regression 

Difference-

in-Difference 

Spatial 

Fixed 

Effect 

Spatial 

autoregressive 

model 

Spatial 

error 

model 

Spatial 

autoregressive 

lag and error 

model (SARAR) 

R Squared 

Atreya & Ferreira, 

2015 
 

✓ ✓ 
   0.320~0.331 

Atreya et al., 2013  
✓ 

   
✓ * 

Bakkensen et al., 
2019 

 
✓ ✓ 

   * 

Bin & Kruse, 2006 ✓ 
     0.650~0.690 

Bin & Landry, 

2013 
 

✓ 
  

✓ 
 * 

Bin & Polasky, 

2004 
✓ 

     * 

Bin et al., 2008 ✓ 
   

✓ 
 * 

Chandra Putra, 
2017 

✓ ✓ 
 

✓ ✓ 
 0.628~0.646 

de Koning et al., 

2018 
 

✓ 
 

✓ 
  * 

de Koning et al., 

2019 
✓ 

     * 

Donnelly, 1989 ✓ 
     0.838 

Fonner et al., 2022  
✓ 

   
✓ 0.890 

Fu et al., 2016    
✓ ✓  * 

Gibson & Mullins, 
2020 

 
✓ ✓ 

   * 

Hennighausen & 

Suter, 2020 
 

✓ ✓ 
   0.775~0.776 

Kousky & Walls, 

2014 
  

✓ 
   0.729 

Lee & Li, 2009    
✓ 

  0.963~0.987 

Livy, 2023   
✓ 

   * 

Meldrum, 2016    
✓ 

  * 

Miller & Pinter, 
2022 

✓ ✓ 
    0.513~0.707 

A. Morgan, 2007   
✓ 

   * 

J. D. Morgan et al., 

2022 
 

✓ 
  

✓ 
 0.48 

Netusil et al., 2019 ✓ 
     0.502~0.508 

Pope, 2008  
✓ ✓ 

   0.92-0.93 

Posey & Rogers, 

2010 
✓ 

  
✓ 

  0.883 

Qiu et al., 2006 ✓ 
     0.524 

Shilling et al., 1989 ✓ 
  

   
0.77~0.78 

Shultz & Fridgen, 
2001 

✓ 
 

✓    0.78 

Troy & Romm, 

2004 
✓ ✓ 

    0.765~0.767 

Zhang & Leonard, 

2019 
 

✓ 
  

✓ 
 0.751~0.764 

Zhang, 2016  
✓ 

 
✓ 

  0.5616~0.755 

Count 12 15 9 7 6 2  
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2.4.1 Multiple linear regression 

Multiple linear regression is a basic and frequently used modeling technique in hedonic 

pricing modeling. Over one-third of reviewed studies use multiple linear regression as their 

base model because it is easy to implement. This approach analyzes the collective influence 

of structural, locational, and neighborhood attributes on real property prices. Its general 

formula is described in Equation (2.2) 

 

𝒚 =  𝑿𝜷 + 𝜀 (2.2) 

 

Where 𝒚 is a vector of home sale prices, 𝑿 represents a matrix of property attributes, 𝜷 

denotes a vector of coefficients of the explanatory variable, and 𝜀 is an independent random 

error term. The ordinary least square (OLS) and the maximum likelihood estimation (MLE) 

are frequently used fitting methods for multiple linear regression. Although the original 

format of the multiple linear regression does not consider the spatial dependence and 

temporal variation in property prices, it can easily integrate with the spatial fixed effect 

technique and the difference-in-difference framework to improve model performance.  

2.4.2 Spatial analysis models 

Real property values typically have significant spatial dependence. The price of a house is 

often affected by prices of nearby properties, and closer properties have greater impacts. 

This phenomenon makes the estimation of a multiple linear regression bias and inefficient. 

Spatial analysis techniques are used to resolve spatial dependence in modeling. Among 

reviewed studies, the spatial fixed effects technique and the spatial regression are 
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frequently used spatial modeling techniques. The spatial regression includes the spatial 

autoregressive model and the spatial error model.  

2.4.2.1 Spatial fixed effects. A spatial fixed effect model is a statistical approach to 

analyze data incorporating spatial dependencies. It assumes that observations in close 

geographic proximity may have similar characteristics or behaviors. In this model, specific 

effects or characteristics are associated with individual spatial units (e.g., regions, census 

tracts, or neighborhoods) and are considered fixed over time. This approach is often used 

to capture unobserved heterogeneity specific to each location. Equation (2.3) shows a 

formula of a spatial fixed effect model. 

 

𝑦𝑖 = 𝑿𝒊𝜷 + 𝑆𝑖 + 𝜀𝑖 (2.3) 

 

Where, 𝑦𝑖 is the predicted variable of the 𝑖-th observation (home sale price), 𝑿𝒊 represents 

explanatory variables (property attributes) of the 𝑖-th observation. 𝜷 represents coefficients 

of explanatory variables. 𝑆𝑖 stands for the spatial fixed effect of the 𝑖-th observation. It is 

usually an indicator variable for a spatial unit (e.g., block, tract, and county). The spatial 

effect is assumed constant within a spatial unit but varies among different spatial units. 

From the modeling view, the spatial fixed effect variable can be treated as a categorical 

variable expressed by a set of dummy variables. 

Nine of the reviewed studies used the spatial fixed effects technique (Atreya & 

Ferreira, 2015; Bakkensen et al., 2019; Gibson & Mullins, 2020; Hennighausen & Suter, 

2020; Kousky & Walls, 2014; Livy, 2023; A. Morgan, 2007; Pope, 2008; Shultz & Fridgen, 

2001) The spatial units used in these studies include geographic regions in a state, Core 
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Based Statistical Areas, counties, municipalities, census tracts, census blocks, tax lots, and 

tax districts. 

2.4.2.2 Spatial autoregressive model and spatial error model. A spatial autoregressive 

model is a statistical model used to analyze spatial data that exhibits spatial autocorrelation. 

It considers the dependency between observations in neighboring locations by 

incorporating a lagged term of the dependent variable. A formula of a spatial autoregressive 

model is Equation (2.4). 

 

𝒚 =  𝜌𝑾𝒚 + 𝑿𝜷 + 𝜀 (2.4) 

 

Where, 𝑾𝒚 is the spatial lag term. 𝑾 is the spatial weight matrix reflecting the strength of 

the relationship between locations. A weight matrix can be constructed according to 

contiguity or distance. Neighbor within a distance, Nearest-Neighbors, Inverse Distance 

Weighting, and semi-variograms are common methods for building a spatial weight matrix. 

𝜌  is the coefficient of the spatial lag term. Because of the spatial lag term, a spatial 

multiplier should be applied when interpreting the coefficients of the explanatory variables. 

The spatial multiplier equals 1 (1 − 𝜌)⁄ . 

In a spatial error model, the error term of the regression equation is assumed to be 

spatially correlated. Therefore, it incorporates a spatially lagged term in errors. Its formula 

follows Equation (2.5). 

 

𝒚 = 𝑿𝜷 + 𝒖, 𝒖 =  𝜆𝑾𝒖 + 𝜀 (2.5) 
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Where, 𝒖 is an additional error term that captures the uncorrelated variation. 𝜆 is the spatial 

autoregressive coefficient in the error term. The spatial error model allows for analyzing 

spatial dependencies and spatially correlated variations not captured by the explanatory 

variables. In contrast to the spatial autoregressive model, the spatial error model does not 

need a spatial multiplier when interpreting coefficients of explanatory variables. 

Among reviewed papers, six studies used the spatial autoregressive model (Atreya 

et al., 2013; Chandra Putra, 2017; J. S. Lee & Li, 2009; Posey & Rogers, 2010; L. Zhang, 

2016), and five studies used the spatial error model (Bin & Landry, 2013; Chandra Putra, 

2017; de Koning et al., 2018, 2019; J. D. Morgan et al., 2022; L. Zhang & Leonard, 2019). 

The spatial autoregressive and spatial error methods can be implemented simultaneously 

in one model, called spatial autoregressive with additional autoregressive error structure 

(SARAR). Three studies used the SARAR model to analyze the property prices under the 

flood hazard impact (Atreya et al., 2013; Fonner et al., 2022; Fu et al., 2016).  

2.4.3 Difference-in-differences 

The difference-in-differences (DiD) is a quasi-experimental statistical technique used to 

compare the difference in outcomes between treatment (e.g., floodplain) and control groups 

before and after an intervention (e.g., flood event) is implemented. This approach can 

isolate the effect of treatment. The basic format of a DiD framework in a flood-related 

hedonic pricing regression is Equation (2.6). 

 

𝑦 =  𝑿𝜷 + 𝛾(𝐹𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛) + 𝜏(𝑃𝑜𝑠𝑡) + 𝜃(𝐹𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛 × 𝑃𝑜𝑠𝑡) + 𝜀 (2.6) 
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Where, 𝑦 is a home sale price, 𝑿 stands for a vector of property attributes, 𝐹𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛 is 

a dummy variable indicating a home in a floodplain, 𝑃𝑜𝑠𝑡 is a dummy variable indicating 

a home sale after a flood event, 𝐹𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛 × 𝑃𝑜𝑠𝑡 represents the interaction term of the 

floodplain dummy and flood event dummy, and 𝜀 is the error term. 𝜷 represents a vector 

of coefficients corresponding 𝑿 . Coefficient 𝛾  is the treatment effect coefficient, 

representing the difference in the sale price between properties inside and outside a 

floodplain before a flood event. Coefficient 𝜏 is the coefficient for time effect, representing 

the average change in sale price for properties outside a floodplain through a flood event. 

Coefficient 𝜃 is the interaction term coefficient, representing the difference in pre-post sale 

price changes between floodplain properties and non-floodplain properties. If  𝜃  is 

significantly different from zero, the flood event changes the floodplain's impact on 

property values.  

Fifteen studies used a DiD technique in their hedonic pricing regressions. Each of 

these studies used the presence of floodplain as a treatment of properties in the difference-

in-differences framework. Properties outside a floodplain are the control group. Most 

studies analyzed changes in property prices before and after a flood event or a storm. 

(Atreya et al., 2013; Atreya & Ferreira, 2015; Bakkensen et al., 2019; Bin & Landry, 2013; 

Chandra Putra, 2017; de Koning et al., 2018; Gibson & Mullins, 2020; R. G. Miller & 

Pinter, 2022). Three studies examined changes before and after certain policies were 

implemented (Gibson & Mullins, 2020; Pope, 2008; Troy & Romm, 2004). The DiD 

framework was also used to compare the impacts of other hazard area designations, such 

as inundated areas and hurricane evacuation zones, with the floodplain impact (Atreya & 

Ferreira, 2015; Hennighausen & Suter, 2020; J. D. Morgan et al., 2022). 
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2.5 The Floodplain Impact on Property Values 

Intuitively, properties in floodplains should suffer a discount effect on sale prices, as 

properties in floodplains are exposed to a higher risk of flood hazard than comparable 

properties outside floodplains. Some early studies estimate this discount effect ranging 

from 4% to 12% (Bin & Polasky, 2004; Donnelly, 1989; Shilling et al., 1989; Shultz & 

Fridgen, 2001; Troy & Romm, 2004).  However, the pattern of the floodplain impact on 

property values is not universally negative over space and time. Through reviewing 19 

studies in the United States before 2009, Daniel et al. (2009) found that the 100-year 

floodplain has an effect ranging from -52% to +58% on house prices, and their meta-

analysis suggests that a 0.01 increase in the annual probability of flooding is associated 

with a 0.6% decrease in house prices. Beltrán et al. (2018) analyzed 37 studies worldwide 

before 2018. They found that the floodplain impact lies between -75.5% and +61.0%, and 

their meta-analysis result suggests that properties in a 100-year floodplain in the inland 

region have a price discount of 4.6%. According to our reviewed journal articles (Table 

2.5), the floodplain impact in the United States ranges from -48% to +61%. The detailed 

spatial and temporal patterns of the floodplain impact are complicated and even 

counterintuitive in some places, reflecting a diversity of flood risk perspectives in the real 

estate market. The following three subsections describe patterns in the floodplain impact 

from spatial, temporal, and other aspects. 
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Table 2.5 The Floodplain Impact on Property Values 

Papers 
Overall 

Impact  

Pre-event 

Impact  

Post-event 

Impact 
Events 

Coast / 

Inland 
Atreya & Ferreira, 
2015 

 
Insignificant Floodplain × 

Inundated: -48% 

Near-miss: 

insignificant 
Inundated ×No 

Floodplain: -36%  

1994 flood caused 
by tropical storm 

Alberto 

Inland 

Atreya et al., 2013 
 

100-year 
floodplain: -9% 

500-year 

floodplain: 
insignificant 

100-year 
floodplain: -32% 

to -44% 

500-year 
floodplain: -23% 

1994 flood caused 
by tropical storm 

Alberto 

Inland 

Bakkensen et al., 

2019 

 
In never-hit 

counties, A Zone 

price relative to X 

Zone price: +4.4% 

to +16.5% 
In near-miss 

counties, A Zone 

price relative to X 
Zone price: +4.7% 

to +8.3% 

In never-hit 

counties, A Zone 

price relative to X 

Zone price: +9.4% 

to +18.8% 
In near-miss 

counties, A zone 

price relative to X 
Zone price: -3.3% 

to +2.2% 

Hurricane cluster 

period from Aug 

2004 to Oct 2005 

Florida 

Bin & Kruse, 2006 100-year 
floodplain: -5.6% to 

+10% 

V Zone: +26.5% to 
+61% 

500-year 
floodplain: -5% to -

10.3% 

   
Coast 

Bin & Landry, 2013 
 

Insignificant All floodplain: -
5.7% to -8.8% 

100-year 

floodplain: -8.8% 
to -13% 

500-year 

floodplain: 
insignificant 

Hurricane Fran 
and Hurricane 

Floyd 

Inland 

Bin & Polasky, 

2004 

100-year 

floodplain: -5.7% 

100-year 

floodplain: -3.8% 

100-year 

floodplain: -8.4% 

Hurricane Floyd Inland 

Bin et al., 2008 100-year 

floodplain: -7.8% 
500-year 

floodplain: -6.2% 

   
 

Chandra Putra, 

2017; Chandra-
Putra & Andrews, 

2020 

A Zone: -21.6% 

V Zone: +11.7% 
X Zone: -3.6% 

A Zone: -26.7% 

A Zone × owner 
occupied: -9.4% 

V Zone: +8.0%  

V Zone × owner 
occupied: +48.8% 

X Zone: +6.4% 

X Zone × owner 
occupied: -2.2% 

A Zone: -35.4% 

V Zone: -18.1% 
X Zone: +0.2%  

Hurricane Sandy Coast 

de Koning et al., 

2018 

All floodplains: -

5% to -6.3% 

  
Hurricane Fran 

and Hurricane 
Floyd 

Inland 

de Koning et al., 

2019 

100-year 

floodplain: -32.1% 
500-year 

floodplain: -24.6% 

   
Coast 

Donnelly, 1989 All floodplains: -
12% 

   
Inland 
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Table 2.5 The Floodplain Impact on Property Values (continued) 

Papers 
Overall 

Impact  

Pre-event 

Impact  

Post-event 

Impact 
Events 

Coast / 

Inland 
Fonner et al., 2022 

 
100-year 
floodplain: -3% 

500-year 

floodplain: -3.5% 

100-year 
floodplain: -3% 

500-year 

floodplain: +1.8% 

2014 Levee 
setback 

Inland 

Fu et al., 2016 100-year 

floodplain: +3.5% 
to +8.4% 

   
Coast 

Gibson & Mullins, 

2020 

  
Avg. inundation 

inside 100-year 
floodplain: -7% 

Avg. inundation 
outside 100-year 

floodplain: -5.5% 

Hurricane Sandy Coast 

Hennighausen & 

Suter, 2020 

 
100-year 

floodplain Overall: 
-6.1% 

100-year 

floodplain × 
inundated: -10% 

Near-miss: -4.1% 

500-year 
floodplain: 

insignificant 

100-year 

floodplain Overall: 
-6.1% 

100-year 

floodplain × 
inundated: -17.3% 

Near-miss: 

insignificant 
500-year 

floodplain: +4% to 

+4.6% 

2013 Flood event Inland 

Kousky & Walls, 

2014 

100-year 

floodplain: -0.68% 

(insignificant) 

   
Inland 

Lee & Li, 2009 Flood control 

detention basin: -

3.5% 
Multi-use detention 

basin: +$2,489 

   
Inland 

Livy, 2023 100-year 

floodplain: -12.7% 

500-year 
floodplain: -17.6% 

 100-year 

floodplain: -19.2% 

500-year 
floodplain: 

insignificant 

Elevated river 

level 

Inland 

Meldrum, 2016 100-year 
floodplain: -14% 

(Condo); 

insignificant 
(standalone) 

   
Inland 

Miller & Pinter, 

2022 

 
100-year 

floodplain: -6.1% 
to -9.4% 

500-year 

floodplain: -4.8% 
to -7.3% 

100-year 

floodplain: -9.4% 
to -15.7% 

500-year 

floodplain: -1% to 
+0.6% 

Local flood events Inland 

A. Morgan, 2007 100-year 

floodplain: +27.5% 

100-year 

floodplain: +32.1% 

100-year 

floodplain: +15.7%  

Hurricane Ivan Coast 

J. D. Morgan et al., 

2022 

100-year 

floodplain: -

$5,887.92 
100-year floodplain 

× evacuation zone: -

$11,162.47  

   
Coast 
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Table 2.5 The Floodplain Impact on Property Values (continued) 

Papers 
Overall 

Impact  

Pre-event 

Impact  

Post-event 

Impact 
Events 

Coast / 

Inland 
Netusil et al., 2019 100-year floodplain 

× tax lot: -8.6% 

100-year floodplain 

× building 
footprint: -21.5% 

500-year 

floodplain: 
insignificant 

   
Inland 

Pope, 2008 A Zone: -2% 

(insignificant) 

Insignificant A Zone: -4.3% 

X Zone: 
insignificant 

1996 NC 

Residential 
Property 

Disclosure Act 

Inland 

Posey & Rogers, 
2010 

100-year 
floodplain: -8.6% 

   
Inland 

Qiu et al., 2006 All floodplains: -

4.7% to -5.6% 

   
Inland 

Shilling et al., 1989 All floodplains -8% 
   

Inland 

Shultz & Fridgen, 
2001 

 
100-year 
floodplain: -$8,890 

500-year 

floodplain: 
+$3,100 

100-year 
floodplain: -

$ 10,241 

1997 Flood event Inland 

Troy & Romm, 

2004 

 
Insignificant 100-year 

floodplain: -4.3% 

1998 CA Natural 

Hazard Disclosure 
Law (AB 1195) 

California 

Zhang & Leonard, 

2019 

100-year 

floodplain: -4.8% 

500-year 
floodplain: 

insignificant 

100-year 

floodplain: -3.6% 

to -12.2% 

100-year 

floodplain: -18.9% 

to -27.4% 

2009 Major 

Flood, 2010 non-

major flood, 2011 
non-major flood, 

and the first two 

years after the 

2011 flood. 

Inland 

Zhang, 2016   100-year 
floodplain: -3.9% 

to -6% 

100-year 
floodplain: -10.1% 

to -30.2% 

2009 Major Flood Inland 

 

2.5.1 Spatial patterns of the floodplain impact  

2.5.1.1 Patterns between coastal and inland properties. The floodplain impact has 

different patterns in coastal and inland areas. The price discounts of floodplain properties 

in coastal areas are generally smaller than in inland areas, and floodplain properties 

adjacent to the waterfront even have a price premium over non-floodplain properties. Eight 

studies in our review list (see Table 2.5) were conducted in coastal areas, suggesting a 

floodplain impact on home sale prices between -35.5% and +61%. Several studies find 

properties in high flood-risk zones (100-year floodplains), especially in the V Zone, have 
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higher prices (ranging from +2.9% to +61%) than comparable properties outside 

floodplains (Bin & Kruse, 2006; Chandra Putra, 2017; Fu et al., 2016; A. Morgan, 2007). 

On the one hand, most of these studies believe that coastal amenities or other unobserved 

factors related to the proximity to the coast and the frontage of waterbodies may overwhelm 

the negative effect of flood risk, resulting in positive coefficients of floodplain dummy 

variables (Bin & Kruse, 2006; Chandra Putra, 2017; Fu et al., 2016). On the other hand, A. 

Morgan (2007) suggests that home price premiums in high flood-risk areas are caused by 

flood insurance premium subsidies that reduce the perceived risks and expected flood 

losses in floodplains. By adding independent variables in modeling to control coastal 

amenities, three studies successfully identified a negative floodplain impact on property 

prices (between -32.1% and -2.9%) in the high flood-risk zones (Bin et al., 2008; de Koning 

et al., 2019; J. D. Morgan et al., 2022).    

In contrast, the pattern of the floodplain impact in inland areas is relatively 

straightforward. Properties in 100-year floodplains in inland areas generally undertake a 

price discount from 3% to 48%, which is consistent with people’s expectations of the 

influence of flood risk and flood insurance premiums on property prices. Twenty-one 

studies in our list were conducted in the inland region. Eleven studies distinguish a 

significant overall price discount (from -4.7% to -21.5%) for floodplain properties across 

their study period (Bin & Polasky, 2004; de Koning et al., 2018; Donnelly, 1989; 

Hennighausen & Suter, 2020; Livy, 2023; Meldrum, 2016; Netusil et al., 2019; Posey & 

Rogers, 2010; Qiu et al., 2019; Shilling et al., 1989; L. Zhang & Leonard, 2019). Twelve 

studies analyze changes in the floodplain impact before and after a storm, a flood event, a 

floodplain conservation project, or a floodplain information disclosure policy (Atreya & 



37 

Ferreira, 2015; Atreya et al., 2013; Bin & Landry, 2013; Bin & Polasky, 2004; de Koning 

et al., 2018; Fonner et al., 2022; Hennighausen & Suter, 2020; Livy, 2023; R. G. Miller & 

Pinter, 2022; Pope, 2008; Shultz & Fridgen, 2001; L. Zhang, 2016; L. Zhang & Leonard, 

2019). Most of these studies suggest that the property price discounts in 100-year 

floodplains were enlarged after a flood event, and the post-flood price discounts compared 

to non-floodplain properties range from -8.4% to -48%. However, R. G. Miller & Pinter 

(2022) found that post-flood price changes of properties in 100-year floodplains were 

insignificant in Benton County, Oregon, and Cass County, North Dakota. They attribute 

the insignificant property price changes in Benton County to a substantial pre-flood 

property price discount in 100-year floodplains (-9.4%) and less damages from the 2012 

storm in Oregon, while they attribute the insignificant property price changes in Cass 

County to a broad discussion about the Fargo-West Fargo Flood Control Project causing 

local homebuyers not to emphasize the floodplain designation of their homes.   

2.5.1.2 The pattern among flood zones. The floodplain impact also varies among 

different flood zones. The FEMA classifies floodplains into 100-year floodplains and 500-

year floodplains, and 100-year floodplains are further split into A and V flood zones which 

represent the most hazardous portions (due to flowing waters or wave action) of riverine 

and coastal floodplains, respectively. The 500-year floodplain is also denoted as the X 

flood zone. As the V Zone abuts the waterfront and is exposed to coastal waves, properties 

suffer more flood risks than in the A Zone. Based on the level of flood risk and the 

mandatory requirement of flood insurance in the 100-year floodplain, the property price in 

V Zone should be lower than the price of a comparable property in A Zone, the property 

price in A Zone should be lower than the price of a comparable property in the 500-year 



38 

floodplain, and floodplain properties should have a price discount compared to non-

floodplain properties. This pattern is generally correct in most studies. However, there are 

some exceptional cases in reality.  

In the coastal region, coastal amenities often outweigh the flood risk and the flood 

insurance premium in high flood-risk areas, leading to a property price premium in V Zone 

and some parts of A Zone (Bin & Kruse, 2006; Chandra Putra, 2017; Fu et al., 2016; A. 

Morgan, 2007).  The magnitudes of floodplain coefficients follow the level of flood risk 

when controlling for coastal amenities in the model (Bin et al., 2008; de Koning et al., 2019; 

J. D. Morgan et al., 2022). In contrast, the impact of the 500-year floodplain on property 

prices is usually negative because this type of floodplain is away from coastal amenities 

and still suffers a moderate risk of flood hazards (Bin et al., 2008; Bin & Kruse, 2006; 

Chandra Putra, 2017; de Koning et al., 2019).   

In the inland region, the property price discount is usually higher in the 100-year 

floodplain than in the 500-year floodplain (Atreya et al., 2013; Bin & Landry, 2013; 

Hennighausen & Suter, 2020; R. G. Miller & Pinter, 2022; Pope, 2008; Shultz & Fridgen, 

2001; L. Zhang & Leonard, 2019). However, Fonner et al. (2022) found that the effect of 

the 100-year floodplain on property prices was close to the effect of the 500-year floodplain 

before a floodplain restoration project in Orting, Washington. Livy (2023) also suggested 

no significant difference between the 100-year floodplain and 500-year floodplain impacts 

before a non-destructive flood event. Only Bakkensen et al. (2019) found a significant 

inverse pattern of floodplain impacts between A Zone and X Zone. They compared the 

differences between the effects in A Zone and X Zone in Florida State before and after a 

hurricane cluster period (2004-2005). Their results show properties had higher prices in A 
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Zone than in X Zone before the 2004-2005 hurricane season. After the hurricane season, 

the property price premium in A Zone over X Zone was reduced by 5.1 to 8.0 percentage 

points in counties adjacent to hurricane-hit counties (near-miss counties) but slightly 

increased (≤5%) in counties not adjacent to hurricane-hit counties (never-hit counties).  

The pattern of the 500-year floodplain impact is ambiguous in inland areas. The 

impact of the 500-year floodplain on home prices ranges from -23% to +4.6%. Shultz & 

Fridgen (2001) found that home prices were, on average, $3,100 higher in 500-year 

floodplains than outside floodplains before the 1997 flood event in Fargo-Moorhead 

Metropolitan. Atreya et al. (2013) did not find a significant pre-flood impact but a post-

flood home price discount of -23% in the 500-year floodplain in Dougherty County, 

Georgia. In contrast, Hennighausen & Suter (2020) found no significant pre-flood impact 

but a post-flood home price premium of 4% to 4.6% in the 500-year floodplain in Boulder 

County, Colorado. Similarly, two studies suggest that the negative pre-flood effects in the 

500-year floodplain in several places were weakened after local flood events (Livy, 2023; 

R. G. Miller & Pinter, 2022). Besides flood events, a floodplain restoration project also 

changed the impact of the 500-year floodplain from a home price discount to a price 

premium (Fonner et al., 2022). In addition, several studies suggest no significant impact of 

the 500-year floodplain on property prices in some places (Bin & Landry, 2013; Netusil et 

al., 2019; Pope, 2008; L. Zhang & Leonard, 2019). 

2.5.1.3 The pattern between inundated and non-inundated areas. Floodplains 

are conceptual designations of flood-prone areas that do not represent the actual extent of 

inundation. Home buyers may be more sensitive to the costs related to flooding in actual 

flooded areas than in a designated floodplain generally. Therefore, the impact of 
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floodplains on property values also varies between inundated and non-inundated places 

within a floodplain. Previous studies suggest that properties in directly flooded areas inside 

a floodplain have lower sale prices than non-flooded properties in the same floodplain 

(near-miss property) after flooding. Atreya & Ferreira (2015) analyzed the interaction 

effect of floodplain and inundation on housing prices in Albany, Georgia, and found 

properties in inundated areas within the 100-year floodplain had a price discount of 48% 

compared to equivalent properties in non-inundated areas outside the 100-year floodplain 

immediately after the Tropical Strom Alberto. However, near-miss properties did not have 

a significant price discount after the storm. Hennighausen & Suter (2020) also found a 

similar pattern in Boulder County, Colorado. Their result shows that inundated properties 

inside 100-year floodplains had a price discount of 17.3% after the 2013 major flood, while 

near-miss properties had an insignificant price premium (1.1%) after the flood event.  

However, the pattern of flooded property prices outside the floodplain is blurry. 

Atreya & Ferreira (2015) found a significant property price discount of -36% in inundated 

areas outside the 100-year floodplain, which is 11 percentage points lower than the price 

discount in inundated areas inside the floodplain. Gibson & Mullins (2020) found a 

significant price discount for flooded properties outside the 100-year floodplain in New 

York City after Hurricane Sandy, which is not significantly different from the price 

discount for flooded properties inside the floodplain. In contrast, Hennighausen & Suter 

(2020) did not find a significant price discount for inundated properties outside floodplains.  

Previous inundation records may also affect the property price responses to the 

floodplain map update. In 2013, the FEMA updated floodplain maps in New York City. 

Gibson & Mullins (2020) found that issuing new floodplain maps decreased prices of 
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Hurricane Sandy flooded properties by 2.9% while decreasing non-flooded property prices 

in the new designated floodplain by 11%. The larger price changes in non-flooded 

properties may be attributed to a pre-existing price discount for flooded properties before 

the floodplain map update.  

2.5.2 Temporal pattern of the floodplain impact  

The floodplain impact on property values is not temporally constant (Atreya et al., 2013; 

Bakkensen et al., 2019; Netusil et al., 2019). In a long-term period, the floodplain impact 

can be affected by various events (e.g., natural hazards, floodplain map updates, and flood 

insurance reformations) and the tendency of flood memory fading, resulting in an 

oscillating pattern (Netusil et al., 2019). However, most previous studies focused on 

analyzing the floodplain impact variations several years before and after a flood or 

hurricane event.  Many studies suggest that a major flood event or a hurricane can either 

cause a new property price discount or enlarge a pre-existing property price discount in the 

100-year floodplain(Atreya et al., 2013; Atreya & Ferreira, 2015; Bin & Landry, 2013; Bin 

& Polasky, 2004; Chandra Putra, 2017; Hennighausen & Suter, 2020; Shultz & Fridgen, 

2001; L. Zhang, 2016; L. Zhang & Leonard, 2019). In some coastal areas, storm events 

can reduce the property price premium in the V Zone or even convert the price premium 

to a price discount (Chandra Putra, 2017; A. Morgan, 2007). However, relatively lower 

severity flood events did not exacerbate the pre-event price discount in the 100-year 

floodplain but caused a decay of the pre-event price discount in the 500-year floodplain 

impact (Livy, 2023; R. G. Miller & Pinter, 2022). A hurricane or a major flood event may 

also affect places near the hazard zone. Bakkensen et al. (2019) found that hurricanes 

caused home prices in A Zone to decrease by 5.1% to 8% relative to X Zone in counties 
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adjacent to hurricane-hit counties in Florida. This indirect impact decays with the increased 

distance to the hazard zone. A Zone home prices in counties far from hurricane-hit counties 

barely changed relative to X Zone home prices after the 2004 -2005 hurricane season.  

However, these post-flood effects fade with time and are short-lived. Several 

studies suggest that the price discount in the floodplain gradually diminishes after a major 

flood event and may return to the pre-flood level in a few years (Atreya et al., 2013; Atreya 

& Ferreira, 2015; Bin & Landry, 2013; R. G. Miller & Pinter, 2022; L. Zhang, 2016; L. 

Zhang & Leonard, 2019). The effect of a non-destructive flood event has an even shorter 

life, which can disappear in a few months (Livy, 2023). From a long-term view, multiple 

flood events and other factors can cause the oscillation in the floodplain impact. Even 

though housing prices in the 100-year floodplain relative to the 500-year floodplain 

oscillated downward for four years after the 2004-2005 hurricane in Florida clustered 

period, Bakkensen et al. (2019) found that they started to bounce back after 2009. 

2.5.3 Other floodplain impacts 

Several other factors affect the floodplain impact besides spatial and temporal factors. First, 

disclosing flood risk information to home buyers can reduce home prices in the 100-year 

floodplain. Pope (2008) found that a property price discount of -4.3% occurred in the 100-

year floodplain in Wake County, North Carolina, after implementing the Residential 

Property Disclosure Act. Similarly, Troy & Romm (2004) found that the 100-year 

floodplain impact changed from no insignificant effect to a significant price discount of -

4.3% in California State after the 1998 California Natural Hazard Disclosure Law took 

effect.  
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Second, preserving and restoring environmental amenities in floodplains can 

mitigate the negative impacts of flood-prone areas on property values. Kousky & Walls 

(2014) found that floodplain conservation (e.g., greenway) can diminish the negative 

impact of floodplains on property values. They analyzed property prices in the Meramec 

Greenway in St. Louis County, Missouri, and found a weak and insignificant discount 

effect (-0.68%) in 100-year floodplains, even though two previous studies suggest a 

significant price discount in 100-year floodplains in nearby places (Posey & Rogers, 2010; 

Qiu et al., 2019). In College Station, Texas, Lee & Li (2009) found that properties near a 

flood control detention basin are 3.5% cheaper than properties not close to a detention basin, 

while properties near a multi-use detention basin with a recreational park have an average 

price premium of $2,489. Fonner et al. (2022) investigated home sale price changes before 

and after a floodplain restoration project in Orting, Washington. They found that post-event 

home sale prices in 500-year floodplains increased 5.3 percentage points from the pre-

event prices, although the home sale prices in 100-year floodplains did not significantly 

change after the restoration.  

Third, the type of residential properties can affect their price response to the 

floodplain designation. Meldrum (2016) found that condominiums in 100-year floodplains 

in Boulder County, Colorado, have a price discount of -14%, whereas standalone properties 

do not have a significant discount in floodplains.  

Fourth, the floodplain impact can be more substantial for lower-priced homes than 

higher-priced homes. Zhang (2016) used a spatial quantile regression approach to analyze 

hedonic home prices from 2000 to 2013 in Fargo-Moorhead Metropolitan. The author 

found that lower quantile homes had more pre-event price discounts in floodplains than 



44 

higher quantile homes, and the 2009 major flood event caused more price decreases for 

lower quantile homes than higher quantile homes.  

Finally, the floodplain property designation approach can affect the floodplain 

impact. Netusil et al. (2019) compared two approaches for floodplain property designation 

in an urban watershed around Johnson Creek in Oregon with repeated home sale data 

between 1988 and 2014. One approach uses the building footprint to overlap the floodplain 

extent, while the other uses the tax lot extent to overlap the floodplain extent. They found 

that the building footprint approach released a more substantial home price discount (-

21.5%, on average) in a 100-year floodplain than the tax lot approach (-8.6%, on average). 

 

2.6 Discussion 

Previous studies display diverse patterns in the floodplain impact, suggesting that the 

floodplain impact not only reflects the effects of flood risks and flood insurance but also 

tangles with other factors. The purpose of the floodplain designation is to reflect the flood 

risk of properties and facilitate the implementation of the NFIP. Therefore, the floodplain 

impact naturally consists of the adverse effects of higher flood risks and mandatory flood 

insurance premiums on property prices. However, these adverse effects did not always lead 

to a significant property price discount in floodplains; even price premiums existed in some 

places. There were some factors related to floodplains that reduce or compensate for the 

adverse effects of flood risks and insurance premiums. One usually referred factor is the 

unobserved amenity related to the proximity of the waterfront (especially coastlines). 

Properties near the waterfront enjoy better aesthetic views, convenient access to 

recreational water, and pleasant natural environments, which benefit housing prices and 
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offset part or even all adverse effects caused by flood risks and flood insurance. These 

amenities generally increase inversely to the distance to waterbodies or coastlines. 

Therefore, more amenities often tangle with high flood-risk areas. This phenomenon is 

pronounced in coastal areas, leading to a housing price gradient inverse to the flood-risk 

levels (Bin & Kruse, 2006; Fu et al., 2016; A. Morgan, 2007). Although the effect of 

amenities near the coastline is potent, it can be effectively isolated in the hedonic pricing 

model by adding independent variables reflecting the proximity to the waterfront (Bin et 

al., 2008; J. D. Morgan et al., 2022). However, in inland areas, the beneficial effect of 

amenities near the waterfront is minor and only appears in the prices of properties 

immediately adjacent to the riverfront (Shultz & Fridgen, 2001; L. Zhang, 2016; L. Zhang 

& Leonard, 2019). Most studies did not find that unobserved inland floodplain amenities 

blur the adverse effects of flood risks and flood insurance premiums. Therefore, the 

amenity effect can explain only a part of the patterns in the floodplain impact. Researchers 

tend to isolate the amenity effect from the adverse effects of floodplains to determine the 

effect of flood risks. 

The perception of flood risks is another significant factor that drives the changes in 

the floodplain property price. The more flood risk people perceived, the more pronounced 

an adverse floodplain impact on prices is obtained. The perception of flood risks originates 

from the probability of flooding and the flood insurance premiums in the floodplain. 

However, it is influenced by obtained flooding information, people’s attention, and specific 

flood insurance policies. Home buyers would not have price discrimination against 

floodplain properties without enough information on the properties' flood risk (Pope, 2008; 

Troy & Romm, 2004). Floods and hurricanes can evoke people’s awareness of flood 
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hazards, increasing price discounts for floodplain properties after flooding (e.g., Atreya et 

al., 2013; Bin & Landry, 2013; Zhang & Leonard, 2019). However, as time passes, people's 

memories of the flood fade, and their perception of flood risk decays until the next flood 

(Atreya et al., 2013; Bin & Landry, 2013; L. Zhang & Leonard, 2019). Therefore, regular 

publicity and education of flood risks to stakeholders in the floodplain is necessary.  

People also update their perception of flood risk based on where flooding occurred 

(Atreya & Ferreira, 2015; Hennighausen & Suter, 2020). Inundated areas in the floodplain 

confirm and foster people’s high flood-risk perception about the floodplain, leading to a 

more pronounced property price discount after the flooding. Non-inundated areas in the 

floodplain are contrary to the expectation of higher flood risk, and people degrade the 

perceived flood risk in these areas after flooding, resulting in insignificant price 

differentials between floodplain properties and non-floodplain properties. This kind of 

post-flood adjustment in the perceived flood risks may reflect the local facts or be misled 

by a singular flood event. Exaggerated flood risks in the 100-year floodplain may not cause 

serious consequences, whereas omitting flood risks will likely cause heavy losses in the 

long run. Authorities need to update floodplain maps and publicize flood risk information 

in time to avoid mistake adjustments in the perceived flood risks.  

Flood insurance policies also affect the perception of flood risks. To some extent, 

the flood insurance premium is a flood risk reminder for homeowners in flood-prone areas. 

Raising flood insurance premiums and updating floodplain maps can increase the perceived 

flood risks, thereby reducing floodplain property prices (Gibson & Mullins, 2020). 

Subsidizing flood insurance premiums undermines the reminder effect of flood insurance 

and reduces homeowners’ perceived flood risks, even though it can increase the take-up 
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rate (A. Morgan, 2007). Most flood insurance is paid through the homeowner’s mortgage 

payment (along with taxes and regular home insurance), making the risk reminder less 

apparent. The lack of flood insurance requirement is one reason causing low perceived 

flood risks in the 500-year floodplain, which makes the 500-year floodplain impact on 

home prices ambiguous (Bin & Landry, 2013; Hennighausen & Suter, 2020; Pope, 2008; 

Shultz & Fridgen, 2001). The same point would apply for homeowners in the 100-year 

floodplain who do not have a mortgage and therefore do not have a flood insurance 

requirement. It is worth analyzing how to maintain necessary perceived flood risks for 

stakeholders in the floodplain by manipulating the flood insurance premium rate. 

Almost all previous studies use the FEMA floodplain designation in modeling, as 

it is the standard way to delineate flood-prone areas.  However, this designation has several 

limitations. First, over 25% of flood losses across the United States occurred outside the 

designated 100-year floodplains (Blessing et al., 2017; Brody et al., 2013; Highfield et al., 

2013). This phenomenon may reduce the price differentials between floodplain properties 

and non-floodplain properties. In part, this finding is because the spatial coverage of FEMA 

floodplain maps is incomplete. The current floodplain maps cover only about one-third of 

the length of streams and 46% of the length of coastlines in the United States (Association 

of State Floodplain Managers, 2020; Wing et al., 2018). Many places may not have usable 

floodplain maps to delineate flood-prone areas. At last, many floodplain maps are not 

frequently updated. Although floodplain maps should be updated every five years, over 

half were not validated or updated as of 2017 (Kelly, 2017). Climate change is shifting the 

precipitation pattern in the United States, leading to dramatic changes in the distribution 

and intensity of flood events (Kunkel et al., 2013; Singh et al., 2013; Swain et al., 2020). 
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Outdated floodplain maps are likely inconsistent with reality, causing distortions in 

floodplain impact estimations. Besides urging timely updates for floodplain maps, 

researchers may consider using alternative indicators for flood risks in future studies to 

cope with the challenge of climate change.  

Many studies suggest spatial dependence exists in home sale prices (e.g., Atreya et 

al., 2013; Bin & Landry, 2013; Zhang, 2016). That is, a property's price is correlated with 

prices of nearby properties. The spatial lag term coefficients in our reviewed studies that 

use spatial regressions (see Table 2.4) are all positive, meaning properties with similar 

prices tend to be spatially clustered. On one hand, the sale price of a property often refers 

to nearby property prices, such as prices of comparable homes in the same communities 

tend to be similar. On the other hand, factors affecting property prices, such as structural 

configurations and environmental amenities, tend to cluster geographically. The hedonic 

pricing model will be biased and inefficient when omitting the spatial dependence on 

property prices. Researchers should use spatial modeling techniques when the spatial 

autocorrelation is significant in model residuals to get an accurate and precise model 

estimation. One frequently used spatial modeling technique is the spatial fixed effects 

because it can control unobserved, time-invariant heterogeneity across spatial units and 

mitigate omitted variables bias. However, the spatial fixed effects approach simplifies the 

responses within individual spatial units, which cannot reflect the detailed spatial 

dependence among properties within the spatial units. The spatial fixed effects model may 

be biased near the edge of a spatial unit. In addition, spatial relationships may be sensitive 

to the geographic or analytical scales of observations, requiring a careful selection of the 

size of spatial units. In contrast, the spatial regression model can depict the spatial 
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dependence with a finer resolution and is more efficient than the spatial fixed effects model. 

Spatial regression models have flexibility in specifying the spatial relationship through 

various spatial weight matrices. The spatial regression model can also handle observations 

near the edge of spatial units that may be problematic for the spatial fixed effect model.  

However, less than half of the reviewed studies use spatial regression, suggesting the 

recognition of spatial dependence in property prices still can be improved.   

Previous studies have some limitations in the settings of study areas. Most of the 

reviewed studies were conducted at the community level. Only Bakkensen et al. (2019) 

and Troy & Romm (2004) conducted their studies at the state level. Most studies assume 

that the floodplain impact on property prices is uniform across the study area. Very limited 

studies addressed the variations in the floodplain impact among different places. However, 

researchers have found that a spatial dependence of flood risks exists in the United States 

(Quinn et al., 2019). It will likely cause a spatially dependent pattern in the floodplain 

impact on a broad scale (e.g., at the regional level). The wide value range of the floodplain 

impact in the reviewed studies also suggests a pattern of spatial heterogeneity. However, 

the estimation of floodplain impact in each study can be directly compared because of 

different modeling structures and explanatory variables. Beltrán et al. (2018) and Daniel et 

al. (2009) derived overall estimations of the floodplain impact through the meta-analysis. 

However, using a single value to represent the floodplain impact across a broad region 

would still be somewhat arbitrary. Hedonic pricing studies will be needed to reveal future 

floodplain impact changes over space. The common variables described in section 4 can 

help researchers determine the variable set in future studies.  
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Previous studies made great efforts to analyze floodplain impact changes following 

specific flood events but seldom explored the long-term patterns. With the rapid climate 

change, long-term variations in flood hazards and risks will be obvious, which may lead to 

substantial changes in the floodplain impact. Revealing a long-term trend beyond the short-

term oscillations in the floodplain impact could be an essential topic in future hedonic 

pricing studies.  

Few studies explicitly considered the effects of property sale rates in the hedonic 

pricing analyses nor explored the variation in floodplain property sale rates before and after 

floods. The effects of floodplain property sale rates were under-studied in the United States. 

Although previous hedonic pricing studies did not experience a problem of scarcity of 

floodplain property sales, property sale rate changes in floodplains are worth analyzing as 

they can also reflect people’s perspectives on flood risks. 

2.7 Conclusion 

This chapter reviews the findings in thirty-one peer-reviewed journal articles on flood-

related hedonic pricing studies in the United States. Previous articles suggest a diverse 

pattern of the floodplain impact over space and time with an impact value range of -48% 

to +61%. On the spatial scale, three major patterns in the floodplain impact are summarized: 

coastal vs. inland, the 100-year floodplain vs. the 500-year floodplain, and inundated vs. 

non-inundated. The pre-flood and post-flood patterns and the decay of the floodplain 

impact are summarized on the temporal scale. In general, inland floodplains have more 

adverse effects on property prices than coastal floodplains; the 100-year floodplain has 

more adverse effects on property prices than the 500-year floodplain; coastal 100-year 

floodplain properties can have a price premium relative non-floodplain properties when 
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not isolating local amenities from the floodplain impact; flood and hurricane events foster 

the adverse impact on home prices in the 100-year floodplains; and the post-event 

floodplain impact decays with time and diminishes in few years. The floodplain impact is 

the composite effect of flood risks, flood insurance premiums, and amenities in floodplains, 

and the perceived flood risk of stakeholders directly influences it.  

Several limitations exist in previous studies. First, less than half of the reviewed 

studies addressed the spatial dependence on the floodplain impact. Second, previous 

studies depend on the FEMA floodplain designation, which is becoming increasingly 

inaccurate and outdated during climate change, and in some cases may assume incorrectly 

that homes are outside of the floodplain because FEMA has not mapped floodplains for 

that area. Third, the reviewed studies focus on the floodplain impacts at an individual 

community level. There is a lack of studies exploring floodplain impacts over a broad 

geographic scale. Finally, the temporal analysis in previous studies mainly focuses on 

short-term oscillations but seldom detects long-term changes. Future hedonic pricing 

studies on floodplain impact can contribute to exploring spatial patterns in floodplain 

impact on the regional scale and analyzing long-term trends in floodplain impact under 

climate change. The findings in this review study provide a baseline for future hedonic 

pricing model research, which aims to understand the long-term impacts of floodplains on 

property values and develop effective management strategies for reducing flood risks. 
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CHAPTER 3 

EXAMINING THE IMPACT OF HYDROLOGICAL SENSITIVITY AND 

CONNECTIVITY ON PROPERTY VALUES 

 

3.1 Introduction 

The FEMA 100-year floodplain is the standard way for high flood-risk zone delineation 

and plays an irreplaceable role in flood management and enhancing flood resilience. 

However, several limitations of the 100-year floodplain designation are found in practice. 

First, the coverage of present floodplain maps is incomplete. The FEMA floodplain map 

ignores small catchments (<10,000 km2) and only covers 30% of the length of rivers and 

46% of coastlines in the United States (Association of State Floodplain Managers, 2020; 

Wing et al., 2018). About 25% of flood losses across the United States occurred outside 

the designated 100-year floodplain (Blessing et al., 2017; Highfield et al., 2013). Although 

the FEMA is required to update floodplain maps every five years, floodplain designation 

is outdated in many areas and cannot accurately reflect flood risks under climate change. 

The out-of-date flood hazard maps did not perform as expected in response to Hurricane 

Ida in New Jersey (CSG, 2022). In addition, the 100-year floodplain only delineates high 

flood-risk areas but fails to depict the hydrological sensitivity and connection of the local 

landscape. This leads to the construction of flood resilience constrained by community 

administrational boundaries, hindering cooperation among nearby communities in flood 

management. Without cognition of landscape hydrological connectivity, current flood 

management invests most resources in physical measures (e.g., levees and dams) but 

seldom uses natural capital (e.g., land conservation) to foster resilience (Mehryar & 

Surminski, 2021; Michel-Kerjan et al., 2016). 
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This study used hydrological sensitive areas (HSAs) to overcome these limitations 

and improve conventional floodplain delineation. The HSA is a concept of the variable 

source area (VSA) hydrology theory, which refers to the area where the soil is readily 

saturated and generates the major portion of runoff during precipitation (Anderson et al., 

2015; Qiu et al., 2014; Singh, 2021; Walter et al., 2002). It reflects the hydrological 

sensitivity and connectivity of the local environment. Any landscape changes incongruent 

with the natural hydro-ecological functions in this area will increase the flood risk. 

Incorporating the HSA into community flood resilience establishment can provide a more 

objective and scientifically defensible view of flood risks and help stakeholders combine 

flood management measures in the upland and downstream.  

This study examined the impacts of the development encroachment in HSAs on 

flood risk. Specifically, we empirically tested the influence of landscape alterations in 

HSAs on home sale prices. The hypothesis underlying this objective is that home sale 

prices already implicitly incorporate the local hydrological sensitivity. Because 

urbanization and associated infrastructure development fail to recognize the landscape’s 

ecological function and ignore the landscape’s hydrological sensitivity and connectivity, 

landscape alterations dictated by human decisions undermine the hydro-ecological 

function of the natural landscape. Properties inside HSAs are subject to higher flood risks 

and are expected to be priced lower than the equivalent properties outside of HSAs. 
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3.2 Study Area, Data, and Method  

3.2.1 Study area 

This study analyzed property records in Hillsborough Township and Montgomery 

Township, two municipalities in Somerset County, New Jersey. The study area map is 

displayed in Figure 3.1. The south branch and mainstream of the Raritan River, the 

Millstone River and its Royce Brook and Beden Brook tributaries, the Rocky Hill Ridge, 

and the Sourland Mountain surround these two communities. The total area of these 

townships is about 87.6 square miles (226.88 km2), with a population of approximately 

67,000. According to the New Jersey Parcel and MOD-IV data, a compilation of tax 

assessment data for all properties, there are 22,502 properties in the study area, and 14,555 

are registered as one-family properties. About 8.06 square miles (about 20.88 km2) in this 

area are Special Flood Hazard Areas (SFHA). Most regular floodways are distributed along 

the South Branch Raritan River, the Raritan River, the Millstone River, and the Neshanic 

River. The rest of the SFHAs are located along ten smaller streams in this region. 
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Figure 3.1 Floodplains and Hydrologically Sensitive Areas in Hillsborough and 

Montgomery, NJ.  

 

3.2.2 Home sales and property data 

We collected and analyzed property sale records, structural characteristics, and 

neighborhood and environmental conditions of single-family homes in the study area. The 

explored variables are shown in Table 3.1. They are common property characteristic 
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variables used in hedonic pricing analysis for flood-related studies. The sale price, deed 

date, parcel area, property class, building class, construction year, property age, and parcel 

location were extracted from a GIS data layer of Parcels and MOD-IV Composite records 

of Somerset County. This GIS layer was provided by the New Jersey Department of the 

Treasury and maintained by the New Jersey Office of GIS. It was downloaded from the 

New Jersey Geographic Information Network (NJGIN) Open Data portal. During the data 

preprocessing, only records for residential (Code 2) and farmland (Code 3A) properties 

were used. As the most recent deed date in the MOD-IV records is in 2021, and the property 

market changed substantially during and after the COVID-19 pandemic, we only used 

property sale records between 2010 and 2020 to explore the market response in the most 

recent consistent period. This period includes one severe flood, associated with the 

remnants of Hurricane Irene in 2011, but precedes the next severe flood period associated 

with Hurricane Ida in 2021. To ensure arm’s length transactions, sale records with a price 

lower than $50,000 were filtered out. Sale prices were subsequently adjusted by the U.S. 

Bureau of Labor published consumer price index (CPI) for housing to reduce the impact of 

inflation. After the inflation correction, records of properties with sale prices in the top or 

bottom 2.5 percent tile were also removed to avoid extreme home sale cases. In this study, 

we assumed the deed date was the sale date, and the property age at sale was the deed date 

minus the construction year. Any records with a deed date before the construction year 

were removed from our analysis, as they contained potential data errors. The parcel acreage 

was calculated from the shape area in the GIS layer, as MOD-IV missed the acreage for 

many parcels.  
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Structural characteristics used in this study were collected from property record 

cards provided by municipal governments. These characteristics include bedroom number, 

bathroom number, living area footage, story (floor) number, presence of brick exterior, air-

conditioning, fireplace, basement, hardwood floor, and garage. Property record cards were 

matched with parcels and MOD-IV records via a GIS PIN (property identification number) 

generated from block, lot, and qualification numbers. A few GIS PINs have more than one 

property card matched. We removed property records corresponding to these PINs from 

the analysis to avoid mistakes during sale data matching. Furthermore, any property 

records that have missing values were dropped out of the analysis. After these data filtering 

processes, 5024 parcel records were reserved for further analysis.  

Neighborhood and environmental conditions, including distances to the nearest 

open space, stream, water body, highway, and bus stop, and the presence of floodplains, 

were derived from several geographic datasets provided by the NJGIN Open Data and the 

FEMA (Table 3.1). We used ArcMap 10.8 to prepare these geographic data. The “generate 

near table” tool calculated Euclidian distances from parcel centroids to the nearest open 

space, stream, waterbody (lake), highway, and bus stop. These distances were initially 

calculated in feet and then converted to meters. The highways defined in this study refer to 

roads above the county 500 route level, and so local roads were not defined as a factor, as 

all homes fronted on local streets at a minimum.  

The presence of homes in floodplains was identified by intersecting parcel polygons 

with designated 100-year floodplains and 500-year floodplains. Homes in 100-year 

floodplains were assigned 1 in FD100 and 0 for homes outside 100-year floodplains. 

Similarly, homes in 500-year floodplains were assigned 1 in FD500 and 0 for homes 
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outside floodplains. The FEMA Flood Insurance Rate Maps (FIRMs) for the study area 

provide floodplain mapping for all major rivers and their tributaries, and they were adopted 

in 2016. 

Besides the neighbor and environmental variables described in this section, the 

presence of homes in Hydrologically Sensitive Areas was also analyzed in this study. This 

variable is explained in detail in the next section. 

 

Table 3.1 Variables Explored in the Hedonic Pricing Study  

Variable Name Definition Data Source 

Price Deed prices of properties NJ Parcels and MOD-IV data 

Adj_Price Deed prices adjusted by the Consumer Price 

Index 

Adjusted by the Consumer Price 

Index from the U.S. Bureau of 

Labor 

Ln_Price Log-transformed Adj_Price  

Bed The number of bedrooms in a property Property Record Cards 

SQ_Bed Squared term of bedroom numbers  

Bath The number of bathrooms in a property Property Record Cards 

SQ_Bath Squared term of bathroom numbers  

LArea The size of living areas (sq. meters) Property Record Cards 

Ln_LArea Log-transformed living areas  Property Record Cards 

LotSize The acreage of a parcel lot NJ Parcels and MOD-IV data 

Ln_LotSize Log-transformed LotSize  

Age The age of a property at sale NJ Parcels and MOD-IV data 

SQ_Age Squared term of property age  

BE Dummy variable for the presence of a Brick 

Exterior 

Property Record Cards 

AC Dummy variable for the presence of an air-

conditioning  

Property Record Cards 

FP Dummy variable for the presence of a fireplace Property Record Cards 

Stry Number of floors (stories) Property Record Cards 

Bsm Dummy variable for the presence of a basement Property Record Cards 

FHW Dummy variable for the presence of a hardwood 

floor 

Property Record Cards 

Gar Dummy variable for the presence of a garage Property Record Cards 

Ln_D2OpenS Log-transformed distance to the nearest park, 

conservation area, forest, game land, or other 

open space (meters) 

"State, Local and Nonprofit Open 

Space of New Jersey," NJDEP 

Ln_D2Stream Log transformed distance to nearest 

stream/creek/river (meters) 

"National Hydrography Dataset 

Streams and Waterbodies 2015 for 

New Jersey", NJDEP 
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Table 3.1 Variables Explored in the Hedonic Pricing Study (Continued) 

Variable Name Definition Data Source 

Ln_D2Waterb Log-transformed distance to nearest 

lake/waterbody (meters) 

"National Hydrography Dataset 

Streams and Waterbodies 2015 for 

New Jersey", NJDEP 

Ln_D2HW Log-transformed distance to nearest highway / 

major road (meters) 

"Road Centerlines of NJ -Next 

Gen 911", NJOGIS 

Ln_D2BusS Log-transformed distance to the nearest bus stop 

(meters) 

"Bus Stops of NJ Transit by Line," 

NJ Transit 

FD100 Dummy variable for a property located in the 

100-year floodplain 

National Flood Hazard Layer, 

FEMA 

FD500 Dummy variable for a property located in the 

500-year floodplain  

National Flood Hazard Layer, 

FEMA 

HSAs_TWI_105 Dummy variable for a property located in 

HSAs. The threshold is TWI > 10.5 

Derived from DEM of NJ 

HSAs_STI_105 Dummy variable for a property located in 

HSAs. The threshold is STI > 10.5 

Derived from DEM of NJ 

HSAs_TWI_110 Dummy variable for a property located in 

HSAs. The threshold is TWI > 11 

Derived from DEM of NJ 

HSAs_STI_110 Dummy variable for a property located in 

HSAs. The threshold is STI > 11 

Derived from DEM of NJ 

HSAs_TWI_115 Dummy variable for a property located in 

HSAs. The threshold is TWI > 11.5 

Derived from DEM of NJ 

HSAs_STI_115 Dummy variable for a property located in 

HSAs. The threshold is STI > 11.5 

Derived from DEM of NJ 

 

3.2.3 The hydrological sensitive areas 

This study aims to examine the impacts of HSAs on property prices. Figure 3.1 displays a 

view of HSAs in the study area. To determine whether homes are in HSAs, we used the 

10-m resolution HSAs generated by Qiu et al. (2020). This dataset of HSAs was derived 

by a two-fold process. First, a soil topographic index (STI) or a topographic wetness index 

(TWI) was calculated from a digital elevation model and soil transmissivity to depict the 

hydrological sensitivity of landscapes. A higher index value implies a higher propensity 

for generating and accumulating runoff. The STI and TWI follow the theory of VSA 

hydrology and are calculated using Equation (3.1) (Anderson et al., 2015; Qiu et al., 2014; 

Walter et al., 2002): 
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𝑆𝑇𝐼 = ln (
𝛼

tan(𝛽)
) − ln(𝐾𝑠𝐷) = 𝑇𝑊𝐼 − ln(𝐾𝑠𝐷) (3.1) 

 

Where 𝛼 is the upslope contributing area per unit contour length, 𝛽 is the surface slope, 𝐾𝑠 

is the soil saturated hydraulic conductivity, and 𝐷 is the soil depth from the top to the 

restrictive layer. 𝛼  and 𝛽  were calculated from the DEM data, while 𝐾𝑠  and 𝐷  were 

extracted from the SSURGO data. The term ln (
𝛼

tan(𝛽)
) is also known as the TWI. After 

deriving topographic indices, the HSAs were extracted by the index value thresholding. 

The areas with STI or TWI values greater than the given threshold value were assigned to 

HSAs. Qiu et al. (2020) used the FEMA's 100-year floodplain data as a reference to 

determine the threshold values in five water regions of New Jersey, and their 

recommendation for the threshold values of STI and TWI were both 11 in the Raritan 

Region. 

In this study, we analyzed six layers of HSAs derived from the TWI and STI with 

threshold values of 10.5, 11.0, and 11.5, respectively. These raster layers of HSAs were 

converted to vector polygon layers. Homes in HSAs were subsequently identified by 

intersecting their parcel extents with HSAs polygons. The intersection results were 

recorded by HSAs dummy variables, with 1 indicating homes inside HSAs and 0 for 

outside HSAs. 

3.2.4 Modeling methods 

This study employed the hedonic pricing method to examine whether HSAs influence the 

home sale price. The hedonic pricing method is frequently used to evaluate the influence 



61 

of non-market environment conditions and ecosystem service on real estate prices. A 

hedonic pricing model is a function of property characteristics, and its conceptual format 

is as Equation (3.2): 

 

𝑝 = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑖) (3.2) 

 

Where, 𝑝 is the property price (the dependent variable), commonly in nature logarithmic 

transformation format; 𝑥1, 𝑥2, ⋯ , 𝑥𝑖  are characteristics (independent variables) affecting 

property values, including structural variables, location and neighborhood variables, and 

natural environment variables. Structural variables describe the configuration of properties, 

such as the number of bedrooms and bathrooms, building age, lot size, and square footage 

(Aladwan & Ahamad, 2019; Sirmans et al., 2005). Location and neighborhood variables 

reflect the value of property position, including the proximity to surrounding amenities and 

facilities, neighborhood land use situation, community attributes, and public services (Bin 

et al. 2008; Bin and Landry 2013; Shultz and Fridgen 2001). Natural environment variables 

represent characteristics provided by natural surroundings, such as waterfront and scenic 

views (Nicholls & Crompton, 2018; Sirmans et al., 2005). In previous hedonic pricing 

studies related to flood hazards, the floodplain designation was commonly used to indicate 

high flood-risk areas  (Atreya & Ferreira, 2015; Bin et al., 2008; Qiu et al., 2006). This 

study used HSAs to supplement the conventional floodplain approach in delineating flood-

prone areas. Both HSAs and FEMA 100-year floodplains were included in the modeling. 

The impacts of HSAs on home sale prices were preliminarily examined by two 

hedonic pricing regressions depicted in Equations (3.3) and (3.4). The first model,  
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Equation (3.3), treated variables of floodplains and HSAs independently, without 

considering the interaction of these variables. However, a substantial amount of HSAs 

spatially overlap floodplains. Therefore, the impact of HSAs likely interacts with the 

impact of floodplains. The second model, Equation (3.4), adopted a Difference-in-

Difference framework similar to the framework of Atreya & Ferreira (2015) to quantify 

the effect of interaction between floodplains and HSAs.  

 

ln 𝑝𝑖 =  𝛼 + 𝜷𝑿𝒊 + 𝛾1𝐹𝐷𝑖 + 𝛾2𝐻𝑆𝐴𝑖 + 𝜀  (3.3) 

 

ln 𝑝𝑖 = 𝛼 + 𝜷𝑿𝒊 + 𝛾1𝐹𝐷𝑖 + 𝛾2𝐻𝑆𝐴𝑖 + 𝛾3𝐹𝐷𝑖 × 𝐻𝑆𝐴𝑖 + 𝜀 (3.4) 

 

Where  𝑖 is the index for the properties; the dependent variable, ln 𝑝𝑖 , is the natural 

logarithm of the CPI-adjusted home sale price for property 𝑖; 𝛼 is the intercept; 𝑿𝒊 is a 

vector of control variables representing the characteristics of property 𝑖;  𝜷 is a vector of 

the regression coefficients corresponding to property characteristic variables; 𝐹𝐷𝑖  and 

𝐻𝑆𝐴𝑖  are dummy variables indicating whether property 𝑖 intersects with floodplains or 

HSAs; 𝐹𝐷𝑖 × 𝐻𝑆𝐴𝑖  is a dummy variable indicating whether property 𝑖  is in both 

floodplains and HSAs; the coefficients 𝛾1, 𝛾2, and 𝛾3, represent the impacts of floodplains, 

HSAs, and their interaction term on the property sale price, respectively.  

This study fitted the prior two models with the help of a forward stepwise regression 

method. The explored variables in Table 3.1 are not entirely mutually independent, so using 

them all would generate unstable coefficient estimations and cause a severe overfitting 

problem. A forward stepwise variable selection method can reduce the overfitting problem 
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in multiple regression. In this method, the Ordinary Least Squares (OLS) regression starts 

with a model that only contains a constant term and then adds the most promising 

independent variable to the model step by step based on some predetermined criterion. In 

each step, the independent variable that can achieve the minimum mean squared error in 

the cross-validation was added to the model. Iterations of adding independent variables 

will end after adding all variables or meeting the requirement of variable number. The 

stepwise regression technique provides a variable subset of structural, neighborhood, and 

environmental characteristics except for the HSA designation. A manual tuning for 

selecting the best HSA threshold then follows the stepwise process. The most promising 

HSA threshold was determined by comprehensively considering the mean square error and 

R-squared in the cross-validation. Stepwise regression is implemented through the Mlxtend 

library and Scikit-learn package in Python, and subsequent manual tuning is implemented 

through the Statsmodel package in Python (Pedregosa et al., 2011; Raschka, 2018; Seabold 

& Perktold, 2010).   

In addition to the OLS regression, this study fitted the second model (Equation (3.4)) 

with spatial regression. Many studies suggest that property prices have significant spatial 

dependence, which means the price of a property is correlated with its nearby property 

prices, resulting in biased and inefficient OLS estimations (Atreya et al., 2013; Bin & 

Landry, 2013; L. Zhang, 2016). Therefore, this study tested the spatial autocorrelation 

among residuals of the second model through Global Moran's I. Four spatial weight 

matrices built from queen contiguity (QC), inverse distance weighting (IDW), k-nearest 

neighbor (KNN), and the kernel method were applied to Moran’s I test, respectively, to get 

a robust result about the spatial dependence.   
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After testing the spatial autocorrelation, Lagrange Multiplier (LM) tests for the 

spatial lag model and the spatial error model were conducted to determine which one is the 

proper format of spatial regression for this study. Structures of a spatial lag model and a 

spatial error model are shown in Equations (3.5) and (3.6), respectively. 

 

𝒚 =  𝜌𝑾𝒚 + 𝑿𝜷 + 𝜺 (3.5) 

 

𝒚 = 𝑿𝜷 + 𝒖, 𝒖 =  𝜆𝑾𝒖 + 𝜺 (3.6) 

 

Where, 𝒚 is a vector of log-transformed home sale prices, 𝜌 is the coefficient of the spatial 

lag term, 𝑾  is the spatial weight matrix representing the weight for the influence of 

neighboring observation, 𝑿  is the matrix of independent variables, 𝜷  is a vector of 

coefficient corresponding to 𝑿, 𝒖 is the regression residuals which influence by spatial 

dependency,  𝜆 is the coefficient of the residual autoregressive term, and 𝜺 is the error term 

following a normal distribution. The spatial lag model explicitly models the spatial 

dependency in home prices as an explanatory variable. In contrast, the spatial error model 

focuses on capturing spatial patterns in the residuals and assumes the independent variables 

are exogenous and not influenced by spatial dependencies. This study used GeoDa software 

to implement Moran’s I test, Lagrange Multiplier test, and spatial regression (Anselin et 

al., 2006).   
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3.3 Results 

The summary of input variables for the final model after the forward stepwise regression 

and manual tuning is shown in Table 3.2. Eighteen independent variables were used in the 

modeling. Based on the average R squared score in the cross-validation and the AIC score 

in the OLS model, the HSAs_STI_105 is the most promising variable for the HSAs 

designation. We use HSAs to represent HSAs_STI_105 in the following. The average 

value of home sale prices is $ 664,072.11, and 13.35 for the log-transformed home sale 

prices (dependent variable). The average bedroom number is 3.86. The average bathroom 

number is 3.18. The average living area of a home is 260 m2. The mean acreage of parcels 

(lot size) is 0.42 acres and -1.33 for the log-transformed lot size. The average age of homes 

is 28.45 years. The average story number of homes is 1.88. About 95% of properties have 

air conditioning. Nearly 87% of properties have a fireplace. More than 54% of properties 

have a basement. Only 5.5% of properties are inside the 100-year floodplain, while 48% 

are inside or contiguous to the HSAs, providing evidence of the far larger extent of runoff 

risk to homes using the HSAs. Properties inside the 100-year floodplain and the HSAs 

occupy nearly 4% of analyzed properties. The average values of log-transformed distances 

to the nearest bus stop, stream, and open space are 8.44, 5.22, and 5.05, respectively.  
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Table 3.2 Basic Statistics of Variables in the Hedonic Pricing Modeling 

Variables Mean Std Max Min 

Ln_Price 13.3526 0.3347 14.0174 12.3799 

Bed 3.8635 0.7310 8 0 

Bath 3.1813 0.9133 8 0 

Age 28.4484 26.2951 314 0 

AC 0.9461 0.2259 1 0 

FP 0.8674 0.3391 1 0 

Stry 1.8857 0.3175 3 1 

Bsm 0.5414 0.4983 1 0 

LArea 260.0835 83.0818 809.3713 55.7418 

SQ_Bed 15.4606 5.7514 64 0 

SQ_Bath 10.9548 6.6787 64 0 

SQ_Age 1500.6069 4406.8725 98596 0 

Ln_LotSize -1.3331 0.8938 3.0285 -4.6396 

Ln_D2BusS 8.4434 0.7712 9.6524 4.5919 

Ln_D2Stream 5.2249 0.7588 6.6698 -0.2637 

Ln_D2OpenS 5.0491 1.0536 6.9715 1.5409 

FD100 0.0555 0.2290 1 0 

HSAs 0.4809 0.4997 1 0 

FD100×HSAs 0.0392 0.1941 1 0 

 

The OLS model results are shown in Table 3.3. Model 1 was built from Equation 

(3.3), and Model 2 was built from Equation (3.4). These two have similar R-squared scores, 

root mean squared errors (RMSE), and coefficients of most independent variables. Both 

models have an R-squared score close to 0.8 and an RMSE of 0.1512. All coefficients of 

independent variables are statistically significant, except the coefficient of FD100×HSAs. 

The coefficient of the bedroom number is 0.1176, which is nearly nine times the coefficient 

of the squared bedroom number, suggesting that an increase in bedroom number can result 

in a home price rise when the number of bedrooms is lower. The coefficient of the squared 

bedroom number is -0.013, indicating that the impact of bedroom number on home prices 

follows a convex curve. For example, with other home characteristics being equivalent, 

prices of homes with two bedrooms are 8.18% higher than those with one bedroom, but 
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prices of homes with five bedrooms are merely 0.06% higher than those with four 

bedrooms.  

Similarly, the curve of the impact of bathroom numbers on home prices is also 

convex. Prices of homes with two bathrooms can be 3.72% higher than those with one 

bathroom, while prices of homes with four bathrooms are 0.49% higher than those with 

three bathrooms. In contrast, the impact of property age on home sale prices is a concave 

curve because the coefficient of squared age is positive. When the property age is less than 

148 years, a year increase in the age can lead to a price discount, but the magnitude of this 

discount is gradually diminished with the age increase. Further increases in the property 

age can result in a price premium as the property's historic value increases. 

 Increasing the size and elevation of a property can positively affect the home price. 

Each additional floor can yield about a 6.2% increase in the home price. For every 

additional square meter of living space, house prices will rise by 0.2%. A 1% increase in 

lot size results in a 0.045% increase in home prices. Complete amenities also raise the value 

of a home. The presence of air-conditioning, fireplace, and basement can increase home 

sale prices by 6.77%, 4.26%, and 6.37%, respectively.  

In addition to physical configurations, environmental conditions significantly affect 

house values. Proximity to transportation facilities can increase the value of a house. A 1% 

decrease in distance to the nearest bus stop raises house prices by 0.032%. Riparian 

amenities may slightly increase home prices in the study area, with a 0.019% increase for 

every 1% decrease in the distance to the nearest stream.  However, homes away from open 

spaces in this study area tend to have slightly higher prices. Every 1% increase in distance 

to the nearest open space increases house prices by 0.008%.  
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The most obvious differences between Model 1 and 2 are the coefficients of FD100, 

HSAs, and their interaction term. In Model 1, the impact of the 100-year floodplain on 

home prices is -5.55%, while the impact of the HSAs is -2.43%. In Model 2, comparing 

properties outside the 100-year floodplain and HSAs, properties inside the 100-year 

floodplain but outside HSAs have a price discount of 6.82%, properties inside HSAs but 

outside the 100-year floodplain have a price discount of 2.53%, and properties inside both 

HSAs and the 100-year floodplain have a price discount of 7.36%. Because the interaction 

term coefficient of FD100 and HSAs is insignificant, there is no significant joint effect of 

the 100-year floodplain and HSAs, implying that the impact of the 100-year floodplain is 

independent of the impact of HSAs. 
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Table 3.3 Results of OLS Models 

 Model 1  Model 2 

Variables Coef Std err P-val  Coef Std err P-val 

Intercept 12.8194 0.053 0.000  12.818 0.053 0.000 

Bed 0.1176 0.017 0.000  0.1177 0.017 0.000 

Bath 0.0602 0.012 0.000  0.0599 0.012 0.000 

Age -0.0078 2.27E-04 0.000  -0.0078 2.28E-04 0.000 

AC 0.0655 0.011 0.000  0.0655 0.011 0.000 

FP 0.0418 0.007 0.000  0.0417 0.007 0.000 

Stry 0.0601 0.008 0.000  0.0603 0.008 0.000 

Bsm 0.0618 0.004 0.000  0.0618 0.004 0.000 

LArea 0.002 4.72E-05 0.000  0.002 4.72E-05 0.000 

SQ_Bed -0.013 0.002 0.000  -0.013 0.002 0.000 

SQ_Bath -0.0079 0.002 0.000  -0.0079 0.002 0.000 

SQ_Age 2.63E-05 1.11E-06 0.000  2.63E-05 1.11E-06 0.000 

Ln_LotSize 0.0451 0.003 0.000  0.045 0.003 0.000 

Ln_D2BusS -0.0317 0.003 0.000  -0.0316 0.003 0.000 

Ln_D2Strea -0.0195 0.003 0.000  -0.0193 0.003 0.000 

Ln_D2OpenS 0.0077 0.002 0.001  0.0076 0.002 0.001 

FD100 -0.0571 0.011 0.000  -0.0706 0.018 0.000 

HSAs -0.0246 0.005 0.000  -0.0256 0.005 0.000 

FD100×HSAs     0.0198 0.021 0.336 

R-squared 0.7958    0.7959   

RMSE 0.1512    0.1512   

 

The spatial autocorrelation test result is shown in Figure 3.2. In each sub-figure, the 

x-axis represents the OLS residual value, and the y-axis represents the spatial lag term of 

residuals based on a spatial weight matrix. The Moran’s I statistics were computed using 

four different spatial weight matrices. The Moran’s I score obtained with the QC weight 

matrix is 0.248, indicating a relatively strong clustered pattern in the Model 2 residuals. 

However, Moran’s I test using the QC weight matrix removed isolated parcels, which may 

overestimate the spatial autocorrelation. In contrast, the IDW weight matrix yields a 

Moran’s I score of 0.144, suggesting a lower degree of spatial clustering.  The KNN weight 

matrix results in a Moran’s I score of 0.179, reflecting a moderate level of spatial 

autocorrelation. Similarly, Moran’s I score obtained with the kernel weight matrix is 0.175. 
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All four scores are positive and significant at 0.01 level, suggesting the spatial clustered 

pattern in the OLS residual is robust. We subsequently conducted LM tests and LM robust 

tests for the spatial lag model and the spatial error model with the KNN weight matrix, and 

the test results were all significant at 0.01 level. Therefore, we built both spatial regression 

models.   

 

 

Figure 3.2 Spatial autocorrelation tests for the OLS residuals. Four kinds of spatial weight 

matrices are used in the test. QC represents queen contiguity, IDW represents inverse 

distance weight, KNN represents k-nearest neighbor, and Kernel refers to the kernel 

method. 
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The results of spatial regression models are shown in Table 3.4. Both spatial 

regression models significantly improve explanatory power compared to the OLS models. 

The spatial lag model has an R-squared score of 0.8231 and an RMSE of 0.1408. Similarly, 

the R-squared score and RMSE of the spatial error model are 0.8196 and 0.1422, 

respectively. The coefficient of spatial lag term ( 𝜌 ) and the coefficient of spatially 

autocorrelated errors (𝜆) are both positive and significant at the 0.01 level, indicating 

positive spatial spillover effects. These results suggest that higher-priced homes will 

increase the prices of their nearby homes. Although the spatial regression models use more 

independent variables than the OLS models, the coefficients of the shared independent 

variables in these models are not fundamentally different from those in the OLS model, 

except for slight changes in magnitude. One thing needs to be mentioned. Coefficients in 

the spatial lag model should be multiplied by 1 (1 − 𝜌)⁄  when interpreting the total effects 

of individual independent variables (C. W. Kim et al., 2003; L. Zhang, 2016). In the spatial 

lag model, the coefficients of HSAs and FD100 are -0.0153 and -0.0609, suggesting home 

price discounts of 2.1% and 8.82%, respectively. In the spatial error, the coefficients of 

HSAs and FD100 are -0.0198 and -0.0647, suggesting home price discounts of 1.96% and 

6.27%, respectively. Similar to the OLS models, the coefficients of FD100×HSAs in the 

spatial lag and spatial models are insignificant, indicating no significant joint effect 

between HSAs and FD100 in spatial models. 
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Table 3.4 Results of Spatial Regression Models 

 Spatial Lag  Spatial Error 

Variables Coef Std err P-val  Coef Std err P-val 

Intercept  9.0529 0.155 0.000  12.9550 0.065 0.000 

Bed        0.1006 0.016 0.000  0.0776 0.017 0.000 

Bath       0.0606 0.011 0.000  0.0628 0.012 0.000 

Age        -0.0059 2.27E-04 0.000  -0.0078 2.45E-04 0.000 

AC         0.0871 0.010 0.000  0.0617 0.010 0.000 

FP         0.0249 0.007 0.000  0.0331 0.007 0.000 

Stry       0.0613 0.008 0.000  0.0651 0.008 0.000 

Bsm        0.0564 0.004 0.000  0.0497 0.004 0.000 

LArea      0.0016 4.60E-05 0.000  0.0017 4.83E-05 0.000 

SQ_Bed     -0.0113 0.002 0.000  -0.0092 0.002 0.000 

SQ_Bath    -0.0074 0.001 0.000  -0.0070 0.002 0.000 

SQ_Age     1.99E-05 1.07E-06 0.000  2.69E-05 1.14E-06 0.000 

Ln_LotSize 0.0389 0.003 0.000  0.0505 0.004 0.000 

Ln_D2BusS  -0.0227 0.003 0.000  -0.0317 0.005 0.000 

Ln_D2Strea -0.0123 0.003 0.000  -0.0149 0.004 0.000 

Ln_D2OpenS 0.0054 0.002 0.008  0.0080 0.003 0.008 

FD100      -0.0609 0.016 0.000  -0.0647 0.017 0.000 

HSAs        -0.0153 0.004 0.000  -0.0198 0.005 0.000 

FD100×HSAs  0.0252 0.019 0.187  0.0167 0.020 0.401 

ρ 0.2799 0.011 0.000     

λ     0.4330 0.018 0.000 

R-squared 0.8231    0.8196   

RMSE 0.1408    0.1422   

 

A dummy variable indicating homes in 500-year floodplains (FD500) and a dummy 

variable for the interaction of 500-year floodplains and HSAs (FD500 × HSAs) were added 

to Model 2 (OLS), spatial lag model, and spatial error model to analyze the effect of 500-

year floodplains. Model results (Table 3.5) show that the p-values of coefficients for FD500 

and FD500 × HSAs are all above 0.05, indicating an insignificant effect of FD500. Adding 

FD500 to models did not change the impact of HSAs.  
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Table 3.5 Comparison of Coefficients for HSAs and the 500-Year Floodplain 

 OLS Spatial Lag Model Spatial Error Model 

Variables Coef P-val Coef P-val Coef P-val 

FD500 -0.0217 0.311 -0.0029 0.884 0.0047 0.828 

HSAs -0.0260 0.000 -0.0158 0.000 -0.0201 0.000 

FD500 × HSAs 0.0243 0.357 0.0309 0.206 0.0128 0.620 

 

3.4 Discussion  

All models in this study have an R-squared value above 0.79, indicating good accuracy of 

their results. Although these models have different variable structures, their estimations of 

the effects of the shared independent variables are very similar, reflecting the robustness 

of the model results.  

Most estimations of independent variable effects are coherent with intuitions.  The 

impact of the bedroom and bathroom numbers follow a convex curve. These findings can 

be explained by the fact that more rooms in a home will reduce the size per room when the 

living area is stable, which may be less suitable for living. The concave curve of the age 

effect reflects both home depreciation and the value of historic buildings. The story number, 

the size of the living area, and the lot size are all positively correlated with home prices. 

This is coherent with the intuition that larger-size properties have higher prices. The air-

conditioning system, fireplace, and basement can improve the living quality of a home, so 

the presence of these amenities results in positive coefficients in models. Homes close to 

bus stops can enjoy the convenience of public transportation, which results in higher home 

prices. Riparian areas can provide aesthetic views and recreational amenities to nearby 

properties, so the home price increases when close to a stream. However, the coefficient of 

the distance to the nearest open space differs from the estimation in some previous studies 

(Atreya et al., 2013; Bin & Polasky, 2004; J. S. Lee & Li, 2009). This difference may be 
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due to the housing market in the study area valuing privacy over easy access to public open 

spaces.  

This study used the 100-year floodplain and HSAs to indicate flood-prone areas. 

All models find negative and significant impacts of the floodplain and HSAs on home 

values. The FEMA’s 100-year floodplain is a well-known flood-prone area designation 

with a mandatory flood insurance requirement for homes with federally backed mortgages. 

Therefore, homes in the 100-year floodplain have lower prices than homes outside this 

region. The estimated impact of the 100-year floodplain in this study ranges from -5.6% to 

-8.8%, consistent with the estimations (-4% to -12%) in previous hedonic pricing studies 

(Bin & Polasky, 2004; Donnelly, 1989; Shilling et al., 1989; Shultz & Fridgen, 2001; Troy 

& Romm, 2004).   

In contrast to the floodplain, the public is unfamiliar with the concept of HSAs and 

seldom knows the precise location of these areas. However, the results of this study confirm 

that home prices are implicitly affected by HSAs, revealing a significant adverse impact of 

HSAs on home prices. The magnitude of the HSA impact is around -2%, smaller than that 

of 100-year floodplains, but it affects 48% of homes analyzed in this study. Floodplains 

are mainly clustered along streams, whereas HSAs are dispersed in every neighborhood of 

the study area. Using HSAs to supplement the 100-year floodplain in delineating flood-

prone areas will greatly expand people’s awareness of flood risks, especially those not 

directly associated with well-known rivers and streams.  

Model results also suggest that the impact of HSAs is independent of the impact of 

the 100-year floodplain. This may be attributed to the differences in the delineating 

approaches of floodplains and HSAs. The floodplain designation depends on records of 
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submerged places in past flood events, which does not consider the hydrological 

connectivity between the upper land and downstream. In contrast, HSAs are derived from 

the local landscape with soil topographic index, which naturally contains the hydrological 

connectivity in the landscape. Although these two kinds of areas overlap in many locations, 

they are derived independently. Flood records focus on water levels near rivers and streams 

but poorly capture many depression terrains suffering pluvial and flash floods in the 

landscape. HSAs can fill the blanks of flood-prone areas. 

The 500-year floodplain is a conventional method to delineate flood-prone areas 

outside the 100-year floodplain. However, the study results show that the efficacy of the 

500-year floodplain in raising awareness of flood risk is not comparable with the impact of 

HSAs. On the one hand, the space coverage of the 500-year floodplain is limited. Merely 

4.8% of analyzed properties are in the 500-year floodplain, most distributed along streams 

and lakes. On the other hand, the 500-year floodplain delineates areas with medium or low 

flood risks based on historical records, whereas HSAs depict many high flood-risk areas in 

a landscape. Improving flood risk management in HSAs may foster community flood 

resilience more efficiently than in the 500-year floodplain.  

Although this study confirms the impact of HSAs, there are some limitations in the 

methodology. One limitation is that this study uses a binary designation for HSAs and 

assumes that the flood risk is higher inside HSAs than outside. However, the spatial 

distribution of flood risk is continuous, and outside properties close to HSAs may not suffer 

a very different flood risk level than properties within HSAs. The binary designation may 

cause people to underestimate the flood risk outside HSA boundaries. Unlike the 100-year 

floodplain, HSAs do not have a clear probability of flood hazard occurrence due to a lack 
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of field observation records. Future studies should analyze the relationship between soil 

topographic index and flood risk and use a gradient designation of flood-prone areas.   

Another drawback of this study is that the relationship between HSAs and flood 

losses is not examined. A direct linkage between HSAs and flood insurance claims can 

make the inference of HSAs indicating flood-prone areas more compelling. However, we 

cannot extract flood insurance claims in HSAs, as the FEMA withholds the precise location 

information for flood insurance claims in its open data. Further, as houses outside of the 

100-year floodplain are not required to have flood insurance, few flood insurance claims 

would be expected in HSAs that are not also within the 100-year floodplain. Using the 

housing price discount as a proxy for flood losses is an acceptable compromise, although 

it is also affected by various factors unrelated to flood risks. Future studies can analyze the 

effect of land use in HSAs on flood insurance claims at the census tract or county level.  

Finally, this study only uses the KNN weight matrix to fit spatial regressions. This 

weight matrix is arbitrary and may not precisely reflect the spatial structure in home sale 

prices. The study only analyzed a part of property records between 2010 and 2020. After 

data pre-processing and trimming, many isolated parcels are reserved in the data for 

modeling. If using the QC weight matrix, the spatial model has to remove all the isolated 

parcels from modeling, which occupies a substantial portion of input data.  Using either 

the IDW matrix or the kernel matrix will suffer from a problem of excessive bandwidth 

caused by parcels far away from their neighbors. The symmetric KNN weight matrix is a 

relatively rational approach to fit spatial regressions to the entire data. The performance of 

spatial models is significantly better than the OLS models, proving the rationality of the 

KNN weight matrix to some extent. A possible improvement in spatial modeling for this 
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problem is using geostatistical models (kriging), which are applications of Gaussian 

Process regression in spatial modeling.  

On a final note, this study did not evaluate changes in housing prices within the 

study period, treating the entire period from 2010 to 2020 as a single cohort. Therefore, 

pricing impacts of Hurricane Irene (2021) are note evaluated.  

 

3.5 Conclusions 

This study used linear and spatial hedonic pricing models to examine the impact of 

hydrological sensitive areas (HSAs) on home prices in Hillsborough Township and 

Montgomery Township in Somerset County, New Jersey. Model results confirm the 

hypothesis that properties in HSAs exhibit an adverse effect of higher flood risks on their 

sale prices. Both the OLS and spatial models suggest a significant price discount (-2%) of 

homes in HSAs, and this adverse impact is independent of the effect of floodplains.  

By making the public aware of HSAs, the awareness of flood risks can be 

substantially extended beyond the conventional floodplains. Introducing HSAs in flood-

prone area delineation can overcome the lack of records of pluvial and flash flood areas 

and improve the efficiency of flood risk management. HSAs also reflect flood source areas, 

which can guide land use and conservation in a landscape and help residents choose 

favorable home locations. New Jersey communities are working on improving flood 

resilience in the landscapes (Maslo et al., 2023). The findings in this study can facilitate 

this landscape resilience project.  

This study has several limitations that need to be addressed in the future. First, the 

HSA used in this study is a binary designation and does not have a specific probability of 
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flood occurrence, which is not convenient for quantifying the flood risk. Second, this study 

used home price discounts as the proxy for flood losses, the price discounts may be affected 

by factors unrelated to flood risks. Finally, the spatial weight matrix in spatial regression 

models of this study is an arbitrary setting, although it obtained significant spatial 

dependence in home prices.  

 

  



79 

CHAPTER 4 

ESTIMATING THE IMPACTS OF IMPERVIOUS SURFACES  

AND LAND DEVELOPMENT RESTRICTIONS ON FLOOD LOSSES 

 

4.1 Introduction 

Flood risk variation is not only related to climate change but also attributed to urbanization 

(Hodgkins et al., 2019). Rapid urbanization has profoundly altered natural landscapes and 

water flow patterns (Arnold Jr. & Gibbons, 1996; Shuster et al., 2005; Tollan, 2002). As 

cities expand, transforming permeable surfaces into impervious ones reduces the land's 

ability to absorb rainfall, thereby increasing surface runoff. This phenomenon often 

overwhelms urban drainage systems, leading to more frequent and severe flooding (W. 

Zhang et al., 2018; Q. Zhou et al., 2019). Additionally, urban development frequently 

intrudes into floodplains, reducing their natural capacity to manage floodwaters (Andreadis 

et al., 2022; Gori et al., 2019). The loss of green spaces and wetlands during urbanization 

further exacerbates this issue (Brody et al., 2017; Narayan et al., 2017; Vázquez-González 

et al., 2019). In addition, climate change introduces more intense and unpredictable 

weather patterns, contributing to heavier rainfall events (Marvel et al., 2023). Consequently, 

urban areas are highly vulnerable to flooding, substantially challenging infrastructure, 

public safety, and economic stability. Understanding the impact of land use on flood losses 

is crucial for developing effective flood risk management strategies and mitigating future 

flood damage. 

Increases in impervious surfaces can lead to increases in the velocity and volume 

of surface runoff and decreases in infiltration (Arnold Jr. & Gibbons, 1996; Lin et al., 2015; 

J. D. Miller et al., 2014; Shuster et al., 2005; Q. Zhou et al., 2019). This can lead to higher 
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peak flows and shorter lag time to peak flow, triggering flash floods and urban flooding 

(Burns et al., 2005; Hodgkins et al., 2019; Yan et al., 2020; Q. Zhou et al., 2019). 

Furthermore, the reduction in natural infiltration reduces groundwater recharge and 

increases surface runoff, contributing to erosion and water pollution (Arnold Jr. & Gibbons, 

1996; Shuster et al., 2005). Besides the size of impervious surfaces, the development 

patterns also affect flood losses. The clustered, high-density urban development pattern, 

associated with well stormwater drainage systems, can reduce flood damage, while the 

development pattern characterized as low-density, haphazard, and outward from urban 

centers leads to a substantial increase in flood losses (Brody et al., 2011, 2014; Y. Lee & 

Brody, 2018). 

Open space and green infrastructure can significantly mitigate flood risk. Research 

indicates that incorporating green infrastructure, such as permeable pavements, green roofs, 

rain gardens, and urban forests, significantly enhances stormwater management by 

increasing infiltration and reducing runoff (Gill et al., 2007, p. 20; H. Kim et al., 2016; 

Sohn et al., 2021; Tollan, 2002). Open spaces, including parks and wetlands, act as natural 

buffers, absorbing excess water during heavy rainfall events. Studies show that these areas 

can lower peak discharge rates and volume, decreasing the strain on conventional drainage 

systems and reducing the likelihood of flooding (Brody et al., 2015, 2017; Narayan et al., 

2017; Vázquez-González et al., 2019). The ecosystem services provided by these green 

infrastructures, including water purification, groundwater recharge, and biodiversity 

conservation, further contribute to their effectiveness in flood risk reduction (Brody et al., 

2015; Highfield & Brody, 2013; Stefanakis, 2019). As such, integrating open spaces and 
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green infrastructure into urban landscapes is increasingly recognized as a sustainable and 

cost-effective strategy for flood risk management. 

To protect important natural and environmental resources and against haphazard 

land developments, the State of New Jersey has implemented five key land use programs: 

steep slope ordinance, stream corridor ordinance, open space preservation, farmland 

preservation, and wetlands protection. These programs were developed based on New 

Jersey’s Water Quality Management Planning rule (NJAC 7:15), Stormwater Management 

rules (NJAC 7:8), Flood Hazard Area Control Act rules (NJAC 7:13), Freshwater Wetlands 

Protection Act (NJAC 7:7A), the Green Acres rules (NJAC 7:36) and farmland 

preservation policy. They have significantly contributed to reducing impervious surfaces 

and preserving green spaces. The steep slope ordinance limits construction on steep terrains, 

preventing erosion and runoff that would otherwise increase impervious surfaces. Stream 

corridor ordinances safeguard waterways by maintaining buffer zones, which help filter 

pollutants and manage stormwater. Open space and farmland preservation initiatives 

protect large tracts of land from development, ensuring that natural landscapes and 

agricultural areas remain intact, thereby minimizing urban sprawl and creating impervious 

surfaces. Wetlands protection ordinances preserve critical ecosystems that naturally 

manage water flow and quality, reducing the necessity for artificial drainage solutions. 

Collectively, these ordinances help maintain ecological balance, support biodiversity, and 

enhance the resilience of New Jersey's environments against urbanization pressures. 

Hydrologically Sensitive Areas (HSAs) generate most stormwater runoff in 

watersheds and significantly affect the local hydrological cycle and water quality (Dahlke 

et al., 2013; Qiu et al., 2014, 2019; Walter et al., 2000; Y. Zhou et al., 2022). Protecting 
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the natural function of HSAs will effectively improve stormwater management and water 

quality, frosting healthy and resilient watersheds. However, Qiu et al. (2014) found that 

current land use controls only protected 44-64% of municipal HSAs in three municipalities 

in New Jersey’s Raritan Water Region, and they suggested that land use planning should 

incorporate the concept of HSAs. On the other hand, the significance of HSAs in flood risk 

management is not widely recognized, resulting in a lack of motivation among stakeholders 

to protect these areas. Few studies have analyzed the impact of impervious surfaces and 

land development restrictions in HSAs on flood damage.  

This study intends to fill the knowledge gap on the impact of land use patterns in 

HSAs on flood damage. We hypothesize that impervious surfaces and land development 

restrictions in HSAs have a greater impact on flood losses than in other areas. This study 

uses the flood insurance claims in the Raritan Water Region of New Jersey from 2010 to 

2020 as a case study. Correlations between flood losses and impervious surfaces within 

municipal boundaries, HSAs, and the 100-year floodplain were compared. Correlations 

between flood losses and land development restriction areas within municipal boundaries, 

HSAs, and the 100-year floodplain were also compared. The impacts of impervious 

surfaces and land development restrictions on flood losses were further analyzed via linear 

regressions, respectively, incorporating essential environmental and socioeconomic 

variables.  
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4.2 Data and Methods 

4.2.1 Study area 

The study area is the spatial extent of municipalities within and contiguous to the Raritan 

Water Region. There are 120 municipalities spatially overlapping with the Raritan Water 

Region. Figure 4.1 displays the spatial extent of 108 of them that were analyzed in this 

study. The Raritan Water Region is one of five water resource management regions 

designated by the New Jersey Department of Environmental Protection (NJDEP). It is 

located in central New Jersey, a transition zone from the highlands to the coastal plains. 

The Raritan region is about 3,271 km 2 large and contains watersheds in the Raritan River 

basin and the Arthur Kill watershed. The Raritan River and the Millstone River are major 

streams in this region. 

Flooding has been a persistent problem in the Raritan region, impacting local 

communities for centuries. One of the most significant flooding events happened during 

Hurricane Floyd in 1999, which caused severe damage in many places, such as Bound 

Brook and Manville. This flood event highlighted the vulnerability of this region to major 

storm events. Hurricane Irene hit this region in 2011 and caused significant flooding, 

particularly affecting New Brunswick and Sayreville. More recently, in 2021, Hurricane 

Ida led to severe flooding in this region, breaking previous records set by Hurricane Floyd. 

Towns such as Manville, New Brunswick, Somerville, and South Bound Brook 

experienced extreme flood damage, with the Raritan River cresting at unprecedented levels. 

Since the 1990s, many efforts have been made to mitigate flooding in this region, including 

projects like the Green Brook Flood Control Project. These projects aim to manage and 

reduce flood risks through various engineering and environmental measures. However, 
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flood control structures are inefficient in addressing the rising flood risk. Historical 

responses to flooding in this region have evolved from retreat and recovery to proactive 

resilience-building strategies. These include removing vulnerable floodplain-based 

structures, changing land use practices, and improving communication and evacuation 

planning. 

 

 

Figure 4.1 Regional map of municipalities in the analysis of land use impact on flood 

losses 
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4.2.2 Flood insurance claims 

This study used the payment amount in National Flood Insurance Program (NFIP) claims 

to reflect flood losses. The NFIP in the United States is a federal program established by 

the National Flood Insurance Act, passed in 1968. It aims to reduce the impact of flooding 

on private and public structures by providing affordable insurance to property owners, 

renters, and businesses. This program was initially administered by the Department of 

Housing and Urban Development and subsequently transferred to the Federal Emergency 

Management Agency (FEMA) when it was established in 1979. Property owners in Special 

Flood Hazard Areas (SFHA) with mortgages from federally regulated or insured lenders 

are required to purchase and maintain flood insurance during the life of the loan. NFIP 

policies cover property and contents damage up to specific levels; homes with greater 

damages will only receive reimbursement to those limits, with the remainder being the 

property owner’s responsibility. However, there is no mandatory flood insurance 

requirement for properties outside the SFHA or for properties lacking such mortgages. 

Therefore, the NFIP-insured properties are concentrated in the SFHA. The NFIP payment 

is a commonly used indicator for flood losses, although it only reflects covered flood 

damages on insured properties (Brody et al., 2014, 2017). Unfortunately, there is no 

database of total flood losses, even for those properties submitting NFIP loss claims.  

This study analyzed FEMA NFIP redacted claims for 2010 to 2020, which were 

extracted from the OpenFEMA Dataset in April 2022. The payment amount of each flood 

insurance claim is the sum of the amount paid on the building claim, contents claim, and 

increased cost of compliance claim. All payment values were adjusted to payments in 2020 

through the Consumer Price Index (CPI). As FEMA did not disclose the information of the 



86 

reported city, the payment amounts were initially aggregated to census tracts and 

subsequently summarized to specific municipalities through overlapping census tracts with 

municipality boundaries in ArcMap. Small municipalities that share a census tract with 

their neighbor townships were excluded from further analysis. Finally, the insurance claim 

aggregation suggests that property owners from 108 municipalities received flood 

insurance payments from 2010 to 2020. To reduce the effect of municipality size on flood 

losses, we calculated the flood insurance payment per hectare (loss per hectare) in every 

municipality from 2010 to 2020. The loss per hectare was further transformed by natural 

logarithms before statistical analysis. 

4.2.3 Flood-prone areas 

The flood-prone areas comprised the Hydrologically Sensitive Areas (HSAs) and the 100-

year floodplain. This study analyzed land use impacts on flood losses in HSAs, floodplains, 

and flood-prone areas, respectively. The HSAs were derived from a digital elevation model 

and soil hydraulic conductivity of New Jersey through the same method described in Qiu 

et al. (2020), as discussed in Chapter 3. The spatial resolution of this dataset is 10 meters. 

HSAs are denoted by pixel value 1, and non-HSAs by 0. The extent of 100-year floodplains, 

Special Flood Hazard Areas, were extracted from the FEMA’s National Flood Hazard 

Layer (NFHL). The floodplain extent was converted from a vector layer to a binary raster 

layer with a resolution of 10 meters to facilitate subsequent spatial overlay processing and 

statistical analysis. The raster layer of flood-prone areas was merged from binary raster 

layers of HSAs and the floodplain through the mosaic method. The percentages of each 

municipality's HSAs, floodplains, and flood-prone areas were derived by the zonal mean 

method, respectively.  
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Figure 4.2 displays the spatial distribution of FEMA floodplains and HSAs along a 

tributary (Pike Run and its upper streams) of the Millstone river in Montgomery, New 

Jersey. Designated 100-year floodplains are immediately adjacent to streams. Although 

parts of HSAs overlap floodplains, many HSAs are away from streams in topographic 

converged areas with a relatively thin soil layer. These areas may not be exposed to fluvial 

floods but are likely to be disturbed by pluvial floods.  

 

Figure 4.2 Floodplains and Hydrological Sensitive Areas along a tributary of the Millstone 

River in Montgomery, New Jersey. 
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4.2.4 Impervious surfaces 

The impervious surfaces in the study area were derived from the impervious surfaces in 

2015 provided by the NJDEP, derived from digital imagery, LiDAR point clouds, and 

vector data sets, including land use/land cover, road centerlines, and hydrographic features. 

This dataset delineated boundaries of buildings, roads, and other paved or highly 

compacted impervious features, such as parking lots, sidewalks, and driveways, in New 

Jersey. We first converted all impervious surfaces to a raster dataset (10-meter resolution) 

and clipped it to the study area. The rasterized impervious surfaces were subsequently 

intersected with the extent of HSAs, floodplains, and flood-prone areas using the raster 

calculator. Finally, the percentages of impervious surfaces in each municipality's 

administrative boundaries, flood-prone areas, HSAs, and floodplains were derived by the 

zonal mean method, respectively.  

4.2.5 Development restrictions 

Five land use programs are implemented to regulate urban developments, preserve open 

lands, and reduce adverse impacts of urbanization on environmental quality, including 

steep slope ordinance, stream corridor ordinance, open space preservation, farmland 

preservation, and wetlands protection. Of these, the steep slope ordinances were adopted 

by municipalities in response to State regulatory requirements that lapsed in 2016 through 

a change in New Jersey’s Water Quality Management Planning rule (NJAC 7:15). Stream 

corridor protection ordinances are required to be adopted under the State’s stormwater 

management regulations. Open space and farmland programs are joint and voluntary 

efforts of State, county and municipal governments with non-profit land trusts. Wetlands 

protection requirements are State regulations, implemented by the NJDEP.  
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The steep slope ordinance originally was designed to regulate development on areas 

with significant slopes to prevent soil erosion, manage stormwater runoff, and maintain 

natural topography. The ordinance was based on requirements in the old version of New 

Jersey’s Water Quality Management Planning rule (NJAC 7:15). Some municipalities that 

adopted the model ordinance have retained the ordinance. It controls different land use 

activities based on slope ranges, such as 15% to 20%, 20% to 25%, and above 25%. 

Although steep slope ordinances in municipalities in the study area are not fully identical, 

urban development in areas with a slope of no less than 20% is prohibited (Noblejas, 2008). 

This study derived the steep slope areas (slope ≥20%) from a DEM in 2016 provided by 

the NJDEP. As the horizontal spatial resolution of this DEM is 10 feet, the raster layer of 

steep slope areas was resampled to the 10-meter resolution using the nearest-neighbor 

method.  

The stream corridor ordinance is designed to protect the ecological integrity of 

waterways by regulating activities within designated buffer zones around streams and 

rivers. This ordinance typically requires maintaining vegetated riparian buffers, which help 

filter pollutants, manage stormwater, and provide habitat for wildlife. New Jersey’s 

Stormwater Management rules (NJAC 7:8), the Flood Hazard Area Control Act rules 

(NJAC 7:13), and the Pollutant Discharge Elimination System rules (NJAC 7:14) have 

specific requirements for stream corridor regulations. The buffer range of steam corridors 

is 300 feet for Category One streams, 150 feet for trout production and maintenance 

streams, stream segments flowing through documented habitats for threatened or 

endangered species, and stream segments flowing through acid-producing soils, and 50 

feet for all other surface water bodies (Kruger, 2008). If slopes steeper than 15% are in the 



90 

designated width, the riparian buffer should be extended to include the entire sloped area 

and the buffer range can be extended to 300 feet at maximum. Additionally, stream 

corridors shall cover the entire floodway area. We initially created riparian buffers 

according to the NJDEP’s Surface Water Quality Classification, Landscape 3.3 data for 

habitats, and Potential Acid Producing Soils data. The steep slopes (≥15%) near streams 

were extracted by intersecting a 300-foot riparian buffer zone with sloped areas (polygons) 

derived from the DEM. Floodway areas were extracted from the NFHL. Riparian buffers, 

riparian steep sloped areas, and floodway areas were finally merged into stream corridors.  

Open space programs are designed to preserve and manage undeveloped land for 

environmental protection, recreation, and historic preservation. Typical open space 

properties include parks, conservation areas, preserves, historic sites, recreational fields, 

beaches, etc. The NJDEP established the Green Acres program (N.J.A.C. 7:36) in 1961 to 

preserve open spaces in New Jersey. Local and county governments also protect many open 

spaces either in collaboration with or separate from the Green Acres program. The NJDEP 

has created a geography dataset, ‘State, Local and Nonprofit Open Space of New Jersey,’ 

to record various open spaces in the state.  

Farmland preservation in New Jersey involves a program to protect agricultural 

lands from development and maintain the state's farming heritage. This is achieved by 

purchasing development rights from landowners, which ensures the land remains managed 

so that it is available for agriculture. The program is administered by the New Jersey State 

Agriculture Development Committee (SADC) and includes measures of purchasing 

development easements, designating agricultural development areas, and providing 

municipal planning incentive grants. Counties, municipalities and non-profit lands trusts 
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also are involved in the program. These efforts help to maintain New Jersey's agricultural 

industry, protect natural resources, and prevent urban sprawl. The area of preserved 

farmlands was derived from a vector geographic dataset, ‘Preserved Farmland of New 

Jersey,’ produced by the SADC.  

Freshwater wetland preservation in New Jersey is managed under the New Jersey 

Freshwater Wetlands Protection Act (NJAC 7:7A), which aims to protect these critical 

ecosystems. Any development or alteration in freshwater wetlands requires a permit from 

the NJDEP. Developers may need to create or restore wetlands to offset any permitted 

impacts. The wetland preservation program helps protect water quality, prevent flooding, 

and maintain biodiversity. This study used the 2012 wetlands layer derived from the 

NJDEP’s land use/ land cover data to approximately represent the extent of wetland 

protection.  

The above development restriction areas were converted to binary raster layers and 

merged using ArcGIS. The percentages of development restriction areas in administrative 

boundaries, flood-prone areas, HSAs, and floodplains of each municipality were 

respectively derived by the zonal mean method.  

4.2.6 Physical and socioeconomic variables 

This study also analyzed relationships between flood loss and several physical and 

socioeconomic variables frequently appearing in previous studies (Brody et al., 2011, 2014; 

Y. Lee & Brody, 2018). These variables include the average slope (%), mean saturated soil 

hydraulic conductivity (µm/s), housing value density ($/m2), mean household income ($), 

percent of high school graduates or higher, and percentage of non-Hispanic white 

population in municipalities. The average slope was derived from the NJDEP’s DEM in 



92 

2016. The mean saturated soil hydraulic conductivity was derived from the Gridded Soil 

Survey Geographic Database (gSSURGO) produced by the United States Department of 

Agriculture’s Natural Resources Conservation Service. The housing value density equals 

the sum of residential property sale prices divided by the sum of residential parcel areas in 

a municipality, calculated from the parcels and MOD-IV composite data published by the 

New Jersey Office of GIS. The housing value density values were further transformed by 

the natural logarithm in subsequent statistical analysis. The mean household income values 

in municipalities were derived from the American Community Survey (ACS) 5-year 

estimates from 2010 to 2020. The income data were initially adjusted by the CPI and 

subsequently averaged for the study period. The natural logarithm-transformed income 

data were further analyzed. The percentage of high school graduates or higher and the 

percentage of the non-Hispanic white population in each municipality were averaged from 

the ACS 5-year estimates from 2010 to 2020.  

4.2.7 Statistical analysis 

The statistical analyses implemented in this study include the correlation analysis and the 

multiple linear regression. Table 4.1 lists eighteen variables analyzed in this study. 

Pearson’s correlation coefficient was calculated for each pair of these variables. The result 

of the correlation analysis was subsequently used to guide the independent variable 

selection for the multiple linear regression.  

Eight multiple linear regression models were built to examine the impacts of land 

use on NFIP flood loss payments. The dependent variable was each model's log-

transformed flood insurance payment per hectare (Ln_LPH). Four regression models used 

the percentages of impervious surfaces in the administrative boundaries, flood-prone areas, 
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HSAs, and the 100-year floodplain as independent variables, respectively. The other four 

regression models used the percentages of development restriction areas in the 

administrative boundaries, flood-prone areas, HSAs, and the 100-year floodplain as 

independent variables, respectively. The rest of the independent variables were selected 

based on the correlation analysis result and the Variance Inflation Factor to reduce the 

multicollinearity effects in modeling. 

 

Table 4.1 List of Variables in the Analysis for Land Use Impacts on Flood Losses 

Variables Descriptions 

Ln_LPH Natural log-transformed flood losses per hectare 

FPA % of flood-prone areas in a municipality 

HSA % of Hydrologically Sensitive Areas in a municipality 

FDP % of 100-year floodplains in a municipality 

IS_MUN % of impervious surfaces in a municipality  

IS_FPA % of impervious surfaces in flood-prone areas of a municipality  

IS_HSA % of impervious surfaces in the HSA of a municipality  

IS_FDP % of impervious surfaces in the floodplain of a municipality  

DR_MUN % of development restriction areas in a municipality  

DR_FPA % of development restriction areas in flood-prone areas of a 

municipality 

DR_HSA % of development restriction areas in the HSA of a municipality  

DR_FDP % of development restriction areas in the floodplain of a municipality  

Ln_HVD Natural log-transformed housing value density ($ per square meter) 

KSAT Mean saturated soil hydraulic conductivity (µm per second) 

SLOPE Mean terrain slope (%) 

Ln_INCOME Natural log-transformed mean household income 

HIGHSCH % of the population that has a high school education or above 

WHITE % of the non-Hispanic white population 

 

4.3 Results 

4.3.1 Variable statistics 

Table 4.2 displays the basic statistics of eighteen variables analyzed in the study. The 

natural logarithm-transformed flood loss per hectare (Ln_LPH) ranges from 1.618 to 
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10.913, with an average value of 5.663. The mean value of natural logarithm-transformed 

housing value density (Ln_HVD) is 4.717. The mean value of natural logarithm-

transformed household income (Ln_INCOME) is 11.781. The mean of the population with 

a high school education (HIGHSCH) and above is 91.785%. The average percentage of the 

non-Hispanic white population (WHITE) is 61.794%. The mean saturated soil hydraulic 

conductivity (KSAT) ranges from 7.181 µm/s to 77.955 µm/s, with an average value of 

26.855 µm/s. The mean slope value (SLOPE) ranges from 3.26% to 15.71%, with an 

average value of 6.748%.  

Among three area designations related to flood risk, the average percentages of 

flood-prone areas, HSAs, and the 100-year floodplain in municipalities are about 19.1%, 

12.1%, and 11.1%, respectively. Only 26 of the 108 municipalities have more than 25% of 

their area in flood-prone areas. The average percentage of impervious surfaces in the entire 

municipal boundaries is about 32%, higher than that of impervious surfaces in flood-prone 

areas (23.1%). This difference suggests a higher development density outside flood-prone 

areas than inside it. The average percentage of impervious surfaces in HSAs is 25.7%, but 

14.8% in the 100-year floodplain, indicating a lower development density in floodplains 

than in HSAs. The average percentage of development restriction areas in municipalities 

is 34.8%, while 65.8% in flood-prone areas, suggesting that land use controls protect more 

portions within than outside of flood-prone areas. The average percentages of land use 

control areas in HSAs and the 100-year floodplain are 57.4% and 79.6%, respectively, 

suggesting a more stringent development restriction in the floodplain than in HSAs. 
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Table 4.2 Basic Statistics of Variables in the Analysis for Land Use Impacts 

 Mean Std Min 25% 50% 75% Max 

Ln_LPH 5.663 2.2294 1.618 3.9233 5.6593 7.3658 10.9128 

FPA 19.0871 11.0956 2.9709 10.5154 16.5039 24 57.552 

HSA 12.1153 7.2625 2.2019 6.0046 11.3009 16.3876 33.6451 

FDP 11.0682 8.5995 0 4.7229 8.7801 15.1984 51.8329 

IS_MUN 32.049 19.3813 4.4683 16.423 27.4713 47.8159 77.8885 

IS_FPA 23.1019 18.3422 1.3943 7.7087 17.812 34.9004 75.567 

IS_HSA 25.7115 19.44 1.396 9.7014 20.4207 40.3651 76.4725 

IS_FDP 14.8414 15.9374 0 2.9396 9.3546 21.0372 80.5848 

DR_MUN 34.7746 14.5677 5.0696 23.7082 35.9076 46.4619 64.85 

DR_FPA 65.839 21.1923 10.0237 49.9358 70.7369 82.7915 96.5249 

DR_HSA 57.4123 23.2834 7.6852 38.5235 62.6265 77.5026 95.8446 

DR_FDP 79.5647 25.997 0 75.9861 91.0344 95.3568 99.9442 

Ln_HVD 4.7172 1.3197 0.1655 4.1511 4.929 5.6608 6.851 

KSAT 26.8551 16.7572 7.1806 14.6366 21.2553 33.0771 77.9553 

SLOPE 6.7484 2.8561 3.2599 4.5955 5.7224 8.3264 15.7101 

Ln_INCOME 11.7805 0.3851 10.8685 11.5214 11.7881 12.0556 12.6347 

HIGHSCH 91.7854 6.496 63.6909 89.8523 94.1545 95.8682 98.6364 

WHITE 61.7935 23.5361 2.1032 49.3389 68.6947 80.4711 91.3065 

 

4.3.2 Correlation analysis result 

Figure 4.3 displays a heatmap of the correlation coefficient of each pair of variables. 

Ln_LPH is significantly correlated with most variables except DR_FDP and KSAT. It has 

positive correlations with FPA, HSA, FDP, IS_MUN, IS_FPA, IS_HSA, IS_FDP, and 

Ln_HVD, while negative correlations with SLOPE, Ln_INCOME, HIGHSCH, WHITE, 

DR_MUN, DR_FPA, and DR_HSA.  

The extent of the correlation between flood losses and impervious surfaces varies 

across areas. The correlation between Ln_LPH and IS_MUN is about 0.57, which is 

stronger than the correlations between Ln_LPH and impervious surfaces in flood-related 

areas (IS_FPA, IS_HSA, and IS_FDP), suggesting that impervious surfaces inside and 

outside flood-prone areas increase flood loss. In addition, the correlation between Ln_LPH 

and IS_HSA is around 0.4, which is slightly stronger than the correlation between Ln_LPH 
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and IS_FDP (0.32), indicating that impervious surfaces in HSAs are associated with greater 

flood losses than those in the 100-year floodplain. 

Similar patterns are found in DR_MUN, DR_FPA, DR_HSA, and DR_FDP. 

Ln_LPH correlates more strongly with DR_MUN (-0.39) than with DR_FPA (-0.29), 

DR_HSA (-0.3), and DR_FDP (nearly zero), suggesting that land use control areas inside 

and outside flood-prone areas decrease flood loss. Ln_LPH has a moderate correlation with 

DR_HSA but no significant correlation with DR_FDP, suggesting that flood losses are 

more sensitive to the variation of land use control areas in HSAs than in the 100-year 

floodplain.  

The correlation heatmap also shows strong correlations among independent 

variables. The independent variables in this study can be separated into three groups based 

on correlations and variable types. The first group includes FPA, HSA, and FDP. The 

second group contains impervious surface variables and land use control variables. The 

third group consists of Ln_INCOME, HIGHSCH, and WHITE. Variables within the same 

group are strongly correlated and reveal similar impacts on flood loss. Therefore, only one 

variable in each group should be selected for modeling to reduce the multicollinearity 

problem. SLOPE and Ln_HVD were used in modeling because they have relatively weaker 

correlations with other independent variables and reflect different impacts on flood loss. 

After several experiments, FDP, WHITE, SLOPE, and Ln_HVD were finally selected as 

the fixed variable combination for modeling, along with the impervious surface and land 

use control variables.  
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Figure 4.3 Heatmap of pairwise correlations among variables. Correlation values are filled 

in the grids. * indicates the correlation that is significant at the 0.05 level.  

 

4.3.3 Regressions of impervious surface impacts 

Table 4.3 displays variable coefficients and model performance of four regressions for 

impervious surface impacts. The R-squared values of these regressions range from 0.475 

to 0.560. The M1 model, which used IS_MUN, has the highest R-squared value, while the 

M4 model, which used IS_FDP, has the lowest R-squared value. M2 and M3 have similar 

model performance, with an R-squared value around 0.5. The coefficient of IS_MUN is 

0.0639, suggesting that a 1% increase in impervious surfaces in municipal boundaries is 
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associated with a 6.4% increase in flood losses per hectare between 2010 and 2020. The 

coefficient of IS_FPA is 0.0312, suggesting that a 1% increase in impervious surfaces in 

flood-prone areas is associated with a 3.1% increase in flood losses per hectare. The 

coefficient of IS_HSA is 0.0339, suggesting that a 1% increase in HSAs is associated with 

a 3.4% increase in flood losses per hectare. The coefficient of IS_FDP is 0.014 but 

insignificantly different from zero. The FDP coefficients in all impervious surface impact 

regressions are significant, ranging from 0.1296 to 0.1448, suggesting that a 1% increase 

in the 100-year floodplain increases the flood losses per hectare by around 13.5%. The 

coefficients of SLOPE, Ln_HVD, and WHITE are insignificant at the 0.05 level and 

inconsistent across these four regressions.  

 

Table 4.3 Coefficients of Variables in Models for Impervious Surface Impacts 

 M1 M2 M3 M4 

Intercept 1.7672* 3.0818*** 2.8343*** 3.9064*** 

IS_MUN 0.0639***    

IS_FPA  0.0312**   

IS_HSA   0.0339***  

IS_FDP    0.0140 

FDP 0.1345*** 0.1421*** 0.1448*** 0.1296*** 

SLOPE 0.0340 -0.0240 -0.0122 -0.0617 

Ln_HVD -0.0989 0.1358 0.1140 0.2501* 

WHITE 0.0097 -0.0031 -0.0016 -0.0105 

     

R-squared 0.560 0.495 0.504 0.475 

RMSE 1.473 1.576 1.562 1.608 
Note: * indicates a coefficient significant at the 0.1 level; ** indicates a coefficient significant at the 0.05 

level; *** indicates a coefficient significant at the 0.01 level.  
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4.3.4 Regressions of development restriction impacts 

Table 4.4 shows variable coefficients and model performance of the regressions for 

development restriction impacts. Among these four models, the DR_MUN (M5) model has 

the highest R-squared value of 0.505, while the DR_FDP (M8) has the lowest R-squared 

value of 0.474. M7 and M6 perform slightly better than M8, with R-squared values of 0.486 

and 0.481, respectively. The coefficient of DR_MUN is the only significant coefficient at 

the 0.05 level among the development restriction variables, with a value of -0.0431, 

suggesting that a 1% increase in development restriction areas within municipal boundaries 

is associated with a 4.3% decrease in flood losses per hectare between 2010 and 2020. The 

coefficient of DR_HSA is -0.0175 and significant at the 0.1 level, suggesting that a 1% 

increase in development restriction areas in HSAs is expected to decrease flood losses per 

hectare by about 1.8%. The coefficients of DR_FPA and DR_FDP are insignificant at any 

level. The coefficients of FDP across models for development restriction impacts are all 

significant at the 0.01 level, ranging from 0.1299 to 0.1480, which are consistent with the 

coefficients of FDP in models for impervious surface impacts. The coefficient of Ln_HVD 

is only significant in the M8 model, with a value of 0.3012, suggesting that a 1% increase 

in housing value density ($ per square meter) increases flood losses per hectare by around 

0.3%. The coefficients of SLOPE and WHITE are also insignificantly different from zero 

in models for land use control impacts.  
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Table 4.4 Coefficients of Variables in Models for Land Use Control Impacts 

 M5 M6 M7 M8 

Intercept 5.2211*** 4.8771*** 4.7217*** 4.6035*** 

DR_MUN -0.0431***    

DR_FPA  -0.0176   

DR_HSA   -0.0175*  

DR_FDP    -0.0059 

FDP 0.1480*** 0.1430*** 0.1433*** 0.1299*** 

SLOPE 0.0130 -0.0104 -0.0079 -0.0753 

Ln_HVD 0.1206 0.2131 0.2090 0.3012** 

WHITE -0.0057 -0.0093 -0.0093 -0.0133 

     

R-squared 0.505 0.481 0.486 0.474 

RMSE 1.561 1.598 1.591 1.610 
Note: * indicates a coefficient significant at 0.1 level; ** indicates a coefficient significant at 0.05 level; *** 

indicates a coefficient significant at 0.01 level.  

 

4.4 Discussion  

The correlation analysis suggests that impervious surfaces and development restriction 

areas significantly correlate with flood loss. Increases in impervious surfaces in a 

municipality can significantly increase flood losses per hectare, while increases in 

development restriction areas can significantly decrease flood losses per hectare. The 

intensity of correlations for flood losses with impervious surfaces and land use control 

areas varies across flood-prone areas, HSAs, and the floodplain. The flood losses per 

hectare more strongly correlate with the percentages of impervious surfaces and 

development restriction areas in municipal boundaries than those in flood-prone areas. This 

implies that the flood loss per hectare is related to impervious surfaces and land use control 

areas in flood-prone areas and those outside. Meanwhile, the flood losses per hectare more 

closely correlate with the percentages of impervious surfaces and development restriction 

areas in HSAs than those in the floodplain, implying that impervious surface and land use 

control areas in HSAs have more impacts on flood losses than those in the floodplain. 



101 

The results of regression models are consistent with the findings in the correlation 

analysis. The coefficient of IS_MUN is significant and positive, suggesting that impervious 

surfaces in a municipality increase flood losses per hectare. In contrast, the coefficient of 

DR_MUN is significant and negative, suggesting that development restriction areas in a 

municipality reduce flood losses per hectare. The coefficient of IS_MUN is nearly twice 

the coefficients of IS_FPA and IS_HSA. Similarly, the coefficient of DR_MUN is about 

twice the coefficients of DR_FPA and DR_HSA. This implies that flood losses per hectare 

are more sensitive to variations in municipalities' impervious surfaces and development 

restriction areas than those in flood-prone areas. The coefficients of IS_FDP and DR_FDP 

are insignificantly different from zero. In contrast, the coefficient of IS_HSA is positive 

and significant at the 0.05 level. The coefficient of DR_HSA is negative and significant at 

the 0.1 level, suggesting that flood losses per hectare are more sensitive to the variations in 

impervious surfaces and development restriction areas in HSAs than those in the 

floodplains. The insignificant coefficients of impervious surfaces and land use control 

areas in the floodplain may be attributed to relatively good land conservation in the 

floodplain. In most municipalities, the percentage of impervious surfaces in the floodplain 

is below 20%, while the percentage of development restriction areas is above 75%. Most 

runoff in the floodplain originates from upper land, whereas runoff generated from local 

impervious surfaces occupies a small portion. 

Although the correlation and regression analyses do not suggest that flood loss is 

more sensitive to impervious surfaces and development restrictions in HSAs than those in 

other areas, it does not imply that the land use impact on flood losses is the same within or 

outside HSAs. The bias in the flood loss data may distort the results of this study. Because 
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only mortgaged properties in the 100-year floodplain have a mandatory requirement of 

flood insurance, insured properties are concentrated in the floodplain. Many flood damages 

outside the floodplain were not recorded in the NFIP claims. This bias can cause an 

underestimation of the impact of land use in HSAs on flood loss. Even though the bias 

exists, the analyses in this study suggested that the percent of impervious surfaces in HSAs 

had a greater impact on flood losses per hectare than the percent of impervious surfaces in 

the floodplain. Future studies need to address the bias in flood loss data. One strategy can 

be collecting additional data to reflect flood losses outside the floodplain, including 

inferred losses through mapping of actual flood extent (e.g., using orthophotography 

gathered during flood peaks) against home locations. Another strategy is to analyze the 

precise location of individual flood insurance claims to identify the impact of land use in 

HSAs on flood losses. 

 

4.5 Conclusions 

This study used correlation analysis and linear regression to examine the impacts of 

impervious surfaces and development restriction areas on flood losses across the entire 

municipality, and within flood-prone areas, HSAs, and the 100-year floodplain of each 

municipality. The results suggested that a 1% increase in a municipality's impervious 

surfaces correlates to a 6.4% increase in flood insurance claim payments per hectare from 

2010 to 2020, and a 1% increase in the municipality's development restriction areas 

correlates to a 4.3% decrease in flood insurance claim payments per hectare. However, 

model results did not provide evidence to support that impervious surfaces and land use 

control areas in HSAs have greater impacts on flood losses than those in other areas. This 
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result did not imply that the impacts of land use in HSAs are no different than those outside 

HSAs, as the flood insurance claims fail to reflect flood damages outside the floodplain.    
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CHAPTER 5 

DEVELOPING PROACTIVE STRATEGIES TO ENHANCE COMMUNITY 

FLOOD RESILIENCE  

 

5.1 Flood Resilience 

Resilience refers to the capability of a system to return to an equilibrium state after an 

external disturbance, whereas the resistance concept aims to prevent changes in system 

function (Irwin et al., 2016). The concept of resilience was first introduced to the field of 

ecosystem and ecology (Holling, 1973) and evolved into several other areas, including 

psychology, engineering, economy, public health, and social science(Bahadur & Pichon, 

2017; McClymont et al., 2020). Different disciplines have various definitions of resilience, 

which can be summarized into three different frameworks (Disse et al., 2020; Nofal & van 

de Lindt, 2020; Zevenbergen et al., 2020):  

(1) Engineering resilience refers to a system's ability to reduce the probability of 

failure, reduce the consequence during failure, and rapidly recover to the pre-

disturbance state or equilibrium (bouncing back). 

(2) Ecological resilience refers to a system's capacity to withstand or absorb 

disturbance and maintain the system's function under a wider range of 

disturbances. 

(3) Socio-ecological resilience refers to a system's ability to anticipate, absorb, 

recover from, and reorganize in response to recurrent disturbance. The system 

with socio-ecological resilience will continuously learn, adapt, and transform 

to accommodate the gradual external stresses (e.g., climate change) and shocks 

on it.  

Engineering resilience is usually applied in technological systems (e.g., buildings 

and infrastructures) to reflect the stability of the system functions, which emphasizes the 

return to the pre-disturbance state, whereas ecological resilience is used to cope with the 

complex and dynamic systems that have multiple equilibrium states to persistent the system 
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function. The socio-ecological resilience is developed from ecological resilience, which 

additionally acknowledges the adaptive capacity of complex systems to adjust to long-term 

changes like climate change. As flooding engages with various socio-economic and 

environmental factors and its intensity and frequency are affected by the changing climate, 

community flood resilience is a kind of social-ecological resilience, referring to the 

capacity of a community to accommodate, recover from, and adapt to the adverse effects 

associated with flood events. Flood resilience does not guarantee the absence of any flood 

losses but rather emphasizes mitigation of flood impacts, rapid recovery from disturbances, 

and continued adaptation to future threats (Bulti et al., 2019).  

Numerous resilience frameworks have been developed to evaluate and guide 

resilience establishment from various aspects (Bulti et al., 2019; Cai et al., 2018; Nguyen 

& Akerkar, 2020). Most of them recognize that community resilience is a comprehensive 

capability involving society, economy, human resources, physical condition, natural 

resources, and infrastructure components (Nguyen & Akerkar, 2020). A representative 

framework is the Zurich flood resilience ('5C-4R') framework. It attributes the community's 

resilience to five sources of capital ('5C'): physical, natural, financial, human, and social 

capitals (Keating et al., 2014, 2017). Physical capital refers to the built environment and 

infrastructure of a community; natural capital denotes the natural resource base, e.g., land, 

water, and biological resources; financial capital refers to financial resources to foster 

community resilience to future hazards; human capital refers to the education, skills, and 

health of household members; social capital refers to the cooperative and mutually 

beneficial social relationships, networks, and close social bonds. The natural capital greatly 

depends on the landscape’s resilience, which is the foundation of community resilience.   
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5.2 Resilient Landscape 

A resilient landscape is one that maintains essential ecological functions, supports robust 

native biodiversity, and upholds critical landscape processes over time, even amid 

changing conditions and various stressors. Resilient landscapes play a pivotal role in flood 

resilience by incorporating nature features into water flow management and flood 

mitigation (Huang et al., 2022; Lafortezza et al., 2018; Luo et al., 2023; Palazzo & Wang, 

2022). Flood risks can be substantially reduced by emphasizing the natural functions of the 

landscape. For example, wetlands absorb excess rainwater and reduce the speed of runoff. 

Floodplains provide areas for rivers to overflow safely, thus lowering the risk of flooding 

in populated areas. Riparian buffers, with their vegetation, trap sediments, and filter 

pollutants, improving water quality and preventing soil erosion. Nature-based solutions, 

such as rain gardens, green roofs, bioswales, bio-detention basins, and permeable 

pavements, integrate green and blue infrastructures in landscapes. They significantly 

improve stormwater storage, soil water recharge, and evapotranspiration relative to 

traditional development and stormwater management approaches, thereby slowing down 

runoff and reducing the burden of sewer discharge systems. These natural and semi-natural 

systems reduce the severity and frequency of floods, protect infrastructure, and support 

quicker recovery post-flooding, making communities more resilient. Meanwhile, these 

systems also provide multiple ecosystem services, such as habitats, clean water and air, 

cooling effects, and aesthetic values, to foster biodiversity and sustainability in landscapes 

(Beller et al., 2015).  

Landscape resilience is commonly achieved through the planning, management, 

and design of landscapes. Landscape planning involves the master plan of development 
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and municipal land use ordinances, controlling the macro-scale land use. Landscape 

planning should preserve and restore natural habitats and ensure connectivity between them 

to allow species movement and adaptation (Ahern, 2013; Huang et al., 2022; Qiu et al., 

2014). Sustainable management practices that use native plants help maintain the health 

and functionality of the landscape (Beller et al., 2015). Thoughtful landscape design that 

incorporates green infrastructure and low-impact development techniques further enhances 

water management and reduces urban runoff (Huang et al., 2022; Palazzo & Wang, 2022; 

Van Long et al., 2020). Building a resilient landscape cannot occur without the engagement 

of local communities in these processes. Their participation ensures that the landscapes 

meet their needs and fosters a sense of ownership and responsibility. This holistic approach 

not only mitigates flood risks but also promotes ecological health and community well-

being, creating a robust foundation for long-term resilience. 

 

5.3 Significance of the HSAs to Resilient Landscape 

HSAs are critical components in the design and management of resilient landscapes. 

Because HSAs have a high propensity to saturation and direct hydrological connections to 

surface water bodies, they indicate the sources areas of runoff in landscapes (Agnew et al., 

2006; Walter et al., 2000). Our study has found that flood risk inside HSAs is higher than 

outside. These areas can delineate susceptible areas to floods, especially for pluvial 

flooding. Land development should avoid HSAs. As HSAs are often in topographically 

converging areas, encroaching on these areas will likely induce dramatic increases in runoff, 

leading to severe flood damage. Another significance of HSAs to a landscape is their 

hydrologic linkage to surface water bodies. Water-borne pollutants and sediments in these 
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areas can rapidly move to surface water bodies with rainwater runoff. Finally, many HSAs 

overlap with wetlands, riparian zones, floodplains, and other regions with high water tables 

or frequent water flow, which play a vital role in maintaining ecological balance and 

hydrological function. By preserving the natural hydrologic function in HSAs and 

detaining or retaining runoff within these areas, communities can enhance their resilience 

to climate change, mitigate the effects of extreme weather events, and ensure the 

sustainability of water resources. 

In the context of resilient landscapes, HSAs can help stakeholders identify flood-

prone areas in addition to the 100-year floodplain and evade high-risk regions. Land use 

planners and managers can use HSAs to set up a priority for property acquisition and 

relocation. Thoughtful landscape designs can apply green infrastructures near and within 

HSAs to detain runoff from these areas, thereby reducing the severity of floods. Preserving 

these areas from development can benefit the water quality and biodiversity of a landscape. 

These areas support biodiversity by providing essential habitats and corridors for wildlife, 

contributing to the overall health of the ecosystem. Moreover, HSAs can improve the 

aesthetic and recreational value of landscapes, offering green spaces that enhance the 

quality of life for local populations. Effective management and conservation of HSAs are 

therefore crucial for building landscapes that are not only resilient to environmental 

stresses but also capable of supporting human well-being and ecological integrity over the 

long term. 
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5.4 Suggestions for Building Resilient Landscape 

As the critical role of HSAs in landscape resilience, stakeholders of land use and flood risk 

management have to emphasize the preservation and restoration of these areas and apply 

natural-based solutions to regulate and treat stormwater in these areas proactively. Our 

suggestions for flood resilience strategies based on the concept of HSAs are comprised of 

four primary components. First, in the landscape planning phase, the extent of HSAs needs 

to be accurately mapped out and publicized to draw stakeholders’ attention to these areas. 

The master plan and municipal ordinances should be revised to prohibit new constructions 

in HSAs and their adjacent areas. Restoration plans should be made for developed HSAs 

to gradually restore the landscape to its natural condition. 

Second, in the landscape design phase, buffers and stormwater retention / detention 

/ infiltration basins should be designed for HSAs. Because HSAs are active source areas of 

runoff, we suggest surrounding each HSA with vegetated buffers (woodlands or grasslands) 

to detain runoff and filter pollutants and sediments (Kato & Huang, 2021; M. Kim et al., 

2021; Luo et al., 2023; Van Long et al., 2020). Direct hydrologic connections between 

HSAs and surface water bodies should be restricted to slow runoff velocity, while indirect 

connections through green infrastructures can be restored and maintained (Luo et al., 2023). 

Green spaces, such as forests and grasslands, can be maintained or created at the upstream 

areas of HSAs to reduce water flows into them, while bio-detention basins and wetlands 

can be built at the downstream areas of HSAs to temporally store runoff generated from 

them and slowly release water into the hydrological network (Kato & Huang, 2021). 

Meanwhile, the connectivity among green spaces should be enhanced as much as possible 
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to increase the water storage capacity and wildlife habitats(M. Kim et al., 2021; Luo et al., 

2023).  

Third, in the landscape management phase, local communities should use native 

plants adapted to local conditions to build and maintain green infrastructures to enhance 

the sustainability of the landscape. In an urban landscape, grey infrastructures, such as 

buildings, sewer systems, and roads, near HSAs should be retrofitted with green 

infrastructure and other low-impact development techniques to reduce their impacts on the 

natural functions of HSAs. In a rural landscape, the best management practices of fertilizer 

and pesticides should be implemented in agriculture fields, and buffers should be set 

around fields in order to prevent non-point pollution to HSAs.  

Last but not least, FEMA should incorporate the concept of HSAs into its work, 

including the National Flood Insurance Program (NFIP). The present flood insurance 

program focuses on floodplain losses, which only reflect the losses of fluvial and coastal 

floods. The insurance program did not cover numerous losses caused by pluvial floods 

(Rosenzweig et al., 2018). The NFIP's flood maps are incomplete and outdated, so many 

property owners in HSAs are unaware of the flood risk they face. Including properties in 

HSAs in the NFIP can, on the one hand, provide financial support for recovery after floods; 

on the other hand, insurance premiums can persuade property owners to avoid HSAs. The 

concept of HSAs can also improve the performance of the NFIP’s Community Rating 

System in flood mapping, open space preservation, and property acquisition and relocation. 

Including HSAs in the flood mapping can greatly extend stakeholders’ awareness of flood 

risk. Preserving HSAs as open spaces can reduce property flood exposure and avoid future 

flood losses. Vulnerable properties needed for acquisition within floodplains can be 
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efficiently identified with the help of HSAs. HSAs maps can also help people evade high-

risk areas during property relocation.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation, we sought to provide a proactive strategy to enhance community flood 

resilience by incorporating landscape hydrological sensitivity and connectivity. The central 

hypothesis posited that landscape alterations driven by human decisions are often 

incongruent with the natural hydro-ecological functions, leading to increased flood risks. 

The study reviewed hedonic pricing studies on floodplain impact in the United States, 

examined the effects of landscape alterations in Hydrologically Sensitive Areas on property 

values, assessed the impacts of impervious surfaces and development restrictions (both 

regulatory and land preservation) in landscapes on flood losses, discussed the significance 

of incorporating HSAs in building resilient landscapes, and finally provided suggestions to 

improve flood resilience.  

Our research provided significant insights into the relationship between landscape 

alterations, flood risks, and property values. Key findings include: 

 

(1) The review of 31 peer-reviewed articles revealed diverse patterns of floodplain 

impacts on property prices, influenced by factors such as spatial location 

(coastal vs. inland, 100-year vs. 500-year floodplain) and temporal aspects (pre-

flood vs. post-flood events). The floodplain impact on property values is the 

compound result of flood risks, insurance premiums, and local environmental 

amenities (e.g., shore proximity), varying from -48% to +61% over space and 

time. People’s perceived flood risk directly affected this impact. Due to a lack 

of information, people are often exposed to flood risks without knowing it.  

(2) The empirical analysis in Hillsborough and Montgomery Townships, New 

Jersey, confirmed that properties within HSAs experienced a significant price 

discount (-2%) compared to those outside HSAs. This impact was almost 

independent of the floodplain’s impact, implying that HSAs imposed additional 

flood risks on properties within these areas. 
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(3) The empirical study in the Raritan region, New Jersey, found that increases in 

impervious surfaces in landscapes were associated with higher flood insurance 

claim payments per unit area, while increased land use control areas correlated 

with lower claim payments per unit area. However, the impacts of these factors 

within HSAs were not significantly different from those in other areas, 

indicating potential limitations in the flood insurance claims data in reflecting 

actual flood damages. Improved flood loss data (e.g., losses beyond flood 

insurance maximums, and non-insured losses) would likely increase the 

robustness of these findings. 

These findings are significant for several reasons. First, they provide empirical 

evidence supporting the hypothesis that landscape alterations induce increases in flood risk. 

Second, the identification of HSAs extends flood risk awareness beyond conventional 

floodplain boundaries, offering a more effective approach to flood risk management. 

Moreover, the correlation between impervious surfaces, land use controls, and flood losses 

highlights the importance of effective land use planning and regulations in mitigating flood 

risks. These contributions are crucial for developing more effective flood management 

strategies. Realizing the importance of landscape management to flood risk management, 

we proposed a proactive strategy to enhance community flood resilience by incorporating 

the protection and regulation of HSAs in creating and maintaining resilient landscapes. 

Suggestions were provided on aspects of landscape planning, landscape design, landscape 

management, and flood insurance reformation.   

While this study provided important insights, several limitations were identified. 

First, the binary designation of HSAs lacked specific probabilities of flood occurrence, like 

the 100-year floodplain. HSAs delineate the areas with a high probability of becoming 

saturated, but this probability is not equal to the flooding probability. Second, this study 

could not find clear evidence of the impact of HSAs imposed on flood losses due to a lack 

of precision location tags of flood claims and limited data on flood losses outside the 100-

year floodplain. Moreover, the effects of HSAs’ spatial configuration and connectivity on 
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flood resilience were not analyzed in the study. Further research could address these 

limitations by developing more granular flood risk metrics, collecting more comprehensive 

flood loss data, and analyzing the land use and land cover patterns in landscapes.  

Future studies should focus on exploring spatial and temporal patterns in HSA’s 

impacts at different scales to improve our understanding of the role of HSAs in flood 

resilience and water resource management. Besides, incorporating HSAs in flood risk 

modeling will have significant implications for urban planning and flood risk management. 

In conclusion, this dissertation has demonstrated the critical need for incorporating 

landscape hydrological sensitivity and connectivity into flood management strategies. By 

enhancing our understanding of the impacts of landscape alterations and providing a 

framework for more effective flood resilience, this research offers valuable insights for 

policymakers, urban planners, and communities aiming to mitigate flood risks and build 

resilient landscapes. 
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