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ABSTRACT

A MICROMAGNETIC STUDY OF SKYRMIONS IN THIN-FILM
MULTILAYERED FERROMAGNETIC MATERIALS

by
Nicholas J. Dubicki

Magnetic skyrmions are topologically protected, localized, nanoscale spin textures in

non-centrosymmetric thin ferromagnetic materials and heterostructures. At present

they are of great interest to physicists for potential applications in information

technology due to their particle-like properties and stability. In a system of multiple

thin ferromagnetic layers, the stray field interaction was typically treated with

various simplifications and approximations. It is shown that extensive analysis

of the micromagnetic equations leads to an exact representation of the stray field

interaction energy in the form of layer interaction kernels, a so-called ‘finite thickness’

representation. This formulation reveals the competition between perpendicular

magnetic anisotropy (PMA) and stray field in the stabilization of skyrmions, and gives

new existence and collapse criteria. This is demonstrated in detail in the case of a

monolayer of finite thickness and compared to past results which cannot reveal the

collapse criteria. The layer interaction kernels are then treated asymptotically for thin

films to obtain the nonlocal stray field interaction energies of multilayers. It is thereby

shown that a system of PMA multilayers interacting with each other only through the

stray field can support bound columns of concentric skyrmions in each layer, enabled

by the stray field interaction alone. The multilayer skyrmions are shown to be larger

than those of a monolayer, and exhibit a full range of Bloch-Néel hybrid combinations

depending on certain constraints given by the interlayer volume charge energy. Further

solutions are given for Dzyaloshinskii-Moriya interaction enabled skyrmions in a

system of multilayers interacting with each other through both ferromagnetic and

antiferromagnetic exchange.
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CHAPTER 1

INTRODUCTION

The nature of ferromagnetism has its origins in quantum physics. Ideas such as the

Pauli exclusion principle were necessary to explain how ferromagnetic materials sustain

a net magnetic moment at the atomic level. This is due to their atomic structure

consisting of an excess of unpaired d-orbital electrons [26]. The magnetic moment

results from the constructive combination of the spin of these unpaired electrons. ‘Spin’

may equivalently refer to the electron’s intrinsic angular momentum, or to its intrinsic

magnetic moment. For the limited scope of this dissertation, the term ‘spin’ may refer

to any object with a definable and discrete magnetic dipole moment. Meanwhile, the

ferromagnet’s essential property is its tendency for neighboring spins in the material

structure to come into parallel alignment with one another, promoting an order of

uniformly parallel elementary spins. The uniformity promoting mechanism at hand is

known as the Heisenberg exchange interaction, or simply ‘exchange’.

When examined at the level of an aggregate material, these atomic level

interactions give rise to global uniformity promoting behavior in materials which

may result in a macroscopically observable magnetic moment. At this scale, however,

the material interaction is modulated by the long distance interactions it undergoes

through the magnetic field, disrupting the uniformity and leading to complex multiscale

organization of the material’s magnetic moments. The material’s self-interaction

through the magnetic field is referred to as the ‘stray field interaction’. These basic

frameworks were enough for Landau, Lifshitz, and their peers to begin the study

of magnetic domains and domain walls [59, 60], domains being examples of large

scale regions of a material all magnetized in the same direction, and domain walls,

referring to the transition region between domains where the material magnetization
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rapidly transitions from one domain’s alignment to the other. These advances were

a fundamental step in understanding the multiscale structure of ferromagnetics as a

consequence of competing magnetic interactions.

The magnetization structure of interest in the present study are the so called

magnetic skyrmions. These are localized solitary regions formed in a magnetic material

that resemble a nanoscopic circular domain which achieves the opposite magnetization

to that of its surroundings at a single point. The circular symmetry imbues them with

some stability with respect to fundamental magnetic interactions. The skyrmion’s

smallness, controllability by electric currents and spin-orbit interactions [25, 70],

and stability properties attracted researchers to study and manufacture materials as

skyrmion hosts. Advances herein may form the basis for the manufacture of skyrmion

based computer memory and logic devices [34, 35, 76, 102, 113]. Such devices have

already been proposed [87, 110]. One example is the skyrmion racetrack memory

described by Fert et al. [34].

Development of skyrmions as a concept began with T. Skyrme, who described

the Skyrme mechanism that gives rise to the formation of topological solitons in 1961,

intending to use them as a model of nucleons [98]. In the context of ferromagnetism,

Belavin and Polyakov in 1975 first showed the existence of topologically nontrivial

energy minimizing structures in 2D ferromagnets under the exchange interaction

alone, a result to feature heavily in our work [6]. In 1989 Bogdanov, Kudinov,

and Yablonskii were able to characterize stable isolated “vortex” states in magnetic

materials with Dzyaloshinskii-Moriya interaction (DMI) [18, 19], which would later

be called magnetic skyrmions. Bogdanov and Hubert went on to refine the stability

properties of skyrmions [16, 17]. Skyrmions have since been observed in experiments,

first in 2009 [75] (and see further developments in experimental work summarized by

[20, 46, 71, 101, 107]).
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Feasibility of any skyrmion device relies on properly assessing the dynamics and

stability properties, for which much has been done. Reasonable schemes have been

conceived for writing and deleting skyrmions in a sample [89, 97]. Other authors gave

sufficient criteria for room temperature stable skyrmions [10, 24] and assesed their

thermal stability [3, 44, 68, 104]. More recently, Bernand-Mantel et al. used stochastic

analysis to predict expected skyrmion lifetimes depending on material parameters [14].

The same was studied in discrete lattice models by Potkina et al. [85].

We emphasize the problem of multilayered thin ferromagnetic systems, and the

use of the micromagnetic model in explaining the role of the stray field interaction in

facilitating the existence or nonexistence of skyrmion solutions and their consequent

properties in different geometries of ferromagnetic materials.

1.1 On Skyrmions as Topological Solitons

Skyrmions are topologically nontrivial objects, in the sense that when the magne-

tization configurations are regarded as continuous maps, it is impossible to deform

a skyrmion continuously to the uniform state. We will define its topological

characteristics more precisely in Section 3.1. This motivates the search for various

other species of isolated topologically nontrivial magnetic structure (see Figure 1.2) [42,

94, 113]. The field has thus enjoyed many contributions from its parallel mathematical

disciplines studying topologically nontrivial minimizers of the Dirichlet energy, or so

called harmonic maps [47]. Indeed, study of these maps is directly related to the

stable states of exchange dominant ferromagnetic films, where a fully realized isolated

magnetic texture is understood to be closely approximated in some sense by harmonic

maps [8, 93].

Realization and study of degree 1 harmonic maps in two dimensional magnetic

structure gives a mathematical basis to begin the study of skyrmions. Immediately,

local minimizers of the exchange energy are characterized by several tunable degrees

3



(a) (b) (c)

Figure 1.1 Schematic diagrams of magnetic skyrmions in the plane. (a) Bloch
skyrmion, (b) Hybrid skyrmion, (c) Néel skyrmion.

of freedom including the profile’s dilation, rotational character, and position in the

plane (see Chapter 3) [6]. Stable skyrmions in the context of harmonic maps in

2D ferromagnets in the presence of other interactions were first rigorously obtained

by Melcher in 2014 [72], and in 2017 shown to converge to harmonic maps in some

conformal limit [30]. The skyrmion is endowed with a rotational sense according

to how the magnetization vector transitions from the core to the surroundings, and

several such species of skyrmion are classified based on this parameter. Such cases are

diagrammed in Figure 1.1. Those which acquire a vortex-like character and where,

when transitioning from core to surroundings the magnetization rotates about the

radial vector, ever perpendicular to it, in a helical path, are called a Bloch skyrmions.

When the magnetization, however, rotates toward the radial axis when transitioning

from core to surroundings such that it always resides in the same vertical plane

containing the radial axis, this is called a Néel skyrmion. Skyrmions may also exhibit

a hybrid phase intermediate between the Néel and Bloch cases. Depending on the

magnetic system, one or another species of skyrmion may be enabled to the exclusion of

others, and this becomes important when studying how they dynamically deform and

4



Figure 1.2 Isolated magnetic textures realized in simulations of ultrathin
ferromagnetic films. Black and white coloring encode the out-of-plane component of
magnetization. Objects (and topological charge) as they appear from the left are:
skyrmion bag (3), skyrmion bag (2), isolated skyrmion (1), skyrmionium (0),
skyrmions contained in domains (1), (2).
Taken from Rybakov and Kiselev [94].

translate under external inputs [25, 31, 79]. The same dependence on the Néel/Bloch

character of dynamics is observed in domain walls [61].

1.2 On Skyrmions in Thin Magnetic Materials

Interest in the diverse behavior of material magnetic structure, and the study of the

micromagnetic model, continues to grow, and more rapidly in the age of computers

where magnetic materials are essential components of the manufacture of computer

memory [51]. This naturally invites the analysis of structure at very small scales,

of thin film ferromagnets. Alternative magnetic materials such as ferrimagnets,

antiferromagnets, synthetic ferromagnets, and frustrated ferromagnets are also being

studied in view of applications to information technology, and are amenable to

modifications of the micromagnetic model and admit their own classes of magnetic

texture [4, 28, 50, 69, 83]. These advances also inspired the study of other related

localized structure like anti-skyrmions and skyrmioniums [54, 56, 65, 66, 80]. We

present a small catalogue of select examples of localized texture obtained in simulations

by Rybakov and Kiselev in figure 1.2 [94].

Of particular interest in this dissertation are the properties of skyrmions in

compound nanometer thin films. The geometry of these systems is such that their

behavior is highly dependant on the interactions at its interface. Chiral symmetry
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(d)(c)

(b)(a)

Figure 1.3 Select examples of observed magnetization patterns in thin ferromagnetic
films. (a) Lorentz transition electron microscopy image of out-of-plane component of
material magnetization in a cooled sample of FeGe of thickness 150nm showing an
aggregated Hexagonal skyrmion lattice. (b) spin-polarized scanning tunneling
microscopy image of the out-of-plane component of an ultrathin (atomic) PdFe/Ir
layer showing nanometer scale skyrmions cohabitating with stripe domains under the
influence of applied field. (c) Bubble and stripe domains in a strongly uniaxial
BiLu2Fe4GaO12 sample. Here, the white and Black domains are magnetized
antiparallel and out-of-plane. (d) Kerr image of the out-of-plane magnetization,
showing skyrmionic bubbles in an ultrathin (Co = 0.4nm) Pt/Co/AlOx trilayer.
(a) Taken from Yu et al. [109]. (b) Taken from Romming et al. [90]. (c) aggregated by McCord et al.
[71] image originally obtained by M. Kustov, Kiel University. (d) provided courtesy of collaborator
Anne Bernand-Mantel, Centre d’Élaboration de Matériaux et d’Études Structurales (CEMES),
CNRS.
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breaking in a ferromagnetic film leading to the Dzyaloshinskii-Moriya Interaction

(DMI) is one such property of these films [32, 74]. The DMI is known to arise as a

consequence of interfacial interactions [27], and predicted to host skyrmions as energy

minimizing configurations [91]. One may observe skyrmions in specially manufactured

thin ferromagnetic films grown on a heavy metal substrate to induce the symmetry

breaking DMI at the interface which promotes twisting magnetic structure [7, 20, 107].

As shown in figure 1.3, various magnetic imaging techniques can examine the material

microstructure and observe skyrmions in various phases, both as isolated bubble like

structures and as an aggregated skyrmion lattice. These are obtained in practice with

careful manipulation of the sample’s temperature as well as out-of-plane applied fields

to control the growth and nucleation of both domains and skyrmions [7, 109].

Films with multiple ferromagnetic layers have been synthesized in the past

5 years, and have been observed to support skyrmion-like structures [73]. The

presence of several interacting ferromagnetic layers leads to multiple nontrivial effects.

In simulation of current driven dynamics of bilayers coupled through a reduced

(anti-)ferromagnetic exchange coupling, Koshibae and Nagaosa observed the formation

of bound pairs of concentric skyrmions which are greater in size and more stable

than their single-layer counterparts [57]. Zhang et al. deduced the cancellation of

the skyrmion Hall effect in antiferromagnetically coupled bilayer systems [112]. In

the absence of the skyrmion-Hall effect, current driven dynamics will not deflect

the skyrmion unfavorably to the boundary of a finite sized system. The Multilayer

system with antiferromagnetic coupling may serve as a synthetic antiferromagnet

[84], and corresponding antiferromagnetic skyrmions have been studied with similar

favorable properties [5, 111]. Hence, multilayer materials represent a promising avenue

in the development of controllable systems applicable to computer engineering, and

for observing and studying skyrmions.
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1.3 On the Use of the Micromagnetic Model

The micromagnetic model is a continuum based variational model which has already

seen extraordinary success modeling all of these interactions and giving theoretical

insight to observed magnetic structure. This began with Landau and Lifshitz work

using the continuum model to study elementary domain structure of ferromagnets. In

that era already, the micromagnetic framework was shown to enable diverse interlocking

multiscale phenomena such as the interplay between domain walls (micro) and domains

(macro) [60]. This theory blossomed into its own field and has since been expounded

upon, summarized in the book by W.F. Brown [22], and has been applied to observed

magnetic systems of countless types of materials with different geometry and crystal

structure; for a more exhaustive catalog of the applications of the micromagnetic

theory and associated experimental technique, see the book by Hubert and Schäfer [48].

The theory is adaptable by way of various modifications to modeling ferrimagnetic

and antiferromagnetic materials [33, 95].

A ferromagnet is any material that can sustain a spontaneous, macroscopically

observable magnetic moment in the absence of external forces. According to the

Landau theory of ferromagnetism, such materials can sustain a magnetic moment when

cooled below the Curie temperature [59]. As such, in the micromagnetic framework

the material is characterized by a magnetic dipole moment density, represented as

a vector which is typically taken to have a constant length with respect to space

and time. Ferromagnetism is governed, to a first approximation, by the Heisenberg

exchange interaction, which is a quantum effect that induces neighboring electron

spins to align with one another. It is this interaction that facilitates the emergence

of the macroscopically observable magnetic moment. The exchange is modulated

by anisotropy, as the crystal lattice may prefer magnetization in certain directions.

The presence of noncentrosymmetric crystaline structures can lead to an additional

antisymmetric exchange inducing a tendency of the material to form helical magnetic
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structures (Dzyaloshinskii-Moriya Interaction (DMI)) [15]. The material will also

interact with itself at a distance through the magnetic field they generate, producing

a non-local term in the energy equation. Furthermore in heterogeneous materials, the

spins of one material will strongly interact at the interface with non ferromagnetic

substrates.

The full incorporation of magnetic interactions is required to properly predict

and explain skyrmion solutions in thin film systems, especially that of the interfacial

DMI [55, 91] and stray magnetic field interactions. At first the leading order stray

field interactions in a film were lumped into shape anisotropy, and the thin film system

energy was described entirely locally by the model of Gioia and James [41, 106]. Later

research began to show the importance of the non-local stray field effects; Indeed,

skyrmions enabled by the nonlocal effects of stray field were coming under consideration

[24] before their corresponding asymptotic terms were obtained. Further theoretical

developments then incorporated the perturbative effects of the stray magnetic field

in the thin-film limit. Knüpfer, Muratov, and Nolte expressed nontrivial, nonlocal,

stray field energy terms in the expansion with a magnitude of the same order as

the dimensionless film thickness [52, 77, 81], which enable the formation of stable

skyrmion solutions even in the absence of DMI and compete with weak DMI [9].

These improvements in characterizing the stray field interaction of thin films serve

both as fundamental contributions to the greater micromagnetic model, and as the

foundation for the present study to further elucidate the role stray field plays in

stabilizing skyrmions in thin films.

The methodology of our skyrmion study focuses on determining stable states

which feature a skyrmion in each layer of a multilayer material, and mapping out

the energy landscape in the neighborhood of these stable states to gain insight

into possible dynamics. This approach utilizes an ansatz based calculation of the

energy, approximating the profile of a magnetic skyrmion within a restricted class of
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topologically nontrivial magnetization profiles; however, due to more recent work the

quality of the ansatz is improved, now placed on a more rigid theoretical grounding

and enclosed within the context of harmonic maps. An admissible class of localized

magnetic textures, close to harmonic maps, and exhibiting all necessary properties

of compact skyrmions is proposed according to past work by Bernand-Mantel et

al. [8]. This analysis has practical relevance to producing and studying skyrmions

in ferrimagnetic systems, as the inherent reduced stray field interaction allows the

competition between exchange and stray field interactions to occur over broader length

scales than that of ferromagnets, ensuring the resultant structures have length scales

greater than that of atomic spacing and thus amenable to the continuum models.

Such parameter regimes were studied for a monolayer under applied field, stray field,

and DMI by Bernand-Mantel et al. to find stable skyrmions in the low DMI regime [9,

13]. Particular emphasis and discussion shall be given to the role played by the stray

magnetic field energy, and deriving the stray field interactions between skyrmions in

each layer from the aforementioned ansatz.

1.4 Summary of Results

Modeling thin magnetic systems in the stray-field dominated regime presents its own

challenges. In the absence of any modulating effects, the nonlocal nature of the stray

field is nonnegligible. Furthermore, in direct simulation of micromagnetic equations,

one observes that field dominated systems exhibit numerical stiffness requiring high

resolution when studying small structures in simulation [13]. Magnetic structure of

multilayered media shows strong dependence of the magnitude of the stray field energy

on film thickness and number of layers [99]. We show how to obtain each of the stray

field interaction energy terms from a scalar potential theoretic framework, solving

Maxwell’s equations in the multilayer geometry. This treatment exactly represents

the local contribution of stray field, and the so called volume charge (those due to in
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plane divergences of the material magnetization), and surface charge (those due to

components of magnetization perpendicular to surfaces) energies in the finite-thickness

regime of multilayer systems formulating each as combinations of integral kernels,

like the analysis done for monolayer systems in [52]. However, for the multilayer

system the stray field also facilitates interaction between charges in different layers.

In particular, we find the exact representation yields interaction kernels for interlayer

surface-volume charges which was since neglected. This improves upon previous

approximate schemes for stray field in the multilayer system, for example studies of

domain walls conducted by Lemesh et al. neglecting the surface-volume interactions

[64]. See also the model used by Büttner et al. for domain walls in multilayered media

using only the surface-surface and volume-volume interactions [23]. We compute

an exact representation of surface-volume interactions between layers, and show

asymptotically that they are negligible compared to all other categories of stray field

interaction, completely enclosing past results of the micromagnetic theory in layered

systems (see chapter 5).

In the asymptotic thin multilayer system with perpendicular magnetic anisotropy

(PMA) we show the existence of energy minimizers within the restricted class of

skyrmion profiles (see chapter 6). Due to the layer separation, the exchange interaction

between the films is greatly reduced, and represented by a local weak coupling term

which favors parallel alignment (or antiparallel in the case of antiferromagnetically

coupled layers) after [57]. Already, we may show even in the absence of interlayer

exchange coupling, the stray magnetic field interaction alone enables layer-layer

coupling and facilitates the formation of bound skyrmions in each layer, concentric

in a column and of the same size [12]. These formations are larger and more stable

than the stray field driven skyrmions predicted in the monolayer asymptotic model

described in [9].
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The analysis for asymptotically thin layers is also supplemented with an

alternative physical model of a monolayer in which the layer is assumed thin enough

that the dominant exchange interaction forces ∂zm = 0, but does not pass to the

asymptotic limit of vanishing film thickness, and rather treats the stray field energy

exactly. This is herein referred to as the “finite thickness” film model. Such schemes

have been used before in the analysis of domain walls in ferromagnetic films [2, 29,

38]. Analysis of a monolayer under the finite thickness conditions shows competition

between the material’s perpendicular magnetic anisotropy (PMA) and the stray field.

In the restricted class of skyrmion profiles, and with sufficiently strong anisotropy,

local minimizers cease to exist, a fact which is not revealed by the asymptotic model,

and leading to a more complete understanding of stray field enabled skyrmions. This

system is studied further numerically with the mumax3 software [105] to find the

critical film thickness upon which the film demagnetizes by way of skyrmions bursting

into stripe domains (see chapter 4).

First steps are made introducing exchange coupling to the multilayer model by

neglecting the higher order, long range, effects of the stray field interaction in the

thin film limit. This leaves the DMI as the skyrmion enabling mechanism. Supposing

a two layer system and each layer having a DMI coefficient of identical magnitude,

one finds the existence of skyrmions hinges upon the relationship between sign of

the coupling constant and the sign of the DMI coefficient. In two ferromagnetically

coupled layers, opposite sign DMI terms in each layer cancel out in the total energy,

and a coupled bilayer skyrmion solution does not exist. Likewise this is the case for

anti-ferromagnetically coupled layers with same sign DMI terms. In the remaining

cases coupled and concentric skyrmion columns do minimize the system energy. We

further discover that the strength of the interlayer exchange coupling plays no role in

determining the skyrmion size at equilibrium, and only induces skyrmion solutions in

each layer to align concentrically with one another.
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CHAPTER 2

MICROMAGNETIC MODELING

Micromagnetics is a continuum modeling framework that describes the local magnetic

moments in a ferromagnet as a three-dimensional vector field M which has a fixed

length and whose properties are governed by an energy functional E(M). It was

introduced in 1935 by Landau and Lifshitz to describe the formation of magnetic

domains [60] and subsequently expounded upon by many authors (summarized in

[22, 48]). As in any variational theory, stable magnetizations M are defined as those

magnetic configurations for which the energy functional is minimized either locally or

globally. Local minimizers are called “metastable” states, while global minimizers are

referred to as the “ground state”. When the magnetization is not stable or metastable

the magnetic configuration evolves with time to reduce the energy, unless additional

external influences are present.

Where relevant, physical units will follow the SI convention, the basic quantities

which are sufficient to derive all other units featuring in this work are as follows: mass

(kg), length (m), time (s), and electric current (A). Derived units are force (N), torque

(Nm), energy (J), and magnetic induction (T).

2.1 The Landau-Lifshitz-Gilbert Equations

Consider a ferromagnetic solid occupying a domain Ω ⊆ R3. With M : Ω → R3, M

may be extended by defining it to be 0 outside of Ω. The magnitude, |M| = Ms in Ω,

is refered to as the saturation magnetization, and takes physical units A/m, and this

is assumed spatially independent.

The differential equation describing the evolution of the magnetization is the

Landau-Lifshitz-Gilbert (LLG) equation [40, 60]. The dynamics are governed by the
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Landau-Lifshitz-Gilbert equations (LLG). In Landau-Lifshitz form, they are as follows

in physical units [48, 59]:

(
1 + α2

) ∂M
∂t

= −γ0

(
M×Heff +

α

Ms

M× (M×Heff)

)
; Heff = − 1

µ0

δE

δM
, (2.1)

So the evolution depends on the so called effective field Heff , and where δE/δM

represents the functional derivative of the energy with respect to the magnetization.

The three constants are γ0, the gyromagnetic ratio and α, the LLG damping parameter

and µ0, the magnetic permeability of a vacuum. Each has their respective units:

[γ0] =
m
As , [α] = 1, and µ0 = 4π · 10−7 kg·m

A2s2 ; and the field having the same units as

magnetization [Heff ] = A/m.

Following from the vector geometry, we see that this equation preserves |M| = Ms

constant. When M is not a stationary state of E this implies the precession of M

about the effective field axis, since M×Heff ⊥ Heff . The precession is then modulated

by the damping term, M× (M×Heff), which can only evolve M toward the field axis

as it is perpendicular to both M and M×Heff . This makes α a model energy loss

coefficient, and so the trajectories of this equation are monotonically decreasing in E

[59]. Then for long enough time, M must approach a local minimizer of E(M).

2.2 The Micromagnetic Energy

The micromagnetic energy which drives this system is [39]:

E(M) = Eex(M) + Ean(M) + EDMI(M) + EZ(M) + Ed(M). (2.2)

In the SI units, energy is measured in Joules (J). Each term represents one type

of interaction, with functional dependence on the magnetization, M. In order

of appearance they are the exchange, Eex; the crystalline anisotropy, Ean; the
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Dzyaloshinskii-Moriya Interaction, EDMI (also called antisymmetric-exchange); the

interaction with applied field, EZ (this energy is called the Zeeman energy); and the

stray field energy, Ed (or demagnetizing energy). The stray field is the magnetic field

which is generated by the spins themselves.

2.2.1 Bulk material interactions of a ferromagnet

Exchange energy is defined as

Eex(M) =
A

M2
s

∫
Ω

|∇M|2d3r, (2.3)

with the exchange stiffness constant, A, taking units, [A] = J/m, and where the

notation |∇M| refers to the Froebenius norm of the Jacobian matrix of the mapping

M : R3 → R3. This penalizes nonuniformity in the magnetic structure. The presence

of this effect is what defines a ferromagnet. Mathematically, insisting the exchange

energy be bounded guarantees some regularity on M. At the nanoscale, it cannot be

neglected. Due to this central role it is typically the point of comparison in dimensional

analysis when analyzing the orders of magnitude of any other interaction [48]. The

study of this energy and its critical points in and of itself already represents a fruitful

domain of mathematics known as “harmonic maps” [47], which are indispensable for

the study of skyrmions. We summarize the relevant theory on harmonic maps in

Section 3.1.

Anisotropy energy is defined as

Ean(M) = K

∫
Ω

Φan

(
M

Ms

)
d3r, (2.4)

with the constant K having units [K] = J/m3. The function Φan may be chosen based

on the material’s crystal structure, and should be invariant with respect to reversal of

the direction of magnetization, and such that it grows when M deviates from favorable
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directions. One prominent example is uniaxial anisotropy: supposing the 3rd-axis is

favored, one may write Φu(M) = M2
1 +M2

2 , which vanishes for M = ±ê3, [59].

Dzyaloshinskii-Moriya Interaction energy (DMI) is defined generally,

EDMI(M) =
D

M2
s

∫
Ω

FDMI(M,∇M)d3r, (2.5)

for some bilinear form FDMI , and with the constant D having units [D] = J/m2.

Named after the authors describing the effect, the DMI induces a spatial twisting

effect leading to helical magnetic textures [32, 74]. It may be due to the material’s

crystalline structure in which case it is called bulk DMI [15, 59]. The energy density is

such that it is quadratic in M, while also changing sign with reversal of the coordinate

directions, r → −r. The bilinear forms available take the form of linear combinations

of the quantities

Mj
∂Mk

∂xi

−Mk
∂Mj

∂xi

. (2.6)

which are the so-called Lifshitz invariants. They were characterized by Bogdanov and

Yablonskii for different instances of DMI [18]. For example, in non-cenntrosymmetric

materials with cubic crystalline symmetry, FDMI takes a particularly simple form:

FDMI(M,∇M) = M · (∇×M). (2.7)

The Zeeman energy is that which is stored in the interaction between the

material magnetization and an applied magnetic field, Ha, and is given by

EZ(M) = −µ0

∫
R3

M ·Had
3r, (2.8)

and so is minimal when the material is magnetized in the same direction as the applied

field.
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The magnetic stray field energy is given by,

Ed(M) =
µ0

2

∫
R3

|Hd(M)|2d3r, (2.9)

with Hd being distinctly the portion of the magnetic field which the material generates

by itself. Where the subscript d stands for ‘demagnetizing’ due to the tendency of

this interaction to compete with the exchange to frustrate the ferromagnetic order

[48]. By separating the applied and stray fields, the latter is related to M by the

stationary Maxwell’s equations. First, one has the constitutive equation relating field,

magnetization, and magnetic induction (B) at a point in a material. In the SI unit

system this is given by

B = µ0(Ha +Hd +M). (2.10)

Then we must have Ba = µ0Ha not depending on M, since it is external to the system,

and so applied and stray fields are separated. Then follow the stationary Maxwell’s

equations describing the stray field:

Bd = µ0(Hd +M),

∇ ·Bd = 0 , ∇×Hd = 0.

(2.11)

These give the existence of a magnetic scalar potential, Ud, such that Hd = −∇Ud,

which obeys Poisson’s equation [36]

∆Ud = ∇ ·M. (2.12)

Understanding that M has a discontinuity at the boundary, this must be considered

in the distributional sense. This leads to the distinction between interactions due

to bulk divergences, referred to as volume charges, in the material and those due to

the divergence singularities acquired at the boundaries of the material, called surface
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charges. Such structures are fundamental to understanding the role of stray field in

thin film systems, and expounded upon in Chapter 5. Using the fundamental solution

for the Laplacian in R3 formally yields

Ud = − 1

4π

∫
R3

∇ ·M(r′)

|r− r′|
d3r′. (2.13)

in particular, the stray field energy may be rewritten as Ed =
µ0M2

s

2

∫
R3 |∇Ud|2d3r. It

is clear that Ed is always positive. The tendency of materials to reduce the energy

of the stray field by locally reducing ∇ · M has been called “the principle of pole

avoidance” or “flux-closure” [48], see Figure 1.3c for examples of close anti-parallel

domain formation following this tendency.

Having characterized each interaction energy, the total energy may then be

written

E(M) =
A

M2
s

∫
Ω

|∇M|2d3r +K

∫
Ω

Φan

(
M

Ms

)
d3r +

D

M2
s

∫
Ω

FDMI(M,∇M)d3r

− µ0

∫
Ω

M ·Ha d3r +
µ0

2

∫
R3

|∇Ud|2d3r.

(2.14)

This together with the Landau-Lifshitz Equations completes the general micromagnetic

model.

2.2.2 Nondimensionalization of the 3D micromagnetic energy

Begin nondimensionalizing the equations by taking M = Msm. With foresight the

stray magnetic field energy is characterized by the constant energy density

Kd =
µ0M

2
s

2
. (2.15)

18



We define the exchange length, lex in meters, to be the length scale for which the

exchange and stray field interactions balance each other [48]:

lex =

√
2A

µ0M2
s

=

√
A

Kd

. (2.16)

Taking r → lexr, we acquire the following dimensionless groups,

K̃ =
Kl2ex
A

, D̃ =
Dl2ex
A

, ha =
Ha

Ms

. (2.17)

So, the energy, now measured in the units of Alex, is as follows:

Ẽ(m) =
E(M)

Alex
=

∫
Ω

|∇m|2d3r + K̃

∫
Ω

Φan (m) d3r

+ D̃

∫
Ω

FDMI(m,∇m)d3r − 2

∫
Ω

m · ha d3r

+

∫
R3

|∇Ud|2d3r.

(2.18)

2.3 Modeling Ferromagnetic Films

Thin ferromagnetic films are very sensitive to surface effects due to their broad free

surface compared to their volume. In fact, any ferromagnetic body in general, In

addition to the bulk material effects, will experience strong nontrivial interactions

which are due to its geometry, and the shape of its boundary. These geometric effects

can be induced by nearest neighbor interactions with a material of a different species

in direct contact with the ferromagnetic sample and then transformed to a continuous

model by appropriate treatment leading to different forms of anisotropy and DMI [7].

Such a configuration is presented in the form of a thin-film in figure 2.1 leading to the

interfacial DMI. For surface induced anisotropy, the effects have been long studied,

and for the purposes of the thin film model it is sufficient to lump it in simultaneously

with the bulk anisotropy [45].

19



Figure 2.1 Schematic example of an antisymmetric film. The ferromagnetic layer
(FM) is sandwiched between two unlike non-ferromagnetic (NM) layers. The lack of
cancelation between surface interactions at the top and bottom of the FM layer gives
rise to interfacial DMI.

Additionally, the most obvious interfacial effect is the stray field interaction,

since M is defined to be 0 outside the material domain, the jump in the surface-normal

component of M creates a divergence singularity in (2.13) leading to an excess stray

field in free space in which the system stores energy. This effect plays an important

and nontrivial role in the analysis of thin ferromagnetic films [41].

The reduction to the thin-film model involves first the enumeration of bulk and

interfacial interaction energies in a cylindrical domain with base Ω ⊆ R2 and finite

extent, d, in the third coordinate direction. Then follows a rigorous treatment of the

stray field energy that it may be rendered as a convergent integral and that distinct

effects acquired by the stray field in this system geometry are properly identified

and classified. This involves asymptotic analysis in the limit as the film thickness

approaches zero. Variations of this model and process are fundamental to the results of

this dissertation. Alternate and more detailed analyses of the stray field are presented

in Chapter 4 for monolayer systems and in Chapter 5 for multilayer systems.

2.3.1 Antisymmetric interfacial interactions (DMI)

In the thin-film system, DMI often results from presence of a heavy metal in contact

with one side of the film, thereby breaking inversion symmetry, [32, 74] as shown in
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figure 2.1. In this case it is called interfacial DMI.

FDMI =

(
M3

∂M1

∂x1

−M1
∂M3

∂x1

)
+

(
M3

∂M2

∂x2

−M2
∂M3

∂x2

)
. (2.19)

It features prominently in stabilizing magnetic skyrmions in noncentrosymmetric

materials [17].

Accordingly, the definition of the DMI energy must change to a surface integral,

since this interaction is no longer defined as an energy density in three-space. Only

occurring on one or both interfaces, consider the thin system with thickness d and

integrate the following surface energy density over the other two coordinates in Ω ⊆ R2

[77, 88]:

EDMI(M) =
Dd

M2
s

∫
Ω

[(
M3

∂M1

∂x1

−M1
∂M3

∂x1

)
+

(
M3

∂M2

∂x2

−M2
∂M3

∂x2

)]
d2r. (2.20)

This is such that D may take on the same dimensional units as that defined in the

bulk-DMI. The presence or absence of competing interactions with nonmagnetic layers

on the top or bottom surfaces of the ferromagnetic film is already contained within

the constant D. For the given choice of Lifshitz invariant, this particular species of

interfacial DMI induces the magnetic texture to tilt toward the axis of transition such

that all the M vectors tend to be coplanar (also called Néel-type rotation), promoting

the formation of cycloidal structures to the exclusion of helical structures, and the

sense of rotation promoted is determined by the sign of D.

2.3.2 Total energy of thin films with uniaxial anisotropy

We show the calculation of the energy of the thin-film ferromagnetic system with

uniaxial out-of-plane anisotropy and with interfacial DMI. In particular this involves

properly nondimensionalizing according to the film thickness, and treatment and
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Figure 2.2 Schematic thin-film system and decomposition of M into in-plane and
out-of-plane components, subscripts -⊥ and -∥ respectively denoting components of
M which are perpendicular and parallel to the preferred direction of crystaline
anisotropy (easy-axis).
Taken from Bernand-Mantel et. al. [9].

classification of the various effects obtained from analysis of the stray field energy

before passing to the asymptotic limit.

The chosen orientation of anisotropy motivates a coordinate system with the

magnetization vector decomposed into in-plane and out-of-plane components: m =

(m⊥,m∥), as is diagrammed in figure 2.2. Each are of course functions over all of

R3 and are defined to be zero outside of the material domain. For perpendicular

uniaxial anisotropy and the DMI interaction we let, Φan = |m⊥|2, and FDMI =

m∥∇·m⊥−m⊥ ·∇m∥. We introduce the assumption that the magnetization does not

vary significantly in the vertical direction, m(x, y, z) = m(x, y)χ(0,d)(z) [38], where χ

is the characteristic function and d is the film thickness. This is consistent with d

being small in some sense. An early rigorous treatment of the asymptotic reduction to

the thin-film equations was given by Gioia and James, in which none of the constants

depend on d [41]. The boundaries z = 0 and z = d will cause discontinuities in m,

and as a consequence, one must treat the stray field carefully while passing to the thin

film limit. Other authors refined this approach [37, 38, 52, 53, 78].
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The micromagnetic energy of a ferromagnetic film of infinite extent is thus:

E0(m) =A

∫
R2×(0,d)

|∇m|2d3r̃ +Ku

∫
R2×(0,d)

|m⊥|2 d3r̃

+D

∫
R2×(0,d)

(
m∥∇ ·m⊥ −m⊥ · ∇m∥

)
d3r̃

+
µ0M

2
s

2

∫
R3

(
|∇Ud|2 − χ(0,d)(z)

)
d3r̃,

(2.21)

where a constant has been subtracted from |∇Ud|2 in the material domain to ensure

convergence of the integral.

Now, we may define the characteristic exchange length, lex and introduce the

following relevant dimensionless quantities which appear in the final result:

lex =

√
2A

µ0M2
s

, Q =
2Ku

µ0M2
s

, κ = D

√
2

µ0M2
sA

, δ =
d

lex
, (2.22)

which represent the strengths of the anisotropy, DMI, and the stray field, respectively.

The energy becomes

E(m) =
E0(m)

Ad
=

∫
R2

|∇m|2d2r +Q

∫
R2

|m⊥|2d2r

+
1

δ

∫
R3

(
|∇Ud|2 − χ(0,δ)(z)

)
d3r

+ κ

∫
R2

(
m∥∇ ·m⊥ −m⊥ · ∇m∥

)
d2r.

(2.23)

Hence, the film thickness, δ, serves to characterize the relative strength of the stray

field interaction, though its role is not obvious until a full treatment of the energy is

obtained.

For Ud, formally, we are solving a distributional Poisson equation. The process is

elaborated in more detail in Section 5.2 where the multilayer system is treated. Using
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the shorthand χ = χ(0,δ)(z), we may employ the fundamental solution:

Ud = − 1

4π

∫
R3

[
∇ · (χ(z′)m(x′, y′))

]√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′dy′dz′. (2.24)

Assume that m∥ → −1 as |r| → ∞. Then one may expand in δ, as is done in

[38, 52] to obtain the formula:

1

δ

∫
R3

(
|∇Ud|2 − χ(0,d)(z)

)
d3r = −

∫
R2

|m⊥|2d2r

+
δ

4π

∫
R2

∫
R2

∇ ·m⊥(r)∇ ·m⊥(r
′)

|r− r′|
d2r′d2r

− δ

8π

∫
R2

∫
R2

(m∥(r)−m∥(r
′))2

|r− r′|3
d2r′d2r +O(δ2).

(2.25)

Note the leading order term which competes with the ansiotropy [41]. Since we are

modeling strong perpendicular anisotropy (having assumed m → −ê3 as |r| → ∞,

where m = ±ê3 is the ground state for κ = δ = 0) the analysis is restricted to

systems with Q > 1. The stray field energy also contributes two nonlocal terms,

respectively called “volume charge energy” and “surface charge energy”, which are

controlled by the film’s thickness and can sometimes be neglected. These O(δ) terms

were rigorously obtained in [52, 77, 78]. We may denote them as Evol(m, δ) and

Esurf (m, δ). Respectively, they are

Evol(m, δ) =
δ

4π

∫
R2

∫
R2

∇ ·m⊥(r)∇ ·m⊥(r
′)

|r− r′|
d2r′d2r, (2.26)

Esurf (m, δ) = − δ

8π

∫
R2

∫
R2

(m∥(r)−m∥(r
′))2

|r− r′|3
d2r′d2r. (2.27)

Note that both take the form of norms of components of m. Hence, the volume

charge energy is always positive and the surface charge energy is always negative.

The physical action of these energy terms is such: reduction of the volume charge

energy promotes the vanishing of in-plane divergence (A phenomenon observed when
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obtaining Bloch skyrmions from a system with κ = 0, see Section 3.3). Meanwhile,

since the surface charge energy is negative, this term promotes antiparallel alignment

of the magnetization profile at a distance, competing with the exchange energy. As

shown in subsequent sections it is this interaction which enables the formation of

skyrmions in the absence of DMI (κ = 0).

Plugging these back into the total energy, we obtain

E0(m) =

∫
R2

|∇m|2d2r + (Q− 1)

∫
R2

|m⊥|2d2r

+ κ

∫
R2

(
m∥∇ ·m⊥ −m⊥ · ∇m∥

)
d2r

+
δ

4π

∫
R2

∫
R2

∇ ·m⊥(r)∇ ·m⊥(r
′)

|r− r′|
d2r′d2r

− δ

8π

∫
R2

∫
R2

(m∥(r)−m∥(r
′))2

|r− r′|3
d2r′d2r.

(2.28)

This energy equation has some immediate consequences which are evocative of the

subsequent chapters. Note that the stray field has been split into three parts. Having

assumed Q > 1 and m → −ê3 in the far field, the excess energy stored in the magnetic

field generated by this out-of-plane alignment contributes everywhere, locally, to a

reduction of the anisotropy strength, hence Q− 1 is now its coefficient.

We remark that in this form, the energy can allow a regrouping of parameters

to eliminate the anisotropy coefficient. Rescale the coordinates r → r/
√
Q− 1. Then

introducing

κ̄ = κ/
√
Q− 1 , δ̄ = δ/

√
Q− 1, (2.29)

one obtains an energy of the same form as in (2.28), with κ̄ and δ̄ in place of κ

and δ, and with Q − 1 set to 1. We will alternately use the barred and un-barred

quantities where convenient and endeavor to remind the reader of changes in notation.

In particular, results for Chapter 4 do not allow this regrouping.
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This models the thin monolayer system with asymptotics for the stray field

energy, and skyrmion solutions of this equation are studied in [9]. The mathematical

methodology for analysis of skyrmions in this system are discussed in Section 3.3.
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CHAPTER 3

MATHEMATICAL CHARACTERIZATION OF MAGNETIC
SKYRMIONS

For a continuous map from the compactified plane to the sphere, f : R2 ∪ {∞} → S2,

one may define the Brouwer degree, q, which is the number of points in the preimage,

x ∈ f−1(y), for which the orientation of a neighborhood of x is preserved under

f , minus the number of points for which the orientation is reversed [82]. It is a

fundamental result of topology that q will be independent of y for almost every choice

of y ∈ im{f} [82]. We refer to this as the topological degree, also called “skyrmion

number”. A configuration with one skyrmion has q = 1 [58]. When we enforce

m → −ê3 as |r| → ∞ then the topological degree may be expressed as

q(m) =
1

4π

∫
R2

m · (∂1m× ∂2m) d2r, (3.1)

which is just the integral of the Jacobian of m as a map from R2 to S2 [8, 21].

Alternatively, the output of the mapping m ∈ S2 may be regarded after

stereographic projection Pm = (u, v) in which case we may represent the pullback of

this projection as

m =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
. (3.2)

In these coordinates the topological degree is given by

q(m) =
1

π

∫
R2

(∂2u ∂1v)− (∂1u ∂2v)

1 + u2 + v2
d2r. (3.3)
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3.1 Topologically Nontrivial Magnetic Structure in Two Dimensions

In 1975 Belavin and Polyakov showed the existence of topologically nontrivial, energy

minimizing profiles for a 2D ferromagnet which arise under the exchange only, and

derived lower bounds on the exchange energy as a function of topological degree

[6]. The solution thus obtained exhibited rotational, dilational, and translational

invariance. This result is the so called “Belavin-Polyakov profile” and forms the basis

for a whole class of ansätze of more complicated skyrmion problems, starting with

Ivanov et. al. [49].

The symmetry properties of Belavin-Polyakov profiles follow from their being

exchange energy minimizers. Take the following problem set up with the constraint

that |m| = 1, consistent with the micromagnetic model, one will derive the “Harmonic

map equation” and from that obtain each symmetry [8]. Pose

minimize E(m) =

∫
R2

|∇m|2 d2r,

subj. to 0 = |m(r)|2 − 1 for r ∈ R2,

and m → cnst. as r → ∞.

(3.4)

The Euler-Lagrange equations of this system take the form.

∆m+ |∇m|2m = 0. (3.5)

Let the reader be reminded of the notation, that |∇m| represents the Froebenius norm

of this Jacobian matrix. The presence of the unit-vector constraint |m| = 1, which is

not convex, gives rise to a nonlinear Euler-Lagrange equation. Non-constant solutions

do exist, and it is a fact that they must cover S2 at least once [47, 96]. Therefore we

may hope to find solutions with q = 1.

The harmonic map equation yields several helpful symmetry properties for its

solutions. Since this is solved over all of R2, (3.5) is translation invariant. For if m(r) is

28



a solution, so is m(r−r0), because the location of the origin is completely arbitrary. The

equation admits dilations as well, notice each term contains two derivatives. So when

m(r) is a solution, we let m(ar) and have a2∆m(ar) + a2|∇m(ar)|2m(ar) = 0, and

the lengthscale a is factored out. One may show rotational invariance by multiplying

the field by a constant rotation matrix, R ∈ SO(3). So pose m = Rm̃, and we can

interchange R with derivative operators to show the same equation is obtained for

any R.

Moving by an alternative route we will obtain and classify the solutions of (3.5)

and show they have integer values for the topological degree, q(m). Owing to the fact

that |m| = 1, simple vector calculus gives

|∇m|2 ± 2m · (∂1m× ∂2m) = |∂1m∓m× ∂2m|2. (3.6)

Integrating this and dropping the always positive right hand side gives an important

lower bound on the energy [6],

Eex(m) ≥ 8π|q(m)|. (3.7)

Supposing the bound were saturated, Eex(m) − 8πq(m) = 0, one then obtains the

equations:

0 = ∂1m+m× ∂2m,

0 = ∂2m−m× ∂1m.

(3.8)

It may be checked that the solutions of this system are a subset of the solutions of the

harmonic map equation by differentiating, and therefore inherit all of the associated

symmetry properties, and conversely all solutions of the harmonic map equation will

therefore saturate the topological lower bound and the systems (3.5) and (3.8) are

equivalent [63].
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Taking the system (3.8) and applying the pullback of the stereographic projection

given in equation (3.2), one acquires the Cauchy-Riemann equations for u and v,

∂1u = ∂2v , ∂2u = −∂1v. (3.9)

Thus, w = u+ iv, is an analytic function almost everywhere. This combined with the

constant far field conditions on m implies that the result is a meromorphic function

given by [6]:

w =
P (z)

Q(z)
for z ∈ C, (3.10)

for polynomials P , Q such that P/Q is irreducible. The topological degree q may be

directly inferred from (3.3) [108]:

q(m) = max {deg(P ), deg(Q)} . (3.11)

For the case q = 1, we have

w =
az + b

cz + d
. (3.12)

Therefore, after returning to the m coordinates, the degree 1 solution of (3.8) is

m(r) = Rm∞

(
r− r0

ρ

)
, (3.13)

where ρ > 0, r0 ∈ R2, R ∈ SO(3), and

m∞(r) = − 2r

1 + |r|2
+

1− |r|2

1 + |r|2
ê3. (3.14)

This is a 6 parameter family of all solutions that represents all degree 1 harmonic

maps from the plane to the unit sphere [8, 108]. Examples of these profiles are

illustrated in figure 1.1. We will more precisely define the relationship between

BP-profiles and skyrmions in the next section.
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This motivates the definition of an appropriate search space which encloses

skyrmion profiles as a subset of magnetization functions in two dimensions, and

appropriately excludes extraneous functions. We therefore define the so called restricted

class with desirable properties, let

A =

{
m ∈ H1

loc(R2;S2)

∣∣∣∣ m+ ê3 ∈ H1(R2;R3),

∫
R2

|∇m|2d2r < 16π, q(m) = 1

}
,

(3.15)

as in [8]. Without loss of generality, and with an eye toward modeling materials

with perpendicular magnetic anisotropy (PMA) this selects textures which have a

downward out-of-plane alignment in the far field, i.e. m → −ê3 .

3.2 The Belavin-Polyakov profile as a Skyrmion ansatz

The shape of a skyrmion solution arising through the minimization of E0 defined in

(2.28) will be close to a BP-profile for small (Q− 1), δ, and κ [8]. This is reasonable

since we have established it as the unique minimizer of exchange energy. We hence

use a perturbed BP-profile in an ansatz based calculation of the interaction energies,

and minimize over the degrees of freedom to discover the properties of the skyrmion.

For that we need to introduce a truncation at scale L relative to the skyrmion

core, for L ≫ 1, which is necessary to result in a bounded anisotropy energy, for

otherwise (3.14) is not an L2(R2) function. One may interpret this as dividing the

plane into characteristic regions (interior and exterior of a circle of radius ≪ ρ
√
L)

where exchange and anisotropy effects are respectively dominant. One may also define

the radius of the skyrmion to be the point in the magnetization profile where the

out-of-plane component vanishes. In equation (3.13) the dilation parameter ρ will

serve this purpose.
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Figure 3.1 Truncated Belavin-Polyakov profile, fL(r), given in equation (3.17)
(blue). Here the profile is truncated after L = 9, after which it decays exponentially.
The green line represents the profile in the absence of truncation, f(r).
Figure taken from Bernand-Mantel et al. [9].

Define f to be the in-plane modulus of the profile in equation (3.14),

f(r) =
2r

1 + r2
. (3.16)

i.e. m∞,⊥ = −f(|r|)êr, where êr = r/|r|. Then, introduce the truncation:

fL(r) =

 f(r), r ≤
√
L

f(
√
L)

K1(1/
√
L)
K1(r/L), r >

√
L

. (3.17)

Then define the ansatz

mL(r) = −fL (|r|/ρ)Rθêr + sgn(ρ− |r|)
√
1− f 2

L (|r|/ρ) ê3. (3.18)

Here Rθ ∈ SO(2) is a rotation matrix acting on the in-plane component. This loses

two rotational degrees of freedom from (3.13) since we force m → −ê3 as r → ∞. We
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have simply,

Rθ =

cos θ − sin θ

sin θ cos θ

 . (3.19)

We call θ ∈ [−π, π] the in-plane angle. This allows us to define the two characteristic

types of skyrmions illustrated in figure 1.1: Néel skyrmions are those with θ = 0 or

±π, and Bloch skyrmions have θ = ±π/2, and Hybrid skyrmions for all in-between

angles.

3.3 Skyrmions in a Thin Ferromagnetic Monolayer

The restricted class and the Belavin-Polyakov profile based ansatz are among the

principal mathematical tools for carrying out the study of skyrmions and feature

in the calculation of the energy of the ferromagnetic system leading to the results

obtained in the subsequent chapters. We show now how the ansatz can be used to

identify and classify skyrmion solutions in a thin ferromagnetic monolayer.

The thin film energy (2.28) with δ = 0 has been studied by Komineas et al.

who carried out a formal asymptotic analysis of the associated radial Euler-Lagrange

equation [55]. Gustafson and Li were able to contextualize their result by studying

the radial energy minimizers in the above problem and showing them to be close to a

Belavin-Polyakov profile and quantified differences in the energy of the two results

[43]. Other results have established solutions of the energy in the restricted class with

minimal assumptions, such as Bernand-Mantel et al. who were able to arrive at a

skyrmion solution without the assumption of radial symmetry and obtain a result

close to the BP-profile [8]. We therefore find the theory of harmonic maps is directly

applicable to skyrmions and justified by its ability to recapitulate the results obtained

by other techniques.

Quoting results from [9], we may calculate the respective energies. The truncation

is only relevant, to leading order, for the exchange and anisotropy. We derive the
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following asymptotic expressions for large L:

Eex(mL) ≃ 8π +
4π

L2
, (3.20)

Ean(mL) ≃ 4π(Q− 1)ρ2 log

(
4L2

e2(1+γ)

)
, (3.21)

EDMI(mL) ≃ −8πκρ cos θ, (3.22)

Evol(mL) ≃ δρ cos2 θ
3π3

8
, (3.23)

Esurf (mL) ≃ −δρ
π3

8
. (3.24)

If subject to lower bounds on L such that the exchange is not too large, the truncated

BP-profile now satisfies all properties of the restricted class, (3.15). These asymptotic

formulas were rigorously justified in [8]. Plugging into (2.28), one may write the total

energy of the skyrmion as

E0(mL) ≃ Eρ,θ,L = 8π +
4π

L2
+ 4π(Q− 1)ρ2 log

(
4L2

e2(1+γ)

)
− 8πκρ cos θ + δ

π3

8
ρ(3 cos2 θ − 1).

(3.25)

Upon minimizing this energy with respect to all degrees of freedom, Bernand-

Mantel et al. described the shape of the skyrmion [9]. They further find the competition

between DMI and stray field which decides the degree to which the result resembles

a Néel or Bloch skyrmion . Let θ⋆, ρ⋆, and L⋆ be the minimizers of (3.25). Then,

L⋆ = 1/(ρ⋆
√
Q− 1), with

ρ⋆
√

Q− 1 ≃ 1

16π

ε̄(κ̄, δ̄)

| ln
(
βε̄(κ̄, δ̄)

)
|
, (3.26)
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θ⋆ =


0 if κ̄ ≥ 3π2

32
δ̄

−π if κ̄ ≤ −3π2

32
δ̄

± arccos
(

32κ̄
3π2δ̄

)
else

(3.27)

for βε̄ ≪ 1 and

ε̄(κ̄, δ̄) =


8π|κ̄| − π3

4
δ̄ if |κ̄| ≥ 3π2

32
δ̄,

128κ̄2

3πδ̄
+ π3

8
δ̄ else.

. (3.28)

This is using the rescaled parameters κ̄, δ̄ defined in (2.29).

These formulas show how the constants κ̄ and δ̄ control the size and shape of

the skyrmion. When κ̄ = 0 we obtain a Bloch skyrmion, otherwise, when κ̄ > 0

the DMI and stray field compete and the solution is a Bloch-Néel hybrid skyrmion.

For increasing κ̄ this hybrid state will approach a Néel skyrmion until the threshold,

κ̄th = 3π2

32
δ̄. When κ̄ ≥ κ̄th the DMI is the dominant effect, and the solution is properly

a Néel skyrmion.
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CHAPTER 4

EXISTENCE OF SKYRMIONS IN THE FINITE-THICKNESS REGIME

By analyzing the stray field integral in the thin film model without asymptotically

expanding in the parameter, δ, one reveals the relationship between the stray field

interaction and the anisotropy strength, Q. It is shown that in the regime with small

δ and small δ
Q−1

there exists a critical Q = Qc(δ) for which the system energy for

truncated BP-profiles undergoes a bifurcation after which skyrmion solutions fail to

exist. This disappearance regime is not revealed in the asymptotic model. The result

contributes toward a complete description of skyrmion existence in the (Q, δ) phase

space, the other boundary being the critical value of δ = δb(Q) for which the skyrmion

cannot be a stable compact object and bursts into magnetic domains.

For this study, begin with the model energy equation of a monolayer which

includes the usual exchange and perpendicular magnetic anisotropy (PMA) and a

general expression of the stray field. Let m̃ : R2 × (0, δ) → R3 and ∂3m = 0, that

integration may be carried out in the third coordinate trivially for all local energy

terms. In other words m̃ = m(x, y)χ(0,δ)(z). Simplifying from (2.21), the energy is

E(m̃) =

∫
R2

(
|∇m|2 +Q|m⊥|2

)
d2r + Ed (m̃, δ) , (4.1)

having integrated in the vertical coordinate (except for Ed) and applied the same

nondimensional scheme as the energy equation, (2.28). Arguing physically from the

point of view of the dominant exchange energy, we have implicitly assumed that δ is

small to enable ∂3m = 0 everywhere in the material, but the asymptotic expansion of

Ed will not be performed, instead the stray field energy is to be evaluated exactly after

computing it on the finite thickness film of infinite extent. This resembles the finite

thickness model presented in [38]. After separating the local and nonlocal contributions
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of the stray field in the subsequent sections we find the physical implications of this

scheme are the same as, but serve as an augmentation to the asymptotic model of [52].

4.1 Stray Field Energy in Monolayers of Finite-Thickness

While some of this derivation is redundant with the treatment of the asymptotically

thin systems in Chapters 2, 3 and 5, it is necessary to repeat the steps to show the

relatedness of the various problems considered, and to flesh out the relevant technical

details required for this study.

The energy may be represented explicitly in terms of the material magnetization,

as follows. For m̃(x, y, z) = m(x, y)χ(0,δ)(z) with (x, y) ∈ Ω = R2 and m(x, y) → −ê3

as x2 + y2 → ∞, we have to renormalize the stray field energy by subtracting the far

field behavior of m. Define the uniform magnetization state m̃⋆ = −ê3χ(0,δ), whose

magnetostatic potential is

U⋆(x, y, z) =


0, z < 0,

−z, 0 ≤ z ≤ δ,

−δ, z > δ,

(4.2)

and let m̃r = m̃− m̃⋆ and Ur = U −U⋆, where U is given by the nondimensional form

of (2.13). Subtracting the background field in the material domain, the stray field

energy is redefined accordingly as

Ed(m, δ) =
1

δ

∫
R3

(
|∇U |2 − χ(0,δ)(r3)

)
d3r,

=
1

δ

∫
R3

(
|∇Ur|2 − 2∂3Ur

)
d3r,

= E ′
d + E ′′

d .

(4.3)
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We can transform the second term by integrating Poisson’s equation on a 2D plane at

arbitrary height, z, after multiplication by, f , an appropriate rapidly decaying test

function. Take ∆Ur = ∇ · m̃r and proceed by multiplying it with f and integrating

over (x, y):

∫
R2

∆Ur(x, y, z)f(x, y)d
2r =

∫
R2

∇ · m̃r(x, y, z)f(x, y)d
2r. (4.4)

Breaking it into in-plane and out-of-plane parts gives

∫
R2

[
(∂2

1 + ∂2
2)Urf(x, y) + ∂2

3Urf(x, y)
]
d2r =

∫
R2

[
∇ · m̃r,⊥ + ∂3m̃r,∥

]
f(x, y)d2r.

(4.5)

Move all out-of-plane components to the righthand side to find

∫
R2

∇ · [(ê1∂1 + ê2∂2)Ur − m̃r,⊥] f(x, y)d
2r =

∫
R2

[
∂3m̃r,∥ − ∂2

3Ur

]
f(x, y)d2r, (4.6)

where the left hand side is zero by way of the divergence theorem, and the right hand

side has no derivatives in the integrated variables We now have

0 = ∂3

∫
R2

[
m̃r,∥ − ∂3Ur

]
f(x, y)d2r. (4.7)

This expression gives equality in the integral when f(x, y) is traded for a sequence

fn(x, y) that approaches 1 pointwise almost everywhere. Therefore, integrating the

above identity gives

E ′′
d = −2

δ

∫
R3

(∂3Ur) d
3r =

2

δ

∫
R3

m̃r,∥d
3r. (4.8)
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Now since m̃r,∥ = m̃∥ + 1, and using the fact that |m̃| = 1, we may compute

2(m̃∥ + 1) = |m̃⊥|2 + |m̃∥ + 1|2, (4.9)

2(m̃∥(x, y, z) + 1) = χ(0,δ)(z)
{
|m⊥(x, y)|2 + |m∥(x, y) + 1|2

}
. (4.10)

Then integrating E ′′
d in z amounts to integrating a constant over (0, δ) and we obtain

E ′′
d = −

∫
R2

(
|m⊥|2 + |m∥ + 1|2

)
d2r. (4.11)

We now investigate

E ′
d =

1

δ

∫
R3

|∇Ur|2d3r =
1

δ

∫
R3

∫
R3

∇ · m̃r(r)∇ · m̃r(s)

4π|r− s|
d3rd3s. (4.12)

Use the following convention for the Fourier transform:

f̂(q) =

∫
R3

f(r)e−iq·rd3r , f(r) =

∫
R3

f̂(k)eiq·r
d3q

(2π)3
. (4.13)

Following from the fact F{1/(4π|r|)} = 1/|q|2 for the R3 Fourier transform, we may

proceed via Plancherel’s theorem and the convolution theorem to render this expression

in Fourier space as

E ′
d =

1

δ

∫
R3

iq · ˆ̃mr(q) iq · ˆ̃mr(q)

|q|2
d3q

(2π)3
. (4.14)

Now separating the vertical coordinate, recall

m̃r(x, y, z) = (m(x, y) + ê3)χ(0,δ)(z). (4.15)
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Let q = k+ ωê3. Now, using the shorthand χ = χ(0,δ), we have

iq · ˆ̃mr(k, ω) =
(
ik · m̂⊥(k)χ̂(ω) + ̂(m∥ + 1)(k)(∂̂zχ)(ω)

)
. (4.16)

with χ̂ = 1−e−iδω

iω
. Assuming nothing further, we compute the component parts of

(4.14) by substituting for q · ˆ̃mr and multiplying out each term.

E ′
d =

1

δ

∫
R2

∫
R

(
1

|k|2 + ω2

)(
(iωχ̂) ̂(m∥ + 1) (iωχ̂) ̂(m∥ + 1)

+ (χ̂)k · m̂⊥ (iωχ̂) ̂(m∥ + 1) + iωχ̂) ̂(m∥ + 1) (χ̂)k · m̂⊥

+ (χ̂)k · m̂⊥ (χ̂)k · m̂⊥

)
dω

(2π)

d2k

(2π)2
.

(4.17)

Where all characteristic functions may be factored out, and χ̂χ̂ = 2
ω2 (1 − cos(δω)),

arrive at the following representation for the energy,

E ′
d =

1

δ

∫
R2

∫
R

(
2(1− cos(δω))

|k|2 + ω2

)(
̂(m∥ + 1) ̂(m∥ + 1) +

k · m̂⊥ k · m̂⊥

ω2

+
k · m̂⊥ ̂(m∥ + 1) + ̂(m∥ + 1) k · m̂⊥

ω

)
dω

(2π)

d2k

(2π)2
,

(4.18)

provided these integrals are well defined. One can break up the ω integrals term-by-term

into the following kernels

Kr(k) =

∫
R

(
2(1− cos(δω))

(|k|2 + ω2)ωr

)
dω

(2π)
. (4.19)

with r ∈ {0, 1, 2}. And we find:

K0(k) =
1− e−δ|k|

|k|
, (4.20)

K1(k) = 0, (4.21)

K2(k) =
δ|k| − 1 + e−δ|k|

|k|3
. (4.22)
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In this case the energy is

E ′
d =

1

δ

∫
R2

{
1− e−δ|k|

|k|
|m̂∥ + 1|2 + δ|k| − 1 + e−δ|k|

|k|3
|k · m̂⊥|2

}
d2k

(2π)2
, (4.23)

As obtained in [38]. Adding and subtracting the local term gives

E ′
d =

∫
R2

(
m∥ + 1

)2
d2r +

∫
R2

{(
1− e−δ|k|

δ|k|
− 1

)
|m̂∥ + 1|2

+
δ|k| − 1 + e−δ|k|

δ|k|3
|k · m̂⊥|2

}
d2k

(2π)2
.

(4.24)

Combining together with (4.11) one obtains the total stray field energy:

Ed(m, δ) = −
∫
Ω

|m⊥|2d2r +
∫
R2

{(
1− e−δ|k|

δ|k|
− 1

)
|m̂∥ + 1|2

+
δ|k| − 1 + e−δ|k|

δ|k|3
|k · m̂⊥|2

}
d2k

(2π)2
.

(4.25)

As an aside, note its asymptotic expansion in δ recovers the energy of Section 2.3.2

[10]:

Ed(m, δ) ≃ −
∫
Ω

|m⊥|2d2r + δ

∫
R2

{
−|k||m̂∥ + 1|2 + |k · m̂⊥|2

|k|

}
d2k

(2π)2
. (4.26)

From here, Plancharel’s Theorem will give (2.25).

Let us conclude by introducing a more universal kernel, let

F (k) =
e−k − 1 + k

k2
, (4.27)

and it is clear that (4.25) becomes

Ed(m, δ) = −
∫
Ω

|m⊥|2d2r + δ

∫
R2

F (δ|k|)
{
|k · m̂⊥|2

|k|
− |k||m̂∥ + 1|2

}
d2k

(2π)2
. (4.28)
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We may refer to component terms of this energy integral as the shape anisotropy,

volume charge energy, and surface charge energy respectively.

Evol(m, δ) = δ

∫
R2

F (δ|k|) |k · m̂⊥|2

|k|
d2k

(2π)2
, (4.29)

Esurf (m, δ) = −δ

∫
R2

F (δ|k|)|k||m̂∥ + 1|2 d2k

(2π)2
. (4.30)

Completing the finite thickness model of the stray field interaction energy for one

layer. The same can be obtained for multiple interacting layers in Chapter 5.

4.2 Stray Field Energy of BP-profiles in the Finite-Thickness Regime

We proceed to the reduced energy. Recalling Section 3.2, our representation of

skyrmions is given by the Belavin-Polyakov profiles ansatz based calculations of

magnetic skyrmions. While technically beginning with the truncated profile, (3.17),

the stray field energy is asymptotic to that calculated for the untruncated profile,

(3.14), for L → ∞. Thus,

Ed(RθmL(r/ρ), δ) ≃ Ed(Rθm∞(r/ρ), δ), (4.31)

with in-plane rotations characterized by the rotation angle θ. Recall when θ = πn

this is called a Néel skyrmion, and when θ = πn+ π/2, a Bloch skyrmion. We may

now easily render the profiles in Fourier space by their well known R2 transforms as

obtained in [9]. One obtains

ik · m̂∞,⊥ = −4π|k|K1(|k|), (4.32)

̂(m∞,∥ + 1) = 4πK0(|k|), (4.33)
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where K0, K1 are the modified Bessel functions of the second kind [1]. When applying

the in-plane rotation, one obtains

m⊥(r) = cos(θ)m∞,⊥(r/ρ) + sin(θ)m⊥
∞,⊥(r/ρ). (4.34)

with m⊥
∞,⊥ = f(|r|)êϕ, this term vanishes under the divergence, therefore,

ik ·m(k) = ρ2 cos(θ)ik ·m∞(ρk). (4.35)

This untruncated variant is sufficient for calculation of the stray field energy of

the BP profiles, as we calculate only to leading order for truncation distance, L → ∞.

Evol = δ(4π)2ρ4 cos2 θ

∫
R2

F (δ|k|) |k|K2
1(ρ|k|)

d2k

(2π)2
, (4.36)

Esurf = −δ(4π)2ρ4
∫
R2

F (δ|k|) |k|K2
0(ρ|k|)

d2k

(2π)2
. (4.37)

Further simplification of the surface charge energy is necessary, as it is a main ingredient

in the stabilization of skyrmion solutions (Section 4.3). Using polar coordinates |k| = k,

and renormalizing by letting ρk = s, and defining η = ρ/δ. The surface charge energy

becomes

Esurf = −(4π)2δρ

∫ ∞

0

F

(
s

η

)
K2

0(s)s
2 ds

(2π)2
, (4.38)

= −8πδρη2
∫ ∞

0

(
s

η
− 1 + e−s/η

)
K2

0(s)ds, (4.39)

= −δρH(η). (4.40)

with

H(η) = 4πη − 2π3η2 + 8πη2
∫ ∞

0

e−s/ηK2
0(s)ds. (4.41)
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This is compared to that which is obtained asymptotically for small δ in (3.24), in

Figure 4.2.

It will be useful for us to establish properties of this function H. We find that

since 0 < F (k) ≤ 1
2
, it follows from (4.38) that H is always positive and bounded from

above for all η > 0, hence

0 < H(η) ≤ 4π

∫ ∞

0

s2 K2
0(s)ds =

π3

8
. (4.42)

We further deduce that F (k) is monotonically decreasing with k > 0 and decays like

1/k. We refine the estimate

F (k) ≤ min

{
1

2
,
1

k

}
, (4.43)

and acquire another bound for H by the same technique. One obtains

0 < H(η) ≤ 8πη

∫ ∞

0

s K2
0(s)ds = 4πη. (4.44)

Then we may put

H(η) ≤ min

{
4πη,

π3

8

}
. (4.45)

Due to the Lebesgue dominated convergence theorem and |k|
η
F
(

|k|
η

)
→ 1 as η → 0,

we have

lim
η→0

H(η)

η
= 4π. (4.46)

When enacting the minimization of the total energy we will need the derivative

−
(
H(η)

η

)′

= 8π

∫ ∞

0

(
1− (e−

k
η )

(
1 +

k

η

))
K2

0(k)dk. (4.47)
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We note that − limη→0

(
H(η)
η

)′
= 2π3. Given that it has a strictly positive integrand,

we find this expression is always positive. This implies H(η)
η

is strictly monotone

decreasing. Furthermore, observe for all k > 0 that

(
1− e−k(1 + k)

)′
= ke−k > 0, (4.48)

so that −
(

H(η)
η

)′
is strictly monotone decreasing as well. We now aim to show the

quantity is log-concave. Denote

M(γ) = −
(
H (eγ)

eγ

)′

. (4.49)

We then have

M(γ) = 8π

∫
R

(
1− e−es−γ (

1 + es−γ
))

esK2
0(e

s)ds. (4.50)

It is a fact that convolutions of log-concave functions are themselves log-concave [62,

86]. Furthermore, since products of log-concave functions are log-concave, we may

split this task into proving that for s ∈ R the two functions

f1(s) := 1− e−es (1 + es) , (4.51)

f2(s) := K0(e
s) (4.52)

are log-concave.

By explicit calculation, we have that

(log ◦f1)′(s) =
1

f3(es)
, (4.53)

with f3(k) =
ek−1−k

k
for k > 0 which can be seen to be strictly monotone increasing in

k by the series expansion of the exponential. Consequently, f1 is strictly log-concave.
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For the second function, we compute

(log ◦f2)′(s) = es
K ′

0(e
s)

K0(es)
, (4.54)

which is strictly decreasing [1]. Hence, f2 is strictly log-concave. Therefore, M(γ) is

log-concave. It follows from the strict monotonicity of M(log(η)) that the quantity is

strictly log-concave.

4.2.1 Numerical evaluation of surface charge energy

For practical computation of the energy we turn to numerical methods. The surface

charge energy, (4.41), must be evaluated accurately for small values of ρ in order to

properly capture the nature of this energy landscape. Note first, it admits an analytical

solution in the form of the complete elliptic integral, K, and the 3F2-hypergeometric

function [1].

Esurf = −δρ

(
4πη − 2π3η2 + 2πη2K

(
1

4η2

)
− 23F2

[
1,1,1
3
2
, 3
2

∣∣∣∣ 1

4η2

])
. (4.55)

While interesting, this could never be evaluated efficiently due to the singular nature

of the resultant functions, and we turn to numerical methods. Trefethen gives an

appropriate scheme for accurately evaluating integrals on semiinfinite domains using

Gauss-Legendre polynomials on a truncated domain, where the truncation distance

is scaled P 1/3, with P number of quadrature nodes, this will be far more efficient

than Gauss-LaGuerre or Gauss-Hermite type schemes [103]. It may be observed that

for η = ρ/δ very small, the Bessel function is dilated very far from the origin while(
1−e−|k|

|k| − 1
)

is nearly unity in the far field. Therefore, for a certain cutoff of η < ηc

the truncation distance is extended past Trefethen’s recommendation, proportionally

to η−1. This methods stands up well compared to the analytical representation, (4.55),

and a test of the numerical evaluation is given in Figure 4.1.
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Figure 4.1 Relative errors in evaluation of (4.40) across nominal values of ρ and δ
using the truncated Gauss-Legendre quadrature. Left: Performance of the G-L
quadrature showing error decrements of 5 decades per decade of collocation points, P .
Right: Performance of quadrature method for Pcolloc = 220 across values of ρ/δ
guaranteeing errors below 10−5 for nominal values of ρ and δ. In practice Pcolloc = 400
is used for the energy minimization procedure.
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Figure 4.2 Comparison of asymptotic, (3.24), and finite-thickness, (4.40), forms of
the surface charge energy vs skyrmion radius. Chosen parameter δ = 0.6. Though
having similar slopes for intermediate ranges of ρ, the finite thickness form of the
surface charge energy has high negative curvature in the low ρ region. Stray field
dominates in this form for low values of ρ, enabling the formation of a local maximum
in the total energy.

47



4.3 Locus of Stable Skyrmions in Finite-Thickness Monolayers

We turn to study the problem of skyrmions in a monolayer using the representation

of the energy formulated in the finite thickness regime. The resultant minimizers of

energy are to be contrasted with those obtained from the asymptotic formulation

given by the thin asymptotic model in Section 3.3.

The use of the finite thickness stray field energy leads to a fundamentally different

energy landscape which enables the formation of a local maximizer for a value of ρ

smaller than that representing the skyrmion solution (see Figure 4.3d). For a fixed

δ and increasing Q, the maximizer and minimizer may join together leading to a

bifurcation where skyrmion solutions no longer exist. This was not predicted by the

asymptotic model in [9] which guarantees existence of skyrmion solutions so long

as δ <
√

2(Q− 1). Therefore, this anti-simplification accomplished by using the

exact stray field energy leads to the discovery of a family of bifurcation points on the

right hand side of the (Q, δ)-parameter space which bounds the region of existence of

skyrmion solutions (see Figure 4.3a). We denote those critical values as Qc and δc,

and may represent them as a curve in the plane δc = δc(Q).

We use a film with exchange and anisotropy interactions, so the energy takes the

form of (4.1), evaluated on a truncated BP-profile, (3.17), described above with radius

ρ, rotation θ and the necessary truncation at a distance
√
L from the core. Quoting

equations (3.20) (3.21), and (4.28), asymptotically the BP-profile energies are

Eex = 8π +
4π

L2
, (4.56)

Ean = 4πQρ2 log

(
4L2

e2(1+γ)

)
, (4.57)

Ed = −4πρ2 log

(
4L2

e2(1+γ)

)
+ Evol(ρ, θ, δ) + Esurf (ρ, δ). (4.58)
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The total energy is

E = 8π +
4π

L2
+ 4π(Q− 1)ρ2 log

(
4L2

e2(1+γ)

)
+ Evol(ρ, θ, δ)− δρH (ρ/δ) . (4.59)

4.3.1 Energy minimization: Bloch skyrmions in the (Q, δ) phase space

The energy begins simplifying right away. We see from (4.36), that Evol is always

positive and is the only term depending on the angular quality of the skyrmion,

cos(θ). This minimizes to zero when θ = π/2± πn, for integers n, and thus may be

dropped from the energy equation. Therefore the solution will take the form of a

Bloch skyrmion. We are left with the total energy

E = 8π +
4π

L2
+ 4π(Q− 1)ρ2 log

(
4L2

e2(1+γ)

)
− δρH (ρ/δ) . (4.60)

and picking L = (ρ
√
Q− 1)−1, minimizes this expression in L, amounting to balancing

the exchange and anisotropy energy. The energy, (4.60) now depends only on the

skyrmion radius ρ. We take the numerical computation of the surface charge energy

(4.40), and solve for the critical points by Newton’s method iteration. For any given

combination of δ and Q studied herein, the energy may yield up to three critical

points.

There exists a central parameter region in the (Q, δ) plane where the energy

has all three critical points (Figure 4.3a), one observes a local maximum ρsad, a local

minimizer ρsky denoting the skyrmion solution, and a local maximum ρburst. The final,

ρburst also appears in the thin film asymptotic formulation, far flung of the asymptotic

assumptions, yet here it plays a role in characterizing the physics at the boundary of

the obtainable skyrmion solutions. Increasing δ until ρburst and ρsky annihilate one

another results in an energy which has no minimizer and decreases without bound as

ρ increases. This may be called the “Bursting” phase, as the calculation being done

for BP-profiles suggests any BP profile will dynamically expand into a domain until
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it exits the restricted class, (3.15), by violating
∫
R2 |∇m|2d2r < 16π. Analysis of the

thin film equations (3.25) finds this bursting bifurcation at the following locus:

δb = δ̄b
√
(Qb − 1), (4.61)

for a constant δ̄b = 1.97. However, micromagnetic simulations are able to resolve

skyrmion solutions far aflung of this estimate (see Figure 4.5). We estimate the critical

parameters for this bursting by extrapolating from numerical solutions of the LLG

equations in Section 4.3.3 to find δ̄b = 2.953.

Meanwhile, decreasing δ until ρsad and ρsky annihilate gives a system with only

the maximizer ρburst, as illustrated in Figure 4.3d. Thus, a BP profile as an initial

condition, and subject to asymptotic assumptions, ρ may be taken smaller than ρburst,

cannot minimize the energy to a radius greater than zero, suggesting these profiles

dynamically shrink and find no stable state within the restricted class. As such we

call this the “collapse” phase. In this case the collapse energy is

∆E = E(ρsad)− E(ρsky). (4.62)

when the local maximizer, ρsad, does not exist, the collapse energy is just

∆E = 8π − E(ρsky). (4.63)

4.3.2 Existence of skyrmions and the collapse line

With some work and study of the surface charge energy, (4.40), one can show the

existence of a critical line in the (Q, δ) plane beyond which skyrmion solutions cease

to exist. This relies on several properties given for the surface charge energy.
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For L = ρ−2(Q− 1)−1 the energy is parametrically minimized in L as discussed,

becoming

E = 4π(Q− 1)ρ2 log

(
eK⋆

(Q− 1)ρ2

)
− δρH

(ρ
δ

)
, (4.64)

with K⋆ = 4
exp(2(1+γ))

. Switching to η = ρ/δ, the equation can be rewritten

E

4πδ2
= g1(η) = (Q− 1)ρ2 log

(
eK⋆

(Q− 1)δ2η

)
− H(η)

4πη
. (4.65)

Differentiating we find

g′1(η) = −2

η
(Q− 1)−

(
H(η)

4πη

)′

. (4.66)

which vanishes on the following curve relating Q and η

(Q− 1) = g2(η) = −η

2

(
H(η)

4πη

)′

. (4.67)

The function log(g2(η)) is strictly concave given that we have already shown that

−
(

H(eγ)
eγ

)′
is strictly log-concave in γ. Therefore, g2 has at most one critical point.

We also have limη→0 g2(η) = limη→∞ g2(η) = 0 and g2(η) ≥ 0. It follows that there

exists Qc > 1 and ηc such that

Qc − 1 = g2(ηc). (4.68)

Therefore, for Q < Qc, (4.67) has two solutions η1 < ηc < η2. With η1 corresponding

to an energy minimizing skyrmion solution. Hence, for Q > Qc, minimizers of (4.59)

cease to exist.

Our collaborators have refined this analysis to give a more precise form of the

boundary and present the following theorem [11].
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(a)

(c) (d)

(b)

Figure 4.3 All skyrmion solutions for the finite-thickness model. (a) Phase diagram
showing obtained skyrmion radius ρsky

√
Q− 1 on the colormap. (b) Phase diagram

showing collapse energy (4.62) on the colormap. (c) A locus of energy critical points
for a chosen δ = 0.6, and Q on the abscissa. (d) Energy landscape for parameters
Q = 1.10 and δ = 0.6 (this point in parameter space is marked with white dots on
(a-b-c)). On the phase diagrams (a-b), the solid line shows the formula, (4.70), fitted
to the collapse curve with B = 35.18. The dotted line shows the transition to the
bursting phase predicted by the thin-film equations, (4.61).
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Theorem 1 The reduced energy equation calculated for BP profiles, (4.60), admits a

minimizer over (0, 1)×(L0,∞) for δ and δ√
Q−1

sufficiently small and L0 > 1 sufficiently

big (all universal) if and only if for some universal constant B > 0 we have

β = (Q− 1)

∣∣∣∣log BK⋆

(Q− 1)3δ2

∣∣∣∣ < 1, (4.69)

and Q− 1 sufficiently small depending on 1− β.

We remark that from this inequality we obtain a form to estimate the boundary

of skyrmion existence by saturating this inequality on the positive side of the absolute

value. We thereby derive the following relationship between the coordinates, (Qc, δc),

of the bifurcation defined by (4.68).

δ2c =
1

BK⋆

exp
(
− 1

Qc−1

)
(Qc − 1)3

. (4.70)

This critical line is shown on Figure 4.3.

4.3.3 Numerical simulations and skyrmion bursting

Simulations carried out via the MuMax3 software [105] on thin film geometries

discretized on a square grid and evolved with finite difference methods. The simulations

solve the full unsimplified LLG equations (2.1) on a GPU with a precomputed Fourier

kernel for the stray field interaction. From suitable initial conditions, the skyrmions

are obtained by direct simulation, and run until judged to have arrived at its stationary

state. The parameters here chosen are meant to model a ferrimagnetic material, with

Ms = 105 A/m, and lex = 56.4 nm being characteristic values which weaken the stray

field effects compared with exchange and promote variations over broad length scales

[9][13]. These simulations are carried out in families identified by a value of Ku and

successively decreasing the film thickness, d after obtaining an equilibrium state, using

the previously resolved solution as the initial condition for the next. This is continued
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until the skyrmion collapses. Due to the size of the skyrmions compared to the

discretization step, a small enough skyrmion falls beneath the threshold of resolution,

i.e. at this point the gradients become too steep for the discrete grid. We observe this

happening for skyrmions of radius around 40 nm in this case for a gridspacing of 4

nm (see Figure 4.4).

The obtained data qualitatively recapitulates the same trends as observed for the

theoretical solutions of the finite thickness model. In fact they exhibit grouping around

a universal curve depending on δ/
√
Q− 1 as predicted by the asymptotic theory see

Figure 4.5. As a first step toward unifying the theoretical and the simulation results

a fit may be performed on a suitable function where the simulation data for large

δ/
√
Q− 1 are interpreted as approaching a saddle node bifurcation where skyrmions

cease to exist. This function would also have to match the asymptotic regime resolved

for small δ/
√
Q− 1. We conclude the form

f(δ̄) =
C0δ̄

log
(
βδ̄
) (1− c

√
δ̄b − δ̄

)
(4.71)

would be a suitable candidate, where δ̄ = δ√
Q−1

, and where C0, c, and δ̄b are fit

constants . The choice of the factor δ̄

log(βδ̄)
comes directly from (3.26), respecting the

asymptotics. From there, we can estimate the appearance of the skyrmion bursting

regime δ̄b, denoted on Figure 4.5.
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Figure 4.4 Numerical simulations of the LLG equations, (2.1), with skyrmions
resolved on a grid of 516× 516 points with discretization length 4 nm. Parameters
are A = 20 pJ/m, Ms = 105 A/m. Film thickness, d, and anisotropy strength, Ku,
are varied between characteristic values. d is taken between 19.0 nm and 42.3 nm,
and Ku between 6428.1 J/m3 and 6705.1 J/m3 corresponding to values of δ between
0.337 and 0.750 and Q between 1.023 and 1.067. Left: radius of resolved skyrmions
depending on film thickness for select values of anisotropy strength. Right: The same
interpolated over the (Ku, d) plane.

Figure 4.5 Simulation results compared with theoretical solutions. Dashed line: Fit
between asymptotic theory and simulation results. Thin dotted line: critical value of
δ̄b = 2.953 obtained from fit. Region (A): skyrmion solutions resolved by the
finite-thickness film theory, truncated to δ̄ ≤ 1.6. Region (B): skyrmions resolved in
numerical simulation as Figure 4.4.
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CHAPTER 5

STRAY FIELD INTERACTION ENERGY IN A THIN MULTILAYER
SYSTEM

We present the derivation of a working thin multilayer model, beginning from the

general micromagnetic theory, as given in Chapter 2, and solving it within the thin

film geometry. The result includes extra energy terms that differentiate this from the

single-layer problem studied by [9] and summarized in Sections 2.3.2 and 3.3. These

are the local exchange coupling interaction terms and the stray-field coupling terms

acquired from the asymptotic expansion, both facilitating inter-layer interactions.

This chapter is dedicated to the treatment of the stray field energy in the multilayer

model which will be used to study skyrmions in the subsequent chapters.

5.1 Multilayer Thin-Film Model

The model is characterized by having multiple magnetization fields, mi : R2 → S2,

one for each layer. The principal subscript will always be used to identify the field mi.

When components need to be referenced, a secondary subscript will be introduced,

mi = (mi,⊥,mi,∥). There are N layers of non-dimensional thickness δ separated by

nonmagnetic layers of thickness (a− 1)δ, as diagrammed in Figure 5.1. As such, the

thickness of the entire system will be O(Nδ). We assume the ferromagnetic layers are

the same material, and therefore have the same exchange stiffness, interfacial DMI

strength, and anisotropy. Separate layers may differ in the sign of κi. The reduction

to the thin-film equations a la equation (2.25) can be performed much in the same

way, and is demonstrated in Section 5.2. The result includes extra energy terms that

differentiate this from the single-layer problem. These are the local exchange coupling

interaction terms and the stray-field coupling terms. The energy may be expressed as
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the multilayered version of (2.23). Each layer has its own fundamental self-interaction

energies, resulting in a summation, and an additional N − 1 interlayer exchange

coupling interactions between a layer and its neighbors. The energy, measured in the

units Ad is

E ({mi}) =
N∑
i=1

∫
R2

(
|∇mi|2 +Q |mi,⊥|2 − 2κimi,⊥ · ∇mi,∥

)
d2r

+ Ed ({mi} , δ) + σ

N−1∑
i=1

∫
R2

|mi+1 −mi|2 d2r,

(5.1)

where the last term is the interlayer exchange coupling with the constant σ, and the

stray field energy, Ed shall be treated in the subsequent sections.

Here, the exchange coupling may be obtained from the nondimensionalization of

Eec,i =
Jec,id

M2
s

∫
R2

|Mi+1 −Mi|2d2r, (5.2)

where Jec,i has units J/m3 [57, 92]. For all layers having the same exchange coupling

constant, Jec = Jec,i, one obtains the nondimensional parameter

σ =
Jec
Kd

, (5.3)

resulting in the expression included in (5.1).

The exchange coupling may change the problem dramatically, as σ > 0 and σ < 0

are both possible choices. We refer to these respective systems as ferromagnetically

coupled and antiferromagnetically coupled, since in the latter case the coupling energy

would be minimized by an anti-parallel order: mj+1 = −mj. This interaction is

studied in view of skyrmions in Chapter 7.

We may now refer to “self-interactions” as those terms which depend only

on one mi and “interlayer-interactions” which include dependence on two different
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mi’s. Note a layer i will have an inter-layer stray field interaction with all other

layers, while the exchange coupling interaction occurs only between neighboring layers.

The inter-layer stray field interaction types are: surface-surface, surface-volume,

and volume-volume respectively, Esurf(mi,mj), Evs(mi,mj), Evol(mi,mj). We may

calculate these interactions exactly in terms of integral kernels. Due to the proximity of

the layers, O(δ), the asymptotic model will lack surface-volume inter-layer interactions

as they are found to be of O(δ2), (see Equation 5.31).

5.2 Reduction and Asymptotics of the Stray-Field Energy in Thin
Multilayer Systems

We assume that a ferromagnetic sample occupies domain, Y ⊆ R3 consisting of N

thin layers of thickness δ. The distance between the centers of the neighboring layers

is aδ, where a > 1 so that the domains do not overlap:

Y = Ω×
N⋃
i=1

[(i− 1)aδ, (1 + (i− 1)a)δ], (5.4)

with Ω ⊆ R2. The micromagnetic stray field energy is,

Ed =
1

δ

∫
R3

∫
R3

∇ · m̃(r)∇ · m̃(r′)

4π|r− r′|
d3rd3r′, (5.5)

assuming magnetization does not vary in the vertical direction. Here we also employ

a shorthand where χi is the characteristic function of i-th layer. Then we have

m̃(x, y, z) =
N∑
i=1

mi(x, y)χi(z) =
N∑
i=1

(
m⊥

i (x, y) + ê3m
∥
i (x, y)

)
χi(z). (5.6)

For Ω = R2 and mi → −ê3 as r → ∞ we have to renormalize the stray field

energy for the integrals to make sense. We define the uniform magnetization state

m̃⋆ = −ê3
∑

i χi and let m̃r = m̃ − m̃⋆ and Ur = U − U⋆. The stray field energy is
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Figure 5.1 Schematic of a characteristic N -layer ferromagnetic (FM) system with
identical layers of thickness δ. Each ferromagnetic layer is separated by (a− 1)δ by
non-magnetic (NM) spacer layers.

redefined accordingly

Ed =
1

δ

∫
R3

(
|∇U |2 −

∑
i

χi

)
d3r,

=
1

δ

∫
R3

(
|∇Ur|2 − 2∂3Ur

)
d3r,

= E ′
d + E ′′

d .

(5.7)

We can transform the second term much in the same way as we obtained (4.8). Given

that the result was obtained with identical assumptions on m̃r,∥ we may simply quote

E ′′
d = −2

δ

∫
R3

(∂3Ur) d
3r =

2

δ

∫
R3

m̃r,∥d
3r. (5.8)
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Now since m̃r,∥ =
∑

i χi(mi,∥ + 1), and using the fact that |mi| = 1 for all i, we may

compute

2(m
∥
i + 1) = |m⊥

i |2 + |m∥
i + 1|2,

2(m̃∥(x, y, z) + 1) =
N∑
i=1

χi(z)
{
|m⊥

i (x, y)|2 + |m∥
i (x, y) + 1|2

}
.

(5.9)

Then integrating in z amounts to integrating disjoint characteristic functions, each

having height, δ and we obtain

E ′′
d = −

N∑
i=1

∫
R2

(
|m⊥

i |2 + |m∥
i + 1|2

)
d2r. (5.10)

We now investigate

E ′
d =

1

δ

∫
R3

|∇Ur|2d3r =
1

δ

∫
R3

∫
R3

∇ · m̃r(r)∇ · m̃r(s)

4π|r− s|
d3rd3s. (5.11)

Switching to cylindrical coordinates, take r, s ∈ R2 to obtain

E ′
d =

1

δ

∫
R

∫
R

∫
R2

∫
R2

∇ · m̃r(r, z)∇ · m̃r(s, ζ)

4π
√
|r− s|2 + (z − ζ)2

d2r d2s dz dζ. (5.12)

Use the following convention for the Fourier transform:

f̂(ω) =

∫
R
f(z)eiωzdz. (5.13)

Applying Fourier transform in vertical variable, zê3 → ωê3, and using the convolution

theorem and Parseval’s formula we obtain

E ′
d =

1

δ

∫
R2

∫
R2

∫
R

(
∇̂ · m̃r(r, ω)

(
K0(|r− s||ω|)

2π

)
∇̂ · m̃r(s, ω)

)
dω

2π
d2r d2s, (5.14)
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with

∇̂ · m̃r(r, ω) =
N∑
i=1

[
∇ ·m⊥

i (r)χ̂i(ω) + (m
∥
i (r) + 1)iωχ̂i(ω)

]
, (5.15)

and K0(r) being the modified Bessel function of the second kind [1]. The characteristic

functions are,

χ0(z) = χ(0,δ)(z), χ̂0(ω) =
1− e−iδω

iω
. (5.16)

We note that χi is just an appropriate shift of χ0 and rewrite

∇̂ · m̃r(r, ω) =
N∑
i=1

[
∇ ·m⊥

i (r)
(
e−iaδ(i−1)ωχ̂0(ω)

)
+ (m

∥
i (r) + 1)

(
iωe−iaδ(i−1)ωχ̂0(ω)

) ]
.

(5.17)

We can plug this expression into the energy and integrate out dependence on vertical

variable ω to obtain

E ′
d =

1

δ

N∑
p=1

N∑
q=1

∫
R2

∫
R2

{
Ka(q−p)

vv (|r− s|) ∇ ·m⊥
p (r)∇ ·m⊥

q (s)

+Ka(q−p)
vs (|r− s|) ∇ ·m⊥

p (r)(m
∥
q(s) + 1)

+Ka(q−p)
sv (|r− s|) (m∥

p(r) + 1)∇ ·m⊥
q (s)

+Ka(q−p)
ss (|r− s|) (m∥

p(r) + 1)(m∥
q(s) + 1)

}
d2r d2s.

(5.18)
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Here we defined volume-volume, volume-surface and surface-surface interaction kernels

as

Ku
vv(r) =

∫
R

K0(r|ω|)
2π

∣∣∣∣1− e−iδω

iω

∣∣∣∣2e−iδuω dω

2π
, (5.19)

Ku
vs(r) =

∫
R
iω

K0(r|ω|)
2π

∣∣∣∣1− e−iδω

iω

∣∣∣∣2e−iδuω dω

2π
, (5.20)

Ku
sv(r) =

∫
R
iω

K0(r|ω|)
2π

∣∣∣∣1− e−iδω

iω

∣∣∣∣2e−iδuω dω

2π
, (5.21)

Ku
ss(r) =

∫
R
ω2K0(r|ω|)

2π

∣∣∣∣1− e−iδω

iω

∣∣∣∣2e−iδuω dω

2π
. (5.22)

We see clearly, Ku
vs(r) = −Ku

sv(r), allowing these terms to be combined in the

expression for E ′
d. For simplicity, we express the energy as the sum of interaction

energies,

E ′
d =

N∑
p=1

N∑
q=1

{
E

′(pq)
vol + E ′(pq)

vs + E
′(pq)
surf

}
, (5.23)

where

E
′(pq)
vol =

1

δ

(
(∇ ·m⊥

p ), K
a(q−p)
vv ∗ (∇ ·m⊥

q )
)
L2 , (5.24)

E ′(pq)
vs =

1

δ

(
(∇ ·m⊥

p ), K
a(q−p)
vs ∗ (m∥

q + 1)
)
L2

− 1

δ

(
(m∥

p + 1), Ka(q−p)
vs ∗ (∇ ·m⊥

q )
)
L2 , (5.25)

E
′(pq)
surf =

1

δ

(
(m∥

p + 1), Ka(q−p)
ss ∗ (m∥

q + 1)
)
L2 . (5.26)
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We can explicitly evaluate the interaction kernels with the mathematica software to

find

Ku
vv(r) = − 1

4π

[
− 2

√
r2 + δ2u2 +

√
r2 + (δ + δu)2 +

√
r2 + (δ − δu)2 (5.27)

− δ(u+ 1) sinh−1

(
δ(u+ 1)

r

)
+ δ(u− 1) sinh−1

(
δ − δu

r

)
+ 2δ|u| sinh−1

(
δ|u|
r

)]
,

Ku
vs(r) =

1

4π

[
2 sinh−1

(
δu

r

)
− sinh−1

(
δ(u+ 1)

r

)
+ sinh−1

(
(1− u)δ

r

)]
, (5.28)

Ku
ss(r) =

1

4π
√

(r2 + δ2(u− 1)2) (r2 + δ2u2) (r2 + (δ + δu)2)

[
(5.29)

−
√

(r2 + δ2(u− 1)2) (r2 + δ2u2)−
√

(r2 + δ2u2) (r2 + (δ + δu)2)

+ 2

√
r4 + 2δ2r2 (u2 + 1) + δ4 (u2 − 1)2

]
.

Since the layer displacement parameter, u, is understood to be O(1) with respect to δ,

one expands to find the following

Ku
vv(r) ≃

δ2

4πr
+O(δ4), (5.30)

Ku
vs(r) ≃

uδ3

4πr3
+O(δ4), (5.31)

Ku
ss(r) ≃

δ2

4πr3
+O(δ4). (5.32)

And note that the volume-surface interactions are a higher order effect. We can further

simplify surface-surface interaction term. First we observe

(
m∥

p(r)−m∥
p(s)

) (
m∥

q(r)−m∥
q(s)

)
=
(
m∥

p(r) + 1
) (

m∥
q(r) + 1

)
+
(
m∥

p(s) + 1
) (

m∥
q(s) + 1

)
−
(
m∥

p(r) + 1
) (

m∥
q(s) + 1

)
−
(
m∥

p(s) + 1
) (

m∥
q(r) + 1

)
.

(5.33)
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Integrating with the kernel, Ku
ss(|r−s|), for u = a(q−p), we find due to the invariance

of Ku
ss with interchanges of r and s,

∫
R2

∫
R2

Ku
ss(|r− s|)

(
m∥

p(r)−m∥
p(s)

) (
m∥

q(r)−m∥
q(s)

)
d2r d2s

= 2

∫
R2

∫
R2

Ku
ss(|r− s|)

(
m∥

p(r) + 1
) (

m∥
q(r) + 1

)
d2r d2s

− 2

∫
R2

∫
R2

Ku
ss(|r− s|)

(
m∥

p(r) + 1
) (

m∥
q(s) + 1

)
d2r d2s.

. (5.34)

Therefore, the surface-surface interaction energies may be written as

E
′(pp)
surf = ||m∥

p + 1||2L2 −
1

2δ

∫
R2

∫
R2

Ku
ss(|r− s|)

(
m∥

p(r)−m∥
p(s)

)2
d2r d2s, for p = q,

E
′(pq)
surf = − 1

2δ

∫
R2

∫
R2

Ku
ss(|r− s|)

(
m∥

p(r)−m∥
p(s)

) (
m∥

q(r)−m∥
q(s)

)
d2r d2s,

for p ̸= q.

(5.35)

Asymptotically this may be rendered,

E
′(pp)
surf ≃ ||m∥

p + 1||2L2 − δ

∫
R2

∫
R2

(m
∥
p(r)−m

∥
p(s))2

8π|r− s|3
d2r d2s+O(δ2), for p = q,

E
′(pq)
surf ≃ −δ

∫
R2

∫
R2

(m
∥
p(r)−m

∥
p(s))(m

∥
q(r)−m

∥
q(s))

8π|r− s|3
d2r d2s+O(δ2),

for p ̸= q.

(5.36)

Meanwhile, the volume-volume interactions can be asymptotically expressed as

E
′(pq)
vol =

1

δ

∫
R2

∫
R2

Ku
vv(|r− s|)∇ ·m⊥

p (r)∇ ·m⊥
q (s) d

2r d2s

≃ δ

∫
R2

∫
R2

∇ ·m⊥
p (r)∇ ·m⊥

q (s)

4π|r− s|
d2r d2s+O(δ2).

(5.37)

Using (5.31) it is clear that all volume-surface interaction energies are of order δ2

E ′(pq)
vs ≃ O(δ2). (5.38)
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Combining all three interactions we obtain

E ′
d ≃

N∑
p=1

{
||m∥

p + 1||2L2 + δ
N∑
q=1

∫
R2

∫
R2

(
∇ ·m⊥

p (r)∇ ·m⊥
q (s)

4π|r− s|
− (m

∥
p(r)−m

∥
p(s))(m

∥
q(r)−m

∥
q(s))

8π|r− s|3

)
d2r d2s

}
.

(5.39)

Combining with (5.10), the total stray-field energy may finally be expressed as

Ed = E ′
d −

N∑
n=1

∫
R2

(
|m⊥

n |2 + |m∥
n + 1|2

)
d2r. (5.40)

Finally, we arrive at in the asymptotic representation of stray field energy

Ed ≃
N∑
p=1

{
− ||m⊥

p ||2L2 + δ
N∑
q=1

∫
R2

∫
R2

(
∇ ·m⊥

p (r)∇ ·m⊥
q (s)

4π|r− s|
− (m

∥
p(r)−m

∥
p(s))(m

∥
q(r)−m

∥
q(s))

8π|r− s|3

)
d2r d2s

}
.

(5.41)

This completes the derivation of the multilayer stray-field energy. Therefore, the

total energy of the thin film system, without exchange interaction between films, is as

follows.

E ≃
N∑
p=1

{∫
R2

|∇mp|2d2r + (Q− 1)

∫
R2

|m⊥
p |2d2r

+ κ

∫
R2

(
mp

∥∇ ·m⊥
p −m⊥

p · ∇m∥
p

)
d2r

}
+ δ

N∑
p=1

N∑
q=1

∫
R2

∫
R2

(∇ ·m⊥
p (r)∇ ·m⊥

q (s)

4π|r− s|

)
d2r d2s

− δ

N∑
p=1

N∑
q=1

∫
R2

∫
R2

(
(m

∥
p(r)−m

∥
p(s))(m

∥
q(r)−m

∥
q(s))

8π|r− s|3

)
d2r d2s.

(5.42)
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5.3 Interlayer Stray Field Interaction Energies of Skyrmions

For a system of interacting layers, there are four types of stray field interaction terms

that need treatment. The volume (and surface) charge self-interaction, and the volume

(and surface) interlayer interactions. Since the skyrmions may be laterally displaced

relative to one another, another layer of complexity is introduced compared with

skyrmions in the monolayer system. We have

Ej
vol =

δ

4π

∫
R2

∫
R2

∇ ·mj,⊥(r)∇ ·mj,⊥(r
′)

|r− r′|
d2rd2r′, (5.43)

Ej
surf = − δ

8π

∫
R2

∫
R2

(
mj,∥(r)−mj,∥(r

′)
)2

|r− r′|3
d2rd2r′, (5.44)

Eij
vol =

δ

2π

∫
R2

∫
R2

∇ ·mi,⊥(r)∇ ·mj,⊥(r
′)

|r− r′|
d2rd2r′, (5.45)

Eij
surf = − δ

4π

∫
R2

∫
R2

(
mi,∥(r)−mi,∥(r

′)
) (

mj,∥(r)−mj,∥(r
′)
)

|r− r′|3
d2rd2r′, (5.46)

We proceed to calculate the interaction energy of skyrmions in each layer using

the BP-profile ansatz. This will establish their stray field coupling energies and can be

used to prove results for skyrmions in multilayer systems in the subsequent chapters.

Take the following configuration for the skyrmion in each layer in the same fashion as

Equation 3.18, now with a relative translation between the profiles, ri and rj.

mi(r) = −fL

(
|r− ri|

ρi

)
Rθi êr + sgn(ρi − |r− ri|)

√
1− f 2

L

(
|r− ri|

ρi

)
ê3, (5.47)

mj(r) = −fL

(
|r− rj|

ρj

)
Rθj êr + sgn(ρj − |r− rj|)

√
1− f 2

L

(
|r− rj|

ρj

)
ê3. (5.48)

with Rθi being the rotation matrix defining the skyrmion’s Néel -Bloch quality. The

self-interactions are the same as calculated in monolayers, (3.23)-(3.24), and does not

depend on the position of the skyrmions. The relative displacement will, in the end,

only matter in magnitude, so define lij = |ri − rj|.
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5.3.1 Interlayer stray field coupling energy of BP profiles

Take the following regrouping of the parameters:

βij =
√
ρiρj , αij =

√
ρj
ρi

, λij =
lij
βij

. (5.49)

Since we are only analyzing the coupling of two layers here, we may revert to the

shorthand β = βij, α = αij, and λ = λij.

Insert the ansatz (5.47), (5.48) into equations (5.45) and (5.46). By strenuous

application of Fourier analysis (Subsection 5.3.2), one may compute the coupling

energies to the leading order for L ≫ 1 as

Eij
vol =

3π3

4
δβ cos θ1 cos θ2Fv (α, λ) , (5.50)

Eij
surf = −ζ

π3

4
δβFs (α, λ) , (5.51)

where

Fv(α, λ) =
32

3π2

∫ ∞

0

k2J0(λk)K1(αk)K1(k/α)dk, (5.52)

Fs(α, λ) =
32

π2

∫ ∞

0

k2J0(λk)K0(αk)K0(k/α)dk. (5.53)

With these definitions, Fv and Fs take a maximum value of 1. They are symmetric

about α = 1, in the sense that they are invariant with interchanges of α ↔ α−1. Of

note is that Fs will take small negative values for large enough values of λ and α = 0,

see Figures 5.2 and 5.3.

Analyzing these integrals is a critical feature of the project at hand. They may

be calculated numerically for any (α, λ) pair, but in the case of perfect symmetry,

α = 1, or in the case of concentric pairs, λ = 0, they do admit analytical expressions

in terms of quadratic combinations of the complete elliptic integrals E(z), K(z), [1].

Furthermore, it is advantageous to introduce a new asymmetry parameter, ω = log(α).
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Figure 5.2 Stray field interaction integrals as a function of radius asymmetry, ω, and
normalized core distance, λ. Note the rapid decay for either ω or λ tending away
from zero. Left: Fv(e

ω, λ), this is always positive. Right: Fs(e
ω, λ), note the presence

of the zero contour in the center of the upper half plane.

Then ω = 0 represents perfect symmetry of skyrmion size, and Fv and Fs become

even functions of ω.

5.3.2 Study of the stray field coupling integrals

The stray field coupling energy of skyrmions in the bilayer system has terms for volume

and surface charges. Respectively, they are:

Evol(mi,mj) =
δ

2π

∫
R2

∫
R2

∇ ·mi,⊥(r)∇ ·mj,⊥(r
′)

|r− r′|
d2rd2r′, (5.54)

Esurf (mi,mj) = − δ

4π

∫
R2

∫
R2

(
mi,∥(r)−mi,∥(r

′)
) (

mj,∥(r)−mj,∥(r
′)
)

|r− r′|3
d2rd2r′. (5.55)

We shall derive expressions for the energy using the ansatz based calculation of two

Belavin-Polyakov profiles a la Section 3.2.

First, use the following convention for the Fourier transform.

f̂(k) =

∫
R2

f(r)e−ik·rd2r , f(r) =

∫
R2

f̂(k)eik·r
d2k

(2π)2
. (5.56)
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Based on theorem 7.12 in the book by Lieb and Loss [67], we may define the conjugate

linear form for any two functions f, g ∈ H1/2(R2), for an operator |p| which acts on

the functions in Fourier space.

(f, |p|g) =
∫
R2

|k|f̂(k)ĝ(k) d2k

(2π)2
. (5.57)

The assertion is that it may be represented as a real space integral like so,

(f, |p|g) = 1

4π

∫
R2

∫
R2

(f(r)− f(r′))(g(r)− g(r′))

|r− r′|3
d2r d2r′. (5.58)

for when f = g we recover Thm. 7.12 [67]. Then owing to the fact that m∞,∥ + 1 ∈

H1(R2) and the inclusion H1(R2) ⊆ H1/2(R2) we may render the surface-surface

interaction energy more easily in Fourier space.

Representing both energy terms in Fourier space, we attain the following:

Evol(mi,mj) = δ

∫
R2

k · m̂i,⊥(k) k · m̂j,⊥(k)

|k|
d2k

(2π)2
, (5.59)

Esurf (mi,mj) = −δ

∫
R2

|k|m̂i,∥(k)m̂j,∥(k)
d2k

(2π)2
. (5.60)

Now supposing these profiles mi take the form of BP profiles, with the further

stipulation that they are not concentric. Let mi be shifted by a distance ri. Then the

profiles may be given in terms of the canonical Néel profile m∞:

mi(r) = Rθim∞,⊥

(
r− ri
ρi

)
+m∞,∥

(
r− ri
ρi

)
êz. (5.61)

Then represent the profile by decomposing it into its Néel and Bloch components,

Rθm∞,⊥ = cos(θ)m∞,⊥ + sin(θ)m⊥
∞,⊥. (5.62)
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The second term has zero divergence since m⊥
∞,⊥ = f(r)êϕ, and as such will not factor

into the volume charge energy. Using results from [9] we know

ik · m̂∞,⊥(k) = −4π|k|K1(|k|), (5.63)

m̂∞,∥(k) = 4πK0(|k|). (5.64)

Combining everything, the energy becomes (to leading order as L → ∞):

Evol(mi,mj) ≃ (4π)2δρ2i ρ
2
j cos θi cos θj

·
∫
R2

e−ik·(ri−rj)|k|K1(ρi|k|)K1(ρj|k|)
d2k

(2π)2
, (5.65)

Esurf (mi,mj) ≃ −(4π)2δρ2i ρ
2
j

∫
R2

e−ik·(ri−rj)|k|K0(ρi|k|)K0(ρj|k|)
d2k

(2π)2
. (5.66)

We plan to represent the integrand in polar coordinates. Without loss of

generality, let the displacement vector lie along the x-axis, and denote the magnitude

|ri− rj| = lij . We have k represented by magnitude k and angle ϕ. Then k · (ri− rj) =

klij cosϕ and d2k = kdϕdk. Only one factor of the integrand depends on the angle,

and we may integrate it separately,

∫ 2π

0

e−iklij cosϕdϕ = 2πJ0 (klij) . (5.67)

Now renormalize using the parameters defined in 5.49. With this system, one may

interpret λ as the separation of the two skyrmions in terms of number of skyrmion

radii. Rescale the variable of integration q =
√
ρiρjk and the energies become

Evol(mi,mj) ≃ 8πδβ cos θi cos θj

∫ ∞

0

J0(λq)K1(αq)K1(q/α) q
2dq, (5.68)

Esurf (mi,mj) ≃ −8πδβ

∫ ∞

0

J0(λq)K0(αq)K0(q/α) q
2dq. (5.69)
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Now define Fv and Fs by factoring out the energy value attained for λ = 0 and α = 1.

We then get the following representation:

Evol(mi,mj) ≃
3π3

4
δβ cos θi cos θjFv(α, λ), (5.70)

Esurf (mi,mi) ≃ −π3

4
δβFs(α, λ). (5.71)

And this is such that Fv(1, 0) = Fs(1, 0) = 1.

We now want to show some properties of functions Fv and Fs. Let us define

hv(k, α, λ) =
32

3π2
k2J0(λk)K1(αk)K1(k/α) (5.72)

hs(k, α, λ) =
32

π2
k2J0(λk)K0(αk)K0(k/α) (5.73)

and therefore

Fv(α, λ) =

∫ ∞

0

hv(k, α, λ)dk , Fs(α, λ) =

∫ ∞

0

hs(k, α, λ)dk. (5.74)

Proposition: Fv(α, λ) < Fv(α, 0) < Fv(1, 0) and Fs(α, λ) < Fs(α, 0) < Fs(1, 0) for

all λ > 0 or 0 < α ̸= 1.

Proof. We observe J0(x) < J0(0) = 1 and K0(x) > 0, K1(x) > 0. Therefore

Fv(α, λ) =

∫ ∞

0

hv(k, α, λ)dk <

∫ ∞

0

hv(k, α, 0)dk = Fv(α, 0) (5.75)

Fs(α, λ) =

∫ ∞

0

hs(k, α, λ)dk <

∫ ∞

0

hs(k, α, 0)dk = Fs(α, 0). (5.76)

Now we can compute integrals Fv(α, 0) and Fs(α, 0) and show that for both maximum

is achieved at α = 1. We only do this for Fs. Firstly note, they exhibit an obvious

symmetry about unity Fv(α, λ) = Fv(α
−1, λ) (the same for Fs).
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Due to the symmetry about α = 1, we need only check that ∂Fs

∂α
< 0 for α > 1.

The derivative may be expressed

∂Fs

∂α

∣∣∣∣
α,0

= −c

∫ ∞

0

{
K1(αk)K0(k/α)−

1

α2
K0(αk)K1(k/α)

}
k3dk. (5.77)

Due to the monotonicity of the bessel functions, Kn(k), we have the ordering

K1(αk) < K1(k) < K1(k/α), (5.78)

for all k > 0 and α > 1. Which allows us to get the estimate

∂Fs

∂α

∣∣∣∣
α,0

≤ −c

∫ ∞

0

k3K1(k)

{
K0(k/α)−

1

α2
K0(αk)

}
dk, (5.79)

which attains equality at α = 1. By the same token, the difference between the two

Bessel functions in brackets is positive, and this entire expression must be negative

and bounding ∂Fs

∂α
from above. Hence, Fs is monotone decreasing in α and attains

its maximum at α = 1. Again, due to the monotonicity of K0(k) the upper bound

is never zero except for α = 1. Thus, Fs is in fact strictly monotone decreasing for

α > 1.

Therefore, we obtain that the only critical point of Fs(α, 0) is α = 1 and it

delivers a maximum.

Q.E .D.
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Figure 5.3 Stray field integrals Fs(α, λ) and Fv(α, λ) for select values of λ.
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CHAPTER 6

STRAY FIELD ENABLED SKYRMIONS IN THIN MULTILAYERED
MEDIA

We treat the multilayer ferromagnetic system with no DMI, where the layers interact

with each other through the stray field only. Having derived the asymptotic model for

the multilayer energy in the previous section, we may begin from the energy (5.42)

and take κi = 0 and σ = 0.

We can search for minimizers in the restricted class of skyrmion profiles. This

can be shown by ansatz based minimization of the thin film multilayer energy among

the class of Belavin-Polyakov profiles. We treat the N layer case to show the existence

of same-size skyrmion columns in a system governed by the exchange, anisotropy, and

stray field interactions alone. We will also examine the particular case of 2 layers,

which allows a more granular look at the energy landscape and gives insight into

possible dynamics when skyrmions in different layers are separated by a nonzero

distance. This reveals a saddle point in the skyrmion separation parameter, above a

critical value the interaction is repulsive rather than attractive.

Beginning with the model energy equation of the thin multilayer system, having

undergone asymptotic expansion in the layer thickness parameter δ, the stray field

energy will be given by equation (5.41). Let the energy be represented in terms of the

parameters defined in (2.29) by setting δ̄ = δ/
√
Q− 1, and then we have the system
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energy as follows:

E ({mi}) =
N∑
i=1

∫
R2

(
|∇mi|2 + |mi,⊥|2

)
d2r

− δ̄

8π

N∑
i=1

N∑
j=1

∫
R2

∫
R2

(
mi,∥(r)−mi,∥(r

′)
) (

mj,∥(r)−mj,∥(r
′)
)

|r− r′|3
d2rd2r′

+
δ̄

4π

N∑
i=1

N∑
j=1

∫
R2

∫
R2

∇ ·mi,⊥(r)∇ ·mj,⊥(r
′)

|r− r′|
d2rd2r′

(6.1)

In Section 3.3, we illustrated how mono-layers are already known to support a Bloch

skyrmion under these conditions [9].

6.1 Bloch Skyrmions in Multilayers Coupled Through Stray Field Alone

One obtains the reduced energy by calculating each of the integrals for the thin

multilayer system energy on the set of Belavin-Polyakov profiles. These are shown in

Section 3.3 for the layer self-interactions and the interlayer stray field interactions are

given by Equations (5.70) and (5.71). Recall each of the parameters, ρi are the radius

of the skyrmion in each layer, and θi their in-plane angle. lij is the lateral separation

distance between skyrmion centers. The resultant reduced energy is

E =
N∑
i=1

[
8π +

4π

L2
i

+ 4πρ2i log

(
4L2

i

e2(1+γ)

)
+ δ̄

π3

8
ρi(3 cos

2 θi − 1)

]

+
N∑
i=1

∑
j<i

δ̄
π3

4

√
ρiρj

[
3 cos θi cos θjFv

(√
ρj
ρi
,

lij√
ρiρj

)
− Fs

(√
ρj
ρi
,

lij√
ρiρj

)]
.

(6.2)

We now proceed to minimize the energy. We can prove the following result.

Theorem 2 Let i, N ∈ N with 1 ≤ i ≤ N and ρi ∈
(
0, 2

e2+γ

)
. Then the minimizers

of the energy E defined in (6.2) satisfy

1. ρi = ρ = − B

2W (−B
√

A
2

)
, where A = e2+2γ

4
, B = δ̄π2

32
and W is a Lambert W

function;
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2. for 1 ≤ j < i ≤ N it holds lij = 0;

3. Li = ρ−1;

4.
∑N

i=1 cos θi = 0.

Proof. We split the proof in several steps, separately minimizing in all variables.

Step 1. We first want to minimize in angles θi, 1 ≤ i ≤ N . Keeping only meaningful

terms depending on angles θi in the energy (6.2) we define the following function

h0(cos θi, cos θj) =
N∑
i=1

ρi cos
2 θi + 2

N∑
i=1

∑
j<i

√
ρiρjFv(αij, λij) cos θi cos θj. (6.3)

We observe that h0 ≥ 0. Indeed, using definition of Fv one can show that Fv(α, λ) > 0

and Fv(α, λ) ≤ 1 with equality achieved only at (α, λ) = (1, 0) (see Subsection 5.3.2).

Therefore, it follows that quadratic form h0 ≥ 0. There are exactly two cases when

h0(cos θi, cos θj) = 0

1. θi =
π
2
+ πni for some ni ∈ N;

2. (αij, λij) = (1, 0) and
∑N

i=1 cos θi = 0 (note that αi,j = 1 implies ρi = ρj).

Therefore, minimization in θi yields h0 = 0.

Step 2. Using Step 1 the energy minimization reduces to minimizing

E =
N∑
i=1

[
8π +

4π

L2
i

+ 4πρ2i log

(
4L2

i

e2(1+γ)

)
− δ̄

π3

8
ρi

−
∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
,

lij√
ρiρj

)]
.

(6.4)

We now proceed to minimizing in Li. Let ti = L−2
i and define the following function

h1(ti) = ti − ρ2i log ti. (6.5)
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The function is strictly convex and is minimized at ti = ρ2i . Hence, the minimizing Li

is

L⋆
i = ρ−1

i . (6.6)

Recalling the asymptotic considerations, we require that Li be large and ρi be small

and hence their relationship is perfectly in order.

Step 3. After minimizing in θi and Li the energy becomes

E = 8πN −
N∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

π3

8
ρi +

∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
,

lij√
ρiρj

)]
.

(6.7)

We now note that Fs(α, λ) < Fs(α, 0) for all λ > 0 (see Subsection 5.3.2). Therefore,

minimizing in lij we obtain lij = 0 and minimal energy simplifies even further.

E = 8πN −
N∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

π3

8
ρi +

∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
, 0

)]
.

(6.8)

We now proceed to minimizing the above energy in ρi. Using Fs(α, 0) ≤ 1 we observe

N∑
i=1

∑
j<i

√
ρiρjFs

(√
ρj
ρi
, 0

)
≤

N∑
i=1

∑
j<i

√
ρiρj ≤

N − 1

2

N∑
i=1

ρi, (6.9)

with equality achieved only at ρi = ρj = ρ. Therefore we obtain

E ≥ 8πN −
N∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

Nπ3

8
ρi

]
=

N∑
i=1

F (ρi), (6.10)

where

F (ρ) = 8π − 4πρ2 log

(
e1+2γ

4
ρ2
)
− δ̄

Nπ3

8
ρ, (6.11)
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as is shown in Figure 6.2. It is now clear that

inf E = N inf
ρ
F (ρ). (6.12)

We can now minimize F (ρ) in the interval of model validity ρ ∈
(
0, 2

e2+γ

)
. Due to

convexity of F (ρ) on this interval we just need to find its critical point by solving

F ′(ρ) = −8πρ

(
ln

(
ρ2

e1+2γ

4

)
+ 1

)
− Nδ̄π3

8
= 0. (6.13)

We rewrite this equation in the form

−2ρ ln ρ− ρ ln

(
e2+2γ

4

)
=

Nδ̄π2

64
. (6.14)

The solution is (taking A = e2+2γ

4
, B = Nδ̄π2

64
)

ρ = − B

2W (−B
√
A

2
)
, (6.15)

where W is a Lambert W function [1].

Q.E .D.

Having established the existence of skyrmion columns we now wish to be able

to determine the effect of displacement in one of the ri parameters. On one hand,

this helps to verify that the skyrmion column will not immediately collapse under

perturbations, and on the other hand it leads the way toward more exploration of

the energy landscape, which will be treated in the next section. Therefore, pose the

minimization problem for skyrmions of a fixed position, {ri}, not necessarily equal to

each other, and we obtain the next theorem.

78



Theorem 3 Let i, N ∈ N with 1 ≤ i ≤ N , ρi ∈
(
0, 2

e2+γ

]
and

F ({ρi}, {ri}) = 8πN −
N∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

π3

8
ρi

+
∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
,
|ri − rj|√

ρiρj

)]
.

(6.16)

Then there exists δ0 > 0 such that for any fixed {ri} and all δ < δ0 there exists a

minimizer of the problem

inf
0<ρi<

2
e2+γ

F ({ρi}, {ri}). (6.17)

Proof. Step 1. We first need to show that the infimum is not equal −∞. It follows,

using Fs(α, λ) < Fs(1, 0) < 1, that

N∑
i=1

∑
j<i

√
ρiρjFs

(√
ρj
ρi
,
|ri − rj|√

ρiρj

)
≤ N − 1

2

N∑
i=1

ρi. (6.18)

Therefore, as in Step 3 of the proof of Theorem 2 we obtain

F ({ρi}, {ri}) ≥ 8πN −
N∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

Nπ3

8
ρi

]
= NF (ρ) ≥ −NC.

(6.19)

Step 2. Now we need to show that minimizing sequences ρi,n do not converge to 0

for some i. Assume this is not true and, without loss of generality, that ρN,n → 0 as
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n → ∞. In this case we see that the infimum of the energy is

F ({ρi}, {ri}) = 8πN −
N−1∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

π3

8
ρi

+
∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
,
|ri − rj|√

ρiρj

)]
.

(6.20)

Therefore, we only need to show that there exists ρN ̸= 0 such that

G = 4πρ2N log

(
e(1+2γ)

4
ρ2N

)
+ δ̄

π3

8
ρN + δ̄

π3

4

N−1∑
j=1

√
ρNρjFs

(√
ρj
ρN

,
|rN − rj|√

ρNρj

)
> 0.

(6.21)

We will take 0 < ρN ≪ 1 and investigate

Fs(α, λ) ∼
∫ ∞

0

k2J0(λk)K0(αk)K0(k/α)dk

=
1

λ3

∫ ∞

0

x2J0(x)K0(αx/λ)K0(x/(αλ))dx,

(6.22)

where

α/λ =
ρj

|rN − rj|
, αλ =

|rN − rj|
ρN

. (6.23)

We observe that α/λ > 0 is fixed, moreover β = 1
αλ

≪ 1. We have estimates on K0(x)

[1] such that

K0(x) < h(x) = max{− ln(x) + 1, 1}. (6.24)

It is now clear that we can estimate

∣∣∣∣∫ ∞

0

x2J0(x)K0(αx/λ)K0(x/(αλ))dx

∣∣∣∣ ≤ ∫ ∞

0

x2K0(αx/λ)h(βx)dx ≤ C| ln ρN |.

(6.25)
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Figure 6.1 Comparison of several species of bilayer skyrmions represented by plots
of BP-profiles with all layers of thickness δ̄ and radii obtained from (6.15). (a)
Monolayer Bloch skyrmion. (b-c-d) Bilayer skyrmions. (b-c-d) Result in skyrmions of
larger radii than would be obtained by a monolayer of depth δ̄. A bilayer system with
concentric skyrmions in each layer admits precession of the in-plane angle, such that
the radial components of the magnetization in each layer will be opposite. Thus one
may have (b) concentric Bloch skyrmions, (c) opposite Néel skyrmions, (d) hybrid
skyrmions having opposite radial components.
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Therefore we obtain

G > 4πρ2N log

(
e(1+2γ)

4
ρ2N

)
+ δ̄

π3

8
ρN − Cδ̄

π3

4
ρ2N | ln ρN | > 0 (6.26)

for ρN ≪ 1.

Step 3. Now we need to show that minimizer ρi,n ≠ 2
e2+γ . Assume this is not true

and, without loss of generality, there is a minimizer with ρN,n = 2
e2+γ . In this case we

see that the infimum of the energy is

F ({ρi}, {ri}) = 8πN −
N−1∑
i=1

[
4πρ2i log

(
e(1+2γ)

4
ρ2i

)
+ δ̄

π3

8
ρi

+
∑
j<i

δ̄
π3

4

√
ρiρjFs

(√
ρj
ρi
,
|ri − rj|√

ρiρj

)]

− 4πρ2N log

(
e(1+2γ)

4
ρ2N

)
− δ̄

π3

8
ρN

−
∑
j<N

δ̄
π3

4

√
ρNρjFs

(√
ρj
ρN

,
|rN − rj|√

ρNρj

)
(6.27)

The last term of the energy can be estimated as (Fs < 1 and ρj ≤ ρN)

−4πρ2N log

(
e(1+2γ)

4
ρ2N

)
− δ̄

π3

8
ρN −

∑
j<N

δ̄
π3

4

√
ρNρjFs

(√
ρj
ρN

,
|rN − rj|√

ρNρj

)
> 12π

4

e4+2γ
− δ̄N

π3

2e2+γ
.

(6.28)

It is clear that for small enough δ̄ this term is positive. However, taking ρN → 0 we

observe that this term converges to 0 and so the minimum cannot be achieved at the

boundary point.

Q.E .D.

It is clear that it is enough to characterize F (ρ) to describe the minimizers of the

multilayer energy among BP profiles (equation 6.2), and the resulting analysis decouples

the ρi dependence on one another. The obtained solutions exhibit dependence only on
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Figure 6.2 Left: F (ρ) defined in equation 6.11, marked with its minimizing ρ values.
Right: Energy minimizing ρsky obtained as a function of the universal parameter Nδ̄.

the universal parameter Nδ̄, as shown in Figure 6.2, reducing the multilayer system to

a rescaling of the monolayer problem in this narrow sense. This suggests more stable

or larger skyrmions can be engineered as a part of the coupled multilayer system, with

more layers resulting in an increased surface charge interaction, promoting skyrmions,

but retaining all the properties of the asymptotically thin system. However, this too

should have its limits, as multiple layers would eventually create a stack of layers tall

enough to exhibit genuine independence in the vertical coordinate, and one would

have to revert to using the finite thickness equations.

More broadly, it has also been shown that the concentric skyrmion column is

stable with respect to lateral displacement, lij, and the skyrmions do not tend to

drift apart in the neighborhood of this minimizer. The analysis also reveals several

degrees of freedom leftover, as when in the concentric phase, the skyrmion’s angles

are not uniquely determined by the energy minimization, as with a single layer, but

rather obey a constraint equation given in Theorem 2. The consequence is that these

systems may exhibit many different orientations of skyrmion with freely precessing

angles, so long as they continue to obey the constraint. We can further understand

these peculiarities in a reduced analysis of an N = 2 layer system presented in the

subsequent section.
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6.2 Stray Field Coupled Skyrmions in Bilayers

In the bilayer system, the simplest example of a non-trivial multilayer system, the

energy minimization procedure may be replicated as was done in the preceeding

section for the N layer system, so we present it in a brief form, and highlight particular

features of the energy landscape as they appear.

One may write the full energy of two BP-profile skyrmions (Equations (5.47),

(5.48)) using calculations from previous sections. We take a far field ferromagnetic

alignment in all layers, since the antiferromagnetic case is not stable under dipolar

action alone. Exchange coupling is not used, so σ̄ = 0. Using the symmetry parameters

defined in (5.49), obtain the following reduced energy:

E = 16π +
4π

L2
1

+
4π

L2
2

+ 4π

(
β

α

)2

log

(
4L2

1

e2(1+γ)

)
+ 4π(αβ)2 log

(
4L2

2

e2(1+γ)

)
+ δ̄

π3

8
β

(
3
[
α−1 cos2 θ1 + α cos2 θ2 + 2 cos θ1 cos θ2Fv(α, λ)

]
−
[
α−1 + α + 2Fs (α, λ)

])
.

(6.29)

The desired result may be achieved by sequential minimizations of each of

the variables. Immediately, L⋆
j = 1/ρj. Then the volume charge terms present

another piece of information. As discussed, all terms featuring θj are volume charge

energies. The volume charge is quadratic with cos θj, always positive, and is zero

in the following scenarios: Either θj = ±π/2, then the mj’s are Bloch skyrmions.

However, the quadratic system degenerates when the skyrmions are the same size,

and perfectly concentric, α = 1, λ = 0, in this case it accepts a family of minimizers

θ2 = π ± θ1, thereby aligning mj,⊥ antiparallel with one another. Remarkably, the

angles are free to precess, maintaining this relationship, without being constrained by

any other interaction. This enables a family of equivalently stable configurations for

which the skyrmion in one layer has the same angular component as its partner in the

other layer, while having opposite radial components, as shown in Figure 6.1c.
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Figure 6.3 Skyrmion mean radii, (6.33), in the bilayer system depending on ω and λ
after minimizing in all other variables, with δ̄ = 0.07. Left: Schematic of skyrmion
radii for λ = 0 as a function of ω. Right: radius β as a function of skyrmion
separation, λ. When perfectly concentric with one another, the two skyrmions will
strongly interact through the stray field and expand.

In all cases, it is clear that the surface charges are responsible for stabilizing the

skyrmion structure. Write Gs(ω, λ) = Fs(e
ω, λ), and let

ε̄(ω, λ, δ) =
δ̄π3

16
[cosh(ω) +Gs(ω, λ)]. (6.30)

η(ω) =
e1+γ+ω tanh(2ω)

8 cosh(2ω)
. (6.31)

Next, represent the energy in terms of the remaining parameters

h(β, ω, λ) =
E − 16π

4π
= −2β2

(
cosh(2ω) log

(
e

1+γ
2 β/2

)
+ ω sinh(2ω)

)
− βε̄(ω, λ, δ).

(6.32)

after minimizing over the mean radius, β, it may be expressed parametrically in terms

of the remaining parameters:

β0(ω, λ) =
−ε̄(ω, λ, δ)

4 cosh(2ω)W−1(−η(ω)ε̄(ω, λ, δ))
, (6.33)

where, W−1 is the negative branch of the Lambert W function [1]. The bulk radius,

β0, attains its largest value for ω = 0. For λ = 0 and increasing ω, the skyrmion
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Figure 6.4 Energy h(β, ω, λ) after minimizing in β. Parameter values are κ̄ = 0,
σ̄ = 0, δ̄ = 0.07. The system favors a bound state where the skyrmions are concentric
and perfectly symmetric (ω, λ) = (0, 0). Alternatively, note the presence of a saddle
at (ω, λ) = (0, 10.9) beyond which, the skyrmion interaction is repulsive.

in one layer will reduce in size, while its counterpart will shrink to zero (see Figure

6.3). After substituting the result back into h(β0(ω, λ), ω, λ), the energy acquires a

minimum for ω = λ = 0, and the skyrmions form a bound pair and have the same

size (see Figure 6.4). Same size skyrmions are clearly favored in all cases, but for λ

larger than λs = 10.9, the energy crosses a saddle point, beyond which the skyrmions

would experience a repulsive interaction, and run away to infinity. The value of λs is

universal in this system and does not depend on δ̄.
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CHAPTER 7

SKYRMIONS IN EXCHANGE COUPLED BILAYERS

Consider the case for multilayers with exchange coupling between layers. The coupling

is represented as a “nearest neighbor” interaction between adjacent layers, with strength

characterized by the constant σ given in dimensional form by the energy (5.2). This is a

local interaction unlike the stray field, and could model both ferromagnetically coupled

and antiferromagnetically coupled systems depending on the sign of Jec [57, 84]. We

shall proceed within the restricted class of skyrmion profiles, and examine the effect of

both the ferromagnetic and antiferromagnetic exchange coupling interaction on a two

layer system with skyrmions in each layer. We essentially treat the exchange coupling

as the dominant interlayer interaction and regard stray field interlayer coupling as

a perturbation. Therefore, we only consider skyrmions which are enabled by DMI,

finally concluding under which circumstances these systems admit Néel skyrmions as

energy minimizers.

Take the model energy equation, (5.1) for a thin multilayered ferromagnetic

system with the asymptotic formulation of the stray field energy according to (5.41).

Recall this is nondimensionalized such that σ = Jec/Kd. Furthermore, for this section

we take the regrouped constants defined in (2.29). This additionally yields the constant

σ̄ =
σ√

Q− 1
. (7.1)
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The energy may thus be written as

E ({mi}) =
N∑
i=1

∫
R2

(
|∇mi|2 + |mi,⊥|2 − 2κ̄imi,⊥ · ∇mi,∥

)
d2r

− δ̄

8π

N∑
i=1

N∑
j=1

∫
R2

∫
R2

(
mi,∥(r)−mi,∥(r

′)
) (

mj,∥(r)−mj,∥(r
′)
)

|r− r′|3
d2rd2r′

+
δ̄

4π

N∑
i=1

N∑
j=1

∫
R2

∫
R2

∇ ·mi,⊥(r)∇ ·mj,⊥(r
′)

|r− r′|
d2rd2r′

+ σ̄

N−1∑
i=1

∫
R2

|mi+1 −mi|2 d2r

(7.2)

We restrict the analysis to a bilayer system (N = 2) and one where |σ̄| and |κ̄j| are

small, and yet large enough that the nonlocal component of the stray field interaction

is negligible (in other words, let δ̄ = 0).

7.1 Interlayer Exchange Coupling Energy of BP profiles

Exchange coupling between layers may be alternately defined depending on whether

the layers are coupled ferromagnetically or antiferromagnetically (σ̄ > 0 or σ̄ < 0).

Define an alignment parameter, ζ ∈ {−1, 1}, which will stand in for the ferromagnetic

(ζ = 1) and antiferromagnetic (ζ = −1) cases. The allowance of an antiferromagnetic

order motivates the following redefinition of the ansatz:

m1(r) = −fL

(
|r− r1|

ρ1

)
Rθ1 êr + sgn(ρi − |r− r1|)

√
1− f 2

L

(
|r− r1|

ρ1

)
ê3, (7.3)

m2(r) = −fL

(
|r− r2|

ρ2

)
Rθ2 êr + ζ sgn(ρj − |r− r2|)

√
1− f 2

L

(
|r− r2|

ρ2

)
ê3. (7.4)

We will also refer to the parameters α, β, λ defined in (5.49).

88



In the case of ferromagnetic coupling take the energy as written, and let ζ = 1:

E+
ec = σ̄

∫
R2

|m1 −m2|2d2r. (7.5)

Otherwise, one needs to introduce a constant offset to the integrand such that the

energy might result in a bounded integral. So if σ̄ < 0, take ζ = −1 and define instead:

E−
ec = |σ̄|

∫
R2

(
4− |m1 −m2|2

)
d2r. (7.6)

These integrals have yet to be calculated for the truncated BP-profiles; however,

supposing the skyrmions centers are close to one another on the scale of the core,

i.e. λ ∼ 1, the calculation of the energy of untruncated BP-profiles, will capture the

energy to leading order. Notice that it takes a similar form as the anisotropy energy∫
|m⊥|2d2r, and therefore may be a divergent integral. Therefore, we calculate this

energy for L → ∞.

When supposing perfect symmetry α = 1, however, the cancellation of the tails

of mj,⊥ will lead to a bounded result in this L-limit. One may therefore interpret this

as a strong energy penalty on asymmetry, since Eec is always positive. This forces

β = ρ1 = ρ2 and the same in-plane angle θ1 = θ2. Formally, this can be calculated in

Fourier space using Plancharel’s theorem.

Begin by assuming σ̄ > 0, and so ζ = 1. The other case assuming σ̄ < 0, ζ = −1

will obtain the same result by trivial modification of the following derivation. Split

the exchange coupling energy apart into contributions by in-plane and out-of-plane

components

E+
ec = σ̄

∫
R2

|m1,⊥ −m2,⊥|2d2r + σ̄

∫
R2

(
m1,∥ −m2,∥

)2
d2r. (7.7)
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We denote these integrals as F⊥
12 and F

∥
12 respectively. Continuing, we have

F⊥
12 =

∫
R2

|m1,⊥(r)−m2,⊥(r)|2d2r. (7.8)

Then Plancharel’s theorem finds

F⊥
12 =

∫
R2

|m̂1,⊥(k)− m̂2,⊥(k)|2
d2k

(2π)2
. (7.9)

Note that these fields, mj are conservative and admit a scalar potential (before

rotation), therefore define

Φ∞(r) = log
(
1 + |r|2

)
. (7.10)

m∞,⊥(r) = −∇Φ∞(r). (7.11)

It then follows after introducing the BP symmetries see (3.5), for the first profile we

have

m1,⊥(r) = −ρ1Rθ1∇Φ∞

(
r− r1
ρ1

)
, (7.12)

m2,⊥(r) = −ρ2Rθ2∇Φ∞

(
r− r2
ρ2

)
. (7.13)

Formally, we have the Fourier transform

Φ̂∞(k) = −4π
K1(|k|)
|k|

. (7.14)
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without loss of generality, suppose r2 = 0, and having already determined the radii

must be identical, i.e. ρ1 = ρ2 = β, we arrive at the transformed profiles

m̂1,⊥(k) = 4πβ2e−ik·r1Rθ1k

|k|
K1(β|k|). (7.15)

m̂2,⊥(k) = 4πβ2Rθ2k

|k|
K1(β|k|). (7.16)

We may decompose these profiles into Néel and Bloch components.

m̂j,⊥(k) = β2 cos θj (m̂∞,⊥(βk)) + β2 sin θj
(
Rπ/2m̂∞,⊥(βk)

)
. (7.17)

When expanding out the integrand in dot-products, the construction above exploits

orthogonality; many of the terms are zero. The integral can be reduced to the following

F⊥
12 = 2

∫
R2

(1− cos(θ1 − θ2) cos(k · r1)) |m̂∞,⊥(βk)|2
d2k

(2π)2
. (7.18)

In polar coordinates k = (k, ϕ) let k · r1 = kl12 cosϕ. Integration can be performed

over the angular coordinate, ϕk. Then rescale as follows

λ =
l12
β

; s = βk, (7.19)

where |r1| = l12. We arrive at

F⊥
12 = 16π

∫ ∞

0

(1− cos(θ1 − θ2)J0(λs))K
2
1(s)sds. (7.20)

Observe the character of singularity in the integrand; for s → 0 we have the singularity

(1− cos(θ1 − θ2)J0(λs))K
2
1(s)s ≃ π

(
1− cos(θ1 − θ2)

s

)
+O (s(c+ log(s))) . (7.21)
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Therefore, this integral is only bounded when the skyrmion in both layers has the

same in-plane angle θj. In such a case, we may finally calculate

F⊥
12(λ) = 8π

(
2 (λ2 + 2) sinh−1

(
λ
2

)
λ
√
λ2 + 4

− 1

)
. (7.22)

As for the other term relating the out of plane components, we shall denote

F
∥
12 =

1

ρ1ρ2

∫
R2

(
(m1,∥(r) + 1)− (m2,∥(r) + 1)

)2
d2r, (7.23)

using the untruncated profile, mj,∥(r) = m∞,∥

(
r−rj
ρj

)
and following up with

Plancharel’s theorem. These profiles transform as follows,

F
{
m∞,∥ + 1

}
= 4πK0(|k|). (7.24)

F
{
m1,∥ + 1

}
= 4πρ21e

−ik·r1K0(ρ1|k|). (7.25)

F
{
m2,∥ + 1

}
= 4πρ22K0(ρ2|k|). (7.26)

We have then

F
∥
12 =

4

ρ1ρ2

∫
R2

∣∣ρ21e−ik·r1K0(ρ1|k|)− ρ22K0(ρ2|k|)
∣∣2 d2k. (7.27)

Again, we regroup the parameters using (5.49), and rescale the variable of integration

βk = s. This integral becomes

F
∥
12 = 4

∫
R2

∣∣e−is·r1/βα−2K0(α
−1|s|)− α2K0(α|s|)

∣∣2 d2s. (7.28)
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After changing to polar coordinates and integrating in the angular variable this

evaluates to the following.

F
∥
12 = 8π

∫ ∞

0

(
α−4K2

0(α
−1s) + α4K2

0(αs)− 2J0(λs)K0(α
−1s)K0(αs)

)
sds. (7.29)

The symmetry in the first two terms which allows further simplification, yielding

F
∥
12 = 8π

∫ ∞

0

(
(α−2 + α2)K2

0(s)− 2J0(λs)K0(α
−1s)K0(αs)

)
sds. (7.30)

For now this can be made compatible with the previously calculated F⊥
12 by taking

α = 1 and consequently β = ρ1 = ρ2. We arrive at

F
∥
12(λ) = 16π

∫ ∞

0

(1− J0(λs))K
2
0(s)sds (7.31)

= 8π

(
1−

4 sinh−1
(
λ
2

)
λ
√
λ2 + 4

)
. (7.32)

Now combining the above results to obtain the exchange coupling energy, we have

E+
ec = σ̄β2(F⊥

12(λ) + F
∥
12(λ)). (7.33)

Having given suitable treatment to the integrals for σ̄ > 0, this is immediately

extendable to the case σ̄ < 0 by taking E−
ec and computing it with the ansatz for

ζ = −1. One obtains the almost the same expressions for F⊥
12 and F

∥
12. To summarize,

we may define F ζ
ec(λ) in Fourier space:

F ζ
ec(λ) =

∫ ∞

0

(1−ζ cos(θ1 − θ2)J0(λk))K
2
1(k)kdk+

∫ ∞

0

(1−J0(λk))K
2
0(k)kdk. (7.34)

The energy is then,

Eζ
ec = 16π|σ̄|β2F ζ

ec(λ), (7.35)
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which covers both cases, ζ = ±1.

Recall, due to the cross interaction for the in-plane components, the first integral

in (7.34) has a nonintegrable singularity for almost every choice of θj. The reason is

the same reason which requires α = 1, so θj must be such that the integrand decays

rapidly enough for large r. This fixes the relationship between the in-plane angles:

ζ = 1 ⇒ θ1 = θ2,

ζ = −1 ⇒ θ1 = θ2 + π.

(7.36)

Under this framework, we get

F ζ
ec(λ) = Fec(λ) =

λ sinh−1(λ/2)√
λ2 + 4

. (7.37)

In conclusion, the skyrmions will have the same size, and the in-plane components

will be parallel (or antiparallel when ζ = −1) but their Néel or Bloch character will

be determined by other interactions. Using this may be rather restrictive, but also

advantageous as it immediately simplifies to same-size configurations before even

considering the total energy. Such a simplification allows room to focus on the effects

of displacement, λ.

7.2 Néel Skyrmions in DMI dominant Bilayers with Exchange Coupling

Consider a bilayer system where the stray field is negligible, δ̄ = 0. Then the interlayer

exchange will be the only interaction coupling the two layers. As shown in the previous

result result, (3.27), for δ̄ small enough compared to κ̄ a single-layer configuration

will have a Néel skyrmion as its minimizer. This will be the same for the bilayer

system. The exchange coupling effect results in a stable concentric pairing of same-size

Néel skyrmions in (anti)ferromagnetically coupled layers. Early on in the analysis the

energy discriminates between certain configurations of DMI, κ̄j, and permits stable

94



Figure 7.1 Schematic cases of Néel skyrmion pairs in bi-layers. The pictured
skyrmions have in-plane angles which would be selected by the following DMI
strengths: in the top layer κ̄1 > 0, (a,d) has κ̄2 = κ̄1, leading to two counterclockwise
Néel skyrmions. (b,c) has κ̄2 = −κ̄1 resulting in one counterclockwise and one
clockwise Néel skyrmion. Cases (c) and (d) fail to yield valid energy minimizers.

skyrmions only in the case of ferromagnetic coupling and same-sign DMI, or in the

case of antiferromagnetic coupling and opposite-sign DMI.

Take the micromagnetic energy defined in (7.2) for N = 2 thin layers restricted to

a system where both layers have DMI strength of identical magnitude, |κ̄1| = |κ̄2| = κ̄,

though they may take the same or opposite signs. Now compute the energies for the

BP-profiles (Equations (7.3) and (7.4)). From the previous analysis of the exchange

coupling energy, already α = 1 must hold for L ≫ 1, and the angles must satisfy

(7.36) for this to be valid. Thus,

θ1 = θ2 +
1 + ζ

2
π, (7.38)

95



and the energy may be written as,

Eρ,θ,L,λ = 16π+
2∑

j=1

[
4π

L2
j

+ 4πβ2 log

(
4L2

j

e2(1+γ)

)
− 8π sgn(κ̄j)κ̄β cos θj

]
+16πσ̄β2Fec(λ).

(7.39)

Upon inspection, only the DMI energy depends on the in-plane angles θj . Should

the layers be coupled ferromagnetically, ζ = 1, and if the DMI terms have opposite-sign,

there is a problem. If θ1 = θ2, the total DMI energy is canceled out; therefore, it

will not be possible to stabilize a skyrmion without this energy term present. The

anisotropy interaction would minimize to β = 0. Therefore, we must discard this

case before advancing. The same is true for two layers coupled antiferromagnetically,

ζ = −1, and same-sign DMI terms. These two failure cases are characterized in Figure

7.1.c and 7.1.d respectively. We proceed by cataloging all remaining choices for ζ, κ̄1,

and κ̄2. If ζ = 1, κ̄1 = κ̄2 > 0 (Figure 7.1.a), then the energy may be minimized by

choosing

θ⋆j = 0. (7.40)

In the case where ζ = 1, κ̄1 = κ̄2 < 0 the same result is achieved by taking the

opposite angle

θ⋆j = π. (7.41)

Now, in the case of antiferromagnetic coupling, ζ = −1, κ̄1 > 0, and κ̄2 = −κ̄1 (Figure

7.1.b), we get

θ⋆1 = 0,

θ⋆2 = π,

(7.42)

and when ζ = −1, κ̄1 < 0, κ̄2 = −κ̄1, we get

θ⋆1 = π,

θ⋆2 = 0.

(7.43)
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Figure 7.2 Left: skyrmion radius vs λ. Right: skyrmion energy vs λ, for select
values of DMI strength κ̄. Here we take σ̄ = 0.75. Note that the energy is minimized
for λ = 0 when the skyrmions in each layer are concentric with one another. This is
also where their radii take their largest values.

In all cases, the DMI energy resolves to the same value,
∑2

j=1 EDMI(mj) = −16πκ̄β.

The energy may then be minimized with parametric dependence on λ. We obtain

a(σ̄, λ) = exp [γ + 1− σ̄F12(λ)] , (7.44)

β⋆(λ) =
−|κ̄|

2W−1

(
−1

4
|κ̄| exp [γ + 1− σ̄F12(λ)]

) , (7.45)

Eβ⋆(λ),θ⋆,L⋆,λ = 16π

[
1 + κ̄2

(
1 + 2W−1

(
−1

4
a(σ̄, λ)|κ̄|

)
8W 2

−1

(
−1

4
a(σ̄, λ)|κ̄|

) )]
. (7.46)

These are plotted in Figure 7.2. The resultant energy is monotonically increasing with

λ, and takes its minimum at zero. Then it follows that the skyrmion size does not

depend on σ̄. Thus the role of the interlayer exchange coupling, in the final solution,

is only to penalize deviations from λ = 0.

Take λ = 0 and we arrive at the final results, which are shown in Figure 7.3:

E⋆ = 16π

[
1 + κ̄2

(
1 + 2W−1

(
−1

4
e1+γ|κ̄|

)
8W 2

−1

(
−1

4
e1+γ|κ̄|

) )]
, (7.47)
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Figure 7.3 The energy, E⋆, and radius, β⋆, of a concentric bound pair of skyrmions
in (anti)ferromagnetically coupled layers with δ̄ = 0. The result does not depend on σ̄.

β⋆ =
−|κ̄|

2W−1

(
−1

4
e1+γ|κ̄|

) . (7.48)
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CHAPTER 8

SUMMARY AND OUTLOOK

The problem of skyrmions in thin ferromagnetic multilayers has been addressed from

the point of view of perturbations of harmonic maps and other analytical tools.

The restricted class A, and the Belavin-Polyakov profile based ansatz enable precise

estimates and calculations of the micromagnetic energy necessary for this study. The

methodology has also offered a straightforward framework within which to treat the

stray field energy of the skyrmion in a plethora of physical systems.

The study of the finite thickness model gives further insight into the competition

between stray field and anisotropy interactions in a monolayer. By analyzing the

system without passing to the asymptotic limit, one observes strong two-parameter

dependence on Q and δ. The model predicts a bifurcation after which skyrmion

solutions fail to exist, a phenomenon which is not revealed in the asymptotic model

[9]. The complementary analysis of numerical simulation corroborates the general

trends among skyrmion solutions in this system.

Due to the form of the stray field interaction energy studied in the finite

thickness model, a hypothetical reintroduction of the DMI would give rise to parameter

combinations which have two local minimizers. This represents one avenue for

continued study, and could lead to new understanding of how stray field and DMI

compete or complement each other in the stabilization of skyrmions.

The numerical simulations allow some gesture toward the phase of skyrmion

bursting or strip-out, and estimate the critical thickness δ̄b of strip-out. The direct

simulation of the LLG equations remains valid in the thicker film regimes for which

the use of the restricted class, A, and the assumptions of vertical uniformity would

become more dubious for use in a theoretical calculation. Still more can be done in
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simulation to refine the estimate of the strip out thickness by attempting to bisect the

material parameters across strip-out and non-strip-out regimes.

All this combined begins to form the complete picture of stray field enabled

skyrmions in PMA materials, as it bounds the existence of skyrmions in a compact set

in the (Q, δ) plane. Thus, the difficulty of engineering stray field enabled skyrmions in

practice cannot be understated, as this analysis assumes very ideal conditions without

thermal noise. This treatment therefore contextualizes the other results obtained for

multilayer systems using the asymptotic models.

The derivation of the thin multilayer stray field energy is accomplished first by

exactly solving Maxwell’s equations in the system geometry for finite thickness, and

then passing to the asymptotic form. This derivation sheds fundamental insight on

the nature of interactions in the layered system such as characterizing the roles, and

the origins of, the local shape-anisotropy, and surface and volume charges, and the

often neglected surface-volume interaction energy. Arranging the interactions in their

exact form as integral kernels gives a simple and adaptable scheme for calculation.

This classification also establishes a clear asymptotic hierarchy of interactions, with

the local interactions at leading order, at the next order the surface-surface and

volume-volume interactions, and beginning at the third order are the surface-volume

interactions.

In the case of a multilayer system with no DMI, where the layers interact

with each other through the stray field only, we have found the existence of bound

concentric skyrmion solutions using the asymptotic model as it applies to the class of

Belavin-Polyakov profiles of the thin film multilayer energy. The presence of several

interacting ferromagnetic layers leads to multiple nontrivial effects. In particular, the

appearance of a distance threshold beyond which the interaction between skyrmions in

each layer will switch to repulsion, and the existence of degrees of freedom among the

rotation angles facilitated by the volume charge interactions. Furthermore, the added
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stability acquired in multilayer systems compared to that of a stray field stabilized

skyrmion in a monolayer represents one avenue for applied scientists to study these

objects in experiment.

The results suggest a continuation in the form of a dynamical study of the bilayer

system a la Thiele [57, 100]. Dynamically, skyrmions in coupled bilayer systems are

known to exhibit different effects than that of the monolayer skyrmions when driven

by electric current [112], but in the analyzed stray field coupled system, it is not yet

known how the additional degree of freedom in the skyrmion rotation angle will affect

the dynamics. This will be important to understand when viewing the stray field

coupled multilayer system as a candidate for skyrmion-electronic applications.

We have also treated a bilayer system with DMI and δ = 0, where the layers are

coupled locally through a reduced exchange interaction. This system will also admit

bound concentric skyrmion solutions for certain parameter values. Preliminary work

suggests that adding the stray field back to this system as a perturbation could create

a metastable state consisting of a bound skyrmion pair where the cores are slightly

off-center. Investigation may be continued along these lines until a complete picture

of the bilayer problem can be formed.
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