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ABSTRACT

INFORMATION THEORETIC BOUNDS FOR CAPACITY AND BAYESIAN RISK

by
Ian Zieder

In this dissertation, the problem of finding lower error bounds on the minimum mean-

squared error (MMSE) and the maximum capacity achieving distribution for a specific

channel is addressed. Presented are two parts, a new lower bound on the MMSE and upper

and lower bounds on the capacity achieving distribution for a Binomial noise channel.

The new lower bound on the MMSE is achieved via use of the Poincaré inequality. It

is compared to the performance of the well known Ziv-Zakai error bound. The second

part considers a binomial noise channel and is concerned with the properties of the

capacity-achieving distribution. In particular, for the binomial channel, it is not known if

the capacity-achieving distribution is unique since the output space is finite (i.e., supported

on integers 0, . . . , n) and the input space is infinite (i.e., supported on the interval

[0, 1]), and there are multiple distributions that induce the same output distribution. This

paper shows that the capacity-achieving distribution is unique by appealing to the total

positivity property of the binomial kernel. In addition, we provide upper and lower bounds

on the cardinality of the support of the capacity-achieving distribution. Specifically, an

upper bound of order n
2

is shown, which improves on the previous upper bound of order n

due to Witsenhausen. Moreover, a lower bound of order
√
n is shown. Finally, additional

information about the locations and probability values of the support points is established.
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Dedicated to my entire family. With a special dedication to my
Mom and Dad, who gave me a copy of this poem many years
ago:

Don’t Quit

When things go wrong, as they sometimes will,
when the road you’re trudging seems all uphill,
when the funds are low and the debts are high,
and you want to smile but you have to sigh,
when care is pressing you down a bit,
rest if you must, but don’t you quit.

Life is queer with its twists and turns.
As everyone of us sometimes learns,
And many a fellow turns about,
when he might have won had he stuck it out.
Don’t give up though the pace seems slow,
you may succeed with another blow.

Often the goal is nearer than it seems to a faint and faltering man;

Often the struggler has given up,
when he might have captured the victor’s cup;
and he learned too late when the night came down,
how close he was to the golden crown.
Success is failure turned inside out,
the silver tint of the clouds of doubt,
and when you never can tell how close you are,
it may be near when it seems afar;
so stick to the fight when you’re hardest hit,
it’s when things seem worst, you must not quit.

Edgar Albert Guest
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CHAPTER 1

INTRODUCTION

1.1 Minimum-Mean Squared Error Estimator and the Exponential Family

The minimum mean squared error (MMSE) is an essential and ubiquitous fidelity criterion

in statistical signal processing. However, the MMSE is often difficult to compute in closed-

form, and we often need to rely on bounds. In terms of bounds, the attention typically falls

on lower bounds as deriving a tight lower bound can often be a difficult task.

In this work, a novel lower bound is derived on the MMSE of estimating X ∈ Rd

from the noisy observation Y ∈ Rk. Towards this end, an alternative representation of the

MMSE mmse(X|Y) is presented and studied. This new representation provides a new line

of attack for direct computation of the MMSE and, together with the Poincaré inequality, a

new lower bound on the MMSE is derived.

The focus is on the exponential family. The class of probability models P ={
PY|X=x,x ∈ X ⊆ Rd

}
supported on y ∈ Y ⊆ Rk is a continuous exponential family

if the probability density function (pdf) of it can be written as

fY|X(y|x) = h(y)e⟨x,T(y)⟩−ϕ(x), (1.1)

where T : Y → Rd is the sufficient statistic function; ϕ : X → R is the log-partition

function; h : Y → [0,∞) is the base measure; and ⟨·, ·⟩ is the inner product.

Loosely speaking, there are three approaches for finding lower bounds on the MMSE,

which result in three different families of lower bounds.

The first family is known as Weiss–Weinstein family [1], and it includes important

bounds such as the Bayesian Cramér-Rao bound [2] (also known as the Van Trees bound),

the Bobrovsky–Zakai bound [3], the Barankin bound [4], and the Bobrovsky-Mayer-Wolf-

Zakai bound [5]. The Weiss–Weinstein family relies on the Cauchy-Schwarz inequality,
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which establishes the following variational representation of the MMSE,

mmse(X|Y) = sup
ψ∈C

∥E[ψ(X,Y)XT]∥
E[∥ψ(X,Y)∥2]

,

where

C = {ψ :X × Y → X : E[ψ(X,Y)|Y = y] = 0,y ∈ Y ,

E[∥ψ(X,Y)∥2] <∞}.

The aforementioned lower bounds are then attained by a clever choice of the function ψ

that results in a computationally feasible bound. One of the drawbacks of this family of

bounds is that choosing the right ψ can be challenging. In particular, to the best of our

knowledge, all of the existing bounds require that the random vector X has a pdf; as such,

these bounds do not, for example, hold for discrete or mixed random vectors.

The second family of lower bounds is known as Ziv-Zakai and it was originally

proposed in [6] and later improved in [7–9]. Ziv-Zakai bounds rely on connecting

estimation to binary hypothesis testing. While this family of lower bounds is typically

very tight, it suffers from several drawbacks. First, it can be difficult to compute

in closed-form. Second, while there are vector generalizations of this bound [10],

typically, these generalizations contain another layer of optimization, which can make the

computation difficult. Third, these bounds assume that the input has a density and cannot

be used to study the MMSE of discrete or mixed random variables.

The third family of lower bounds uses a variational approach and it works by

minimizing the MSE subject to a constraint on a suitably chosen divergence measure, for

example, the Kullback–Leibler (KL) divergence [11]. Similar to the previous bounds, also

this family only holds if the input has a density and hence, it is not suitable for studying the

MMSE of discrete or mixed random variables.

The key ingredient in the proof of our new lower bound on the MMSE is the Poincaré

inequality [12]. The Poincaré inequality has found a number of applications in information

2



theory and signal processing and the interested reader is referred to [13–20] and references

therein. Recently, the authors of [21] developed bounds on the MMSE using the log-

Sobolev inequality, which has deep connections with the Poincaré inequality.

1.2 Lower Error Bounds

Loosely speaking, there are three approaches for finding lower bounds on the MMSE,

which result in three different families of lower bounds.

The first family is known as Weiss–Weinstein family [1], and it includes important

bounds such as the Bayesian Cramér-Rao bound [2] (also known as the Van Trees bound),

the Bobrovsky–Zakai bound [3], the Barankin bound [4], and the Bobrovsky-Mayer-Wolf-

Zakai bound [5]. The Weiss–Weinstein family relies on the Cauchy-Schwarz inequality,

which establishes the following variational representation of the MMSE,

mmse(X|Y) = sup
ψ∈C

∥E[ψ(X,Y)XT]∥
E[∥ψ(X,Y)∥2]

,

where

C = {ψ :X × Y → X : E[ψ(X,Y)|Y = y] = 0,y ∈ Y ,

E[∥ψ(X,Y)∥2] <∞}.

The aforementioned lower bounds are then attained by a clever choice of the function ψ

that results in a computationally feasible bound. One of the drawbacks of this family of

bounds is that choosing the right ψ can be challenging. In particular, to the best of our

knowledge, all of the existing bounds require that the random vector X has a pdf; as such,

these bounds do not, for example, hold for discrete or mixed random vectors.

The second family of lower bounds is known as Ziv-Zakai and it was originally

proposed in [6] and later improved in [7–9]. Ziv-Zakai bounds rely on connecting

estimation to binary hypothesis testing. While this family of lower bounds is typically

very tight, it suffers from several drawbacks. First, it can be difficult to compute

3



in closed-form. Second, while there are vector generalizations of this bound [10],

typically, these generalizations contain another layer of optimization, which can make the

computation difficult. Third, these bounds assume that the input has a density and cannot

be used to study the MMSE of discrete or mixed random variables.

The third family of lower bounds uses a variational approach and it works by

minimizing the MSE subject to a constraint on a suitably chosen divergence measure, for

example, the Kullback–Leibler (KL) divergence [11]. Similar to the previous bounds, also

this family only holds if the input has a density and hence, it is not suitable for studying the

MMSE of discrete or mixed random variables.

The key ingredient in the proof of our new lower bound on the MMSE is the Poincaré

inequality [12]. The Poincaré inequality has found a number of applications in information

theory and signal processing and the interested reader is referred to [13–20] and references

therein. Recently, the authors of [21] developed bounds on the MMSE using the log-

Sobolev inequality, which has deep connections with the Poincaré inequality.

1.3 Binomial Channel

A binomial channel is a type of communication channel characterized by discrete inputs

and outputs, where the noise or interference is modeled as a binomial distribution. The

capacity of a communication channel refers to the maximum rate at which information can

be reliably transmitted over the channel.

The capacity-achieving distribution for a binomial channel refers to the probability

distribution of input symbols that achieves the maximum possible rate of information

transmission (i.e., the capacity) for that channel. This distribution depends on the specific

characteristics of the channel, such as the probability of error or noise.

Bounds on the capacity of a binomial channel provide limits on the maximum

achievable transmission rate given certain constraints or assumptions. These bounds can

be derived using various techniques, such as information theory and channel coding theory.

4



For example, the Shannon capacity formula provides an upper bound on the capacity of a

channel based on its bandwidth and signal-to-noise ratio.

In practice, finding the exact capacity-achieving distribution for a binomial channel

and determining tight bounds on its capacity can be challenging and may require advanced

mathematical techniques. These properties have been studied to understand the funda-

mental limits of communication systems and to design efficient coding and modulation

schemes that approach these limits.

1.4 Organization and Contributions

This dissertation is organized according to and following the table of contents. Presented

are the two parts of my research, lower error bounds and binomial channel capacity.

Problem Formulation (PART I) contains information on the new lower bound on the MMSE

via Poincaré Inequality. Discussed is the background and motivation behind finding a new

lower error bound on the MMSE, the new representation of the MMSE, the tightness in the

high-noise regime, and how it compares to other lower error bounds such as the Ziv-Zakai

and Cramer-Rao bounds.

Problem Formulation (PART II) discusses the background of a binomial channel and

the properties of the optimal input and output distributions.

The results (PARTS I and II) contain the contributions of the research into lower error

bounds and capacity of the binomial channel.

5



CHAPTER 2

PROBLEM FORMULATION (PART I)

2.1 A New Lower Bound on the MMSE

2.1.1 Poincaré Inequality

Consider a class of functions A. We say that a probability distribution PU satisfies a

Poincaré inequality with respect to A with a constant κ ≥ 0 if [12]

Var(f(U)) ≤ 1

κ
E
[
||∇f(U)||2

]
, ∀f ∈ A. (2.1)

If κ = 0, we treat the right-hand side of eq. (2.1) as infinity.

We are here interested in the conditional version of the Poincaré inequality, i.e., for

a class of functions A we say that a conditional probability PY|X=x (for a fixed x ∈ X )

satisfies a Poincaré inequality in eq. (2.1) with respect to A with a constant κ(x) ≥ 0 if

Var(f(Y)|X = x) ≤ 1

κ(x)
E
[
||∇f(Y)||2|X = x

]
, ∀f ∈ A.

Since x ∈ X can be treated as a parameter of the distribution, the conditional and

unconditional versions hold under the same conditions. There exist several sufficient

conditions on A and PY|X, which guarantee that a Poincaré inequality holds, and which

identify the constant κ(x). We next list a few of these.

• Convex Poincaré [22]. Let PY|X be a product distribution and A be a set of functions

such that f ∈ A is f : [0, 1]k → R, separately convex and the partial derivatives of which

exist. Then, κC(x) = 1.

• Bakry-Émery condition [23]: Let A be a class of continuously differentiable functions.

Then,

κBE(x)=max

{
κ :∇2

y log

(
1

fY|X(y|x)

)
⪰κIk,∀y∈Y

}
. (2.2)

6



If the set in eq. (2.2) is empty, we set κBE(x) = 0. We note that the condition in eq. (2.2)

simply requires that the distribution is strongly log-concave. As an example, the Bakry-

Émery constant for the exponential family is given by the next proposition.

Proposition 1. Assume that PY|X has a pdf of the form in eq. (1.1). Then, for x ∈ X , we

have

κBE(x) = max {0, κ̃BE(x)} ,

κ̃BE(x) = min
y∈Y

λmin

(
∇2

y log

(
1

h(y)

)
−∇2

y⟨x,T(y)⟩
)
,

where ∇2
y denotes the Hessian.

We have

∇2
y log

(
1

fY|X(y|x)

)
= −∇2

y

(
log (h(y))−∇2

y(⟨x, T(y)⟩)− ϕ(x)
)

⪰ λmin

(
∇2

y log

(
1

h(y)

)
−∇2

y⟨x,T(y)⟩
)

Ik,

which concludes the proof of Proposition 1.

• Laplace distribution [24]: Let PY |X=x have a Laplace pdf (i.e., fY |X(y|x) = 1
2
e−|y−x|)

and A be a set of all functions f : R → R that are continuously differentiable and

limx±∞ e−|x|f(x) = 0. Then, κLap(x) = 1
4
.

2.1.2 New lower bound via Poincaré Inequality

We here leverage the result in Theorem 1 to derive a new lower bound on the MMSE for

the exponential family (i.e., we assume that PY|X has a pdf of the form in eq. (1.1)). Our

new lower bound on the MMSE is given by the next theorem. The key advantage of this

new lower bound is that it holds for all distributions on X (not necessarily continuous).

Theorem 1. Assume that the following three conditions hold:

7



1. For all x ∈ X the distribution PY|X=x has a pdf of the form in eq. (1.1) and it satisfies

a Poincaré inequality with respect to (A, κ(x));

2. y 7→ ιPXY
(x;y) ∈ A for every x such that κ(x) > 0;

3. There exists a ρ ≥ 0 such that for all y ∈ Y , σmin

(
(JyT(y))+

)
≥ ρ.

Then,

mmse(X|Y) ≥ ρ2E [κ(X)Var(ιPXY
(X;Y)|X)] .

We have

mmse(X|Y) = E
[
||X− E[X|Y]||2

]
(a)
= E

[
||(JYT(Y))+∇YιPXY

(X;Y)]||2
]

(b)

≥ ρ2E
[
∥∇YιPXY

(X;Y)]∥2
]

= ρ2E
[
E
[
||∇YιPXY

(X;Y)||2|X
]]

(c)

≥ ρ2E [κ(X)Var(ιPXY
(X;Y)|X)] ,

where the labeled (in)equalities follow from: (a) applying Theorem 1; (b) using condition

3) in Theorem 1 and the inequality ∥Ax∥ ≥ σmin(A)∥x∥; and (c) using a Poincaré

inequality and conditions 1) and 2) in Theorem 1. This concludes the proof of Theorem 1.

Remark 1. Theorem 1 holds provided that three conditions are satisfied. Conditions 1) and

2) are required for the application of a Poincaré inequality in the proof of the bound. We

have listed a number of sufficient conditions for 1) to hold. Condition 2) requires that the

information density y 7→ ιPXY
(x;y) belongs to some regular enough family of functions A.

Interestingly, such conditions are not difficult to find. Moreover, often these conditions only

depend on PY|X and are independent of PX. For example, the information density for the

exponential family in eq. (1.1) is known to be infinitely differentiable for all distributions on

PX [25]. Finally, condition 3) imposes a requirement on the sufficient statistics T(y). This

condition, for example, holds when T(y) is a linear function (e.g., Gaussian, Wishart).
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2.1.3 Tightness in the high-noise regime

We here show an example of PY|X for which our lower bound in Theorem 1 is tight in the

high-noise regime. Towards this end, we consider a scenario where

Y = X+N, (2.3)

where X and N are independent and N ∼ N (0k, σ
2
N Ik). In this case, the lower bound in

Theorem 1 reduces to

mmse(X|Y) ≥ σ2
NE [Var(ι(X;Y)|X)] . (2.4)

It is noted that (2.4) is a new representation of the MMSE. Conditions 1)-3) are verified as

follows. First, we note that for the model in eq. (2.3), we have that T(y) = y/σ2
N , which

implies ρ = σ2
N in condition 3). To verify conditions 1) and 2), we use the Bakry-Émery

condition presented in (2.2), which first requires that y 7→ ιPXY
(x;y) is continuously

differentiable for every x, which is a well-known fact, see for example [26]. Second, since

h(y) = 1
(2πσ2

N )k/2
e
− ∥y∥2

2σ2
N , we can find the Bakry-Émery constant by applying Proposition 1,

namely κ(x) = κBE(x) = 1/σ2
N . The quantity E [Var(ι(X;Y)|X)] has appeared in the

past in [27], where it was termed as conditional information variance.

We now argue that the bound in eq. (2.4) is tight in the high-noise regime. To do this,

we recall the following high-noise behavior of the MMSE in the Gaussian noise setting [28]

lim
σN→∞

mmse(X|Y) = Var (X) .

At this point, it is interesting to point out that for the Gaussian noise setting, the Cramér-Rao

bound is given by [2]

mmse(X|Y) ≥ k2σ2
N

k + σ2
NJ(X)

,

where J(X) is the Fisher information of X. Hence, we obtain

lim
σN→∞

k2σ2
N

k + σ2
NJ(X)

=
k2

J(X)
,

9



which is equal to the variance if and only if X is isotropic Gaussian [26]. Thus, the Cramér-

Rao bound is only tight for the class of isotropic Gaussian inputs in the high-noise regime,

and otherwise is sub-optimal.

The next result shows that the lower bound in Theorem 1 is tight for a large family

of prior distributions on X.

Theorem 2. Assume that X is sub-Gaussian1. Then,

lim
σN→∞

σ2
NE [Var(ι(X;Y)|X)] = Var (X) .

Proof. To simplify the proof, without loss of generality, we assume that E[X] = 0k. In

addition, since we are looking at σN → ∞, we assume that σN > 1 when we derive our

inequalities. Now, let g(y) = (2πσ2
N)

k
2 fY(y) and note that

Var(ι(X;Y)|X = x)

= Var

(
−∥Y −X∥2

2σ2
N

− log fY(Y)

∣∣∣∣X = x

)
= Var

(
∥Z∥2

2
+ log g(x+ σNZ)

)
. (2.5)

Next, observe that

g(x+ σNz) = (2πσ2
N)

k
2 fY(x+ σNz)

= (2πσ2
N)

k
2E
[
fY|X (x+ σNz|X)

]
= E

[
e
− ∥x−X∥2+2(x−X)TσN z

2σ2
N

]
︸ ︷︷ ︸

g̃(x+σNz)

e−
∥z∥2
2 . (2.6)

Therefore, combining eq. (2.5) and eq. (2.6) we arrive at

lim
σN→∞

σ2
NE [Var(ι(X;Y)|X)]

1A random variable X ∈ R is said to be sub-Gaussian with parameter σ0 if for every λ ∈ R
we have that E

[
eλ[X−E[X]]

]
≤ eλ

2σ0/2. A random vector X ∈ Rk is said to be sub-Gaussian with
parameter σ0 if uT (X− E[X]) is sub-Gaussian with parameter σ0 for any unit vector u.

10



= lim
σN→∞

σ2
NEX

[
VarZ

(
∥Z∥2

2
+ log g(X+ σNZ)

)]
= lim

σN→∞
EX

[
VarZ

(
σN∥Z∥2

2
+ σN log g(X+ σNZ)

)]
= lim

σN→∞
EX [VarZ (σN log (g̃(X+ σNZ)))] . (2.7)

We now leverage the following lemma, the proof of which is provided in [29, Appendix A].

Lemma 1. Assume that X is sub-Gaussian. Then,

lim
σN→∞

EX [VarZ (σN log (g̃(X+ σNZ)))]

= EX

[
VarZ

(
lim

σN→∞
σN log (g̃(X+ σNZ))

)]
.

Moreover, we also have that (see [29] for the details)

lim
σN→∞

σN log (g̃(x+ σNz)) = −xTz. (2.8)

Combining eq. (2.7), Lemma 1 and eq. (2.8), we arrive at

lim
σN→∞

σ2
NE [Var(ι(X;Y)|X)]

= EX

[
VarZ

(
−XTZ

)]
= E

[
∥X∥2

]
,

which concludes the proof of Theorem 2.

2.1.4 Numerical evaluation

Theorem 2 shows that our bound in Theorem 1 is tight in the high-noise regime for a large

family of prior distributions on X. However, we suspect that such a tightness result holds

more generally. To support this, we here provide numerical evaluations for three ‘toy’, yet

practically relevant, scenarios.
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Figure 2.1 X ∼ N (06,ΣX) with a randomly generated ΣX.

1. Gaussian Input. We assume that X ∼ N (0k,ΣX), i.e., X is a Gaussian random

vector. For this scenario, the MMSE is obtained as [30],

mmse(X|Y) = Tr

[
ΣX

(
Ik +

1

σ2
N

ΣX

)−1
]
, (2.9)

and the Cramér-Rao lower bound evaluates to [2]

mmse(X|Y) ≥ k2

k
σ2
N
+ Tr[Σ−1

X ]
. (2.10)

In Figure 2.1, we plot the MMSE in eq. (4.1) (solid line), the Cramér-Rao bound in

eq. (4.2) (dotted line), and our bound on the MMSE in eq. (2.4) (dashed line) versus

different values of σ2
N for k = 6 and a randomly generated ΣX.

2. BPSK Input. We let k = 1 and assume that X ∈ {−1, 1} with equal probability, i.e.,

X is a Binary Phase Shift Keying (BPSK) signal with PX(1)=PX(−1)= 1/2. For

this scenario, the MMSE is obtained as [31],

mmse(X|Y ) = 1−
∫ ∞

−∞

e−
y2

2

√
2π

tanh

(
1

σ2
N

− y

σN

)
dy. (2.11)

In Figure 2.2, we plot the MMSE in eq. (4.3) (solid line) and our lower bound in

eq. (2.4) (dashed line) versus σ2
N .

3. Sparse Input. We let k = 1 and assume that X ∼ PX = (1 − α)δ0 + αN (0, 1),

where α ∈ [0, 1] and δ0 is the point measure at 0. Such input distributions are used
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to model sparsity and have been studied in [32–35]. To the best of our knowledge,

a closed-form expression for the MMSE is not known. In Figure 4.3, we plot the

MMSE (solid line) and our bound in eq. (2.4) (dashed line) versus σ2
N for α = 0.4.

The two curves were obtained via a Monte Carlo simulation with 5 · 105 iterations.

0 20 40 60 80 100
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0.8

1

σ2
N

MMSE in (4.3)
MMSE Lower Bound in (2.4)

Figure 2.2 X ∼ PX(x) = 1/2 for x ∈ {−1, 1}.
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σn

MMSE
MMSE Lower Bound in (2.4)

Figure 2.3 X ∼ PX = (1− α)δ0 + αN (0, 1), α = 0.4.

From Figure 2.1, Figure 2.2, and Figure 2.3, we observe that our lower bound in

eq. (2.4) well approximates the MMSE even in the finite noise regime. Moreover, for

the scenario of a Gaussian input in Figure 2.1, our lower bound in eq. (2.4) remarkably

outperforms the well-known Cramér-Rao bound. Finally, we point out that for the scenarios

of a BPSK input (Figure 2.2) and a sparse input (Figure 2.3), i.e., where X has a discrete

or a mixed distribution, commonly used lower bounds (e.g., Cramér-Rao) do not hold,

whereas ours does. These examples suggest that our lower bound in eq. (2.4) might indeed

be tight (or offer a performance guarantee) even in the finite noise regime. Hence, it would

also be interesting to characterize the behavior of our lower bound in the low-noise regime.
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However, in the low-noise regime, the MMSE has an intricate behavior, for example, it

depends on whether the distribution of X is discrete or continuous [36].

In this section, we prove Theorem 1, which provides a new representation of the

MMSE. Towards this end, we leverage the following proposition, which provides an

expression for the gradient of the information density.

Proposition 2. For x ∈ X ,y ∈ Y , we have that

∇yιPXY
(x;y) = JyT(y)(x− E[X|Y = y]).

Fix some x ∈ X . Then,

∇yιPXY
(x;y)

(a)
= ∇y log h(y) +∇y⟨x,T(y)⟩ − ∇y log fY(y)

(b)
= JyT(y)x−∇y log

fY(y)

h(y)

(c)
= JyT(y)x− JyT(y)E[X|Y = y]

= JyT(y)(x− E[X|Y = y]),

where the labeled equalities follow from: (a) the definition of the exponential family in

eq. (1.1); (b) using the fact that ∇y⟨x,T(y)⟩ = JyT(y)x; and (c) using the TRE identity.

This concludes the proof of Proposition 6.

Proof of Theorem 1. Since JYT(Y) has full rank a.s. Y, then the pseudo inverse

(JYT(Y))+ exists a.s. Y. Using Proposition 6, we have that a.s. Y,

(X− E[X|Y]) = (JYT(Y))+∇YιPXY
(X;Y). (2.12)

Now, taking the norm squared and the expectation of both sides of (4.4), and recalling that

mmse(X|Y) = E [||X−E[X|Y]||2] we arrive at the desired result. This concludes the

proof of Theorem 1.
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To show an application of the new representation of the MMSE in Theorem 1, we

here consider the following model,

Y =
Z√
2X

, (2.13)

where Z is the standard normal random variable, i.e., Z ∼ N (0, 1) and X is the unknown

variance drawn from the gamma distribution with α > 0 shape, and β > 0 rate, i.e.,

fX(x) =
βα

Γ(α)
xα−1e−βx, (2.14)

where Γ is the gamma function.

Using the channel model in eq. (4.5), we therefore obtain,

fY |X(y|x) =
√
x

π
e−xy

2

. (2.15)

The conditional pdf in eq. (4.7) can be mapped to the exponential family in eq. (1.1) through

the following mapping,

h(y) =

√
1

π
, ϕ(x) = − log

(√
x
)
, T (y) = −y2. (2.16)

We now evaluate the MMSE expression in Theorem 1 for our model in eq. (4.5) with the

mapping in eq. (4.8). We note that(
d

dy
T (y)

)−1

= − 1

2y
. (2.17)

We now focus on deriving d
dy
ιPXY

(x; y), where

ιPXY
(x; y) = log (fY |X(y|x))− log (fY (y)),

where fY |X is defined in eq. (4.7). Hence, we obtain

d

dy
log
(
fY |X(y|x)

)
= − d

dy

(
xy2
)
= −2xy. (2.18)
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To complete the evaluation of the MMSE in Theorem 1, we need d
dy

log (fY (y)), where

(see [29] for the details)

fY (y) =

√
1

π
βα

Γ
(
α + 1

2

)
Γ(α)

1

(y2 + β)α+
1
2

.

Thus, we obtain

d

dy
log (fY (y)) =

1

fY (y)

d

dy
fY (y) = −y(2α + 1)

y2 + β
. (2.19)

Finally, by substituting eq. (4.9), eq. (4.10) and eq. (4.11) inside the MMSE expression in

Theorem 1, we obtain (see [29] for the details)

mmse(X|Y ) =
α(α + 1)

β2
(
α + 3

2

) .
We note that, in order to compute the MMSE above, we did not need to compute E[X|Y ]

(which is needed by the classical representation of the MMSE), but only the marginal

pdf fY , which can be done by simple computations. Moreover, we also highlight that

the MMSE above is in closed-form, and this expression highlights that the MMSE only

depends on the parameters of the gamma distribution.

2.2 Analysis of the Ziv-Zakai Lower Bound

2.2.1 Noise models

An interesting bound that beautifully connects binary hypothesis testing and estimation is

known as the Ziv-Zakai bound [6–10, 37]. This bound is believed to be one of the tightest

bounds available in the literature. Before presenting the bound we need the following two

notions. The valley-filling function acting on a function f : R → R is defined as

V{f(x)} = sup
ε≥0

f(x+ ε), x ∈ R. (2.20)

For a given x0, x1 ∈ R, Pe [x0, x1, p0, p1] denotes the minimum probability of error

(obtained by using the optimal likelihood ratio test) for the following binary hypothesis
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testing problem,

H0 :Y ∼ PY|X(·|x0),

H1 :Y ∼ PY|X(·|x1),

where

Pr(H0) = p0, Pr(H1) = 1− Pr(H0) = p1.

The general Ziv-Zakai lower bound is stated next [8, 10]. (Ziv-Zakai Lower Bound.)

Consider a pair of random variables (X,Y) whereX has probability density function (pdf)

fX(x) and where the noisy observation model Y|X = x is governed by the distribution

PY|X(·|x). Then, we have

mmse(X|Y) ≥ LBZZ(X|Y), (2.21)

where

LBZZ(X|Y) =
1

2

∫ ∞

0

V
{∫ ∞

−∞
Pe [x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h)) dx
}
h dh, (2.22)

with

p0(x, h) =
fX(x)

fX(x) + fX(x+ h)
, p1(x, h) = 1− p0(x, h).

The valley-filling function in Theorem 2.2.1 introduces an extra layer of optimization which

can make the bound difficult to evaluate. Thus, one often considers a loosened version of

the Ziv-Zakai bound that drops the valley-filling function, that is,

LBZZ(X|Y) =
1

2

∫ ∞

0

∫ ∞

−∞
Pe [x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h))h dx dh. (2.23)
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In this work, our main goal is to understand the behavior of the Ziv-Zakai bounds in

eq. (2.22) and in eq. (2.23) in the practically relevant high-noise regime. Different from

the low-noise regime where several lower bounds are known to perform well [11, 36], in

the high-noise the same is not true in general. Thus, it is of interest to understand if the Ziv-

Zakai bound is tight in high-noise. The analysis of this regime is an important benchmark

for the performance, especially in wireless scenarios, where high-noise represents a weak

signal scenario, and has received some attention in various contexts [28, 38–40].

Notation. Random variables are denoted by upper case letters and their instances by lower

case letters. The expected value of a random variable X and its variance are denoted by

E[X] and Var(X), respectively.

We here describe a family of noise distributions for which our results hold. First, in

order to take limits and quantify the strength of the noise, we need to be able to parameterize

our model and hence, we make the following assumption,

A1: PY|X can be parameterized in terms of the parameter η ≥ 0, i.e., PY|X(y|x) =

PY|X(y|x; η) for all (x,y). We refer to the parameter η as the noise level.

Second, we require that the performance of our system degrades as the noise level increases.

Towards this end, we make the following assumption,

A2: For the sequence of noisy observation models {PY|X(·|·; η)}η≥0, we parameterize

Pe [x0, x1, p0, p1]=Pe [η;x0, x1, p0, p1], and we assume that the following holds. For

every (x0, x1, p0, p1) where x0 ̸= x1:

A2a: η 7→ Pe[η;x0, x1, p0, p1] is non-decreasing; and

A2b: lim
η→∞

Pe[η;x0, x1, p0, p1] = min{p0, p1}. (2.24)

All of the assumptions above are rather natural. In particular, assumption A2a simply

states that the probability of error for binary detection can not decrease as the noise level
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increases. Assumption A2b states that when the observation is completely dominated by

the noise, the best strategy is to guess the xi, i ∈ {0, 1} with the largest probability.

Most of the observation models encountered in practice satisfy the above

assumptions. We now give a few examples.

• Additive White Gaussian Model: Let

Y = X +
√
ηZ, (2.25)

with X and Z being independent, and Z being a standard Gaussian random variable.

In this case, the noise level parameter η > 0 is known as the noise power [30].

• Poisson Noise Model: For x ≥ 0, y ∈ N0, let

PY |X(y|x) =
(x+ η)ye−(x+η)

y!
; (2.26)

in this case, the noise level parameter η > 0 is known as the dark current

parameter [41, 42].

• Binary Symmetric Model: For x ∈ {0, 1} and y ∈ {0, 1}, let

PY |X(y|x) =

 1− η x = y,

η x ̸= y,
(2.27)

where the noise level parameter η ∈
(
0, 1

2

)
is known as the cross over proba-

bility [43].

See also [44] for an example on how to define the noise level parameter η in the context of

the exponential family.

For the models that satisfy all of the above assumptions, we parameterize

mmse(X|Y) as a function of X and η. Thus, in what follows we denote it as

mmse(X, η). Similarly, we use LBZZ(X, η) and LBZZ(X, η) for LBZZ(X|Y) in eq. (2.22)

and LBZZ(X|Y) in eq. (2.23), respectively.
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2.2.2 High noise asymptotics

The next theorem provides the behavior of the two Ziv-Zakai lower bounds. Under the

assumptions A1 and A2, we have the following,

V(X) =
1

4

∫ ∞

−∞

∫ ∞

−∞
min{fX(y), fX(x)} |y − x| dx dy,

V(X) =
1

4

∫ ∞

−∞
V
{∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

}
|h| dh.

The examples below show that, while there are cases for which even the loosened version

of the Ziv-Zakai bound is tight (i.e., V(X) = Var(X)), in general, neither of the bounds is

tight.

Example 1. Suppose that fX(x) = g(|x|) where g : [0,∞) → [0,∞) is non-increasing.

Then,

V(X) = V(X) = Var(X).

Thus, both versions of the Ziv-Zakai bound agree and are tight, i.e., the valley-filling

function is not needed in this case. This example encompasses a broad range of widely

used symmetric distributions (e.g., Gaussian, Laplace, generalized normal). □

Example 2. Suppose that fX(x) is non-increasing on (a, b) where −∞ < a < b ≤ ∞, and

zero elsewhere. Then,

V(X) = V(X) =
Var(X) + (a− E[X])2

4
.

Thus, the two versions of the Ziv-Zakai bound agree, but are not tight. For instance, assume

that X has an exponential pdf with parameter λ; we have that Var(X) = 1/λ2 and V(X) =

V(X) = 1/(2λ2), i.e., the Ziv-Zakai bound is off by a factor of two and hence, it can be

substantially suboptimal. □

Example 3. Suppose that 0 < a < b and

fX(x) =
1

2(b− a)
(rect(x;−b,−a) + rect(x; a, b)) ,
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where x 7→ rect(x; a, b) is the unit-height rectangle with support over the interval (a, b).

In other words, the distribution of X is a mixture of two uniform distributions. Then, for

0 < a < b < 3a, we have that

Var(X) =
a2 + ab+ b2

3
,

and

V(X) = Var(X)− a(a+ b)

2
,

V(X) = V(X) +
7a2 + 10ab− b2

32

= Var(X)− (3a+ b)2

32
.

Thus, the Ziv-Zakai bound with the valley-filling function can be strictly better than the

one without it, yet not optimal. □

We were not able to identify an example for which V(X) < V(X) = Var(X), i.e., a

case for which the Ziv-Zakai bound with a valley-filling function is optimal, but the bound

without the valley-filling function is strictly sub-optimal.

2.2.3 Comparison with the Cramer-Rao lower bound

An interesting question that arises is: Does the Ziv-Zakai bound outperform the CR

bound2? To show this analytically, one would need to demonstrate the following inequality,

1

J(X)
≤ V(X).

In Figure 2.4, this inequality is numerically verified for a mixed Gaussian distribution.

Before proceeding with the proof, we will need the following facts. First, by using

eq. (2.20), note that if f(x) ≤ g(x) for all x, then for all x it holds that

V{f(x)} ≤ V{g(x)}. (2.28)

2We note that the Ziv-Zakai bound holds for a larger family of distributions than the CR bound
as the pdf does not need to be differentiable or even continuous.
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Figure 2.4 Mixed Gaussian fX = pN (−1, 1) + (1− p)N (2, 1) where p ∈ [0, 1].

Second, the valley-filling function is lower semicontinuous, i.e., for any sequence of

functions {fn}∞n=1, we have that

lim inf
n→∞

V{fn(x)} ≥ V{lim inf
n→∞

fn(x)}. (2.29)

To see this recall that lim infn→∞ fn(x) = supn≥0 infm≥n fm(x) and note that

lim inf
n→∞

V{fn(x)} = sup
n≥0

inf
m≥n

sup
ε≥0

fm(x+ ε)

≥ sup
ε≥0

sup
n≥0

inf
m≥n

fm(x+ ε)

= V{lim inf
n→∞

fn(x)}, (2.30)

where the inequality follows from the max-min inequality.

We now consider the behavior of LBZZ(X, η). We have

2LBZZ(X, η)

=

∫ ∞

0

V
{∫ ∞

−∞
Pe [η;x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h)) dx
}
h dh

(a)

≤
∫ ∞

0

V
{∫ ∞

−∞
Pe [∞;x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h)) dx
}
h dh

(b)
=

∫ ∞

0

V
{∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

}
h dh, (2.31)
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where (a) follows by using eq. (2.28) and by noting that

Pe [η;x, x+ h, p0, p1] ≤ Pe [∞;x, x+ h, p0, p1] ,

which is a consequence of the assumption A2a; and (b) follows from the assumption A2b.

Next, we note that

lim inf
η→∞

2LBZZ(X, η)

(c)

≥
∫ ∞

0

lim inf
η→∞

V
{∫ ∞

−∞
Pe [η;x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h)) dx
}
h dh

(d)

≥
∫ ∞

0

V
{
lim inf
η→∞

∫ ∞

−∞
Pe [η;x, x+ h, p0(x, h), p1(x, h)]

· (fX(x) + fX(x+ h)) dx
}
h dh

(e)

≥
∫ ∞

0

V
{∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

}
h dh, (2.32)

where: (c) follows by using Fatou’s lemma; (d) follows from eq. (2.29); and (e) follows

by using Fatou’s lemma, (2.28) and assumption A2b.

Combining the upper bound on the limit in eq. (2.31) and the lower bound on the

limit in eq. (2.32) we arrive at

lim
η→∞

2LBZZ(X, η)

=

∫ ∞

0

V
{∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

}
h dh

=
1

2

∫ ∞

−∞
V
{∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

}
|h| dh,

where in the last step we have used that∫ ∞

−∞
min {fX(x), fX(x+ h)} dx

=

∫ ∞

−∞
min {fX(x), fX(x− h)} dx.
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This concludes the proof of the limit for LBZZ(X, η). To obtain the limit for LBZZ(X, η),

we simply drop the valley-filling function. With this we arrive at

lim
η→∞

2LBZZ(X, η)

=
1

2

∫ ∞

−∞

∫ ∞

−∞
min {fX(x), fX(x+ h)} |h| dx dh

=
1

2

∫ ∞

−∞

∫ ∞

−∞
min {fX(x), fX(y)} |y − x| dx dy.

This concludes the proof of Theorem 2.2.2.

2.3 Examples for the High-Noise Regime

2.3.1 Example 1

We will show that V(X) = Var(X), which will also characterize V(X). By substituting

fX(x) = g(|x|) inside the expression of V(X) in Theorem 2.2.2, we arrive at

4 V(X) =

∫ ∞

−∞

∫ ∞

−∞
min{g(|x|), g(|y|)} |y − x| dx dy

= 4

∫ ∞

0

∫ y

−y
g(|y|) |y − x| dx dy

= 8

∫ ∞

0

g(|y|) y2 dy (a)
= 4 Var(X),

where (a) follows since E[X] = 0 from the structure of fX(x).

2.3.2 Example 2

By using the expression of V(X) in Theorem 2.2.2, we arrive at

4 V(X) =

∫ b

a

∫ b

a

min{fX(x), fX(y)} |y − x| dx dy

= 2

∫ b

a

∫ y

a

fX(y) |y − x| dx dy

=

∫ b

a

fX(y) |y − a|2 dy

= E[(X − a)2] = Var(X) + (a− E[X])2.
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By using the expression of V(X) in Theorem 2.2.2, we have

2V(X)
(a)
=

∫ ∞

0

V
{∫ b

a

min {fX(x), fX(x+ h)} dx
}
h dh

(b)
=

∫ ∞

0

V
{∫ max{a,b−h}

a

fX(x+ h)dx
}
h dh

=

∫ ∞

0

V
{∫ max{a+h,b}

a+h

fX(x)dx
}
h dh

(c)
=

∫ ∞

0

V
{
P[X ≥ a+ h]

}
h dh

(d)
=

∫ ∞

0

P[X ≥ a+ h] h dh

(e)
=

1

2
E[(X − a)2] =

1

2

(
Var(X) + (a− E[X])2

)
,

where the labeled equalities follow from: (a) using the fact that X is supported on (a, b);

(b) the assumption that fX(x) is a non-increasing function; (c) the fact that X is supported

on (a, b) and hence, we can drop the upper limit; (d) the fact that h 7→ P[X ≥ a + h]

is a non-increasing function and hence, the valley-filling function can be dropped; and

(e) the following alternative representation of the second moment of non-negative random

variables: for a random variable U ≥ 0, we have that E[U2] = 2
∫∞
0

P[U ≥ h] h dh.
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CHAPTER 3

PROBLEM FORMULATION (PART II)

3.1 Preliminaries

We consider a channel for which the relationship between the input X ∈ [0, 1] and the

output Y ∈ {0, . . . , n} is described by the binomial distribution:

PY |X(y|x) =
(
n

y

)
xy(1− x)n−y. (3.1)

In this work, we are interested in studying the capacity of this channel as a function

of the number of trials n, that is

C(n) = max
PX :X∈[0,1]

I(X;Y ). (3.2)

In addition to studying capacity, we are also interested in studying properties of an optimal

capacity-achieving distribution distribution denoted by PX⋆ .

3.1.1 Literature Review

The binomial channel naturally arises in molecular communications and the interested

reader is referred to [45–48] and references therein. The channel is also useful in the study

of the deletion channel [49, 50].

The capacity of the binomial channel was first considered in [51] where the authors

used minimax redundancy theorem in [52] to argue that asymptotically the capacity scales

as 1
2
log n. The exact capacity for the n = 1 case was computed in [45] where binary

distribution with support on {0, 1} was shown to be capacity-achieving. To the best of our

knowledge, there are no firm bounds on the capacity of the binomial channel.

Properties of the capacity-achieving distribution have also been looked at. For

example, the authors of [45] have designed an algorithm for computing capacity and
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a capacity-achieving distribution by using a dual representation of the maximization

problem. It is also known that, by using the Witsenhausen technique [53], there exists

a capacity-achieving distribution with at most n + 1 mass points. We note, however,

that the Witsenhausen technique does not guarantee that the optimal input distribution

is unique. In fact, for the binomial channel, uniqueness has not been shown; note

that uniqueness is important not just for theoretical purposes, but also for algorithmic

purposes. A conventional way to show that the capacity-achieving distribution is unique

is by establishing that the mutual information is a strictly concave function of the input

distribution. However, as will be shown by an example, for the binomial channel, the

mutual information is not strictly concave. Other properties, such as location of the support

points, are also not well understood. The main goal of this work is to close some of these

gaps.

In this work, we also rely on estimation theoretic quantities such as the conditional

expectation. For the estimation theoretic treatments of the binomial channel, the interested

reader is referred to [54,55]. Recently, deterministic identification capacity for the binomial

channel has been studied in [56].

3.1.2 KKT conditions

The key that allows one to study properties of the support of an optimal input distribution is

the following lemma which contains the KKT conditions for our optimization problem [57].

PX⋆ is a capacity-achieving input distribution if and only if the following conditions

hold:

i(x;PY ⋆) ≤ C(n), x ∈ [0, 1], (3.3)

i(x;PY ⋆) = C(n), x ∈ supp(PX⋆) (3.4)

where PX⋆ → PY |X → PY ⋆ (i.e., the optimal output distribution) and

i(x;PY ⋆) = PY |X(·|x)PY ⋆ . (3.5)
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We also define the following set, which would be useful in our study of the

uniqueness of PX⋆:

An = {x ∈ [0, 1] : i(x;PY ⋆)− C(n) = 0}. (3.6)

The importance of An is demonstrated in the following lemma. For a given n

• An is unique; and

• supp(PX⋆) ⊆ An for every PX⋆ .

Proof. Note that, for a given n, both PY ⋆ and C(n) are unique (even if PX⋆ is not unique)

[58] and, since An only depends on these quantities, the uniqueness follows.

The second part follows from the KKT conditions in Lemma 3.1.2, because x ∈

supp(PX⋆) implies x ∈ An.

3.1.3 Estimation theoretic preliminaries

Estimation theoretic quantities will play an important role in our analysis. In what

follows, the quantity En−1 [f(Y ) | X = x] denotes expectation with respect to a binomial

distribution with n− 1 trials and success probability x per trial, and

ℓb(x, x̂) = x log

(
x(1− x̂)

(1− x)x̂

)
− x− x̂

1− x̂
, (x, x̂) ∈ (0, 1)2 (3.7)

represents the Bregman divergence for the binomial channel.

We now summarize some of these preliminary results.

Proposition 3. For n ≥ 2 and x ∈ (0, 1), we have

i′(x;PY ) =
n

x
En−1

[
ℓb(x,En−1 [X | Y ])

∣∣ X = x
]

+
n

x
En−1

[
x− En−1 [X | Y ]

1− En−1 [X | Y ]

∣∣∣∣ X = x

]
(3.8)

and

i′′(x;PY ) =
n

x(1− x)
+

1

(1− x)2
G(x) (3.9)
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G(x) = (3.10)

E
[
(n− Y )(n− Y − 1) log

E [X | Y = Y ]

E [1−X | Y = Y + 1]

E [1−X | Y = Y + 2]

E [X | Y = Y + 1]

∣∣∣∣ X = x

]

The Bregman divergence in eq.(3.8) appeared previously in a different but related

result, specifically in [54, Prop. 2] it was shown that for a ∈ (0, 1)

∂

∂a
I(X;Bn(aX)) =

n

a
E [ℓb (aX, E[aX|Bn−1(aX

′)])] (3.11)

where Y = Bn(aX) denotes the transformation of input aX through a binomial channel

with n trials.

Finally, we also need to show the monotonicity of the conditional mean.

The function y 7→ E [X | Y = y] is non-decreasing.

Proof. First of all, note that

E [X | Y = y] =
E [Xy+1(1−X)n−y]

E [Xy(1−X)n−y]
. (3.12)

Let us now introduce the functions f1, f2, g1, g2 as follows:

f1(x) = xy, f2(x) = xy+1, (3.13)

g1(x) = (1− x)n−y, g2(x) = x(1− x)n−y−1, (3.14)

and note that the functions

f2(x)

f1(x)
= x,

g2(x)

g1(x)
=

x

1− x
(3.15)
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are both increasing and non-negative for x ∈ [0, 1]. As a consequence, the entries and the

determinant of the matrices f1(x1) f1(x2)

f2(x1) f2(x2)

 ,
 g1(x1) g1(x2)

g2(x1) g2(x2)

 , (3.16)

are non-negative for any choice of 0 ≤ x1 < x2 ≤ 1. By using the basic composition

formula of [59, Ch. 3.1], we can also say that the entries and the determinant of the matrix E [f1(X)g1(X)] E [f1(X)g2(X)]

E [f2(X)g1(X)] E [f2(X)g2(X)]

 (3.17)

are non-negative. Therefore, we have

E [f2(X)g2(X)]

E [f1(X)g2(X)]
≥ E [f2(X)g1(X)]

E [f1(X)g1(X)]
(3.18)

or
E [Xy+2(1−X)n−y−1]

E [Xy+1(1−X)n−y−1]
≥ E [Xy+1(1−X)n−y]

E [Xy(1−X)n−y]
, (3.19)

which, by using eq.(3.12), is the same as

E [X | Y = y + 1] ≥ E [X | Y = y] . (3.20)

This concludes the proof.

3.2 Properties of the Capacity-Achieving Distributions

In this section we study properties of capacity-achieving distributions.

3.2.1 Discreteness

As already mentioned in section 3.1.1, from the Witsenhausen approach we only know

that there exists a discrete distribution with at most n + 1 mass points. This, however,
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does not rule out the existence of other capacity-achieving distributions (e.g., continuous

capacity-achieving distributions).

We now show that all capacity-achieving distributions are discrete and provide a

preliminary bound on the support.

Proposition 4. |An| ≤ n+ 1.

3.2.2 Uniqueness of the Optimal Input Distribution

In this section, we show and discuss uniqueness of the capacity-achieving input distri-

bution. To aid our discussion, it is useful to parameterize the mutual information in terms

of distributions instead of random variables, that is

I(PX ;PY |X) = I(X;Y ). (3.21)

We also let PX be the set of all distributions over the set X . In particular, the optimization

in eq.(3.2) can be written as

max
PX∈P[0,1]

I(PX ;PY |X). (3.22)

A typical way to show that there is a unique maximizer is to show that the mapping PX 7→

I(PX ;PY |X) over the set P[0,1] is strictly concave [60]. However, due to the fact that the

output space of the binomial channel is finite and the input space is uncountable, the mutual

information is not strictly concave over P[0,1]. For example, when n = 1 any distribution

symmetric around x = 1
2

will induce

PY (0) = PY (1) =
1

2
(3.23)

which is the capacity-achieving output distribution for n = 1. Therefore, to show

uniqueness of the capacity-achieving input distribution a new or slightly different

argument is needed.
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We begin by showing the following result.

Proposition 5. Consider an arbitrary sequence 0 ≤ x1 < . . . < xn+1 ≤ 1 and define the

matrix A ∈ Rn+1×n+1 as

[A]i,k = PY |X(i− 1|xk), i ∈ [n+ 1], k ∈ [n+ 1]. (3.24)

Then, A is full rank.

Proof. First of all, we argue that considering x1 = 0 and xn+1 = 1 comes without loosing

generality. In fact, in this case the first and last columns of A are e1 and en+1, respectively,

where ei is a zero vector with a 1 in the i-th position. As a consequence, we have det(A) =

det(Ã), where

[Ã]i,k = [A]i+1,k+1, i ∈ [n− 1], k ∈ [n− 1]. (3.25)

Next, note that we can rewrite the binomial law as

PY |X(y|x) =
(
n

y

)
(1+t)−nty (3.26)

where x =
t

1+t . The matrix B with [B]y,k =tky and y ∈ [n − 1] is a Vandermonde matrix,

which is full rank since the tk’s are all distinct [61]. Thanks to the multilinear property of

the determinant, we can write that

det(Ã) = det(B)
n−1∏
y=1

(
n

y

) n∏
k=2

(1+tk)−n > 0 (3.27)

where the last step is due to det(B) > 0 and to the positivity of the products. As a

consequence, A is a full rank matrix.
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With the aid of Proposition 5, we show the following result.

Theorem 3. Let X ⊂ [0, 1] be a discrete set of cardinality n+1. Then, PX 7→ I(PX ;PY |X)

is strictly concave over PX .

Proof. Let PX , QX ∈ PX , and let P ϵ
X = (1 − ϵ)PX + ϵQX for ϵ ∈ (0, 1), which is also

in PX . Moreover, let PX → PY |X → PY , QX → PY |X → QY and P ϵ
X → PY |X → P ϵ

Y .

Then, first note that

I(P ϵ
X ;PY |X)

− (1− ϵ)I(PX ;PY |X)− ϵI(QX ;PY |X) (3.28)

= D(PY |X∥P ϵ
Y |P ϵ

X)

− (1− ϵ)D(PY |X∥PY |PX)− ϵD(PY |X∥QY |QX) (3.29)

= (1− ϵ)D(PY ∥P ϵ
Y ) + ϵD(QY ∥P ϵ

Y ). (3.30)

We now show that every PX ∈ PX induces a distinct output distribution (i.e., PX →

PY |X → PY is an injective mapping), which implies that eq.(3.30) is strictly positive and,

therefore, the mutual information is strictly concave. Define the following:

pX = [PX(x1), . . . , PX(xn+1)], xk ∈ X , (3.31)

pY = [PY (0), . . . , PY (n)]. (3.32)

Then, the mapping PX → PY |X → PY can be written as the following system of linear

equations:

ApX = pY (3.33)

where the matrix A ∈ Rn+1×n+1 is such that

[A]i,k = PY |X(i− 1|xk), i ∈ [n+ 1], xk ∈ X . (3.34)
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From Proposition 5, we know that A is full rank for any X of cardinality n+ 1. Therefore,

from standard linear algebra result, it follows that the mapping in eq.(3.33) is injective (i.e.,

every pX induces a distinct pY ). Therefore, we conclude that eq.(3.30) is positive and

mutual information is strictly concave.

Note that since by Proposition 4, An has cardinality of at most n+1, from Theorem 3

we have the following corollary.

Corollary 1. PX 7→ I(PX ;PY |X) is strictly concave over PAn . Consequently, PX∗ is

unique.

Table 3.1 Capacity and Capacity-Achieving Distributions

n C(n) X ≡ supp(PX⋆) {PX⋆(x), x ∈ X} {PY ⋆(y), y ∈ {0} ∪ [n]}

1 log(2) {0, 1}
{

1
2
, 1
2

} {
1
2
, 1
2

}
2 log

(
17
8

) {
0, 1

2
, 1
} {

15
34
, 2
17
, 15
34

} {
8
17
, 1
17
, 8
17

}
3 log

(
19
8

) {
0, 1

2
, 1
} {

15
38
, 4
19
, 15
38

} {
8
19
, 3
38
, 3
38
, 8
19

}
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CHAPTER 4

RESULTS (PART I)

4.1 Lower Bound via Poincaré Inequality

Theorem 2 shows that our bound in Theorem 1 is tight in the high-noise regime for a large

family of prior distributions on X. However, we suspect that such a tightness result holds

more generally. To support this, we here provide numerical evaluations for three ‘toy’, yet

practically relevant, scenarios.

1. Gaussian Input. We assume that X ∼ N (0k,ΣX), i.e., X is a Gaussian random

vector. For this scenario, the MMSE is obtained as [30],

mmse(X|Y) = Tr

[
ΣX

(
Ik +

1

σ2
N

ΣX

)−1
]
, (4.1)

and the Cramér-Rao lower bound evaluates to [2]

mmse(X|Y) ≥ k2

k
σ2
N
+ Tr[Σ−1

X ]
. (4.2)

In Figure 4.1, we plot the MMSE in eq. (4.1) (solid line), the Cramér-Rao bound in

eq. (4.2) (dotted line), and our bound on the MMSE in eq. (2.4) (dashed line) versus

different values of σ2
N for k = 6 and a randomly generated ΣX.

0 20 40 60 80 100
0

10

20

30

40

σ2
N

MMSE in (4.1)
LBCR(X, σ

2
N) in (4.2)

LBP (X, σ
2
N) in (2.4)

Figure 4.1 X ∼ N (06,ΣX) with a randomly generated ΣX.
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N

MMSE in (4.3)
MMSE Lower Bound in (2.4)

Figure 4.2 X ∼ PX(x) = 1/2 for x ∈ {−1, 1}.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

σn

MMSE
MMSE Lower Bound in (2.4)

Figure 4.3 X ∼ PX = (1− α)δ0 + αN (0, 1), α = 0.4.

2. BPSK Input. We let k = 1 and assume that X ∈ {−1, 1} with equal probability, i.e.,

X is a Binary Phase Shift Keying (BPSK) signal with PX(1)=PX(−1)= 1/2. For

this scenario, the MMSE is obtained as [31],

mmse(X|Y ) = 1−
∫ ∞

−∞

e−
y2

2

√
2π

tanh

(
1

σ2
N

− y

σN

)
dy. (4.3)

In Figure 4.2, we plot the MMSE in eq. (4.3) (solid line) and our lower bound in

eq. (2.4) (dashed line) versus σ2
N .

3. Sparse Input. We let k = 1 and assume that X ∼ PX = (1 − α)δ0 + αN (0, 1),

where α ∈ [0, 1] and δ0 is the point measure at 0. Such input distributions are used

to model sparsity and have been studied in [32–35]. To the best of our knowledge,

a closed-form expression for the MMSE is not known. In Figure 4.3, we plot the

MMSE (solid line) and our bound in eq. (2.4) (dashed line) versus σ2
N for α = 0.4.

The two curves were obtained via a Monte Carlo simulation with 5 · 105 iterations.

From Figure 4.1, Figure 4.2, and Figure 4.3, we observe that our lower bound in eq. (2.4)

well approximates the MMSE even in the finite noise regime. Moreover, for the scenario
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of a Gaussian input in Figure 4.1, our lower bound in eq. (2.4) remarkably outperforms

the well-known Cramér-Rao bound. Finally, we point out that for the scenarios of a BPSK

input (Figure 4.2) and a sparse input (Figure 4.3), i.e., where X has a discrete or a mixed

distribution, commonly used lower bounds (e.g., Cramér-Rao) do not hold, whereas ours

does. These examples suggest that our lower bound in eq. (2.4) might indeed be tight

(or offer a performance guarantee) even in the finite noise regime. Hence, it would also

be interesting to characterize the behavior of our lower bound in the low-noise regime.

However, in the low-noise regime, the MMSE has an intricate behavior, for example, it

depends on whether the distribution of X is discrete or continuous [36].

4.2 New Representation of the MMSE and its Applicability

In this section, we prove Theorem 1, which provides a new representation of the MMSE.

Towards this end, we leverage the following proposition, which provides an expression for

the gradient of the information density.

Proposition 6. For x ∈ X ,y ∈ Y , we have that

∇yιPXY
(x;y) = JyT(y)(x− E[X|Y = y]).

Fix some x ∈ X . Then,

∇yιPXY
(x;y)

(a)
= ∇y log h(y) +∇y⟨x,T(y)⟩ − ∇y log fY(y)

(b)
= JyT(y)x−∇y log

fY(y)

h(y)

(c)
= JyT(y)x− JyT(y)E[X|Y = y]

= JyT(y)(x− E[X|Y = y]),
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where the labeled equalities follow from: (a) the definition of the exponential family in

eq. (1.1); (b) using the fact that ∇y⟨x,T(y)⟩ = JyT(y)x; and (c) using the TRE identity.

This concludes the proof of Proposition 6.

Proof of Theorem 1. Since JYT(Y) has full rank a.s. Y, then the pseudo inverse

(JYT(Y))+ exists a.s. Y. Using Proposition 6, we have that a.s. Y,

(X− E[X|Y]) = (JYT(Y))+∇YιPXY
(X;Y). (4.4)

Now, taking the norm squared and the expectation of both sides of eq. (4.4), and recalling

that mmse(X|Y) = E [||X−E[X|Y]||2] we arrive at the desired result. This concludes the

proof of Theorem 1.

4.2.1 Example: Univariate Normal with Unknown Variance with Gamma Prior

To show an application of the new representation of the MMSE in Theorem 1, we here

consider the following model,

Y =
Z√
2X

, (4.5)

where Z is the standard normal random variable, i.e., Z ∼ N (0, 1) and X is the unknown

variance drawn from the gamma distribution with α > 0 shape, and β > 0 rate, i.e.,

fX(x) =
βα

Γ(α)
xα−1e−βx, (4.6)

where Γ is the gamma function.

Using the channel model in eq. (4.5), we therefore obtain,

fY |X(y|x) =
√
x

π
e−xy

2

. (4.7)

The conditional pdf in eq. (4.7) can be mapped to the exponential family in eq. (1.1) through

the following mapping,

h(y) =

√
1

π
, ϕ(x) = − log

(√
x
)
, T (y) = −y2. (4.8)
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We now evaluate the MMSE expression in Theorem 1 for our model in eq. (4.5) with the

mapping in eq. (4.8). We note that(
d

dy
T (y)

)−1

= − 1

2y
. (4.9)

We now focus on deriving d
dy
ιPXY

(x; y), where

ιPXY
(x; y) = log (fY |X(y|x))− log (fY (y)),

where fY |X is defined in eq. (4.7). Hence, we obtain

d

dy
log
(
fY |X(y|x)

)
= − d

dy

(
xy2
)
= −2xy. (4.10)

To complete the evaluation of the MMSE in Theorem 1, we need d
dy

log (fY (y)), where

(see [29] for the details)

fY (y) =

√
1

π
βα

Γ
(
α + 1

2

)
Γ(α)

1

(y2 + β)α+
1
2

.

Thus, we obtain

d

dy
log (fY (y)) =

1

fY (y)

d

dy
fY (y) = −y(2α + 1)

y2 + β
. (4.11)

Finally, by substituting eq. (4.9), eq. (4.10) and eq. (4.11) inside the MMSE expression in

Theorem 1, we obtain (see [29] for the details)

mmse(X|Y ) =
α(α + 1)

β2
(
α + 3

2

) .
We note that, in order to compute the MMSE above, we did not need to compute E[X|Y ]

(which is needed by the classical representation of the MMSE), but only the marginal

pdf fY , which can be done by simple computations. Moreover, we also highlight that

the MMSE above is in closed-form, and this expression highlights that the MMSE only

depends on the parameters of the gamma distribution.
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CHAPTER 5

RESULTS (PART II)

5.1 Capacity and Bounds on the Capacity

In this section, we provide exact values of the capacity for n ≤ 3. For the remaining regime

we provide upper and lower bounds on capacity.

5.1.1 Exact Capacity for n ≤ 3

The exact capacity can be computed by first making a guess of the capacity-achieving

distribution according to the properties outlined in Section 3.2. Then, this guess can be

checked against the sufficient and necessary KKT conditions in Lemma 3.1.2. These,

somewhat tedious, computations are performed in Appendix B.1 and Table 3.1 displays

the results.

5.1.2 Bounds on the Capacity

We now provide bounds on the capacity. Our upper bound relies on the dual representation

of the capacity as:

C(n) = inf
q

max
x∈[0,1]

PY |X(·|x)q, (5.1)

which, by properly choosing an auxiliary output distribution q, often leads to order-tight

bounds. The reader is referred to [62–64] for applications to other channels. It will also be

convenient to work with continuous output, and we will use the following channel output:

Ỹ = Y + U , where U ∼ U(0, 1). Note that because the distance between original Y

points is one, such additive noise can be completely filtered out, and we have I(X;Y ) =

I(X;Y +U) for allX . This trick has been used before in the context of the Poisson channel

in [62].
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The lower bound on the capacity will follow from choosing a convenient input

distribution. The exact computation, however, will not be possible, and some further

bounds on the entropy of the binomial distribution will be needed. Therefore, in

Appendix C.1, we also provide a new upper bound on the entropy of a binomial distribution.

Bounds on the entropy of a binomial distribution have been considered before in [65, 66].

Theorem 4. For n ≥ 1, the channel capacity is bounded below by

C(n) ≥
{
log(2), log(πn)− 1

2
log

(
2π

(
n

8
+

1

12

))
+

1√
π
(
n+ 1

4

) log( 1

16n2

)
− log(4)− 1

}
(5.2)

and bounded above by

C(n)

≤ min

{
log

(
3 +

⌊
(n− 1)

2

⌋)
, log(π(n+ 1))− 1

2
log(n)

+
3

2
+

1

2n+1
log (n) +

1

2
log

(
3

2

(
1 +

1

n

))}
. (5.3)

Proof. A first lower bound follows from observing that PY |X(0|0) = 1 and PY |X(n|1) = 1.

Hence the input distribution PX(0) = PX(1) =
1
2

gives a mutual information of I(X;Y ) =

log(2) nats for all n ≥ 1.

For an alternative capacity lower bound, pick an input pdf as

fX(x) =
1

π
√
x(1− x)

, x ∈ (0, 1), (5.4)

which is a Beta distribution with shape parameters α = β = 1
2
. Then, the capacity can be

lower-bounded as follows:

C(n) = max
PX

I(X;Y ) (5.5)

≥ I(X;Y ) (5.6)
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= H(Y )−H(Y |X) (5.7)

≥ H(Y )− 1

2
E
[
log

(
2π

(
nX(1−X) +

1

12

))]
(5.8)

≥ H(Y )− 1

2
log

(
2π

(
nE [X(1−X)] +

1

12

))
(5.9)

= H(Y )− 1

2
log

(
2π

(
n

8
+

1

12

))
(5.10)

where in eq. (5.8) we have used the upper bound on the entropy of a binomial distribution,

which is given in Appendix C.1; in eq. (5.9) we have applied Jensen’s inequality; and in

the last step we have used that E [X(1−X)] = 1
8

from the Beta distribution in eq. (5.4).

As for the output entropy, write

H(Y ) = −E [logPY (Y )] (5.11)

= −E
[
log

(
n

Y

)]
− E

[
log EX [X

Y (1−X)n−Y ]
]
. (5.12)

Now note that

E
[
Xy(1−X)n−y

]
=

∫ 1

0

1

π
√
x(1− x)

xy(1− x)n−yx (5.13)

=
1

πn

Γ
(
y + 1

2

)
Γ
(
n− y + 1

2

)
Γ (n)

(5.14)

which, by expanding the binomial coefficient in terms of gamma functions, gives

H(Y ) = log(πn)−E

[
log

(
n
Γ
(
Y + 1

2

)
Γ (Y + 1)

Γ
(
n− Y + 1

2

)
Γ (n− Y + 1)

)]
(5.15)

≥ log(πn)− E

log
 n(

Y + 1
4

) 1
2
(
n− Y + 1

4

) 1
2

 (5.16)

= log(πn) +
1

2
E
[
log

((
Y

n
+

1

4n

)(
1− Y

n
+

1

4n

))]
(5.17)

= log(πn) + E
[
log

(
Y

n
+

1

4n

)]
(5.18)

≥ log(πn) + E
[
1(Y = 0) log

(
1

4n

)]
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+ E
[
1(0 < Y ≤ n) log

(
Y

n

)]
(5.19)

≥ log(πn) + E [(1−X)n] log

(
1

4n

)
+ E [(1− (1−X)n) log(X)]− 1 (5.20)

≥ log(πn) +
Γ
(
n+ 1

2

)
√
πΓ (n+ 1)

log

(
1

16n2

)
+ E [log(X)]− 1 (5.21)

≥ log(πn) +
1√

π
(
n+ 1

4

) log( 1

16n2

)
− log(4)− 1 (5.22)

where in eq. (5.16) and in eq. (5.22) we used Kershav’s inequality [67]

Γ(x+ s)

Γ(x+ 1)
≤ 1(

x+ s
2

)1−s (5.23)

for x > 0 and s ∈ (0, 1); in eq. (5.18) we have used the symmetry of the output pmf

Y
d
= (n − Y ); in eq. (5.20) we have used Lemma C.1; in eq. (5.21) we have have used

E [(1−X)n] =
Γ(n+ 1

2)√
πΓ(n+1)

and the fact that log(X) ≤ 0; finally, in the last step we have

used E [log(X)] = − log(4).

To sum up, the capacity lower bound is given by eq. (5.2).

A first upper bound on C(n) follows by noting that

C(n) ≤ H(X⋆) ≤ log

(
3 +

⌊
(n− 1)

2

⌋)
, (5.24)

where the last upper bound is due to Theorem 2.

For an alternative capacity upper bound, choose the auxiliary output pdf

q(t) =
1

π(n+ 1)

(
t

n+ 1

(
1− t

n+ 1

))− 1
2

, t ∈ (0, n+ 1), (5.25)

and, by introducing U ∼ U [0, 1] independent of X and Y , write

C(n) = max
PX

I(X;Y ) (5.26)

= max
PX

I(X;Y + U) (5.27)
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≤ max
x∈[0,1]

PY+U |X(·|x)q (5.28)

= max
x∈[0,1]

−H(Y |X = x)− E [log q(Y + U) | X = x] (5.29)

≤ max
x∈[0,1]

{
log(π(n+ 1))− (1− (1− x)n − xn)

1

2
log (2πn)

− 1

2
(1− (1− x)n) log(x)− 1

2
(1− xn) log(1− x) + 1

+
1

2
E
[
log

(
Y + U

n+ 1

(
1− Y + U

n+ 1

)) ∣∣∣∣ X = x

]}
(5.30)

≤ max
x∈[0,1]

{
log(π(n+ 1))− (1− (1− x)n − xn)

1

2
log (2πn)

− 1

2
(1− (1− x)n) log(x)− 1

2
(1− xn) log(1− x) + 1

+
1

2
log

(
nx+ 1

2

n+ 1

(
1−

nx+ 1
2

n+ 1

))}
(5.31)

= log(π(n+ 1))− 1

2
log(2πn) + max

x∈[0,1]
{gn(x)} (5.32)

where in eq. (5.28) we have used the dual formulation of capacity; in eq. (5.29) we used

h(Y + U |X = x) = H(Y |X = x); in eq. (5.30) we have used the lower bound on the

entropy of a binomial distribution.C.1; in eq. (5.31) we have used Jensen’s inequality; and

in eq. (5.32) we have introduced the function

gn(x) =
((1− x)n + xn)

2
log (2πn)− (1− (1− x)n)

2
log(x)

− (1− xn)

2
log(1− x) +

1

2
log

(
nx+ 1

2

n+ 1

(
1−

nx+ 1
2

n+ 1

))
(5.33)

for x ∈ [0, 1].
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APPENDIX A

PROOF OF LEMMA 1

Our objective is to show that the following two exchanges of the limit and expectation, and

the limit and variance are permissible,

lim
σN→∞

EX [VarZ (σN log (g̃(X+ σNZ)))]

= EX

[
VarZ

(
lim

σN→∞
σN log (g̃(X+ σNZ))

)]
.

Equivalently, by using the definition of the variance, we have to show that

lim
σN→∞

E [fσN (X,Z)] = E
[

lim
σN→∞

fσN (X,Z)

]
, (A.1a)

where

fσN (x, z) = (σN log g̃(x+ σNz)− E[σN log g̃(X+ σNZ)])
2 . (A.1b)

Towards this end, we start by noting that

|σN log g̃(x+ σNz)|

(a)
= σN max

{
logE

[
e
− ∥x−X∥2+2(x−X)TσN z

2σ2
N

]
,

− logE

[
e
− ∥x−X∥2+2(x−X)TσN z

2σ2
N

]}
(b)

≤ σN max

{
logE

[
e
− 2(x−X)TσN z

2σ2
N

]
,

− log e
−

E[∥x−X∥2+2(x−X)TσN z]
2σ2

N


(c)
= σN max

logE
[
e
− (x−X)Tz

σN

]
,− log e

−
E[∥x−X∥2+2xTσN z]

2σ2
N


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= σN max

{
−xTz

σN
+logE

[
e

XTz
σN

]
,
xTz

σN
+
E [∥x−X∥2]

2σ2
N

}
(d)

≤ ∥x∥∥z∥+ σN max

{
logE

[
e

XTz
σN

]
,
E [∥x−X∥2]

2σ2
N

}

(e)

≤ ∥x∥∥z∥+ σN max

{
B∥z∥2

σ2
N

,
2∥x∥2 + 2E [∥X∥2]

2σ2
N

}
(f)

≤ ∥x∥∥z∥+max
{
B∥z∥2, ∥x∥2 + E

[
∥X∥2

]}
, (A.2)

where the labeled inequalities/equalities follow from: (a) using the property that

| log(x)| = max{log(x),− log(x)}; (b) using the bound e
− ∥x−X∥2

2σ2
N ≤ 1 on the first

logarithm, and using Jensen’s inequality on the second logarithm; (c) the assumption that

E[X] = 0k; (d) using Cauchy-Schwarz inequality; (e) the assumption that X is

sub-Gaussian for some constant B > 0 and using the bound ∥x−X∥2 ≤ 2∥x∥2 + 2∥X∥2;

and (f) the assumption that σN > 1.

Now, we can use (2.4) to bound fσN (x, z) in (A.1). We obtain

fσN (x, z)

= (σN log g̃(x+ σNz)− E[σN log g̃(X+ σNZ)])
2

(a)

≤ 2 (σN log g̃(x+ σNz))
2 + 2 (E[σN log g̃(X+ σNZ)])

2

(b)

≤ 2 (σN log g̃(x+ σNz))
2 + 2E[|σN log g̃(X+ σNZ)|2]

(c)

≤ 2
(
∥x∥∥z∥+max

{
B∥z∥2, ∥x∥2 + E

[
∥X∥2

]})2
+2E

[(
∥X∥∥Z∥+max

{
B∥Z∥2, ∥X∥2+E

[
∥X∥2

]})2]
, (A.3)

where the labeled inequalities follow from: (a) the fact that (a− b)2 ≤ 2a2+2b2; (b) using

Jensen’s inequality; and (c) using the bound in (2.4).

Now, note that under the assumption that X is sub-Gaussian all moments are finite

and hence, the quantity in (A.3) is integrable. Consequently, under the assumption that

X is sub-Gaussian, the random variable fσN (X,Z) is bounded by an integrable random
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variable, and we can apply the dominate convergence theorem to exchange the limit and

the expectation and arrive at

lim
σN→∞

EX [VarZ (σN log (g̃(X+ σNZ)))]

= EX

[
VarZ

(
lim

σN→∞
σN log (g̃(X+ σNZ))

)]

which concludes the proof of Lemma 1.
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APPENDIX B

CAPACITY COMPUTATION FOR n ≤ 3

B.1 Capacity Computation for n ≤ 3

B.1.1 The Case of n = 3

For n = 3, we infer that

supp(PX⋆) ⊆
{
0,

1

2
, 1

}
.

Now let p = PX⋆(1
2
). Corollary 1 and direction computations imply that

PY ⋆(0) = PY ⋆(3) =−C(3), (B.1)

PY ⋆(1) = PY ⋆(2) =
3

8
p. (B.2)

Now using above and the fact that
∑3

y=0 PY ∗(y) = 1, we have that

p =
4

3

(
1− 2−C(3)

)
. (B.3)

Next, it can be shown that

i

(
1

2
;PY ⋆

)
=

1

4
log

(
C(3)

8p3

)
. (B.4)

From the KKT equality condition in (3.4), we have that

C(3) = i

(
1

2
;PY ⋆

)
=

1

4
log

(
C(3)

8p3

)
(B.5)

using the expression for p in (B.3) and simplifying, we arrive at

C(3) = log

(
1

8
3
(1− 2−C(3))

)
. (B.6)

Solving for C(3) we arrive at

C(3) = log

(
19

8

)
. (B.7)
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We also have that

PY ⋆(0) = PY ⋆(3) =
8

19
, (B.8)

PY ⋆(1) = PY ⋆(2) =
3

38
, (B.9)

PX∗(0) = PX∗(1) =
15

38
, (B.10)

PX∗

(
1

2

)
=

4

19
. (B.11)
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APPENDIX C

A UNIFORM BOUND ON gn(x)

For n ≥ 1, we have

max
x∈[0,1]

gn(x) ≤
1

2
log(2π) +

1

2
+

1

2n+1
log (n)

+
1

2
log

(
3

2

(
1 +

1

n

))
. (C.1)

Proof. Since gn(x) = gn(1 − x), we can limit our analysis in the interval x ∈
[
0, 1

2

]
. By

applying the substitution x = α
n

for α ∈
[
0, n

2

]
, we get

2gn

(α
n

)
(C.2)

=
((

1− α

n

)n
+
(α
n

)n)
log (2πn)

−
(
1−

(
1− α

n

)n)
log
(α
n

)
−
(
1−

(α
n

)n)
log
(
1− α

n

)
+ log

(
α + 1

2

n+ 1

(
1−

α + 1
2

n+ 1

))
(C.3)

≤ log

(
2πn

n+ 1

)
−
(
1−

(
1− α

n

)n)
log (α)

−
(
1−

(α
n

)n)
log (n− α)

+ log

(
α +

1

2

)
+ log

(
n− α +

1

2

)
(C.4)

≤ log(2π)−
(
1−

(
1− α

n

)n)
log (α)

+
(α
n

)n
log (n− α) + log

(
α +

1

2

)
+ log

(
1 +

1

2(n− α)

)
(C.5)

≤ log(2π)−
(
1−

(
1− α

n

)n)
log (α) +

1

2n
log (n)

+ log

(
α +

1

2

)
+ log

(
1 +

1

n

)
. (C.6)
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When α ∈ [0, 1], the term log(α) is negative, and by using
(
1− α

n

)n ≥ 1 − α we can

further upper-bound as follows:

2gn

(α
n

)
≤ log(2π)− α log(α) +

1

2n
log (n) + log

(
α +

1

2

)
+ log

(
1 +

1

n

)
(C.7)

≤ log(2π) +−1 +
1

2n
log (n) + log

(
1 +

1

2

)
+ log

(
1 +

1

n

)
, (C.8)

which is bounded in n. When α ∈
[
1, n

2

]
, then log(α) is positive and, by using e−x ≥(

1− x
n

)n for all n ≥ 1 and all x ≥ 0, we have that

2gn

(α
n

)
≤ log(2π) +

((
1− α

n

)n
− 1
)
log (α) +

1

2n
log (n)

+ log

(
α +

1

2

)
+ log

(
1 +

1

n

)
(C.9)

≤ log(2π) +
(−α − 1

)
log (α) +

1

2n
log (n)

+ log

(
α +

1

2

)
+ log

(
1 +

1

n

)
(C.10)

= log(2π) +−α log (α) +
1

2n
log (n)

+ log

(
1 +

1

2α

)
+ log

(
1 +

1

n

)
(C.11)

≤ log(2π) +−α log (α) +
1

2n
log (n)

+ log

(
1 +

1

2

)
+ log

(
1 +

1

n

)
(C.12)

≤ log(2π) + 1 +
1

2n
log (n) + log

(
1 +

1

2

)
+ log

(
1 +

1

n

)
, (C.13)

which is bounded in n. Since (C.13) is strictly larger than (C.8), we can conclude the result

in (C.1).
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C.1 Bounds on the Entropy of a Binomial Random Variable

First of all we need the following result. Let PY |X(·|x) be a Binomial pmf with n trials and

success probability x per trial. Then,

E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = x

]
≥ (1− (1− x)n) log(x)− 1. (C.14)

Proof. Inspired by the approach of [62, Appendix B], we bound the expectation as follows:

E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = x

]
= E [1(0 < Y ≤ n) log (x) | X = x]

+ E
[
1(0 < Y ≤ n) log

(
Y

nx

) ∣∣∣∣ X = x

]
(C.15)

= (1− (1− x)n) log (x)

+ E
[
1(0 < Y ≤ n) log

(
Y

nx

) ∣∣∣∣ X = x

]
(C.16)

= (1− (1− x)n) log (x) +
n−1∑
y=1

PY |X(y|x) log
( y

nx

)
(C.17)

≥ (1− (1− x)n) log (x) +

∫ n

0

PY |X(⌊y⌋|x) log
( y

nx

)
y (C.18)

= (1− (1− x)n) log (x) + n

∫ 1

0

PY |X(⌊nt⌋|x) log
(
t

x

)
t (C.19)

where the inequality holds because x 7→ log(x) is an increasing function and negative for

x ∈ (0, 1).

Now introduce the continuous rv Z with pdf fZ(z) = nPY |X(⌊nz⌋|x) for z ∈ [0, 1].

Then, the integral of (C.19) becomes:

n

∫ 1

0

PY |X(⌊nt⌋|x) log
(
t

x

)
t

=

∫ 1

0

fZ(t) log

(
t

x

)
t (C.20)

=

∫ x

0

fZ(t) log

(
t

x

)
t+

∫ 1

x

fZ(t) log

(
t

x

)
t. (C.21)
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Let us now bound the two integrals separately. For the first integral, by integrating by parts

we have ∫ x

0

fZ(t) log

(
t

x

)
t

=

[
Pr(Z ≤ t) log

(
t

x

)]x
0

−
∫ x

0

Pr(Z ≤ t)
1

t
t (C.22)

≥ −
∫ x

0

∫ t

0

nPY |X(⌊nz⌋|x)z
1

t
t (C.23)

≥ −
∫ x

0

nPY |X(⌊nt⌋|x)t (C.24)

= −
∫ x

0

fZ(t)t (C.25)

≥ −1 (C.26)

where in (C.24) we used that
∫ t
0
nPY |X(⌊nz⌋|x)z ≤ tnPY |X(⌊nt⌋|x) thanks to the

following lemma and to t ≤ x: Let PY |X be a Binomial pmf. Then, y 7→ PY |X(y|x)

is increasing for y ≤ ⌊(n+ 1)x⌋, and decreasing for y ≥ ⌈(n+ 1)x⌉.

Proof. From the ratio

PY |X(y|x)
PY |X(y − 1|x)

=
n− y + 1

y

x

1− x
(C.27)

we see that the condition PY |X(y|x) ≥ PY |X(y − 1|x) is satisfied for y ≤ ⌊(n+ 1)x⌋.

For the second integral, write∫ 1

x

fZ(t) log

(
t

x

)
t ≥ 0. (C.28)

Putting together the two results, we get the result in (C.14).

We are now ready to give the main result of this appendix. For x ∈ [0, 1], the entropy

of a Binomial rv is bounded as follows

H(Y |X = x) ≤ 1

2
log

(
2π

(
nx(1− x) +

1

12

))
, (C.29)
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H(Y |X = x) ≥ (1− (1− x)n − xn)
1

2
log (2πn)

+
1

2
(1− (1− x)n) log(x)

+
1

2
(1− xn) log(1− x)− 1. (C.30)

Proof. For the upper bound, write

H(Y |X = x) = h(Y + U |X = x) (C.31)

≤ 1

2
log

(
2π

(
nx(1− x) +

1

12

))
, (C.32)

where (C.31) follows from [62, Lemma 17] with U ∼ U [0, 1] is independent of Y ; and the

last step follows from the Gaussian maximizes entropy principle.

Next we prove the lower bound. First of all, compute

−H(Y |X = x) = E
[
log

((
n

Y

)
xY (1− x)n−Y

) ∣∣∣∣ X = x

]
(C.33)

= E
[
log

(
n

Y

) ∣∣∣∣ X = x

]
+ nx log(x)

+ n(1− x) log(1− x) (C.34)

≤ E
[
log

(
n

Y

) ∣∣∣∣ X = x

]
− nH2(x) (C.35)

By using the bound
(
n
Y

)
≤
√

n
2πY (n−Y )

nH2(
Y
n
)

for 0 < Y < n (see, e.g., [68, Problem 5.8]),

we can write:

E
[
log

(
n

Y

) ∣∣∣∣ X = x

]
= E

[
1(0 < Y < n) log

(
n

Y

) ∣∣∣∣ X = x

]
(C.36)

≤ (1− (1− x)n − xn)
1

2
log
( n
2π

)
− 1

2
E [1(0 < Y < n) log(Y (n− Y )) | X = x]

+ nE
[
H2(

Y

n
)

∣∣∣∣ X = x

]
(C.37)
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= −(1− (1− x)n − xn)
1

2
log (2πn)

− 1

2
E
[
1(0 < Y < n) log

(
Y

n

n− Y

n

) ∣∣∣∣ X = x

]
+ nE

[
H2

(
Y

n

) ∣∣∣∣ X = x

]
(C.38)

= −(1− (1− x)n − xn)
1

2
log (2πn)

− 1

2
E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = x

]
− 1

2
E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = 1− x

]
+ nE

[
H2(

Y

n
)

∣∣∣∣ X = x

]
(C.39)

≤ −(1− (1− x)n − xn)
1

2
log (2πn)

− 1

2
E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = x

]
− 1

2
E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = 1− x

]
+ nH2(x), (C.40)

where in (C.39) we used the channel symmetry PY |X(y|x) = PY |X(n − y|1 − x); and in

the last step we used Jensen’s inequality and E [Y | X = x] = nx.

By using Lemma C.1, we have

E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = x

]
≥ (1− (1− x)n) log(x)− 1 (C.41)

and

E
[
1(0 < Y ≤ n) log

(
Y

n

) ∣∣∣∣ X = 1− x

]
≥ (1− xn) log(1− x)− 1. (C.42)

Therefore, we have

E
[
log

(
n

Y

) ∣∣∣∣ X = x

]
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≤ −(1− (1− x)n − xn)
1

2
log (2πn)

− 1

2
(1− (1− x)n) log(x)− 1

2
(1− xn) log(1− x)

+ 1 + nH2(x) (C.43)

and

−H(Y |X = x)

≤ −(1− (1− x)n − xn)
1

2
log (2πn)

− 1

2
(1− (1− x)n) log(x)− 1

2
(1− xn) log(1− x) + 1. (C.44)
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