
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

5-31-2024

Empirical exploration of software testing Empirical exploration of software testing

Samia Alblwi
New Jersey Institute of Technology, samia6mb@gmail.com

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Alblwi, Samia, "Empirical exploration of software testing" (2024). Dissertations. 1753.
https://digitalcommons.njit.edu/dissertations/1753

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1753?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EMPIRICAL EXPLORATION OF SOFTWARE TESTING

by
Samia Alblwi

Despite several advances in software engineering research and development, the

quality of software products remains a considerable challenge. For all its theoretical

limitations, software testing remains the main method used in practice to control,

enhance, and certify software quality. This doctoral work comprises several empirical

studies aimed at analyzing and assessing common software testing approaches,

methods, and assumptions. In particular, the concept of mutant subsumption is

generalized by taking into account the possibility for a base program and its mutants

to diverge for some inputs, demonstrating the impact of this generalization on how

subsumption is defined. The problem of mutant set minimization is revisited and

recast as an optimization problem by specifying under what condition the objective

function is optimized. Empirical evidence shows that the mutation coverage of a test

suite depends broadly on the mutant generation operators used with the same tool

and varies even more broadly across tools. The effectiveness of a test suite is defined

by its ability to reveal program failures, and the extent to which traditional syntactic

coverage metrics correlate with this measure of effectiveness is considered.

EMPIRICAL EXPLORATION OF SOFTWARE TESTING

by
Samia Alblwi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Informatics

May 2024

Copyright © 2024 by Samia Alblwi

ALL RIGHTS RESERVED

APPROVAL PAGE

EMPIRICAL EXPLORATION OF SOFTWARE TESTING

Samia Alblwi

Ali Mili, PhD, Dissertation Co-advisor Date
Professor of Computer Science, NJIT

Vincent Oria, PhD, Dissertation Co-advisor Date
Professor of Computer Science, NJIT

Ji Meng Loh, PhD, Committee Member Date
Professor of Mathematical Sciences, NJIT

Michael Lee, PhD, Committee Member Date
Associate Professor of Informatics, NJIT

Hai Phan, PhD, Committee Member Date
Associate Professor of Data Science, NJIT

Ali Parsai, PhD, Committee Member Date
Software Testing Researcher, IT Project Manager at ECO3, Mortsel, Belgium

BIOGRAPHICAL SKETCH

Author: Samia Alblwi

Degree: Doctor of Philosophy

Date: May 2024

Undergraduate and Graduate Education:

• Doctor of Philosophy in Informatics,

New Jersey Institute of Technology, Newark, NJ, 2024

• Master of Science in Computer Science,
Clark Atlanta University, Atlanta, GA, 2017

• Bachelor of Science in Information System,
Taibah University, Medina, Saudi Arabia, 2011

Major: Information Systems

Presentations and Publications:

S. Alblwi, A. Ayad, and A. Mili, “Mutation Coverage is Not Strongly Correlated
with Mutation Coverage“ The 5th ACM/IEEE International Conference on
Automation of Software Test (AST 2024), 2024.

S. Alblwi, and A. Ayad, “Minimizing Mutant Sets by Equivalence and Subsumption“
World Academy of Science, Engineering, and Technology, Open Science Index
205, International Journal of Computer and Systems Engineering, 18(1),
Pages 21-27, 2024.

S. Alblwi, A. Ayad, B. Khaireddine, I. Marsit, and A. Mili, “Semantic Coverage:
Measuring Test Suite Effectiveness“In Proceedings of the 18th International
Conference on Software Technologies (ICSOFT 2023), pages 287-294, 2023 .

S. Alblwi, A. Ayad, B. Khaireddine, I. Marsit, and A. Mili, “Quantifying the
Effectiveness of Mutant Sets“ In 2022 IEEE 22nd International Conference on
Software Quality, Reliability, and Security Companion (QRS-C), pp. 288-297.
IEEE, 2022.

S. Alblwi, I. Marsit, B. Khaireddine, A. Ayad, J. Loh, and A. Mili, “Three Forms of
Mutant Subsumption: Basic, Strict and Broad“International Conference on
Software Technologies, pages 122-144, 2022.

iv

S. Alblwi, I. Marsit, B. Khaireddine, A. Ayad, J. Loh, and A. Mili, “Generalized
Mutant Subsumption“ In Proceedings of the 17th International Conference on
Software Technologies (ICSOFT 2022), pages 46-56.

S. Alblwi, I. Marsit, B. Khaireddine, A. Ayad, J. Loh, and A. Mili, “Subsumption,
Correctness, and Relative Correctness“ Submitted to journal SSRN 4598614.

S. Alblwi, and K. Shujaee, “A survey on wireless security protocol WPA2“ Proceedings
of the International Conference on Security and Management (SAM 2017),
pages 12-17, 2017.

v

This dissertation is dedicated to my beloved mother, Nura Abdullah. Whose strength,
wisdom, and unconditional support shaped the person I am today. Your memory will

forever be cherished, and your legacy will live on through the knowledge and
achievements I have attained. I know she is seeing me from heaven. For you alone,

I think and plan.

vi

ACKNOWLEDGMENTS

�ú

G
.�

�P É
�

�	
�
�	
¯

�	áÓ� @

�	
Y
�
ë

The success and accomplishments of my Ph.D. journey are a tremendous grace from

God.

Prof.Ali Mili is my godfather, and this journey would have been impossible without

him. I started to realize day by day that, as an advisee, what I really value in my

Ph.D. journey is the advisor who enriches my academic experience with behavior,

thinking, and kindness. I enormously appreciated his patience with me. After Allah,

all this great credit to Prof.Ali Mili. My journey had many challenges, and I couldn’t

cope alone, but Prof. Ali’s heroism and kindness made the journey possible. Also,

Prof.Vincent Oria accepted me from day one and trusted me to work under his name

while working with Prof.Ali.

I want to thank the rest of my dissertation committee, Drs. Ji Meng Loh,

Micheal Lee, Hai Phan, and Ali Parsai. I am truly honored to have them as my

committee members. Each member has provided extensive personal and professional

guidance and taught me much about scientific research and life.

I want to extend my sincere thanks to Taibah University and the Higher

Education Ministry of Saudi Arabia. Without their generous support, I would not

have completed my Ph.D. degree.

From the bottom of my heart, I would like to thank all the friends and peers I

have met at NJIT, especially my Friend Dr. Firas Gerges, who works at Princeton

University, for his help and always being by my side whenever I needed it.

vii

I wrote my heart out to reach my sister Asmaa, whom I love deeply and the

only one in my family who supported me to see me succeed. My second family here

in the USA, Prof.Ali Mili’s family, his wife Dr.Amel, and his daughter with their

hospitality. Also, I want to thank my friend Eng. Mohamed Ismael and his family

for being my brother and safe side in the USA.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION AND BACKGROUND 1

1.1 Software Testing . 1

1.2 Mutation Testing . 2

1.3 Research Plan . 3

1.4 Mathematical Background . 5

1.4.1 Program semantics . 7

2 BASIC, STRICT AND BROAD SUBSUMPTION 10

2.1 Three Forms of Subsumption . 10

2.2 Three Forms of Differentiator Sets . 13

2.2.1 Divergence and differentiator sets 13

2.3 Three Forms of Subsumption . 17

2.3.1 Definitions and properties . 17

2.3.2 Subsumption and dynamic subsumption 19

2.4 Statistical Modeling . 20

2.4.1 Probability of subsumption . 20

2.4.2 Graph density . 21

2.4.3 Number of maximal nodes . 22

2.5 Illustration: Three Subsumption Graphs 22

2.6 Concluding Remarks . 27

2.6.1 Summary . 27

2.6.2 Critique . 28

3 MINIMIZING MUTANT SETS BY EQUIVALENCE AND SUBSUMPTION 30

3.1 Minimizing Mutant Sets . 30

3.1.1 Detector sets . 33

3.2 Revisiting Subsumption . 35

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.1 Subsumption of convergent programs 35

3.2.2 Considering divergence . 37

3.3 Mutant Set Effectiveness . 38

3.4 Minimizing a Mutant Set for jTerminal 41

3.4.1 Minimal mutant set by equivalence 42

3.4.2 Minimal mutant set by subsumption 45

3.5 Concluding Remarks . 47

4 TEST SUITES EFFECTIVENESS . 50

4.1 On the Effectiveness of a Test Suite 50

4.1.1 Motivation . 50

4.1.2 Requirements of semantic coverage 51

4.1.3 Design principles . 53

4.2 Detector Sets . 54

4.2.1 Requirements on a measure of effectiveness 54

4.2.2 Detector sets . 56

4.2.3 Properties . 57

4.3 Semantic Coverage . 59

4.3.1 Definition . 59

4.3.2 Analytical validation . 60

4.4 Illustration . 63

4.5 Conclusion . 67

4.5.1 Summary and assessment . 67

4.5.2 Threats to validity . 68

4.5.3 Related work . 68

4.5.4 Research prospects . 69

5 MUTANTS SET EFFECTIVENESS . 70

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.1 Mutant Set Minimization: An Optimization Problem 70

5.1.1 Motivation . 70

5.1.2 Design principles . 70

5.2 Mutant Set Effectiveness . 71

5.2.1 Measuring effectiveness . 71

5.2.2 Preserving effectiveness . 73

5.3 Assessment and Validation . 75

5.4 Conclusion: Summary, Critique, and Prospects 78

5.4.1 Summary . 78

5.4.2 Related work . 80

5.4.3 Threats to validity and prospects 82

6 MUTATION COVERAGE IS NOT STRONGLY CORRELATED WITH
MUTATION COVERAGE . 83

6.1 On the Effectiveness of a Test Suite 83

6.1.1 Measuring test suite effectiveness 83

6.1.2 Mutation coverage: a reference by default 84

6.1.3 An imperfect reference metric 85

6.1.4 Quantifying mutation coverage 87

6.2 On the Divergence of Mutation Coverage 89

6.2.1 Experimental set up . 89

6.2.2 Raw data . 91

6.2.3 Analysis . 94

6.3 Further Empirical Observations . 97

6.3.1 First experiment: a narrow spread of test suite sizes 98

6.3.2 Second experiment: a wide spread of test suite sizes 103

6.3.3 Third experiment: a larger pool of mutants 104

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

6.4 Conclusion . 106

6.4.1 Summary . 106

6.4.2 Threats to validity . 107

6.4.3 Implications and prospects . 107

7 WHAT COVERAGE METRICS MEAN, AND WHAT THEY DO NOT . 108

7.1 Assessing Test Suite Effectiveness . 108

7.1.1 Coverage metrics: an imperfect compromise 108

7.1.2 Agenda . 109

7.2 Using Semantic Coverage . 110

7.3 What Coverage Metrics Mean . 115

7.3.1 Experiment design . 115

7.3.2 Experiment’s implementation 115

7.3.3 Experimental data . 118

7.4 Concluding Remarks . 122

7.4.1 Summary . 122

7.4.2 Observations . 122

7.4.3 Prospects . 123

8 CONCLUSION . 124

APPENDIX A APPENDICES: PYTHON SCRIPTS COMPOSED FOR
THIS RESEARCH . 128

A.1 Run Test On Mutants . 128

A.2 Extract Equivalence Classes . 129

A.3 Compute Killed Mutants by Each Test 135

A.4 Extract Operators From Mutants . 137

A.5 Generate Test Sets . 138

A.6 Compute Similarirty . 139

xii

TABLE OF CONTENTS
(Continued)

Chapter Page

A.7 Generate Random Test Subset . 140

A.8 Extract Inclusion By Test Based On Delta Zero 142

A.9 Extract Inclusion By Mutants . 144

APPENDIX B APPENDICES: RESULTS COLLECTED IN EXCELS FILE 146

B.1 Extract Operators From VT100 Jterminal by Using LittleDarwine Tool 146

B.2 Extract Operators From VT100 Jterminal by Using Major Tool . . . 146

B.3 Extract Different Operators From VT100 Jterminal by Using
LittleDarwine Tool . 147

REFERENCES . 148

xiii

LIST OF TABLES

Table Page

4.1 Definitions of Correctness . 58

4.2 Graph Similarity of Semantic Coverage and Mutation Coverage 67

6.1 Mutation Coverage for LittleDarwin (All): 123 Mutants 92

6.2 Mutation Coverage for Major (All): 338 Mutants 93

6.3 Correlation Matrix for RMS . 94

6.4 Correlation Matrix for PMS . 95

6.5 Correlation Matrix for EMS . 95

6.6 Similarity Matrix for Mutation Tally . 95

6.7 Correlation RMS and PMS: First Experiment 99

6.8 Correlation Matrix of EMS: First Experiment 99

6.9 Similarity Index of MT Graphs: First Experiment 99

6.10 Correlation Matrix of RMS and PMS: Second Experiment 104

6.11 Correlation Matrix of EMS: Second Experiment 104

6.12 Similarity Index of the MT Graphs: Second Experiment 104

6.13 Correlation Matrix of RMS, PMS: Third Experiment 105

6.14 Correlation Matrix for EMS: Third Experiment 105

6.15 Similarity Matrix of MT Graphs: Third Experiment 106

7.1 Metrics Table: T1 ... T20 . 119

7.2 Mutation Coverage for: T1 ... T20 . 119

7.3 Precision, Recall and Jaccard Index for Statement Coverage 120

7.4 Precision, Recall and Jaccard Index for Branch Coverage 120

7.5 Precision, Recall and Jaccard Index for Line Coverage 120

7.6 Precision, Recall and Jaccard Index for Raw Mutation Coverage 121

7.7 Precision, Recall and Jaccard Index for Prorated Mutation Coverage . . 121

xiv

LIST OF TABLES
(Continued)

Table Page

7.8 Precision, Recall and Jaccard Index for Equivalence-based Mutation
Coverage . 121

7.9 Summary Performance of Coverage Metrics 122

xv

LIST OF FIGURES

Figure Page

1.1 Relations R and RL. 7

1.2 R′ refines R: R′ ⊒ R, R ⊑ R′. 8

1.3 Total correctness. 9

1.4 Partial correctness. 9

2.1 Due to Samia et al.,(2022): Three definitions of differentiator sets. . . . 15

2.2 Test data to expose behavior difference. 17

2.3 Due to Samia et al.,(2022): Basic subsumption graph, jTerminal mutants. 26

2.4 Strict subsumption graph, jTerminal mutants. 26

2.5 Loose subsumption graph, jTerminal mutants. 26

3.1 Test data to disprove correctness. 36

3.2 Sample test suites. 36

3.3 Semantic coverage of T with respect to R. 40

4.1 Relative total correctness. 56

4.2 Relative partial correctness. 56

4.3 Detector sets for partial correctness. 62

4.4 Detector sets for total correctness. 62

4.5 Semantic coverage of test T for program P with respect to R (shades of
green). 62

4.6 Ordering test suites Ti by mutation coverage (inclusion relations of killed
mutant sets). 65

4.7 Ordering test suites by inclusion relations of ΓPAR
[M25,P](Ti). 65

4.8 Ordering test suites by inclusion relations of ΓPAR
[M50,P](Ti). 66

4.9 Ordering test suites by inclusion relations of ΓTOT
[M25,P](Ti). 66

4.10 Ordering test suites by inclusion relations of ΓTOT
[M50,P](Ti). 66

5.1 Differentiator set of P and Q. 74

xvi

LIST OF FIGURES
(Continued)

Figure Page

5.2 Assured effectiveness of µ1, µ2, µ3 for partial and total correctness with
respect to R1, R2, R3. 78

5.3 Potential effectiveness of µ1, µ2, µ3 for partial and total correctness with
respect to R1, R2, R3. 79

6.1 Graph of mutation Tally, for littleDarwin (All). 91

6.2 Graph of mutation tally, for major (All). 92

6.3 Graph of mutation tally, for AND replacement, first experiment. 99

6.4 Graph of mutation tally, for AND replacement, first experiment. 100

6.5 Graph of mutation tally, for OR replacement, first experiment. 100

6.6 Graph of mutation tally, for relational operators, first experiment. 100

6.7 Graph of mutation tally, for relational operators, first experiment. 101

6.8 Graph of mutation tally, for relational operators, first experiment. 101

6.9 Graph of mutation tally, for relational operators, first experiment. 101

6.10 Graph of mutation tally, for relational operators, first experiment. 102

6.11 Graph of mutation tally, for relational operators, first experiment. 102

7.1 Sorting T1 ... T20 by semantic coverage of P with respect to R1 for
partial correctness. 113

7.2 Sorting T1 ... T20 by semantic coverage of P with respect to R1 for total
correctness. 113

7.3 Sorting T1 ... T20 by Semantic Coverage of P with respect to R2 for
partial correctness. 113

7.4 Sorting T1 ... T20 by semantic coverage of P with respect to R2 for total
correctness. 114

7.5 Sorting T1 ... T20 by semantic coverage of P with respect to R3 for
partial correctness. 114

7.6 Sorting T1 ... T20 by semantic coverage of P with respect to R3 for total
correctness. 114

7.7 Assessing compliance between CM and SC. 116

B.1 Extract operators from VT100 Jterminal by using littleDarwine tool. . . 146

xvii

LIST OF FIGURES
(Continued)

Figure Page

B.2 Extract operators from VT100 Jterminal by using major tool. 146

B.3 All, conditional, relational, and arithmetic operators. 147

xviii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Software Testing

Software testing is the art of executing a program on some selected Test data will

be used to check whether the program behaves as expected. There are four types of

software testing, depending on the goal of the testing activity:

• Unit Testing, which is the activity where a programmer tests a small unit
(method, routine, class, etc) against the specification of the unit to ensure that
the unit performs the function it is intended to perform. Unit testing is usually
carried out during the programming phase of a software lifecycle.

• Integration Testing, which is the activity where a software engineer tests a
software system to check whether the individual units of the system work
properly together, assuming that each unit works correctly by unit testing.
Integration testing is usually carried out during the integration phase of a
software project.

• Acceptance Testing, which is the activity where a team of representatives from
the software developer organization and representatives from the software user
organization test a completed software product to check that it meets the
contractual obligations between the two parties. Acceptance testing is usually
carried out during the phase of deployment of the product.

• Regression Testing, which is the activity where a software maintenance engineer
tests a software product at the end of a maintenance update to check that
the new version of the product did not regress with respect to the original
version. Software maintenance can be applied to correct a fault (corrective
maintenance) or to enhance performance (perfective maintenance) or to adapt
to new requirements (adaptive maintenance). The purpose of regression testing
is to ensure that the objective of the maintenance operation has been achieved
without loss of functionality.

Software testing usually involves four phases [1]:

• Generating a Test Environment. Since many activities of testing take place in
a development environment, rather than the environment where the software
product is actually used, it is important to simulate the operating environment
in which the software being tested is expected to run.

1

• Generating Test Data. This is the most important phase of the testing lifecycle
and the phase that determines the success of failure of the test. This phase
consists of deciding what input data to test the program on; the selection of
test data depends on the goal of the test (finding faults, checking correctness,
checking non-regression, estimating reliability) and on the scale (budget) of the
test. This step can be carried out automatically or by detailed analysis.

• Generating an Oracle. The oracle is the agent that determines, for each
execution, whether the outcome of the execution is correct. To generate the
oracle for a test, we must have a specification of the requirements of the product;
the most common form of an oracle is a Boolean function that checks whether
a pair of (input-output) meets the requirements for correctness.

• Generate a Test Driver. A test can be carried out manually by executing the
program on selected inputs and observing the corresponding outputs, or it can
be carried out automatically by means of a test driver. The test driver is a
program that runs the software product under test on the selected test data
tests each execution with respect to the oracle, and reports on the results of
each test.

• Analyzing the Outcome of the Test. The outcome of a test may be captured
by a report that details what happened for each test data: which executions
were found to satisfy the test oracle, which was not. The interpretation of this
report depends on the type of test (unit testing, integration testing, acceptance
testing, and regression testing).

1.2 Mutation Testing

Because test data selection is the most critical phase of the test lifecycle, it has

received the most attention in software testing research. Mutation testing was

introduced by DeMillo et al. [2] as a way to check whether a test suite is adequate, i.e.,

whether it tests the software product sufficiently thoroughly: it consists of generating

several mutants of the program under test, then checking for each mutant, whether

the test suite can detect the mutations, by exposing the difference between the base

program and the mutant for at least one element of the test suite. The idea is that,

to the extent that mutations are faithful representations of faults, a test suite that

detects mutations can also detect faults [3–9].

This idea has given rise to a great deal of research on mutation testing, including

the development of several tools to generate mutants [10–13]. The main obstacle to

2

the widespread use of mutation testing in practice is that it is very costly because of

the number of mutants of a program increases rapidly with the size of the program.

Several attempts have been made to control the size of mutant sets: In [14] Marsit et

al. attempt to estimate the number of equivalent mutants in a set by assessing the

amount of redundancy in the base program in [15,16] Kurtz et al. define the relation

of subsumption between mutants, and argue that in a set of mutants, we can remove

all the mutants that are subsumed by others without reducing the effectiveness of a

mutant set.

Program mutations are also used in program repair [17]: To repair an incorrect

program, we generate mutants of it and then test them against a test suite that

represents the desired correct behavior; this research has led to the development of

several prototypes that repair programs by a process called generate-and-validate.

1.3 Research Plan

In this doctoral research, our team carries out empirical studies about software testing,

mutation testing, and test suite effectiveness.

In Chapter 2, I consider the original definition of subsumption [15, 16] and

resolve to generalize it by considering the possibility that the base program or its

mutants may fail to converge for some inputs. By considering different interpretations

of what is the outcome of an execution when two outcomes are comparable, and

under what condition are two comparable outcomes identical, we derive three possible

definitions of subsumption. I have developed a Python script that can analyze

the output of a base program and a mutant for some test suites, and derive

the differentiator sets of the mutant with respect to the three interpretations of

subsumption (delta0, delta1, delta2). I have also developed a Python script, which,

given the differentiator, sets of a set of mutants with respect to a base program,

3

derives the three corresponding subsumption graphs, by highlighting the inclusion

relationships between the differentiator sets. This work is published in [18].

In Chapter 3, I analyze two approaches to the minimization of mutant sets:

• Either by partitioning the set of mutants into equivalence classes modulo
semantic equivalence, then selecting one element per equivalence class; this
is the approach proposed by [14].

• Or by ordering mutants by means of the subsumption relation and selecting
the maximal mutants in the subsumption graph; this is the approach proposed
by [15,16].

Two questions arise with respect to these approaches: First, subsumption should

not be defined between individual mutants but rather between equivalence classes of

mutants. Second, it is important to consider the question of how much we save with

subsumption once we have partitioned the mutants into equivalence classes. If we

start with 100 mutants and find that they are partitioned into 10 equivalence classes,

how much more reduction do we achieve with subsumption? This work is published

in [19].

Test suite effectiveness is usually measured by coverage metrics, such as

statement coverage, branch coverage, line coverage, path coverage, etc. Chapter 4

focuses on defining a measure of effectiveness that is based on a test suite’s ability

to reveal program failures; this measure is called semantic coverage, and is published

in [20].

When we try to minimize a set of mutants, be it by equivalence [14] or by

subsumption [15, 16], we assume implicitly that we are reducing the number of

mutants, but we are not reducing the effectiveness of the set of mutants. The problem

of reducing the size of a set of mutants is an optimization problem where the objective

function is the cardinality of the set and the constraint under which the objective

function is minimized is that the effectiveness of the original mutant set is the same

as the effectiveness of the reduced set. This raises the question: how do we define

4

the effectiveness of a set of mutants. Chapter 5 proposes two definitions of mutant

set effectiveness (assured effectiveness, potential effectiveness), and proves that the

removal of subsumed mutants preserve potential effectiveness. This work is published

in [21].

In Chapter 6, titled Mutant Coverage is not Strongly Correlated with Mutation

Coverage, we run an empirical experiment where we consider a sample benchmark

program, and its associated benchmark test suite, then we generate twenty subsets

of this test suite of varying sizes (between 0.4 and 0.6 of the size of the original test

suite). Then, we compute the mutation coverage of these twenty test suites under

different mutant generation policies, and we find that the same test suite can have

widely varying levels of mutation coverage depending on the mutant generation policy.

Specifically, we find correlations near 0.5 between mutation coverage values obtained

by different mutation operators of the same tool, and correlations near zero between

mutation coverage values obtained by different tools. This work is published in [22].

In Chapter 7, we run an experiment in which we compare the values of tradi-

tional coverage metrics (statement coverage, branch coverage, condition coverage,

line coverage, mutation coverage) with respect to semantic coverage, which reflects

a test suite’s ability to reveal the failures of an incorrect program. We find that

most coverage metrics have a very low correlation with semantic coverage, and

that mutation coverage has a higher correlation with semantic coverage than all the

syntactic coverage metrics. This work is currently under review.

1.4 Mathematical Background

Because we use sets to represent program spaces, we represent sets by C-like variable

declarations. If we declare a set S by the variable declarations:

xType x; yType y;

5

then S is the cartesian product of the sets of values that the types xType and yType

take; elements of S are denoted by lower case s, and are referred to as states. Given

an element s of S, we may refer to the x-component (resp. y-component) of s as x(s)

(resp. y(s)). But we may, for the sake of convenience, refer to the x component of

states s, s′, s′′ (e.g.,) simply as x, x′, x′′.

A relation on set S is a subset of the cartesian product S×S; special relations on

set S include the universal relation L = S×S, the identity relation I = {(s, s′)|s′ = s}

and the empty relation ϕ = {}. Operations on relations include the set theoretic

operations of union (∪), intersection (∩), difference(\) and complement (R = L \R).

They also include the product of two relations, denoted by R ◦R′ (or RR′, for short)

and defined by

R ◦R′ = {(s, s′)|∃s” : (s, s”) ∈ R ∧ (s”, s′) ∈ R′}.

The converse of relation R is the relation denoted by R̂ and defined by R̂ =

{(s, s′)|(s′, s) ∈ R}. The domain of relation R is denoted by dom(R) and defined

by dom(R) = {s|∃s′ : (s, s′) ∈ R}. The pre-restriction of relation R to set T is the

relation denoted by T\R = {(s, s′)|s ∈ T ∧ (s, s′) ∈ R}.

A relation R is said to be reflexive if and only if I ⊆ R; relation R is said to

be symmetric if and only if R = R̂; relation R is said to be transitive if and only

if RR ⊆ R; relation R is said to be asymmetric if and only if R ∩ R̂ = ϕ; relation

R is said to be antisymmetric if and only if R ∩ R̂ ⊆ I. A relation R is said to

be an equivalence relation if and only if it is reflexive, symmetric, and transitive. A

relation R is said to be a partial ordering if and only if it is reflexive, transitive and

antisymmetric. A relation R is said to be a strict partial ordering if and only if it is

transitive and asymmetric.

6

6

-

'

&

$

%
R

RL

dom(R) S

S ′

Figure 1.1 Relations R and RL.

A relation R is said to be deterministic (or: to be a function) if and only if

R̂R ⊆ I. A relation R is said to be total if and only if RL = L. A relation R is

said to be a vector if and only if RL = R; a vector V on set S is a relation of the

form V = A × S for some non-empty subset A of S. We may use vectors to define

pre-restrictions and post-restrictions: Given a relation R and a vector V = A × S,

the pre-restriction of R to A can be written as V ∩ R and the post-restriction of R

to A can be written R ∩ V̂ . Note that given a relation R, the product of R by the

universal relation L yields the rectangular relation RL = dom(R) × S. See Figure

1.1; we use RL as a representation of the domain of R in relational form.

1.4.1 Program semantics

Definition 1. Given two relations R and R′ on space S, we say that R′ refines R

(abbreviation: R′ ⊒ R, or R ⊑ R′) if and only if: RL ⊆ R′L and RL ∩R′ ⊆ R.

Intuitive interpretation: this definition means that R′ has a larger domain than

R, and that R′ assigns fewer images than R to the elements of the domain of R. This

definition of refinement is the relational equivalent to the usual formula of refinement,

which provides for weaker precondition (RL ⊆ R′L) and stronger postcondition (RL∩

R′ ⊆ R) [23–26]. See Figure 1.2.

7

6

-

'

&

$

%
�
�

�
�

R

R′

S

S ′

Figure 1.2 R′ refines R: R′ ⊒ R, R ⊑ R′.

Given a program P on space S, the function of program P (which, by abuse

of notation, we also denote by P) is the set of pairs of states (s, s′) such that if

execution of program P starts in state s, it terminates normally in state s′; by

terminates normally we mean that the execution terminates after a finite number

of steps, without attempting any illegal operation such as a division by zero, an array

reference out of bounds, a reference to a null pointer, a square root of a negative

number, etc... As a consequence of this definition, the domain of P is the set of states

(elements of S) such that execution of P on s terminates normally.

A specification on space S is a binary relation on S; it contains all the pairs of

states (s, s′) that the specifier considers correct. The correctness of a program P on

space, S can be determined with respect to a specification R on S according to the

following definition.

Definition 2. Given a program P on state S and a specification R on S, we say that

P is (totally) correct with respect to R if and only if P refines R. We say that P is

partially correct with respect to R if and only if P refines R ∩ PL.

Except for the fact that they are formulated in relational terms, these definitions

are equivalent to traditional definitions of total and partial correctness [25–28].

Figures 1.3 and 1.4 illustrate the properties of total and partial correctness; to be

totally correct with respect to specification R, a program must obey the specification

for all elements of dom(R), whereas a partially correct program must obey the

8

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

���������:

XXXXXXXXXz

-

���������:

XXXXXXXXXz

-

XXXXXXXXXzXXXXXXXXXzXXXXXXXXXz

-

���������:

��
���

����*

�
�

�
�

�
�
�

�
�>�

�
�
�

�
�

�
�

P R P ′

dom(R ∩ P) = {1, 2}
= dom(R) ⇒ P correct

dom(R ∩ P ′) = {1}
̸= dom(R) ⇒ P ′ incorrect

Figure 1.3 Total correctness.

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

���������:

XXXXXXXXXz

-

���������:

XXXXXXXXXz

-

���������:

���������:

H
HHH

HHH
HHj

��
���

����*�
�

�
�

Q R Q′

dom(R ∩Q) = {1}
= dom(R) ∩ dom(Q)

⇒ Q part. correct

dom(R ∩Q′) = {}
̸= dom(R) ∩ dom(Q′)

⇒ Q′ not part. correct

Figure 1.4 Partial correctness.

specification only where it terminates. Figures 1.4 and 1.3 illustrate the priorities

of Partial correctness and Total correctness concerning the specification.

9

CHAPTER 2

BASIC, STRICT AND BROAD SUBSUMPTION

2.1 Three Forms of Subsumption

In Kurtz et al. [15, 16]. introduce the concept of mutant subsumption, whereby a

mutant M of program P is said to subsume a mutant M ′ of P if and only if M

produces a different outcome from P for at least one input, and any input for which

M produces a different outcome from P causes M ′ to produce a different outcome

from P as well. This concept has given rise to much research aiming to minimize

mutant sets using the criterion of subsumption [29–33]: if a mutant set µ includes M

and M ′ such that M subsumes M ′, we can remove M ′ from µ without affecting the

effectiveness of µ, provided we do keep M .

While it is defined in terms of execution outcomes, the concept of subsumption

remains vague as to the exact definition of an execution outcome; also, while the

definition is based on whether two executions are identical or distinct, and it remains

to determine when two outcomes are comparable, and when two comparable outcomes

can be considered correct. We discuss these questions below:

• What is the Outcome of a Terminating Program?. We argue that even when
two programs terminate normally, it is not always clear whether they have the
same outcome: Consider the following two programs whose purpose is to swap
two integer variables x and y:

P1: {int x, y, z; z=x; x=y; y=z;}
P2: {int x, y, z; z=y; y=x; x=z;}

Whether we consider these two programs to have the same outcome or two
different outcomes depending on what we consider to be the outcome of each
program: If we consider the final value of x and y to be the outcome of these
programs, then they do have the same outcome if we consider the final state of
these programs to be the outcome of their executions, then they have different
outcomes, as the final value of z is not the same for P1 and P2.

• Is Non-Termination an Outcome or the Absence of Outcome? When we execute
a program on some input (or starting at some initial state), then the program

10

may terminate after a finite number of steps in some final state; we then say
that the execution converges. But the execution may also lead to an exception,
such as entering an infinite loop; attempting a division by zero; attempting to
reference a nil pointer; attempting to access an array outside of its bounds;
applying the log function to a negative number, etc. We then say that the
execution diverges; the question that this situation raises whether we consider
divergence to be an execution outcome, or do we consider that when a program
diverges, it has no outcome (in which case we cannot compare its outcome to
that of another program)?

The discussion of divergence may sound like a mundane academic question, but
it is, in fact, very relevant to mutation: indeed, several mutation operators are
prone to cause mutants to diverge, even when the base program converges. For
example,

– If we consider the following loop that indexes an array A[0..N-1] using
some index variable i in the base program P

P: while (i<N) {a[i]=0; ... i=i+1;}
and a mutation operator changes condition (i<N) onto (i<=N), then the
mutant will diverge due to an array reference out of bounds.

– If the base program P has a variable x of type integer and a variable y of
type float, and includes the following guarded assignment

P: if ((x!=0) && (x!=1)) {y=1.0/(x*(x-1));... }
and a mutation operator changes the conjunction into a disjunction, then
the resulting mutant will diverge for x = 0 and x = 1, due to a division by
zero.

– If the base program has an integer variable x and includes a loop of the
form

P: while (x>0) {x=x-2; ..;}
and a mutation operator changes the condition (x>0) into (x!=0) then
the resulting mutant will diverge whenever the initial value of x is odd due
to an infinite loop.

Not only do we need to make provisions for cases where mutants diverge, we
must also consider the possibility that the base program itself may diverge for
some inputs: indeed, test data is not determined by the domain of the program,
but rather by the domain of the specification that the program is supposed to
satisfy. For all these reasons, it is important to (re)define subsumption in a way
that makes provisions for cases where the base program and/ or its mutants fail
to converge.

• Comparing Execution Outcomes. Now that we recognize that not all executions
converge, and not all converging executions have well-defined outcomes, we must
decide on two questions:

– When are two outcomes comparable?

11

– When are two comparable outcomes identical?

In this chapter, we will present three distinct definitions of mutant subsumption,
which depends on how we answer these two questions.

Interestingly, we find that once we admit the possibility that the base program and

its mutants may diverge, but there is no difference between true subsumption and

dynamic subsumption, as defined originally: dynamic subsumption with respect to

program P for some test suite T is the same as true subsumption with respect to

program P ′, the pre-restriction of P to T . Also, we argue that there is no difference

between true subsumption and static subsumption, since static subsumption refers to

a static method to establish true subsumption, rather than to a different property

between the base program and its mutants.

Hence, rather than the distinction between true subsumption, static subsumption

and dynamic subsumption, we present an orthogonal classification: basic subsumption,

strict subsumption, and broad subsumption; this classification is based on what one

considers to be execution outcomes, what one considers to be comparable outcomes,

and what one considers to be distinct execution outcomes. We also show, in

passing, that the property of mutant subsumption is very similar to the property of

relative correctness, which orders candidate programs for correctness with respect to

a specification, and was introduced to define program faults [34]. Given the ongoing

discussions about the relationships between faults and mutations [6, 7, 35, 36], it is

hardly surprising that similar concepts are introduced to model mutations [15, 16]

and faults [34]; but it is noteworthy nevertheless.

In Section 2.2, we introduce three definitions of differentiator sets, where a

differentiator set between two programs is the set of inputs for which the programs

return different outcomes; there are three different forms of differentiator sets,

depending on how we interpret program outcomes and how we compare program

outcomes. In Section 2.3, we use the three forms of differentiator sets to introduce

12

three different forms of mutant subsumption. In Subsection 2.4.2, we use the

definitions presented in Section 2.3, to derive a statistical model that predicts the

shape of subsumption graphs; specifically, we estimate the likelihood of subsumption

between any two mutants, the estimated number of subsumption relations between

any two mutants (i.e., the number of arcs in a subsumption graph), and the number

of maximal nodes in a subsumption graph. In Section 2.5, we consider a benchmark

program, generate its mutants, weed out its equivalent mutants, then compute

the three differentiator sets of each mutant with the base program; using these

differentiator sets, we derive the subsumption relations between the mutants and draw

the three subsumption graphs between the mutants; the fact that these subsumption

graphs are different from each other proves that the three forms of subsumption are

indeed meaningful. In Section 2.6, we summarize our findings, critique them, and

then discuss venues for further research.

2.2 Three Forms of Differentiator Sets

2.2.1 Divergence and differentiator sets

In Section 2.1, we argued that while the definitions of mutant subsumption refer to

program outcomes and the condition under which two program outcomes are identical,

they are not perfectly clear about what constitutes the outcome of a program, when

two program outcomes are comparable, and if they are, when can we consider them

to be identical? In this section, we address this ambiguity by introducing several

definitions of differentiator sets, which reflect different interpretations of the questions

above.

Given two programs, say P and Q, the differentiator set of P and Q is the set

of initial states for which execution of P and Q yield different outcomes. For the

purposes of this chapter, we adopt the three definitions of differentiator sets proposed

by Mili in [37]:

13

• Basic Differentiator Set. The basic differentiator set of two programs P and Q
on space S is defined only if P and Q converge for all s in S; it is the set of
states s such that P (s) ̸= Q(s). This set is denoted by δB(P,Q) and defined
by:

δB(P,Q) = dom(P ∩Q).

• Strict Differentiator Set. The strict differentiator set of two programs P and
Q on space S is defined regardless of whether P and Q converge for all initial
states. It includes all the states for which executions of P and Q both converge
and yield distinct outcomes. This set is denoted by δS(P,Q) and defined by:

δS(P,Q) = dom(P) ∩ dom(Q) ∩ dom(P ∩Q).

• Loose (or Broad) Differentiator Set. The loose (broad) differentiator set of two
programs P and Q on space S is defined regardless of whether P and Q converge
for all initial states. It includes all the states for which executions of P and Q
both converge and yield distinct outcomes, as well as the states for which only
one of the programs converges and the other diverges. This set is denoted by
δL(P,Q) and defined by:

δL(P,Q) = (dom(P) ∪ dom(Q)) ∩ dom(P ∩Q).

Figure 2.1 illustrates the three definitions of differentiator sets (represented in red in

each case). To gain an intuitive understanding of these definitions, it suffices to note

the following details:

• The domain of program P (dom(P)) is the set of initial states on which execution
of P converges (i.e. terminates normally after a finite number of steps without
raising any exception or attempting any illegal operation). We assume that
when a program enters an infinite loop, it gets timed out by the run-time
environment so that non-termination is an observable outcome.

• The domain of (P ∩Q) is the set of inputs for which programs P and Q converge
and return the same outcome.

• The complement of the domain of (P ∩Q) is the set of inputs for which program
P and Q converge and return distinct outcomes. In other words,

dom(P ∩Q) = {s : s ∈ dom(P) ∧ s ∈ dom(Q) ∧ P (s) ̸= Q(s)}.

14

δB(P,Q) δS(P,Q)

δL(P,Q)

Figure 2.1 Due to Samia et al.,(2022): Three definitions of differentiator sets.

15

For an illustration of differentiator sets under the strict and broad interpretation,

we consider the following programs P and Q on space S defined by an integer variable

s.

P: {if (s<0) {while (s!=0) {s=s-1;}}

else {s=pow(s,4)+35*s*s+24;}}

Q: {if (s>5) {while (s!=5) {s=s+1;}}

else {s=10*pow(s,3)+50*s;}}

Note that P fails to converge for all s less than zero (since it enters an infinite

loop) and Q fails to converge for all s greater than 5 (for the same reason). The

functions of these programs are:

P = {(s, s′)|s ≥ 0 ∧ s′ = s4 + 35s2 + 24}.

Q = {(s, s′)|s ≤ 5 ∧ s′ = 10s3 + 50s}.

From these definitions, we compute the following parameters:

dom(P) = {s|s ≥ 0}.

dom(Q) = {s|s ≤ 5}.

P ∩Q = {(s, s′)|0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 = 10s3 + 50s ∧ s′ = 10s3 + 50s}.

dom(P ∩Q) = {s|0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 = 10s3 + 50s}.

By solving the equation (s4 + 35s2 + 24 = 10s3 + 50s), we can simplify the formula

of dom(P ∩Q) as:

dom(P ∩Q) = {s|1 ≤ s ≤ 4}.

Whence we find the following results for the strict differentiator set and the broad

differentiator set of programs P and Q:

δ1(P,Q) = {0, 5}.

δ2(P,Q) = {s|s ≤ 0 ∨ s ≥ 5}.

Interpretation:

• Strict Differentiator Set. The set of initial states that expose the difference
between P and Q is {0, 5} because the interval [0..5] includes all the initial
states where both P and Q are defined (dom(P) ∩ dom(Q)), and programs P
andQ return the same results for initial states in the interval [1..4] (dom(P∩Q)).

16

'

&

$

%

'

&

$

%

'

&

$

%

dom(Q)

dom(P)

dom(P)∩
dom(Q)

dom(P ∩Q)

↑ dom(P)∪
dom(Q) →

Figure 2.2 Test data to expose behavior difference.

• Broad Differentiator Set. Any initial state outside the interval [1..4] exposes
the difference between P and Q, either because they are both defined but give
different results (if the initial state is 0 or 5) or because one of them terminates
normally while the other diverges (for s greater than 5, P terminates normally
but Q does not; for s negative, Q terminates normally but P does not).

2.3 Three Forms of Subsumption

2.3.1 Definitions and properties

In Kurtz et al. [15, 16] , define the concept of true subsumption as follows:

Definition 3. Given a program P on S and two mutants M and M ′, we say that M

subsumes M ′ with respect to P if and only if:

P1 There exists an initial state s for which P and M produce different outcomes.

P2 For all s in S such that P and M produce different outcomes, so do P and M ′.

17

Since this definition makes no mention of P , M or M ′ failing to converge, we

assume that P , M and M ′ are considered to converge for all initial states. The

following Proposition formulates subsumption by means of the basic differentiator

sets.

Proposition 1. Given a program P on space S and two mutants M and M ′ of P ,

M subsumes M ′ if and only if:

∅ ⊂ δB(P,M) ⊆ δB(P,M
′).

The proof of this proposition is due to [38]. Proposition 1 provides an alternative

formula to define mutant subsumption in the case where we assume that all programs

and mutants terminate for all initial states. This proposition is formulated in terms

of the basic differentiator sets, which are defined when the program and its mutants

are assumed to converge for all initial states, but in Section 2.2, we have introduced

two more definitions of differentiator sets, which do not assume universal convergence

of programs and mutants, and take a liberal interpretation of program outcomes

and when to consider outcomes as identical or distinct. The following definitions

generalize the concept of subsumption to the case when programs and their mutants

do not necessarily converge for all initial states.

Definition 4. Strict Subsumption. Given a program P on space S and two

mutants M and M ′ of P , we say that M strictly subsumes M ′ if and only if:

∅ ⊂ δS(P,M) ⊆ δS(P,M
′).

18

Definition 5. Loose Subsumption. Given a program P on space S and two

mutants M and M ′ of P , we say that M loosely subsumes M ′ if and only if:

∅ ⊂ δL(P,M) ⊆ δL(P,M
′).

In Section 4.4, we see that the distinction between the basic definition of

subsumption (Definition 3, [15, 16]), strict subsumption, and loose subsumption is

not a mere academic exercise. These definitions yield vastly different subsumption

graphs.

2.3.2 Subsumption and dynamic subsumption

The following definition is due to Kurtz et al. [15, 16].

Definition 6. Given a program P , a test suite T and two mutants of P , say M and

M ′, we say that M dynamically subsumes M ′ with respect to P for test suite T if

and only if:

D1 There exists a test t ∈ T such that P and M compute different outcomes on t.

D2 For every possible test t ∈ T , if M computes a different outcome from P , then

so does M ′.

From Definitions 3 and 6, it is easy to see that true subsumption is a special

case of dynamic subsumption, namely the case when T is the set of all possible tests.

In the following proposition, we show that dynamic subsumption is also a special case

of true subsumption.

Proposition 2. Given a program P , a test suite T and two mutants of P , say M

and M ′, M dynamically subsumes M ′ with respect to P for test suite T if and only if

M subsumes M ′ (in the sense of true subsumption) with respect to P ′ =T\ P , where

T\P is the pre-restriction of P to T .

19

The proof of this proposition is due to [38]. The program that computes function

T\P can be written as:

p’: {if (s in T) {p;} else {abort();}}

Dynamic subsumption of M over M ′ for base program P with respect to test

suite T is the same as true subsumption of M over M ′ for base program T\P .

2.4 Statistical Modeling

2.4.1 Probability of subsumption

In [17], Gazzola et al. present a comprehensive survey of program repair; this

survey highlights the predominance of search space size as the most critical concern

in program repair. At its core, program repair is the act of making a program

more-correct than it is [39]; when the program has only one fault (which is what many

program repair experiments assume), then making the program absolutely correct is

indistinguishable from making it relatively correct (i.e. more correct than it is).

Most program repair methods rely on common mutation operators to generate repair

candidates, essentially the same kind of mutation operators that are used in mutation

experiments; on the other hand, according to [38], the search for candidate repairs is

based on the same criterion (relative correctness) as the determination of subsumption

relations. This raises the following question:

• If mutants are generated by the same operators, and pairs of mutants are

compared using the same criterion (relative correctness ⇔ subsumption), why

is it so difficult to find program repairs (i.e., to reveal relative correctness

relationships) yet so easy to reveal subsumption relations, as most subsumption

graphs published in the literature are very dense (in terms of number of arcs

over number of nodes)? Is this perhaps the result of loss of recall in program

repair, or loss of precision in mutant subsumption?

20

We are not going to answer this question in this chapter (as that requires an empirical

study well beyond the scope of this chapter, but we will discuss the mathematics that

enable us to analyze this matter.

Relative correctness is determined by checking an inclusion relationship between

competence domains, and subsumption is determined by checking an inclusion

relationship between differentiator sets. Hence, both criteria can be modeled

statistically by considering the following question: If we chooseK non-empty subsets

of a set of size T , what is the probability that any two subsets be in an inclusion

relationship? Once we estimate this probability, we can answer two related questions:

• What is the expected number of inclusion relationships between these K
subsets? This would be the expected number of arcs in a subsumption graph
of K nodes.

• What is the expected number of maximal subsets among the K subsets? This
would be the size of the minimal set of mutants, as determined by subsumption.

These two questions are addressed in the next two subsections. It is important to

note that by modeling subsumption and relative correctness with set inclusion, we are

assuming that the competence domains of two mutants with respect to a specification

are statistically independent. Our statistical analysis is sound only to the extent that

this assumption is valid.

2.4.2 Graph density

By abuse of notation, we use the same symbol to denote a set and its cardinality.

Given a set T and K non-empty subsets thereof, we ponder the question: what is

the probability that any two subsets among K are in an inclusion relationship? The

Following proposition is due to [38].

Proposition 3. Under the assumption of statistical independence of differentiator set

the expected number of arcs in a subsumption graph of K nodes can be approximated

21

by:

(
3

4
)T ×K(K − 1).

In practice, even with moderate values of T , this expected number is very small.

2.4.3 Number of maximal nodes

Using the probability estimate p = 3
4

T
, we can estimate the probability that any

subset of T is maximal: A given subset is maximal if and only if all (K − 1) other

subsets are not supersets thereof; hence,

prob(maximality) = (1− (
3

4
)T)K−1.

Whence we derive the expected number of maximal mutants in a subsumption (/

relative correctness) graph that stems from K mutants and a test suite of size T :

K × (1− (
3

4
)T)K−1.

2.5 Illustration: Three Subsumption Graphs

We consider the Java benchmark program of jTerminal 1, an open-source software

product routinely used in mutation testing experiments [30]. We apply the mutant

generation tool LittleDarwin in conjunction with a test generation and deployment

class that includes 35 test cases [30]; we augmented the benchmark test suite with

two additional tests, intended specifically to trip the base program jTerminal, by

causing it to diverge. We let T designate the augmented test suite codified in this

test class; all our analysis of mutant equivalence, mutant redundancy, mutant

1available online at http://www.grahamedgecombe.com /projects /jterminal

22

survival, etc is based on the outcomes of programs and mutants on this test suite

(and carefully selected subsets thereof). Execution of LittleDarwin on jTerminal

yields 94 mutants, numbered m1 to m94; the test of these mutants against the

original using the selected test suite kills 48 mutants; for the sake of documentation,

we list them below:

m1, m2, m7, m8, m9, m10, m11, m12, m13,

m14, m15, m16, m17, m18, m19, m21, m22,

m23, m24, m25, m26, m27, m28, m44, m45,

m46, m48, m49, m50, m51, m52, m53, m54,

m55, m56, m57, m58, m59, m60, m61, m62,

m63, m83, m88, m89, m90, m92, m93.

The remaining 46 mutants are semantically equivalent to the pre-restriction of

jTerminal to T . The first order of business is to partition these 48 mutants into

equivalence classes modulo semantic equivalence; we find that these 48 mutants are

partitioned into 31 equivalence classes, and we select a member from each class; we

let µ be the set of selected mutants: µ =

m1, m2, m7, m11, m13, m15, m19, m21, m22,

m23, m24, m25, m27, m28, m44, m45, m46, m48,

m49, m50, m51, m52, m53, m55, m56, m57, m60,

m63, m92, m93.

We resolve to draw the subsumption graphs of these mutants according to the

three definitions:

• Basic/ True Subsumption:

∅ ⊂ δB(jTerminal,M) ⊆ δB(jTerminal,M ′).

23

• Strict Subsumption:

∅ ⊂ δS(jTerminal,M) ⊆ δS(jTerminal,M ′).

• Loose Subsumption:

∅ ⊂ δL(jTerminal,M) ⊆ δL(jTerminal,M ′).

To this effect, we must compute the differentiator sets

δB(jTerminal,M),

δS(jTerminal,M),

δL(jTerminal,M)

for all 31 mutants selected above, with respect to jTerminal.

Note that this experiment is artificial in the sense that whereas the strict and

loose definitions of differentiator sets can be applied to the same combination of

program and test suite, the basic definition can only be applied when we know or

assume, that the base program and all the mutants converge for all the elements of

the test suite. In the case of jTerminal and its mutants, this assumption does not

hold, as virtually all of them fail to converge on at least some elements of T . We

obviate this difficulty by considering that divergence is itself an execution outcome,

but this is merely a convenient assumption for the sake of the experiment.

By computing the basic, strict, and loose differentiator sets of all the mutants

with respect to jTerminal and comparing them for inclusion, we derive the

subsumption relations between the mutants, which we can represent by graphs; these

graphs are given in, respectively, Figures 2.3, 2.4 and 2.5. Nodes in these graphs

represent mutants, and arrows represent subsumption relations: whenever there is

an arrow from a mutant M to mutant M ′, it means that M subsumes M ′ (hence,

M ′ can be eliminated from the mutant set without affecting its effectiveness). When

two mutants subsume each other (for example M27 and M28 in 2.4), this means

24

that though these mutants are distinct from each other (they compute functions

functions), they have the same differentiator set with respect to jTerminal.

From these graphs, we derive minimal mutant sets by selecting the maximal

nodes in the subsumption ordering. Once we have the minimal mutant sets, we

derive minimal test suites that kill all the mutants in these sets. We verify, in each

case, that the test suites that kill all the mutants of the minimal mutant sets actually,

kill all the 48 non-equivalent mutants derived from our experiment; this comes as no

surprise since this is precisely the rationale for deleting subsumed mutants.

For strict subsumption, for example, we find the following minimal mutant set:

m22, m23, m27, m28, m44, m45, m48, m50, m51, m54, m56, m61, m83, m92,

m93.

Using this mutant set, we derive minimal test suites that kill all these mutants, we

find 6 minimal test suites of size 7:

Suite 1: {t7,t16,t18,t20,t21,t22,t25}

Suite 2: {t7,t16,t18,t20,t21,t22,t26}

Suite 3: {t16,t18,t20,t21,t22,t23,t25}

Suite 4: {t16,t18,t20,t21,t22,t25,t27}

Suite 5: {t16,t18,t20,t21,t22,t23,t26}

Suite 6: {t16,t18,t20,t21,t22,t26,t27}

By virtue of subsumption, these test suites kill all 31 mutants selected above; by

virtue of equivalence, they necessarily kill all 48 killable mutants of jTerminal.

Using the basic interpretation of subsumption, we find 96 minimal test suites,

all of them of size 12; for the loose interpretation of subsumption, we find 48 minimal

test suites, all of them of size 11. Due to space limitations, we do not include these

test suites. Suffice it to say that their number and their size are vastly different from

those found under the strict interpretation.

25

Figure 2.3 Due to Samia et al.,(2022): Basic subsumption graph, jTerminal mutants.

Figure 2.4 Strict subsumption graph, jTerminal mutants.

Figure 2.5 Loose subsumption graph, jTerminal mutants.

26

2.6 Concluding Remarks

2.6.1 Summary

we consider the definition of mutant subsumption, and we resolve to generalize it

by taking into consideration the possibility that the execution of programs or their

mutants may diverge. The possibility of divergence raises the question of what is the

outcome of an execution (is divergence an outcome or the absence of outcome), under

what conditions can we compare two outcomes (can we compare the outcome of a

program that converges with that of a program that diverges? can we compare the

outcome of two programs that diverge?), and under what condition can we consider

that two comparable outcomes are identical or distinct (when two programs diverge,

do they have the same outcome?). We argue that the definition of subsumption varies

according to how we answer these questions, and we identify three possible formulas

for subsumption based on three sensible interpretations of these questions.

We further argue that considering the possibility of divergence is not a mundane

academic exercise, but an important consideration in mutation testing, as several

mutation operators are prone to trigger divergence, even when the base program

makes careful provisions to avoid it. Also, we find that once we admit the possibility

that programs may define a partial function (i.e., that they may diverge for some

initial states), then there is no difference between true subsumption and dynamic

subsumption: dynamic subsumption with respect to a program P and test suite T is

the equivalent to true subsumption with respect to the pre-restriction of P to T .

We also find, interestingly, that the property of mutant subsumption with

respect to a base program P is equivalent to the property of relative correctness

with respect to the function of program P interpreted as a specification. The

main difference is that relative correctness culminates in absolute correctness, which

characterizes the candidate programs at the top of the relative correctness graph;

these are the absolutely correct programs. By contrast, due to condition P1, mutant

27

subsumption culminates at the layer immediately below the top of the graph; these

are the maximally stubborn mutants (whose differentiator sets are singletons).

We generalize the definition of mutant subsumption by modeling the

subsumption of mutant M over mutant M ′ with respect to program P by an

equation of the form:

∅ ⊂ δ(P,M) ⊆ δ(P,M ′),

where δ(,) is the differentiator set function, for three possible definitions of δ(,). Both

δ(P,M) and δ(P,M ′) are subsets of T . This model enables us to reason about the

probability of occurrence of subsumption relations: Given that differentiator sets

are subsets of T , there are 2|T | − 1 possible non-empty differentiator sets; using

combinatorial formulas, we can estimate the probability that two random subsets of

T have an inclusion relation; then we can use this probability to estimate the number

of arcs in a subsumption graph and the number of maximal nodes in a subsumption

graph. These quantities can be estimated in terms of the cardinality of T and the

number of mutants; this is the subject of Subsection 2.4.2.

In Section 4.4, we show empirical evidence of the effect that the distinctions

we make between basic subsumption, strict subsumption and broad (aka loose)

subsumption are meaningful. In the benchmark example we consider in this section,

the three definitions of differentiator sets yield three distinct definitions of what it

means to kill a mutant, three distinct definition of mutant subsumption, and three

distinct subsumption graphs.

2.6.2 Critique

It is important to acknowledge that when we talk about execution outcomes, we leave

much room for interpretation: not only does divergence raises a host of issues about

what constitutes the outcome of an execution, but even when an execution converges,

28

it is not always clear what constitutes the outcome of the execution. To clarify this

matter, it helps to adopt a homogeneous model, based on state spaces and a mapping

from initial states to final states, or a heterogeneous model based on a mapping from

an input stream to an output stream. It is also important to specify which definition

of differentiator set one adopts, as that determines many important parameters of

the analysis.

The analogy between mutant subsumption and relative correctness is inter-

esting, but to ensure that it is useful beyond academic curiosity, we need to explore

how advances in each branch can benefit the other branch.

The statistical study of Subsection 2.4.2 is interesting but it raises a paradox:

intuitively if we take two random subsets of a set T , the probability that one of them

is a subset of the other decreases very quickly with the cardinality of T . This seems

to suggest that subsumption graphs ought to have very few arcs between mutants,

but most published subsumption graphs are very dense, i.e., have many arcs for

the number of nodes they have [15, 16, 29–33]. The only possible explanation for

this discrepancy is that the differentiator sets of mutants generated from a base

program are not random, but it is difficult to imagine what statistical relation may

hold between the differentiator sets of two mutants of the same program.

29

CHAPTER 3

MINIMIZING MUTANT SETS BY EQUIVALENCE AND

SUBSUMPTION

3.1 Minimizing Mutant Sets

Mutation testing is a reliable way to assess the effectiveness of test suites, but it is

also an expensive proposition. As a consequence, it is sensible to try to reduce the

size of the mutant sets, without loss of effectiveness. Two broad families of criteria

are used for the purpose of minimizing mutant sets:

• Subsumption [15,16,29–33,40]. A mutant M is said to subsume a mutant M ′ if
and only if any test that kills M also kills M ′, and there exists a test that kills
M . The subsumption criterion provides that if M subsumes M ′ then M ′ can
be removed from the set of mutants.

• Equivalence [14]. In [14] Marsit et al. consider the equivalence relation of
semantic equivalence between mutants, and resolve to derive a minimal set of
mutants as a set that includes one element from each equivalence class.

In this chapter, we consider these two policies of mutant set minimization and compare

them analytically and empirically. While subsumption is defined as an ordering

relation between individual mutants, we argue that it is best viewed as an ordering

relation between equivalence classes of mutants (modulo semantic equivalence):

Indeed, if M subsumes M ′ and there are ten mutants that are equivalent to M and

ten that are equivalent to M ′, we are still looking at a single instance of the ordering

relation, not 100 instances.

The implication of this remark is that subsumption ought not be applied as an

alternative to equivalence, but rather alongside equivalence: We must first identify

equivalence classes of mutants modulo semantic equivalence, then identify which

equivalence classes are maximal by subsumption, and select a representative from

each maximal equivalence class. This raises the question: if we have reduced a set of

30

mutants to one representative per equivalence class, how much more reduction do we

achieve by applying the criterion of subsumption? As a corollary of this question, it is

also legitimate to ask: is the extra reduction in the set of Are mutants commensurate

with the effort and risk of subsumption?

The criteria of mutant set minimization by equivalence and by subsumption

suffers from another flaw: they both fail to explicitly specify a constraint under which

the minimization is attempted. Indeed, all optimization problems aim to maximize

or minimize an objective function under some constraints: The Knapsack Problem

aims to maximize some benefit function under the constraint that the capacity of

the knapsack is bounded; the Linear Programming problem aims to maximize some

linear objective function under some affine constraints on the system parameters; the

Maximum Flow problem aims to maximize the flow through a flow network subject to

the topology of the network and the constraint is that each arc has a limited capacity,

etc. Of course, we consider that the minimization of mutant sets assumes implicitly

that discarded mutants do not reduce the effectiveness of the mutant set, but in the

absence of an explicit definition of what is the effectiveness of a mutant set and how

to quantify it, it is difficult to make the case that the minimization algorithms are

sound. This question is discussed in Section 3.3.

Another question that is raised by the use of subsumption as a criterion for

mutant set minimization is the fact that the definition of subsumption is based on

the outcome of programs and mutants being different. In order to give a precise

meaning to this definition, we must agree on what is the outcome of a program and

when we say that two outcomes are identical or distinct. This is less clear-cut than

it may appear:

• What is a program’s outcome? If a program or a mutant fails to terminate due
to an infinite loop, a division by zero, or an array reference out of bound, do
we consider these to be legitimate outcomes? Or do we define the outcome of a
program only when the Program’s execution terminates normally?

31

Also, even when a program does terminate normally, it is not always clear what
we consider to be its outcome: is it its final state or the output that the program
delivers as a projection of the final state? For example, what is the program’s
outcome if a program permutes two variables x and y using an auxiliary variable
z? Is it the final values of x, y, and z, or just the final values of x and y?

• When do we say that two outcomes are identical? If two programs terminate
normally for some common input, then (assuming we agree on what variables
represent the program’s outcome) we can tell whether they have the same
outcome. But what about if one of them converges and the other fails to
converge? Do we assume that they have distinct outcomes or that their
outcomes cannot be compared? What about the case when two programs fail to
converge? Do we consider that they have the same outcome (failure to converge)
or that their outcomes are incomparable?

This matter will be discussed in this chapter, and subsumption will be (re) defined

accordingly.

Using these concepts, we revisit the definition of subsumption and generalize

it in Section 3.2 in several ways: first by revisiting the concept of program outcome

and the criterion of outcome equality (or diversity) in light of the possibility that

programs and mutants may fail to converge for a given input; and second, by

redefining the subsumption between mutant equivalence classes as an inequality

between differentiator sets.In Section 3.3, we consider metrics for mutant effectiveness

that may be used as constraints under which mutant set minimization is attempted.

The models introduced in Section 3.2, can also be used to estimate statistically, the

frequency of subsumption relations between equivalence classes, and the expected

number of maximal equivalence classes in the subsumption graph; this is done in

Subsection 2.4.2. In Section 3.4, we consider a sample example of a mutation

experiment to which we apply minimization by subsumption and equivalence, and

assess their results. We conclude in Section 5.4, with some observations and draw

some preliminary lessons.

32

3.1.1 Detector sets

An ideal test suite is one that we can rely on to prove correctness: If program P runs

successfully on test suite T , we want to be able to infer that P is correct; equivalently,

we want that if P is incorrect, then testing P on test suite T ought to expose a failure

of P . This leads us to the concept of detector set, i.e., the set of all the initial states on

which program P violates its specification. This set is important because it enables

us to characterize ideal test suites: ideal test suites are supersets of the program’s

detector set.

But before we define detector sets, we must consider that there are two

definitions of correctness, and these yield two distinct interpretations of what it means

for a program to fall short of the standard of correctness; therefore, there are two

possible definitions of detector sets, depending on what standard of correctness we

adopt. We consider two definitions of program correctness: total correctness [25, 28]

and partial correctness [27]. These are given in Chapter 1.

Definition 7. Due to [41] Given a program P on space S and a specification (relation)

R on S, P is said to be totally correct with respect to R if and only if:

dom(R) = dom(R ∩ P).

Due to [1] Given a program P on space S and a specification (relation) R on S, P is

said to be partially correct with respect to R if and only if:

dom(R) ∩ dom(P) = dom(R ∩ P).

These definitions are equivalent, modulo differences of notation, to the tradi-

tional definitions of total and partial correctness [25, 27, 28]. The domain of (R ∩ P)

33

is the set of initial states on which P satisfies R; we refer to it as the competence

domain of P with respect to R. Since total correctness is a stronger property than

(logically implies) partial correctness, we expect the set of tests that disprove the

former to be a superset of the set of tests that disprove the latter. We adopt the

definitions of detector sets given in [37], hence, we content ourselves in this chapter

with introducing these definitions and briefly commenting on them.

Definition 8. Due to [37] Given a program P on space S and a specification R on

S, the total detector set of P with respect to R is the set denoted by ΘT (P,R) and

defined as the set of initial states on which execution of P produces an outcome that

disproves the total correctness of P with respect to R (either the execution fails to

converge or it does converge but produces a final state s′ such that (s, s′) ̸∈ R).

Given a program P on space S and a specification R on S, the partial detector

set of P with respect to R is the set denoted by ΘP (P,R) and defined as the set of

initial states on which execution of P produces an outcome that disproves the partial

correctness of P with respect to R (the execution converges but produces a final state

s′ such that (s, s′) ̸∈ R).

When we want to refer to a detector set and do not wish to specify to which one

we refer, we use the notation Θ(P,R). The following proposition, due to [37] gives

explicit expressions of the detector sets.

Proposition 4. Given a program P on space S and a specification R on S, the

total detector set and the partial detector set of P with respect to R are given by the

following formulas:

ΘT (P,R) = dom(R) ∩ dom(P ∩R).

ΘP (P,R) = dom(P) ∩ dom(R) ∩ dom(P ∩R).

34

See Figure 3.1. A test suite T disproves the total (respectively, partial)

correctness of P with respect to R if and only if (respectively):

T ∩ΘT (R,P) ̸= ∅.

T ∩ΘP (R,P) ̸= ∅.

If a test suite T disproves a correctness property, then so does any superset thereof.

See Figure 3.2; test suites T0, T1 and T2 do not disprove correctness; TP disproves

partial correctness; hence, also total correctness; TT disproves total correctness but

not partial correctness. According to the definitions of total and partial correctness

(Definition 7) we can easily prove the following Proposition.

Proposition 5. A program P is totally (resp. partially) correct with respect to a

specification R if and only if its total (resp. partial) detector set is empty.

3.2 Revisiting Subsumption

In this section, we use differentiator sets to characterize the subsumption relation,

then to generalize this relation into two ways:

• First, by considering the case where the base program or the mutants fail to
converge for some initial states.

• Second, by defining subsumption not between individual equivalence classes of
mutants, but between sets of equivalence classes.

3.2.1 Subsumption of convergent programs

We consider a program P on space S and two mutants M and M ′ of P , and we

assume that P , M and M ′ converge for all s in S. According to [15, 16], mutant

subsumption is defined as follows.

35

'

&

$

%

'

&

$

%

'

&

$

%

dom(P)

dom(R)

dom(R)∩
dom(P)

dom(R ∩ P)

Figure 3.1 Test data to disprove correctness.

'

&

$

%

'

&

$

%

'

&

$

%

dom(P)

dom(R)

dom(R)∩
dom(P)

dom(R ∩ P)�
�

�
�T0�

�
�
�TP

�
�

�
�T1

�
�

�
�T2

'

&

$

%

TT

Figure 3.2 Sample test suites.

36

Definition 9. Given a program P on space S and two mutants M and M ′ of P , we

say that M subsumes M ′ with respect to P if and only if:

• There exists an initial state s in S such that P and M computes different
outcomes.

• For all initial states s in S, if M computes a different outcomes from P on s,
then so does M ′.

The following Proposition gives a simple characterization of mutant

subsumption, using differentiator sets.

Proposition 6. Given a program P on space S and two mutants M and M ′, M

subsumes M ′ with respect to P if and only if:

∅ ⊂ δ0(P,M) ⊆ δ0(P,M
′).

The proof of this Proposition is due to [38].

3.2.2 Considering divergence

Failure to converge is a condition that arises often, not least in mutation testing; for

example, if we have a loop that visits all the cells of an array between indices 0 and

N − 1 using the condition while (i<N), and we change the condition of the loop

from < to ≤ (a common mutation operator), the mutant we generate will raise an

exception (array reference out of bound) and fail to terminate normally. Hence, it is

sensible to (re-) define subsumption in a way that makes provisions for the possibility

that the program or its mutants may diverge for some initial states. To this effect, we

use the more general definitions of differentiator sets, namely δ1(P,M) and δ2(P,M).

37

Definition 10. Given a program P on space S and two mutants M and M ′ of P ,

we say that M subsumes M ′ with respect to P if and only if:

∅ ⊂ δ(P,M) ⊆ δ(P,M ′).

We use δ(,) as a surrogate for any of the differentiator sets we have introduced

in Section 3.1: δ0(,), δ1(,), δ2(,). A user may select a function among these,

depending on their interpretation of program outcomes, and when they consider

that two outcomes are comparables, and if they are when they consider that two

outcomes are identical. Note that even though we define subsumption as if it were

a relation between individual mutants, we refer to classes of equivalence of mutants

modulo semantic equivalence. Since we are taking a semantic approach, we do not

distinguish between mutants that compute the same function on S, even if they are

syntactically distinct.

3.3 Mutant Set Effectiveness

The problem of minimizing a set of mutants is, at its core, an optimization problem,

except that the way it is formulated in the literature does not lend itself to an

optimization model. Indeed, an authentic optimization includes an objective function

to optimize (minimize or maximize) along with a set of constraints under which this

optimization is attempted; if it were not for the constraints, the minimal mutant set

would be the empty set. But, of course, that is not the intent: the intent is to find a

minimal set of mutants that has the same effectiveness as the original set of killable

mutants. This raises the question: How do we define (or measure or characterize) the

effectiveness of a set of mutants?

As a first cut, we can consider that the effectiveness of a set of mutants is

measured by its ability to vet/ identify compelling test suites.

38

If we assume that the function of a set of mutants is to assess the quality of

test suites, then its effectiveness can be measured by the quality/ effectiveness of test

suites that it vets. This leads us to ponder how to measure the quality of a test suite.

To this effect, we introduce the concept of semantic coverage of a test suite.

Definition 11. Given a program P on space S, a specification R, and a test suite T

(a subset of S), the semantic coverage of test suite T of program P with respect to R

is denoted by Γ(T, P,R) and defined as:

Γ(T, P,R) = T ∪Θ(P,R),

where Θ(P,R) is the (total or partial) detector set of P with respect to R.

The semantic coverage of a test suite T ranges from the empty set to all of S:

• It equals the empty set when T is empty and the detector set Θ(P,R) equals
S; in other words, even though any initial state exposes the program’s failure,
T does not expose any failure because it is empty; that is the worst kind of test
suite.

• Conversely, this quantity takes the maximal value of S when Θ(P,R) is a subset
of T ; in other words, T detects all the failures of P with respect to R (failure
to be correct or failure to be partially correct, depending on which version of
Θ(P,R) we choose). That is the best kind of test suite, the smallest test suite
that has a maximal semantic coverage (Γ(T, P,R) = S) is the detector set of
P with respect to R: it is T = Θ(P,R); it includes all the initial states that
detect failure, and nothing else.

As a simple explanation of this formula, consider that the complement of Γ(T, P,R)

can be written as:

Θ(P,R) ∩ T .

This set represents the elements of Θ(P,R) that are not in T , in other words, the

initial states that expose faults in P but are not in T ; clearly, the fewer such elements

39

S

'

&

$

%
Θ(P,R)

'

&

$

%
T

Figure 3.3 Semantic coverage of T with respect to R.

we have, the better (hence, the larger their complement, the better). See Figure 4.5.

The semantic coverage of test T with respect to specification, R is the complement

of the intersection of Θ(P,R) with the complement of T .

In [42], Binksma et al. critique syntactic measures of test coverage and define

an alternative measure of test coverage that is based on program semantics; we know

of no other work that attempts to define semantic measures of test coverage.

Now that we know how to measure the quality of test suites, we use this metric

to measure the quality of a set of mutants. We want to consider that the quality of

a set of mutants is defined by the quality of the test suites that it vets/ selects; also,

we consider that a test suite is selected by a set of killable mutants if and only if the

test suite kills all the mutants of the set. With this in mind, we introduce below two

measures of the quality of a mutant set.

Definition 12. Given a program P on space S and a specification R on S, and

given a set of mutants µ = {M1,M2, ...,Mk}, we define two measures of quality of the

mutant set µ:

• Assured Quality.

QA(µ) =
⋂

M∈µ∧T∩Θ(P,M) ̸=∅ Γ(T, P,R).

40

• Potential Quality.

QP (µ) =
⋃

M∈µ∧T∩Θ(P,M) ̸=∅ Γ(T, P,R).

The condition T ∩ Θ(P,M) ̸= ∅ means that test suite T kills mutant M . So

that QA(µ) is the minimal semantic test coverage of a test suite T that kills all the

mutants of µ, and QP (µ) is the maximal semantic test coverage of a test suite T that

kills all the mutants of µ. We use metric QA(µ) when we are interested to minimize

risk and we use metric QP (µ) when we are interested to maximize potential reward.

When we want to refer to the quality of a set of mutants without specifying which

metric we intend, we use the notation Q(µ).

Given the function Q(µ), we can now (re) formulate the problem of minimizing

a set of mutants as follows.

Definition 13. Given a program P on space S, a specification R on S and a set of

mutants µ = {M1,M2, ...,Mk} that are killable concerning R. Minimizing the set of

mutants µ consists in finding a subset µ′ of µ that satisfies the following conditions:

• Q(µ′) = Q(µ).

• µ′ is minimal concerning the above property, i.e. any proper subset of µ′ violates
this property.

It is easy to prove that if µ contains two mutants Mi and Mj that are

semantically equivalent, then one of them can be removed without affecting the

quality metric Q(µ). Whether the same can be said of the subsumption criterion,

we can neither claim nor (much less) prove; we leave this for further research.

3.4 Minimizing a Mutant Set for jTerminal

We consider the Java benchmark program of jTerminal1, an open-source software

product routinely used in mutation testing experiments [30]. We apply the mutant

generation tool LittleDarwin in conjunction with a test generation and deployment

1available online at http://www.grahamedgecombe.com/projects/jterminal.

41

class that includes 35 test cases [30]. All our analysis of mutant equivalence, mutant

redundancy, mutant survival, etc is based on the outcomes of programs and mutants

on this test suite (and carefully selected subsets thereof). For differentiator sets, we

adopt the broad definition δ2(P,M); hence, we consider that failure to converge is a

legitimate execution outcome and that failure to converge is comparable to a normal

outcome and is distinct from that place. Execution of LittleDarwin on jTerminal

yields 94 mutants, numbered m1 to m94; the test of these mutants against the original

using the selected test suite kills 48 mutants; for the sake of documentation, we list

them below:

m1, m2, m7, m8, m9, m10, m11, m12, m13,

m14, m15, m16, m17, m18, m19, m21, m22,

m23, m24, m25, m26, m27, m28, m44, m45,

m46, m48, m49, m50, m51, m52, m53, m54,

m55, m56, m57, m58, m59, m60, m61, m62,

m63, m83, m88, m89, m90, m92, m93.

The remaining 46 mutants are semantically equivalent to the pre-restriction of

jTerminal to the selected test suite. In this section, we generate a minimal mutant set

out of the 48 mutants using respectively the criterion of equivalence and the criterion

of subsumption.

3.4.1 Minimal mutant set by equivalence

The procedure for generating a minimal mutant set is outlined in [14] provides for

executing the following steps:

• Parse the source code of jTerminal to compute its redundancy metrics [43]:
State redundancy (SRI , SRF); functional redundancy (FR); Non Injectivity
(NI).

• Use the redundancy metrics to estimate the REM (Rate of Equivalent Mutants)
of jTerminal: REM = f(SRI , SRF , FR,NI).

42

• Use the REM of jTerminal to estimate the number of equivalence classes of the
set of mutants modulo semantic equivalence: K = NEC(N,REM), where N
is the number of (killed) mutants.

• Using K and N , estimate the expected number of mutants that we must inspect
(among N) before we encounter K distinct mutants: H = NOI(N,K).

• Inspect the mutants one by one, comparing them against previously inspected
mutants, until we find K distinct mutants or we inspect H mutants in total.

• We adopt the resulting set of distinct mutants as a minimal set of mutants
that preserves (approximately) the same functionality as the original set of N
mutants.

Because, in this case, the number of mutants is not very large, and because we want

to obviate the uncertainties that stem from estimating the redundancy metrics, then

REM , then K, then H, we resolve to inspect all 48 mutants and compare them to

each other to find K distinct mutants. We find that out of the 48 mutants under

consideration, the following 30 are distinct from each other. We find µE =

m1, m2, m7, m11, m13, m15, m19, m21, m22,

m23, m24, m25, m27, m28, m44, m45, m46, m48,

m49, m50, m51, m52, m53, m55, m56, m57, m60,

m63, m92, m93.

We compute the differentiator set of each of these 30 mutants, which we use to derive

minimal test suites that kill all the mutants. To this effect, we record the differentiator

sets on a two-dimensional array where the mutants are represented in columns, and

the test data are represented in rows. We iterate through the following two steps

until the array is empty.

• We select the data that kills the most mutants.

• , we remove the row corresponding to the selected data and the columns of all
the mutants that the data kills.

Because there are several instances where more than one row has the same maximal

number of mutants, we may (and typically do) generate several minimal test suites.

43

We list ten minimal test suites generated according to this procedure; the numbers

refer to the line of code where the data is generated in the original test class; for our

purposes, these numbers uniquely identify the test data. Interestingly, all these sets

have exactly 11 elements. We find:

TE1= {t90, t118, t133, t168, t185, t189, t191, t209, t215, t239, t280}.

TE2= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t239, t280}.

TE3= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t241, t284}.

TE4= {t90, t118, t133, t168, t185, t189, t191, t207, t215, t239, t280}.

TE5= {t90, t118, t133, t168, t185, t189, t191, t203, t209, t239, t280}.

TE6= {t90, t118, t133, t168, t185, t189, t191, t209, t215, t239, t280}.

TE7= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t241, t284}.

TE8= {t90, t118, t133, t168, t185, t189, t191, t203, t207, t239, t284}.

TE9= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t241, t280}.

TE10= {t90, t118, t133, t168, t185, t189, t191, t209, t215, t241, t284}.

By construction, this test suite kills the 30 mutants of the minimal mutant set.

Because the mutants outside the minimal mutant set are semantically equivalent to

mutants of the set, the test suites above also kill the 48 killable mutants.

In order to facilitate comparisons with the set of minimal test suites derived by

subsumption, we isolate the elements that are common to all the test suites, namely:

T0 = {t90, t118, t133, t168, t185, t189, t191},

44

then we can rewrite these test suites as:

TE1= T0 ∪ {t209, t215, t239, t280}.

TE2= T0 ∪ {t114, t209, t239, t280}.

TE3= T0 ∪ {t114, t209, t241, t284}.

TE4= T0 ∪ {t207, t215, t239, t280}.

TE5= T0 ∪ {t203, t209, t239, t280}.

TE6= T0 ∪ {t209, t215, t239, t280}.

TE7= T0 ∪ {t114, t209, t241, t284}.

TE8= T0 ∪ {t203, t207, t239, t284}.

TE9= T0 ∪ {t114, t209, t241, t280}.

TE10= T0 ∪ {t209, t215, t241, t284}.

We notice that TE1 and TE6 are identical; different selections made when two

or more test data kill the same number of mutants may ultimately yield the same

minimal test suite.

3.4.2 Minimal mutant set by subsumption

To apply the subsumption criterion, we consider a representative from each of the 30

equivalence classes of the 48 killable mutants and test them pairwise by comparing

their broad differentiator sets (δ2(P,M)). Then, we isolate the maximal mutants, i.e.

those that are not subsumed by any other mutants. We find the following minimal

set of mutants: µS ={m1, ,19, ,23, m24, m25, m27, m44, m45, m48, m51, m60.}

We compute the broad differentiator sets of these mutants, which are (by construction) much

45

smaller than those of the mutants selected by equivalence; We apply the same procedure

above to derive minimal test suites that kill all these mutants. We find:

TS1= {t90, t114, t118, t133, t168, t185, t189, t191, t207, t239, t284}.

TS2= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t239, t280}.

TS3= {t90, t118, t133, t168, t185, t189, t191, t207, t215, t239, t280}.

TS4= {t90, t118, t133, t168, t185, t189, t191, t209, t215, t241, t280}.

TS5= {t90, t118, t133, t168, t185, t189, t191, t207, t215, t239, t280}.

TS6= {t90, t118, t133, t168, t185, t189, t191, t203, t209, t241, t284}.

TS7= {t90, t118, t133, t168, t185, t189, t191, t203, t207, t239, t280}.

TS8= {t90, t114, t118, t133, t168, t185, t189, t191, t207, t241, t280}.

TS9= {t90, t114, t118, t133, t168, t185, t189, t191, t209, t239, t280}.

TS10= {t90, t118, t133, t168, t185, t189, t191, t203, t207, t241, t284}.

We remove the common elements so as to facilitate comparisons if we let T0 be the

following set:

T0 = {t90, t118, t133, t168, t185, t189, t191},

Then, these sets can be written as:

TS1= T0 ∪ {t114, t207, t239, t284}.

TS2= T0 ∪ {t114, t209, t239, t280}.

TS3= T0 ∪ {t207, t215, t239, t280}.

46

TS4= T0 ∪ {t209, t215, t241, t280}.

TS5= T0 ∪ {t207, t215, t239, t280}.

TS6= T0 ∪ {t203, t209, t241, t284}.

TS7= T0 ∪ {t203, t207, t239, t280}.

TS8= T0 ∪ {t114, t207, t241, t280}.

TS9= T0 ∪ {t114, t209, t239, t280}.

TS10= T0 ∪ {t203, t207, t241, t284}.

A cursory inspection of the minimal test suites generated from the minimal mutant set

derived by equivalence and the minimal mutant set derived by subsumption reveals that

some of the test suites are identical. For example, TE2 is identical to TS2; and TE4 is

identical to TS3. It is possible, even likely, that the set of all the minimal test suites that

kill all the mutants of µE is the same as the set of all the minimal test suites that kill all

the mutants of µS . To be certain, we need to generate all the minimal test suites for each

mutant set. Nevertheless, the fact that the sets of minimal test suites have several elements

in common is noteworthy.

3.5 Concluding Remarks

In this chapter, we have considered two policies for minimizing a set of mutants and tried

to analyze them and compare them using analytical and empirical arguments. Some of the

premises of our comparative study includes the following:

• Subsumption is not a relation between individual mutants; rather, it is a relation
between equivalence classes of mutants, modulo semantic equivalence.

• As a consequence of this premise, the subsumption policy is not orthogonal to the
equivalence policy; rather, it must be mindful /cognizant of the equivalence relation,

47

and must identify equivalence classes prior to identifying subsumption relations
between classes.

• Minimizing a set of mutants is, at its core, an optimization problem; as such, it must
be formulated in such a way as to clearly specify an objective function that we want
to optimize along with the set of constraints under which we want to optimize the
objective function. In mutant set minimization, the objective function is clear (the
size of the mutant set), but the constraints under which the optimization is carried
out have not been clearly specified. Implicitly, we want to minimize the cardinality
of the mutant set while preserving the utility of the original set of mutants. This, in
turn, requires that we define/ quantify the utility of a mutant set.

• The theoretical formulas of the Section 3.3 notwithstanding, we can characterize the
utility/ quality of a set of mutants by the minimal test suites that kill all the killable
mutants.

• If we quantify the effectiveness of a mutant set by the minimal test suites that it
vets, then the empirical study of the Section 3.4 is a resounding endorsement of
subsumption, since it appears to vet the same test suites with one-third of the size
(nine mutants vs thirty), and the test suites it vets kill all the (48) killable mutants
of the base program.

• The results of Section 3.4, to the extent that they are valid (a tenuous stretch, given
their tentative/ partial/ incomplete nature) may also be interpreted to mean that
if the set µE vets the same minimal test suites as µS , then it may be sufficient to
generate µE .

• The premise that the effectiveness of a test suite is not an attribute of the program
and its mutants alone, but also involves the specification with respect to which the
program is supposed to be correct. This is the perennial question of whether mutants
are or are not a good representation of actual faults [7, 35, 36]; our discussions of
Section 3.3 formalize the relation between mutants and faults by a formula that links
the differentiator sets of mutants (as proxies for mutations) with the detector sets of
programs (as proxies for faults).

Among the contributions of this chapter, we mention:

• A semantic measure of test effectiveness that adheres to the same rationale as
Brinksma et al. [42] but uses an innovative formula involving the detector set of
a program with respect to a specification R.

• Tentative measures of the effectiveness of a mutant set (QA(), QP ()), using the
semantic measure of test effectiveness of the test suites that are vetted by the mutant
set.

• A reformulation of subsumption using differentiator sets and a generalization of
subsumption to take into consideration the possibility that the base program or the
mutants fail to converge.

• The observation that maximal mutants by subsumption feature minimal differentiator
sets and are, in fact, what Yao et al. [44] refer to as stubborn mutants.

48

Future research prospects include completing the experiment of Section 3.4 by computing

all the minimal test suites of µE and µS and comparing them. Also, we envision to apply

the generalized definition of subsumption that ranks sets of mutants rather than individual

(equivalence classes of) mutants; it would be interesting to see whether this generalized

formula enables us to reduce further the minimal set of mutants while preserving its

effectiveness.

49

CHAPTER 4

TEST SUITES EFFECTIVENESS

4.1 On the Effectiveness of a Test Suite

4.1.1 Motivation

If the purpose of test suites is to reveal the presence of faults in programs, then it is

legitimate to measure the quality of a test suite by its ability to reveal faults. A necessary

condition to reveal a fault is to exercise the code that contains the fault; hence, many

metrics of test suite effectiveness focus on the ability of a test suite to exercise the syntactic

attributes of the program, such as statements, conditions, branches, paths, etc [45]; but

while achieving syntactic coverage is necessary, and it is far from sufficient, and not always

possible. Indeed, not all faults cause errors, and not all errors lead to observable failures [46];

also, not all syntactic paths are feasible (re: infeasible paths, unreachable code, etc.). A

better measure of test suite quality is mutation coverage, where the quality of a test suite

is measured by the ratio of mutants that it kills out of a set of generated mutants. But

while mutation coverage is often used as a baseline for assessing the value of other coverage

metrics [35,47], it has issues of its own: the same mutation score may mean vastly different

things depending on whether the killed mutants are all distinct, all equivalent, or something

in between (partitioned into several equivalence classes); if a test suite T kills N mutants,

what we can infer about T depends to a vast extent on whether T killed N different mutants

or N times the same mutant (i.e., N equivalent versions of the same mutant). Also, the

same test suite T may yield different mutation scores for different sets of mutants; hence,

it cannot be considered as an intrinsic attribute of the test suite.

50

In this chapter, we present a measure of test suite effectiveness which depends only on

the program under test, the correctness property we are testing it for, and the specification

against which correctness is defined. In the next section, we present and justify a number

of criteria that measure of test suite effectiveness ought to satisfy, and in Section 5.1.2, we

present and justify some design decisions that we resolve to adopt in the process of defining

our measure.

In Section 4.2 we introduce detector sets, and discuss their significance for the

purposes of the program testing and program correctness. In Section 4.3 we use detector

sets to define the concept of semantic coverage, and in Subsection 4.3.2 we validate our

definition by showing, analytically, that it meets all the requirements outlined in Subsection

4.1.2. In section 4.4 we illustrate the derivation of semantic coverage on a sample benchmark

example, and show its empirical relationship to mutation scores. We conclude in Section

4.5 by summarizing our findings, critiquing them, comparing them to related work, and

sketching directions of further research.

4.1.2 Requirements of semantic coverage

We consider a program P that we want to test for correctness against a specification R

and we wish to assess the fitness of a test suite T for this purpose. We argue that the

effectiveness of the test suite T to achieve the purpose of the test ought to be defined as a

function of three parameters:

• Program P .

• Specification R.

• The standard of correctness that we are testing P for: partial correctness or total
correctness [25,27,28].

51

Hence, whereas most traditional measures of the test suite coverage depends exclusively on

the program under test, our definition depends also on the standard of correctness that we

are testing the program for, as well as the specification against which correctness is tested.

The requirements we present below dictate how semantic coverage ought to vary as

a function of each of these three parameters: the standard of correctness, the specification,

and the program. To understand the discussions below, it is helpful to reason by analogy:

the effectiveness of a tool to perform a task increases with the intrinsic power of the tool,

but it also increases as the task becomes easier.

• The Program. Relative correctness is the property of a program to be more correct
than another with respect to a specification [48]; each fault repair makes the program
more-correct, culminating in absolute correctness when all faults are repaired [49].
The same test suite ought to have greater and greater semantic coverage as the
program becomes increasingly more correct with respect to the same specification, as
there are fewer and fewer faults left to discover.

• The Specification. Specifications are naturally ordered by refinement, whereby more
refined specifications represent stronger/ harder to satisfy requirements [23, 24, 50–
52]; it is harder to test a program against a more refined specification than against
a less-refined specification since a more-refined specification represents a stronger
requirement to test against. Hence, the same test suite ought to have greater semantic
coverage for less-refined specifications.

• The Standard of Correctness. There is a difference between testing a program for total
correctness and testing a program for partial correctness: under total correctness, if
we select a test data t and the program fails to terminate on t, we conclude that the
program fails the test, i.e., is deemed incorrect; under partial correctness, if we select
a test data t and the program fails to terminate on t, we conclude that the test data
selection is wrong (and we chose another test data). Total correctness is a stronger
property than partial correctness; hence, it is more difficult to test a program for
total correctness than for partial correctness. Therefore, the same test suite T must
have greater semantic coverage if it is applied to partial correctness than if applied
to total correctness.

Of course, we also want the effectiveness of a test suite T to increase with T , i.e. if T ′ is a

superset of T then the effectiveness of T ′ is greater than that of T . In Subsection 4.3.2, we

present propositions to the effect that the formula of semantic coverage we present in the

Section 4.3 satisfies all these requirements.

52

4.1.3 Design principles

We resolve to adopt the following design decisions in defining a measure of semantic

coverage:

• Focus on Failure. We adopt the definitions of fault, error, and failure proposed
by Avizienis et al. [46]: a fault is a feature of the program that precludes it from
being correct; an error is the impact of a fault on the state of the program for
a particular execution (that sensitizes the fault); a failure is the event where the
program violates its specification because an error has propagated to the program’s
output. We quantify the effectiveness of a test suite, not by its ability to reveal
faults, but by its ability to reveal failures. The reason is that failures are objectively
verifiable observation: by contrast, resolving that some features in the source code of
the program is the cause of the observed failure is a subjective assumption, as there
is no one-to-one mapping between observed failures and faults.

Hence, we resolve to define the semantic coverage of a test suite T in terms of the
scale of program failures that T can reveal.

• Partial Ordering. It is common to think of measurement as the assignment of a
numeric value to an artifact to reflect a particular attribute thereof. But assigning
numeric values to an attribute that is not totally ordered causes a loss of precision: it
is easy to imagine two test suites that cannot be compared (e.g., they expose unrelated
sets of failures), yet if we assign them numbers, we will always find that one test suite
is assigned a greater number than the other.

Hence, we resolve to define semantic coverage not as a number, but as an element
of a partially ordered set, our goal is to ensure that whenever two test suites have
comparable semantic coverages, it is because the test suite with the more excellent
coverage is superior (in a sense to be defined) to the other.

• Analytical Validation. There are several reasons why we prefer to rely on analytical
argument to validate our definition of semantic coverage: First and foremost, we do
not know of a widely accepted ground truth of test suite effectiveness against which we
can validate our definition. Second, most existing coverage metrics reflect program
attributes only, while our semantic coverage definition depends on the correctness
standard and the specification, in addition to the program. Hence, we resolve to
validate our definition of semantic coverage on the basis of analytical arguments, by
arguing that it captures the right attributes and that it satisfies all the properties
that we mandate in Subsection 4.1.2.

Still, we do include an empirical validation step: In Section 4.4, we compute the
semantic coverage of a set of (20) test suites of a benchmark program for two distinct
specifications and two standards of correctness, and we compare the four graphs so
derived against the graph that ranks these test suites by mutation coverage, but
we do so without the expectation that the graphs be identical because semantic
coverage depends on the program, the specification, and the correctness standard,
whereas mutation coverage depends on the program and the mutation generator. As
we discuss in the Section 4.4, the similarity we observe empirically between the graphs
exceeds our expectation.

53

4.2 Detector Sets

4.2.1 Requirements on a measure of effectiveness

We present some requirements that we expect our definition of mutant set effectiveness (as

well as competing definitions) to satisfy. For the sake of generality, we do not assume that

effectiveness is defined as a number; we only assume that it takes values in an ordered set;

hence, when we talk about greater than, we refer to the unspecified ordering relation of the

target set.

RQ1 Monotonicity with Respect to the Standard of Correctness. Total correctness is a

stronger property than partial correctness; hence, it is easier to test a program for

partial correctness than for total correctness. Since the effectiveness of a mutant set is

defined in terms of the test suites that it vets, the same dependency holds: a mutant

set ought to have higher effectiveness to test for partial correctness rather than total

correctness.

RQ2 Monotonicity with Respect to the Specification. Specifications are naturally ordered

by refinement, whereby a specification R refines a specification R′ if and only if

any program that is correct with respect to R is necessarily correct with respect to

R′ [23, 24]. It is easier to test a program against a less-refined specification, hence,

a mutant set ought to have higher effectiveness when testing a program against a

less-refined specification.

RQ3 Effectiveness and Redundancy. Whereas adding mutants to a mutant set ought to

increase (or at least not decrease) its effectiveness, we require that adding redundant

mutants does not change the effectiveness of the set; a mutant M is considered to be

54

redundant with respect to a mutant set µ if and only if any test suite T that is vetted

by µ kills M .

RQ4 Effectiveness and Subsumption. A mutant M is said to subsume a mutant M ′ if

and only if any test (hence, a fortiori, any test suite) that kills M kills M ′ [15, 16].

Subsumption has been used as a criterion for mutant set minimization and can be

viewed as a special case of mutant redundancy [10,15,16,29–33,40]. We require that

removing a subsumed mutant from a mutant set preserves the effectiveness of the set.

The following definition gives criteria of relative correctness: a program P ′ may be

more-correct than a program P , which both are incorrect.

Definition 14. Given programs P and P ′ on space S, and specification R on S, we say

that P ′ is more-totally-correct than P with respect to R if and only if:

dom(R ∩ P ′) ⊇ dom(R ∩ P).

We say that P ′ is more-partially-correct than P with respect to R if and only if:

dom(R ∩ P ′) ∪ dom(P ′) ⊇ dom(R ∩ P) ∪ dom(P).

The definition of relative total correctness is due to [48]; the definition of relative

partial correctness is derived herein by analogy for the sake of completeness. To contrast

the definitions given in the definition 2 with those given herein for relative correctness, we

may refer to the former as absolute correctness.

A program P ′ is more-totally-correct than a program P with respect to R if and only

if it has a larger competence domain with respect to R, i.e. it obeys specification R over

55

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0-

-������:

������:

XXXXXXz������:

XXXXXXz

XXXXXXzXXXXXXzXXXXXXz

XXXXXXzXXXXXXzXXXXXXz

-

XXXXXXzXXXXXXz

������:

������:

������:

Q Q′ R P P ′�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Preserving Correct Behavior
(R ∩Q) ⊆ (R ∩Q′)

Preserving Correctness
(R ∩ P)L ⊆ (R ∩ P ′)L

Figure 4.1 Relative total correctness.

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0-

-�������:

�������:

XXXXXXXz�������:

XXXXXXXz

XXXXXXXzXXXXXXXzXXXXXXXz

XXXXXXXzXXXXXXXzXXXXXXXz

-

XXXXXXXzXXXXXXXz

�������:

Q Q′ R P P ′�
�

�
� �� ��

�
�

�
�

�
�

�
�

Q′ is more-partially-correct than Q
by virtue of having a larger competence domain

dom(R ∩Q′) ∪ dom(Q′) = {0, 1, 2, 3}
dom(R ∩Q) ∪ dom(Q) = {1, 2, 3}

P ′ is more-partially-correct than P
by virtue of having a smaller domain

dom(R ∩ P ′) ∪ dom(P ′) = {0, 1, 2, 3}
dom(R ∩ P) ∪ dom(P) = {1, 2, 3}

Figure 4.2 Relative partial correctness.

a larger set of initial states; see Figure 4.1. A program P ′ is more-partially-correct than a

program P with respect to R if and only if it has a larger competence domain with respect

to R, or it fails to terminate normally over a larger set of initial states (i.e., has a smaller

domain); see Figure 4.2. From the standpoint of partial correctness, a program can evade

accountability by failing to terminate.

4.2.2 Detector sets

The detector set of a program P on space S for some standard of correctness (partial or

total) with respect to specification R is the set of states that disprove the correctness of P

with respect to R (i.e. execution of P on these states yields a final state s′ that violates

specification R).

Definition 15. Given a program P on space S and a specification R on S:

56

• The detector set for total correctness of program P with respect to R is denoted by
ΘT (R,P) and defined by:

ΘT (R,P) = dom(R) \ dom(R ∩ P).

• The detector set for partial correctness of program P with respect to R is denoted by
ΘP (R,P) and defined by:

ΘP (R,P) = (dom(R) ∩ dom(P)) \ dom(R ∩ P).

When we want to refer to a detector set without specifying a particular standard of

correctness (partial, total), we simply say detector set, and we use the notation Θ(R,P).

This definition generalizes the concept of detector set introduced in [53] by taking into

consideration the definition of correctness and the specification against which correctness

is tested. Given that detector sets are intended to expose incorrectness, they are empty

whenever there is no incorrectness to expose; this is formulated in the following proposition.

Proposition 7. Given a specification R on space S and a program P on S. Program

P is totally correct with respect to specification R if and only if the detector set for total

correctness of R and P is empty. Program P is partially correct with respect to specification

R if and only if the detector set for partial correctness of R and P is empty.

4.2.3 Properties

Since total correctness logically implies partial correctness, any test that disproves partial

correctness necessarily disproves total correctness. Whence the following proposition.

Proposition 8. The detector set for partial correctness of a program P with respect to

specification R is a subset of the detector set for total correctness of P with respect to R.

Proof. This stems readily from the observation that ΘP (R,P) = ΘT (R,P) ∩ dom(P).

Ωqed!

57

Table 4.1 Definitions of Correctness

Partial Correctness Total Correctness

Absolute
Correctness ΘP (R,P) = ∅ ΘT (R,P) = ∅

Relative
Correctness ΘP (R,P ′) ⊆ ΘP (R,P) ΘT (R,P ′) ⊆ ΘT (R,P)

In addition to the standard of correctness, detector sets depend on the program

under and the specification against which the program is being tested. The following two

propositions highlight how detector sets vary according to the relative correctness of the

program, and the refinement of the specification.

Proposition 9. Due to [38] Given a specification R on space S and two programs P and

P ′ on S. P ′ is more-totally-correct than P with respect to specification R if and only if:

ΘT (R,P ′) ⊆ ΘT (R,P).

If P ′ is more-partially-correct than P with respect to specification R then:

ΘP (R,P ′) ⊆ ΘP (R,P).

The intuitive interpretation of proposition 9 is straightforward: If P ′ is more correct

(totally or partially) than P , then any test that reveals the failure of P ′ reveals necessarily

the the failure of P (if the more-correct program fails, then so does the less-correct program).

Table 4.1 summarizes the results of Propositions 7 and 9 (though for relative partial

correctness, we have proven necessity but not sufficiency of the provided condition).

58

Whereas Proposition 9 stipulates how the detector set of a program P with respect to

R varies according to the program P , we now ponder the question of how it varies according

to the specification R. We consider a program P on space S and two specifications R and R′

on S such that R′ refines R; R′ refines R means that R′ represents a stronger requirement

than R; any test that disproves the correctness of P with respect to the less-refined (weaker)

specification R disproves (a fortiori) the correctness of P against the (stronger) more-refined

specification R′. Whence the the following proposition.

Proposition 10. Given a program P on space S and two specifications R and R′ on S. If

R′ refines R then the detector set of P with respect to R is a subset of the detector set of P

with respect to R′.

The proof of this proposition is due to [20].

4.3 Semantic Coverage

4.3.1 Definition

In this section, we propose a formula that measures the effectiveness of a test suite T for a

program P to be tested for total and partial correctness with respect to specification R. As

a first step, we ponder the following question: What is an ideal test suite? Then, we define

the semantic coverage of an arbitrary (not necessarily ideal) test suite to reflect the extent

to which the test suite comes close to the ideal case.

Given a program P on space S and a specification R on S, an ideal test suite T is

one that is a superset of the detector set of P with respect to R for the selected correctness

standard, since such a test suite exposes all the failures of P with respect to R. Let Θ(R,P)

be the detector set of program P with respect to R; what precludes T from being a superset

of Θ(R,P) is the set of elements of Θ(R,P) that are outside T , i.e.

59

Θ(R,P) ∩ T .

The smaller this set, the better the test suite T ; since we want a quantity that increases

with the effectiveness of T rather than decreases, we take the complement of this quantity,

whence the following definition.

Definition 16. The semantic coverage of test suite T for the total correctness of program

P with respect to specification R on space S is denoted by ΓTOT
[R,P](T) and defined by:

ΓTOT
[R,P](T) = T ∪ΘT (R,P).

The semantic coverage of test suite T for the partial correctness of program P with respect

to specification R on space S is denoted by ΓPAR
[R,P](T) and defined by:

ΓPAR
[R,P](T) = T ∪ΘP (R,P).

If we want to talk about semantic coverage without specifying the standard of

correctness, we use the notation Γ[R,P](T) defined by:

Γ[R,P](T) = T ∪Θ(R,P).

4.3.2 Analytical validation

In this section, we revisit the requirements put forth in section 4.1.2 and prove that the

formula of semantic coverage proposed above does satisfy all these requirements. For the

most part, the propositions presented in this section stem immediately from the properties

of detector sets discussed in the Subsection 4.2.3.

60

Proposition 11. Due to [20]. Given a program P on space S, a specification R on S,

and test suite T (subset of S), the semantic coverage of T for partial correctness of P with

respect to R is greater than or equal to the semantic coverage for total correctness of P with

respect to R.

Proposition 12. Due to [20]. Given a specification R on space S and two programs P and

P ′ on S, and a subset T of S. If P ′ is more-totally-correct than P with respect to R then:

ΓTOT
[R,P ′](T) ⊇ ΓTOT

[R,P](T).

Proposition 13. Due to [20]. Given a specification R on space S and two programs P and

P ′ on S, and a subset T of S. If P ′ is more-partially-correct than P with respect to R then:

ΓPAR
[R,P ′](T) ⊇ ΓPAR

[R,P](T).

Proposition 14. Due to [20]. Given a program P on space S and two specifications R and

R′ on S, and a subset T of S. If R′ refines R then:

ΓTOT
[R′,P](T) ⊆ ΓTOT

[R,P](T).

Proposition 15. Due to [20]. Given a program P on space S and two specifications R and

R′ on S, and a subset T of S. If R′ refines R then:

ΓPAR
[R′,P](T) ⊆ ΓPAR

[R,P](T).

61

Figure 4.3 Detector sets for partial correctness.

Figure 4.4 Detector sets for total correctness.

Figure 4.5 Semantic coverage of test T for program P with respect to R (shades of green).

62

4.4 Illustration

In this section, we report on an experiment in which we evaluate the semantic coverage of

a set of test suites, and compare our findings to an existing measure of coverage, namely

mutation coverage. To this effect, we consider the Java benchmark program of jTerminal1,

an open-source software product routinely used in mutation testing experiments [30]. We

apply the mutant generation tool LittleDarwin in conjunction with a test generation and

deployment class that includes 35 test cases [30]; we augment the benchmark test suite with

two additional tests, intended specifically to trip the base program jTerminal, by causing

it to diverge (i.e., fail to terminate normally). The purpose of these tests is to enable us

to distinguish between partial correctness and total correctness. We let T designate the

augmented test suite codified in this test class. Execution of LittleDarwin on jTerminal

yields 94 mutants, numbered m1 to m94; the test of these mutants against the original

using the selected test suite kills 48 mutants:

m1, m2, m7, m8, m9, m10, m11, m12, m13,

m14, m15, m16, m17, m18, m19, m21, m22,

m23, m24, m25, m26, m27, m28, m44, m45,

m46, m48, m49, m50, m51, m52, m53, m54,

m55, m56, m57, m58, m59, m60, m61, m62,

m63, m83, m88, m89, m90, m92, m93.

Some of these mutants are equivalent to each other, i.e., they produce the same output for

each of the 37 elements of T ; when we partition these 48 mutants by equivalence, we find

31 equivalence classes, and we select a mutant from each class:

µ =

1Available online at http://www.grahamedgecombe.com /projects /jterminal

63

m1, m2, m7, m11, m13, m15, m19, m21, m22,

m23, m24, m25, m27, m28, m44, m45, m46, m48,

m49, m50, m51, m52, m53, m55, m56, m57, m60,

m63, m92, m93.

Orthogonally, we consider set T , and we select twenty subsets thereof, derived as follows:

• T1, T2, T3, T4, T5: Five distinct test suites obtained from T by removing 15
elements at random.

• T6, T7, T8, T9, T10: Five distinct test suites obtained from T by removing 10
elements at random.

• T11, T12, T13, T14, T15: Five distinct test suites obtained from T by removing 5
elements at random.

• T16, T17, T18, T19, T20: Five distinct test suites obtained from T by removing one
element at random.

To have a baseline against which we compare our measures of semantic coverage, we rank the

test suites T1... T20 by mutation coverage [31]; but we do not equate mutation coverage

with the ratio of killed mutants over generated mutants; rather, we rank test suites by

comparing, in terms of set inclusion, the sets of mutants they kill. The result is shown in

Figure 4.6.

To compute the semantic coverage of these test suites, we need to define specifications

against which the test is carried out; for the sake of this experiment, we choose mutants

M25 and M50 as sample specifications, and we compute the semantic coverage of test suites

T1... T20 for total correctness and partial correctness with respect to M25 and M50. For

each specification and standard of correctness, we compute the semantic coverage of each

of the twenty test suites, which we compare by inclusion. The result is shown in Figures

4.7, 4.8, 4.9 and 4.10 for, respectively, the partial correctness with respect to M25 and M50

then the total correctness with respect to M25 and M50.

64

T1

T16

T17

T18

T19

T20

T2

T3

T10T4

T5

T6 T7

T8

T9

T11

T12 T15

T13

T14

Figure 4.6 Ordering test suites Ti by mutation coverage (inclusion relations of killed mutant
sets).

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

Figure 4.7 Ordering test suites by inclusion relations of ΓPAR
[M25,P](Ti).

While we do not expect that the graph of mutation coverage (Figure 4.6) and the

graphs of semantic coverage be the same, since the former is intrinsic to the program,

whereas the latter also depends on the specification and the standard of correctness, we

are interested in considering the similarity between the mutation coverage graph and the

graphs of semantic coverage. To assess the similarity between graphs, we use the imperfect

but simple metric of the ratio between the number of common arcs over the total number

of arcs. The results are shown in Table 4.2. Interestingly, the graphs of semantic coverage

have greater similarity between themselves than they have with mutation coverage.

65

T1

T2

T3

T4

T5

T6

T7

T10

T11

T12

T13

T15

T16

T17

T18

T19

T20

T8

T9

T14

Figure 4.8 Ordering test suites by inclusion relations of ΓPAR
[M50,P](Ti).

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

Figure 4.9 Ordering test suites by inclusion relations of ΓTOT
[M25,P](Ti).

T1

T2

T5

T12

T16

T17

T18

T19

T20

T3

T7

T11

T13

T15 T4

T6

T10

T8

T9

T14

Figure 4.10 Ordering test suites by inclusion relations of ΓTOT
[M50,P](Ti).

66

Table 4.2 Graph Similarity of Semantic Coverage and Mutation Coverage

Graph
Similarity Mutation ΓPAR

[M25,P](T) ΓPAR
[M50,P](T) ΓTOT

[M25,P](T) ΓTOT
[M50,P](T)

Mutation 1 0.34 0.35 0.34 0.5
ΓPAR
[M25,P](T) 0.34 1.0 0.66 1.0 0.46

ΓPAR
[M50,P](T) 0.35 0.66 1.0 0.66 0.62

ΓTOT
[M25,P](T) 0.34 1.0 0.66 1.0 0.46

ΓTOT
[M50,P](T) 0.50 0.46 0.62 0.46 1.0

4.5 Conclusion

4.5.1 Summary and assessment

In this chapter, we discuss two concepts in software testing: the detector set of a program P

with respect to a specification R is the set of tests that disprove the correctness of P with

respect to R. Using detector sets, we introduce the semantic coverage of a test suite T for

(total or partial) correctness of a program P with respect to specification R as the union

of T with the complement of the detector set of P with respect to R. In other words, the

semantic coverage of a test suite T is the union of the test data on which P is tested (T)

with the test data on which P does not have to be tested (Θ(R,P)).

on one hand, we find that the detector set of a program P with respect to a

specification R grows larger when we transition from partial correctness to total correctness,

when P grows less correct with respect to R, and when R grows more-refined. All of this

makes sense when we consider that the purpose of a detector set is to disprove the correctness

of P with respect to R (expose program failures).

On the other hand, we find that the semantic coverage of a test suite T for program P

with respect to specification R grows larger when T grows larger, when we transition from

total correctness to partial correctness, when P grows more-correct, and when R grows

less-refined. All of this makes sense when we consider that semantic coverage reflects the

67

effectiveness of a test suite to test a program for correctness against a specification. Consider

that a tool is all the more effective than it is intrinsically more powerful (larger T) and the

task on which it is deployed is easier (smaller detector set Θ(R,P)).

For illustration, we compute the semantic coverage of twenty test suites of a

benchmark program with respect to two sample specifications for total and partial

correctness; and we compare the way semantic coverage ranks tets suites with the way

mutation coverage does.

We validate the proposed formula of semantic coverage analytically by showing that

it is monotonic with respect to several attributes that reflect test suite effectiveness. We

also validate it empirically by showing a sample benchmark example that there is much

similarity between the ordering derived from semantic coverage with the ordering derived

from mutation coverage.

4.5.2 Threats to validity

The empirical validation is clearly incomplete, as it is based on a single benchmark example,

but it is intended as a complement to the analytical validation rather than a substitute

thereof. The main difficulty of the proposed coverage metric is that it assumes the

availability of a specification, and it is difficult to estimate in practice, but our purpose

is to propose a measure of coverage that can be used for reasoning about test suites or for

comparing test suites. Its applicability for such purposes is the subject of future research.

4.5.3 Related work

Coverage metrics of test suites have been the focus of much research over the years,

and it is impossible to do justice to all the relevant work in this area [6, 54–59]; as a

first approximation, it is possible to distinguish between code coverage, which focuses

68

on measuring the extent to which a test suite exercises various features of the code and

specification coverage, which focuses on measuring the extent to which a test suite exercises

various clauses or use cases of the requirements specification. This can be tied to the

orthogonal approaches to test data generation, using, respectively, structural criteria and

functional criteria. Mutation coverage falls somehow outside of this dichotomy, in that it

depends exclusively on the program, not its specification, and that it operates by applying

mutation operators, wherever they are applicable, without regard to syntactic coverage; as

such, it has often been used as a baseline for assessing the effectiveness of other coverage

metrics [6, 47].

Our work differs from these research efforts in a number of ways: perhaps first and

foremost, our coverage semantic measure is not a number but a set; as such, it is not totally

ordered by numeric inequality, but partially ordered by set inclusion. Second, semantic

coverage is not intrinsic to the program, but depends also on the correctness standard

used in testing, and the specification with respect to which correctness is judged. Third,

semantic coverage is focused on revealing failures rather than diagnosing faults on the

grounds that failures are an objectively observable attribute, but faults are hypothesized

causes of observed failures.

4.5.4 Research prospects

We are exploring means to use the definition of semantic coverage to derive a function

that is independent of the specification, and reflects the diversity of the test suite. We are

also considering expanding the empirical validation of our definition of semantic coverage by

comparing it to (yet to be defined/ identified) objective measures of test suite effectiveness.

69

CHAPTER 5

MUTANTS SET EFFECTIVENESS

5.1 Mutant Set Minimization: An Optimization Problem

5.1.1 Motivation

Mutation testing is the art of generating syntactic mutants of a base program and is used

primarily to assess the effectiveness of test suites: a test suite T is all the more effective that

it can expose semantic differences between the base program and non-equivalent mutants

(i.e. execution of M on T yields a different set of outcomes from execution of mutant P on

T ; we then say that T kills M). One of the main obstacles to the practical usefulness of

mutation testing is cost: even small programs can give rise to a large number of mutants

[10–13]. This has spurred the interest in minimizing mutant sets.

The problem of minimizing a set of mutants is essentially an optimization problem:

Given a set µ = {M1,M2, ...Mn} of mutants of P , find a subset µ′ of µ of minimal cardinality

that has the same effectiveness as µ. This raises the question: how do we define the

effectiveness of a mutant set?

5.1.2 Design principles

This chapter aims to propose a definition of mutant set effectiveness. In this section, we

discuss the design principles that we adopt for this purpose.

• The Purpose of a Mutant Set. To the extent that the effectiveness of an artifact is
a reflection of its fitness for a purpose, the first question we must address is: What
is the purpose of a mutant set? We postulate that the purpose of a set of program
mutants P is to vet test suites for P .

– Vetting a Test Suite. We say that a mutant set µ vets a test suite T if and only
if T kills every element of µ.

70

• Measuring Effectiveness. In light of the above premise, we resolve to measure the
effectiveness of a set of mutants as a function of the effectiveness of the test suites
that it vets.

– The Purpose of a Test Suite. To quantify the effectiveness of a test suite, we
raise the following question: What is the purpose of a test suite? We posit that
the purpose of a test suite is to expose the failures of an incorrect program.

– The Effectiveness of a Test Suite. We resolve to measure the effectiveness of a
test suite by the extent to which it exposes the failures of an incorrect program
(if the program is correct, then any test suite is maximally effective since there
are no failures to expose).

• Testing Against a Specification. The determination of whether the behavior of a
program for a given input is or is not correct is made with respect to a specification;
hence, the quality of a test suite must be assessed with respect to a specification.

• Standards of Correctness. Two standards of correctness have traditionally been used
to judge a program: partial correctness and total correctness [25–28]; this yields two
different measures of test suite effectiveness.

• Effectiveness as a Partial Ordering Relation. It may be tempting to quantify the
effectiveness of a mutant set by a number, but we resolve not to do so: First, because
the effectiveness of a mutant set is a complex multi-dimensional attribute, reducing it
to a single, dry number carries the risk of much loss of information. Second, measuring
the effectiveness of mutant sets by a number creates an artificial total ordering when
no such an ordering exists, in fact, it is easy to imagine two mutant sets that are not
comparable in terms of effectiveness, yet numbers are always comparable.

5.2 Mutant Set Effectiveness

5.2.1 Measuring effectiveness

We resolve to quantify the effectiveness of a mutant set by considering the test suites that

it vets, whence the following definition.

Definition 17. Given a program P and a set of mutants of P , say

µ = {M1,M2,M3, ...MN},

the vetted set of µ is the set of minimal test suites that kill all the mutants of µ (i.e. test

suites that kill all the mutants of µ and such that no proper subset thereof does); we denote

it by (µ).

71

We quantify the effectiveness of a mutant set µ as an aggregate of the semantic

coverage of all the test suites in (µ). Given that different elements of (µ) may have different

levels of semantic coverage, we aggregate them by computing a lower bound and an upper

bound thereof; whence the following definition.

Definition 18. Given a specification R, a program P and a set µ of mutants of P , we

define two quantities to measure the effectiveness of µ:

• Assured Effectiveness. This is denoted by σA
{R,P}(µ) and defined as:

σA
{R,P}(µ) =

⋂
T∈(µ) Γ{R,P}(T).

• Potential Effectiveness. This is denoted by σP
{R,P}(µ) and defined as:

σP
{R,P}(µ) =

⋃
T∈(µ) Γ{R,P}(T).

Given that there are two versions of semantic coverage (for partial and total

correctness), there are actually two versions of assured effectiveness, and two versions of

potential effectiveness. We are unable to aggregate the semantic coverage of all the vetted

test suites into a single metric, but it is not uncommon for the attribute of a feature to be

quantified by two metrics:

• One metric that we use when we are interested in minimizing risk; this is what assured
effectiveness represents.

• One metric that we use when we are interested in maximizing potential benefit; this
is what potential effectiveness represents.

The following Proposition stems readily from the definition, and is valid for both versions

of semantic coverage.

Proposition 16. Given a program P and a set µ of mutants of P , and given a test suite

T in (µ), the following inequations hold:

σA
{R,P}(µ) ⊆ Γ{R,P}(T) ⊆ σP

{R,P}(µ).

72

5.2.2 Preserving effectiveness

In this section, we consider whether minimization algorithms that reduce the size of mutant

sets using the criterion of subsumption [10, 15, 16, 29–33, 40] actually, preserve mutant set

effectiveness as defined in this chapter. We consider the original definition of subsumption

[15]: Given two mutants M and M ′ of program P , we say that M subsumes M ′ if and only

if:

P1 There exists some test t such that M and P compute different outcomes (t kills M).

P2 For every possible test t for P , if M computes a different outcome from P on t, then

so does M ′.

We resolve to refine this definition by considering what is meant by the outcome of a

program’s execution, under what condition do we consider that two execution outcomes

are comparable, and under what condition do we consider that two comparable outcomes

are identical. When a program P is executed on some initial state s, it may terminate

after a finite number of steps in a final state s′; we then say that P converges on s. But

it may also fail to terminate normally due a wide range of possibilities, such as an infinite

loop, a division by zero, an array reference out of bounds, a stack overflow, an arithmetic

overflow, etc; we then say that P diverges on s. Whereas the original definition of Kurtz

et al. [15] appears to assume that programs and mutants converge for all initial states, this

is not necessarily the case in practice; in fact many mutation operators are prone to cause

mutants to diverge, even when the base program converges. The following definition, due

to [37], introduces the concept of differentiator set as the set of initial states that cause two

programs to yield different outcomes.

73

dom(R ∩ P)

dom(P)

dom(Q)

δ(P,Q)

S

Figure 5.1 Differentiator set of P and Q.

Definition 19. Given two programs P and Q on space S, the differentiator set of P and

Q is the set denoted by δ(P,Q) and defined as:

δ(P,Q) = (dom(P) ∪ dom(Q)) ∩ dom(P ∩Q).

The differentiator set of P and Q is the set of initial states s such that either P and

Q both converge on s and produce different final states or only one of them converges and

the other diverges. See Figure 5.1; the differentiator set of P and Q is the area colored in

(both shades of) blue. Using differentiator sets, we now introduce the property of mutant

subsumption.

Definition 20. Given a program P on space S and two mutants M and M ′ of P , we say

that M subsumes M ′ if and only if:

∅ ⊂ δ(P,M) ⊆ δ(P,M ′).

This definition coincides with the original definition of Kurtz et al. [15] whenever P ,

M and M ′ converge for all initial states, but makes provisions for the case when the base

74

program and its mutant diverge for some initial states. With this definition of subsumption,

we have the following Proposition.

Proposition 17. Let µ be a set of mutants of program P and let µ′ be µ′ = µ ∪ {M ′} for

some mutant M ′ that is subsumed by some mutant M of µ. Then µ and µ′ have the same

potential effectiveness.

The proof of this proposition is given in [21] By virtue of this Proposition, removing

a subsumed mutant preserves the potential effectiveness of a mutant set; this proves that

our definition of mutant set effectiveness meets requirement RQ4 (Subsection 4.2.1).

5.3 Assessment and Validation

For the sake of illustration, we consider a benchmark Java class that emulates DEC’s

VT100 terminal1; this is an open-source product that is routinely used in mutation testing

experiments [30]. This class comes with a test suite that includes 35 tests, to which we

add two tests that are intended to cause the program to diverge; we may refer to the base

program (jTerminal) as jT and the to the test suite as T . One may ask why we would test

the program outside its domain; we argue that the determination of test data is driven by

the domain of the specification (R), not the domain of the program (jT). To generate

mutants of this program, we use LittleDarwin, a mutant generator for Java code, due to

Parsai et al. [10]. Execution of LittleDarwin on jTerminal yields 94 mutants, numbered

m1 to m94; the test of these mutants against the original using the selected test suite kills

48 mutants; for the sake of documentation, we list them below:

m1, m2, m7, m8, m9, m10, m11, m12, m13, m14, m15, m16, m17, m18,

m19, m21, m22, m23, m24, m25, m26, m27, m28, m44, m45, m46, m48,

1http://www.grahamedgecombe.com /projects /jterminal

75

m49, m50, m51, m52, m53, m54, m55, m56, m57, m58, m59, m60, m61,

m62, m63, m83, m88, m89, m90, m92, m93.

The remaining 46 mutants are semantically equivalent to the pre-restriction of jTerminal

to T . We partition these 48 mutants into equivalence classes modulo semantic equivalence;

we find that these 48 mutants are partitioned into 31 equivalence classes, and we select a

member from each class; we let µ be the set of selected mutants: µ =

m1, m2, m7, m11, m13, m15, m19, m21, m22, m23, m24, m25, m27, m28, m44,

m45, m46, m48, m49, m50, m51, m52, m53, m55, m56, m57, m60, m63, m92, m93.

We compute the differentiator set of each mutant with respect to jT per definition 19 then

we order these mutants by subsumption, per definition 20. We select the maximal nodes

of this graph, and we let µ1 be the set of these mutants. µ1 = {m1, m19, m23, m24,

m25, m27, m44, m45, m48, m51, m60}.

We further introduce two more mutant sets, as follows:

µ2 = {m1, m19, m24, m25, m27, m44, m45, m48, m51, m60}.

µ1 = {m1, m19, m23, m24, m25, m27, m28, m44, m45, m46, m48, m51, m52,

m60}.

Mutant set µ2 is obtained from µ1 by removing mutant m23, which is the mutant that is

killed by most of the elements of T ; mutant set µ3 is derived from µ1 by adding three

random mutants, m52, m28, m46, with the expectation that (per Proposition 17) they

would not enhance the potential effectiveness of the set.

We further introduce three specifications, R1, R2 and R3, which are ordered by

refinement, so that

R1 ⊑ R2 ⊑ R3,

which means that R1 captures weaker requirements than R2, which captures weaker

76

requirements than R3. Also, for the sake of illustration, we choose R1 in such a way

as to make jT partially correct and totally correct with respect to R1; we choose R2 in

such a way as to make jT partially correct but not totally correct with respect to R2; and

we choose R3 in such a way as to make jT neither partially correct nor totally correct with

respect to R3.

We compute the assured effectiveness and the potential effectiveness of each mutant

set (µ1, µ2, µ3) for partial correctness and total correctness with respect to specifications

R1, R2, and R3. Then, we compare these measures of effectiveness for inclusion, whereby

larger measures reflect greater effectiveness. For the sake of presentation, we separate the

results into two graphs: Figure 5.2 shows the ordering of assured effectiveness, and Figure

5.3 shows the ordering of potential effectiveness; for completeness, imagine that there is an

arc from each node in the potential effectiveness graph onto the corresponding node in the

assured effectiveness graph.

These graphs bear out the claims that we are making about our measure of

effectiveness:

• For each measure of effectiveness, each mutant set and each specification, the
effectiveness of the mutant set against partial correctness is greater than its
effectiveness against total correctness, as partial correctness, is a weaker property
(hence, easier to test).

• For each measure of effectiveness, each mutant set and each standard of correctness
(partial/ total), the effectiveness of the mutant set against a less-refined specification
is greater than its effectiveness against a more refined specification, as less refined
specifications are easier to test against.

• Considering the graph of potential effectiveness, we notice that when we removed
mutant m23 from mutant set µ1 to obtain mutant set µ2, the potential effectiveness
was degraded, which is consistent with the property that µ1 is minimal: any reduction
thereof degrades its effectiveness. On the other hand, adding mutants m52, m28, m46

to µ1 to obtain µ3 preserves its effectiveness, since the added mutants are redundant
with µ1.

Interestingly, removing m23 from µ1 did not affect its assured effectiveness, as we found
that µ1 and µ2 have the same assured effectiveness. This, along with Proposition 17,

77

Figure 5.2 Assured effectiveness of µ1, µ2, µ3 for partial and total correctness with respect
to R1, R2, R3.

seems to suggest that potential effectiveness is a better measure of mutant set quality
than assured effectiveness, though we argue that both are important.

5.4 Conclusion: Summary, Critique, and Prospects

5.4.1 Summary

Much research has focused on minimizing a set of mutants; this is essentially an optimization

problem, that ought to be characterized by an objective function and a constraint under

which the objective function is minimized. Of course, the assumption is that a mutant set

must be minimized without degrading its effectiveness, but this leaves open the question of

how we define the effectiveness of a mutant set.

78

Figure 5.3 Potential effectiveness of µ1, µ2, µ3 for partial and total correctness with
respect to R1, R2, R3.

79

In this chapter, we propose a measure of the effectiveness of a mutant set, and show

that our measure satisfies some attributes that one would expect from a sound definition.

Our formula of the mutant set effectiveness is not intrinsic to the mutant set, but also

depends on the correctness property that we want the mutant set to help us test: as

such, it is monotonic with respect to the standard of correctness that we are trying to

prove (it is easier to test for partial than for total correctness) and with respect to the

specification we are trying to prove correctness against (it is easier to test a program

against a weaker specification than against a stronger/more refined specification). Also,

we show (analytically) that our measure of effectiveness is preserved when a redundant

mutant is removed, and (empirically) that our measure of effectiveness is degraded when

a non-redundant mutant is removed. As a stepping stone toward defining mutant set

effectiveness, we have also introduced a measure of test suite effectiveness (semantic

coverage), which focuses on a test suite’s ability to expose failures [46] (rather than faults);

reasoning about observable failures rather than hypothesized faults obviate the need to

speculate about what fault(s) may cause an observed failure, and spares us the uncertainty

engendered by this speculation.

5.4.2 Related work

In [60], Gopinath et al. propose to quantify the effectiveness of a set of mutants by means of

two metrics, namely a measure of variance (reflecting the range of functional diversity that

the mutants represent) and a measure of thoroughness or precision (reflecting the mutant’s

ability to detect subtle variability stemming from stubborn mutations); these two measures

appear to capture, intuitively, two complementary aspects of mutant set quality, namely

breadth and density. In [61], Feldt et al. introduce a related concept that captures, in

80

intuitively appealing terms, an important attribute of test suites: the concept of test set

diameter; this concept is defined by means of Kolmogorov’s conditional complexity function,

which quantifies the amount of similarity (or diversity) between two strings by the length

in bits of the shortest program that transforms the longer string into the shorter string.

In [53] Shin et al. critique the traditional metric of mutation score and propose a new metric

that takes into account, not only the set of mutants that are killed by a given test suite,

but also their diversity, as reflected by the disjointness of their differentiator sets. In [62],

Kaufman et al. measure the usefulness of a mutant by the probability that this mutant

advances the completeness of a test suite towards a tester-defined goal. This metric, called

TCAP (Test Completeness Advancement Probability) is used to characterize redundant

mutants, dominator mutants, subsumed mutants, etc, and ultimately to prioritize mutants

for inclusion in a mutant set. In [63] Papadakis et al. present a survey of mutant quality

metrics proposed up to 2018.

Our work differs from all these in some fundamental attributes:

• First, while we understand the interest of measuring mutant diversity as an intrinsic
attribute of the mutant set, our metric of mutant set effectiveness is also dependent
on the goal of testing, as defined by the correctness attribute we are testing for
(partial correctness, total correctness) and the specification against which correctness
is tested. The same set of mutants may be adequate to test program P for a standard
of correctness and a specification, yet totally inadequate for another combination of
standards of correctness/ specification.

• Second, we do not quantify the effectiveness of a mutant set by numbers (nor a
pair of numbers as in [60]) but rather by sets (two sets: assured effectiveness and
potential effectiveness); indeed, we recognize that something as rich, complex and
multi-dimensional as the effectiveness of a mutant set cannot be reduced to a single
dry number without much loss of information; also reducing it to a single number
creates an artificial total ordering to represent what is potentially a (very) partial
ordering (see Figures 5.2 and 5.3).

• We derive the quality of a mutant set, not from the attributes of the mutants that
are members of the set but rather from the test suites that are vetted by the set.

81

5.4.3 Threats to validity and prospects

The biggest threat to the validity of our measures of effectiveness is the difficulty of

estimating them in practice because they require that we derive the set of minimal test

suites that are vetted by the mutant set. Another weakness that needs to be addressed is

the dependence of effectiveness with respect to the relative correctness of a program [48]:

it ought to be easier to test a more-correct program than a less-correct program; hence,

effectiveness ought to be higher for the former than the latter. These matters are under

investigation.

82

CHAPTER 6

MUTATION COVERAGE IS NOT STRONGLY CORRELATED WITH

MUTATION COVERAGE

6.1 On the Effectiveness of a Test Suite

6.1.1 Measuring test suite effectiveness

The effectiveness of an artifact can only be defined with with respect to the purpose of

the artifact and must reflect the fitness of the artifact to fulfill its declared purpose. The

purpose of a test suite is to expose the failures of an incorrect program (if it fails on the test

suite) or, equivalently, to prove the correctness of a correct program (if it succeeds on the

test suite); the effectiveness of a test suite can be measured by the extent to which it can

fulfill this purpose. We further argue that the main purpose of quantifying the attribute

of an artifact is primarily to be able to compare artifacts with respect to that attribute:

knowing, for instance, the statement coverage of some test suite T1 is useful mostly because

it enables us to compare it to that of another test suite, say T2, to determine superiority.

A number of quantitative metrics have been proposed in the past to measure the

effectiveness of a test suite; many involve measures of syntactic coverage (statement

coverage, branch coverage, condition coverage, path coverage, etc.), since to expose the

failures of a program, we need to exercise the faulty source code that causes failures. But

syntactic coverage is clearly an imperfect metric, since exercising all the syntactic features

of a program is neither necessary nor sufficient to detect all the faults of the program: it

is not sufficient because the same fault may be sensitized for some tests but not for others,

83

and it is not necessary because, strictly speaking, only faulty features need to be exercised

(of course, in practice, we do not know which features are faulty).

6.1.2 Mutation coverage: a reference by default

To remedy the shortcomings of syntactic coverage metrics, researchers have often resorted to

mutation coverage as a metric for test suite effectiveness. To the extent that mutations are

faithful proxies for faults [7,35,36], the ability of a test suite to kill mutants can be equated

to its ability to detect faults in a faulty program. In [64] Parsai and DeMeyer investigate

the use of syntactic coverage metrics in the industry, and highlight the shortcomings of such

metrics by comparison with mutation coverage.

In [5], Andrews et al. use mutation analysis to assess the cost and effectiveness of four

common control flow and data flow criteria: block, decision, C-use, and P-use; they use the

experimental data to revisit important software testing questions such as the relationships

between fault detection, test suite size, control flow, and data flow.

In [65], Frankl et al. conduct experiments to compare the effectiveness of the mutation

testing adequacy criterion to that of the all-uses criterion at various levels of coverage, for

randomly generated test suites, they find that at the highest coverage levels, mutation is

more effective than all-uses in most cases, but they also find that mutation is more expensive

to implement.

In [66], Aaltonen et al. critique an automated testing tool that is used in a classroom

environment to give students feedback on the effectiveness of their test data and find that,

in practice the the tool may give students credit for high coverage that does not necessarily

translate to high effectiveness; initial experimental results indicate that mutation coverage

is a better indicator of test suite quality than code coverage.

84

In [47], Inozemtseva and Holmes conduct an empirical study in which they evaluate

the relationship between test suite size, syntactic coverage and test suite effectiveness for

large Java programs; the study involves 31,000 test suites and five systems, totaling 724,000

lines of code; the coverage metrics that were studied include statement coverage, decision

coverage and condition coverage, and the effectiveness of these criteria was assessed with

respect to mutation coverage.

In [67], Li et al. perform an experiment to compare four unit-level software testing

criteria: mutation testing, prime path coverage, edge pair coverage, and all-uses. The

criteria were assessed on the basis of two parameters, namely, the number of seeded faults

that are uncovered and the number of tests needed to satisfy the criteria. Li et al. find that

mutation testing exposes more faults and requires fewer tests than all the other criteria.

In [68], Tengeri et al. report on an experiment they conducted on four open-source

systems’ test suites to compare them for code coverage, test suite reducibility (the extent

to which test adequacy is degraded when a test suite is reduced). Their experiment shows

that in some situations, code coverage provides sufficient indication of fault density, but

mutation coverage and test reducibility are better indicators in most cases.

6.1.3 An imperfect reference metric

While mutation coverage is certainly a more faithful measure of test suite effectiveness than

syntactic coverage metrics, it has ample flaws of its own:

• Failure to acknowledge equivalence. The most obvious flaw is that, at least in its raw
form (ratio of killed mutants over total generated mutants) mutation coverage fails
to take into account the fact that mutants may survive a test, not because of a flaw
in the test suite, but because the mutants are semantically equivalent to the base
program.

• Failure to acknowledge redundancy. Even if we knew which mutants are killable, or
knew how to estimate their number [14], we would still have a problem: the same
mutation score means vastly different things depending on whether the killed mutants

85

are all semantically distinct, all semantically equivalent, or partitioned into multiple
equivalence classes. Hence, for example, if test suite T1 kills three equivalent mutants
and test suite T2 kills two distinct mutants then the mutation score of T1 is greater
than that of T2 even though T2 is actually more effective than T1.

• Failure to acknowledge partiality. If we consider two test suites T1 and T2, and we
find that they kill distinct sets of mutants, we have no objective basis for telling
which test the suite is better, yet by assigning them mutation scores, we define a
total ordering by default. Whenever we define a total ordering to represent what is,
in fact, a partial ordering, we introduce built-in loss of precision: any two test suites
can be compared by means of their mutation scores, even when we have no basis for
considering that the suite with the higher score is more effective.

• Failure to acknowledge the role of mutation operators. Different references cite
mutation coverage [5, 47, 64–68] without further qualification, as though all these
references are talking about the same metric. In this chapter, we argue, on the basis
of empirical observations, that the mutation coverage of a test suite may depend
on a very large extent on the operators that are used to generate mutants. Our
empirical results exceed our most extreme expectations: in some of the experiments we
report below, we find very low statistical correlations between the values of mutation
coverage obtained for different mutant generation policies; some are negative.

This has at least three immediate practical consequences:

• First, a measure of mutation coverage is meaningful only with reference to a particular
mutant generation policy; hence, we cannot merely specify the mutation coverage of
a test suite without specifying the mutation policy that is used to generate mutants.

• Second, mutation coverage experiments can be compared only if they refer to the
same mutant generation policy.

• Third, to enhance the usefulness of empirical experiments on mutation coverage, it
may be advantageous for researchers to agree on a small set of mutant generation
policies [4, 5, 7, 36, 69]; then comparisons between experiments can only be made if
they are based on the same policy.

The recognition that mutation operators have an impact on the measurement of mutation

coverage is not new: Mresa and Bottaci [70] and Offut et al. [71] have observed and studied

the variability of mutation coverage as a function of mutation operators. In this chapter, we

analyze the statistical correlation between mutation coverage values obtained for the same

test suites using different mutant generation policies; we do so by means of four different

measures of mutation coverage, which we discuss below.

86

6.1.4 Quantifying mutation coverage

For the purposes of our experiment, we use four measures of mutation coverage:

• Raw Mutation Score, RMS. This is the traditional definition of mutation score as the
ratio of killed mutants over the total number of generated mutants.

• Prorated Mutation Score, PMS. Assuming we have identified and excluded equivalent
mutants, this is the ratio of killed mutants over the number of killable (non-equivalent)
mutants.

• Equivalence-based Mutation Score, EMS. For the purpose of this metric, we assume
not only that we have identified and excluded those mutants that are equivalent to the
base program we also assume that we have partitioned the set of killable mutants into
equivalence classes modulo semantic equivalence. We know by definition that once a
test suite kills a mutant, it necessarily kills all the mutants in the same equivalence
class. Then EMS is the ratio of the number of equivalence classes killed over the total
number of equivalence classes.

• Mutation Tally, MT. Test suite effectiveness cannot be determined solely on the basis
of the number of mutants killed, regardless of how we count them, because mutants
are not created equal: In [62] Kaufman et al. introduce the criterion of TCAP: Test
Completeness Advancement Probability as a way to quantify mutant usefulness, and
show that this measure may vary widely between mutants. This leads us to conclude
that the only way to claim with certainty that T1 is better than (or as good as) T2
(for a particular set of mutants) is that all the mutants killed by T2 are killed by T1.
Whence we define a new attribute of test suite effectiveness: The mutation tally of
test suite T for a set of mutants µ is the set of mutants in µ that are killed by T .
Unlike the three previous metrics, mutation tally, is not a number but a set; as such,
this attribute ranks test suites by a partial ordering (set inclusion); this is not a bug
but a feature, since test suite effectiveness is itself a partially ordered attribute.

For the sake of illustration, we consider a benchmark Java program from the ArrayUtil

class, and we apply the AND mutation operators of LittleDarwin [10], which yield 14

mutants:

µ = {M1,M3,M5,M7,M10,M12,M14,M17,M19,M22,M24,

M27,M30,M41}.

For the sake of argument, we use a test suite T0 of size 104 elements to identify mutants

that are equivalent to the base program and to partition killable mutants by semantic

equivalence; using T0, we kill six out the 14 mutants, and conclude that the surviving

mutants are equivalent to the base program. Killed mutants:

87

µ′ = {M10,M12,M14,M22,M24,M41}.

Using the same test suite, we partition the killed mutants into equivalence classes modulo

semantic equivalence, and we find the following partition:

C1 = {M10,M12,M14}.

C2 = {M22}. C3 = {M24}. C4 = {M41}.

We consider three test suites,

• T5, of size 21, which kills mutant {M41} = C4.

• T12, of size 62, which kills mutants
{M22,M24,M41} = C2 ∪ C3 ∪ C4.

• T16, of size 83, which kills mutants
{M10,M12,M14,M22,M24} = C1 ∪ C2 ∪ C4.

These sets represent the mutation tallies of the test suites; as for their numeric mutation

scores (RMS, PMS, EMS), they are given in the following table:

Test RMS PMS EMS

Suite Formula Value Formula Value Formula Value

T5 1/14 0.071 1/6 0.167 1/4 0.250

T12 3/14 0.214 3/6 0.500 3/4 0.750

T16 5/14 0.357 5/6 0.833 3/4 0.750

In terms of mutation tallies, T5 is lower than T12 and T16, while T12 and T16 are unrelated.

The numeric mutation scores give three distinct orderings of T5, T12 and T16:

• RMS: T12, T16, T5.

• PMS: T5, T12, T16.

• EMS: T5, {T12, T16}.

88

6.2 On the Divergence of Mutation Coverage

The literature in mutation testing refers to mutation coverage as if it were a uniform measure

of test suite effectiveness; it does not make explicit reference to the mutant generation policy

on which mutation coverage is based [30, 64, 72, 73]; in this chapter, we show that actually

the mutant generation policy does matter, and we quantify by means of statistical analysis

the extent to which it does. To this effect, we consider nine mutant-generation policies,

implemented by two distinct tools, apply them to the same benchmark program, and we

compute the mutation coverage of twenty test suites under each of the mutant generation

policies; then, we analyze the statistical correlations between the results we obtain for the

nine policies.

6.2.1 Experimental set up

The parameters of our experiment are as follows:

• The Sample Program. For the sample program, we have selected jTerminal a simulator
of a VT100 terminal, due to [74].

• The two mutant generator tools are: Major [75] and LittleDarwin [10].

We deployed Major with five operator configurations:

– AOR: Arithmetic Operator Replacement. This mutation operator produced 28
mutants.

– COR: Conditional Operator Replacement. This mutation operator produced 70
mutants.

– ROR: Relational Operator Replacement. This mutation operator produced 161
mutants.

– STD: Statement Delection. This mutation operator produced 97 mutants.

– All: {AOR, COR, ROR, STD}. Together, this set of mutation operators
produced 338 mutants.

As for LittleDarwin, it was deployed with the following mutation operators:

– AND: AND Replacement Operator. LittleDarwin labeled 14 mutants under this
header; this operator replaces instances of AND with OR.

– OR: OR Replacement Operator. LittleDarwin labeled 27 mutants under this
header; this operator replaces instances of OR with AND.

89

– ROR: Replacing Relational Operators. LittleDarwin labeled 82 mutants under
this header; this operator mutates comparison operators (e.g., a ≥ b into a ≤ b).

– All = {AND,OR,ROR}. LittleDarwin gives a total of 123 mutants.

• The Base Test Suite, T0. The selected benchmark program (jTerminal) comes with
a test suite of size 35 elements, to which we add two tests of our own, intended
specifically to trip the program, i.e., make it fail to converge. We refer to this test
suite as T0, and we assume (as a working hypothesis) that it is sufficiently large to
determine semantic equivalence; a study by Hall [76] finds that the probability that
two programs are semantically distinct given that they produce the same output for
N inputs decreases exponentially with N .

• The Sample Test Suites, T1, ... T20. We select twenty subsets of T0, of varying sizes,
as follows:

– T1...T5: Distinct random subsets of T0, of size 32.

– T6...T10: Distinct random subsets of T0, of size 27.

– T11...T15: Distinct random subsets of T0, of size 22.

– T16...T20: Distinct random subsets of T0, of size 36.

For each mutation experiment (application of a mutant generator to jTerminal using a

specific operator or set of operators), we perform the following steps:

• Estimate RMS. For each test suite Ti, 1 ≤ i ≤ 20, we execute the mutants on the
test suite Ti and see how many mutants are killed by Ti. The ratio of killed mutants
over the total number of generated mutants is the raw mutation score (RMS) of Ti.

• Estimate PMS. We execute all the mutants on T0 and see how many mutants
survive the test. As a working hypothesis, we assume that the surviving mutants
are semantically equivalent to the base program, and compute the prorated mutation
score of each test suite Ti as the number of mutants killed by Ti over the number of
mutants killed by T0.

• Estimate EMS. We focus on the mutants that are killed by T0 and we partition them
into semantic equivalence classes, again using T0: if two mutants return the same
output for all the elements of T0, we consider that they are semantically equivalent.
Once the set of killable mutants is partitioned into semantic equivalence classes, we
compute the equivalence-based mutation score (EMS) of each test suite Ti as the
ratio of the number of equivalence classes killed by Ti over the number of equivalence
classes killed by T0. Unlike PMS, EMS gives credit for the number of distinct mutants
killed, and does not reward a test suite for killing the same mutant several times.

• Compute MT and Rank test suites. Whereas RMS, PMS, and EMS are numeric
metrics, the mutation tally (MT) is an attribute in a partially ordered set (to reflect
the partial nature of test suite effectiveness). For mutation tally, we map each test
suite Ti to the set of mutants that it kills, and we consider the inclusion relationships
between the mutation tallies of test suites.

90

T1

T4

T5

T6

T7

T8

T10

T16

T17

T18

T19

T20

T2

T13

T15

T3

T9

T11T12

T14

Figure 6.1 Graph of mutation Tally, for littleDarwin (All).

Once we compute these four metrics for all twenty test suites under all nine mutant

generation policies, we analyze the relationships between the vectors of mutation coverage

obtained for the mutant generation policies. For numeric metrics (RMS, PMS, EMS), we

analyze the statistical correlations between the vectors of metrics. For the mutation tally,

we consider the graphs that represent inclusion relationships between the mutation tallies

and estimate the degree of similarity of each pair of graphs; we let the measure of similarity

of two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of nodes (V) be the Jaccard

index of their sets of edges, i.e. |E1∩E2|
|E1∪E2| .

6.2.2 Raw data

Page limitation precludes us from presenting all our data in detail, hence, we show only

some selected samples and refer the interested reader to the following webpage for details:

http://web.njit.edu/~sma225/thesis/chapter6/.

For the sake of illustration, we show the vectors of RMS, PMS and EMS for LittleDarwin

(All) and Major (All) in, respectively, Tables 6.1 and 6.2. The graphs that rank the test

suites according to the inclusion relations between their mutation tally for LittleDarwin

(All) and Major (All) are given in Figures 6.1 and 6.2, respectively.

91

Table 6.1 Mutation Coverage for LittleDarwin (All): 123 Mutants

Test
Suite

Killed
Mutant

Killed
Equiv.C. RMS PMS EMS

T0 59 47 0.460937 1.000000 1.000000
T1 35 28 0.273437 0.593220 0.595744
T2 36 29 0.281250 0.610169 0.617021
T3 38 29 0.296875 0.644067 0.617021
T4 29 23 0.226562 0.491525 0.489361
T5 32 26 0.250000 0.542372 0.553191
T6 41 35 0.320312 0.694915 0.744680
T7 48 38 0.375000 0.813559 0.808510
T8 56 44 0.437500 0.949152 0.936170
T9 44 33 0.343750 0.745762 0.702127
T10 43 36 0.335937 0.728813 0.765957
T11 54 42 0.421875 0.915254 0.893617
T12 58 46 0.453125 0.983050 0.978723
T13 52 42 0.406250 0.881355 0.893617
T14 55 43 0.429687 0.932203 0.914893
T15 56 44 0.437500 0.949152 0.936170
T16 58 46 0.453125 0.983050 0.978723
T17 58 46 0.453125 0.983050 0.978723
T18 57 45 0.445312 0.966101 0.957446
T19 56 44 0.437500 0.949152 0.936170
T20 58 46 0.453125 0.983050 0.978723

T1

T4

T16

T17

T19T20 T2 T3 T5

T6T7 T8 T9T10 T11 T12

T13

T14

T18

T15

Figure 6.2 Graph of mutation tally, for major (All).

92

Table 6.2 Mutation Coverage for Major (All): 338 Mutants

Test
Suite

Killed
Mutant

Killed
Equiv.C. RMS PMS EMS

T0 148 79 0.437869 1.000000 1.000000
T1 137 73 0.405325 0.925675 0.924050
T2 141 75 0.417159 0.952702 0.949367
T3 137 74 0.405325 0.925675 0.936708
T4 148 79 0.437869 1.000000 1.000000
T5 129 72 0.381656 0.871621 0.911392
T6 126 71 0.372781 0.851351 0.898734
T7 120 67 0.355029 0.810810 0.848101
T8 140 75 0.414201 0.945945 0.949367
T9 140 76 0.414201 0.945945 0.962025
T10 123 70 0.363905 0.831081 0.886075
T11 119 64 0.352071 0.804054 0.810126
T12 114 64 0.337278 0.770270 0.810126
T13 110 58 0.325443 0.743243 0.734177
T14 125 70 0.369822 0.844594 0.886075
T15 126 67 0.372781 0.851351 0.848101
T16 146 77 0.431952 0.986486 0.974683
T17 148 79 0.437869 1.000000 1.000000
T18 147 78 0.434911 0.993243 0.987341
T19 146 78 0.431952 0.986486 0.987341
T20 147 78 0.434911 0.993243 0.987341

93

Table 6.3 Correlation Matrix for RMS

RMS LittleDarwin Major
All AND OR Relation All AOR COR ROR STD

LittleDarwin All 1.0
AND 0.766 1.0
OR 0.659 0.279 1.0
REL 0.984 0.674 0.643 1.0

Major All 0.0152 0.114 0.115 -0.055 1.000
AOR -0.219 -0.153 -0.037 -0.228 0.682 1.0
COR 0.201 -0.005 0.491 0.177 0.651 0.174 1.0
ROR 0.087 0.321 -0.043 -0.008 0.813 0.392 0.297 1.0
STD 0.100 0.200 0.079 0.029 0.810 0.544 0.489 0.650 1.0

6.2.3 Analysis

Even a casual look at Tables 6.1 and 6.2 reveals that the mutation coverage of test suites T0

... T20 under the two mutant generator policies diverge widely: it suffices to compare the

RMS column of Table 6.1 with the RMS column of Table 6.2; the same can be observed by

comparing the PMS columns and the EMS columns of the two tables. Also, even a casual

look at the graphs in Figures 6.1 and 6.2 reveals that these two graphs are very different in

the way they rank test suites T0 ... T20. Note that both graphs are transitive; whenever

there is an arc from Ti to Tj and from Tj to Tk there is also an arc from Ti to Tk. Whereas

it is common to draw the transitive root of transitive graphs, we have resolved to draw the

graph in full (including its transitive arcs), because we want the Similarity measure will be

used to reflect the graphs as drawn.

The lack of correlation between the numeric mutation coverage metrics (RMS, PMS,

EMS) is vastly confirmed by the correlation matrices given in Table 6.3 for RMS, Table

6.4 for PMS and Table 6.5 for EMS. This is also confirmed for the mutation tally by the

similarity matrix shown in table 6.6. Negative entries in these tables are highlighted, for

emphasis.

94

Table 6.4 Correlation Matrix for PMS

PMS LittleDarwin Major
All AND OR Relation All AOR COR ROR STD

LittleDarwin All 1.0
AND 0.765 1.0
OR 0.659 0.279 1.0
REL 0.983 0.674 0.643 1.0

Major All 0.0152 0.114 0.115 -0.055 1.0
AOR -0.218 -0.153 -0.037 -0.228 0.682 1.0
COR 0.201 -0.005 0.491 0.177 0.651 0.175 1.0
ROR 0.087 0.321 -0.042 -0.008 0.813 0.392 0.296 1.0
STD 0.100 0.200 0.079 0.029 0.810 0.543 0.488 0.651 1.0

Table 6.5 Correlation Matrix for EMS

EMS LittleDarwin Major
All AND OR Relation All AOR COR ROR STD

LittleDarwin All 1.0
AND 0.752 1.0
OR 0.719 0.422 1.0
REL 0.986 0.678 0.706 1.00

Major All -0.067 -0.005 0.048 -0.119 1.0
AOR -0.208 -0.172 0.056 -0.213 0.751 1.0
COR 0.162 0.095 0.121 0.126 0.611 0.064 1.0
ROR 0.001 0.098 0.177 -0.044 0.934 0.719 0.505 1.0
STD -0.089 0.014 -8.176 -0.138 0.991 0.714 0.608 0.924 1.0

Table 6.6 Similarity Matrix for Mutation Tally

MT LittleDarwin Major
All AND OR Relation All AOR COR ROR STD

LittleDarwin All 1.0
AND 0.278 1.0
OR 0.568 0.390 1.0
REL 0.299 0.407 0.444 1.0

Major All 0.263 0.179 0.195 0.243 1.000
AOR 0.842 0.304 0.444 0.341 0.313 1.0
COR 0.389 0.342 0.376 0.303 0.363 0.436 1.0
ROR 0.461 0.317 0.367 0.541 0.570 0.548 0.516 1.0
STD 0.267 0.178 0.199 0.241 0.985 0.317 0.371 0.565 1.0

95

The first observation that we make about these results is that Tables 6.3 and 6.4 are

identical; this is because RMS and PMS are in a linear relationship (PMS = λ × RMS,

where λ is the ratio of killable mutants); in subsequent experiments, we show only one copy

of this matrix.

Among the numeric coverage metrics, it is fair to consider that EMS is perhaps

the most meaningful metric since it excludes equivalent mutants from consideration (hence

does not penalize a test suite for failing to kill an equivalent mutant), and is based on

a count of equivalence classes modulo semantic equivalence (hence, does not give undue

credit for killing the same mutant multiple times). Hence, we focus on Table 6.5. Within

this table, perhaps the most meaningful correlation is that between LittleDarwin (All)

and Major (All), since these mutant generation policies involve the highest number of

mutants. The correlation between the EMS values assigned to the test suites T1 ... T20

under these two mutant generation policies is -0.0763. When we resolved to initiate this

study, we were expecting to find a correlation in the range of 0.5 to 0.8, not a negative

correlation altogether. The less perfect mutation coverage metrics of RMS and PMS show

a correlation of 0.015176, also extremely low, suggesting that mutation coverage under one

policy is (almost) statistically independent of mutation coverage under another. All our

data is available online for interested readers to check:

http://web.njit.edu/~sma225/thesis/chapter6/.

Even more meaningful than EMS is, in our opinion, the mutation tally of a test suite: the

only way we can tell that a test suite Ti is better than (or as good as) a test suite Tj is if

(and only if) all the mutants that are killed by Tj are killed by Ti. Hence, we are interested

in the similarity index of the graphs that rank test suites T1 ... T20 according to inclusion

relationships between their mutation tallies. Table 6.6 shows the similarity indices between

96

all the graphs of mutation tallies obtained for all the mutant generation policies. If we focus

again on the graphs generated for LittleDarwin (All) and Major (All), given respectively

in Figures 6.1 and 6.2, we find a similarity index of 0.263158. In other words, these two

graphs agree on merely one quarter of the relationships that they define between test suites.

Three-quarters of the inclusion relationships that are found in one graph are absent from

the other; this reflects how vastly divergent these two measures of mutation coverage are.

This, in turn, reflects the importance of the mutant generation policy in determining the

mutation coverage of a test suite.

6.3 Further Empirical Observations

In the experiment of Section 6.2, we have explored the relationship between measures of

mutation coverage based on different mutant generators (LittleDarwin vs. Major). From an

observation of Tables 6.3, 6.4, 6.5 and 6.6, we find that the divergence between measures of

mutation coverage is greater across different tools than it is between mutation operators of

the same tool. In this section, we show the results of three experiments that involve different

mutation operators within the same mutant generator tool (LittleDarwin): an experiment

where the test suite sizes range over a narrow interval; an experiment where the test suite

sizes range over a wide interval, and an experiment where the number of mutants are very

large, and the test suite sizes range over the breadth of the cardinality of T0. In all cases,

we find varying levels of divergence between the scores of mutation coverage, ranging from

measurable to considerable. These three experiments are the subject of the next three

subsections; for the second and third experiment, we merely specify the parameters of each

experiment then presents the three matrices that reflect the relationships between measures

of mutation coverage.

97

6.3.1 First experiment: a narrow spread of test suite sizes

For this experiment, we resolve to spread the sizes of the test suites T1... T20 narrowly as

a percentage of the size of test suite T0. The parameters of this experiment are as follows:

• Base Program: ArrayUtils.

• Base Test Suite Size (T0): 104.

• Test Suite Sizes: We form four sets of test suites; each set is a randomly selected
subset of T0.

– T1...T5: Distinct random subsets of T0 of size 10.

– T6...T10: Distinct random subsets of T0 of size 21.

– T11...T15: Distinct random subsets of T0 of size 31.

– T16...T20: Distinct random subsets of T0 of size 42.

• Mutation Generation Policies. We have selected three mutation generation policies
defined by three sets of operations provided by LittleDarwin:

– AND Replacement Operators. This policy produces 14 mutants.

– Relational Operators. This policy produces 82 mutants.

– OR Replacement Operators. This policy produces 27 mutants.

Table 6.7 gives the correlation matrix between the RMS and PMS scores of the test suites

under the different mutant generation policies; and table 6.8 gives the correlation matrix

of the equivalence-based mutation scores of the twenty test suites under the three mutant

generation policies. Figures 6.3, 6.5 and 6.10 show, respectively, the mutation tally graphs

derived from the mutation experiments that use AND Replacement, OR Replacement, and

Relational Operation Replacement; even a casual observation of these graphs shows that they

rank test suites T0 ... T20 differently. This is confirmed by considerting Table 6.9, which

gives the similarity index of the graphs of mutation tally for the three selected mutation

strategies.

Whereas the similarity indices between the graphs of mutation tally are very low

(ranging between 0.29 and 0.41), the statistical correlations between their numeric mutation

98

Table 6.7 Correlation RMS and PMS: First Experiment

RMS
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.000000 0.606179 0.611844
OR
Replacement 1.000000 0.888815
Relational
Ops 1.000000

Table 6.8 Correlation Matrix of EMS: First Experiment

EMS
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.000000 0.723452 0.710286
OR
Replacement 1.000000 0.881895
Relational
Ops 1.000000

Table 6.9 Similarity Index of MT Graphs: First Experiment

MT
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.0 0.41 0.29
OR
Replacement 1.0 0.38
Relational
Ops 1.0

T1

T7

T8

T11

T16

T17

T19

T20

T2

T4

T9

T14

T3

T5

T6

T12

T15

T18

T10

T13

Figure 6.3 Graph of mutation tally, for AND replacement, first experiment.

99

T1

T2

T3

T4

T7

T8

T11

T12

T14

T15

T16

T17

T18

T19

T20

T5

T6

T13

T9

T10

Figure 6.4 Graph of mutation tally, for AND replacement, first experiment.

T1

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T2

T3

T4

T5

Figure 6.5 Graph of mutation tally, for OR replacement, first experiment.

T1

T6

T11

T13 T14

T15

T16

T17

T18

T19

T20

T2

T7 T12

T3

T9

T4

T5

T8

T10

Figure 6.6 Graph of mutation tally, for relational operators, first experiment.

100

T1

T12

T13

T16

T17

T18

T19

T20

T2T3

T15

T4

T5

T14

T6 T7

T8

T9T10

T11

Figure 6.7 Graph of mutation tally, for relational operators, first experiment.

T1

T11

T18

T19

T2

T16

T3

T9

T14

T17

T4

T7 T5

T15

T6

T8

T10T12 T13

Figure 6.8 Graph of mutation tally, for relational operators, first experiment.

T1

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

Figure 6.9 Graph of mutation tally, for relational operators, first experiment.

101

T1

T6

T11

T15

T16

T18

T19

T20

T2

T5

T8

T3

T4

T7

T9

T10

T12

T13

T14

T17

Figure 6.10 Graph of mutation tally, for relational operators, first experiment.

T1

T2

T4

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T3

T6

T5

Figure 6.11 Graph of mutation tally, for relational operators, first experiment.

102

scores are not as low (ranging between 0.60 and 0.88). We qualify this observation with

two premises: First, we consider that mutation tally is a more meaningful reflection of

relative effectiveness (the property of a test suite to be more effective than another) than

the numeric mutation scores (RMS, PMS, EMS). Second, we do not claim that mutation

scores are always un-correlated; we only claim that they are not always correlated.

6.3.2 Second experiment: a wide spread of test suite sizes

Whereas in the previous experiment, we used test suite sizes that are a small fraction of the

size of T0 (10%, 20%, 30%, 40%), in this experiment, we select higher sizes; by spreading test

suite sizes over a wider range of values, we anticipate the estimates of test suite effectiveness

to differ more widely between different test suites. The parameters of this experiment are

as follows:

• Base Program: ArrayUtils.

• Base Test Suite Size (T0): 104.

• Test Suite Sizes: We form four sets of test suites, each set is a randomly selected
subset of T0.

– T1...T5: Dinstinct random subsets of T0 of size 21.

– T6...T10: Distinct random subsets of T0 of size 42.

– T11...T15: Distinct random subsets of T0 of size 62.

– T16...T20: Distinct random subsets of T0 of size 83.

• Mutation Generation Policies. We have selected three mutation generation policies
defined by three sets of operations provided by LittleDarwin:

– AND Replacement Operators. This policy produces 14 mutants.

– Relational Operators. This policy produces 82 mutants.

– OR Replacement Operators. This policy produces 27 mutants.

Table 6.10 shows the correlation matrix of RMS and PMS for the three mutant generation

policies; table 6.11 gives the correlation matrix of the equivalence-based mutation scores

103

Table 6.10 Correlation Matrix of RMS and PMS: Second Experiment

RMS
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.0 0.2793361 0.67401821
OR
Replacement 1.0 0.6430149
Relational
Ops 1.0

Table 6.11 Correlation Matrix of EMS: Second Experiment

EMS
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.0 0.4225233 0.67879997
OR
Replacement 1.0 0.706133
Relational
Ops 1.0

of the twenty test suites under the three mutant generation policies. Table 6.12 gives the

similarity index of the graphs of mutation tally for the three selected mutation policies.

6.3.3 Third experiment: a larger pool of mutants

In this experiment, we select a program and mutation operators that yield larger mutant

pools to get past possible side effects. The parameters of this experiment are as follows:

• Base Program: jTerminal, a simulator of a VT100 terminal [74].

• Base Test Suite Size (T0): 35.

Table 6.12 Similarity Index of the MT Graphs: Second Experiment

MT
AND
Replacement

OR
Replacement

Relational
Ops

AND
Replacement 1.0 0.39 0.41
OR
Replacement 1.0 0.44
Relational
Ops 1.0

104

Table 6.13 Correlation Matrix of RMS, PMS: Third Experiment

RMS ROR COR AORB
ROR 1.0 0.543853 0.594772
COR 1.0 0.082144
AORB 1.0

Table 6.14 Correlation Matrix for EMS: Third Experiment

EMS ROR COR AORB
ROR 1.0 0.452972 0.662319
COR 1.0 0.082144
AORB 1.0

• Test Suite Sizes: We form four sets of test suites, each set is a randomly selected
subset of T0.

– T1...T5: Distinct random subsets of T0 of size 14.

– T6...T10: Distinct random subsets of T0 of size 19.

– T11...T15: Distinct random subsets of T0 of size 24.

– T16...T20: Distinct random subsets of T0 of size 29.

• Mutation Generation Policies. We deploy LittleDarwin the following mutation
operators, and give the number of mutants produced by each:

– Relational Operator Replacement (ROR): 165 mutants.

– Conditional Operator Replacement (COR): 39 mutants.

– Arithmetic Operation Replacement, Binary (AORB): 21 mutants.

Note that the ROR and COR operators used in this experiment are different from the ROR

and COR operators used in the experiment reported on in Section 6.2: whereas the former

are LittleDarwin operators, the latter areMajor operators; hence, the fact that they produce

a different number of mutants on the same base program is not an issue. Table 6.13 shows

the correlation matrix of RMS and PMS for the three mutant generation policies; table 6.14

gives the correlation matrix of the equivalence mutation scores (EMS) of the twenty test

suites under the three mutant generation policies. Table 6.15 gives the similarity index of

the graphs of mutation tally for the three selected mutation strategies.

105

Table 6.15 Similarity Matrix of MT Graphs: Third Experiment

RMS ROR COR AORB
ROR 1.0 0.2225 0.3665
COR 1.0 0.5770
AORB 1.0

6.4 Conclusion

6.4.1 Summary

In software testing, the mutation coverage of a test suite is often equated with its

effectiveness, for good reason: to the extent that mutations represent faults [7, 35, 36], a

test suite that detects mutations is likely to detect faults. This has led researchers to

consider mutation coverage as a defacto standard of test suite effectiveness, so much so

that a finding such as ”XYZ Coverage is Not Strongly Correlated to Mutation Coverage” is

usually perceived as the kiss of death of XYZ [5, 47, 64–68]. In this chapter, we extend

this courtesy to Mutation Coverage by attempting to prove that, depending on what

mutant generation policy one adopts, mutation coverage itself is not strongly correlated

with mutation coverage.

Also, when researchers talk about mutation coverage without explicitly citing the

mutant generation policy on which the mutation coverage is defined, they assume implicitly

that somehow, the mutation coverage is independent of the mutation generation policy, or

at least is not highly affected by it.

The empirical results presented in this chapter strongly undermine this assumption:

• Our data shows that when different mutant generation tools are used, the estimates
of mutation coverage can differ very widely: The lower left quadrant of Table 6.5
contains some very low figures, including, interestingly, negative values; even zero
values (of which there are many) are very surprising, since they mean that mutation
coverage metrics assigned by different mutant generation experiments are statistically
independent of each other.

106

• Even different mutant generation operators within the same tool may yield
surprisingly low correlation values: we find some very low figures, as low as 0.08
between mutation coverage metrics of test suites for the same program, stemming
from the same mutant generation tool.

• Also, to the extent that mutation tally is ultimately the most reliable indicator of
relative effectiveness, even a casual look at the graphs of mutation tally show that they
differ significantly from each other for different mutation policies. This observation is
confirmed by the similarity indices of the graphs, which range between 0.22 and 0.57.

6.4.2 Threats to validity

The results presented here stem from a small scale experiment, and do not support any

broad claims; but our goal is not to prove any claim, as much as it is to disprove the

assumption that mutation coverage is independent of the mutant generation policy.

6.4.3 Implications and prospects

The short-term implication of this study is that we should consider that mutation coverage

is not an attribute of the test suite alone, but must refer explicitly to the mutant generation

policy; also, mutation scores cannot be compared across mutation policies, but must be

compared only for the same policy. Another, conceptual, implication is the need to explore

other means to assess the effectiveness of test suites in a way that better reflects the intrinsic

attributes of the test suite, the program being tested, and the specification/ oracle against

which it is tested.

107

CHAPTER 7

WHAT COVERAGE METRICS MEAN, AND WHAT THEY DO NOT

7.1 Assessing Test Suite Effectiveness

7.1.1 Coverage metrics: an imperfect compromise

To quantify the effectiveness of test suites, researchers and practitioners have routinely used

coverage metrics, i.e. metrics that quantify to what extent a test suite exercises syntactic

features (statements, branches, conditions, paths, etc) of the program under test [45]; the

rationale for this approach is that in order for a test suite to sensitize a fault, it must execute

the code that contains the fault. An alternative approach to quantifying the effectiveness

of a test suite is to equate the effectiveness of a test suite with its ability to kill mutants of

the program under test; the rationale of this approach is that, to the extent that mutations

are faithful representation of actual faults [4,5,7,8], the ability to detect faults is the same

as the ability to kill mutants.

All these metrics are clearly imperfect: Syntactic coverage metrics are imperfect

because exercising a program’s syntactic attributes is neither necessary nor sufficient to

detect all its faults. It is insufficient because not all executions of a faulty statement sensitize

the fault, and not all fault sensitizations lead to a program failure. Strictly speaking,

exercising all the syntactic features of a program are not necessary either to detect all its

faults: it suffices only to exercise its faulty features (of course, in practice, we do not know

which features are faulty; hence, we aim to execute all of them). While mutation coverage

is usually seen as a more reliable measure of test suite effectiveness, it has issues of its own:

• Mutant Equivalence. In its raw form, the mutation score of a test suite may mean
vastly different things depending on the fraction of semantically equivalent mutants

108

to the base program. A mutation score of 0.5 is excellent if half of the mutants are
equivalent to the base program, much less so if no mutant is.

• Mutant Redundancy. The same mutation score of a test suite may mean vastly
different things depending on the extent of equivalence between the mutants that
it killed: there is a difference between killing 50 semantically distinct mutants and
killing the same mutant 50 times (by killing 50 syntactically distinct but semantically
equivalent mutants).

• Dependence on Mutation Policy. In [22] we show that the mutation score of the same
test suite can vary widely depending on what mutant generator we use and what
mutation operators we activate within the same mutant generator. If a test suite
has a mutation score of 0.2 for one mutation policy and a mutation score of 0.8 for
another, what can we infer about its effectiveness?

Generally, all coverage metrics share two other weaknesses:

• Inherent Imprecision. Given two test suites, T and T’, it is not always possible to
adjudicate the question of which is better; they may be unrelated and incomparable;
hence, the relation of being a better test suite is not a total ordering, but rather
a partial ordering. By assigning numeric values to assess test suite effectiveness,
we define a total ordering to represent what is essentially a partial ordering; hence,
we create an inherent built-in source of imprecision since any two numeric coverage
metrics can always be compared, even when their corresponding test suites are not
in an ordering relation.

• Context Independence. All the coverage metrics are defined as a function of the test
suite and the program under test, but whether a test suite T is effective also depends
on the correctness property that we are using T for, as well as the specification against
which correctness is tested.

7.1.2 Agenda

in this chapter, we envision to analyze the validity/soundness of existing coverage metrics

as measures of test suite effectiveness. To this effect, we proceed in three steps:

• First, we consider the concept of semantic coverage, introduced in [20], and discuss
how it is designed to represent test suite effectiveness.

• Second, we discuss why we resolve to use semantic coverage as the the standard
against which we assess coverage metrics.

• Third, we report on an experiment where we took a benchmark program, selected
twenty test suites thereof, computed their respective semantic coverage, then
compared the ordering defined by semantic coverage with the ordering defined by
each traditional coverage metric.

109

The semantic coverage of a test suite is defined not only with respect to the program under

test, but also with respect to the standard of correctness that the program is being tested

for (partial correctness, total correctness), and the specification against which correctness is

tested. Semantic coverage cannot be estimated easily in practice; hence, we do not view it

as an alternative to common coverage metrics, but we use it to assess how much credibility

we can lend to these metrics.

In Section 7.2, we present and prove properties about semantic coverage to justify

further why we are adopting it as the basis against which we assess other coverage

metrics. Section 7.3 forms the main body of our work: we discuss the details of our

experiment, present the empirical results of our experiment, comment on them, and draw

some conclusions and observations. We conclude in Section 7.4 with a summary of our

paper, a critique of its results, and future research prospects.

7.2 Using Semantic Coverage

The semantic coverage of a test suite T for a standard of correctness (partial or total) of

a program P with respect to a specification R depends on four factors: T , P , R and the

standard of correctness. In this section, we discuss how one would want a measure of test

suite effectiveness to vary as a function of each of these parameters, then we show that

semantic coverage does meet the declared criteria. We start with citing and justifying the

criteria.

• Monotonicity with respect to T . Of course, we want the effectiveness of a test suite
to be monotonic with respect to T : if we replace T by a superset, we get a higher
semantic coverage.

• Monotonicity with respect to R. Specifications are ordered by refinement whereby a
more refined specification represents a more stringent requirement. We argue that it
is easier to test a program for correctness against a specification R than against a
specification R′ that refines R; indeed, a more refined specification involves a larger
input domain (hence, a larger set to cover) and stronger output conditions (hence,

110

more conditions to verify). Whence we expect that the same test suite T has lower
semantic coverage for more refined specifications: i.e., semantic coverage ought to
decrease when R grows more refined.

• Monotonicity with respect to P . If and only if program P ′ is more-correct than
program P , the detector set of P ′ is a subset of the detector set of P , which means
that we have fewer failures of P ′ to reveal than failures of P . Hence, the semantic
coverage of a test suite T ought to be higher for a more correct program.

• Monotonicity with respect to the standard of correctness. Total correctness is a
stronger property than partial correctness, hence, it is more difficult to test a program
for total correctness than for partial correctness. Consequently, the same test suite
T ought to have a lower semantic coverage for total correctness than for partial
correctness (the same tool would be less effective against a more difficult task than
an easier task).

With the exception of the first monotonicity property (with respect to T), one would be

hard-pressed to claim or prove any of the monotonicity properties cited above about any

traditional coverage metric (e.g., statement coverage). We present below Propositions to

the effect that semantic coverage satisfies all these monotonicity properties; these are due

to [20], and are given without proof.

Proposition 18. Monotonicity with respect to T . Given a program P on space S and a

specification R on S, and given two subsets T and T ′ of S, if T ⊆ T ′ then:

ΓTOT
R,P (T) ⊆ ΓTOT

R,P (T ′),

ΓPAR
R,P (T) ⊆ ΓPAR

R,P (T ′).

Proposition 19. Monotonicity with respect to the standard of correctness. Given a

program P on space S, a specification R on S, and test suite T (subset of S), the semantic

coverage of T for partial correctness of P with respect to R is greater than or equal to the

111

semantic coverage for total correctness of P with respect to R:

ΓTOT
R,P (T) ⊆ ΓPAR

R,P (T).

Proposition 20. Monotonicity with respect to relative total correctness of P . Given a

specification R on space S and two programs P and P ′ on S, and a subset T of S. If P ′ is

more-totally-correct than P with respect to R then:

ΓTOT
[R,P](T) ⊆ ΓTOT

[R,P ′](T).

Proposition 21. Monotonicity with respect to relative partial correctness of P . Given a

specification R on space S and two programs P and P ′ on S, and a subset T of S. If P ′ is

more-partially-correct than P with respect to R then:

ΓPAR
[R,P](T) ⊆ ΓPAR

[R,P ′](T).

Proposition 22. Monotonicity with respect to Refinement of R. Given a program P on

space S and two specifications R and R′ on S, and a subset T of S. If R′ refines R then:

ΓTOT
[R′,P](T) ⊆ ΓTOT

[R,P](T).

ΓPAR
[R′,P](T) ⊆ ΓPAR

[R,P](T).

112

T3

T18

T6 T8 T9 T11 T12 T15 T16

Figure 7.1 Sorting T1 ... T20 by semantic coverage of P with respect to R1 for partial
correctness.

T3

T18

T6 T8 T9 T16

Figure 7.2 Sorting T1 ... T20 by semantic coverage of P with respect to R1 for total
correctness.

T1

T17

T2

T20

T3

T14 T16

T7

T6

T9 T13

T15

Figure 7.3 Sorting T1 ... T20 by Semantic Coverage of P with respect to R2 for partial
correctness.

113

T2

T20

T9

T6

Figure 7.4 Sorting T1 ... T20 by semantic coverage of P with respect to R2 for total
correctness.

T1

T2

T3

T4 T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

Figure 7.5 Sorting T1 ... T20 by semantic coverage of P with respect to R3 for partial
correctness.

T1

T4T7

T9

T10

T11

T12

T13 T14

T15

T18

T19

T20

T2

T8

T16

T3

T5

T6

T17

Figure 7.6 Sorting T1 ... T20 by semantic coverage of P with respect to R3 for total
correctness.

114

7.3 What Coverage Metrics Mean

7.3.1 Experiment design

In light of the stepwise process that we followed to derive the formula of semantic coverage,

and in light of the monotonicity properties that we have shown this formula to satisfy, we

resolve to use semantic coverage as a basis for assessing the validity of coverage metrics to

measure test suite effectiveness. To this effect, we run an experiment where:

• We consider a benchmark program P , along with its associated benchmark test class
T0.

• We derive twenty random subsets of T0, say T1 ... T20, whose sizes range between
40% and 60% of the size of T0.

• We select three specifications, say R1, R2 and R3 for P , and we compute the semantic
coverage of each test suite T1 .. T20 for partial correctness and total correctness with
respect to R1, R2, R3; this gives us six ordering relations between test suites T1 ...
T20 defined by semantic coverage.

• We compute traditional coverage metrics (statement coverage, branch coverage, line
coverage, mutation coverage, etc.) of the test suites T1 ... T20 using online tools.

• We check to what extent the traditional coverage metrics are correlated with (give us
information about) the semantic coverage of the test suite. In other words, if we find
that some test suite Ti has a greater coverage metric than some test suite Tj, how
confident can we be that Ti has higher semantic coverage than Tj?

• To answer the above question, we proceed as follows: We draw the graph of semantic
coverage of the test suites for all six combinations cited above (partial correctness
and total correctness with respect to R1, R2, R3). Then for each coverage metric,
say CM , we compute the number of ordering relations by semantic coverage that
are borne out by the coverage metric, and we estimate three performance indicators:
Precision; Recall; and Jaccard Index. See Figure 7.7.

7.3.2 Experiment’s implementation

The following parameters can characterize our experiment:

• The Program, P . The sample program that we use for this experiment is a method
called createNumber() of the Java class NumberUtils.java, from the commons
benchmark (commons-lang3-3.13.0-src)1. The size of the selected method is 170
lines.

1https://commons.apache.org/proper/commons-lang/

115

CM
(Candidate Metric)

SC
(Semantic Coverage)

SC
∩
CM

SC: Set of Inequalities by Semantic Coverage. CM: Set of Inequalities by Candidate Metric.

precision = |SC∩CM |
|CM | recall = |SC∩CM |

|SC|Jaccard = |SC∩CM |
|SC∪CM |

'

&

$

%

'

&

$

%

Figure 7.7 Assessing compliance between CM and SC.

• Base Test Suite, T0. We consider the test class that comes with the selected program:
class NumberUtilsTest.java. This class includes 107 tests.

• Test Suites T1, T2, ... T20. To generate these test suites, we run the following script,
where rand() returns random numbers between 0.0 (inclusive) and 1.0 (exclusive):

threshold = 0.4;

for (int i=1; i<=20; i++)

{print ("test suite t",i);

int size=0; threshold = threshold + 0.01;

for (int j=1; j<=107; j++)

{if (rand()<=threshold) {print (j); size++;}

print ("size of test suite t",i,": ", size);}

This yields the following sizes for the test suites:

116

T0 107
T1 48
T2 40
T3 42
T4 47
T5 48
T6 46
T7 48
T8 45
T9 46
T10 55
T11 61
T12 59
T13 58
T14 50
T15 59
T16 61
T17 70
T18 80
T19 62
T20 70

• Syntactic Metrics. We use jaCoCo (https://www.eclemma.org/jacoco/) to
compute Statement Coverage and Branch Coverage of the test suites T1 ... T20. We
use PiTest (https://pitest.org/) to compute the Line Coverage of the test suites.

• Mutation Coverage. We define three metrics for mutation coverage.

– RMS: Raw Mutation Score. This is the usual mutation score, defined as the
ratio of the number of killed mutants over the number of generated mutants.
We use PiTest for this purpose.

– PMS: Prorated Mutation Score. We consider that any mutant that survives
all the tests of T0 must be equivalent to the base program, and we define the
Prorated Mutation Score of a test Ti, for 1 ≤ i ≤ 20, as the ratio of the number
of mutants killed by Ti over mutants killed by T0.

– EMS: Equivalence Based Mutation Score. Rather than count individual
mutants, we count equivalence classes of mutants modulo semantic equivalence,
where we consider that two mutants are semantically equivalent if and only if
they generate the same outputs for all tests in T0. Then EMS of test suite Ti
is the ratio of the number of equivalence classes killed by Ti over the number of
equivalence classes killed by T0.

• Specifications. To generate specifications in the form of binary relations, we run the
base program on all the tests of the test class and record the (input, output) pairs.
Then we scan these pairs and make some modifications as follows:

– R1. For R1, we change the output for each fifth input (i.e., 5th, 10th, 15th,
etc...). This means that the base program fails the test for each one of these.

117

– R2. For R2, we change the output for each seventh input (i.e., 7th, 14th, 21st,
etc..).

– R3. For R3, we change the output for each eleventh input (i.e., 11th, 22nd,
33rd, etc...).

The semantic coverage of test suites T1 ... T20 for the six experiments (partial correctness

and total correctness with respect to R1, R2, R3) are computed using the formulas given

in Section 7.2, and compared for inclusion. The inclusion relationships are represented in

the graphs depicted by Figures 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6.

Then for each coverage metric CM (statement coverage, branch coverage, line

coverage, RMS, PMS, and EMS); we review how many inequalities provided by the metric

are borne out by semantic coverage (SM); this gives us the cardinality of (CM ∩ SC); see

Figure 7.7. The cardinality of SC for a semantic coverage experiment with respect to a

given specification and correctness standard is simply the number of arcs in the

corresponding graph. The cardinality is SC is, interestingly, the same for all the numeric

metrics: 190. Indeed, given any set of 20 distinct numbers, there are exactly 190

inequalities between them (20×19
2), since the largest number is greater than 19; the second

largest is greater than 18, etc. As for the cardinality of (SC ∪ CM), it can be estimated

by the following formula:

|SC ∪ CM | = |SC|+ 190− |SC ∩ CM |.

7.3.3 Experimental data

Table 7.1 shows the values computed for statement coverage, branch coverage, line coverage,

and RMS for the 20 test suites T1 ... T20. Table 7.2 shows in greater detail how the prorated

mutation score and the equivalence-based mutation score are evaluated by analyzing mutant

equivalence and redundancy.

118

Table 7.1 Metrics Table: T1 ... T20

Test Suite Statement Coverage Branch Coverage Line Coverage RMS
T0 .94 .83 .83 .71
T1 .90 .79 .80 .67
T2 .84 .72 .74 .57
T3 .87 .79 .78 .69
T4 .88 .76 .80 .67
T5 .85 .75 .76 .67
T6 .87 .77 .79 .69
T7 .93 .79 .80 .69
T8 .90 .78 .76 .65
T9 .88 .77 .80 .68
T10 .89 .75 .80 .69
T11 .90 .80 .81 .69
T12 .93 .80 .81 .69
T13 .87 .77 .79 .68
T14 .91 .76 .80 .64
T15 .91 .80 .82 .69
T16 .92 .80 .81 .67
T17 .92 .78 .80 .66
T18 .93 .82 .79 .68
T19 .94 .81 .82 .70
T20 .89 .80 .78 .68

Table 7.2 Mutation Coverage for: T1 ... T20

Test Suite Killed Mutants Killed EC PMS EMS
T0 89 67 1 1
T1 85 57 0.95505618 0.850746269
T2 69 40 0.775280899 0.597014925
T3 86 62 0.966292135 0.925373134
T4 81 51 0.91011236 0.76119403
T5 83 59 0.93258427 0.880597015
T6 84 58 0.943820225 0.865671642
T7 81 54 0.91011236 0.805970149
T8 80 49 0.898876404 0.731343284
T9 83 54 0.93258427 0.805970149
T10 82 55 0.921348315 0.820895522
T11 84 58 0.943820225 0.865671642
T12 83 57 0.93258427 0.850746269
T13 83 59 0.93258427 0.880597015
T14 75 48 0.842696629 0.71641791
T15 86 62 0.966292135 0.925373134
T16 85 60 0.95505618 0.895522388
T17 82 58 0.921348315 0.865671642
T18 86 63 0.966292135 0.940298507
T19 86 62 0.966292135 0.925373134
T20 82 53 0.921348315 0.791044776

119

Table 7.3 Precision, Recall and Jaccard Index for Statement Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 5 7 1 5 14 14
Precision 0.02631 0.03684 0.00526 0.02631 0.07368 0.07368 0.04035
Recall 1 0.875 0.5 0.41666 0.62162 0.20175 0.60250
Jaccard 0.02631 0.03664 0.00523 0.02538 0.29741 0.14902 0.09000

Table 7.4 Precision, Recall and Jaccard Index for Branch Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 5 8 1 5 38 49
Precision 0.02380 0.03809 0.00476 0.02380 0.18095 0.23333 0.08412
Recall 1 1 0.5 0.41666 0.34234 0.14327 0.56704
Jaccard 0.02380 0.03809 0.00473 0.02304 0.13427 0.09741 0.05356

Table 7.3 shows the precision, recall, and Jaccard index of statement coverage for the

six experiments defined by partial correctness and total correctness with respect to R1, R2

and R3.

Table 7.4 shows the precision, recall, and Jaccard index of branch coverage for the

six experiments defined by partial correctness and total correctness with respect to R1, R2

and R3.

Table 7.5 shows the precision, recall, and Jaccard index of line coverage for the six

experiments defined by partial correctness and total correctness with respect to R1, R2 and

R3.

Table 7.5 Precision, Recall and Jaccard Index for Line Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 2 2 1 4 6 38
Precision 0.0095 0.0095 0.00476 0.01904 0.02857 0.18095 0.04206
Recall 0.4 0.25 0.5 0.33333 0.05405 0.11111 0.2747
Jaccard 0.00938 0.00925 0.00473 0.01834 0.01904 0.07392 0.02245

120

Table 7.6 Precision, Recall and Jaccard Index for Raw Mutation Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 4 6 2 7 9 29
Precision 0.02105 0.03157 0.01052 0.03684 0.04736 0.15263 0.05
Recall 0.8 0.75 1 0.58333 0.08108 0.08479 0.54986
Jaccard 0.02094 0.03125 0.01052 0.03589 0.03082 0.05765 0.03118

Table 7.7 Precision, Recall and Jaccard Index for Prorated Mutation Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 4 6 2 7 9 35
Precision 0.02105 0.03157 0.01052 0.03684 0.04736 0.18421 0.05526
Recall 0.8 0.75 1 0.58333 0.08108 0.10233 0.55279
Jaccard 0.02094 0.03125 0.01052 0.03589 0.03082 0.07042 0.03331

Table 7.6 shows the precision, recall, and Jaccard index of raw mutation coverage for

the six experiments defined by partial correctness and total correctness with respect to R1,

R2 and R3.

Table 7.7 shows the precision, recall, and Jaccard index of prorated mutation coverage

for the six experiments defined by partial correctness and total correctness with respect to

R1, R2 and R3.

Table 7.8 shows the precision, recall, and Jaccard index of equivalence-based mutation

coverage for the six experiments defined by partial correctness and total correctness with

respect to R1, R2 and R3.

Table 7.8 Precision, Recall and Jaccard Index for Equivalence-based Mutation Coverage

Term TR1 PR1 TR2 PR2 TR3 PR3 Averages
|SC| 5 8 2 12 111 342
|SC ∩ CM | 5 8 2 6 26 30
Precision 0.02631 0.04210 0.01052 0.03157 0.13684 0.15789 0.0675
Recall 1 1 1 0.5 0.23423 0.08771 0.63699
Jaccard 0.02631 0.04210 0.01052 0.03061 0.09454 0.05976 0.04397

121

Table 7.9 Summary Performance of Coverage Metrics

Statement Branch Line RMS PMS EMS
Precision 0.04035 0.08412 0.04206 0.05000 0.05526 0.0675
Recall 0.60250 0.56704 0.2747 0.54986 0.55279 0.63699
Jaccard Index 0.09000 0.05356 0.02245 0.03118 0.03331 0.04397

7.4 Concluding Remarks

7.4.1 Summary

in this chapter, we present some empirical data stemming from a software testing experiment

whose aim is to assess to what extent traditional coverage metrics of test suites reflect the

test suite’s effectiveness to detect faults. To this effect, we introduce the concept of detector

set, which is the set of inputs that reveal the failures of an incorrect program, then we define

the effectiveness of a test suite by the extent to which the test suite encompasses elements

of the detector set, or equivalently, how few elements of the detector set are outside the test

suite; we refer to this measure of effectiveness as semantic coverage. Taking this definition

as a baseline, we consider a number of traditional coverage metrics, and evaluate, on the

basis of a sample example, to what extent is the ranking of test suites by means of the

metrics coincides with their ranking by semantic coverage.

7.4.2 Observations

The results of our empirical observations are summarized in Table 7.9. We readily recognize

that ours is a small-scale experiment, consisting of a simple program, three specifications,

and six observations in total. With this qualification in mind, it is fair to say that no

coverage metric comes out looking very good:

• The precision of these six metrics varies between 0.04 and 0.07. This means that out
of 100 cases where statement coverage, for example, finds that Ti is better than Tj
(by virtue of having higher statement coverage) only 4% of the cases are borne out
by semantic coverage (i.e., cases where Ti contains more failure-revealing inputs than

122

Tj). If we had a friend who lied 96% of the time and said the truth only 4% of the
time, we would not believe anything he said.

• With the exception of the recall of line coverage, the recall varies between 0.54 and
0.64, which is not very high if we consider that we assigned random numbers to the
test suites (in lieu of their coverage metrics) we would get a recall of about 0.5.

• The Jaccard index of two sets is the ratio of elements they have in common (cardinality
of their intersection) over the total number of elements that either have (cardinality
of their union); it combines precision and recall in a single attribute. The Jaccard
index between the coverage metrics and semantic coverage varies between 0.02 and
0.09, clearly low values if we consider that the coverage metrics ought to reflect a test
suite’s ability to detect faults (by exposing failures).

Covering statements, branches, lines, paths, conditions, etc is not an end in itself; it is a

means to exercise the code thoroughly so as to sensitize its faults. The observations made

in this study seem to suggest that covering syntactic features does not appear to necessarily

lead to revealing program failures. It is noteworthy that much of the low score of precision

stems readily from the fact that numeric coverage metrics define a total ordering between

test suites since all pairs of numbers can be compared, whereas not all pairs of test suites can

be compared for effectiveness; hence, the lack of precision is inherent to numeric metrics.

7.4.3 Prospects

We envision the following directions for further research:

• Further analysis is required to justify using semantic coverage as ground truth in the
study of test suite effectiveness or to derive better definitions of ground truth.

• Also, more experiments are needed to assess and compare the various coverage metrics
in use nowadays by researchers and practitioners.

• We envision to broaden this study by analyzing other, more sophisticated coverage
metrics (e.g., path coverage) for the purposes of this study, we included only coverage
metrics for which we found reliable automated tools.

123

CHAPTER 8

CONCLUSION

In this thesis, I have conducted several empirical studies on software testing, focusing in

particular on mutation testing and the analysis of test suite effectiveness, which is the

primary justification for mutation testing.

The number of mutants of a base program increases very quickly as a function of

the size of the program; hence, using mutation testing in realistic contexts, where programs

have tens of thousands of lines of code is prohibitive due to the cost of testing large numbers

of mutants. As a result, much research has focused on reducing the number of mutants in a

mutation testing experiment while preserving its effectiveness. An important idea that was

proposed to reduce the size of mutant sets is the idea of recognizing subsumption relations

between mutants and deleting subsumed mutants. In Chapter 2, I argue that the definition

of subsumption is incomplete in the sense that it assumes that the base program and all its

mutants converge (i.e., terminate normally without attempting any illegal operation) for all

the elements of a test suite, but in practice, this is far from true, in fact, many mutation

operators are prone to causing mutants to diverge even when the base program converges.

Hence, we propose three distinct definitions of mutant subsumption, and I develop Python

scripts that analyze the outputs of a mutant to derive its differentiator set with respect

to each interpretation of subsumption. Also, using another Python script that highlights

inclusion relations between sets, I can generate subsumption graphs of given mutants for

each of the three interpretations (delta0, delta1, delta2).

In Chapter 3, I analyze the return on investment in the process of reducing the size

of a mutant set by subsumption. Indeed, the most natural way to reduce the size of a set

124

of mutants is to partition the set by means of semantic equivalence, then select a mutant in

each equivalence class and drop all the remaining mutants of the same class. Also, whereas

subsumption was initially defined as a relation between mutants, we feel that it is more

natural to define it as a relation between equivalence classes of mutants, modulo semantic

equivalence. This raises the question: once we have reduced a mutant set by equivalence,

how much more can subsumption reduce it? and is the extra effort and risk commensurate

with the additional reduction?

Whether it is done by equivalence or by subsumption, the problem of reducing the

size of a mutant set is essentially an optimization problem where the objective function

is the size of the set and the constraint under which this optimization is attempted to

preserve the effectiveness of the mutant set. This raises the question: how do we quantify

the effectiveness of a mutant set? One simple way to answer this question is to argue that

the effectiveness of a mutant set can be judged by the effectiveness of the test suites that

the mutant set vets, where a mutant set vets a test suite if and only if the test suite kills all

the mutants of the set. This, in turn, raises the question of how we define the effectiveness

(in Chapter 4) of a test suite? We define the effectiveness of a test suite by assessing to

what extent a test suite reveals (or does not reveal) all the failures of a program: we call

this the semantic coverage of the test suite, which we use to define two metrics of mutant

set effectiveness (in Chapter 5): the assured effectiveness and the potential effectiveness,

which are, respectively, the smallest and the largest semantic coverage of all the test suites

that the mutant set vets. We show that removing a subsumed mutant from a mutant set

does not reduce its potential effectiveness.

Whereas there are several ways to assess the effectiveness of a test suite, mutation

coverage is often viewed as the best measure of test suite effectiveness, and is often used as

125

a basis for judging the quality of other measures of coverage (statement coverage, branch

coverage, condition coverage, path coverage, etc). It is common, in the software testing

literature, to see references to mutation coverage, as if this measure were uniform across

mutant generation tools and mutant generation policies (even for the same tool). In Chapter

6, we run an experiment in which we compute the mutation coverage of a set of test suites

for several mutant generation tools, and several mutant generation policies, and we show

that the results obtained for the same test suite vary significantly depending on the mutant

generation operators that are used. This raises the question: If a test suite gets a mutation

score of 0.2 in one mutation testing experiment and a score of 0.80 in another, what can

we infer about it? More broadly, it means that we cannot compare the results of mutation

testing experiments unless they are using the same mutant generator tools, and deploying

the same mutant generation operators.

Many of the coverage metrics used traditionally to assess the effectiveness of a test

suite is based on the assumption that a good test suite is one that exercises syntactic features

of the program under test. But in fact, exercising all the syntactic features of a program

is neither necessary nor sufficient to reveal all of the program’s failures. It is not sufficient

because the same fault may be sensitized for some inputs but not for others, and it is not

necessary because only faulty statements need to be exercised. In Chapter 7, we run an

experiment in which we assess the extent to which traditional metrics are correlated with a

test suite’s ability to reveal failures; this experiment enables us to analyze how traditional

coverage metrics may indicate (or fail to indicate) whether a test suite is adequate to reveal

the failures of an incorrect programs. Most well-known metrics prove to be very inefficient,

at least as far as our empirical study is concerned.

126

Prospects for further research include revisiting all the empirical studies conducted

in this thesis to broaden their scope and refine their conclusions. In particular, we are

interested in further elucidating the relationship between mutation coverage (as a proxy for

the ability of a test suite to detect faults) and semantic coverage (as a proxy for the ability

of a test suite to reveal failures). This study would enable us to answer the question: if a

test suite T is better than a test suite T ′ at detecting faults, is it also, better at revealing

failures?

127

APPENDIX A

APPENDICES: PYTHON SCRIPTS COMPOSED FOR THIS RESEARCH

In this appendix, I presented all the scripts that had been written in Python to analyze the

data from different benchmarks. All these scripts are available on1;

A.1 Run Test On Mutants

1 import os

2 import subprocess

3 import shutil

4 mutants_dir='mutants'

5 target='src/main/java/org/apache/commons/lang3/math/NumberUtils.java'

6 for filename in os.listdir(mutants_dir):

7 source = os.path.join(mutants_dir, filename)

8 mutant_name=filename.split('.java')[0]

9

10

11 if os.path.isfile(source):

12 print(source)

13 shutil.copyfile(source, target)

14 subprocess.run(['mvn','clean','compile','test', '-Drat.

numUnapprovedLicenses=100'], capture_output=True, shell=True, text=True

)

1https://github.com/SAMIA-CLOUD/EMPIRICAL-EXPLORATION-OF-SOFTWARE-TESTING/

128

15 print(filename)

16 os.rename('test_results/n0.txt', 'test_results/M'+mutant_name+'.txt')

Listing A.1 Run Test On Mutants.

A.2 Extract Equivalence Classes

1 def loadMutant(filename):

2 file=open('test results/'+filename+'.txt');

3 lines=file.readlines();

4 data={};

5 for line in lines:

6 line=line.strip().split(",");

7 test=line[0].strip();

8 output=line[1].strip();

9 data[test]=output;

10 count=len(data);

11 return data;

12

13 def isSame(res_a,res_b):

14 for t in res_a:

15 if res_a[t]!=res_b[t]:

16 return False;

17 return True;

18

129

19 base_results=loadMutant('Base'); #load the results of the base program

20

21 mutants=['m'+str(i) for i in range(1,134)]; #list of all mutants

22 results={};

23 for m in mutants:

24 results[m]=loadMutant(m); #load the results of each mutant (test number:

test outcome)

25 equivalent_mutants={};

26 minimal_set=[]; #minimal set is initially empty

27 minimal_set_print=[]

28 for m_a in mutants: #for each mutant m_a

29 to_add_m_a=True;

30 for m_b in minimal_set: #for each mutant in minimal set m_b

31 if m_b==m_a:

32 continue;

33 if isSame(results[m_a],results[m_b]): #if m_a and m_b are equivalent,

don't add m_a to minimal set and add it to the equivalence class of m_b

34 to_add_m_a=False;

35 equivalent_mutants[m_b].append(m_a);

36 break;

37 if to_add_m_a==True: #if m_a is not equivalent to any mutants in m_b, add

it to the minimal set.

38 minimal_set.append(m_a);

39 minimal_set_print.append("'"+m_a+"'");

130

40 equivalent_mutants[m_a]=[];

41

42 writer=open("analysis_equivalence.txt","w");

43 writer.write("minimal set by equivalence:\n");

44 writer.write(", ".join(minimal_set_print)+"\n\n\n");

45 writer.write("Equivalent Classes:\n");

46 count=1;

47 for m in equivalent_mutants:

48 writer.write("Class "+str(count)+": "+m+", "+", ".join(equivalent_mutants

[m])+"\n");

49 count=count+1;

50 writer.close();

51 writer = open("number of mutants per class.txt","w")

52 for m in equivalent_mutants:

53 writer.write(m+","+str(1+len(equivalent_mutants[m]))+"\n");

54 writer.close();

Listing A.2 Extract Equivalence Set Classes.

1 def loadMutant(filename):

2 file=open('test results/'+filename+'.txt');

3 lines=file.readlines();

4 data={};

5 for line in lines:

6 line=line.strip().split(",");

131

7 if line[0]=='':

8 continue

9 test=line[0].strip();

10 output=line[1].strip();

11 data[test]=output;

12 count=len(data);

13 return data;

14

15 def MutantsPerClass():

16 file=open('number of mutants per class.txt');

17 number = {}

18 lines=file.readlines();

19 for line in lines:

20 line=line.strip().split(",");

21 number[line[0]]=int(line[1])

22 return number

23

24 def isSame(res_a,res_b):

25 for t in res_a:

26 if res_a[t]!=res_b[t]:

27 return False;

28 return True;

29

30 def isError(test_output):

132

31 if ("java.lang" in test_output) or ("error" in test_output):

32 return True

33 return False

34 base_results=loadMutant('Base'); #load the results of the base program

35

36

37 mutants=['m1', 'm7', 'm10', 'm12', 'm13', 'm14', 'm16', 'm17', 'm19', 'm20'

, 'm23', 'm24', 'm25', 'm26', 'm28', 'm29', 'm31', 'm35', 'm36', 'm37',

'm39', 'm40', 'm42', 'm43', 'm44', 'm45', 'm48', 'm49', 'm50', 'm51', '

m53', 'm55', 'm56', 'm57', 'm58', 'm59', 'm67', 'm102', 'm113', 'm114',

'm115', 'm118', 'm126', 'm127', 'm129', 'm132']

38

39 results={};

40 for m in mutants:

41 results[m]=loadMutant(m); #load the results of each mutant (test number

: test outcome)

42

43 number = MutantsPerClass()

44 d1={};

45 d2={};

46 d0={};

47 for m in mutants:

48 d1[m]=[];

49 d2[m]=[];

133

50 d0[m]=[];

51 for t in results[m]:

52 #for d0, we assume error is an output and we compare strings

53 print(m,t)

54 if results[m][t]!=base_results[t]:

55 d0[m].append(t)

56 if not(isError(results[m][t]) and isError(base_results[t])):

57 if not isError(results[m][t]) and not isError(base_results[t])

:

58 if results[m][t]!=base_results[t]:

59 d1[m].append(t);

60 d2[m].append(t);

61 else:

62 d2[m].append(t);

63

64 writer=open("delta_analysis.csv",'w');

65 writer.write("Mutants,Delta 0\n");

66 for m in mutants:

67 if len(d0[m])==0:

68 d0[m]=["Empty"];

69 if len(d1[m])==0:

70 d1[m]=["Empty"];

71 if len(d2[m])==0:

72 d2[m]=["Empty"];

134

73 tmp=[m,";".join(d0[m]),"\n"];

74 writer.write(",".join(tmp));

75 writer.close();

Listing A.3 Get Delta.

A.3 Compute Killed Mutants by Each Test

1 def MutantsPerClass():

2 file=open('number of mutants per class.txt');

3 number = {}

4 lines=file.readlines();

5 for line in lines:

6 line=line.strip().split(",");

7 number[line[0]]=int(line[1])

8 return number

9 number = MutantsPerClass();

10 dictionary={};

11 delta=0

12 file=open('delta_analysis.csv');

13 lines=file.readlines();

14 for i in range(1,len(lines)):

15 line=lines[i].strip().split(",");

16 mutant=int(line[0][1:])

17 tests=line[delta+1].strip().split(';');

135

18 if 'Empty' in tests:

19 print(mutant)

20 for t in tests:

21 if t not in dictionary:

22 dictionary[t]=[];

23 dictionary[t].append(mutant)

24

25 results={};

26 file=open('Subsets.txt');

27 lines=file.readlines();

28 killed_mutants={}

29 for line in lines:

30 line=line.strip().split(":");

31 t_name=line[0];

32 tests=line[1].split(',');

33 results[t_name]=set();

34 for t in tests:

35 if t not in dictionary:

36 continue;

37 mutants_killed=dictionary[t];

38 for m in mutants_killed:

39 results[t_name].add(m)

40 temp=sorted(results[t_name])

41 temp = ['m'+str(j) for j in temp]

136

42 killed_mutants[t_name]=str(sum([number[i] for i in temp]))

43 results[t_name] = temp;

44

45 writer = open('mutants_by_Ti'+str(delta)+'.csv','w')

46 writer.write("Test Suite Subset, Number of Killed Equiv,Number of killed

mutants, Minimal Mutants\n")

47 for Ti in results:

48 writer.write(Ti+","+str(len(results[Ti]))+","+killed_mutants[Ti]+","+";

".join(results[Ti])+"\n")

49 writer.close()

Listing A.4 Killed Mutants by Each Test.

A.4 Extract Operators From Mutants

1 file = open('vt100TerminalMutantsOperators.txt')

2 lines = file.readlines()

3 operators={}

4

5 for line in lines:

6 line=line.strip().split(',')

7 if line[1] not in operators:

8 operators[line[1]] = []

9 operators[line[1]].append('M'+line[0])

10 all_writer=open('ALL.txt','w')

137

11 for op in operators:

12 writer=open(op+'.txt','w')

13 writer.write("\n".join(operators[op]))

14 all_writer.write("\n".join(operators[op]))

15 writer.close()

16 all_writer.close()

Listing A.5 Get Operators From Mutants.

A.5 Generate Test Sets

1 import random

2 threshold = 0.2

3 for i in range(1,21):

4 #generate ti

5 print("------------------------------------")

6 threshold = threshold + 0.03

7 tests_in_ti = []

8 for j in range(1,108)://maybe 137

9 if random.random()<=threshold:

10 tests_in_ti.append(str(j))

11 print(f"test suite t{i} ({len(tests_in_ti)}):");

12 print(",".join(tests_in_ti))

Listing A.6 Generate Test Sets.

138

A.6 Compute Similarirty

1 def loadEdges(filename):

2 file=open(filename+'_graph_Ti0.txt')

3 lines=file.readlines();

4 data=[];

5 for l in lines:

6 data.append(l.strip())

7 return data;

8 operators=['RelationalOperatorReplacement','ANDOperatorReplacement','

OROperatorReplacement']

9 writer=open("results.txt","w")

10 for i in range(0,len(operators)-1):

11 for j in range(i+1,len(operators)):

12 o1=operators[i]

13 o2=operators[j]

14 g1 = loadEdges(o1);

15 g2 = loadEdges(o2);

16 writer.write("Measure between " +o1+" and "+o2+" \n")

17 union = set(g1+g2)

18 intersection = [value for value in g2 if value in g1]

19 writer.write("Cardinality of union: "+str(len(union))+"\n")

20 writer.write("Cardinality of intersection: "+str(len(intersection))

+"\n")

139

21 writer.write("Similarity Measure: "+str(len(intersection)/len(union

))+"\n\n\n\n")

22 writer.close()

Listing A.7 Get Similarity.

A.7 Generate Random Test Subset

1 '''

2 Rules: We need 20 subsets T1 to T20

3 T1-T5: 32 random

4 T6-T10: 27 random

5 T11-15: 22 random

6 T16-T20: 36 random

7 '''

8

9 import random

10 T=[i for i in range(1,38)]

11

12 subsets=[]

13 #T1 to T5

14 t=0;

15 while t<5:

16 temp=list(T)

17 for r in range(0,5):

140

18 element_to_remove = random.choice(temp);

19 temp.remove(element_to_remove)

20 if temp not in subsets:

21 subsets.append(temp)

22 t+=1;

23 #T6-T10

24 t=0;

25 while t<5:

26 temp=list(T)

27 for r in range(0,10):

28 element_to_remove = random.choice(temp);

29 temp.remove(element_to_remove)

30 if temp not in subsets:

31 subsets.append(temp)

32 t+=1;

33 #T11-T15

34 t=0;

35 while t<5:

36 temp=list(T)

37 for r in range(0,15):

38 element_to_remove = random.choice(temp);

39 temp.remove(element_to_remove)

40 if temp not in subsets:

41 subsets.append(temp)

141

42 t+=1;

43 #T16-T20

44 t=0;

45 while t<5:

46 temp=list(T)

47 for r in range(0,1):

48 element_to_remove = random.choice(temp);

49 temp.remove(element_to_remove)

50 if temp not in subsets:

51 subsets.append(temp)

52 t+=1;

53 writer=open("Subsets.txt","w")

54 for i in range(0,len(subsets)):

55 name='T'+str(i+1);

56 l=[str(j) for j in subsets[i]]

57 writer.write(name+":"+",".join(l)+"\n")

58 writer.close()

Listing A.8 Generate Random Test Subset.

A.8 Extract Inclusion By Test Based On Delta Zero

1 delta=0

2 #read and process mutants killed by tests

3

142

4

5 def loadTests():

6 data={}

7 file = open('Subsets.txt')

8 lines=file.readlines();

9 for i in range(0,len(lines)):

10 line=lines[i].strip().split(":");

11 test_suite=line[0]

12 tests=line[1].split(',');

13 data[test_suite]=tests;

14 return data;

15 data= loadTests();

16

17

18 inclusions=[];

19 for t1 in data:

20 for t2 in data:

21 if t1==t2:

22 continue;

23 if(all(x in data[t2] for x in data[t1])):

24 inclusions.append('"'+t1+'" -> "'+t2+'"');

25

26

27

143

28 writer = open("graph_inclusions_tests.txt",'w');

29 writer.write("\n".join(inclusions));

30 writer.close();

Listing A.9 Extract Inclusion By Test.

A.9 Extract Inclusion By Mutants

1

2 delta=1

3

4 #read and process mutants killed by tests

5

6 def loadTests():

7 data={}

8 file = open('mutants_by_Ti'+str(delta)+'.csv')

9 lines=file.readlines();

10 for i in range(1,len(lines)):

11 line=lines[i].strip().split(",");

12 test_name=line[0]

13 mutants=line[2].split(';');

14 data[test_name]=mutants;

15 return data;

16

17 tests = loadTests();

144

18

19 inclusions=[];

20 for t1 in tests:

21 for t2 in tests:

22 if t1==t2:

23 continue;

24 if(all(x in tests[t2] for x in tests[t1])):

25 inclusions.append('"'+t1+'" -> "'+t2+'"');

26

27 writer = open("graph_"+str(delta)+".txt",'w');

28 writer.write("\n".join(inclusions));

29 writer.close();

Listing A.10 Extract Inclusion By Mutants.

145

APPENDIX B

APPENDICES: RESULTS COLLECTED IN EXCELS FILE

In this appendix, I presented some of the raw data in Excel obtained using Script Extract

Operators From Mutants, which was used in the previous appendix A.4. The benchmark

is Jterminal class VT100.

B.1 Extract Operators From VT100 Jterminal by Using LittleDarwine Tool

Figure B.1 Extract operators from VT100 Jterminal by using littleDarwine tool.

B.2 Extract Operators From VT100 Jterminal by Using Major Tool

Figure B.2 Extract operators from VT100 Jterminal by using major tool.

146

B.3 Extract Different Operators From VT100 Jterminal by Using

LittleDarwine Tool

Figure B.3 All, conditional, relational, and arithmetic operators.

147

REFERENCES

[1] A. Mili and F. Tchier, Software Testing: Operations and Concepts. Hoboken, NJ: John
Wiley and Sons, 2015.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the
practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41, April 1978.

[3] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault representativeness
of software fault injection,” IEEE Transactions on Software Engineering, vol. 39,
no. 1, pp. 80–96, 2012.

[4] A. Namin, J. Andrews, and D. Murdoch, “Sufficient mutation operators for measuring test
effectiveness,” in Proceedings, ICSE 2008, 2008, pp. 351–360.

[5] J. Andrews, L. Briand, Y. Labiche, and A. Siami Namin, “Using mutation analysis for
assessing and comparing testing coverage criteria,” Software Engineering, IEEE
Transactions on, vol. 32, pp. 608–624, 09 2006.

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation analysis for
assessing and comparing testing coverage criteria,” IEEE Transactions on Software
Engineering, vol. 32, no. 8, pp. 608–624, 2006.

[7] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and G. Fraser, “Are mutants a
valid substitute for real faults in software testing?” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering(FSE),
2014.

[8] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing
experiments?” 2005, pp. 402–411.

[9] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite
effectiveness,” 2014.

[10] A. Parsai, A. Murgia, and S. Demeyer, “Littledarwin: A feature-rich and extensible
mutation testing framework for large and complex java systems,” in FSEN 2017,
Foundations of Software Engineering, 2016.

[11] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi, “Proteum /im 2.0: An integrated
mutation testing environment,” in Mutation Testing for the New Century, W. E.
Wong, Ed. Springer Verlag, 2001, vol. 24, pp. 91–101.

[12] H. Coles, “Real world mutation testing,” 2017. [Online]. Available: https://pitest.org/

[13] Y. S. Ma and J. Offutt, “Mu java,” George Mason University, http://cs.gmu.edu/ offutt/-
mujava/, Tech. Rep., 2020.

[14] I. Marsit, A. Ayad, D. Kim, M. Latif, J. Loh, M. N. Omri, and A. Mili, “The ratio of
equivalent mutants: A key to analyzing mutation equivalence,” Journal of Systems
and Software, July 2021.

148

[15] B. Kurtz, P. Amman, M. Delamaro, J. Offutt, and L. Deng, “Mutant subsumption graphs,”
in Proceedings, 7th International Conference on Software Testing, Validation and
Verification Workshops, 2014.

[16] B. Kurtz, P. Ammann, and J. Offutt, “Static analysis of mutant subsumption,” in
Proceedings, IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops, 2015.

[17] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,” IEEE
Transactions on Software Engineering, vol. 45, no. 1, January 2019.

[18] S. AlBlwi, I. Marsit, B. Khaireddine, A. Ayad, J. Loh, and A. Mili, “Generalized mutant
subsumption,” in Proceedings, ICSOFT 2022, Lisbon, Portugal, July 2022.

[19] S. Alblwi and A. Ayad, “Minimizing mutant sets by equivalence and subsumption,”
International Journal of Computer and Systems Engineering, vol. 18, no. 1, pp. 21
– 27, 2024. [Online]. Available: https://publications.waset.org/vol/205

[20] S. Alblwi, A. Ayad, and A. Milil, “Semantic coverage: Measuring test suite effectiveness,”
in Proceedings, International Conference on Software Technology, Rome, Italy, July
2023.

[21] B. K. I. M. Samia Alblwi, Amani Ayad and A. Mili, “Quantifying the effectiveness of
mutant sets,” in In 2022 IEEE 22nd International Conference on Software Quality,
Reliability, and Security Companion (QRS-C), 2022.

[22] A. A. Samia Alblwi and A. Mili, “Mutation coverage is not strongly correlated with mutation
coverage,” in The 5th ACM/IEEE International Conference on Automation of
Software Test (AST 2024), 2024.

[23] E. Hehner, A Practical Theory of Programming. Heidelberg, Germany: Springer-Verlag,
1993.

[24] C. C. Morgan, Programming from Specifications, Second Edition, ser. International Series
in Computer Sciences. London, UK: Prentice Hall, 1998.

[25] D. Gries, The Science of Programming. Heidelberg, Germany: Springer Verlag, 1981.

[26] E. Dijkstra, A Discipline of Programming. Saddle River,NJ: Prentice Hall, 1976.

[27] C. Hoare, “An axiomatic basis for computer programming,” Communications of the ACM,
vol. 12, no. 10, pp. 576–583, Oct. 1969.

[28] Z. Manna, A Mathematical Theory of Computation. New York, NY: McGraw-Hill, 1974.

[29] B. Souza, “Identifying mutation subsumption relations,” in Proceedings, IEEE / ACM
International Conference on Automated Software Engineering, December 2020, pp.
1388–1390.

[30] A. Parsai and S. Demeyer, “Dynamic mutant subsumption analysis using littledarwin,” in
Proceedings, A-TEST 2017, Paderborn, Germany, September 4-5 2017.

149

[31] X. Li, Y. Wang, and H. Lin, “Coverage based dynamic mutant subsumption graph,” in
Proceedings, International Conference on Mathematics, Modeling and Simulation
Technologies and Applications, 2017.

[32] M. C. Tenorio, R. V. V. Lopes, J. Fechina, T. Marinho, and E. Costa, “Subsumption in
mutation testing: An automated model based on genetic algorithm,” in Proceedings,
16th International Conference on Information Technology –New Generations.
Springer Verlag, 2019.

[33] M. A. Guimaraes, L. Fernandes, M. Riberio, M. d’Amorim, and R. Gheyi, “Optimizing
mutation testing by discovering dynamic mutant subsumption relations,” in
Proceedings, 13th International Conference on Software Testing, Validation and
Verification, 2020.

[34] A. Mili, M. Frias, and A. Jaoua, “On faults and faulty programs,” in Proceedings, RAMICS
2014, ser. LNCS, P. Hoefner, P. Jipsen, W. Kahl, and M. E. Mueller, Eds., vol.
8428, 2014, pp. 191–207.

[35] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing
experiments?” in Proceedings, ICSE, 2005.

[36] A. S. Namin and S. Kakarla, “The use of mutation in testing experiments and its sensitivity
to external threats,” in Proceedings, ISSTA, 2011.

[37] A. Mili, “Differentiators and detectors,” Information Processing Letters, vol. 169, 2021.

[38] B. K. I. M. J. M. L. Samia AlBlwi, Amani Ayad and A. Mili, “Subsumption, correctness
and relative correctness.” Social Science Research Network(SSRN), 2023. [Online].
Available: https://ssrn.com/abstract=4598614

[39] B. Khaireddine, M. Martinez, and A. Mili, “Program repair at arbitrary fault depth,” in
Proceedings, ICST 2019, Xi’An, China, April 2019.

[40] Y. Jia and M. Harman, “Constructing subtle faults using higher order mutation testing,”
in Proceedings, Eighth IEEE International Working Conference on Software Code
Analysis and Manipulation, Beijing, China, September 2008, pp. 249–258.

[41] H. D. Mills, V. R. Basili, J. D. Gannon, and D. R. Hamlet, Structured Programming: A
Mathematical Approach. Boston, MA: Allyn and Bacon, 1986.

[42] E. Brinksma, M. Stoelinga, and L. B. Briones, “A semantic framework for test coverage,”
in Automated Technology for Verification and Analysis(ATVA 2006). Berlin,
Heidelberg: Springer, 2006, p. 399–414.

[43] A. Ayad, I. Marsit, J. Loh, M. N. Omri, and A. Mili, “Estimating the number of equivalent
mutants,” in 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), Xi’An, China, 2019, pp. 112–121.

[44] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn mutation operators
using human analysis of equivalence,” in ICSE 2014 Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, India, 2014, p.
919–930.

150

[45] A. P. Mathur, Foundations of Software Testing. Saddle River, NJ: Pearson, 2014.

[46] A. Avizienis, J. C. Laprie, B. Randell, and C. E. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[47] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite effec-
tiveness,” in Proceedings, 36th International Conference on Software Engineering.
New York, NY: ACM Press, 2014, p. 435–445.

[48] N. Diallo, W. Ghardallou, and A. Mili, “Correctness and relative correctness,” in
Proceedings, 37th International Conference on Software Engineering, NIER track,
Firenze, Italy, May 20–22 2015.

[49] B. Khaireddine, M. Martinez, and A. Mili, “Program repair at arbitrary fault depth,” in
Proceedings, ICST 2019 Tools Track, Xi’An, China, April 2019.

[50] J. V. Wright, “A lattice theoretical basis for program refinement,” Dept. of Computer
Science, Ȧbo Akademi, Finland, Tech. Rep., 1990.

[51] B. Aichernig, E. Jobstl, and M. Kegele, “Incremental refinement checking for test case
generation,” in Tests and Proofs, 2013, pp. 1–19.

[52] R. Banach and M. Poppleton, “Retrenchment, refinement and simulation,” in ZB: Formal
Specifications and Development in Z and B, ser. Lecture Notes in Computer Science.
Springer, December 2000, pp. 304–323.

[53] D. Shin, S. Yoo, and D.-H. Bae, “A theoretical and empirical study of diversity-aware
mutation adequancy criterion,” IEEE TSE, vol. 44, no. 10, October 2018.

[54] M. R. Lyu, J. Horgan, and S. London, “A coverage analysis tool for the effectiveness of
software testing,” IEEE transactions on reliability, vol. 43, no. 4, pp. 527–535, 1994.

[55] R. Lingampally, A. Gupta, and P. Jalote, “A multipurpose code coverage tool for java,” in
2007 40th Annual Hawaii International Conference on System Sciences (HICSS’07).
IEEE, 2007, pp. 261b–261b.

[56] H. Hemmati, “How effective are code coverage criteria?” in 2015 IEEE International
Conference on Software Quality, Reliability and Security. IEEE, 2015, pp. 151–156.

[57] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and D. Marinov, “Guidelines
for coverage-based comparisons of non-adequate test suites,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 24, no. 4, pp. 1–33, 2015.

[58] K. E. Someoliayi, S. Jalali, M. Mahdieh, and S.-H. Mirian-Hosseinabadi, “Program state
coverage: a test coverage metric based on executed program states,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 584–588.

[59] T. Ball, “A theory of predicate-complete test coverage and generation,” in International
Symposium on Formal Methods for Components and Objects. Berlin, Heidelberg:
Springer, 2004, pp. 1–22.

151

[60] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce, “Measuring effectiveness of
mutant sets,” in Proceedings, Ninth International Conference on Software Testing,
Chicago, IL, April 11-15 2016.

[61] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantifying the diversity
of sets of test cases,” in Proceedints, Ninth International Conference on Software
Testing, Chicago, IL, April 11-15 2016.

[62] S. Kaufman, R. Featherman, J. Alvin, B. Kurtz, P. Ammann, and R. Just, “Prioritizing
mutants to guide mutation testing,” in Proceedings, ICSE 2022, Pittsburgh, PA,
May 2022.

[63] M. Papadakis, T. T. Chekam, and Y. L. traon, “Mutant quality indicator,” in
IEEE International Conference on Software Testing, Verification and Validation
Workshops, 2018.

[64] A. Parsai and S. Demeyer, “Comparing mutation coverage against branch coverage in an
industrial setting,” International Journal on Software Tools for Technology Transfer,
vol. 22, pp. 1–24, 08 2020.

[65] P. Frankl, S. Weiss, and C. Hu, “All-uses versus mutation testing: An experimental
comparison of effectiveness,” Journal of Systems and Software, vol. 38, 08 2000.

[66] K. Aaltonen, P. Ihantola, and O. Seppala, “Mutation analysis vs. code coverage in
automated assessment of students’ testing skills,” in Companion to the 25th Annual
ACM SIGPLAN Conference on OOPSLA, Reno, NV, 10 2010, pp. 153–160.

[67] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four
unit test criteria: Mutation, edge-pair, all-uses and prime path coverage,” in
IEEE International Conference on Software Testing, Verification, and Validation
Workshops, ICSTW 2009, 2009, pp. 220 – 229.

[68] D. Tengeri, L. Vidacs, A. Beszedes, J. Jasz, G. Balogh, B. Vancsics, and T. Gyimothy,
“Relating code coverage, mutation score and test suite reducibility to defect density,”
in Proceedings, 2016 IEEE 9th International Conference on Software Testing,
Verification and Validation Workshops, 04 2016, pp. 174–179.

[69] S. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro, “Proteum/fsm: A tool to
support finite state machine validation based on mutation testing,” in Proceedings.
SCCC’99 XIX International Conference of the Chilean Computer Science Society.
IEEE Computer Society, 1999, pp. 96–104.

[70] E. Mresa and L. Bottaci, “Efficiency of mutation operators and selective mutation strategies:
an empirical study,” Software Testing Verification and Reliability, vol. 9, pp. 205–
232, 1999.

[71] J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, “An experimental determination
of sufficient mutant operators,” ACM Transactions on Software Engineering and
Methodology, vol. 5, no. 2, pp. 99–118, 1996.

[72] R. Just, F. Schweiggert, and G. Kapfhammer, “Major: An efficient and extensible tool
for mutation analysis in a java compiler,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), 2011, pp. 612–615.

152

[73] R. Just, M. Ernst, and G. Fraser, “Efficient mutation analysis by propagating and
partitioning infected execution states,” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis, San Jose, CA, 2014.

[74] G. Edgecombe, “A swing component with emulates a vt100 terminal,” 2023. [Online].
Available: ”http://www.grahamedgecombe.com/projects/jterminal”

[75] R. Just, “The major mutation framework: Efficient and scalable mutation analysis for
java,” in Proceedings of the 2014 International Symposium on Software Testing and
Analysis, San Jose, CA, 2014, pp. 21–25.

[76] R. Hall, “Generalized behaviour-based retrieval,” in Proceedings, International Conference
on Software Engineering, Baltimore, MD, May 1993.

153

	Empirical exploration of software testing
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgments (1 of 2)
	Acknowledgments (2 of 2)

	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction and Background
	Chapter 2: Basic, Strict and Broad Subsumption
	Chapter 3: Minimizing Mutant Sets by Equivalence and Subsumption

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

