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ABSTRACT 

MODELING AND ANALYSIS OF INTRACELLULAR SIGNALING 
NETWORKS AND CELLULAR DECISIONS 

by 
Mustafa Ozen 

Developing molecular network analysis methods is important due to their applications on 

complex biological systems such as target discovery, development of drugs, discovering 

drug effects, and finding treatments for many complex diseases, e.g., cancer, 

autoimmune, and mental disorders. An example of analysis techniques is the fault 

diagnosis analysis, in which the purpose is to quantify how much vulnerable the entire 

network is to dysfunction of one or multiple molecules. Such analysis can be done after 

proper network models are implemented, trained, and tested against the experimental 

data. In this dissertation, a Boolean modeling framework is implemented and methods to 

train the models against data are presented on multiple networks. Furthermore, a 

mathematical framework for executing single and multi-fault vulnerability analysis of a 

given molecular network using the trained network models is provided. In addition, the 

worst possible signaling failures in molecular networks is examined by comparing the 

maximum vulnerability level, i.e., the highest probability of network failure, versus the 

number of faulty molecules to understand how the network functionality is affected in the 

presence of one or more dysfunctional molecules, for which an efficient algorithm is 

developed. Moreover, another algorithm is proposed that outputs the maximum number 

of time points needed for computing the vulnerability level of molecules in a Boolean 

domain. The methods are applied to the experimentally verified ERBB and T cell 

signaling networks. The results reveal that as the number of faulty molecules increases,



the maximum vulnerability values do not necessarily increase, which means that a few 

faulty molecules can cause the most detrimental network damages and an increase in the 

number of faulty molecules does not deteriorate the network function. Such a group of 

molecules whose dysfunction causes the worst signaling failure may contribute to the 

development of the disorder and can suggest some therapeutic strategies. 

Abnormality of a highly vulnerable molecule or a group of molecules results in 

incorrect network responses, which may cause the entire cell to make wrong decisions on 

the received signals and hence may initiate bigger events causing complex diseases. 

Therefore, characterization of decision-making in cells in response to received signals is 

of importance for understanding how cell fate is determined in the absence and presence 

of such abnormalities. Considering the cellular heterogeneity and dynamics of 

biochemical processes, the problem becomes multi-faceted and complex. This 

dissertation reveals a unified set of decision-theoretic, machine learning, and statistical 

signal processing methods and metrics to model the precision of signaling decisions in 

the presence of uncertainty, using single-cell data. This is done by presenting an optimal 

decision strategy minimizing the total decision error probability. Later, the framework is 

extended to incorporate the dynamics of biochemical processes and reactions in a cell, 

using multi-time point measurements and multidimensional outcome analysis and 

decision-making algorithms. Furthermore, the developed binary outcome analysis and 

decision-making approach is extended to more than two possible outcomes. As an 

example, and to show how the introduced methods can be used in practice, they are 

applied to single-cell data of PTEN, an important intracellular regulatory molecule in a 

p53 system, in wild-type and abnormal cells. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Molecular networks are the networks representing interactions between the molecules. 

They can be portrayed as a graph in which nodes represent biological molecules, e.g., 

proteins, RNA, genes, and edges represent physical or biochemical interactions such as 

regulatory relationships between the molecules (Hasty et al., 2001; Jeong et al., 2000; 

Levine & Davidson, 2005; Maslov & Sneppen, 2002). The type of the edges indicates the 

type of regulation such as activatory or inhibitory interaction (see Figure 1.1 for a toy 

example). There are different types of molecular networks such as protein-protein 

interaction (PPI) networks in which the nodes are proteins and edges are the physical 

interaction between them (Camargo et al., 2007), gene regulatory networks (GRNs) in 

which the nodes are transcription factors and target genes, and the edges are transcription 

regulation (Emmert-Streib et al., 2014), and cell signaling networks (Eungdamrong & 

Iyengar, 2004). These networks have various functionalities and used for different 

applications such as discovering and developing drugs and analyzing their effects as 

presented by Mitsos et al. (2009), developing fault diagnosis methods (Abdi et al., 2008; 

Habibi et al., 2014a, 2014b), understanding cell decision-making processes (Habibi et al., 

2017; Hat et al., 2016; Ozen et al., 2020), and many other applications to model and 

understand complex human diseases. Thus, constructing and analyzing molecular networks 

and network models emerged in the past decades. 
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 To study molecular networks, one needs to convert molecular network graphs into 

numerable models so that they can be analyzed, and biologically relevant results can be 

inferred. There exist continuous models, discrete models, and hybrid models such as 

discrete models with continuous parameters (e.g., a model with logic-based ordinary 

differential equations (ODEs); Eduati et al., 2020) that are being studied. The continuous 

models convert molecular networks into a mathematical form by building a system of 

differential equations (Hat et al., 2016; Raue et al., 2013; Wittmann et al., 2009). They 

allow continuous tuning of the model parameters and hence provide more detailed network 

models. Although they provide detailed information, a drawback is that the knowledge of 

mechanistic details and kinetic parameters is very limited for continuous models, 

specifically in large networks with many molecules and interactions. They require free 

parameter estimation which is very challenging due to the lack of experimental data. In 

such scenarios, discrete models such as Boolean models are useful as they do not need 

 
 
Figure 1.1 A graphical model of molecular networks.  
Note: The normal arrows (→) represent an “activatory” relationship and blunt arrows (—|) represent an 
“inhibitory” relationship. The node at the starting point of an edge stands for input molecule and the node at 
the endpoint of the edge stands for a product (output). For instance, we say that node A activates node B and 
node B inhibits node E. A set of input nodes and a product together constitute a “reaction”. To illustrate, 
nodes B, C, G, and E together represent a reaction in which B, C, and G are the input molecules and E is the 
output molecule (product). Consequently, it can be said that molecular networks are sets of reactions 
comprising inputs and an output. 
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detailed kinetic information and still provide certain biologically relevant insight, as 

discussed by Abdi et al. (2008), Habibi et al. (2014a & 2014b), and in several review 

articles (e.g., Chaouiya et al., 2012; Chaouiya & Remy, 2013; Handorf & Klipp, 2012; 

Morris et al., 2010; Saadatpour & Albert, 2012, 2013; Samaga & Klamt, 2013; Stoll et al., 

2012; Wang et al., 2012; Wynn et al., 2012). 

Typically, the generated models for literature-curated molecular networks do not 

adequately fit experimental data due to the incompleteness of resources, databases, and 

literature used to construct the networks. The constructed network might be missing 

molecules/interactions that are biologically supposed to exist, or there might be 

molecules/interactions in the network that are irrelevant and should not be there. Another 

reason for the mismatch could be the model itself which may need to be tuned for higher 

accuracy. Thus, it is of interest to constitute tools to train the network models so that the 

networks with tuned parameters can efficiently represent the experimental data 

(Guziolowski et al., 2013; Saez-Rodriguez et al., 2009; Sharan & Karp, 2013). One way of 

training the network models is fixing the model rules and manipulating the network 

topology by systematically removing (adding) some interactions/molecules from (to) the 

network. In other words, one can seek a subnetwork of the initial network so that the 

subnetwork with fixed model rules has the optimal fit to the experimental data (Melas et 

al., 2013; Mitsos et al., 2009; Saez-Rodriguez et al., 2009). Another way of constructing 

biologically relevant models with high accuracy is by inferring the network directly from 

the experimental data. That is, the model itself can be learned from the data and the network 

can be constructed accordingly (Ideker et al., 2000; Saez-Rodriguez et al., 2009; Sharan & 

Karp, 2013; Videla et al., 2012). More specifically, one can fix the network topology with 
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its molecules and interactions then, systematically learn the functions or models of each 

molecule while optimizing the mismatch between the model predictions and the 

experimental data. Lastly, both removing (adding) interactions/molecules and learning 

functions of molecules can be done synchronously to obtain a network model reflecting 

the experimental data (Saez-Rodriguez et al., 2009; Sharan & Karp, 2013). 

An important application of molecular network analysis methods is target discovery 

and drug development. This can be achieved by doing fault diagnosis analysis for which 

some computational and system biology techniques have been developed (e.g., Abdi et al., 

2008; Abdi & Emamian, 2010; Habibi et al., 2014a, 2014b). The main purpose of such 

methods and many other approaches is to understand how vulnerable the entire network is 

to the dysfunction of each molecule. The dysfunction state of a molecule can be defined as 

a failure to respond correctly to its input signals, which may further induce incorrect 

responses at the output of the network. We define the vulnerability level of a molecule as 

the probability of having incorrect network responses when the molecule is dysfunctional. 

Vulnerability analysis can be performed for the dysfunction of a single molecule, as well 

as a group of molecules. The importance of the latter can be attributed to the widely known 

observations that many complex disorders such as schizophrenia are reported to be 

associated with the dysfunction of multiple molecules (Emamian, 2012). This contrasts 

with some diseases where only one molecule is known to cause the pathology (Emamian 

et al., 2003). Therefore, herein, we present methods for multi-fault vulnerability analysis 

in addition to single faults. By computing the vulnerability level of a molecule or a group 

of molecules, one can identify and rank the key components of the network that may 
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contribute to the development of the disorder. As one possible treatment strategy, such 

molecules can be targeted by certain specific therapeutic drugs.  

The molecular networks have major roles in the characterization of cell fate. These 

networks generally have some specific outputs that initiate important biochemical 

processes. For example, depending on the received signals and dynamics of the network, a 

possible cell fate could be surviving or initiating apoptosis or moving in a certain direction, 

and so on. When a molecule is faulty, the entire network may fail, which may affect such 

important processes. Therefore, characterization of decision makings in cells in response 

to received signals is important for understanding how cell fate is determined in the absence 

and presence of such faulty molecules causing incorrect network responses. 

Understanding how cells make decisions in response to input signals is an important 

challenge in molecular and cell biology. Emergence of single-cell data and methods has 

made it possible to study and model the behavior of each cell individually (Cheong et al., 

2011; Habibi et al., 2017; Kolitz & Lauffenburger, 2012). An important factor that affects 

cell decisions is biological noise in various organisms (Balazsi et al., 2011), which can 

cause cells to exhibit different behaviors when receiving the same input signal. For 

example, under the same stimuli, some cells may decide to survive, whereas others may 

undergo apoptosis. Signaling outcomes can be affected by genetic and epigenetic 

regulation and misregulation, leading to errors in signaling outcomes and ensuing cell 

decisions. Given the probabilistic nature of cellular decisions (Cheong et al., 2011; Habibi 

et al., 2017), it is of interest to have a unified set of statistical metrics and methods to 

systematically study and characterize the signaling outcomes that may inform them, and 

determine probabilities associated with different outcomes.  
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In this dissertation, we first construct a Boolean modeling framework for molecular 

networks and show how the network models can be trained against data to optimize the 

discrepancy between the model predictions and data by developing training tools and 

techniques (Chapter 2). To do so, we provide an integer linear programming formulation 

that allows us to systematically remove edges and find a subnetwork of the initial network 

by minimizing the mismatch between the model and data. Next, we fix the network 

topology and show how the Boolean functions of each molecule can be learned using data. 

In Chapter 3, we show how the networks can be analyzed by performing vulnerability 

analysis using the derived mathematical equations. More specifically, we examine the 

worst possible signaling failures in molecular networks by comparing the maximum 

vulnerability level, i.e., the highest probability of network failure, versus the number of 

faulty molecules to understand how the network functionality is affected in the presence of 

one or more dysfunctional molecules. To do so, an efficient algorithm is developed. 

Furthermore, another algorithm is proposed that outputs the maximum number of time 

points needed for computing the vulnerability level of molecules in a Boolean domain. The 

methods are applied to the experimentally verified ERBB and T cell signaling networks. 

In Chapters 4 and 5, we show how the statistical decision-theoretic framework proposed 

by Habibi et al. (2017) can be used to study other molecular systems and signaling 

outcomes assuming a single decision variable is used. Then, we extend it such that one can 

model and analyze multidimensional signaling outcome processes using multi-time point 

measurements for both wild-type and abnormal cells, in Chapter 6. This allows us to 

incorporate signaling dynamics into decision making analysis. Moreover, we introduce the 

application of receiver operating characteristic curve as a graphical tool to visualize 
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decisions and outcomes under normal and abnormal conditions. In Chapter 7, we discuss 

beyond binary cell decisions such as ternary decision-making processes. To present the 

concepts, metrics, and algorithms related to decision making and outcome analysis, we use 

the tumor suppressor p53 system, as an example. Finally, we provide our concluding 

remarks on the proposed methods in Chapter 8. 

  

1.2 Background Information 

The goal of systems biology is construction of models of biological systems from 

systematic measurements. It focuses on the interactions between biomolecules at the 

system level. Earlier examples and use of the term “systems biology” started to appear in 

Ideker et al. (2001) and Kitano (2002). Afterward, thanks to the progress in molecular 

biology and advances in technology enabling to measure/generate comprehensive gene and 

protein data, systems biology has become very popular in the last two decades. 

1.2.1 Molecular Networks and Network Construction   

The availability of molecular data emerged scientists to develop proper methods and 

modeling techniques to integrate the data into the context of biology. Studying biological 

networks became a key for understanding complex biological activities. Different types of 

molecular networks such as protein-protein interaction (PPI) networks, gene regulatory 

networks (GRNs), and cell signaling networks have been introduced and studied. For 

instance, Camargo et al. (2007) studied a PPI network to identify protein-binding partners 

of the DISC1 protein in the human fetal brain, Emmert-Streib et al. (2014) provided a 

discussion on possible application domains of GRNs, and Eungdamrong and Iyengar 
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(2004) reviewed theoretical approaches to understand cell signaling networks using 

heterotrimeric G protein pathways as an example.  

The importance of biological network studies led to the establishment of several 

databases so that one can build a network of interest and develop a theory on it. To 

illustrate, von Mering et al. (2003) constructed STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins) database containing known and predicted protein interactions. 

MINT (Molecular INTeraction) is another database designed to collect experimentally 

verified protein-protein interaction information offered by Chatr-aryamontri et al. (2007). 

Another example is TissueNet that is a tissue-specific interaction database containing 

tissue-specific data of 40 human tissues (Barshir et al., 2013). As reviewed by Miryala et 

al. (2018), there exist several such databases providing both predicted and experimentally 

confirmed interaction information allowing to construct a network of interest curated from 

these databases. 

Another way of constructing molecular networks is by inferring the network itself 

from the data using reverse engineering techniques. Ideker et al. (2000) provided an earlier 

example of such approaches (discussed in detail below) in which there exist two methods 

so-called “predictor” and “chooser” that work interactively to infer the genetic network 

from gene expression measurements. Later, Husmeier (2003) applied Bayesian networks 

to infer genetic regulatory interactions from microarray gene expression data. Another 

Bayesian network approach was studied by Sachs, et al. (2005). They used machine 

learning for the automated derivation of causal interactions in cellular signaling networks, 

which relies on the simultaneous measurements of phosphorylated protein and 

phospholipid components in several primary human immune system cells. In 2006, the first 
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DREAM, Dialogue on Reverse Engineering Assessment and Methods, conference has 

been organized by Stolovitzky, et al. (2007), which aimed to understand the limitations and 

to enhance the reverse engineering methods of pathway inference from high-throughput 

data with the efforts of computational and experimental biologists. Furthermore, DREAM 

challenges became a non-profit organization examining questions in biology and medicine. 

In line with their purposes, a network inference challenge has been organized, so-called 

HPN-DREAM network inference challenge, in which several research groups put their 

efforts on developing methods and techniques to learn causal influences in signaling 

networks from phosphoprotein data obtained from cancer cell lines as well as in silico data 

from a nonlinear dynamical model (Hill et al., 2016). New techniques and methods are still 

being developed by many researchers as there are still many uncertainties in complex 

systems and new data becomes available day by day. 

1.2.2 Molecular Network Modeling   

Once the network is constructed, one needs to develop biological models to integrate the 

available data into the network so that the network reflects the biology, and methods and 

analysis techniques can be developed to draw biologically relevant conclusions. One way 

of modeling molecular networks is using continuous models that describe the system’s 

development over time using mass-action kinetics for the rates of consumption and 

production of molecular species. Modeling with a system of ODEs is a simple way of 

building continuous network models if sufficient data of kinetic parameters is available. 

An earlier example of such models was introduced by Goodwin (1963). To illustrate 

further, Chen et al. (2004) proposed an ODE-based mathematical model of the cell-cycle 

regulatory network in budding yeasts, successfully explaining the phenotypes of mutants 
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with a few inconsistencies between model and experiments. Later on, several other ODE-

based models have been proposed and reviewed in many articles (e.g., Aldridge et al., 

2006; Karlebach & Shamir, 2008; Le Novere, 2015). In ODE-based models, generally, the 

concentration of the molecules is a function of time, and variation in space is not 

considered. To take variation in the space under consideration, partial differential equation 

(PDE) based models have been developed (e.g., De Jong, 2002; Smith et al., 2002). 

The continuous models require knowledge of biological mechanisms and kinetic 

parameters such as rate constants, which is very limited and makes these models limited to 

well-characterized networks only. Furthermore, the need for prior information increases 

drastically when the network gets larger and more complex. On the other hand, discrete 

models such as Boolean and ternary models, Petri nets do not require detailed kinetic 

information and can still sufficiently model the dynamic behavior of the system. Therefore, 

discrete models are widely studied, and a lot of works exist in the literature. The appearance 

of Boolean modeling of molecular networks goes back to the late 1960s. Kauffman (1969) 

tested the hypothesis that contemporary organisms are randomly constructed molecular 

automata by modeling the gene as a binary device. Thanks to the availability of several 

databases and information in the literature, large and complex networks could be studied 

in the last two decades. Therefore, as opposed to continuous models, discrete modeling 

became much more popular due to its applicability and efficiency on large networks. For 

instance, Albert and Othmer (2003) proposed and analyzed a Boolean model of Drosophila 

melanogaster (a fruit fly) segment polarity gene expression network to test whether the 

steady states are determined by the topology of the network and the regulatory interactions’ 

type. Saez-Rodriguez et al. (2007) proposed a large-scale Boolean model to analyze the 
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complex signaling network governing the activation of T cells. Albert et al. (2008) 

provided an overview of concepts in Boolean network simulations and provided a software 

library that can perform the simulations. Abdi et al. (2008, 2009) employed the Boolean 

modeling approach and proposed an error propagation probability method to perform fault 

diagnosis analysis of molecular networks and identify the most vulnerable molecules, 

which is further elaborated and applied to different systems in Abdi and Emamian (2010). 

In addition to Boolean models, multi-valued logic models have been developed and 

analyzed. For example, Aldridge et al. (2009) proposed a fuzzy logic framework to analyze 

cell signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma 

cells and discover a relationship between MK2 and ERK pathways. Similarly, Morris et al. 

(2011) offered a constrained fuzzy logic approach for modeling and training pathway maps 

on dedicated experimental measurements. Moreover, Habibi et al. (2014a) developed a 

ternary logic-based fault diagnosis analysis method to identify the most vulnerable 

molecules in a given network. Aside from the abovementioned logic-based modeling 

techniques, Petri nets, defining a graphical and mathematical formalism capable of 

modeling and analysis of discrete event dynamic systems, are another way of modeling the 

molecular networks (Murata, 1989), that is further elaborated in Chaouiya (2007), 

presenting the basics of how Petri nets can be used to model complex biological networks. 

Lastly, there exist hybrid models that incorporate discrete and continuous models such as 

logic-based ODEs (e.g., Wittmann et al., 2009) in addition to pure continuous or discrete 

models. To exemplify, Eduati et al. (2020), recently proposed a logic-based ODE modeling 

framework to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis 

signaling pathways. The modeling and analysis techniques are not limited to the examined 
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resources above. For other examples of molecular network modeling techniques, we refer 

to the following research and review articles: Albert (2007), Chaouiya et al., (2012), 

Chaouiya and Remy (2013), Handorf and Klipp (2012), Hecker et al. (2009), Machado et 

al. (2011), Morris et al. (2010), Saadatpour and Albert (2012, 2013), Samaga and Klamt 

(2013), Schlitt and Brazma (2007), Stoll et al. (2012), Wang et al. (2012). Wilkinson 

(2006), Wynn et al. (2012). 

1.2.3 Training Molecular Network Models   

After constructing the network and network models, an emergent issue is that the generated 

models’ predictions may not agree with the experimental findings which might be due to 

the incompleteness of resources, databases, and literature used to construct the networks as 

well as the model itself. Therefore, many training methods have been proposed to improve 

the fitness of the models to the experimental data or to learn a new model from the data in 

recent years. An earlier example of learning (inferring) networks from experimental data 

was revealed by Ideker et al. (2000). They provided two methods so-called “predictor” and 

“chooser” that work interactively to infer genetic network from gene expression 

measurements. The predictor method determines the set of Boolean networks consistent 

with the data, while the chooser method uses an entropy-based approach to propose an 

additional perturbation experiment to reduce the number of Boolean networks found by the 

predictor. The proposed approach is very useful if there exist data for all of the 

molecules/genes in the network or if we only want to learn the network of the molecules 

in the dataset. However, in most cases, the experimental data is very limited especially for 

large networks with hundreds of components due to lack of technology to observe the data, 

lack of information in the literature, the complexity of the experiments, and so on, which 
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makes this approach not applicable for all networks. Another example of learning network 

models can be found in Videla et al. (2012) in which training of logic models using high-

throughput phospho-proteomics data is reduced to a combinatorial optimization problem 

that is solved using Answer Set Programming (ASP) approach. ASP is a declarative 

problem-solving paradigm in which a problem is encoded as a logical program such that 

its answer sets represent solutions to the problem. On the other hand, Sharan and Karp 

(2013) proposed an algorithm that reduces this problem into an Integer Linear 

Programming (ILP) problem. Their algorithm does not require information on the 

interaction (the edge signs) as well as an initial model to start. 

There exist other studies, in which the model training starts with an initial network 

(curated from literature), systematically improve the model prediction accuracy by 

adding/removing interactions. For instance, Saez-Rodriguez et al. (2009) developed the 

“CellNetOptimizer” (CNO) algorithm that starts with an initial model and trains it by using 

heuristic genetic algorithm against the experimental measurements to learn a more compact 

representation of the model that fits the data well. Moreover, Mitsos et al. (2009) presented 

an ILP formulation of the problem that allows learning of a subnetwork of the initial 

network that will provide an optimal fit to the observed data. Similarly, Melas et al. (2013) 

presented an ILP-based algorithm in which they perform four operations to detect and 

remove inconsistencies between experimental measurements and predicted behavior that 

are (i) finding/constructing an initial network relevant to the nodes measured in 

experiments; (ii) determining a set of nodes that have inconsistencies with the 

measurements and need to be corrected; (iii) determining the optimal subnetwork of the 

initial network which has the best fitness to the measurements; (iv) finding possible edges 
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to be added to the optimal subnetwork to further improve the accuracy with respect to the 

experimental measurements. 

1.2.4 Molecular Network Analysis   

The main purpose of collecting the experimental data, constructing the underlying network 

and network models, and training the models against experimental data to obtain better 

models with high fitness percentage is to eventually analyze the network and discover 

novel insights into complex biological systems. One of the purposes of this dissertation is 

to provide a mathematical framework to perform fault diagnosis analysis of molecular 

networks, which has many applications such as target discovery and drug developments 

(Csermely et al., 2013). A version of the vulnerability analysis technique we employ in this 

dissertation was initially proposed by Abdi et al. (2008), in which they proposed an error 

propagation probability method to perform fault diagnosis analysis of molecular networks. 

The method enumerates the probability of network failure at the output of the network in 

the presence of a single is faulty (dysfunctional) molecule at a time. They applied the 

method to caspase 3 network, p53 network, and CREB network to show the utility of the 

approach. Furthermore, they showed that this method is capable of reproducing known 

results as well as discovering novel vulnerable molecules as experimentally confirmed in 

the CREB network. Later on, Habibi et al. (2014a) expanded this method in different ways. 

First, they performed single fault vulnerability analysis by applying different levels of input 

combinations. Then, they examined the effect of different fault probability levels for each 

molecule on their vulnerability values. Lastly, they extended the fault diagnosis technique 

by considering three activity levels of molecules in addition to the Boolean model used to 

introduce their methods. 
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1.2.5 Single Cell Decision Making and Signaling Outcome Analysis 

The molecular networks have some specific outputs that initiate important biochemical 

processes. For instance, depending on the received signals and dynamics of the networks, 

cells may make different decisions such as proliferating or initiating apoptosis. These 

decisions leading to well-defined macroscopic patterns, tissues, and organs are driven by 

chemical and mechanical signals, and are organized in space and time (Arias & Stewart, 

2002). Balázsi et al. (2011) reviewed examples of cellular decision-making in several 

organisms such as viruses, yeast, bacteria, and mammals, and showed the role of molecular 

noise in cell decision-making. Due to the biological noise, identical cells may exhibit 

different behaviors, when they receive the same input signal. 

For several decades, balls rolling down a slanted landscape with bifurcating valleys 

of Waddington and Kacser (1957), also known as “Waddington’s epigenetic landscape”, 

have been widely used to illustrate the differentiation of multicellular development, 

although it was unclear what the valleys and peaks are. Nowadays, thanks to single-cell 

measurement technologies (Svensson et al., 2017; Ziegenhain et al., 2017) which can 

simultaneously measure the expression of many genes in several single cells, it became 

possible to compute Waddington’s landscape that can serve as a theoretical framework for 

cellular decision-making. The availability of single-cell data made it possible to understand 

developmental pathways and cell fate decisions and paved the way to examine complex 

disorders. Several computational and experimental studies have been conducted. For 

instance, Narula et al. (2016), investigated sporulating Bacillus subtilis (bacteria) single-

cell data and concluded that cells sensing growth rates indirectly detect starvation without 

the need for evaluating specific stress signals. Moreover, Hat et al. (2016) investigated how 
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the complex p53 system is involved in cell fate decision-making. They constructed a 

mathematical model of the p53 network to understand the dynamics of cancerous and 

cancer-free cells. Similarly, Tudelska et al. (2017) combined experimentation with 

mathematical modeling to understand how TNF concentration reflects the binary decision 

cell makes that is the translocation of NF-kB. In addition, Habibi et al. (2017) provided a 

mathematical framework to quantify cell decision error probabilities assuming a univariate 

decision-making scheme. Recently, we extended this framework to a multivariate decision-

making scheme to incorporate signaling dynamics into decision-making analysis (Ozen et 

al., 2020) as elaborated in Chapters 4, 5, 6, and 7 of this dissertation. Several other 

examples of single-cell studies exist (e.g., Garcia-Ojalvo & Martinez Arias, 2012; Griffiths 

et al., 2018; Guo et al., 2019; Mohammed et al., 2017; Moris et al., 2016; Sagar & Grün, 

2020; Zernicka-Goetz et al., 2009; Zhang et al., 2019). Such single-cell analysis methods 

are being studied to better understand the transition from physiological to pathological 

conditions such as inflammation, various cancers, and autoimmune diseases. 
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CHAPTER 2 

MODELING MOLECULAR NETWORKS AND  
TRAINING NETWORK MODELS 

 

Analyzing molecular networks is essential to understand complex biological dynamics and 

shed light on complex diseases. Therefore, molecular network graphs need to be converted 

into numerable models so that one can perform different analyses and eventually observe 

biologically valuable results. One way of modeling molecular networks is building a 

system of differential equations that provide detailed information on network dynamics. 

Such models are in need of the knowledge of mechanistic details and kinetic parameters, 

which is very limited in general. Thus, they are not practical for large molecular networks 

with several components. On the other hand, discrete models such as Boolean models do 

not require detailed kinetic information and still provide relevant biological insights into 

complex systems. Furthermore, they are easier to understand and computationally simpler 

than continuous models. In this chapter, we provide examples of continuous and Boolean 

modeling frameworks. 

After building a biologically relevant network model, a typical issue is that the 

model predictions generally do not reflect the experimental data for literature-curated 

networks, which might be due to the incompleteness of resources used to construct the 

network or the model itself. Since any observation made on a model with large discrepancy 

between biological evidence cannot be trusted, the network models need to be trained 

against data before doing further analyses. In this chapter, we provide two training 

approaches that are training by removing edges and training by learning Boolean functions 

of the molecules, explained in detail in the subsequent sections. 
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2.1 Continuous Modeling of Molecular Networks 

The continuous models incorporate the continuous time and space-varying behavior of the 

molecular components of the network and hence provide a detailed representation of the 

underlying biological mechanism. These models convert molecular networks into a 

mathematical form by building a system of differential equations. More specifically, a 

system of ODEs is a widely used representation of biological networks whose general form 

is given below (Sontag, 1998, 2005): 

 d𝑥!(𝑡)
d𝑡 = 𝑓!'𝑥!(𝑡), 𝑥"(𝑡), … , 𝑥#(𝑡), 𝐼!(𝑡), 𝐼"(𝑡), … , 𝐼$(𝑡)+

d𝑥"(𝑡)
d𝑡

= 𝑓"'𝑥!(𝑡), 𝑥"(𝑡), … , 𝑥#(𝑡), 𝐼!(𝑡), 𝐼"(𝑡), … , 𝐼$(𝑡)+
⋮

d𝑥#(𝑡)
d𝑡 = 𝑓#'𝑥!(𝑡), 𝑥"(𝑡), … , 𝑥#(𝑡), 𝐼!(𝑡), 𝐼"(𝑡), … , 𝐼$(𝑡)+

  

where 𝒙(𝑡) = 	 '𝑥!(𝑡), 𝑥"(𝑡), … , 𝑥#(𝑡)+ are the concentration of n molecular components 

at time t, 𝑰(𝑡) = 	 '𝐼!(𝑡), 𝐼"(𝑡), … , 𝐼$(𝑡)+ are m external inputs to the cellular system, and 

𝑓!, 𝑓", … , 𝑓# are the functions of n + m variables indicating the relationship between each 

components.  

Molecular networks can also be modeled by the well-known chemical master 

equation which describes the time evolution of the probability of a system jumping from 

one state to another in a continuous time (Kampen, 1981). It is a stochastic approach based 

on the law of mass action, which states that the rate of a chemical reaction is proportional 

to the product of the active masses of the reacting substances (Erdi & Toth, 1989).        
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Figure 2.1 is an example system of ODEs for the small network with four molecules, i.e., 

𝑋!, 𝑋",𝑊, 𝑍, and three interactions with activation rates 𝑘!, 𝑘", 𝑘%. As seen in this simple 

example, continuous models are costly by virtue of numerous free parameters such as rate 

constants that have to be estimated from limited amount of data, especially in large 

networks. When the size of the network increases to hundreds of molecules and 

interactions, the system contains more and more free parameters to be estimated which is 

very challenging in the absence of prior knowledge and data. Therefore, discrete modeling, 

e.g., Boolean models, becomes a useful tool to model and analyze large biological systems, 

which is explained in detail in the next section.  

 

2.2 Boolean Modeling of Molecular Networks 

Boolean models are one of the simplest yet very useful way of modeling molecular 

networks and capturing their dynamics. They assume two activity states of the molecules, 

i.e., ON (active) and OFF (inactive). The advantage of this type of modeling is that they do 

not need detailed kinetic information and still provide certain biologically relevant 

 

 

Figure 2.1 An example ODE-based continuous model of a toy network with four 
molecules. 
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predictions. In general, Boolean network models consist of the following three components 

(DasGupta & Liang, 2016): 

• A Boolean state vector 𝑠 = (𝑠!, 𝑠", … , 𝑠#) ∈ {0,1}#. 

• A global activation function 𝑓 = (𝑓!, 𝑓", … , 𝑓#), in which 𝑓& is a Boolean 
function, i.e., 𝑓&: {0,1}# →	{0,1}. 

 
• An update rule that incorporates the dynamic behavior of the network. 

Boolean models allow representing molecular networks as digital circuits using 

digital gates such as AND, OR, and NOT. Thus, many analysis techniques developed for 

digital circuits such as reliability analysis (Han et al., 2011) and fault detection techniques 

(Kohavi & Kohavi, 1972) can be applied for molecular networks with Boolean models as 

well. In the following subsections, we provide examples of Boolean models for molecular 

networks. 

2.2.1 Model 1: Increase in Activity “1”, Decrease/No Change in Activity “0” 

In a typical biological reaction, the activity level of the output (product of the reaction) can 

increase, decrease, or remain between some thresholds, depending on its upstream 

molecules. In this model, when a stimulus is applied to the network, increase in the activity 

level of a molecule is represented by binary 1 and decrease or no change in the activity 

level of a molecule is represented by binary 0. Assume there exists a reaction with multiple 

activators and inhibitors. Then, this model incorporates two update rules to specify the 

output molecule’s state: 

• Rule 1: The output is 1 if none of the inhibitors is 1 and at least one of the 
activators is 1. 

 
• Rule 2: The output is 0 if at least one of the inhibitors is 1. 
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Figure 2.2 exemplifies this model for a reaction in which 𝑥! and 𝑥" are activatory and 

inhibitory inputs of 𝑤 (Figure 2.2A), respectively. Using these model rules, one can fill the 

associated truth table in Figure 2.2B which further helps to create the logic circuit 

representation of the network in Figure 2.2C. Furthermore, the rules lead to generate 

Boolean equation of the output, that is 𝑤 = 𝑥! × (~𝑥"), where “×” represents the AND 

operation while “~” represents the NOT operation. Using this approach, a network of 

hundreds of molecular components can be implemented as a digital circuit with many AND 

(×), OR (+), and NOT (~) gates. 

2.2.2 Model 2: Change in Activity “1”, No Change in Activity “0” 

In this model, when an input combination is applied, any change in molecule activity 

(activity increase (decrease) above (below) a certain threshold) is represented by binary 1 

while no change in the activity (remaining between the thresholds) is represented by binary 

0. For a given reaction with multiple input molecules, the two update rules specifying the 

output molecule’s state of this model are: 

 

 

Figure 2.2 An example for Boolean Model 1. (A) A two-input one-output network.           
(B) Truth table of the network based on the model rules. (C) Logic circuit representation 
of the network. 
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• Rule 1: The output is 1 if at least one of the inputs is 1. 
 

• Rule 2: The output is 0 if all inputs are 0. 

Figure 2.3 presents application of this model on the small network used in Model 1 above. 

Using the rules, one can represent the network using an OR gate only (Figure 2.3C) and 

generate the Boolean equation 𝑤 = 𝑥! + 𝑥".  

 There exist several different Boolean models studied in the literature. The model 

rules and their representations depend on the biological system being studied. Therefore, 

to incorporate biological properties of the network under interest, one can implement 

different model rules than the ones provided here, which may lead to a different logic 

circuit and equation representation of the molecules. 

 

2.3 Training Boolean Network Models 

After building biologically acceptable models for molecular networks, a typical issue is 

that the generated models’ predictions do not agree with the experimental data for draft 

literature-based networks, which might be due to the incompleteness of resources, 

databases, and literature used to construct the networks. Therefore, the network models 

 

 

Figure 2.3 An example for Boolean Model 2. (A) A two-input one-output network.           
(B) Truth table of the network based on the model rules. (C) Logic circuit representation 
of the network. 
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need to be trained against data before doing further analyses. Many methods have been 

proposed to improve the fitness of the models to the experimental data or to learn a new 

model from the data in recent years as summarized in Chapter 1. In this section, we provide 

two methods to train the Boolean network models using data, that are elaborated in the 

following subsections:  

2.3.1 Training by Edge Removing via Integer Linear Programming 

One way of training network models is fixing the model rules and manipulating the 

network topology by adding or removing interactions between the existing molecules in 

the network. Due to the incompleteness of the resources used to construct the network, 

some of the edges (interactions) in the network may need to be removed (spurious 

interactions) or some new edges may need to be added so that the resulting network can 

reflect natural collective behaviors of the molecules, i.e., models that fit the experimental 

data. Herein, we prefer to remove edges and find a subnetwork of the initial network since 

adding new edges requires experimental evidence which is costly and time consuming to 

acquire. One simple way to do this is to conduct an optimization to remove edges one by 

one and check the number of mismatches between model predictions and experimental 

data. However, for large networks, this is computationally very complex and does not help 

as removing one edge at a time most often does not change model predictions. For this 

reason, we convert this problem into an integer linear programming (ILP) problem in which 

multiple edges can be removed systematically, i.e., the optimal solution to the ILP problem 

is a subnetwork of the initial network that fits the data. A similar approach was studied by 

other groups (e.g., Mitsos et al., 2009) on a network that does not include feedbacks. In 
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this dissertation, we provide a new formulation for a different Boolean model and show 

how we apply it when the network contains some feedback interactions.   

The goal is to minimize the mismatch between model’s responses and experimental 

data. The data is generally obtained by applying an input to the network and measuring the 

abundance of some of the intermediate as well as the output molecules in each experiment. 

Then, these experiments are repeated multiple times for different input perturbations.  

Let 𝑛' be the number of experiments and each experiment be indexed by the 

superscript 𝑘 = 1, … , 𝑛'. In the network, there exist 𝑛( reactions which are indexed by the 

subscript 𝑖 = 1, … , 𝑛(. Each reaction 𝑖 has the corresponding index set 𝐼& = 𝐴& ∪ 𝐻& for its 

input molecules, in which 𝐴& and 𝐻& are the index set of activators and inhibitors, 

respectively. Lastly, let 𝑀 be the index set of molecules for which we have experimental 

data. Then, in the general form of the proposed ILP formulation, we define all the other 

variables as shown below. For each reaction 𝑖, we have: 

• 𝑥)*: model’s predicted value of the 𝑗th input node in the 𝑘th experiment, for all 
𝑗 ∈ 𝐼&. 

 
• 𝑥)

*,$: experimental value of the 𝑗th node in the 𝑘th experiment, for all 𝑗 ∈ 𝑀. 
 
• 𝑦): decision variable, for all 𝑗 ∈ 𝐼&. 𝑦) = 1 means that 𝑗th edge in the reaction 𝑖 

should be preserved in the network whereas 𝑦) = 0 means that 𝑗th edge in the 
reaction 𝑖 should be removed from the network. 

 
• 𝑧)*: transition variable, for all 𝑗 ∈ 𝐼&. It transits the input value 𝑥)* associated 

with the 𝑗th edge to the output of reaction 𝑖 if 𝑦) = 1. Otherwise, 𝑧)* = 0. 
 
• 𝑤&*: output value of the reaction 𝑖. 
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The objective function to be minimized is the summation of the number of 

mismatches between the experimental data and the model’s prediction over all experiments 

(the absolute error). Thereby, the objective function is: 

 JK𝑥)* − 𝑥)
*,$K

),*

,					∀𝑗 ∈ 𝑀, 𝑘 = 1, … , 𝑛' , 
(2.1) 

where 𝑥)* is the models’ prediction and 𝑥)
*,$ is the experimental value of 𝑗th molecule in 

the experiment 𝑘. For Boolean 𝑥)* and 𝑥)
*,$ values, Equation (2.1) can be linearized as: 

 J𝑥)
*,$

),*

+ '1− 2𝑥)
*,$+𝑥)* ,					∀𝑗 ∈ 𝑀, 𝑘 = 1, … , 𝑛' .  

For training the Boolean Model 1 introduced in Section 2.2.1, using all definitions 

given above, the constrained ILP formulation can be written as shown in Equation (2.2), in 

which the constraints (i), (ii), and (iii) are introduced for edge removal. More precisely, 

these three constraints assure that if the 𝑗th interaction in reaction 𝑖 is removed, i.e., 𝑦) = 0, 

then the transition variable 𝑧)* = 0 so that the input molecule associated with the 𝑗th 

interaction does not affect the value of the output molecule 𝑤&*. If the 𝑗th interaction needs 

to stay, i.e., 𝑦) = 1, then these constraints guarantees that the transition variable 𝑧)* = 𝑥)*. 

The constraints (iv), (v), and (vi) implement the rules of Boolean Model 1. To elaborate, 

depending on the constraints (i), (ii), and (iii), the transition variable 𝑧)* will be equal to 

either 0 or 𝑥)*. Then, if none of the inhibitors and at least one of the activators is 1, the 

constraints (iv) and (v) guarantee that the output 𝑤&* = 1 (Rule 1). Similarly, if at least one 
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of the inhibitors is 1, i.e., ∃𝑗 ∈ 𝐻& such that 𝑧)* = 1, then, the constraints (iv) and (v) make 

sure that the output 𝑤&* = 0 (Rule 2). The constraint (vi) is necessary to guarantee that the 

output 𝑤&* = 0 if all incoming edges are removed or the input values of the remaining edges 

are 0s. Lastly, the constraint (vii) is needed to guarantee that all variables are integers and 

they are either 0 or 1. Figure 2.4 further explains how the formulation works on an example. 

 A similar formulation can be adapted for training the Boolean Model 2 introduced 

in Section 2.2.2. This is done by removing the constraint (iv) and replacing constraint (v) 

of Equation (2.2) by 𝑤&* ≥ 𝑧)* , ∀𝑗 ∈ 𝐼&, which becomes to Equation (2.3) given below. 

 

 
min
,
J𝑥)

*,$

),*

+ '1− 2𝑥)
*,$+𝑥)* ,					∀𝑗 ∈ 𝑀, 𝑘 = 1, … , 𝑛' 

(2.2) 

 Subject to ∀𝑖 = 1, … , 𝑛( , ∀𝑘 = 1, … , 𝑛' 

 (i) 𝑧)* ≥ 𝑦) + 𝑥)* − 1,  ∀𝑗 ∈ 𝐼&  

 (ii) 𝑧)* ≤ 𝑥)* ,  ∀𝑗 ∈ 𝐼&  

 (iii) 𝑧)* ≤ 𝑦) ,  ∀𝑗 ∈ 𝐼&  

 
(iv) 𝑤&* ≤ 1− J

𝑧)*

|𝐻&| + 1
)∈.!

,  

 
(v) 𝑤&* ≥ J

𝑧)*

|𝐴&| + 1
)∈/!

− J 𝑧)*

)∈.!

,  

 (vi) 𝑤&* ≤J𝑧)*

)∈0!

,  

 (vii) 0 ≤ 𝑥)* , 𝑧)* , 𝑦) , 𝑤&* ≤ 1,   𝑥)* , 𝑧)* , 𝑦) , 𝑤&* ∈ ℤ.  
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Figure 2.4 An example of the ILP formulation for Boolean Model 1.  
Note: This is a hypothetical reaction in which the inputs are 𝑥" and 𝑥#, and the output is 𝑥$. 

  

 
min
,
J𝑥)

*,$

),*

+ '1− 2𝑥)
*,$+𝑥)* ,					∀𝑗 ∈ 𝑀, 𝑘 = 1, … , 𝑛' 

(2.3) 

 Subject to ∀𝑖 = 1, … , 𝑛( , ∀𝑘 = 1, … , 𝑛' 

 (i) 𝑧)* ≥ 𝑦) + 𝑥)* − 1,  ∀𝑗 ∈ 𝐼&  

 (ii) 𝑧)* ≤ 𝑥)* ,  ∀𝑗 ∈ 𝐼&  

 (iii) 𝑧)* ≤ 𝑦) ,  ∀𝑗 ∈ 𝐼&  

 (iv) 𝑤&* ≥ 𝑧)* ,  ∀𝑗 ∈ 𝐼&  

 (v) 𝑤&* ≤J𝑧)*

)∈0!

,  

 (vi) 0 ≤ 𝑥)* , 𝑧)* , 𝑦) , 𝑤&* ≤ 1,   𝑥)* , 𝑧)* , 𝑦) , 𝑤&* ∈ ℤ.  
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The ILP formulations (2.2) and (2.3) search for a vector 𝒚 = [𝑦)], that is the vector 

of indices of edges in the network, minimizing the number of mismatches between 

predictions and the data. To elaborate, a network can be represented by a vector 𝒚 that is 

vector of 1s with the length of the total number of interactions in the network. Thus, a 

subnetwork of the initial network can be represented by the same 𝒚 vector with entries 0s 

and 1s. If the 𝑗th entry of 𝒚 is 0, then this means that the 𝑗th interaction is removed in the 

subnetwork. As a result, by solving the ILP formulations (2.2) and (2.3), one can find the 

best 𝒚 vector(s), i.e., the subnetwork(s), that has the optimal fit to the data for the given 

Boolean models 1 and 2. 

 Now we apply the ILP formulation in (2.2) to a toy network with hypothetical 

experimental data. Suppose that we are given the toy network in Figure 2.5A. Then, the 

 

 

Figure 2.5 A toy network and the associated Boolean equations based on Model 1.            
(A) The toy network with feedback. (B) The associated Boolean equations of each node 
created based on Boolean Model 1’s rules. 
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associated Boolean equations (based on Model 1’s rules) for each node can be written as 

shown in Figure 2.5B. Because of the presence of feedback interactions (the blue edges in 

Figure 2.5A), this network can be represented in two pieces: the early event (EE) network 

and the late event (LE) network as shown in Figure 2.6A and Figure 2.6D. When there is 

 

 

Figure 2.6 The early event and the late event components of the toy network. (A) The EE 
network. (B) The Boolean equations of the nodes in the EE network. (C) The truth table of 
the EE network. (D) The LE network. (E) The Boolean equations of the nodes in the LE 
network. (F) The truth table of the LE network. 
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feedback(s) in the network, the network response might be different at different time 

instances because of the dynamics and latency in the reactions caused by the feedbacks. 

Using the Boolean equations in Figures 2.6B and 2.6E, the EE and LE truth tables can be 

created as shown in Figures 2.6C and 2.6F.  

 Assume that the network in Figure 2.6D is the ground truth network and Figure 

2.6F is the hypothetical experimental data measured in experiments and quantized 

properly. Then, to test the ILP formulation (2.2), we manipulate this network by adding 

new spurious interactions and generate a new network with a new truth table as shown in 

Figure 2.7. 

 Suppose that the new network with the spurious interactions is the initial network 

constructed from literature, and our initial model has some mismatches (red values in 

Figure 2.7B) compared to the experimental data in Figure 2.6F. Our purpose is to train this 

 

 

Figure 2.7 The extended toy network with spurious edges. (A) The extended toy network 
that hypothetically represents the literature-curated network. (B) The truth table of the 
untrained network model’s predictions. The red entries of the table are the mismatches 
compared to the hypothetical data. 
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network by building and solving the ILP formulation in Equation (2.2). In other words, the 

purpose is to find a subnetwork of the initial network that has the optimal fit to the data. 

The expectation after solving the ILP is that the desired network in Figure 2.6D, which can 

be represented by the vector 𝒚 = [0 1 1 0 1 1 0 1 1 0 1 1 1 1] is among the found solutions. 

 In the training, care should be taken while considering the feedbacks. Since the 

network may behave differently at different time instances (which is the case as seen in 

Figure 2.6F) implementing the constraints in Equation (2.2) is not trivial for the nodes 

having incoming feedback inputs. In fact, it is very challenging to mathematically 

formulate such nodes in one step because the feedback nodes need to be initialized and 

then updated when the LE data is considered. To solve this issue, we simply duplicate the 

EE network and connect these two identical networks using the feedback edges. 

Furthermore, we treat the nodes in both copies as a new node as shown in Figure 2.8. For 

instance, 𝑥1 and 𝑥12 represent EE and LE values, respectively, where 𝑥12 has the feedback 

input initiated from 𝑥3. Note that the molecule equations are the same if a node does not 

have any feedback input (e.g., 𝑥% = 𝑥%2). Moreover, the edges in the identical copies are 

labeled by the same decision variable 𝑦& so that if  𝑦& = 0, then both edges are removed 

from the network. For instance, the edges 𝑥! —| 𝑥1 and 𝑥! —| 𝑥12 are labeled by 𝑦1 (Figure 

2.8) so that if 𝑦! = 0, then both edges are removed. 

The ILP formulations are implemented using OPL (Optimization Programming 

Language), a high-level programming language, and are solved using the IBM ILOG 

CPLEX optimization studio (IBM, n.d.), a commercial software that solves optimization 

problems. CPLEX found twelve optimal solutions, i.e., twelve 𝒚 vectors, with the objective 

value of 0, and 𝒚 = [0 1 1 0 1 1 0 1 1 0 1 1 1 1] is among one of them, which confirms the 
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ability of the proposed formulation by finding the desired subnetwork with the best fitness 

to the data while preserving the initial model rules.  

The proposed training approach via ILP formulation and the strategy to handle 

feedbacks is applicable to very large networks and capable of finding the exact optimal 

subnetworks with the best fitness percentage to the data. However, a challenge of this 

approach is that the solutions to the ILP formulations may not be unique and multiple 

solutions might be obtained. Even so, it has been observed that the results are usually very 

correlated, indicating that the solutions are very similar. Moreover, the resulting 

subnetworks might be missing a lot of interactions that exist in the initial network. This 

 

 

Figure 2.8 The duplicated network to handle the feedbacks while training via ILP. 
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issue can be solved by adding a penalty term to the objective function in Equation (2.1) 

such as: 

 
J𝑥)

*,$

),*

+ '1− 2𝑥)
*,$+𝑥)* + 	𝛽J(1 − 𝑦&)

|𝒚|

&7!

,  

where 𝛽 is a tunable penalty parameter that penalize the objective function for each 

removed edge. The higher values of 𝛽 may result in worse fitness to the data while keeping 

more edges in the subnetwork. Therefore, there might be a tradeoff between the number of 

removed edges and the fitness percentage. Finally, some of the removed interactions to get 

the optimal solution might be well-known interactions that are experimentally reproduced 

by several groups, which is an undesired outcome. Therefore, searching for a subnetwork 

of the initial network may not be always the best training approach, although it usually 

performs well in terms of data fitness. Thus, in addition to training via ILP, we propose 

another training approach in which the network topology is fixed, and the Boolean 

functions are learned from data, explained in detail in the next subsection.   

2.3.2 Learning Boolean Functions of Molecules 

The training via ILP may result in losing so many interactions while optimizing the model 

predictions. However, one may want to keep all interactions in the network and analyze 

the network as it is without losing any interactions. In such scenarios, the mismatch 

between the model’s predictions and the experimental data can be minimized by tuning the 

model against data. In other words, the model for each molecule can be inferred from the 
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data. For this purpose, we propose a method that learns Boolean equations of each molecule 

while minimizing the mismatch between the model and data in this subsection.  

 Recall the Boolean Model 1 in Section 2.2.1, whose Rules 1 and 2 can be simply 

represented by the following piecewise function: 

 Output = [0, OR(inhibitors) = 1,
OR(activators), Otherwise.   

The fixed model above may not perform well in terms of model prediction when tested 

against the experimental data if the network topology is fixed. Therefore, instead of using 

a fixed AND and OR functions for each rule, we propose to learn 𝑓 and ℎ functions that 

are called activatory and inhibitory functions, respectively, for each molecule by 

minimizing the mismatch between model predictions and the experimental data. In other 

words, we learn new rules for each molecule by implicitly assuming that multiple inhibitors 

and multiple activators may need to work together to change the output molecule’s state.  

A general representation of this approach is given in Equation (2.4): 

 Output = [
0, ℎ(inhibitors) = 1,
𝑓(activators), Otherwise.  (2.4) 

where ℎ(inhibitors) and 𝑓(activators) can contain combinations of AND and OR operators.  

 The learning is done by converting the problem into an optimization problem. In 

the learning, the purpose is finding the best gate (AND/OR) combinations for 𝑓 and ℎ 

functions of each molecules so that the network with the new models has the best fit to 

data. Similar to the ILP approach, a network can be represented by a binary vector            
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𝒈 = [𝑔&], i.e., 𝑔& ∈ {0,1}, where  𝑔& = 0 means that the 𝑖th gate in the network is an AND 

gate whereas 𝑔& = 1 means that the 𝑖th gate in the network is an OR gate. Note that, for the 

initial model, 𝒈 is a vector of 1s meaning that all Boolean operators of 𝑓 and ℎ functions 

are ORs. Consequently, the problem of finding the best gate combinations for each 

molecule is scaled to finding a vector 𝒈 of 0s and 1s, that contains all gates in the network, 

so that a network constructed using 𝒈 has the best fit percentage to the data. Equation (2.5) 

below is the general formulation of the optimization problem, in which 𝐸 is the 

experimental dataset, 𝑁(𝒈) is the network constructed using the vector 𝒈. The objective 

function basically counts the number of mismatches between the network              

constructed by 𝒈, i.e., 𝑁(𝒈), and the experimental data, i.e., 𝐸 (the absolute error). The 

biological constrains can make sure that activatory function 𝑓 cannot consist of only the 

AND gates if it is assumed that there is no need for all activators of a molecule to be active 

at a time, or a similar constraint can be constructed for the inhibitory function ℎ, etc. This 

can be done by constructing inequality constraints. For instance, suppose a molecule 𝑀 has 

three activatory inputs 𝐼1, 𝐼2, and 𝐼3. Thus, the activatory function of 𝑀, i.e., 𝑓, will include 

two gates, i.e., 𝑔1 and 𝑔2. If biologically it is not necessary or it is wrong to have all three 

inputs active at the same time to activate the molecule 𝑀, then 𝑔1 and 𝑔2 cannot be 0 at the 

 min
𝒈
J 1 a𝑥)

9(𝒈) ≠ 𝑥)'c
|'|

)7!

	 

(2.5)                    Subject to 

                  Biological Constraints,  

                  𝑔& ∈ {0,1}	∀𝑖  
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same time, which can be ensured by the constraint 𝑔1 + 𝑔2 ≥ 1 forcing at least one of the 

gates to be an OR gate. Similar constraints can be implemented to incorporate biological 

restrictions and processes. 

Equation (2.5) is a nonconvex global optimization problem that is NP-hard. 

Therefore, we solve (2.5) by using Genetic Algorithm (GA), that is a well-known 

metaheuristic algorithm which attempts to find a global minimum or at least its good 

approximation (Mitchell, 1998).  

Figure 2.9 further explains how this approach works on a simple toy network. 

Assume we have a very simple network with only activators with the untrained fixed 

Boolean Model 1 rules represented by the function string 𝒈 = [1 1 1 1 1 1] (Figure 2.9A). 

Then, one possible learned network could be the one in Figure 2.9B in which two AND 

 

 

Figure 2.9 Examples of the trained networks with the learned Boolean functions.               
(A) The untrained network and associated Boolean functions based on Boolean Model 1. 
(B) A possible learned network with the gates having fixed input molecules. (C) A possible 
learned network with the gates that may have any possible input combination in its domain. 
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gates are learned instead of all OR gates, i.e., 𝒈 = [1 1 1 1 0 0], that hypothetically results 

in better fitness. In this example, the learned model implies that 𝑥1 and 𝑥< needs to be 

active at the same time to activate 𝑥= whereas it was enough to have either 𝑥1 or 𝑥< to be 

active to get 𝑥= activated in the untrained model. Note that the inputs of the gates are fixed 

in this example. Namely, each gate 𝑔& has always the same two input molecules. However, 

to make the learned functions more flexible, and hence to expand the search space with 

higher chance of getting better fitness percentage, the input edges of the gates should be 

floating so that the 𝑔& can have any possible two inputs available in its domain (inputs of 

the molecule where 𝑔& is located). To do so, we introduce another vector 𝒑 = [𝑝&] that 

contains the indices of possible order of input molecules. To elaborate, if a molecule has 

three input molecules m1, m2, and m3, then there are 6 possible arrangements of the input 

molecule orders ([m1, m2, m3], [m1, m3, m2], …, [m3, m2, m1]). So, 𝑝& ∈ {1,2,3,4,5,6} picks 

the best order that gives the best fit with the selected gates. Therefore, the problem becomes 

searching for a bigger vector 𝑮 = [𝒈, 𝒑], and Equation (2.5) still applies to this problem. 

Figure 2.9C exemplifies a possible learned network in which the input edges are floating. 

To test how well the proposed method works, we construct Equation (2.5) on a 

reasonable but imaginary toy network with a set of synthetic binary data. The toy network, 

previously studied by Saez-Rodriguez et al. (2009), consists of intracellular signaling 

proteins that are known to be activated by epidermal growth factor TNF (Tumor Necrosis 

Factor) receptors in mammalian cells. A directed graphical model of the network as well 

as the synthetic data is given in Figure 2.10. The synthetic binary data (Figure 2.10B) was 

obtained by using a reference model. The main goal is to learn a new model for each node 

that has the optimal fit to data. After constructing and solving the Equation (2.5) without 
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any biological constraints for this toy network, we learned the functions listed in Table 2.1. 

Note that we learn the function only for the molecules having at least two incoming inputs, 

that are in this case Grb2Sos, IKKab, C8, and MEK. The networks constructed with the 

functions given in Table 2.1 have 100% fitness to the synthetic data in Figure 2.10B. In 

Saez-Rodriguez et al. (2009), the training was done after the initial network was 

compressed. Therefore, the learned networks in Table 2.1 are not directly comparable to 

them. However, when the same compression is done here, the learned networks lead to the 

ones reported in Figure 1 of Saez-Rodriguez et al. (2009). This means that, with the 

proposed approach here, one can directly train the network without manipulating its initial 

topology and yet obtain the same results in terms of data fitness. 

 

 

Figure 2.10 The imaginary but reasonable toy network of intracellular signaling proteins. 
(A) The imaginary toy network of TNF downstream. The green normal arrows represent 
activatory interaction whereas the red blunt edges represent inhibitory interactions.           
(B) The synthetic readouts obtained from a reference model. “+” means the associated 
molecule is active (binary 1) and “-” means that the molecule is inactive (binary 0).  

Source: This figure was reproduced from Saez-Rodriguez et al. (2009). 
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 Training by learning Boolean functions of the molecules, i.e., the model, is useful 

if the initial network needs to be preserved while connecting it to the biological evidence, 

i.e., the experimental data. This approach is specifically practical if some analysis such as 

fault diagnosis analysis (explained in detail in the next chapter) is going to be conducted 

after training because it will preserve all molecules and their connections in the network, 

which prevents losing information on the molecules as well as the effect of their 

interactions that might be removed in other training approaches. In addition, after training, 

generally there is not a unique solution. In fact, if the size of the network increases, then 

the likelihood of observing more networks with the same objective value increases as well, 

which might be an issue in network analyses. However, the learned networks are usually 

correlated. Thus, the solution set can be clustered into a reasonable number of clusters, and 

then the cluster centroids can be analyzed. 

 
Table 2.1: Learned Boolean Functions for each Molecule 

The Learned 
Functions 1 

The Learned 
Functions 2 

The Learned 
Functions 3 

The Learned 
Functions 4 

AKT = PI3K 
C8 = TRADD x TNFR 
EGFR = TGF𝛼 
ERK = MEK 
Grb2Sos = Shc x EGFR 
GSK3 = ~AKT 
IKKab = TNFR x PI3K 
I𝜅b = ~IKKab 
MEK = Raf + NF𝜅B 
NF𝜅B = ~ I𝜅b 
PI3K = EGFR 
Raf = RAS 
Ras = Grb2Sos 
Shc = EGFR 
TNFR = TNF𝛼 
TRADD = TNFR 

AKT = PI3K 
C8 = TRADD + TNFR 
EGFR = TGF𝛼 
ERK = MEK 
Grb2Sos = Shc x EGFR 
GSK3 = ~AKT 
IKKab = TNFR x PI3K 
I𝜅b = ~IKKab 
MEK = Raf + NF𝜅B 
NF𝜅B = ~ I𝜅b 
PI3K = EGFR 
Raf = RAS 
Ras = Grb2Sos 
Shc = EGFR 
TNFR = TNF𝛼 
TRADD = TNFR 

AKT = PI3K 
C8 = TRADD x TNFR 
EGFR = TGF𝛼 
ERK = MEK 
Grb2Sos = Shc + EGFR 
GSK3 = ~AKT 
IKKab = TNFR x PI3K 
I𝜅b = ~IKKab 
MEK = Raf + NF𝜅B 
NF𝜅B = ~ I𝜅b 
PI3K = EGFR 
Raf = RAS 
Ras = Grb2Sos 
Shc = EGFR 
TNFR = TNF𝛼 
TRADD = TNFR 

AKT = PI3K 
C8 = TRADD + TNFR 
EGFR = TGF𝛼 
ERK = MEK 
Grb2Sos = Shc + EGFR 
GSK3 = ~AKT 
IKKab = TNFR x PI3K 
I𝜅b = ~IKKab 
MEK = Raf + NF𝜅B 
NF𝜅B = ~ I𝜅b 
PI3K = EGFR 
Raf = RAS 
Ras = Grb2Sos 
Shc = EGFR 
TNFR = TNF𝛼 
TRADD = TNFR 
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CHAPTER 3 

VULNERABILITY ANALYSIS OF MOLECULAR NETWORKS 

 

Modeling the molecular networks and training network models are done to obtain 

biologically consistent models with high accuracy in experimental data prediction so that 

one can develop methods and frameworks to perform different analyses. Such analyses 

may result in important outcomes that may pave the way for a possible treatment to a 

complex disorder. In this chapter, we provide insights into one of the analysis techniques 

that is the vulnerability analysis (fault diagnosis analysis) studied to rank the molecules in 

terms of their disruptive effect on the network functionality when they are faulty 

(dysfunctional). Such analysis is useful for target discovery that leads to drug development. 

The main purpose of fault diagnosis analysis methods is to understand how 

vulnerable the entire network is to the dysfunction of one or multiple molecules. A 

molecule may become dysfunctional due to intrinsic or extrinsic reasons. The dysfunction 

of a molecule can be defined as a failure to respond correctly to its input signals, which 

may further cause incorrect responses at the output(s) of the network. Therefore, one can 

define the vulnerability level of a molecule as the probability of having incorrect network 

responses when the molecule is dysfunctional. We first introduce some possible fault 

models that can be studied for modeling the dysfunctional state of a molecule in the next 

section. Then, we provide a mathematical framework to compute the single and multi-fault 

vulnerability levels of molecules, exemplified on a toy network. Next, the worst possible 

signaling failures in molecular networks is examined by comparing the maximum 

vulnerability level, i.e., the highest probability of network failure, versus the number of 
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faulty molecules to understand how the network functionality is affected in the presence of 

one or more dysfunctional molecules, for which an efficient algorithm is developed. 

Moreover, another algorithm is developed to understand how many time points might be 

needed to calculate vulnerability level of a molecule or group of molecules in a Boolean 

modeling framework. The methods are applied to the experimentally verified ERBB and T 

cell signaling networks. All of these studies and our observations are elaborated in the 

subsequent sections.  

 

3.1 Molecular Fault Models 

 The molecules in a cell may become faulty because of different extrinsic or intrinsic 

reasons. If the faults cannot be repaired by cellular mechanisms, then they may initiate the 

formation of serious diseases such as cancer, autoimmune diseases, and mental disorders. 

Since we model the network using a Boolean modeling framework as introduced in Chapter 

2, we also model the molecular faults in Boolean domain. One advantage of using Boolean 

models in the molecular network modeling is that the networks can be represented as digital 

circuits in which each clock cycle may model different time responses of the molecular 

network. This allows one to apply methods developed for digital circuits in the context of 

biological networks, especially for the fault models.   

The faults in a molecule can be temporary or permanent. The temporary faults can 

be modeled by transient errors (also called soft error) that occurs in one clock cycle and 

then disappear in the other clock cycles in a Boolean model. In other words, the molecule 

state might incorrectly be binary 0 (or binary 1) in a single clock cycle, and then turns back 

to its nominal state afterwards. This incorrect transient error may or may not propagate to 
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the network output. The probability of propagation of the transient error to the output of 

the network for each molecule can be defined as the molecular vulnerability level whose 

formulation and computation is provided by Abdi et al. (2008). 

 Another way of modeling the molecular faults is using 1-bit inversion called von 

Neumann error that is studied in the reliability analysis concept of digital circuits (Han et 

al., 2011). In this error model, it can be assumed that the faulty molecule outputs the inverse 

of its nominal state. For instance, in a reaction, if a molecule’s nominal response is binary 

0 to its input molecules, then the same molecule response erroneously becomes binary 1 to 

the same inputs or vice versa if it is modeled using von Neumann error. Despite the 

unusuality of usage of this type of fault model in the concept of molecular faults, still it can 

be used to assess the effect of temporary faults in the molecular networks. 

 The most common fault type used to model molecular faults is the stuck-at 

permanent faults (e.g., Habibi et al., 2014a). In these fault models, the molecule’s state 

stuck at a value permanently through all clock cycles regardless of what its inputs are. In 

the Boolean modeling framework, these faults can be stuck-at-0 (SA0) or stuck-at-1 (SA1). 

The SA0 fault mean that the molecule is always inactive, i.e., its state is binary 0 all the 

time, no matter what the state of its input molecules are. This type of fault model is practical 

for understanding effects of hypoactivity of the molecules. Similarly, the SA1 fault mean 

that the molecule is always active, i.e., its state is always binary 1 independently from its 

input molecules. The SA1 fault model can be used to analyze the effects of hyperactivity 

of the molecules. If there is not any specific preference on the stuck-at faults, one can study 

equiprobable SA0 and SA1 fault models while computing their vulnerability levels, which 

is reasonable if no prior knowledge exists about the molecules and network.  
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 In our vulnerability analyses that are elaborated in the next section, we model the 

dysfunction of the molecules using stuck-at faults because they are biologically more 

realistic and they occur in complex diseases (e.g., attenuated PTEN levels exist in human 

breast cancer (Geva-Zatorsky et al., 2006) and elevated Wip1 levels exist in multiple 

human cancer types such as breast, lung, and pancreas cancers; Bulavin et al., 2002; 

Castellino et al., 2007; Li et al., 2002; Saito-Ohara et al., 2003). 

 

3.2 Equations for Computing Vulnerability Levels 

Computing the vulnerability level of a molecule or a group of molecules in a network can 

help with identifying and ranking the key components of the network, to discover 

appropriate therapeutics targets. Vulnerability of a molecule can be defined as the 

probability of having incorrect network responses when the molecule is dysfunctional. The 

dysfunction state of a molecule can be defined as a failure to respond correctly to its input 

signals. In this section, we consider stuck-at-0 (SA0) and stuck-at-1 (SA1) fault models to 

model the dysfunction of molecules, that are constantly 0, inactive, or 1, active, regardless 

of what the input signals of the molecule are. 

 To compute the vulnerability level of a molecule, one needs to first introduce the 

sample space associated with the correct and incorrect network responses at the network 

output. Suppose 𝐾 is the number of intermediate molecules in the network. Let 𝑁 be the 

number of molecules that are simultaneously faulty, i.e., dysfunctional, 𝐼 be the number of 

the network input combinations, CC be the number of clock cycles (time points) for which 

the network response is computed (an algorithm for determining the required CC is given 

in Section 3.4.1), and finally, let 𝑙 be the subscript ranging from 1 to 𝐶(𝐾,𝑁), indexing 
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faulty molecules or groups of faulty molecules. Then, for each input combination 

stimulating the network in the presence of 𝑁 faulty molecules, there will be CC number of 

output responses that may be correct, 𝑐, or erroneous, 𝑒, in each clock cycle. Therefore, the 

sample space 𝑆 can be defined as the set of all possible output sequences of 𝑐 and 𝑒 

responses over CC clock cycles, that is: 

 𝑆 = {𝑐,	𝑒}CC. (3.1) 

Moreover, for the 𝑙-th faulty molecule or the 𝑙-th group of faulty molecules, we define the 

event 𝑆!, a subset of 𝑆, as the set of all output sequences of 𝑐 and 𝑒 responses over CC 

clock cycles observed for all input combinations applied, that is: 

 𝑆! = {𝑣1, 𝑣2,… , 𝑣"}. (3.2) 

Note that 𝑣# ∈ 𝑆, 𝑖 = 1,… ,	𝐼, is a sequence of 𝑐 and 𝑒 of length CC, in which having an 𝑒 

in the 𝑡-th element of 𝑣# means that an erroneous response is observed in the 𝑡-th clock 

cycle. Depending on the possible network responses and that which molecule or group of 

molecules is faulty, 𝑣#s may have the same or different probabilities. Also note that some 

𝑣#s may be identical, therefore, 𝐼 is indeed the maximum number of elements of 𝑆!. For 

CC = 2 and 𝐼 = 2, for example, we have 𝑆! = {𝑣1, 𝑣2} where 𝑣1, 𝑣2 ∈ 𝑆 = {𝑐,	𝑒}2 =

{(𝑐,	𝑐), (𝑐,	𝑒), (𝑒,	𝑐), (𝑒,	𝑒)}. 

 In addition, we define CC number of events as follows: 𝐸1 = the event of having 

an erroneous network response at the output in the 1st clock cycle, …, and 𝐸CC = the event 

of having an erroneous network response at the output in the CCth clock cycle. Note that 



 45 

𝐸1 is the set of those 𝑣 elements in 𝑆! in Equation (3.2) that have an 𝑒 as the 1st entry, 𝐸2 is 

the set of those 𝑣 elements in 𝑆! that have an 𝑒 as the 2nd entry, and so on. We define the 

vulnerability level of the 𝑙-th molecule 𝑀!, Vul(𝑀!), as the probability of having an 

erroneous network response in the 1st clock cycle, …, or in the CCth clock cycle, when 𝑀! 

is dysfunctional. Therefore, Vul(𝑀!) can be written as: 

 
Vul(𝑀!) = 𝑃 <=𝐸$

CC

$%1

& 𝑀! is dysfunctional?. (3.3) 

Since we consider SA0 and SA1 as the fault models, Equation (3.3) can be expanded as 

follows: 

 
Vul(𝑀!) = 𝑃 <=𝐸$

CC

$%1

& 𝑀! is SA0?𝑃(𝑀! is SA0)

+ 𝑃<=𝐸$

CC

$%1

& 𝑀! is SA1?𝑃(𝑀! is SA1). 

(3.4) 

While we assume equi-probable SA0 and SA1 faults for each molecule, i.e., 

𝑃(𝑀! is SA0) = 𝑃(𝑀! is SA1) = 0.5 in our computations, Equations (3.3) and (3.4) can 

be extended to other fault models and fault probabilities. 

 Equation (3.4) is provided for computing the vulnerability level of a single 

molecule. However, it is also of interest to study the abnormal network responses when 
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multiple molecules are faulty at the same time, for which Equation (3.4) can be extended 

as follows: 

 
Vul(𝑀1,… , 𝑀&) =A𝑃<=𝐸$

CC

$%1

B (𝑀1,… , 𝑀&)'?𝑃((𝑀1,… , 𝑀&)'),
2!

'%1

 (3.5) 

where (𝑀1,… , 𝑀&)' ∈ {SA0, SA1}& is the 𝑘-th fault vector for the group of 𝑁 

dysfunctional molecules 𝑀1,… , 𝑀&. 

 To illustrate, assume both 𝐼 and CC = 2. When 𝑁 = 1, a single faulty molecule, 

there are two events, i.e., 𝑆!,SA0 = {𝑣1, 𝑣2} and 𝑆!,SA1 = {𝑣1, , 𝑣2,}, associated with the 𝑙-th 

faulty molecule 𝑀! being SA0 or SA1. Moreover, assume hypothetically that we have 

𝑆!,SA0 = {𝑣1, 𝑣2} = {(𝑐,	𝑐), (𝑒,	𝑒)} with probabilities 𝑃(𝑣1) = 0.5 and 𝑃(𝑣2) = 0.5, and 

𝑆!,SA1 = {𝑣1,} = {(𝑐,	𝑒)} with the probability of  𝑃(𝑣1,) = 1. Based on the definition of 𝐸$, 

it can be shown that 𝐸1 = 𝐸2 = {(𝑒,	𝑒)} when 𝑀! is SA0 whereas 𝐸1 = ∅ and 𝐸2 = {(𝑐,	𝑒)} 

when 𝑀! is SA1. Using Equation (3.4), vulnerability level of 𝑀! can be computed for equi-

probable SA0 and SA1 faults as follows: 

 Vul(𝑀!) = 𝑃(𝐸1U 𝐸2|𝑀! is SA0)𝑃(𝑀! is SA0)

+ 𝑃(𝐸1U 𝐸2|𝑀! is SA1)𝑃(𝑀! is SA1),	

= 𝑃G(𝑒,	𝑒)H0.5+ 𝑃G(𝑐,	𝑒)H0.5, 

= 𝑃(𝑣2)0.5+ 𝑃(𝑣1,)0.5, 

= 0.5×0.5+ 1×0.5 = 0.75. 

(3.6) 
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3.2.1 Single-fault Vulnerability Analysis   

Single-fault vulnerability analysis is done by assuming one molecule is faulty at a time and 

then checking whether the network functionality changes or not at the output of the 

network. Figure 3.1 exemplifies computation of the vulnerability on a toy network (𝐼 =

4, CC = 1) that is modeled using the Boolean Model 1 introduced in Chapter 2. Suppose 

𝑥- in Figure 3.1A is SA0. Then, as seen in Figure 3.1C, three out of four responses are 

erroneous (𝑒). More specifically, we have 𝑆!,SA0 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} = {(𝑐), (𝑒), (𝑒), (𝑒)} = 

{(𝑐), (𝑒)} in which 𝑃((𝑐)) = 0.25 and 𝑃((𝑒)) = 0.75. Therefore, using Equation (3.3), 

one can compute vulnerability of 𝑥- as ¾ = 0.75. Similarly, if we assume that 𝑥- is SA1, 

then there is only one erroneous response at the output, which results in the vulnerability 

level of ¼ = 0.25. In the case of equiprobable SA0 and SA1 fault model, Equation (3.4) 

can be used, which results in 0.75	×	0.5	+	0.25	×	0.5	=	0.5. 

3.2.2 Double-fault Vulnerability Analysis   

In this section, the computation of double-fault vulnerability levels is exemplified on a toy 

network. In the double-fault vulnerability analysis, it is assumed that two molecules are 

faulty synchronously at a time. It has been shown that multiple molecules are involved in 

the formation of complex diseases such as schizophrenia (Emamian, 2012). Therefore, 

performing double and multiple-fault vulnerability analysis is important and may help to 

discover a group of molecules that might be driver of some complex disorders. 

 Suppose that we have the toy network in Figure 3.2 that contains feedback 

interactions and modeled using Boolean Model 1. Due to the feedback interactions, the 

network may present different responses at different time points. For this example, we 
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consider only two clock cycles (CC = 2). First, we compute the single-fault vulnerability 

levels of each nodes in the toy network using Equation (3.4) for equiprobable SA0 and 

SA1 fault models. Later on, we compute the double-fault vulnerability levels for each 

possible faulty pair of molecules assuming equiprobable SA0 and SA1 fault models, i.e., 

the nodes can be SA0-SA0, SA0-SA1, SA1-SA0, and SA1-SA1, using Equation (3.5). The 

results are compared in Figure 3.3. A major observation is that a molecule with high single-

fault vulnerability level is usually a component of the pairs with high double-fault 

vulnerability levels. To illustrate, the node 𝑥- has single-fault vulnerability level of 0.5 and 

it is one of the components of all pairs having a vulnerability level of 0.5 (Figure 3.3B). 

Another noteworthy observation is that some molecules with relatively low individual 

vulnerability levels may have high double-fault vulnerability when they are faulty at the 

same time (e.g., 𝑥.-𝑥/ pair in Figure 3.3B). Such observations are not obvious without 

performing the vulnerability analysis presented in this chapter. 

 

 

Figure 3.1 An example for vulnerability computation. (A) A toy network. (B) The normal 
network truth table. (C) The abnormal network truth table, in which 𝑥- is SA0. 
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 On a very large network with hundreds of molecules and interactions, one may end 

up with several vulnerability levels obtained for several faulty combinations of molecules 

(especially when the number of faulty molecules gets higher). This becomes an issue if one 

needs to test some of the observations in laboratory experiments. Since it is not convenient 

to test every vulnerability level for each combination of faulty molecules due to the lack of 

resources, the best candidates need to be systematically selected. One way to achieve this 

is filtering the results. To do so, one may use a prior knowledge existing in the literature to 

eliminate irrelevant results. For instance, assume it has been experimentally verified in the 

previous works that 𝑥- is an important molecule and its deficiency disrupts the network’s 

functionality. Then, it would be a reasonable choice to keep the results of molecule groups 

whose one component is 𝑥-. Also, some faulty molecules may not be technically tested in 

 

 

Figure 3.2 A toy network containing feedback interactions. 
Note: The interactions represented by red edges are the feedbacks. 
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the experiments because the knowledge how to perturb the molecule in the lab experiments 

does not exist yet. Thus, the results might be filtered further out by eliminating the ones 

containing such molecules. In addition, one can select the groups of faulty molecules whose 

vulnerability levels are not obvious. To elaborate, the combinations containing one or more 

molecules with high single-fault vulnerability level can be classified as obvious. On the 

other hand, if each component of the faulty molecule group has a low single-fault 

vulnerability level, but when they all are dysfunctional simultaneously, they have a high 

vulnerability level, then such a combination would be a noteworthy observation and 

plausible to test in experiments. Lastly, some topological analyses can be conducted using 

graph theory methods and techniques to eliminate obvious vulnerability levels. More 

precisely, in a group of faulty molecules, the topological closeness (Equation 3.12) of the 

molecules may reveal whether they are closely connected or not, which can be considered 

as an important feature while classifying the obvious and nonobvious observations. 

 

 

Figure 3.3 Single and double-fault vulnerability results of the toy network. (A) Single-
fault vulnerability levels. (B) Double-fault vulnerability levels.  
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3.3 The Worst Possible Signaling Failures in 
Intracellular Signaling Networks 

Cellular functions are partly controlled by signaling events within networks of molecules 

in a cell (Helikar et al., 2008; Saadatpour & Albert, 2012; Saez-Rodriguez et al., 2007). 

Signals are transmitted from the cell membrane to the nucleus via intracellular signaling 

networks, to regulate some target molecules and control the cell function. Failures in 

molecules within the signaling networks may cause them to generate erroneous signals 

whose propagation to the output of the network may disrupt the network functionality and 

eventually may cause some diseases (Abdi et al., 2008; Emamian, 2012).  

 In this section, our goal is to develop a systematic method to analyze and identify 

the worst possible signaling failures in intracellular signaling networks. We define the 

worst possible signaling failure as a pathological phenomenon that results in the highest 

probability of network failure, i.e., the maximum vulnerability level, where the network 

failure is defined as departure of the network response from its normal level. The said 

pathological phenomenon is characterized to be emerged from the presence of one or more 

dysfunctional molecules in the network. It is conceivable that different individual 

dysfunctional molecules can result in different network failure probabilities. It is not clear, 

however, what happens if two or more molecules are concurrently dysfunctional, and if the 

network failure probability increases with the number of simultaneously dysfunctional 

molecules or not. It is also of interest to have an efficient algorithm to determine the 

maximum possible network failure probability, over the large number of all possible groups 

of dysfunctional molecules. The computational complexity of an exhaustive search 

approach for a network with 𝐾 molecules is extremely high, in the order of 𝐾0/2, which is 

unmanageable as 𝐾 increases. Here we introduce a computationally efficient algorithm 
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with a much less running time in the order of 𝐾3, for identifying the worst possible 

signaling failures, considering multiple dysfunctional molecules. Then, using the 

algorithm, we analyze two experimentally verified signaling networks in the following 

subsections: a small signaling network that regulates the transmembrane tyrosine kinase 

ERBB (Sahin et al., 2009), a therapeutic target in breast cancer, and a large T cell signaling 

network (Saez-Rodriguez et al., 2007). 

3.3.1 Algorithm for the Worst Possible Signaling Failure Analysis  

In this section, we provide a detailed explanation of the proposed algorithm. The worst 

possible signaling failure analysis can be performed by an exhaustive search. However, the 

time needed by the exhaustive search grows exponentially as the size of the network 

increases, as presented in Section 3.3.4. To avoid this high computational complexity, we 

propose the main algorithm with the following four steps: 

I. First, we compute an upper bound on the number of clock cycles needed for 
computing the vulnerability levels (Section 3.4.1), so that we prevent running 
network simulations longer than what is needed. 

II. Next, we use Equation (3.5) to compute Vul(𝑀!", 𝑀!#,… , 𝑀!!) for 𝑁 =
1, 2, and 3. This is motivated by the observation (Habibi et al., 2014a) that 
typically a molecule with high vulnerability appears in larger groups of 
molecules with high vulnerabilities, and based on our experiments, 𝑁 ≥ 4 is 
large enough and provides good accuracy, as described in Section 3.3.4. Thus 
far max!"Vul(𝑀!"), max!",!#Vul(𝑀!",𝑀!#), and max!",!#,!$Vul(𝑀!",𝑀!#,𝑀!$) 
represent the worst possible signaling failures when there are single, double and 
triple faults, respectively. 

III. To determine the worst possible signaling failure when there are four 
simultaneously faulty molecules, 𝑁 = 4, we pick the molecular triplet, group 
of 𝑁 − 1 faulty molecules, having the highest vulnerability value, e.g., 
(𝑎, 𝑏, 𝑐). Then we compute the vulnerabilities only for those 𝐾 − (𝑁 − 1) 
quadruplets, groups of 𝑁 faulty molecules with 𝑁 = 4, that include (𝑎, 𝑏, 𝑐), 
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i.e., (𝑎, 𝑏, 𝑐,	𝑀!). This results in max!Vul(𝑎, 𝑏, 𝑐,	𝑀!) as the worst possible 
signaling failure when there are 𝑁 = 4 simultaneous faults. 

IV. Then, we repeat Step III for 𝑁 = 5,… ,𝐾, to complete the worst possible 
signaling failure analysis. 

Note that this algorithm is not limited to a specific molecular network. Furthermore, in 

addition to the vulnerability parameter introduced in Section 3.2, other parameters that 

quantify and rank the importance of a molecule or a group of molecules can be used in the 

algorithm as well. 

3.3.2 ERBB Signaling Network Worst Failure Study and Results  

The ERBB network (Figure 3.4) has one input and one output. The input molecule is the 

epidermal growth factor (EGF), whereas the output molecule is the retinoblastoma protein 

(pRB). This network is studied in the context of breast cancer and understanding some drug 

effects (Sahin et al., 2009). The Boolean equations that specify how the activity of each 

molecule is regulated by its inputs are listed in Table A.1 (see Appendix). To model a 

dysfunctional molecule, we assume its activity state is either stuck-at-0, SA0, or stuck-at-

1, SA1, each with a probability of 1/2 (Abdi et al., 2008). 

 Let 𝑁 be the number of molecules that are simultaneously faulty, i.e., dysfunctional, 

in the network. According to the developed vulnerability analysis equations (Section 3.2) 

and using the proposed worst failure analysis algorithm (Section 3.3.1), the network 

maximum vulnerability is computed for each 𝑁 (Figure 3.5). Here 𝑁 varies from 1 to 18, 

since the number of intermediate molecules in the network (Figure 3.4) is 18. For any 𝑁, 

the network maximum vulnerability is the highest probability of network failure, where the 

network failure is defined as departure of the network response from its normal levels. 

More precisely, the network maximum vulnerability for a given 𝑁 is a parameter that 



 54 

quantifies the worst possible signaling failure when there are 𝑁 faulty molecules in the 

network. 

 A noteworthy observation is that as the number of faulty molecules N increases, 

maximum vulnerability values do not necessarily increase (Figure 3.5). While we see a 

maximum vulnerability increase going from single faults to double faults, 𝑁 = 1 and 2, 

respectively, the maximum vulnerability does not increase further afterwards. Another 

 

 

Figure 3.4 The experimentally verified ERBB signaling network. 
Note: The green arrows represent activatory interactions and the red circle-ended edges represent inhibitory 
interactions. The input and output nodes represent EGF and pRB, respectively.  

Source: This figure was reproduced from Sahin et al. (2009).  
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interesting observation is that the smallest 𝑁 for which we see the highest maximum 

vulnerability in this network is 𝑁 = 2, i.e., double faults. This means there are some pairs 

of faulty molecules that cause the most detrimental network damage, and an increase in the 

number of faulty molecules does not deteriorate the network function. 

3.3.3 T Cell Signaling Network Worst Failure Study and Results  

The T Cell network (Figure 3.6) has three inputs and fourteen outputs. The input molecules 

are cd28, cd4 and tcrlig, that stand for cluster of differentiation 28, cluster of differentiation 

4, and ligand-bound T-cell receptor, respectively (Saez-Rodriguez et al., 2007). For the 

output molecules we have shp2 (Src homology region 2 domain containing phosphatase-

2, bclxl (B-cell lymphoma-extra-large), p70s, ap1 (activator protein 1), sre (serum response 

 

 

Figure 3.5 The ERBB signaling network maximum vulnerability levels, when there are 𝑁 
dysfunctional molecules in the network, computed using the proposed algorithm to study 
the worst possible signaling failures. 
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element), bcat (branched-chain amino acid transaminase), cyc1 (cytochrome c1), p21c, 

p27k, fkhr (forkhead transcription factor Foxo1), p38, cre (cAMP, cyclic adenosine 

monophosphate, response elements), nfat (nuclear factor of activated T-cells), and nfkb 

(nuclear factor kappa-light-chain-enhancer of activated B cells) (Saez-Rodriguez et al., 

2007). The Boolean equations that specify how the activity of each molecule is regulated 

by its inputs are listed in Table A.2 (see Appendix).  

 Using the developed vulnerability analysis equations (Section 3.2) and the 

proposed worst failure analysis algorithm (Section 3.3.1), the network maximum 

 

 

Figure 3.6 The experimentally verified T cell signaling network. 
Note: The green arrows are activatory interactions and the red circle-ended edges are inhibitory interactions. 
The input nodes represent cd28, cd4, and tcrlig whereas the output nodes stand for shp2, bclxl, p70s, ap1, 
sre, bcat, cyc1, p21c, p27k, fkhr, p38, cre, nfat, and nfkb. 

Source: This figure was reproduced from Saez-Rodriguez et al. (2007).  
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vulnerability is computed for each 𝑁 (Figure 3.7), where 𝑁 is the number of molecules that 

are simultaneously faulty. For any 𝑁, the network maximum vulnerability is the highest 

probability of network failure. We notice that similar to the ERBB network and for all 

outputs, as the number of faulty molecules 𝑁 increases, maximum vulnerability values do 

not necessarily increase (Figure 3.7). Additionally, for the network outputs ap1, bcat, and 

p70s, while we see a maximum vulnerability increase going from single faults to double 

 

 

Figure 3.7 The T cell signaling network maximum vulnerability levels for the network 
outputs ap1, bcat, cre, nfat, p38, p70s, shp2 and sre, when there are 𝑁 dysfunctional 
molecules in the network. The results are computed using the proposed algorithm to study 
the worst possible signaling failures. 
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faults, 𝑁 = 1 and 2, respectively, the maximum vulnerability does not increase further 

afterwards. For these outputs, the smallest 𝑁 for which we see the highest maximum 

vulnerability in this network is 𝑁 = 2, i.e., double faults. This means that there are some 

pairs of faulty molecules that cause the most detrimental network damage for these outputs, 

and an increase in the number of faulty molecules does not make things worse. For the 

network outputs cre, nfat, p38, shp2 and sre, this behavior changes, i.e., the highest 

maximum vulnerability occurs when 𝑁 = 1. This implies that there are some single faulty 

molecules that cause the worst possible network failures at these outputs. 

3.3.4 Computational Complexity of the Worst Signaling Failure Analysis Algorithm 

In this section, we determine the computational complexity of the proposed algorithm and 

compare it with the running time of exhaustive search. The worst possible signaling failure 

analysis can be performed via an exhaustive search. This means that if it is of interest to 

find the maximum network vulnerability when there are 𝑁 faulty molecules in the network, 

all possible groups of 𝑁 faulty molecules have to be considered one by one, and the 

vulnerability value for each group needs to be individually computed. For example, 

consider a network with 𝐾 = 50 molecules. When 𝑁 = 2, the total number of pairs of 

faulty molecules that the exhaustive search has to examine can be shown to be 1,225 (see 

Equation (3.7)). For 𝑁 = 5, however, the total number of groups of five faulty molecules 

that the exhaustive search needs to consider increases to 2,118,760. This computational 

complexity becomes highly prohibitive as the network size 𝐾 increases. In what follows, 

we show that the proposed worst signaling failure analysis algorithm is much less complex 

than the exhaustive search. 
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 To determine and compare the computational complexities, let 𝐾 be the number of 

molecules in a network, and 𝑁 be the number of molecules that are simultaneously faulty 

in the network. The total number of groups of 𝑁 faulty molecules out of 𝐾 molecules,     

1 ≤ 𝑁 ≤ 𝐾, is given by the following equation, in which 𝐶(𝐾, 𝑁) represents the number 

of possible combinations: 

 𝐶(𝐾, 𝑁) =
𝐾!

(𝐾 − 𝑁)!𝑁! =
𝐾 × (𝐾 − 1) × ⋯× (𝐾 − (𝑁 − 1))

𝑁! = O(𝐾&). (3.7) 

Here the O-notation stands for the asymptotic upper bound (Cormen et al., 2009), with 𝐾 

being large. The term O(𝐾&) represents the computational complexity of 𝐶(𝐾, 𝑁) as a 

function of 𝐾 and 𝑁. 

 The computational complexity of the exhaustive search 𝛼(𝐾) is the overall number 

of all possible groups of 𝑁 faulty molecules for which vulnerabilities have to be computed, 

𝑁 = 1,… , 𝐾, i.e., 𝛼(𝐾) = 𝐶(𝐾, 1) + ⋯+ 𝐶(𝐾, 𝑁). To simplify the notation and without 

loss of generality, assume 𝐾 is even. We note that 𝐶(𝐾, 𝑁) has a maximum at 𝑁 = 𝐾/2 

(Cormen et al., 2009), it is symmetric, i.e., 𝐶(𝐾, 𝑁) = 𝐶(𝐾, 𝐾 − 𝑁), 𝑁 = 1,… , (𝐾/2) −

1, and 𝐶(𝐾, 𝐾) = 1. Therefore, the computational complexity of the exhaustive search 

simplifies to: 

 𝛼(𝐾) = 𝐶(𝐾, 1) + ⋯+ 𝐶(𝐾,	𝐾/2) + ⋯+ 𝐶(𝐾, 𝐾)	

= 2 A 𝐶(𝐾,	𝑁)
(0/2)41

&%1

+ 	𝐶(𝐾,	𝐾/2) + 1. 
(3.8) 
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With 𝐶(𝐾,	𝐾/2) being the dominant term in Equation (3.8) when 𝐾 is large, and also using 

Equation (3.7), the exhaustive search computational complexity can be finally written as: 

 𝛼(𝐾) = OG𝐾0/2H. (3.9) 

 To determine the computational complexity of the proposed worst failure analysis 

algorithm (Section 3.3.1), we note that initially all groups of one, two and three faulty 

molecules are considered, 𝑁 = 1, 2, 3, and for the rest, 𝑁 = 4,… , 𝐾, only 𝐾 − (𝑁 − 1) 

vulnerabilities are computed. This is inspired by the observation (Habibi et al., 2014a) that 

typically a molecule with a high vulnerability appears in larger groups of molecules with 

high vulnerabilities, and based on our experiments, 𝑁 ≥ 4 is large enough and provides 

good accuracy (for further details, see Section 3.3.1). Therefore, the computational 

complexity 𝛽(𝐾) of the algorithm can be written as: 

 
𝛽(𝐾) = A𝐶(𝐾,	𝑁)

3

&%1

+A(𝐾 − (𝑁 − 1))
0

&%4

. (3.10) 

It can be verified that 𝐶(𝐾,	3) in the above expression is the dominant term, when 𝐾 is 

large. This simplifies the proposed algorithm computational complexity to: 

 𝛽(𝐾) = O(𝐾3). (3.11) 

 Upon comparing Equations (3.9) and (3.11), we note that since O(𝐾3) ≪ OG𝐾0/2H, 

the proposed algorithm is much simpler and therefore much faster than the exhaustive 
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search. For example, for a network with 𝐾 = 50 molecules, the proposed algorithm 

complexity is in the order of 503 ≈ 1.3×105, which is much smaller than 5025 ≈ 3×1042, 

the exhaustive search complexity. With regard to the accuracy, we have observed that the 

differences between the results of the algorithm and the exhaustive search are 0.5% and 

0%, for the ERBB and T cell networks, respectively, over all 𝑁 values for which it was not 

impractical to perform the exhaustive search. 

 To practically compare the execution times of the proposed algorithm and the 

exhaustive search, we ran them on a computer with Intel Core i7 CPU, 3.4 GHz and 32 GB 

RAM. For the small ERBB signaling network (Figure 3.4), the exhaustive search took 

about 10 days for 𝑁 = 1,… ,18. In contrast and again for 𝑁 = 1,… ,18 (Figure 3.5), the 

proposed algorithm took only about 20 seconds, with an accuracy of 99.5%, compared to 

the exhaustive search results. 

 

3.4 The Number of Clock Cycles Needed to Compute  
Vulnerability Levels 

Modeling and analysis of molecular networks become more challenging if there are 

positive or negative feedback paths. Due to the feedback mechanisms, network responses 

may change over time because of some internal compensatory or regulatory mechanisms 

(Azpeitia et al., 2017; Somogyi & Greller, 2001). Feedbacks can cause delays in 

propagation of signals to the network outputs, while passing through the feedback paths. 

Therefore, analysis of the effects of feedback in computing the vulnerability levels of the 

network molecules is of interest. More precisely, in this section we are interested in 

determining how many clock cycles are needed to compute the vulnerability level of a 

molecule or a group of molecules, when there are feedbacks in the network. For this 
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purpose, in this section we propose an algorithm that computes an upper bound on the 

number of clock cycles needed to generate the network response, to calculate its molecular 

vulnerabilities. Using this algorithm, one can specify how many times the network needs 

to be simulated for a normal or abnormal signal to complete its propagation to the network 

output. This is needed in the proposed main algorithm for the worst signaling failure 

analysis (Section 3.3.1), to minimize the overall simulation time. 

 The feedback paths in a network can be modeled by unit-delay memory elements 

called flip-flops (Abdi et al., 2008). In a network, if there is only one feedback path, then 

we intuitively need at most two clock cycles to see the full effect of an error, i.e., the effects 

of an incorrect signal value of a faulty molecule on possibly other molecules and pathways, 

that collectively determine the network output response. This is because of the delayed 

response of the flip-flop in the feedback path. In fact, if after the 1st clock cycle there exists 

an erroneous signal value of a faulty molecule at the input of the feedback flip-flop, then 

the 2nd clock cycle may be needed for that error to show its full effect at the network output. 

This is because the feedback-delayed erroneous signal of the faulty molecule may affect 

some other molecules and pathways in the 2nd clock cycle, which may increase the 

probability of incorrect responses at the network output. In general, if there exist 𝐹 

feedback paths in the network, then we need to simulate the network for at most 𝐹 + 1 

clock cycles, for an error to show its full effect at the network output. This maximum 

number of clock cycles is required, if these two conditions hold: (i) all the feedback paths 

are in the same pathway, connected in series and exhibiting 𝐹 feedback flip-flops; and (ii) 

after the 1st clock cycle, an error appears at the input of the first feedback flip-flop. 
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 The upper bound of 𝐹 + 1 clock cycles can be tightened, by finding the pathways 

within the network containing the highest number of feedback paths in series. For instance, 

if there exist 𝐹 feedback paths in the network, with 𝐿 ≤ 𝐹 being the largest number of 

feedback paths in series on the same pathway, then the maximum clock cycles needed is 

bounded above by	𝐿 + 1, i.e., the number of clock cycles needed for an error to show its 

full effect is less than or equal to 𝐿 + 1. Therefore, to determine the maximum number of 

required clock cycles, it is sufficient to examine the connections between the network 

feedback paths and determine how many of them are serially connected in a single 

pathway. To do this, we define a graph theory topological metric called closeness (𝐶𝐿). 

The 0 ≤ 𝐶𝐿(𝑋, 𝑌) ≤ 1 parameter for quantifying the closeness of two molecules 𝑋 and 𝑌 

in a network is the inverse of the distance 𝑑(𝑋, 𝑌) between the two molecules, defined as 

the length of the shortest path between the two molecules in the network graph: 

 𝐶𝐿(𝑋, 𝑌) = 1/𝑑(𝑋, 𝑌). (3.12) 

Some examples of how to calculate the closeness parameter are presented in Figure 3.8. 

 

 

 

Figure 3.8 Numerical examples of the closeness parameter 𝐶𝐿 between two molecules. 
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3.4.1 Algorithm for Determining the Number of Required Clock Cycles to Compute 
Vulnerability Levels  

In this section, to determine the maximum number of clock cycles needed for computing 

the vulnerability levels in a network, we propose the following algorithm with four steps: 

I. Identify the feedback paths and the nodes that initiate the feedbacks, in the 
network. If they are not known a priori, identify them by finding the loops in 
the network graph, using a graph algorithm such as the depth-first search 
algorithm (Cormen et al., 2009). 

II. Assume there exist 𝐹 feedback paths in the network. Arbitrarily label the 
feedback initiating nodes as 𝑓#, 𝑖 = 1,… ,𝐹. Then start with 𝑖 = 1, by calculating 
the closeness of 𝑓1 with respect to the other feedback initiating nodes 𝑓5s, 𝑗 ≠ 𝑖 
and 𝑗 = 1,… ,𝐹. If 𝐶𝐿G𝑓1, 𝑓5H = 0 for all 𝑗 values, it means 𝑓1 is on no other 
pathway with other feedback initiating nodes, and now 𝑓2 has to be examined 
similarly, i.e., 𝑖 = 2, 𝑗 ≠ 𝑖 and	𝑗 = 1,… ,𝐹, and so forth. However, if          
𝐶𝐿G𝑓1, 𝑓5H ≠ 0 for 𝑗 = 𝑗0, then this indicates that there is a path between 𝑓1 and 
𝑓50, i.e., the feedback initiating nodes 𝑓1 and 𝑓50 are on the same pathway. This 
finding needs to be pursued in the next step. 

III. For fixed 𝑖 and 𝑗 values, e.g., 𝑖 = 1 and 𝑗 = 𝑗0, calculate C𝐿G𝑓5, 𝑓'H for all other 
feedback initiating nodes 𝑓's, 𝑘 ≠ 𝑖,	𝑗, and 𝑘 = 1,… ,𝐹. Depending on the 𝐶𝐿 
being non-zero or zero, it can be identified if 𝑓' is on the same pathway that 
includes both 𝑓# and 𝑓5 feedback initiating nodes or not. 

IV. Repeat Step III until all feedback initiating nodes are examined. 

Using the information obtained from executing the above steps, the algorithm finds the 

pathway that contains the largest number of feedback initiating nodes on it, in series. With 

this specific number being called 𝐿, then at most 𝐿	 + 	1 clock cycles are needed for 

computing the vulnerability levels. 

 In Figure 3.9, we compute vulnerability levels in two toy networks that have 

different number of feedback paths, to describe the relation between F and vulnerabilities. 

Note that since each network has a single pathway, we have 𝐿 = 𝐹 in both networks.  
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 The first toy network (Figure 3.9A) has four nodes: 𝑥1(𝑡) is the input node 

(molecule), the intermediate nodes are 𝑥2(𝑡) = 𝑥1(𝑡) × (~𝑥3(𝑡 − 1)) and 𝑥3(𝑡) = 𝑥2(𝑡), 

and 𝑥4(𝑡) = 𝑥3(𝑡) is the output node, where “×” is used for the AND operation and “~” is 

used for the NOT operation, and 𝑥3(0) = 0. Herein, the node 𝑥3 initiates a negative 

feedback to the node 𝑥2. Since there is only one feedback path in the network, 𝐹 = 1, at 

most two clock cycles are enough, 𝐹 + 1 = 2, to observe the full error effect at the output. 

 

 

Figure 3.9 Toy networks illustrating the number of clock cycles needed for the erroneous 
signal of a dysfunctional molecule to show its full effect at the network output. (A) Toy 
network with one feedback path. (B) Output truth table for fault-free and faulty 𝑥2. (C) Toy 
network with two feedback paths. (D) Output truth table for fault-free and faulty 𝑥2.  
Note: The dashed lines ending in an arrowhead or a blunt line represent positive and negative feedback, 
respectively. 
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To demonstrate this, we compute the vulnerability level of the node 𝑥2 (Figure 3.9B), for 

different number of clock cycles CC = 1, 2, 3, 4, using Equation (3.4) in Section 3.2. We 

observe that the vulnerability of 𝑥2 with 1 clock cycle is 0.5 and it becomes 0.75 with 2 

clock cycles, and then remains at 0.75 with 3 and 4 clock cycles. These indicate that the 

full vulnerability of 𝑥2 is 0.75 that is determined by analyzing the network having feedback 

for two clock cycles (𝐹 + 1 = 2). In other words, two clock cycles are needed for the 

erroneous 𝑥2 signal values to show their full effects at the network output 𝑥4. Additionally, 

more clock cycles are not needed. 

 The second toy network (Figure 3.9C) has five nodes: 𝑥1(𝑡) is the input node, 

𝑥2(𝑡) = (𝑥1(𝑡) + 𝑥4(𝑡 − 1)) × (~𝑥3(𝑡 − 1)), 𝑥3(𝑡) = 𝑥2(𝑡) and 𝑥4(𝑡) = 𝑥3(𝑡) are the 

intermediate nodes, and 𝑥5(𝑡) is the output node, where “+” is used for the OR operation, 

and 𝑥3(0) = 𝑥4(0) = 0. Here the nodes 𝑥3 and 𝑥4 initiate a negative feedback and a positive 

feedback to the node 𝑥2, respectively. Since there are two feedback paths in the network, 

𝐹 = 2, at most three clock cycles are needed, 𝐹 + 1 = 3, to observe the full error effect of 

𝑥2 at the output. The computed vulnerability level of 𝑥2 (Figure 3.9D) for different number 

of clock cycles corroborates what we stated earlier in this section, that is,  𝐹 + 1 is indeed 

an upper bound and a smaller number of clock cycles may be needed for computing 

vulnerabilities in a network with feedbacks. In fact, we observe that the full vulnerability 

of 𝑥2 is 0.75, obtained using 2 clock cycles only, and analyzing the network for the upper 

bound of 𝐹 + 1 = 3 clock cycles is not needed (Figure 3.9D). In other words, 2 clock cycles 

are enough for errors originated from 𝑥2 to show their complete effects at the output 𝑥5. 
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3.4.2 ERBB Signaling Network – Vulnerability and the Number of Clock Cycles  

In this section, we apply the proposed algorithm in Methods Section C, to the ERBB 

signaling network (Figure 3.4). We start by identifying feedbacks in the network. Given 

the small size of the network, visual inspection of the network reveals five loops, which 

topologically may contain the indicators of feedback interactions. The five loops are           

(i) IGF1R → AKT1 → IGF1R, (ii) IGF1R → MEK1 → ER-𝛼 → IGF1R, (iii) CDK4  p27 

 CDK4, (iv) CDK4  p21  CDK4, and (v) CDK2  p27  CDK2. Despite the 

existence of five loops, there are only four feedback initiating nodes, AKT1, ER-𝛼, p21 

and p27, because p27 is common between the two loops, i.e., the loops (iii) and (iv). Note 

that in the absence of prior information about the feedbacks, the feedback initiators may 

not be uniquely determined within the identified loops. For example, based on these five 

loops, one can identify IGF1R, MEK1, CDK4, and CDK2 as feedback initiators as well. 

Nevertheless, different choices for the feedback initiating molecules within these loops do 

not affect the algorithm that aims at finding the pathway that contains the largest number 

of feedback initiating nodes on it, in series. This is because if the feedback initiating nodes 

𝑓# and 𝑓5 chosen from two loops are connected through a pathway, i.e., 𝐶𝐿G𝑓#, 𝑓5H ≠ 0, then 

other choices of the feedback initiating nodes 𝑓#, and 𝑓5, from the said two loops will be 

connected through a pathway as well, i.e., 𝐶𝐿G𝑓#,, 𝑓5,H ≠ 0. Thus, the algorithm to 

determine 𝐿 is independent of the choice of the feedback initiating nodes.  

 Using the identified feedback initiators, the algorithm outputs the upper bound of 

𝐿 + 1 = 5 clock cycles that may be needed for computing the vulnerability level of a 

molecule. This is because the algorithm identifies a pathway that contains all the feedback 

initiating molecules on it, in series. For instance, AKT1 → ER-𝛼 → p27  CDK4  p21 
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 CDK2 → pRB is a pathway that contains all the feedback initiating molecules on it. 

Through this specific pathway, erroneous signals originated from an upstream molecule of 

AKT1 may require five clock cycles to show their full effect on the output molecule pRB, 

due to the signal propagation delays introduced by the feedback paths connected in series 

on the same pathway. Computed using Equation (3.4), Figure 3.10 presents the single-fault 

vulnerability levels versus the number of clock cycles CC for some molecules in the ERBB 

signaling network. We observe that the vulnerability levels of the molecules can be 

computed in less than five clock cycles, which confirms that it is sufficient to simulate and 

analyze the network for at most five clock cycles, as specified by the algorithm. 

3.4.3 T Cell Signaling Network – Vulnerability and the Number of Clock Cycles  

In this section, we apply the proposed algorithm in Methods, Section C to the T cell 

signaling network (Figure 3.6). In the network, first we identify four feedback initiating 

 

 

Figure 3.10 Vulnerability versus the number of clock cycles CC for some molecules in the 
ERBB signaling network. 
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nodes that are shp1, ccblp1, pag, and gab2, using the time indices in Table A.2 (see 

Appendix) and also by visual inspection of Figure 3.6. After using the proposed algorithm, 

we obtain the upper bound of 𝐿 + 1 = 5 clock cycles, because there is one pathway that 

contains all the four feedback initiating nodes in series. Next, we compute the single-fault 

vulnerability levels of some molecules versus the number of clock cycles CC (Figure 

3.11A), with cre considered as the output molecule, and using Equation (3.4). We observe 

that the vulnerability levels of the molecules can be computed in less than five clock cycles, 

which confirms that it is sufficient to simulate and analyze the network for at most five 

clock cycles, as determined by the algorithm. 

 Furthermore, we compute the double-fault vulnerability values of some pairs of 

molecules versus the number of clock cycles CC (Figure 3.11B), with cre considered as 

the output molecule, and using Equation (3.4). As anticipated by the algorithm, the 

vulnerability levels of the molecular pairs can be computed in less than five clock cycles, 

i.e., it is enough to simulate and analyze the network for at most five clock cycles, 

irrespective of considering single faults or double faults.  

 A noteworthy point is that when two molecules are faulty at the same time, more 

clock cycles may be needed to observe the aggregated full effects of the two erroneous 

signals at the network output, compared to single faults. However, the upper bound found 

by the algorithm still works for both scenarios. This is because the upper bound depends 

only on the topological positions of the feedback initiating nodes and the connections 

among them, and not on how many nodes are grouped together, to represent a group of 

faulty molecules. As some numerical examples, consider the scenario of zap70 and slp76 

being individually faulty (Figure 3.11A), where three and one clock cycles are needed, 



 70 

respectively, to compute their full single vulnerabilities of 0.56 and 0.25, respectively. On 

the other hand, when they are simultaneously faulty (Figure 3.11B), four, i.e., more clock 

cycles are needed to compute their full double vulnerability of 0.56. This indicates that if 

multiple molecules are faulty concurrently, then there may be further delays in observing 

the entire effects of multiple erroneous signals, propagating via various pathways towards 

the network output. Additionally, we observe that the upper bound of 𝐿 + 1 = 5 clock 

cycles hold true for computing both single and double vulnerabilities. 

 

 

Figure 3.11 Vulnerability versus the number of clock cycles CC for some single and pairs 
of molecules in the T cell signaling network, with “cre” considered as the output molecule. 
(A) Single-fault vulnerability levels. (B) Double-fault vulnerability levels. 
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CHAPTER 4 

MODELING AND MEASUREMENT OF SIGNALING OUTCOMES 
AFFECTING CELL DECISION MAKING 

 

In the previous chapters, we showed methods for training molecular network models 

against experimental data and for doing vulnerability analysis to calculate probability of 

an entire network being failed when one or multiple molecules are faulty (abnormal). 

Typically, the networks have major roles in characterization of cell fate. For instance, 

depending on the received signals and dynamics of the network of interest, a possible cell 

fate could be transcribing RNA and initiate a certain process or proliferating or initiating 

apoptosis or moving in a certain direction, and so on. Therefore, characterization of 

decision makings in cells in response to received signals is important for understanding 

how cell fate is determined in the absence and presence of such abnormalities causing 

incorrect network responses. In this chapter, we initiate methods and mathematical 

frameworks to calculate the probability of such decisions by modeling signaling outcomes 

of the cells using in silico single cell data (Ozen et al., 2020). 

 

4.1 A Case Study: Signaling Outcomes and Decisions in  
the p53 System When DNA Damage Occurs 

The transcription factor p53 has a significant role in DNA repair, cell cycle suppression, 

regulation of cell growth, and initiation of apoptosis (Elmore, 2007; Kastan et al., 1991; 

Levine, 1997; Vousden & Prives, 2009). It becomes active in response to DNA damage 

that may occur when the cell is exposed to ionizing radiation (IR), ultraviolet (UV) 

radiation, heat shock, etc. (Siliciano et al., 1997; Vogelstein et al., 2000; Vousden & Prives, 
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2009). In particular, exposure to IR results in DNA double strand breaks (DSBs), which 

are the most serious DNA lesion. When DSB is not repaired, it can cause cell death or 

DNA mutations which can propagate to new cell generations (Lliakis, 1991; Rothkamm et 

al., 2003; Vilenchik & Knudson, 2003). When DNA damage occurs, p53 can assume two 

phosphorylation states: p53Arrester and p53Killer. Afterwards, the p53 system can take two 

actions: it either suppresses the cell cycle until DNA is repaired, if the damage is low and 

repair is possible; or it can trigger apoptosis if the damage is high and repair is not possible 

(Elmore, 2007; Rothkamm et al., 2003; Alberts et al., 2002). Herein, we intend to compute 

decision thresholds and incorrect decision rates when the DNA damages caused by various 

IR doses occur in a cell. With this goal in mind, we conduct stochastic simulations of cells 

exposed to different IR doses as shown in Hat et al. (2016) to obtain in silico single cell 

data. 

Consider the p53 system model of Hat et al. (2016) shown in Figure 4.1. The p53 

system is activated due to a DNA damage induced by IR. Initially the protein kinase ataxia-

telangiectasia mutated (ATM) is activated by the DNA damage (Bakkenist & Kastan, 2003; 

Saito et al., 2002). The active ATM phosphorylates Mdm2, which is a p53 inhibitor (Maya 

et al., 2001). The ATM also activates p53 by phosphorylating it to one of its active 

phosphoforms: p53Arrester which further phosphorylates p53 to the p53Killer form (Banin et 

al., 1998; Canman et al., 1998; Shieh et al., 1999). Moreover, the p53Arrester activates the 

Mdm2 (Barak et al., 1993) and wild-type p53-induced phosphatase 1 (Wip1) (Choi et al., 

2002; Fiscella et al., 1997). The active Wip1 inhibits the ATM (Shreeram et al., 2006) and 

dephosphorylates the p53Killer to the p53Arrester form (Takekawa et al., 2000). The p53Killer 
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regulates another phosphatase, phosphatase and tensin homolog (PTEN), which initiates a 

slow positive feedback loop stabilizing the level of p53 (Stambolic et al., 2001). If DNA 

damage is large and its repair takes longer time, PTEN accumulates to high levels and 

inhibits AKT, which may no longer phosphorylate Mdm2. Unphosphorylated Mdm2 

remains in cytoplasm and may not target nuclear p53 for degradation. Thus, accumulation 

of PTEN results in disconnection of the negative feedback loop between p53 and Mdm2. 

The slow positive feedback loop acts as a clock giving cells time to repair DNA and 

 

Figure 4.1 A p53 system model.  
Note: The figure is generated based on Figure 1 of Hat et al. (2016). Arrow-headed dashed lines represent 
positive transcriptional regulations, arrow-headed solid lines stand for protein transformations, circle-headed 
solid lines are activatory regulations, and hammer-headed solid lines represent inhibitory regulations. All 
molecules and the interactions between them are described in the main body of the chapter. 
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initiating apoptosis if DNA repair takes too long. The apoptotic module, where 

transcription of pro-apoptotic proteins is induced, is controlled by p53Killer and Akt that 

suppresses the apoptosis. When Akt is inhibited by increased level of PTEN, it will no 

longer suppress the apoptotic module. Thus, the p53Killer will initiate activation of cysteine-

aspartic proteases (Caspases), enzymes having essential roles in cell death (Figure 4.1). 

Since we are interested in the analysis of the signaling outcomes which affect whether the 

cell survives or triggers apoptosis, we do not consider the cell cycle arrest module 

(regulated by p53Arrester) and focus on the apoptotic module. Simulation files can be found 

in Hat et al. (2016) and more detailed information about the p53 system and each 

component and interaction there can be found in Hat et al. (2016) and Bogdał et al. (2013). 

More specifically, interested readers can refer to the Supporting Information S1 Text of 

Hat et al. (2016), which includes a summary of mathematical models of the p53 system, a 

detailed description of the model, a notation guide, and lists of parameters and reactions. 

 

4.2 Decision Making and Outcome Analysis: Hypothesis Testing on Input Signals 
and Optimal Decisions with Minimum Errors 

When cells are exposed to radiation, each cell may respond differently due to noise or some 

other factors. One may decide to survive, whereas another may trigger apoptosis, both 

under the same IR dose. Given the probabilistic nature of such decisions (Habibi et al., 

2017), we can formulate p53-based decision making as a binary hypothesis testing 

problem, where the decision-making system is going to test which of the following two 

hypotheses is true regarding the applied IR dose, to trigger an action accordingly: 
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 H!:	IR dose is low,

H":	IR dose is high.
 (4.1) 

Binary hypothesis testing is observed in other systems, e.g., the TNF/NF-κB system 

presented in Habibi et al. (2017).  

In response to an IR dose, two types of incorrect decisions can be made. One is 

deciding that the input IR level is high, whereas in fact it is low (deciding H" when H! is 

true), which may falsely trigger apoptosis. The other one is deciding that the input IR level 

is low, whereas in fact it is high (deciding H! when H" is true), which may result in missing 

apoptosis. These two erroneous decisions can be called as false alarm and miss event, 

respectively, and their probabilities can be defined as: 

 𝑃#$ = 𝑃(deciding H"|H!),

𝑃% = 𝑃(deciding H!|H").
 (4.2) 

The overall error probability 𝑃& of making decisions is a combination of 𝑃#$ and 𝑃%: 

 𝑃& = 𝑃(H0)𝑃#$ + 𝑃(H")𝑃%, (4.3) 

where 𝑃(H0) and 𝑃(H") are prior probabilities of H! and H", respectively. Note that as 

mentioned in the Introduction section, IR causes DNA damage. Therefore, one can instead 

formulate the p53-based decision-making process as a binary hypothesis testing on DNA 
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damage being low or high and define the associated false alarm and miss events 

probabilities accordingly. 

The optimal decision-making system which minimizes the above 𝑃& is the one that 

compares probabilities of observed data under the hypotheses H! and H" (Kay, 1998). 

More precisely, suppose that 𝑥 is the observation and 𝑝(𝑥|H0) and 𝑝(𝑥|H") are the 

conditional probability density functions (PDFs) of 𝑥 under H! and H", respectively. Also 

consider equi-probable hypotheses, i.e., 𝑃(H0) = 𝑃(H1) = 0.5, which is a reasonable 

assumption in the absence of prior information on the possibilities of H! and H". Then, the 

optimal system decides H" if 𝑝(𝑥|H1) > 𝑝(𝑥|H0), otherwise, it decides H!. This means 

that the hypothesis with the highest likelihood is decided. This decision is called the 

maximum likelihood decision (Kay, 1998). 

 

4.3 Single Cell Data of the p53 System Exposed to Ionizing Radiation 

To calculate the error probabilities in Equation (4.2), we use PTEN level as the decision 

variable because when unrepairable DNA damage occurs, the activated p53 triggers pro-

apoptotic phosphatase PTEN (Stambolic et al., 2001), and PTEN initiates apoptosis 

(Hlobilkova et al., 2006). It has also been shown by Hat et al. (2016) that PTEN is a decent 

predictor of cell fate. After specifying the decision variable, we use the stochastic simulator 

of Hat et al. (2016) to generate 5000 cells for each IR dose. The stochastic simulation has 

three phases. The first phase is the “equilibrium phase” where we simulate 2 weeks of cell 

behavior when no IR dose is applied. The second phase is called “irradiation phase” in 

which 10 minutes of IR dose is applied. The last phase is called “relaxation phase” in which 

we simulate 72 hours of cell behavior after it is exposed to 10 minutes of IR. When IR dose 
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increases, apoptotic cell percentage increases as well as shown in Figure 4.2 (Hat et al., 

2016). For more details on the simulation phases, see the supporting files of Hat et al. 

(2016). In order to decide whether a cell is apoptotic or not, we check the active caspase 

level in 72 hours after the irradiation phase and compare it with the threshold of 0.5 × 105 

suggested in Hat et al. (2016). Cells with the level of active caspase higher (or lower) than 

the threshold of 0.5 × 105 are considered to be apoptotic (or surviving). 

The data of normal cells includes eight sets of PTEN levels in 5000 cells, which 

correspond to eight doses of IR = 1, 2, 3, 4, 5, 6, 7, and 8 Gy. Here Gy stands for Gray, the 

unit of radiation dose, and 1 Gy is 1 Joule of energy absorbed by 1 kg of tissue. We focus 

our analysis on low IR versus high IR hypothesis testing, to see how accurately it can be 

decided whether the applied radiation level is low or high. We consider IR = 1 Gy as the 

low dose, whereas the higher dose can be IR = 2, 3, 4, 5, 6, 7, or 8 Gy. More specifically, 

scenarios in which signaling outcomes are analyzed are 1 vs. 2 Gy, 1 vs. 3 Gy, 1 vs. 4 Gy, 

1 vs. 5 Gy, 1 vs. 6 Gy, 1 vs. 7 Gy, and 1 vs. 8 Gy. We quantitatively study in which of 

these scenarios more erroneous decisions are made. We also determine to what extent the 

decision between responses to low and high IR levels depends on the input IR separation. 

We conduct these studies by computing the optimal decision threshold in each scenario 

using the PTEN data, following the maximum likelihood principle that provides the best 

decision, i.e., the smallest decision error probabilities. We also compute numerical values 

of the decision error probabilities using the PTEN data. 

In addition to the analysis of erroneous decision making and incorrect signaling 

outcomes in normal cells mentioned above, we analyze them in abnormal cells as well, 

where there is a dysfunctional molecule in the p53 system. Wip1 is one of the key 
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regulatory pro-survival phosphatases (Fiscella et al., 1997) in the p53 system (Figure 4.1). 

If the DNA damage can be repaired, then Wip1 expression returns the cell to the pre-stress 

state from cell-cycle arrest (Fiscella et al., 1997; Lu et al., 2007). It has been observed that 

elevated Wip1 level exists in multiple human cancer types such as breast, lung, pancreas, 

bladder, and liver cancer (Bulavin et al., 2002; Castellino et al., 2007; Hirasawa et al., 2003; 

Li et al., 2002; Rauta et al., 2006; Saito-Ohara et al., 2003). Therefore, to obtain abnormal 

cells, we generate cells with increased Wip1 synthesis rate. In normal cells, Wip1 synthesis 

rate is about 0.1 (Hat et al., 2016), and here we increase it to 0.15, a 50% increase, to 

reproduce abnormality. This increase in the Wip1 synthesis rate causes a significant 

decrease in the cell death percentage (Figure 4.2), which can be considered as an abnormal 

cell state. In addition to Wip1, we analyze abnormal cellular state caused by PTEN 

abnormalities. It has been observed that attenuated PTEN levels exist in MCF-7, a non-

invasive form of human breast cancer cells (Geva-Zatorsky et al., 2006). Therefore, it is of 

interest to see how the abnormal PTEN level affects signaling outcomes in the p53 system. 

To study this, we generate abnormal cells by decreasing PTEN synthesis rate. In healthy 

cells, the PTEN synthesis rate is about 0.03 (Hat et al, 2016). Here we decrease it to 0.015, 

a 50% decrease, to reproduce abnormality. We observe a considerable decrease in the cell 

death percentage (Figure 4.2), representing an abnormal cellular state. 
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Figure 4.2 Cell death percentage versus ionizing radiation (IR) dose in both normal and 
abnormal p53 systems.  
Note: The dark green curve at the top represents a normal p53 system with no perturbation, whereas the other 
two curves correspond to p53 systems behaving abnormally due to Wip1 or PTEN perturbations. 
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CHAPTER 5 

UNIVARIATE CELL DECISION MAKING ANALYSIS 

 

In Chapter 4, we introduced the p53 network, the hypotheses H! and H", and explained 

how the in silico single cell data was obtained and why PTEN is chosen as the decision 

variable. In what follows, we introduce methods for computing decision error probabilities 

using “single” time point measurements in the wild-type cells (Ozen et al., 2020). 

 

5.1 Methods for Computing Decision Thresholds and Decision Error Rates Using  
Single Time Point Measurements in Individual Wild-type Cells 

In this section, we analyze PTEN levels of 5000 cells measured in 72 hours after the 

irradiation phase. It has been observed that PTEN levels of both apoptotic and surviving 

cells become very distinct in 72 hours after 10 minutes of IR application (Hat et al., 2016) 

(decision analysis based on PTEN levels at other time instants, as well as multiple time 

instants are presented in other sections). 

Histograms of natural logarithm, ln, of PTEN levels for IR = 1, 2 Gy data sets and 

IR = 1, 8 Gy data sets are shown in Figure 5.1A and Figure 5.1C, respectively. As presented 

in Figure 5.1B and Figure 5.1D, Gaussian PDFs whose means and variances are estimated 

from the data, reasonably represent the histograms. This indicates that the PTEN data can 

be reasonably approximated by lognormal PDF. Due to the mathematical convenience of 

working with Gaussian PDFs and variables, especially for the multivariate analysis of 

multiple time point data discussed later, we continue working with the logarithm of the 

PTEN data.  
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 Let 𝑥 = ln(PTEN) be the Gaussian variable of interest with mean 𝜇 and variance 

𝜎#, i.e., 𝑥~𝒩(𝜇, 𝜎#) where 𝒩 stands for the following normal or Gaussian PDF: 

𝑝(𝑥) = (2𝜋𝜎#)-1/2 exp[−(𝑥 − 𝜇)#/(2𝜎#)	]. 

 

Figure 5.1 Univariate decision making and signaling outcome analysis in the normal p53 
system based on PTEN response distributions. (A) Histograms of PTEN levels of cells 
under IR = 1 Gy and IR = 2 Gy doses. (B) Gaussian probability density functions (PDFs) 
for PTEN levels of cells under IR = 1 Gy and IR = 2 Gy doses, together with the optimal 
maximum likelihood decision threshold which minimizes the total decision error 
probability. (C) Histograms of PTEN levels of cells under IR = 1 Gy and IR = 8 Gy doses. 
(D) Gaussian PDFs for PTEN levels of cells under IR = 1 Gy and IR = 8 Gy doses, together 
with the optimal maximum likelihood decision threshold which minimizes the total 
decision error probability. 
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The Gaussian PDFs shown in Figure 5.1 are indeed the conditional PDFs 𝑝(𝑥|H0) and 

𝑝(𝑥|H") under the hypotheses H! and H" defined earlier in Equation (4.1). For example, 

in Figure 5.1B, H! and H" correspond to IR = 1 Gy and IR = 2 Gy doses, respectively, and 

the red and black curves in there are the conditional PDFs 𝑝(𝑥|H0) and 𝑝(𝑥|H"), 

respectively. 

5.1.1 The Optimal Maximum Likelihood Decision Making System, the Optimal 
Decision Threshold, and the Decision Error Probabilities   

Recall our two hypotheses previously defined in Equation (4.1). The optimal decision 

maker, which minimizes the overall error probability 𝑃$ in Equation (4.3), compares the 

conditional likelihood ratio 𝐿(𝑥) = 𝑝(𝑥|H")/𝑝(𝑥|H!) with the ratio 𝛾 = 𝑃(H!)/𝑃(H") 

(Habibi et al., 2017). The system decides H" if 𝐿(𝑥) > 𝛾. If the hypotheses are equi-

probable, i.e., 𝑃(H0) = 𝑃(H1) = 0.5, then the optimal system decides H" if 𝑝(𝑥|H") >

𝑝(𝑥|H!). 

 To find the optimal decision threshold, we need to solve the equation 𝐿(𝑥) = 𝛾, 

i.e., 𝑃(H")𝑝(𝑥|H") = 𝑃(H!)𝑝(𝑥|H!), for 𝑥. When H! and H" re equi-probable, the 

threshold equation to be solved simplifies to 𝐿(𝑥) = 1, i.e.,  𝑝(𝑥|H") = 𝑝(𝑥|H!). Once the 

optimal decision threshold is determined, it can be used to compute false alarm and miss 

decision error probabilities, by integrating the conditional PDFs of data over error regions. 

More specifically, using the conditional PDFs 𝑝(𝑥|H0) and 𝑝(𝑥|H") representing the 

response probabilities of the ln of PTEN levels under the two hypotheses, Equation (4.2) 

can be written as (Habibi et al., 2017): 
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 𝑃%& = : 𝑝(𝑥|H!)𝑑𝑥
'	∈ false alarm region

, (5.1) 

 

𝑃* = : 𝑝(𝑥|H")𝑑𝑥
'	∈ miss region

. (5.2) 

The false alarm region in Equation (5.1) is defined by {𝑥:	𝑝(𝑥|H") > 𝑝(𝑥|H!)} when H! 

is true, whereas the miss region in Equation (5.2) is defined by {𝑥:	𝑝(𝑥|H!) > 𝑝(𝑥|H")} 

when H" is true. By substituting 𝑃%& and 𝑃* in Equation (4.3), the overall error probability 

𝑃$ can be obtained. 

5.1.2 Gaussian Data Model to Compute the Optimal Decision Threshold and 
Decision Error Probabilities   

Here we focus on Figure 5.1B as an example, where two Gaussian PDFs are shown for 

𝑥 = ln(PTEN), the natural logarithm of PTEN levels in the two data sets of IR = 1 Gy and 

IR = 2 Gy, with each data set consisting of 5000 cells. Let 𝒩(𝜇!, 𝜎!#) and 𝒩(𝜇", 𝜎"#) 

represent the Gaussian PDFs that correspond to the IR = 1 Gy and IR = 2 Gy data sets, 

respectively, where (𝜇!, 𝜎!#) and (𝜇", 𝜎"#) are mean/variance pairs estimated from their 

associated data sets. The optimal maximum likelihood decision threshold in Figure 5.1B is 

at the intersection of the two PDFs, and can be computed by solving the equation 

𝑝(𝑥|H") = 𝑝(𝑥|H!) written below: 

 (2𝜋𝜎!#)-1/2 exp[−(𝑥 − 𝜇!)#/(2𝜎!#)] =	(2𝜋𝜎"#)-1/2 exp[−(𝑥 − 𝜇")#/(2𝜎"#)	] (5.3) 
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By multiplying both sides by (2𝜋𝜎!#)1/2 exp[(𝑥 − 𝜇")#/(2𝜎"#)] and then taking natural 

logarithm of both sides, Equation (5.3) can be written in the following quadratic equation 

form (Habibi et al., 2017): 

 (𝜎!# − 𝜎"#)𝑥# + 	2(𝜎"#𝜇! − 𝜎!#𝜇")𝑥 + 𝜎!#𝜇"# − 𝜎"#𝜇!# − 2𝜎!#𝜎"#ln A
𝜎!
𝜎"
B = 0 (5.4) 

Equation (5.4) is derived assuming our hypotheses are equi-probable, i.e., 𝑃(H0) =

𝑃(H1) = 0.5, as mentioned before. The solution of Equation (5.4) gives the optimal 

decision threshold PTENth, located at the intersection of the two PDFs for IR = 1 Gy and 

IR = 2 Gy doses in Figure 5.1B (the italic style is adopted to clarify that the threshold is 

related to the logarithm of PTEN data). Interestingly, for equal variances, solution of 

Equation (5.4) for the optimal decision threshold simplifies to the average of the means, 

i.e., (𝜇! + 𝜇")/2, which intuitively makes sense. For other prior probabilities and PDF 

models, the optimal threshold can be obtained similarly, by solving the equation 

𝑃(H!)𝑝(𝑥|H!) = 𝑃(H")𝑝(𝑥|H"), for 𝑥. 

 Using the PTENth obtained by solving Equation (5.4) and using the Gaussian PDFs, 

Equations (5.1) and (5.2) for the false alarm and miss error probabilities can be written as: 

 
𝑃%& = : 𝑝(𝑥|H!)𝑑𝑥 = 𝒬 A

𝑃𝑇𝐸𝑁th − 𝜇!
𝜎!

B
.

/0$1!"

, (5.5) 

 

𝑃* = : 𝑝(𝑥|H")𝑑𝑥 = 𝒬 A
𝜇" − 𝑃𝑇𝐸𝑁th

𝜎"
B

/0$1!"

2.

, (5.6) 



 85 

where 𝒬(𝜂) is tail probability of the standard Gaussian PDF 𝒩(0,1): 

𝒬(𝜂) = (2𝜋)-1/2 : exp I−
𝑢#

2 L 𝑑𝑢
.

3

. 

Equation (5.5) represents area of the pink region in Figure 5.1B under the tail of 

the IR = 1 Gy PDF, beyond the PTENth threshold. In this region of 𝑥 > PTENth we have 

𝑝(𝑥|H") > 𝑝(𝑥|H!), while H! is true. This is the false alarm region for which we have 

computed 𝑃%& = 0.57 in Figure 5.1B. On the other hand, Equation (5.6) represents area of 

the gray region in Figure 5.1B under the tail of the IR = 2 Gy PDF, below the PTENth 

threshold. In this region of 𝑥 < PTENth we have 𝑝(𝑥|H!) > 𝑝(𝑥|H"), while H" is true. 

This is the miss region for which we have computed 𝑃* = 0.28 in Figure 5.1B. After 

computing 𝑃%& and 𝑃*, we can now compute the overall error probability 𝑃$ using 

Equation (4.3), which results in 𝑃$ = (𝑃%& + 𝑃*)/2 = 0.43. Similarly, by computing 

Equations (5.5) and (5.6) for the 1 vs. 8 Gy scenario we obtain 𝑃$ = 0.001 (Figure 5.1D). 

Based on the results of 1 vs. 2 Gy and 1 vs. 8 Gy decision scenarios, it can be concluded 

that when the difference between the two applied IR doses increases, the overall decision 

error probability 𝑃$ decreases. This is mainly because the two response PDFs become more 

distinct with less overlap, as the difference between the two applied IR doses increases. 

5.1.3 Mixture of Gaussian Data Model to Compute the Optimal Decision Threshold 
and Decision Error Probabilities for Some Low vs High IR Cases  

For some cases such as 1 vs. 3, 4, 5 and 6 Gy IR doses, some data sets need to be modeled 

by a mixture of Gaussian PDFs due to the bistable behavior of p53 system and hence cells’ 
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bimodal histograms. Still the same underlying theory and the proposed framework hold. 

Nevertheless, in what follows we explain how to determine the optimal decision thresholds 

and how to compute the decision error probabilities when using a mixture model for the 1 

vs. 4 Gy scenario. 

Histograms of natural logarithm of PTEN levels for IR = 1, 4 Gy data sets are shown 

in Figure 5.2A. We notice that while the 1 Gy data histogram is unimodal, histogram of 4 

Gy data is bimodal. Therefore, for the 1 Gy data we use a single Gaussian PDF as before, 

whereas for the 4 Gy data we utilize a mixture of two Gaussian PDFs. More specifically, 

we consider 𝒩(𝜇!, 𝜎!#) for H! to represent the single Gaussian PDF that corresponds to 

the IR = 1 Gy data, whereas we use 𝜉𝒩(𝜇"", 𝜎""# ) + (1 − 𝜉)𝒩(𝜇"#, 𝜎"## ) for H", with 0 ≤

𝜉 ≤ 1 being the mixing parameter, to represent the mixture of two Gaussian PDFs which 

correspond to the IR = 4 Gy data set. The mean and variance (𝜇!, 𝜎!#) are estimated from 

the 1 Gy data and the associated single Gaussian PDF is shown in Figure 5.2B. 

Furthermore, the means and variances (𝜇"", 𝜎""# ) and (𝜇"#, 𝜎"## ) and the mixing parameter 

𝜉 are estimated from the 4 Gy data using the MATLAB command “fitgmdist” which 

implements the iterative Expectation-Maximization (EM) algorithm. The resulting mixture 

of two Gaussian PDFs is shown in Figure 5.2B. 

Similar to the previous scenarios, the optimal maximum likelihood decision 

thresholds shown in Figure 5.2B for equi-probable hypotheses are at the intersections of 

the conditional PDFs 𝑝(𝑥|H0) and 𝑝(𝑥|H"), the latter being a Gaussian mixture for the 4 

Gy data. Note that here solving the equation 𝑝(𝑥|H") = 𝑝(𝑥|H!) results in four solutions 

for 𝑥, that is why there are four decision thresholds, PTENthi, i = 1,2,3,4 in Figure 5.2B 
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(Note that each decision threshold PTENthi is listed as “Decision Threshold i” in Figure 

5.2). 

To compute the decision error probabilities, the false alarm and miss probabilities 

𝑃%& and 𝑃* need to be calculated using Equation (5.1) and Equation (5.2), respectively. 

Since there are four decision thresholds in this case, integration has to be performed over 

multiple regions, which results in lengthy expressions. However, note that as can be seen 

in Figure 5.2B and its zoomed-in view in Figure 5.2C, PDFs for low dose (red) and the 

lower Gaussian mode for the high dose (black) assume very small values as they reach the 

third threshold. Therefore, their contributions to possible error events around the third and 

fourth thresholds are negligible (later this is shown numerically). Similarly, given the very 

small variance of the higher Gaussian mode of the PDF for the high dose, this PDF is 

substantially different from zero only between the third and fourth thresholds. 

Consequently, the contribution of the PDF of this mode to possible errors around the third 

and fourth thresholds is negligible as well. Overall, as just explained, the optimal decision 

when PTENth3 < 𝑥 < PTENth4 is H" with no decision error, whereas for 𝑥 < PTENth1, 

PTENth1 < 𝑥 < PTENth2 and PTENth2 < 𝑥 < PTENth3, the optimal decisions are H!, H" 

and H!, respectively, with the following decision error probabilities: 

 𝑃%& = 𝒬 A
𝑃𝑇𝐸𝑁th1 − 𝜇!

𝜎!
B − 𝒬 A

𝑃𝑇𝐸𝑁th2 − 𝜇!
𝜎!

B,  

 

𝑃* = 𝜉 P𝒬 A
𝜇"" − 𝑃𝑇𝐸𝑁th1

𝜎""
B + 𝒬 A

𝑃𝑇𝐸𝑁th2 − 𝜇""
𝜎""

BQ. 
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The 𝑃%& expression corresponds to the pink region in Figure 5.2C, whereas the two 𝒬 

functions in the 𝑃* expression correspond to the two gray regions in Figure 5.2C, 

respectively. Using the data, computed numerical values are 𝜉 = 0.51, 𝑃%& = 0.28−

0.06 ≈ 0.22, 𝑃* = 0.51[0.41+ 0.07] ≈ 0.25 and 𝑃$ ≈ 0.24, the last one being calculated 

using Equation (4.3).   

 

Figure 5.2 Univariate decision making and signaling outcome analysis in the normal p53 
system when a PTEN response distribution is bimodal. (A) Histograms of PTEN levels of 
cells under IR = 1 Gy and IR = 4 Gy doses. (B) A Gaussian probability density function 
(PDF) for PTEN levels of cells under IR = 1 Gy and a mixture of two Gaussian PDFs for 
PTEN levels of cells under IR = 4 Gy doses, together with the optimal maximum likelihood 
decision thresholds which minimize the total decision error probability. (C) Zoomed-in 
view of panel B. 

 



 89 

As an example of a negligible decision error probability around the third and fourth 

thresholds mentioned earlier, consider the area under the red Gaussian PDF 𝑝(𝑥|H0) in 

Figure 5.2C for PTENth3 < 𝑥 < PTENth4. While not visible due to being very small, it can 

be understood that the aforementioned area is a false alarm probability of deciding H", 

although H! is true. Numerical value of this false alarm probability is 𝒬S(PTENth3 − 𝜇!)/

𝜎!T − 𝒬S(PTENth4 − 𝜇!)/𝜎!T = 	1.2 × 10-5 − 2.8 × 10-6 ≈ 0, which is negligible 

compared to 𝑃%& ≈ 0.22 calculated in the previous paragraph. 

 

5.2 Decision Making Analysis in the Abnormal p53 System 

To see how an abnormality in the p53 system affects the decision making and signaling 

outcomes, we calculate 𝑃$ values when Wip1 synthesis rate is elevated by 50% from 0.1 

to 0.15 (Figure 5.3), as mentioned previously. As suggested by Habibi et al. (2017), the 

decision thresholds are modeled to be those of the normal cells. This implies that abnormal 

cells are not aware of the abnormality, and therefore erroneously use the previous 

threshold. As we see later, this increases decision error probabilities, a behavior that can 

be anticipated from abnormal cells. Using Equations (5.5), (5.6), and (4.3), 𝑃%&, 𝑃*, and 

𝑃$ are computed: 𝑃$ = 0.44 is obtained for 1 vs. 2 Gy scenario (Figure 5.3A), and 𝑃$ =

0.16 is obtained for 1 vs. 8 Gy scenario (Figure 5.3B). Compared to the normal system 

results, the overall error probability is significantly higher for the abnormal system under 

the 1 vs. 8 Gy scenario (we observe that 𝑃$ = 0.001 of normal cells markedly increases to 

𝑃$ = 0.16 in abnormal cells). The reason is that when the Wip1 synthesis rate is increased, 

the two response PDF curves significantly overlap (notice the overlap between the left side 
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Figure 5.3 Univariate decision making and signaling outcome analysis in an abnormal p53 
system, with increased Wip1 synthesis rate, based on PTEN response distributions.           
(A) Gaussian probability density functions (PDFs) for PTEN levels of abnormal cells under 
IR = 1 Gy and IR = 2 Gy doses, together with the decision threshold of normal cells. This 
implies that in abnormal cells the previous decision threshold is erroneously used (Habibi 
et al., 2017). As discussed later, this increases decision error probabilities, a behavior that 
can be anticipated from abnormal cells. (B) A Gaussian PDF for PTEN levels of abnormal 
cells under IR = 1 Gy dose and a mixture of two Gaussian PDFs for PTEN levels of 
abnormal cells under IR = 8 Gy dose, together with the decision threshold of normal cells. 
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component of the IR = 8 Gy PDF with the IR = 1 Gy PDF in Figure 5.3B). This is while in 

normal cells they had almost no overlap (Figure 5.1D). 

Similarly, we compute error probabilities for the other abnormal p53 system we 

mentioned previously, generated by the PTEN synthesis rate reduced from 0.03 to 0.015 

(50% reduction). Error probabilities for this abnormality for all different radiation exposure 

scenarios of 1 vs. 2 Gy up to 1 vs. 8 Gy are shown in Figure 5.4. For comparison, error 

probabilities for the Wip1-perturbed abnormal p53 system and the normal p53 system are 

provided in Figure 5.4 as well. We observe that as the difference between the two applied 

IR doses increases, the decision error probability in normal cells drops significantly. This 

is while in abnormal cells, decision error probabilities remain high. These signaling 

outcomes might be correlated with the observation that cell death percentages in abnormal 

systems are considerably lower than the normal system, even when the radiation dose 

increases (Figure 4.2). This could indicate that abnormal cells do not respond to IR levels 

properly and hence, decisions and signaling outcomes affecting apoptosis and survival 

become more erroneous. Care should be taken that these specific observations are based 

on the low versus high IR, e.g., d0 vs d1 IR hypothesis testing formulation where the low 

IR dose is fixed to 1 Gy (d0 = 1 Gy) and the high IR dose is ranging from 2 Gy up to 8 Gy 

(d1 = 2, 3, …, 8 Gy) in the p53 system, that is considered as an example in this dissertation. 

These observations may not be generalized to other selections of the low d0 and high d1 IR 

doses or other hypothesis testing formulations, case studies, or signaling networks. 

However, the proposed framework and its analytical tools, whose introduction has been 

the main goal of this study, can be similarly used. 
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5.3 Decision and Signaling Outcome Analysis Using Receiver  
Operating Characteristic (ROC) Curves 

In this subsection, we show how to analyze the performance of a decision maker using 

receiver operating characteristic (ROC) curves. The ROC curve is developed to visualize 

the performance of decision-making systems (Kay, 1998; Van Trees et al., 2013), and is a 

graph of probability of detection, 𝑃4 = 1− 𝑃*, versus the probability of false alarm, 𝑃%&. 

In Figure 5.5 we present ROC curves for both the normal p53 system (Figure 5.5A) and 

the abnormal p53 system (Figure 5.5B) whose Wip1 synthesis rate is elevated, for these 

two low vs. high IR decision making scenarios: 1 vs. 2 Gy and 1 vs. 8 Gy. The theoretical 

ROC curves in Figure 5.5 are graphed using the false alarm and miss decision error 

 

Figure 5.4 Decision error probabilities for several low IR versus high IR scenarios.  
Note: The “Abnormal System – PTEN” legend refers to a p53 system whose PTEN synthesis rate is decreased 
by 50%, compared to its nominal value. The “Abnormal System – Wip1” legend refers to a p53 system whose 
Wip1 synthesis rate is increased by 50%, compared to its nominal value. Smaller decision error probabilities 
in the normal system are noteworthy. 
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probability formulas in Equations (5.5) and (5.6), respectively, with the parameters 𝜇, 𝜎, 

the thresholds estimated from the data. The empirical ROC curves in Figure 5.5 are graphed 

by using the data sets directly, using the MATLAB command “perfcurve”. We observe 

that the theoretical and empirical ROCs are nearly the same. Therefore, in what follows, 

we focus on the theoretical ROC curves to explain concepts and results.  

A ROC curve is above a 45° diagonal line (Kay, 1998), the gray dashed line in 

Figure 5.5. In our study it represents the worst possible decision maker, i.e., a decision-

making system that does not use the data and instead randomly decides if the applied IR 

dose is low or high, by just flipping a coin. The 45° line is indeed a reference to judge the 

performance of a decision-making system. A ROC curve far away from the 45° reference 

line indicates a good decision maker. Each point on a ROC curve represents a (𝑃%&,𝑃4) 

pair that corresponds to a certain decision threshold. Other properties of ROC curves can 

be found in Van Trees et al. (2013). The “×” marks in Figure 5.5A show the optimal 

(𝑃%&,𝑃4) points that correspond to the optimal decision thresholds shown in Figure 5.1B 

and Figure 5.1D, previously computed using Equation (5.4) for the 1 vs. 2 Gy and 1 vs. 8 

Gy scenarios, respectively. 

Based on the normal p53 system ROC curves in Figure 5.5A, we observe that 

decisions are made better under the 1 vs. 8 Gy scenario, because of its ROC curve being 

very far from the 45° reference line, compared to the 1 vs. 2 Gy case whose ROC curve is 

much closer to the 45° reference line. This finding supports our results presented in Figure 

5.4, showing the smaller decision error probability of 0.001 for 1 vs. 8 Gy, compared to 

the larger decision error probability of 0.43 for 1 vs. 2 Gy. ROC curves also show that 
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abnormalities in the p53 system can cause decision precision loss. Comparing the normal 

(Figure 5.5A) and abnormal system ROC curves (Figure 5.5B), we observe that the 

abnormal system ROC curves are closer to the 45° reference line, meaning that more 

erroneous decisions are made, when there is an abnormality in the system. 

 

Figure 5.5 Empirical and theoretical receiver operating characteristic (ROC) curves for 
both normal and abnormal p53 systems. (A) ROC curves of 1 vs. 2 Gy and 1 vs. 8 Gy 
radiation scenarios for the normal system. (B) ROC curves of 1 vs. 2 Gy and 1 vs. 8 Gy 
radiation scenarios for the Wip1-perturbed abnormal system. 
Note: The theoretical ROC curves labeled by * are obtained from the Gaussian and mixture of Gaussians 
data models and formulas whose parameters are estimated from the data, whereas the empirical ROC curves 
labeled by ◊ are obtained directly from the data. We observe that the theoretical and empirical ROCs are 
nearly the same. Note that Threshold = ln(PTEN Level) in the figures. 
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CHAPTER 6 

MULTIVARIATE CELL DECISION MAKING ANALYSIS 

 

In this chapter, we extend the decision modeling framework introduced in Chapter 5 such 

that one can model and analyze multidimensional signaling outcome processes using multi-

time point measurements. This allows to incorporate signaling dynamics into decision 

making analysis. To explain the concept, we start with a bivariate decision-making analysis 

and then generalize it to a multivariate decision-making framework (Ozen et al., 2020). 

 

6.1 Methods for Computing Decision Thresholds and Decision Error Rates Using  
Two Time Point Measurements in Individual Cells 

In this section, we analyze PTEN levels of 5000 cells measured in one hour and 30 hours 

after the irradiation phase. Using two variables instead of one allows to study the effect of 

temporal dynamical changes on decision making and signaling outcomes, and paves the 

way for analyzing decisions based on multiple time point data. Suppose 𝑥 and 𝑦 represent 

the ln(PTEN) levels in one hour and 30 hours, respectively, after radiation. Joint Gaussian 

PDF for 𝑥 and 𝑦 can be written as (Papoulis, 1991) 

 
𝑝(𝑥, 𝑦) = 1

2π!!!""#$%#
exp +− 1

2(#$%#)
-(($)!)

#

!!#
− 2%(($)!)*+$)",

!!!"
+ *+$)",

#

!"#
/0, (6.1) 

where (𝜇(,𝜎(-) and 3𝜇+,𝜎+-4 are means and variances of 𝑥 and 𝑦, and 𝜌 is correlation 

coefficient between 𝑥 and 𝑦. Bivariate conditional likelihood ratio is given by 𝐿(𝑥, 𝑦) =

𝑝(𝑥, 𝑦|H#)/𝑝(𝑥, 𝑦|H.), and the optimal decision maker which minimizes the overall error 
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probability 𝑃/ compares 𝐿(𝑥, 𝑦) with the ratio 𝛾 = 𝑃(H.)/𝑃(H#). The system decides H# 

if 𝐿(𝑥, 𝑦) > 𝛾. If the hypotheses are equi-probable, i.e., 𝑃(H0) = 𝑃(H1) = 0.5, then the 

optimal system decides H# if 𝑝(𝑥, 𝑦|H#) > 𝑝(𝑥, 𝑦|H.). To find the optimal decision 

threshold curve, we need to solve the equation 𝐿(𝑥) = 𝛾, i.e., 𝑃(H#)𝑝(𝑥, 𝑦|H#) =

𝑃(H.)𝑝(𝑥, 𝑦|H.), for 𝑥 and 𝑦. When H. and H# re equi-probable, the threshold equation 

to be solved simplifies to 𝐿(𝑥, 𝑦) = 1, i.e.,  𝑝(𝑥, 𝑦|H#) = 𝑝(𝑥, 𝑦|H.). To find false alarm 

and miss probabilities, Equations (5.1) and (5.2) can be extended to two variables as 

follows: 

 𝑃01 = = 𝑝(𝑥, 𝑦|H.)𝑑𝑥 𝑑𝑦
((,+)	∈ false alarm region

, (6.2) 

 

𝑃5 = = 𝑝(𝑥, 𝑦|H#)𝑑𝑥 𝑑𝑦
((,+)	∈ miss region

, (6.3) 

where {𝑥, 𝑦:	𝑝(𝑥, 𝑦|H#) > 𝑝(𝑥, 𝑦|H.)} defines the false alarm region when H. is true, and 

{𝑥, 𝑦:	𝑝(𝑥, 𝑦|H.) > 𝑝(𝑥, 𝑦|H#)} specifies the miss region when H# is true. After 

computing 𝑃01 and 𝑃5, the overall decision error probability 𝑃/ can be calculated using 

Equation (4.3). 

As an example, here we focus on Figure 6.1A, where two bivariate Gaussian PDFs 

are shown for 𝑥 = ln3PTEN at 1st	hour4 and 𝑦 = ln3PTEN at 30th	hour4, logarithms of 

PTEN levels in the two data sets of IR = 1 Gy and IR = 2 Gy, with each data set consisting 

of 5000 cells. The mean and variance parameters of each bivariate response PDF are 

estimated from the associated data set. The overlap between the two bivariate PDFs in 
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response to IR = 1 Gy and IR = 2 Gy can be better seen in the top view shown in Figure 

6.1B. This figure also demonstrates that the decision threshold between the two PDFs is 

going to be a curve in the x-y plane, where the two PDFs intersect. Equation for this optimal 

threshold curve which minimizes the total decision error probability is given by 𝐿(𝑥, 𝑦) =

1, where 𝐿 is the bivariate conditional likelihood ratio defined previously. This decision 

threshold curve curveth is shown together with contour plots of the two bivariate PDFs in 

Figure 6.1C. To compute the decision error probabilities using the decision threshold 

curveth, Equations (6.2) and (6.3) for the false alarm and miss error probabilities can be 

written as 

 
𝑃01 = C C 𝑝(𝑥, 𝑦|H.) 𝑑𝑦 𝑑𝑥

6

+7curveth

6

(7$6

, (6.4) 

 

𝑃5 = C C 𝑝(𝑥, 𝑦|H#) 𝑑𝑦 𝑑𝑥.

curveth

+7$6

6

(7$6

 
(6.5) 

After computing the integrals in Equations (6.4) and (6.5) numerically, we obtain 𝑃01 =

0.24 and 𝑃5 = 0.26. Upon their substitution in Equation (4.3) and with equi-probable 

hypotheses, we obtain 𝑃/ = 0.25. 

To compare the above two time point decision with individual one time point 

decisions, we compute the decision error probabilities based on the 1st hour data and the 

30th hour data, individually, for the IR = 1 vs. 2 Gy scenario. We obtain 𝑃/ = 0.5 and 𝑃/ =

0.27 for individual univariate decisions in one hour and 30 hours after the radiation, 

respectively. We observe that the bivariate decision offers significant improvement over 
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the one-hour decision and slight improvement over the 30-hour decision. Univariate 

decision error probabilities at different time points are discussed in the next section, as well 

as how multivariate decision error probability changes, as the data of more time points are 

added to the decision process in a sequential manner. 

 

Figure 6.1 Bivariate decision making and signaling outcome analysis in the normal p53 
system based on PTEN response distributions. (A) Bivariate Gaussian probability density 
functions (PDFs) for PTEN levels of cells at the 1st hour and the 30th hour, under IR = 1 
Gy and IR = 2 Gy doses. (B) Top view of the two bivariate Gaussian PDFs. (C) Top contour 
view of the two bivariate Gaussian PDFs, together with the optimal maximum likelihood 
decision threshold curve which minimizes the total decision error probability. 
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6.2 Methods for Computing Decision Thresholds and Decision Error Rates Using  
Multiple Time Point Measurements in Individual Cells 

In this section, we further study the effect of system dynamics on decision making and 

signaling outcomes, by considering multiple time point data. More specifically, we 

consider PTEN levels of 5000 cells measured in 1, 10, 20, 30, 40, 50, 60, and 70 hours 

after the irradiation phase. Let 𝛚 be an N × 1 column vector that represents the ln(PTEN) 

levels at a subset or all of the aforementioned time instants. Joint Gaussian PDF for all 

decision variables in 𝝎 can be written as (Duda, 2001; Van Trees et al., 2013): 

 𝑝(𝛚) =
1

(2π)8/-|Σ|#/- exp -−
1
2
(𝛚 − 𝛍)TΣ$#(𝛚 − 𝛍)/ , (6.6) 

where 𝛍 is the N × 1 mean vector, Σ is the N × N covariance matrix, |Σ| and Σ$# denote 

the determinant and inverse of Σ, respectively, and T represents the matrix transpose. This 

multivariate Gaussian or normal PDF for the decision vector 𝛚 can be symbolically shown 

by 𝛚	~	𝒩(𝛍, Σ). For N = 2, Equation (6.6) simplifies to the bivariate PDF in Equation 

(6.1), such that: 

𝛚 = M
𝑥

𝑦
N , 𝛍 = M

𝜇(
𝜇+
N , Σ = M

𝜎(- 𝜌𝜎(𝜎+
𝜌𝜎(𝜎+ 𝜎+-

N. 

Computation of the decision error probabilities using multiple decision variables can be 

accomplished using discriminant functions (Duda, 2001; Van Trees et al., 2013): 
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 g:(𝛚) = ln 𝑝(𝛚|H:) + ln𝑃(H:) , 𝑖 = 0,1, (6.7) 

where 𝑝(𝛚|H:)~𝒩(𝛍: , Σ:) and 𝑖 is index of the discriminant function associated with the 

hypothesis H:. In our case, we have 𝑖 = 0,1, referring to our two hypotheses in Equation 

(4.1). For any hypothesis H:, substitution of Equation (6.6) in Equation (6.7) simplifies its 

discriminant function to: 

 g:(𝛚) = −
1
2
(𝛚 − 𝛍:)TΣ:$#(𝛚 − 𝛍:) −

N
2 ln

(2𝜋) −
1
2 ln

|Σ:| + ln 𝑃(H:) , 𝑖 = 0,1. (6.8) 

Using the discriminant functions in Equation (6.8) and for a given 𝛚, the optimal 

decision-making system decides H. if g.(𝛚) > g#(𝛚), and decides H# if g#(𝛚) > g.(𝛚). 

The false alarm probability 𝑃01 is the probability of deciding H#, i.e., g#(𝛚) > g.(𝛚), 

whereas in fact H. is true. On the other hand, the miss probability 𝑃5 is the probability of 

deciding H., i.e., g.(𝛚) > g#(𝛚), although indeed H# is true. Computing 𝑃01 and 𝑃5 

using multivariate PDFs directly entails multivariate integrations over regions defined by 

decision surfaces. Given the complexity of such computations, as a simpler alternative we 

calculate 𝑃01 and 𝑃5 using the data directly, by counting the number of times that false 

alarm and miss event occur, respectively, after comparing the discriminant function values 

g#(𝛚) and g.(𝛚) for each 𝛚, and then divide them by the total number of data points. The 

overall decision error probability 𝑃/ can be calculated using Equation (4.3). Another 

method for computing 𝑃01 and 𝑃5 relies on characteristic functions (Fukunaga, 1990). 
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6.2.1 Single and Multivariate Decision Making and Signaling Outcome Analysis as 
Time Evolves 

To understand how decision making and signaling outcomes may change over time, first 

we look at the decision error probability 𝑃/ using PTEN levels measured at individual 

consecutive time instants (Figure 6.2A), for the 1 vs. 2 Gy scenario. A noteworthy 

observation is that the decision error exhibits a minimum value. The minimum occurs in 

20 hours after radiation. This can be visually explained by the amount of overlap of PTEN 

histograms at each individual time point. For instance, we provide histograms of PTEN 

levels at the 20th and the 70th hours in Figure 6.3, for IR = 1 and 2 Gy doses. We observe 

that the 20th hour histograms have less overlap than the 70th hour histograms, shown in 

Figure 6.3A and Figure 6.3B, respectively, which results in the smaller 𝑃/ at the 20th hour 

in Figure 6.2A. 

Now we focus on studying how decision-making works, if data of N time instants 

are utilized, such that N = 1, 2, …, 8 (Figure 6.2B). In the figure, N = 1 means the PTEN 

data of the 1st hour, N = 2 refers to the PTEN data of the 1st and the 10th hours, N = 3 

indicates the PTEN data of the 1st, the 10th, and the 20th hours, etc. This assumes at any 

given time, the decision is made based on the data of that given time, plus the data of the 

previous time instants, which means progressively accumulating the data to make 

decisions. It is observed in Figure 6.2B that 𝑃/ first decreases, and after a certain point, it 

remains nearly constant. To understand this behavior, we note that if the data collected at 

various time instants are independent, then the error probability of a decision-making 

system that performs sequential hypothesis testing decreases as the number of observations 

N increases (Fukunaga, 1990). This property of a multivariate sequential decision maker is 

intuitively appealing. However, if the data collected at various time instants are correlated, 
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performance of the multivariate sequential decision maker can significantly degrade, and 

its error probability does not necessarily decrease as N increases (Fukunaga, 1990). 

To examine possible temporal correlations among the data that the suggested 

sequential decision strategy employs, we compute condition numbers of Σ. and Σ#, the 

N × N covariance matrices of the data for the two hypotheses H. and H#, for IR = 1 and 2 

Gy, respectively, as N increases from 2 to 8 (Figure 6.2C). The condition number of a 

matrix is the ratio of its largest singular value to its smallest. A large condition number 

indicates that the matrix is nearly singular. On the other hand, a near singular covariance 

matrix of several random variables means that some of the random variables are highly 

correlated. Therefore, a large condition number for a covariance matrix implies large 

correlations among some of its random variables. We observe in Figure 6.2C that as N 

increases, condition numbers of both of the covariance matrices Σ. and Σ# increase. This 

means as time evolves after a certain point, the suggested sequential decision maker 

incorporates a new observation that is correlated with the previously used observations. 

The correlation does not allow the decision error probability to decrease beyond a certain 

point, although N constantly increases (Figure 6.2B). 

6.2.2 Multivariate Decision Making and Signaling Outcome Analysis of Two or 
More Molecules 

So far, we have focused on multivariate decision making and signaling outcome analysis 

for one molecule at different time instants. However, the introduced methods and 

algorithms are not limited to the outcome analyses for just one molecule, and they can be 

applied to various other scenarios and studies. In fact, they can be used to analyze and 

compute decision error rates based on the concentration levels of two or more molecules, 
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Figure 6.2 Decision error probabilities versus time in the normal p53 system: A single 
versus multiple time point study. (A) 𝑃/ as a function of time for the 1 vs. 2 Gy radiation 
scenario, computed using only the PTEN data of a single, 𝑁 = 1, individual time instant. 
This assumes at any given time, decision is made based on the data of that time only. 
Having a minimum error probability at the 20th hour is noteworthy. (B) 𝑃/ as a function of 
time for the 1 vs. 2 Gy radiation scenario, computed using the PTEN data of 𝑁 time 
instants, 𝑁 = 1, 2, …, 8 (𝑁 = 1 means the PTEN data of the 1st hour, 𝑁 = 2 refers to the 
PTEN data of the 1st and the 10th hours, 𝑁 = 3 indicates the PTEN data of the 1st, the 10th, 
and the 20th hours, etc.). This assumes at any given time, decision is made based on the 
data of that time, plus the data of the previous time instants, which means accumulating 
the data to make a decision. It is observed that 𝑃/ first decreases, and after a certain point, 
it remains nearly constant. (C) Condition numbers of 𝛴. and 𝛴#, the 𝑁 × 𝑁 covariance 
matrices of the data for the two hypotheses H. and H#, for IR = 1 and 2 Gy, respectively, 
as 𝑁 increases from 2 to 8. When 𝑁 increases, condition numbers of both of the covariance 
matrices 𝛴. and 𝛴# increase. On the other hand, a large condition number for a covariance 
matrix implies large correlations among some of its random variables. Therefore, as time 
evolves after a certain point, the suggested sequential decision maker incorporates a new 
observation that is correlated with the previously used observations. The correlation does 
not allow the decision error probability 𝑃/ to decrease beyond a certain point, although 𝑁 
constantly increases. 
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Figure 6.3 Comparison of the histograms of cells’ PTEN levels at the 20th and the 70th 
hours under IR = 1 Gy and 2 Gy doses in the normal p53 system. (A) Histograms of the 
20th hour PTEN data under IR = 1 and 2 Gy doses, which show less overlap. (B) Histograms 
of the 70th hour PTEN data under IR = 1 and 2 Gy doses, which show more overlap. 

 

measured simultaneously or even at different time instants. For example, if decision and 

outcome analysis are going to be conducted based on simultaneous concentration level 

measurements of two molecules labeled by 𝑥 and 𝑦, then Equations (6.1) – (6.5) can be 

used to find the maximum likelihood bivariate decision strategy and its minimum error 



 105 

probability. As a more elaborate example, suppose concentration levels of molecule A 

measured at time instants t1 and t2 are labeled as variables 𝑥 and 𝑦, respectively, 

concentration levels of molecule B measured at t1 and t2 are labeled as variables 𝑣 and 𝑤, 

respectively, and finally concentration levels of molecule C measured at t1 and t2 are 

labeled as variables 𝜓 and 𝜁, respectively. The 6 × 1 decision vector 𝛚 including all these 

six decision variables can be defined as 𝛚 = [𝑥	𝑦	𝑣	𝑤	𝜓	𝜁]T, where T stands for transpose. 

Now, Equations (6.6) – (6.8) can be used to find the maximum likelihood six-variate 

decision strategy and its minimum decision error probability. 
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CHAPTER 7 

BEYOND BINARY CELL DECISIONS 

 

In the previous three chapters, we focused on the binary hypothesis testing for the case 

where there exist only two possible outcomes that are cell death and cell survival. In this 

chapter, we discuss the case where there exist more than two possible outcomes on a 

hypothetical scenario. Furthermore, we show how heterogeneity of initial values and 

reaction rates affect the overall cell response. Lastly, we discuss the cost of correct and 

incorrect decisions (Ozen et al., 2020).  

 

7.1 Ternary Decisions and Signaling Outcomes and Ternary Error Probabilities 

While the focus of the previous three chapters is on binary hypothesis testing, it is possible 

to develop a multiple hypothesis testing model for outcome analysis, where there exist 

more than two possible outcomes. This entails more erroneous decisions than false alarm 

and miss events. Optimal decision thresholds and error probabilities for all incorrect 

decisions can be similarly computed. For example, assume there are three different 

signaling outcomes depending on concentration level of a hypothetical molecule called 

MOL, whose level can fall within one of three regions, which results in the following three 

possible hypotheses: 

 H0:	MOL level is low,

H1:	MOL level is medium,

H2:	MOL level is high.

 (7.1) 
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Let us assume under each condition, PDF of the MOL level represented by 𝑥 is normal or 

Gaussian, i.e., 𝑥	~	𝒩(𝜇! , 𝜎") such that 𝜇# < 𝜇$ < 𝜇", where variances are assumed to be 

equal, to simplify the notation. These PDFs are shown in Figure 7.1, with 𝜇# = 5,	𝜇# =

10,	𝜇# = 15, and 𝜎" = 2.25. By extending the binary decision errors presented earlier in 

Equations (5.5) and (5.6), ternary decision errors for the three hypotheses can be written as 

 
𝑃%,H! = . 𝑝(𝑥|H#)𝑑𝑥 = 𝒬 3

𝑎 − 𝜇#
𝜎 6

'

(

, (7.2) 

 

𝑃%,H" = .𝑝(𝑥|H$)𝑑𝑥
(

)'

+ . 𝑝(𝑥|H$)𝑑𝑥
'

*

= 𝒬 3
𝜇$ − 𝑎
𝜎 6 + 𝒬 8

𝑏 − 𝜇$
𝜎 :, (7.3) 

 

𝑃%,H# = .𝑝(𝑥|H")𝑑𝑥 = 𝒬 8
𝜇" − 𝑏
𝜎 :

*

)'

. (7.4) 

In the above equations, 𝑎 and 𝑏 are thresholds to decide between H# and H$, and between 

H$ and H", respectively. This means the decision regions for the three hypotheses can be 

written as: 

 H0:	𝑥 < 𝑎,

H1:	𝑎 < 𝑥 < 𝑏,

H2:	𝑏 < 𝑥.

 (7.5) 
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For equi-probable hypotheses and similarly to the derivation that lead to Equation 

(5.4), optimal decision thresholds which minimize the total decision error probability can 

be shown to be: 

 𝑎 =
𝜇# + 𝜇$
2 ,							𝑏 =

𝜇$ + 𝜇"
2 . (7.6) 

Upon substituting Equation (7.6) in Equations (7.2), (7.3), and (7.4), the total error 

probability in making ternary decisions can be written as: 

 𝑃% =
1
3𝑃%,H! +

1
3𝑃%,H" +

1
3𝑃%,H#

						=
1
3𝒬 3

𝜇$ − 𝜇#
2𝜎 6 +

1
3
=𝒬 3

𝜇$ − 𝜇#
2𝜎 6 + 𝒬 3

𝜇" − 𝜇$
2𝜎 6> +

1
3𝒬 3

𝜇" − 𝜇$
2𝜎 6

						=
2
3𝒬 3

𝜇$ − 𝜇#
2𝜎 6 +

2
3𝒬 3

𝜇" − 𝜇$
2𝜎 6 .

 (7.7) 

As a reference, for the binary decision-making problem and outcome analysis studied in 

the earlier chapters and using Equations (5.5) and (5.6), the total error probability in making 

binary decisions with equal variances simplifies to: 

 𝑃% =
1
2𝒬 3

𝜇$ − 𝜇#
2𝜎 6 +

1
2𝒬 3

𝜇$ − 𝜇#
2𝜎 6 = 𝒬 3

𝜇$ − 𝜇#
2𝜎 6. (7.8) 

To compare ternary and binary error probabilities, let us assume 𝜇" − 𝜇$ = 𝜇$ − 𝜇# = 𝛾, 

which reduces Equations (7.7) and (7.8) to (4/3)𝒬A𝛾/(2𝜎)B and 𝒬A𝛾/(2𝜎)B, respectively.  
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Figure 7.1 Response probability density functions of a hypothetical molecule called MOL 
whose level entails a ternary decision-making process with three signaling outcomes.  
Note: Shaded tail areas with the same color represent decision error regions associated with each specific 
hypothesis. Assuming equi-probable hypotheses, the optimal maximum likelihood decision thresholds which 
minimize the total decision error probability are shown by vertical blue lines at the points of intersection of 
the probability density functions. 

 

This indicates that the ternary decision error rate can be higher than the binary decision 

error rate, under the assumed conditions. 

 

7.2 Effect of Heterogeneity of Initial Values and Reaction  
Rates on Cell Response Histograms 

In addition to stochasticity in dynamic processes, it is natural to consider that the initial 

level of each protein is not the same in a cell population (heterogeneity of cells). 

Additionally, there are pseudo-first order dephosphorylation reactions for which reaction 

rate coefficients depend on the levels of implicit phosphatases. Thus, it is also natural to 
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assume that the reaction rate coefficients corresponding to pseudo-first order 

dephosphorylations may vary cell to cell. To see the effect of heterogeneous initial values 

and parameters on cell response distributions, we generated new PTEN data for IR = 2 Gy 

in 5000 cells, assuming that the initial values and parameters of the p53 system are coming 

from lognormal distributions with means equal to their default values, and ran simulations 

for different standard deviations, i.e., 𝜎 = 0.2, 0.5 and 1 (Grabowski et al., 2019). Cell 

response histograms of the new data for different 𝜎 values are shown in Figure 7.2, and 

compared against the 2 Gy data of homogenous cells (𝜎 = 0). In this system and example, 

we observe that PTEN histograms undergo some change as 𝜎 increases, i.e., more cell 

heterogeneity, which may result in some changes in decision error probabilities. 

Nevertheless, one can still use the exact same methods and algorithms introduced in the 

Chapters 4 to 6, to conduct signaling outcome analyses of interest for inhomogeneous cells. 

 

7.3 On the Cost of Correct and Incorrect Decisions 

In decision theory, there can be some costs associated with correct or incorrect decisions. 

Let 𝐶!+ be the cost of deciding H! when H+ is true. To minimize the expected cost, 

𝐶##𝑃(H#) + 𝐶#$𝑃(H$)𝑃, + 𝐶$#𝑃(H#)𝑃-. + 𝐶$$𝑃(H$), the decision-making system 

decides H$ if (Kay, 1998):  

 
𝐿(𝑥) =

𝑝(𝑥|H$)
𝑝(𝑥|H#)

>
(𝐶$# − 𝐶##)𝑃(H#)
(𝐶#$ − 𝐶$$)𝑃(H$)

= 𝛾, (7.9) 
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Figure 7.2 Effect of heterogeneity of initial values and pseudo-first order 
dephosphorylation reaction rates on PTEN histograms. Histograms of PTEN levels of cells 
under IR = 2 Gy dose, with 𝜎 = 0, 0.2, 0.5 and 1. 
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where 𝐶$# > 𝐶## and 𝐶#$ > 𝐶$$. Usually, the costs associated with correct decisions are 

zero, i.e., 𝐶## = 𝐶$$ = 0. Additionally, if there is no preference in assigning different costs 

to different incorrect decisions, one can choose 𝐶$# = 𝐶#$. This is what we would consider 

as well, since we do not have a knowledge of the costs of incorrect decisions in the studied 

cellular system. Upon substituting 𝐶## = 𝐶$$ = 0 and 𝐶$# = 𝐶#$ in Equation (7.9), it 

simplifies to the following equation, which is the optimal maximum likelihood decision 

rule presented in Chapter 5: 

 
𝐿(𝑥) =

𝑝(𝑥|H$)
𝑝(𝑥|H#)

>
𝑃(H#)
𝑃(H$)

= 𝛾. (7.10) 
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CHAPTER 8 

CONCLUSION 

 

In this chapter, we provide our concluding remarks on the developed methods and our 

observations on different case studies.  

 

8.1 Modeling and Training Molecular Networks 

Computational studies of molecular networks are essential and a necessity to understand 

complex molecular dynamics and to offer novel insights into whole systematic 

functionalities. Such studies can provide fast and reliable outcomes especially if they are 

tailored to experimental evidence. Molecular networks can be computationally analyzed 

by converting them into numerable models (Chapter 2). One way of modeling the networks 

is converting them into a system of continuous differential equations that captures temporal 

or spatial (or both) features of the system and provides detailed information on how the 

whole system behaves (e.g., Section 2.1). However, they are impractical especially for 

large networks because they require the knowledge of mechanistic details and kinetic 

parameters, and such knowledge is generally very limited. Thus, discreate models such as 

Boolean models becomes advantageous since they do not require detailed kinetic 

information and still provide valuable biological insight. Specifically, the Boolean models 

are very simple compared to the continuous models, and very helpful to understand system 

dynamics by correctly predicting the active/inactive states of the molecules (e.g., Section 

2.2). Therefore, in this dissertation, we focus on developing Boolean model-based methods 

and frameworks for network analysis due to their applicability to large and complex 
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molecular networks and their efficiency in providing novel results as presented here and 

discussed in several research articles. 

Developing biologically relevant network models is not always enough because 

they usually do not agree with the experimental measurements, specifically for the 

literature-curated networks. The disagreement between model predictions and the 

experimental data might be due to the incompleteness of resources, databases, and 

literature used to construct the networks. Analysis results of a network model with low 

accuracy on predicting the experimental evidence cannot be trusted. For this reason, 

developing tools to train the network models is significant so that more reliable models can 

be analyzed and the likelihood of confirming computational observations in laboratory 

experiments can be increased. Therefore, we introduce two training approaches (Section 

2.3), in this dissertation. In the first training approach (Section 2.3.1), we train the network 

model by removing interactions from the network assuming that the initial network 

contains spurious interactions. To do so, we propose constrained integer linear 

programming (ILP) formulations (Equations (2.2) and (2.3)) that efficiently find 

subnetworks of the initial network by minimizing the number of mismatches between 

model predictions and the experimental data while preserving the model rules. 

Furthermore, we present a simple and effective strategy that overcomes feedback 

interactions in the training process (Figure 2.8), which allows using the measured data of 

a molecule at multiple time instances.  

In the second training approach (Section 2.3.2), we fix the network topology and 

learn the Boolean equations of each molecules using the experimental data. In other words, 

we learn the model for each molecule by assuming multiple inhibitors and multiple 



 115 

activators may work cooperatively to change the output molecule’s state (Equation (2.4)). 

This is done by converting the learning process into an optimization problem whose general 

form is provided in Equation (2.5) and solved using Genetic Algorithm, a well-known 

metaheuristic algorithm. Learning Boolean functions of the molecules is useful if the initial 

network topology needs to be preserved in some analyses such as fault diagnosis analysis. 

It will preserve physical existence of all molecules in the network, which prevents losing 

information on the molecules as well as the effect of the interactions that might be removed 

in other training approaches. The developed models and methods are elaborated and 

exemplified in Chapter 2.  

 

8.2 Vulnerability Analysis of Molecular Networks 

Developing intracellular signaling network analysis methods is important for 

understanding complicated biological processes that underlie complex diseases such as 

mental disorders, autoimmune diseases, and cancer. One fundamental goal of such methods 

is to determine how much vulnerable a signaling network is to the dysfunction of one or 

multiple molecules, where the dysfunction of each molecule can be defined as responding 

incorrectly to its input signals. In this study, we define the vulnerability level of a molecule 

as the probability of having incorrect network responses when the molecule is 

dysfunctional, in which dysfunctionality of the molecules are modeled by stuck-at-0 (SA0) 

and stuck-at-1 (SA1) fault models (Section 3.1) that are constantly 0, inactive, or 1, active, 

regardless of what the input signals of the molecule are, respectively. The vulnerability 

levels associated with the dysfunction of molecules or groups of molecules can be 

measured by computing probabilities of having incorrect network responses in the presence 
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of molecular dysfunctionalities, using the equations introduced and developed in Section 

3.2.  

 Using the developed mathematical framework for vulnerability computations, we 

try to understand in a given network, what molecule or group of molecules results in the 

most detrimental network failure. To answer this question, here we propose a systematic 

method to identify the worst possible signaling failures in signaling networks (Section 3.3). 

The worst possible signaling failure is defined as the pathological phenomenon that results 

in the highest probability of network failure, i.e., the maximum vulnerability level. The 

said pathological phenomenon is characterized to be emerged from the presence of one or 

more dysfunctional molecules in the network. While it is conceivable that different 

individual dysfunctional molecules may have different vulnerability levels, it is not clear 

what happens to the vulnerability levels, if two or more molecules are concurrently 

dysfunctional. 

 The worst signaling failure analysis is initially conducted on the ERBB signaling 

network (Figure 3.4). We observe that the maximum vulnerability values do not necessarily 

increase as the number of concurrently faulty molecules 𝑁 increases (Figure 3.5). More 

precisely, we see a maximum vulnerability increase going from single faults to double 

faults, 𝑁 = 1 and 2, respectively, and then the maximum vulnerability does not increase 

further afterwards. Moreover, we observe that the smallest 𝑁 for which we see the highest 

maximum vulnerability in this network is 𝑁 = 2, i.e., the double faults. This teaches that 

there are some pairs of faulty molecules that cause the most detrimental network damage, 

and an increase in the number of simultaneously faulty molecules does not induce a worse 

network failure. 
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 Next, we perform the worst signaling failure analysis on the T cell signaling 

network (Figure 3.6). Similar to the ERBB network results, we notice that the maximum 

vulnerability values do not necessarily increase as the number of simultaneously faulty 

molecules 𝑁 increases (Figure 3.7), for all network outputs. Furthermore, for the network 

outputs ap1, bcat and p70s, we see a maximum vulnerability increase going from single 

faults to double faults, 𝑁 = 1 and 2, respectively, and do not observe further increase 

afterwards. This means that some pairs of faulty molecules can damage the network as 

seriously as many more simultaneously faulty molecules. For the network outputs cre, nfat, 

p38, shp2 and sre, this behavior changes, i.e., the highest maximum vulnerability occurs 

when 𝑁 = 1. This implies that there are some single faulty molecules that cause the worst 

possible network failures at these outputs. 

 We also prove that the computational complexity, i.e., the running time of the 

proposed worst signaling failure analysis algorithm (Section 3.3.4) is O(𝐾3), where 𝐾 is 

the number of intermediate molecules in the network. This efficient algorithm is in contrast 

with an exhaustive search having an exponential running time, O&𝐾!/2', that quickly 

becomes impractical to implement as 𝐾 increases. For example, for a network with 𝐾 =

50 molecules, the proposed algorithm complexity is in the order of 503 ≈ 1.3×105, which 

is much smaller than 5025 ≈ 3×1042, the exhaustive search complexity. 

 The proposed worst signaling failure analysis algorithm makes use of another 

proposed algorithm (Section 3.4.1) that properly incorporates the effects of signaling 

feedbacks in the worst failure analysis. Essentially it determines the number of time points 

(clock cycles) needed for network analysis and simulation while computing the 

vulnerability levels to find the worst failures, so that we prevent performing network 
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simulations longer than what is needed. Usefulness of this algorithm is demonstrated by 

computing the required number of clock cycles for vulnerability analysis of the ERBB and 

the T cell signaling networks (Sections 3.4.2 and 3.4.3, respectively). 

 Overall, the proposed algorithms have the potential to uncover certain aspects of 

abnormal signaling network behaviors that can contribute to the development of the 

pathology and may suggest some therapeutic strategies. This study is particularly important 

in the context of complex disorders with unknown molecular sources, where more than one 

molecule is observed to be involved in the pathology. 

 

8.3 Modeling and Measurement of Signaling Outcomes  
Affecting Cell Decision Making 

The molecular networks have major roles in the characterization of cell fate. These 

networks have some specific outputs that initiate important biochemical processes and 

eventually lead cells to specify their fate. For example, depending on the received signals 

and dynamics of the network, a possible cell fate could be surviving or initiating apoptosis 

or moving in a certain direction, and so on. When a molecule is faulty, the entire network 

may fail, which may affect such important processes. Therefore, characterization of 

decision-making in cells in response to received signals is important for understanding how 

cell fate is determined in the absence and presence of such faulty molecules causing 

incorrect network responses. In this dissertation, we provide a set of decision-theoretic, 

statistical signal processing and machine learning methods and metrics for modeling and 

measurement of decision-making processes and signaling outcomes under normal and 

abnormal conditions, and in the presence of noise and other uncertainties (Ozen et al., 

2020).  
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Due to the noise, signaling malfunctions, or other factors, cells may respond 

differently to the same input signal. Some of these responses can be erroneous and 

unexpected. Here we present univariate (Chapter 5) and multivariate (Chapter 6) models 

and methods for decision making processes and signaling outcome analyses, and as an 

example, apply them to an important system that is involved in cell survival and death, i.e., 

the p53 system (Chapter 4) shown in Figure 4.1. The p53 system becomes active due to 

DNA damage caused by ionizing radiation (IR), and as a result, cell can take two different 

actions: it can either survive by repairing the DNA or trigger apoptosis. In this context, we 

model the decisions and signaling outcomes triggered by the p53 system as a binary 

hypothesis testing problem, where two hypotheses are introduced in Equation (4.1). 

Regarding these two hypotheses, our approach identifies that there can be two types of 

incorrect decisions: false alarm and miss. To compute the likelihood of these decisions, we 

employ the simulator of Hat et al. (2016) and obtain single cell data of the p53 system by 

exposing the cells to different radiation doses. We consider PTEN levels in cells as the 

decision variable, since it was shown as a good predictor of cell fate (Hat et al., 2016). Our 

analysis focuses on low radiation dose versus high radiation dose scenarios, where we fix 

the low IR dose at 1 Gy, whereas we set the high IR dose at 2 Gy, 3 Gy, 4 Gy, 5 Gy, 6 Gy, 

7 Gy and 8 Gy. We also analyze decision making events and signaling outcomes when an 

abnormality is present in the p53 system. 

The incorrect decision probabilities provided in Equation (4.2) and the overall 

decision error probability in Equation (4.3) are computed after determining an optimal 

decision threshold. We obtain this decision threshold using the maximum likelihood 

principle, which states that the best decision can be made by selecting the hypothesis that 
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has the maximum probability of occurrence. We compute the decision threshold and error 

probabilities using single time point data of PTEN levels in both normal and abnormal p53 

systems. For 1 Gy vs. 2 Gy and 1 Gy vs. 8 Gy case studies, we present histograms, response 

distributions, decision thresholds, and false alarm and miss decision regions in normal and 

abnormal p53 systems in Figures 5.1 and 5.3, respectively. Our decision analysis reveals 

and quantifies that more erroneous decisions are made when deciding between two nearly 

the same radiation doses in the normal p53 system (Figure 5.4). On the other hand, the 

difference between responses is easily identifiable for very low versus very high IR doses. 

This feature seems not be present in the abnormal p53 systems (Figure 5.4), according to 

our decision modeling approach. Our decision and outcome analyses and observations are 

further visualized and confirmed by using the receiver operating characteristic (ROC) 

curves (Figure 5.5), which are useful graphical tools to study the performance of decision-

making systems. We would like to note that these observations are specifically made based 

on the low versus high IR case studies, e.g., d0 vs d1 IRs introduced in Chapter 4 for the 

p53 system, as an example of a signaling network, in which the low IR dose is fixed to 1 

Gy (d0 = 1 Gy) and the high IR dose is ranging from 2 Gy up to 8 Gy (d1 = 2, 3, …, 8 Gy). 

Such conclusions may not be generalized to other biological hypotheses and systems, while 

the proposed framework and its analytical tools, whose introduction has been the main goal 

of this study, can be similarly used.  

In addition to the above univariate single time point analysis, we extend our 

signaling outcome modeling framework to dynamical multi-time point measurements and 

multidimensional decision-making algorithms, to see how the number of decision variables 

affects the decisions and signaling outcomes over time (Chapter 6). To introduce the 
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concepts, first we conduct a bivariate analysis, in which bivariate response distributions of 

cells’ PTEN levels measured at two different time instants are shown in Figure 6.1, as well 

as the optimal maximum likelihood decision boundary. Then we introduce a multivariate 

dynamic decision modeling framework, for the general scenario where there are more than 

two decision variables over time. This allows to model and understand how decision error 

probability changes over time, if at any time the decision is made based on the current 

observation, together with the previous observations. We observe in Figure 6.2B that as 

the decision-making strategy incorporates more and more PTEN data at various time 

instants into its decisions, for the p53 system exposed to two radiation doses of 1 and 2 Gy, 

the decision error probability reaches its smallest value at a certain time instant. However, 

adding more data afterwards does not necessarily improve the decision precision, i.e., the 

decision error probability does not necessarily decrease as N increases with time (Figure 

6.2B). We show that this behavior can be related to the correlations that exist among the 

PTEN levels measured at different times (Figure 6.2C). 

Although we focus on multivariate decision making and signaling outcome analysis 

for one molecule at different time instants, the introduced methods and algorithms are not 

limited to the outcome analyses for just one molecule. They can be applied to various other 

scenarios and studies. For instance, they can be used to analyze decision strategies and 

compute decision error rates based on concentration levels of two or more molecules, 

measured simultaneously or even at different time instants as shown in the Subsection 

6.2.2. 

We finally show how the introduced binary decision making and signaling outcome 

analysis models can be extended to more than two decisions, i.e., more than two hypotheses 
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(Chapter 7). A ternary scenario with three signaling outcomes is analyzed as an example, 

and it is shown that under certain conditions, the ternary decision error probability can be 

higher than the binary one. 

The methods and models presented here can be expanded to describe the 

performance and precision of more complex systems and networks such as the ones whose 

inputs are multiple ligands or secondary messengers and whose outputs are several 

transcription factors involved in certain cellular functions. Analyzing the concentration 

levels of these transcription factors over time using the proposed approaches can model 

various decisions and signaling outcomes, and their probabilities, in the presence of noise 

or some cellular abnormalities, and in response to the input signals. Furthermore, the 

methods and formalism developed in this study are applicable to a wide variety of signaling 

outcome analyses, decision makings and signal transduction processes where there are two 

or more possible outcomes. For example, in the context of E-coli chemotaxis, binary 

decisions (influencing all chemotaxis processes) are either to continue motion in the same 

direction or to change the flagellum operation mode from run, counterclockwise, to tumble, 

clockwise, resulting in random direction changes (Watari & Larson, 2010). Based on the 

network or system of interest and the available data, the hypotheses in Equation (4.1) can 

be revised, and subsequently the same mathematical framework and algorithms and 

methods can be applied, using the underlying probability distributions of data. Overall, 

these decision-theoretic models and signaling outcome analysis methods can be beneficial 

for better understanding of transition from physiological to pathological conditions such as 

inflammatory diseases, various cancers, and autoimmune diseases. 

 



 123 

8.4 Future Directions 

The developed methods and techniques in this dissertation are not limited to only the 

systems used to elaborate and illustrate them. They can be used to analyze other complex 

molecular systems with complex experimental data. Thus, one possible future work might 

be to apply these techniques to other systems to test their robustness as well as to reveal 

novel insights into other complex biological processes.   

 Despite the efficiency of the Boolean models (Chapter 2) by not requiring detailed 

kinetic information to be used and their analysis techniques (Chapter 3) to understand 

molecular processes, this type of models assume only binary behavior of the system such 

as being active or inactive. To incorporate more dynamic behavior of these complex 

systems, one possible future action would be efficiently extending the Boolean models into 

multi-level models with high data prediction accuracy, which may provide more 

information about how the whole system behaves. 

The proposed univariate and multivariate single cell decision-making and outcome 

analysis techniques (Chapters 4 - 7) can be studied for different complex systems for 

different purposes. One can apply these techniques to model cell fates of other systems 

using different types of measurements such as gene transcription data and single-cell RNA 

sequencing (scRNA-seq) data. Moreover, one can extend and modify the proposed 

methods to distinguish different cell types. For instance, it is a common phenomenon that 

tumor heterogeneity occurs both within and between tumors. This heterogeneity cannot be 

discerned from conventional bulk transcriptomic studies. On the other hand, one can extend 

the proposed framework and model scRNA-seq data to distinguish different tumor cell 

types in a bulk so that more effective and targeted treatments can be administered.  
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APPENDIX 

BOOLEAN EQUATIONS FOR THE ERBB AND T CELL  
SIGNALING NETWORKS  

Tables A.1 and A.2 present Boolean equations of the ERBB and T cell signaling networks 

in Chapter 3, which are provided by Sahin et al. (2009) and Saez-Rodriguez et al. (2007), 

respectively. In the equations, “×” is used for the AND operation, “+” is used for the OR 

operation, and “~” is used for the NOT operation. In Table A.2, the symbol “t” represents 

the current time whereas “t+1” stands for the next time instant. 

Table A.1 Boolean Equations for the ERBB Signaling Network 

Molecules Boolean Equations 
AKT1 AKT1 = ERBB1 + ERBB1_2 + ERBB1_3 + ERBB2_3 + IGF1R 
c-MYC c-MYC = AKT1 + MEK1 + ER-𝛼  
CDK2 CDK2 = CyclinE1 × (~ p21) × (~ p27) 
CDK4 CDK4 = CyclinD1 × (~ p21) × (~ p27) 
CDK6 CDK6 = CyclinD1 
CyclinD1 CyclinD1 = ER-𝛼 × c-MYC × (AKT1 + MEK1) 
CyclinE1 CyclinE1 = c-MYC 
EGF EGF: Input 
ER-𝛼  ER-𝛼 = AKT1 + MEK1 
ERBB1 ERBB1 = EGF 
ERBB1_2 ERBB1_2 = ERBB1 × ERBB2 
ERBB1_3 ERBB1_3 = ERBB1 × ERBB3 
ERBB2 ERBB2 = EGF 
ERBB2_3 ERBB2_3 = ERBB2 × ERBB3 
ERBB3 ERBB3 = EGF 
IGF1R IGF1R = (ER-𝛼 + AKT1) × (~ ERBB2_3) 
MEK1 MEK1 = ERBB1 + ERBB1_2 + ERBB1_3 + ERBB2_3 + IGF1R 
p21 p21 = ER-𝛼 × (~ CDK4) × (~ AKT1) × (~ c-MYC) 
p27 p27 = ER-𝛼 × (~ CDK4) × (~ CDK2) × (~ AKT1) × (~ c-MYC) 
pRB pRB = (CDK4 × CDK6) + (CDK4 × CDK6 × CDK2) 
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Table A.2 Boolean Equations for the T Cell Signaling Network 

Molecules Boolean Equations 
abl(t) abl(t) = lckp1(t) + fyn(t) 

akap79 akap79 = 0 

ap1(t) ap1(t) = fos(t) × jun(t) 

bad(t) bad(t) = ~ pkb(t) 

bcat(t) bcat(t) = ~ gsk3(t) 

bcl10 bcl10 = 1 

bclx1(t) bclx1 = ~ bad(t) 

ca(t) ca(t) = ip3(t) 

cabin1(t) cabin1(t) = ~ camk4(t) 

calcin(t) calcin(t) = (~ cabin1(t)) × (~ akap79) × (~ calpr1) × cam(t) 

calpr1 calpr1 = 0 

cam(t) cam(t) = ca(t) 

camk2(t) camk2(t) = cam(t) 

camk4(t) camk4(t) = cam(t) 

card11 card11 = 1 

card11a(t) card11a(t) = card11 × bcl10 × malt1 

cblc(t+1) cblb(t+1) = ~ cd28 

ccblp1(t+1) ccblp1(t+1) = zap70(t) 

ccblp2(t+1) ccblp2(t+1) = fyn(t) 

cd28 Input 

cd4 Input 

cd45 cd45 = 1 

cdc42 cdc42 = 0 

cre(t) cre(t) = creb(t) 

creb(t) creb(t) = rsk(t) 

csk(t) csk(t) = pag(t) 

cyc1(t) cyc1(t) = ~ gsk3(t) 

dag(t) dag(t) = (~ dgk(t)) × plcga(t) 

dgk(t+1) dgk(t+1) = tcrb(t) 

erk(t) erk(t) = mek(t) 

fkhr(t) fkhr(t) = ~ pkb(t) 

fos(t) fos(t) = erk(t) 
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Molecules Boolean Equations 
fyn(t) fyn(t) = tcrb(t) + (lckp1(t) × cd45) 

gab2(t+1) gab2(t+1) = lat(t) × zap70(t) × (gads(t) + grb2(t)) 

gadd45 gadd45 = 1 

gads(t) gads(t) = lat(t) 

Gap gap = 0 

grb2(t) grb2(t) = lat(t) 

gsk3(t) gsk3(t) = ~ pkb(t) 

hpk1(t) hpk1(t) = lat(t) 

ikb(t) ikb(t) = ~ ikkab(t) 

ikkab(t) ikkab(t) = ikkg(t) × camk2(t) 

ikkg(t) ikkg(t) = pkcth(t) × card11a(t) 

ip3(t) ip3(t) = plcga(t) 

itk(t) itk(t) = slp76(t) × zap70(t) × pip3(t) 

jnk(t) jnk(t) = mekk1(t) + mkk4(t) 

jun(t) jun(t) = jnk(t) 

lat(t) lat(t) = zap70(t) 

lckp1(t) lckp1(t) = (~ shp1(t)) × (~ csk(t)) × cd45 × cd4 

lckp2(t) lckp2(t) = tcrb(t) 

malt1 malt1 = 1 

mek(t) mek(t) = raf(t) 

mekk1(t) mekk1(t) = hpk1(t) + cdc42 + rac1p2(t) 

mkk4(t) mkk4(t) = mlk3(t) + mekk1(t) 

mlk3(t) mlk3(t) = hpk1(t) + rac1p1(t) 

nfat(t) nfat(t) = calcin(t) 

nfkb(t) nfkb(t) = ~ ikb(t) 

p21c(t) p21c(t) = ~ pkb(t) 

p27k(t) p27k(t) = ~ pkb(t) 

p38(t) p38(t) = ((~ gadd45) × zap70(t)) + mekk1(t) 

p70s(t) p70s(t) = pdk1(t) 

pag(t) pag(t) = ~ tcrb(t) 

pag(t+1) pag(t+1) = fyn(t) 

pdk1(t) pdk1(t) = pip3(t) 

pi3k(t) pi3k(t) = ((~ cblb(t)) × X(t)) + ((~ cblb(t)) × lckp2(t)) 
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Molecules Boolean Equations 
pip3(t) pip3(t) = pi3k(t) × (~ ship1) × (~ pten) 

pkb(t) pkb(t) = pdk1(t) 

pkcth(t) pkcth(t) = pdk1(t) × dag(t) × vav1(t) 

plcga(t) plcga(t) = plcgb(t) × (~ ccblp2(t)) × slp76(t) × zap70(t) × vav1(t) × (itk(t) 

+ rlk(t)) 

plcgb(t) plcgb(t) = lat(t) 

Pten pten = 0 

rac1p1(t) rac1p1(t) = vav1(t) 

rac1p2(t) rac1p2(t) = vav3(t) 

raf(t) raf(t) = ras(t) 

ras(t) ras(t) = (~ gap) × rasgrp(t) × sos(t) 

rasgrp(t) rasgrp(t) = dag(t) 

rlk(t) rlk(t) = lckp1(t) 

rsk(t) rsk(t) = erk(t) 

sh3bp2(t) sh3bp2(t) = zap70(t) × lat(t) 

ship1 ship1 = 0 

shp1(t+1) shp1(t+1) = (~ erk(t)) × lckp1(t) 

shp2(t) shp2(t) = gab2(t) 

slp76(t) slp76(t) = (~ gab2(t)) × zap70(t) × gads(t) 

sos(t) sos(t) = grb2(t) 

sre(t) sre(t) = rac1p2(t) + cdc42 

tcrb(t) tcrb(t) = (~ ccblp1(t)) × tcrlig 

Tcrlig Input 

tcrp(t) tcrp(t) = (tcrb(t) × lckp1(t)) + (tcrb(t) × fyn(t)) 

vav1(t) vav1(t) = (sh3bp2(t) × zap70(t)) + X(t) 

vav3(t) vav3(t) = sh3bp2(t) 

X(t) X(t) = cd28 

zap70(t) zap70(t) = (~ ccblp1(t)) × abl(t) × tcrp(t) 
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