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ABSTRACT

LEARNING OF RADAR SYSTEM FOR TARGET DETECTION

by
Wei Jiang

In this dissertation, the problem of data-driven joint design of transmitted waveform

and detector in a radar system is addressed. Two novel learning-based approaches to

waveform and detector design are proposed based on end-to-end training of the radar

system. The first approach consists of alternating supervised training of the detector

for a fixed waveform and reinforcement learning of the transmitter for a fixed detector.

In the second approach, the transmitter and detector are trained simultaneously.

Various operational waveform constraints, such as peak-to-average-power ratio (PAR)

and spectral compatibility, are incorporated into the design. Unlike traditional

radar design methods that rely on rigid mathematical models, it is shown that

radar learning can be robustified to uncertainties about environment by training

the detector with synthetic data generated from multiple statistical models of the

environment. Theoretical considerations and results show that the proposed methods

are capable of adapting the transmitted waveform to environmental conditions while

satisfying design constraints.
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CHAPTER 1

INTRODUCTION

Design of radar waveforms and detectors has been a topic of great interest to the radar

community (see e.g., [1–4]). For best performance, radar waveforms and detectors

should be designed jointly [5], [6]. Traditional joint design of waveforms and detectors

typically relies on mathematical models of the environment, including targets, clutter,

and noise. In contrast, this dissertation proposes data-driven approaches based on

end-to-end learning of radar systems, in which reliance on rigid mathematical models

of targets, clutter and noise is relaxed.

1.1 Optimal Radar Detector

Optimal detection in the Neyman-Pearon (NP) sense guarantees highest probability

of detection for a specified probability of false alarm [1]. The NP detection test relies

on the likelihood (or log-likelihood) ratio, which is the ratio of probability density

functions (PDF) of the received signal conditioned on the presence or absence of

a target. Mathematical tractability of models of the radar environment plays an

important role in determining the ease of implementation of an optimal detector. For

some target, clutter and noise models, the structure of optimal detectors is well known

[7–9]. For example, closed-form expressions of the NP test metric are available when

the applicable models are Gaussian [9], and, in some cases, even for non-Gaussian

models [10].

However, in most cases involving non-Gaussian models, the structure of

optimal detectors generally involves intractable numerical integrations, making the

implementation of such detectors computationally intensive [11], [12]. For instance,

it is shown in [11] that the NP detector requires a numerical integration with respect

to the texture variable of the K-distributed clutter, thus precluding a closed-form

1



solution. Furthermore, detectors designed based on a specific mathematical model

of environment suffer performance degradation when the actual environment differs

from the assumed model [13], [14]. Attempts to robustify performance by designing

optimal detectors based on mixtures of random variables quickly run aground due to

mathematical intractability.

1.2 Radar Waveform Design

Alongside optimal detectors, optimal radar waveforms may also be designed based on

the NP criterion. Solutions are known for some simple target, clutter and noise models

(see e.g., [2], [4]). However, in most cases, waveform design based on direct application

of the NP criterion is intractable, leading to various suboptimal approaches. For

example, mutual information, J-divergence and Bhattacharyya distance have been

studied as objective functions for waveform design in multistatic settings [15–18].

In addition to target, clutter and noise models, waveform design may have

to account for various operational constraints. For example, transmitter efficiency

may be improved by constraining the peak-to-average-power ratio (PAR) [19–22]. A

different constraint relates to the requirement of coexistence of radar and commu-

nication systems in overlapping spectral regions. The National Telecommunications

and Information Administration (NTIA) and Federal Communication Commission

(FCC) have allowed sharing of some of the radar frequency bands with commercial

communication systems [23]. In order to protect the communication systems

from radar interference, radar waveforms should be designed subject to specified

compatibility constraints. The design of radar waveforms constrained to share the

spectrum with communications systems has recently developed into an active area of

research with a growing body of literature [24–28].

2



1.3 Machine Learning Applied in Radar

Machine learning has been successfully applied to solve problems for which mathe-

matical models are unavailable or too complex to yield optimal solutions, in domains

such as computer vision [29], [30] and natural language processing [31], [32]. Recently,

a machine learning approach has been proposed for implementing the physical layer

of communication systems. Notably, in [33], it is proposed to jointly design the

transmitter and receiver of communication systems via end-to-end learning. Reference

[34] proposes an end-to-end learning-based approach for jointly minimizing PAR and

bit error rate in orthogonal frequency division multiplexing systems. This approach

requires the availability of a known channel model. For the case of an unknown

channel model, reference [35] proposes an alternating training approach, whereby

the transmitter is trained via reinforcement learning (RL) on the basis of noiseless

feedback from the receiver, while the receiver is trained by supervised learning.

In [36], the authors apply simultaneous perturbation stochastic optimization for

approximating the gradient of a transmitter’s loss function. A detailed review of

the state of the art can be found in [37] (see also [38–40] for recent work).

In the radar field, learning machines trained in a supervised manner based on

a suitable loss function have been shown to approximate the performance of the NP

detector [41], [42]. As a representative example, in [42], a neural network trained in

a supervised manner using data that includes Gaussian interference, has been shown

to approximate the performance of the NP detector. Note that design of the NP

detector requires express knowledge of the Gaussian nature of the interference, while

the neural network is trained with data that happens to be Gaussian, but the machine

has no prior knowledge of the statistical nature of the data.
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1.4 Organization and Contributions

In this dissertation, we introduce two learning-based approaches for the joint

design of waveform and detector in a radar system. Inspired by [35], end-to-end

learning of a radar system is implemented by alternating supervised learning of

the detector for a fixed waveform, and RL-based learning of the transmitter for a

fixed detector. In the second approach, the learning of the detector and waveform

are executed simultaneously, potentially speeding up training in terms of required

radar transmissions to yield the training samples compared alternating training. In

addition, we extend the problem formulation to include training of waveforms with

PAR or spectral compatibility constraints.

The organization and main contributions of this dissertation are outlined.

Chapter 2: In this chapter, we formulate a radar system architecture based

on the training of the detector and the transmitted waveform, both implemented as

feedforward multi-layer neural networks.

Chapter 3: This chapter presents two end-to-end learning algorithms for

detection and waveform generation. In the first learning algorithm, detector and

transmitted waveform are trained alternately: For a fixed waveform, the detector is

trained using supervised learning so as to approximate the NP detector; and for a

fixed detector, the transmitted waveform is trained via policy gradient-based RL. In

the second algorithm, the detector and transmitter are trained simultaneously.

Chapter 4: In this chapter, we extend learning algorithms to incorporate

waveform constraints, specifically PAR and spectral compatibility constraints.

Chapter 5: This chapter provides theoretical results that relate alternating

and simultaneous training by computing the gradients of the loss functions optimized

by both methods. This chapter also provides theoretical results that justify the use

of RL-based transmitter training by comparing the gradient used by this procedure

with the gradient of the ideal model-based likelihood function.
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Chapter 6: This chapter presents numerical results that the proposed

end-to-end learning approaches are able to obtain a more robust radar performance

in clutter and colored noise of arbitrary probability density functions as compared

to conventional methods. This chapter also shows that the proposed methods are

capable of adapting the transmitted waveform to environmental conditions while

satisfying design constraints.

Throughout the dissertation bold lowercase and uppercase letters represent

vector and matrix, respectively. The conjugate, the transpose, and the conjugate

transpose operator are denoted by the symbols (·)∗, (·)T , and (·)H , respectively.

The notations CK and RK represent sets of K-dimensional vectors of complex and

real numbers, respectively. The notation | · | indicates modulus, || · || indicates the

Euclidean norm, and Ex∼px{·} indicates the expectation of the argument with respect

to the distribution of the random variable x ∼ px, respectively. <(·) and =(·) stand

for real-part and imaginary-part of the complex-valued argument, respectively. The

letter j represents the imaginary unit, i.e., j =
√
−1. The gradient of a function f :

Rn → Rm with respect to x ∈ Rn is ∇xf(x) ∈ Rn×m.

5



CHAPTER 2

PROBLEM FORMULATION

Consider a pulse-compression radar system that uses the baseband transmit signal

x(t) =
K∑
k=1

ykζ
(
t− [k − 1]Tc

)
, (2.1)

where {yk}Kk=1 are complex deterministic coefficients, and ζ(t) is, for example, a square

root Nyquist subpulse (referred to as “chip”) with chip rate 1/Tc, such that
{
ζ
(
t −

[k − 1]Tc
)}K

k=1
are orthogonal. The vector y , [y1, . . . , yK ]T is referred to as coded

waveform, and is a subject of design.

The backscattered baseband signal from a stationary point-like target is given

by

z(t) = αx(t− τ) + c(t) + n(t), (2.2)

where α is the target complex-valued gain, accounting for target backscattering

and channel propagation effects; τ represents the target delay, which is assumed

to satisfy the target detectability condition τ >> KTc; c(t) is the clutter component;

and n(t) denotes signal-independent noise comprising an aggregate of thermal noise,

interference, and jamming. The clutter component c(t) associated with a detection

test performed at τ = 0 may be expressed

c(t) =
K−1∑

g=−K+1

γgx
(
t− gTc

)
, (2.3)

6



where γg is the complex clutter scattering coefficient at time delay τ = 0 associated

with the gth range cell relative to the cell under test. Following chip matched filtering

with ζ∗(−t), and sampling at Tc-spaced time instants t = τ + [k − 1]Tc for k ∈

{1, . . . , K}, the K × 1 discrete-time received signal z = [z(τ), z(τ + Tc), . . . , z(τ +

[K − 1]Tc)]
T for the range cell under test containing a point target with complex

amplitude α, clutter and noise can be written as

z = αy + c + n, (2.4)

where c and n denote, respectively, the clutter and noise vectors.

Detection of the presence of a target in the range cell under test is formulated

as the following binary hypothesis testing problem:


H0 : z = c + n

H1 : z = αy + c + n.

(2.5)

In traditional radar design, the golden standard for detection is provided by the NP

criterion of maximizing the probability of detection for a given probability of false

alarm. Application of the NP criterion leads to the likelihood ratio test

Λ(z) =
p(z|y,H1)

p(z|y,H0)

H1

≷
H0

TΛ, (2.6)

where Λ(z) is the likelihood ratio, and TΛ is the detection threshold set based on the

probability of false alarm constraint [5]. The NP criterion is also the golden standard

7



for designing a radar waveform that adapts to the given environment, although, as

discussed earlier, a direct application of this design principle is often intractable.

The design of optimal detectors and/or waveforms under the NP criterion relies

on channel models of the radar environment, namely, knowledge of the conditional

probabilities p(z|y,Hi) for i = {0, 1}. The channel model p(z|y,Hi) is the likelihood

of the observation z conditioned on the transmitted waveform y and hypothesis Hi.

In the following, we introduce an end-to-end radar system in which the detector and

waveform are jointly learned in a data-driven fashion.

2.1 End-to-end Radar System

The end-to-end radar system illustrated in Figure 2.1 comprises a transmitter and

a receiver that seek to detect the presence of a target. Transmitter and receiver are

implemented as two separate parametric functions fθT (·) and fθR(·) with trainable

parameter vectors θT and θR, respectively.

As shown in Figure 2.1, the input to the transmitter is a user-defined

initialization waveform s ∈ CK . The transmitter outputs a radar waveform obtained

through a trainable mapping yθT = fθT (s) ∈ CK . The environment is modeled

as a stochastic system that produces the vector z ∈ CK from a conditional PDF

p(z|yθT ,Hi) parameterized by a binary variable i ∈ {0, 1}. The absence or presence

of a target is indicated by the values i = 0 and i = 1 respectively, and hence i is

referred to as the target state indicator. The receiver passes the received vector z

through a trainable mapping p = fθR(z), which produces the scalar p ∈ (0, 1). The

final decision î ∈ {0, 1} is made by comparing the output of the receiver p to a hard

threshold in the interval (0, 1).

8



Detector

Transmitter

Receiver

Radar operating environment

Figure 2.1 An end-to-end radar system operating over an unknown radar operating
environment. Transmitter and receiver are implemented as two separate parametric
functions fθT (·) and fθR(·) with trainable parameter vectors θT and θR, respectively.
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2.2 Transmitter and Receiver Architectures

As discussed in Section 2.1, the transmitter and the receiver are implemented as two

separate parametric functions fθT (·) and fθR(·). We now detail an implementation of

the transmitter fθT (·) and receiver fθR(·) based on feedforward neural networks.

A feedforward neural network is a parametric function f̃θ(·) that maps an input

real-valued vector uin ∈ RNin to an output real-valued vector uout ∈ RNout via L

successive layers, where Nin and Nout represent, respectively, the number of neurons

of the input and output layers. Noting that the input to the lth layer is the output

of the (l − 1)th layer, the output of the lth layer is given by

ul = f̃θ[l](ul−1) = φ
(
W[l]ul−1 + b[l]

)
, for l = 1, . . . , L, (2.7)

where φ(·) is an element-wise activation function, and θ[l] = {W[l],b[l]} contains the

trainable parameter of the lth layer comprising the weight W[l] and bias b[l]. Let

Nl−1 and Nl represent the number of neurons at the (l− 1)th layer and the lth layer,

respectively. The weight W[l] at the lth layer is an Nl×Nl−1 matrix, and the bias b[l]

at the lth layer is an Nl × 1 vector. The vector of trainable parameters of the entire

neural network comprises the parameters of all layers, i.e., θ = vec{θ[1], · · · ,θ[L]}.

The architecture of the end-to-end radar system with transmitter and receiver

implemented based on feedforward neural networks is shown in Figure 2.2. The

transmitter applies a complex initialization waveform s to the function fθT (·). The

complex-value input s is processed by a complex-to-real conversion layer. This is

followed by a real-valued neural network f̃θT (·). The output of the neural network

10



Radar operating environment

Neural network

Normalization layer

Neural network

Receiver

Transmitter

Figure 2.2 Transmitter and receiver architectures based on feedforward neural
networks.

11



is converted back to complex-values, and an output layer normalizes the transmitted

power. As a result, the transmitter generates the radar waveform yθT .

The receiver applies the received signal z to the function fθR(·). Similar to the

transmitter, a first layer converts complex-valued to real-valued vectors. The neural

network at the receiver is denoted f̃θR(·). The task of the receiver is to generate

a scalar p ∈ (0, 1) that approximates the posterior probability of the presence of a

target conditioned on the received vector z. To this end, the last layer of the neural

network f̃θR(·) is selected as a logistic regression layer consisting of operating over

a linear combination of outputs from the previous layer. The presence or absence

of the target is determined based on the output of the receiver and a threshold set

according to a false alarm constraint.
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CHAPTER 3

TRAINING OF END-TO-END RADAR SYSTEMS

This chapter discusses the joint optimization of the trainable parameter vectors

θT and θR to meet application-specific performance requirements. Two training

algorithms are proposed to train the end-to-end radar system. The first algorithm

alternates between training of the receiver and of the transmitter. This algorithm

is referred to as alternating training, and is inspired by the approach used in [35]

to train encoder and decoder of a digital communication system. In contrast,

the second algorithm trains the receiver and transmitter simultaneously. This

approach is referred to as simultaneous training. Note that the proposed two training

algorithms are applicable to other differentiable parametric functions implementing

the transmitter fθT (·) and the receiver fθR(·), such as recurrent neural network or its

variants [43]. In the following, we first discuss alternating training and then we detail

simultaneous training.

3.1 Alternating Training: Receiver Design

Alternating training consists of iterations encompassing separate receiver and trans-

mitter updates. In this section, we focus on the receiver updates. A receiver training

update optimizes the receiver parameter vector θR for a fixed transmitter waveform

yθT . Receiver design is supervised in the sense that we assume the target state

indicator i to be available to the receiver during training. Supervised training of the

receiver for a fixed transmitter’s parameter vector θT is illustrated in Figure 3.1.

The standard cross-entropy loss [42] is adopted as the loss function for the

receiver. For a given transmitted waveform yθT = fθT (s), the receiver average loss

13



function is accordingly given by

LR(θR) =
∑
i∈{0,1}

P (Hi)Ez∼p(z|yθT
,Hi)
{
`
(
fθR(z), i

)}
, (3.1)

where P (Hi) is the prior probability of the target state indicator i, and `
(
fθR(z), i

)
is the instantaneous cross-entropy loss for a pair

(
fθR(z), i

)
, namely,

`
(
fθR(z), i

)
= −i ln fθR(z)− (1− i) ln

[
1− fθR(z)

]
. (3.2)

Receiver
training

Figure 3.1 Supervised training of the receiver for a fixed transmitted waveform.

For a fixed transmitted waveform, the receiver parameter vector θR should be

ideally optimized by minimizing average loss (3.1), e.g., via gradient descent or one

of its variants [44]. The gradient of average loss (3.1) with respect to the receiver

parameter vector θR is

∇θRLR(θR) =
∑
i∈{0,1}

P (Hi)Ez∼p(z|yθT
,Hi)
{
∇θR`

(
fθR(z), i

)}
. (3.3)
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This being a data-driven approach, rather than assuming known prior probability of

the target state indicator P (Hi) and likelihood p(z|yθT ,Hi), the receiver is assumed

to have access to QR independent and identically distributed (i.i.d.) samples DR ={
z(q) ∼ p(z|yθT ,Hi(q)), i

(q) ∈ {0, 1}
}QR
q=1

.

Given the output of the receiver function fθR(z(q)) for a received sample vector

z(q) and the indicator i(q) ∈ {0, 1}, the instantaneous cross-entropy loss is computed

from Equation (3.2), and the estimated receiver gradient is given by

∇θRL̂R(θR) =
1

QR

QR∑
q=1

∇θR`
(
fθR(z(q)), i(q)

)
. (3.4)

Using (3.4), the receiver parameter vector θR is adjusted according to stochastic

gradient descent updates

θ
(n+1)
R = θ

(n)
R − ε∇θRL̂R(θ

(n)
R ) (3.5)

across iterations n = 1, 2, . . . , where ε > 0 is the learning rate.

3.2 Alternating Training: Transmitter Design

In the transmitter training phase of alternating training, the receiver parameter

vector θR is held constant, and the function fθT (·) implementing the transmitter

is optimized. The goal of transmitter training is to find an optimized parameter

vector θT that minimizes the cross-entropy loss function (3.1) seen as a function of

θT .

As illustrated in Figure 3.2, a stochastic transmitter outputs a waveform a

drawn from a distribution π(a|yθT ) conditioned on yθT = fθT (s). The introduction

of the randomization π(a|yθT ) of the designed waveform yθT is useful to enable

15



exploration of the design space in a manner akin to standard RL policies. To train

the transmitter, we aim to minimize the average cross-entropy loss

LπT (θT ) =
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)}
. (3.6)

Note that this is consistent with Equation (3.1), with the caveat that an expectation

is taken over policy π(a|yθT ). This is indicated by the superscript “π”.

Transmitter
training

Stochastic transmitter

Figure 3.2 RL-based transmitter training for a fixed receiver design.

Assume that the policy π(a|yθT ) is differentiable with respect to the transmitter

parameter vector θT , i.e., that the gradient ∇θTπ(a|yθT ) exists. The policy gradient

theorem [45] states that the gradient of the average loss (3.6) can be written as

∇θTLπT (θT ) =
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)
∇θT lnπ(a|yθT )

}
. (3.7)

The gradient (3.7) has the important advantage that it may be estimated via QT i.i.d.

samples DT =
{
a(q) ∼ π(a|yθT ), z(q) ∼ p(z|a(q),Hi(q)), i

(q) ∈ {0, 1}
}QT
q=1

, yielding the

estimate

16



∇θT L̂πT (θT ) =
1

QT

QT∑
q=1

`
(
fθR(z(q)), i(q)

)
∇θT ln π(a(q)|yθT ). (3.8)

With estimate (3.8), in a manner similar to Equation (3.5), the transmitter

parameter vector θT may be optimized iteratively according to the stochastic gradient

descent update rule

θ
(n+1)
T = θ

(n)
T − ε∇θT L̂πT (θ

(n)
T ) (3.9)

over iterations n = 1, 2, . . . . The alternating training algorithm is summarized in

Algorithm 1. The training process is carried out until a stopping criterion is satisfied.

For example, a prescribed number of iterations may have been reached, or a number

of iterations may have elapsed during which the training loss (3.6), estimated using

samples DT , may have not decreased by more than a given amount.
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Algorithm 1: Alternating Training

Input: initialization waveform s; stochastic policy πθT (·|y); learning rate ε

Output: learned parameter vectors θR and θT

1 initialize θ
(0)
R and θ

(0)
T , and set n = 0

2 while stopping criterion not satisfied do

/* receiver training phase */

3 evaluate the receiver loss gradient ∇θRL̂R(θ
(n)
R ) from (3.4) with

θT = θ
(n)
T

4 update receiver parameter vector θR via

θ
(n+1)
R = θ

(n)
R − ε∇θRL̂R(θ

(n)
R )

and stochastic transmitter policy turned off

/* transmitter training phase */

5 evaluate the transmitter loss gradient ∇θT L̂πT (θ
(n)
T ) from (3.8) with

θR = θ
(n+1)
R

6 update transmitter parameter vector θT via

θ
(n+1)
T = θ

(n)
T − ε∇θT L̂πT (θ

(n)
T )

7 n← n+ 1

8 end

18



3.3 Simultaneous Training

This section discusses simultaneous training, in which the receiver and transmitter

are updated simultaneously as illustrated in Figure 3.3. To this end, the objective

function is the average loss

Lπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)}
. (3.10)

This function is minimized over both parameters θR and θT via stochastic gradient

descent.

Receiver
training

Transmitter
training

Stochastic transmitter

Figure 3.3 Simultaneous training of the end-to-end radar system. The receiver is
trained by supervised learning, while the transmitter is trained by RL.

The gradient of (3.10) with respect to θR is

∇θRLπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
∇θR`

(
fθR(z), i

)}
, (3.11)
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and the gradient of Equation (3.10) with respect to θT is

∇θTLπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)∇θTEa∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)}
=
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)
∇θT lnπ(a|yθT )

}
.

(3.12)

To estimate gradients (3.11) and (3.12), we assume access to Q i.i.d. samples

D =
{
a(q) ∼ π(a|yθT ), z(q) ∼ p(z|a(q),Hi(q)), i

(q) ∈ {0, 1}
}Q
q=1

. From (3.11), the

estimated receiver gradient is

∇θRL̂π(θR,θT ) =
1

Q

Q∑
q=1

∇θR`
(
fθR(z(q)), i(q)

)
. (3.13)

Note that, in (3.13), the received vector z(q) is obtained based on a given waveform

a(q) sampled from policy π(a|yθT ). Thus, the estimated receiver gradient (3.13) is

averaged over the stochastic waveforms a. This is in contrast to alternating training,

in which the receiver gradient depends directly on the transmitted waveform yθT .

From (3.12), the estimated transmitter gradient is given by

∇θT L̂π(θR,θT ) =
1

Q

Q∑
q=1

`
(
fθR(z(q)), i(q)

)
∇θT ln π(a(q)|yθT ). (3.14)

Finally, denote the parameter set θ = {θR,θT}, from (3.13) and (3.14), the trainable

parameter set θ is updated according to the stochastic gradient descent rule

θ(n+1) = θ(n) − ε∇θL̂π(θ
(n)
R ,θ

(n)
T ) (3.15)
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across iterations n = 1, 2, . . . . The simultaneous training algorithm is summarized in

Algorithm 2.

Algorithm 2: Simultaneous Training

Input: initialization waveform s; stochastic policy π(·|yθT ); learning rate ε

Output: learned parameter vectors θR and θT

1 initialize θ
(0)
R and θ

(0)
T , and set n = 0

2 while stopping criterion not satisfied do

3 evaluate the receiver gradient ∇θRL̂π(θ
(n)
R ,θ

(n)
T ) and the transmitter

gradient ∇θT L̂π(θ
(n)
R ,θ

(n)
T ) from (3.13) and (3.14), respectively

4 update receiver parameter vector θR and transmitter parameter vector

θT simultaneously via

θ
(n+1)
R = θ

(n)
R − ε∇θRL̂π(θ

(n)
R ,θ

(n)
T )

and

5

θ
(n+1)
T = θ

(n)
T − ε∇θT L̂π(θ

(n)
R ,θ

(n)
T )

6 n← n+ 1

7 end
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CHAPTER 4

TRANSMITTER DESIGN WITH CONSTRAINTS

We extend the transmitter training discussed in the previous chapter to incorporate

waveform constraints on PAR and spectral compatibility. To this end, we introduce

penalty functions that are used to modify the training criterion (3.6) to meet these

constraints.

4.1 PAR Constraint

Low PAR waveforms are preferred in radar systems due to hardware limitations

related to waveform generation. A lower PAR entails a lower dynamic range of the

power amplifier, which in turn allows an increase in average transmitted power. The

PAR of a radar waveform yθT = fθT (s) may be expressed

JPAR(θT ) =
max

k=1,··· ,K
|y

θT
,k|2

||yθT ||2/K
, (4.1)

which is bounded according to 1 ≤ JPAR(θT ) ≤ K.

4.2 Spectral Compatibility Constraint

A spectral constraint is imposed when a radar system is required to operate over

a spectrum partially shared with other systems such as wireless communication

networks. Suppose there are D frequency bands {Γd}Dd=1 shared by the radar and

by the coexisting systems, where Γd = [fd,l, fd,u], with fd,l and fd,u denoting the

lower and upper normalized frequencies of the dth band, respectively. The amount
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of interfering energy generated by the radar waveform yθT in the dth shared band is

∫ fd,u

fd,l

∣∣∣∣∣
K−1∑
k=0

y
θT
,ke
−j2πfk

∣∣∣∣∣
2

df = yHθTΩdyθT , (4.2)

where

[
Ωd

]
v,h

=


fd,u − fd,l if v = h

ej2πfd,u(v−h) − ej2πfd,l(v−h)

j2π(v − h)
if v 6= h

(4.3)

for (v, h) ∈ {1, . . . , K}2. Let Ω =
∑D

d=1 ωdΩd be a weighted interference covariance

matrix, where the weights {ωd}Dd=1 are assigned based on practical considerations

regarding the impact of interference in the D bands. These include distance between

the radar transmitter and interferenced systems, and tactical importance of the

coexisting systems [46]. Given a radar waveform yθT = fθT (s), we define the spectral

compatibility penalty function as

Jspectrum(θT ) = yHθTΩyθT , (4.4)

which is the total interfering energy from the radar waveform produced on the shared

frequency bands.

4.3 Constrained Transmitter Design

In alternating training, the average loss (3.6) is modified by introducing a penalty

function J ∈ {JPAR, Jspectrum} for a fixed receiver parameter vector θR. Accordingly,
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we formulate the transmitter loss function, encompassing (3.6), (4.1) and (4.4), as

LπT,c(θT ) = LπT (θT ) + λJ(θT )

=
∑
i∈{0,1}

P (Hi)Ea∼π(a|yθT
)

z∼p(z|a,Hi)

{
`
(
fθR(z), i

)}
+ λJ(θT ).

(4.5)

where λ controls the weight of the penalty J(θT ), and is referred to as the penalty

parameter. When the penalty parameter λ is small, the transmitter is trained to

improve its ability to adapt to the environment, while placing less emphasis on

reducing the PAR level or interference energy from the radar waveform; and vice versa

for large values of λ. Note that the waveform penalty function J(θT ) depends only

on the transmitter trainable parameters θT . Thus, imposing the waveform constraint

does not affect the receiver training.

It is straightforward to write the estimated version of the gradient (4.5) with

respect to θT by introducing the penalty as

∇θT L̂πT,c(θT ) = ∇θT L̂πT (θT ) + λ∇θT J(θT ), (4.6)

where the gradient of the penalty function ∇θT J(θT ) is provided in Appendix A.

Substituting (3.8) into (4.6), we finally have the estimated gradient

∇θT L̂πT,c(θT ) =
1

QT

QT∑
q=1

`
(
fθR(z(q)), i(q)

)
∇θT lnπ(a(q)|yθT ) + λ∇θT J(θT ), (4.7)

which is used in the stochastic gradient update rule

θ
(n+1)
T = θ

(n)
T − ε∇θT L̂πT,c(θ

(n)
T ) for n = 1, 2, . . . . (4.8)
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Like alternating training, simultaneous training can be directly extended to

incorporate prescribed waveform constraints by adding the penalty term λJ(θT ) to

the average loss (3.10).
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CHAPTER 5

THEORETICAL PROPERTIES OF THE GRADIENTS

In this chapter, we discuss two useful theoretical properties of the gradients used for

learning receiver and transmitter.

5.1 Receiver Gradient

As discussed previously, end-to-end learning of transmitted waveform and detector

may be accomplished either by alternating or simultaneous training. The main

difference between alternating and simultaneous training concerns the update of

the receiver trainable parameter vector θR. Alternating training of θR relies on a

fixed waveform yθT (see Figure 3.1), while simultaneous training relies on random

waveforms a generated in accordance with a preset policy, i.e., a ∼ π(a|yθT ), as shown

in Figure 3.3. The relation between the gradient applied by alternating training,

∇θRLR(θR), and the gradient of simultaneous training, ∇θRL
π(θR,θT ), with respect

to θR is stated by the following proposition.

Proposition 1. For the loss function (3.1) computed based on a waveform yθT and

loss function (3.10) computed based on a stochastic policy π(a|yθT ) continuous in a,

the following equality holds:

∇θRLR(θR) = ∇θRLπ(θR,θT ). (5.1)

Proof. See Appendix B. �

Proposition 1 states that the gradient of simultaneous training, ∇θRLπ(θR,θT ),

equals the gradient of alternating training, ∇θRLR(θR), even though simultaneous
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training applies a random waveform a ∼ π(a|yθT ) to train the receiver. Note that

this result applies only to ensemble means according to Equation (3.3) and Equation

(3.11), and not to the empirical estimates used by Algorithms 1 and 2. Nevertheless,

Proposition 1 suggests that training updates of the receiver are unaffected by the

choice of alternating or simultaneous training. That said, given the distinct updates

of the transmitter’s parameter, the overall trajectory of the parameters (θR, θT )

during training may differ according to the two algorithms.

5.2 Transmitter Gradient

As shown in Chapter 3, the gradients used for learning receiver parameters θR by

alternating training (3.4) or simultaneous training (3.13) may be directly estimated

from the channel output samples z(q). In contrast, the gradient used for learning

transmitter parameters θT according to Equation (3.1) cannot be directly estimated

from the channel output samples. To obviate this problem, in Algorithms 1 and 2, the

transmitter is trained by exploring the space of transmitted waveforms according to a

policy π(a|yθT ). We refer to the transmitter loss gradient obtained via policy gradient

(3.12) as the RL transmitter gradient. The benefit of RL-based transmitter training is

that it renders unnecessary access to the likelihood function p(z|yθT ,Hi) to evaluate

the RL transmitter gradient, rather the gradient is estimated via samples. We now

formalize the relation of the RL transmitter gradient (3.12) and the transmitter

gradient for a known likelihood obtained according to Equation (3.1).

As mentioned, if the likelihood p(z|yθT ,Hi) were known, and if it were

differentiable with respect to the transmitter parameter vector θT , the transmitter

parameter vector θT may be learned by minimizing the average loss (3.1), which we

rewrite as a function of both θR and θT as

L(θR,θT ) =
∑
i∈{0,1}

P (Hi)Ez∼p(z|yθT
,Hi)
{
`
(
fθR(z), i

)}
. (5.2)
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The gradient of Equation (5.2) with respect to θT is expressed as

∇θTL(θR,θT ) =
∑
i∈{0,1}

P (Hi)Ez∼p(z|yθT
,Hi)
{
`
(
fθR(z), i

)
∇θT ln p(z|yθT ,Hi)

}
, (5.3)

where the equality leverages the following relation

∇θT p(z|yθT ,Hi) = p(z|yθT ,Hi)∇θT ln p(z|yθT ,Hi). (5.4)

The relation between the RL transmitter gradient ∇θTLπ(θR,θT ) in Equation

(3.12) and the transmitter gradient ∇θTL(θR,θT ) in (5.3) is elucidated by the

following proposition.

Proposition 2. If likelihood function p(z|yθT ,Hi) is differentiable with respect to the

transmitter parameter vector θT for i ∈ {0, 1}, the following equality holds

∇θTLπ(θR,θT ) = ∇θTL(θR,θT ). (5.5)

Proof. See Appendix C. �

Proposition 2 establishes that the RL transmitter gradient ∇θTLπ(θR,θT )

equals the transmitter gradient ∇θTL(θR,θT ) for any given receiver parameters θR.

Proposition 2 hence provides a theoretical justification for replacing the gradient

∇θTL(θR,θT ) with the RL gradient ∇θTLπ(θR,θT ) to perform transmitter training

as done in Algorithms 1 and 2.
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CHAPTER 6

NUMERICAL RESULTS

This chapter first introduces the simulation setup, and then it presents numerical

examples of waveform design and detection performance that compare the proposed

data-driven methodology with existing model-based approaches. While simulation

results presented in this chapter rely on various models of target, clutter and

interference, this work expressly distinguishes data-driven learning from model-based

design. Learning schemes rely solely on data and not on model information. In

contrast, model-based design implies a system structure that is based on a specific

and known model. Furthermore, learning may rely on synthetic data containing

diverse data that is generated according to a variety of models. On the contrary,

model-based design typically relies on a single model. For example, as we will see, a

synthetic dataset for learning may contain multiple clutter sample sets, each generated

according to a different clutter model. Conversely, a single clutter model is typically

assumed for model-based design.

6.1 Models, Policy, and Parameters

6.1.1 Models of target, clutter, and noise

The target is stationary, and has a Rayleigh envelope, i.e., α ∼ CN (0, σ2
α).

where σ2
α is the target power. The noise has a zero-mean Gaussian distribution with

correlation matrix Ωn = σ2
nIK + ΩI , where σ2

n is the thermal noise power level and

ΩI is the correlation matrix of signal-independent interference. Elements of ΩI are

[ΩI ]v,h = ρ|v−h| for (v, h) ∈ {1, . . . , K}2, where ρ is the one-lag correlation coefficient.

The clutter vector in Equation (2.4) is the superposition of returns from 2K − 1

consecutive range cells, reflecting all clutter illuminated by the K-length signal as it
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sweeps in range across the target. Accordingly, the clutter vector may be expressed

as [3]

c =
K−1∑

g=−K+1

γgJgy, (6.1)

where Jg represents the shifting matrix at the gth range cell with elements

[
Jg
]
v,h

=


1 if v − h = g

0 if v − h 6= g

(v, h) ∈ {1, · · · , K}2 . (6.2)

The magnitude |γg| of the gth clutter scattering coefficient is generated according to

a Weibull distribution [5]

p(|γg|) =
β

νβ
|γg|β−1 exp

(
− |γg|

β

νβ

)
, (6.3)

where β is the shape parameter and ν is the scale parameter of the distribution. Let

σ2
γg represent the power of the clutter scattering coefficient γg. The relation between

σ2
γg and the Weibull distribution parameters {β, ν} is [47]

σ2
γg = E{|γg|2} =

2ν2

β
Γ

(
2

β

)
, (6.4)

where Γ(·) is the Gamma function. The nominal range of the shape parameter is

0.25 ≤ β ≤ 2 [48]. In the simulation, the complex-valued clutter scattering coefficient

γg is obtained by multiplying a real-valued Weibull random variable |γg| with the

factor exp(jψg), where ψg is the phase of γg distributed uniformly in the interval
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(0, 2π). When the shape parameter β = 2, the clutter scattering coefficient γg follows

the Gaussian distribution γg ∼ CN (0, σ2
γg). A homogeneous clutter environment is

considered. Based on the assumed mathematical models of the target, clutter and

noise, the optimal detector in the NP sense is available (see details in Appendix D),

and the adaptive waveform for target detection can be obtained by maximizing the

signal-to-clutter-plus-noise ratio at the receiver output at the time of target detection

(see details in Appendix E).

6.1.2 Transmitter and receiver models

Waveform generation and detection is implemented using feedforward neural networks

as explained in Section 2.2. The transmitter f̃θT (·) is a feedforward neural network

with four layers, i.e., an input layer with 2K neurons, two hidden layers with M = 48

neurons, and an output layer with 2K neurons. The activation function is exponential

linear unit (ELU) [49]. The receiver f̃θR(·) is implemented as a feedforward neural

network with four layers, i.e., an input layer with 2K neurons, two hidden layers

with M neurons, and an output layer with one neuron. The sigmoid function is

chosen as the activation function. The layout of transmitter and receiver networks is

summarized in Table 6.1.

Table 6.1 Layout of the Transmitter and Receiver Networks

Transmitter f̃θT (·) Receiver f̃θR(·)
Layer 1 2-3 4 1 2-3 4

Dimension 2K M 2K 2K M 1

Activation - ELU Linear - Sigmoid Sigmoid

6.1.3 Gaussian policy

A Gaussian policy π(a|yθT ) is adopted for RL-based transmitter training. Accordingly,

the output of the stochastic transmitter follows a complex Gaussian distribution a ∼

π(a|yθT ) = CN
(√

1− σ2
pyθT ,

σ2
p

K
IK
)
, where the per-chip variance σ2

p is referred to as
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the policy hyperparameter. When σ2
p = 0, the stochastic policy becomes deterministic

[50], i.e., the policy is governed by a Dirac function at yθT . In this case, the policy

does not explore the space of transmitted waveforms, but it “exploits” the current

waveform. At the opposite end, when σ2
p = 1, the output of the stochastic transmitter

is independent of yθT , and the policy becomes zero-mean complex-Gaussian noise with

covariance matrix IK/K. Thus, the policy hyperparameter σ2
p is selected in the range

(0, 1), and its value sets a trade-off between exploration of new waveforms versus

exploitation of current waveform.

6.1.4 Training parameters

The initialization waveform s is a linear frequency modulated (LFM) pulse with

K = 16 complex-valued chips and chirp rate R = (100 × 103)/(40 × 10−6) Hz/s.

Specifically, the kth chip of s is given by

s(k) =
1√
K

exp
{
jπR

(
k/fs

)2}
(6.5)

∀k ∈ {0, . . . , K − 1}, where fs = 200 kHz. The signal-to-clutter ratio is defined as

SCR , 10 log10

{
σ2
α/σ

2
γ

}
, (6.6)

where σ2
γ is the aggregated clutter power of the range cells covered by the radar

waveform. The clutter-to-noise ratio is defined as

CNR , 10 log10

{
σ2
γ/σ

2
n

}
. (6.7)
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The training is performed at SCR = 10 dB and CNR = 20 dB. The one-lag correlation

coefficient of the signal-independent interference is ρ = 0.7. Letting the subscripts

“train” and “test” represent quantities associated with the training stage and testing

stage, respectively. Unless stated otherwise, we set SCRtrain = SCRtest, and the shape

parameters of the clutter distribution (6.3) βtrain = βtest = 2.

To obtain a balanced classification dataset, the training set is populated by

samples belonging to either hypothesis with equal prior probability, i.e., P (H0) =

P (H1) = 0.5. The number of training samples is set as QR = QT = Q = 212 in the

estimated gradients (3.4), (3.8), (3.13), and (3.14). Unless stated otherwise, the policy

parameter is set to σ2
p = 10−2, and the penalty parameter is λ = 0, i.e., there are no

waveform constraints. The Adam optimizer [51] is adopted to train the system over a

number of iterations chosen by trial and error. The learning rate is ε = 0.005. In the

testing phase, 2×105 samples are used to estimate the probability of false alarm (Pfa)

under hypothesis H0, while 5 × 104 samples are used to estimate the probability of

detection (Pd) under hypothesis H1. Receiver operating characteristic (ROC) curves

are obtained via Monte Carlo simulations by varying the threshold applied at the

output of the receiver. Results are obtained by averaging over fifty trials. Numerical

results presented in this section assume simultaneous training, unless stated otherwise.

6.2 Results and Discussion

This section shows results and discussion relating to the proposed approaches.

6.2.1 Simultaneous training versus training with known likelihood

We first analyze the impact of the choice of the policy hyperparameter σ2
p on the

performance on the training set. Figure 6.1 shows the empirical cross-entropy loss of

simultaneous training versus the policy hyperparameter σ2
p upon the completion of

the training process. The empirical loss of the system training with a known channel
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Figure 6.1 Empirical training loss versus policy hyperparameter σ2
p for simultaneous

training algorithm and training with known channel, respectively.

(5.2) is plotted as a comparison. It is seen that there is an optimal policy parameter σ2
p

for which the empirical loss of simultaneous training approaches the loss with known

channel. As the policy hyperparameter σ2
p tends to 0, the output of the stochastic

transmitter a is close to the waveform yθT , which leads to no exploration of the space

of transmitted waveforms. In contrast, when the policy parameter σ2
p tends to 1,

the output of the stochastic transmitter becomes a complex Gaussian noise with zero

mean and covariance matrix IK/K. In both cases, the RL transmitter gradient is

difficult to estimate accurately.

While Figure 6.1 evaluates the performance on the training set in terms of

empirical cross-entropy loss, the choice of the policy hyperparameter σ2
p should be

based on validation data and in terms of the testing criterion that is ultimately of
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Figure 6.2 ROC curves for training with known channel and simultaneous training
with different values of policy parameter σ2

p.

interest. To elaborate on this point, ROC curves obtained by simultaneous training

with different values of the policy hyperparameter σ2
p and training with known channel

are shown in Figure 6.2. As shown in the figure, simultaneous training with σ2
p = 10−2

achieves a similar ROC as training with known channel. The choice σ2
p = 10−2, also

has the lowest empirical training loss in Figure 6.1. These results suggest that training

is not subject to overfitting [52].

6.2.2 Simultaneous training versus alternating training

We now compare simultaneous and alternating training in terms of ROC curves in

Figure 6.3. ROC curves based on the optimal detector in the NP sense, namely,

the clairvoyant detector (D.5) and the adaptive/LFM waveform are plotted as

35



benchmarks. Moreover, the ROC curve based on the matched filter to the LFM

waveform (6.5) is illustrated as well. As shown in the figure, simultaneous training

provides a similar detection performance as alternating training. Furthermore,

both simultaneous training and alternating training are seen to result in significant

improvements as compared to training of only the receiver, and provide detection

performance comparable to adaptive waveform and clairvoyant detector.

Figure 6.3 ROC curves with and without transmitter training.

6.2.3 Simultaneous training with different SCRtest levels

Figure 6.4 shows how the end-to-end system trained by simultaneous training works

at different SCRtest levels, given Pfa = 10−4 and SCRtrain = 10 dB. As shown in

the figure, even though there is a mismatch in terms of SCR level utilized during

the training and testing stages, simultaneous training still provides a comparable
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Figure 6.4 Probability of detection Pd versus SCRtest level for simultaneous training
with probability of false alarm Pfa = 10−4 and SCRtrain = 10 dB.

detection performance with the adaptive waveform and the clairvoyant detector (D.5).

For instance, for SCRtest = 15 dB, both simultaneous training and detection via

adaptive waveform and clairvoyant detector yield Pd = 0.91, while detection via

LFM waveform (6.5) and clairvoyant detector yields Pd = 0.74.

6.2.4 Learning Gaussian and non-Gaussian clutter

Two sets of ROC curves under different clutter statistics are illustrated in Figure

6.5. Each set contains two ROC curves with the same clutter statistics: one curve is

obtained based on simultaneous training, and the other one is based on model-based

design. For simultaneous training, the shape parameter of the clutter distribution

(6.3) in the training stage is the same as that in the test stage, i.e., βtrain = βtest.
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Figure 6.5 ROC curves for Gaussian/non-Gaussian clutter. The end-to-end radar
system is trained and tested by the same clutter statistics, i.e., βtrain = βtest.

In the test stage, for Gaussian clutter (βtest = 2), the model-based ROC curve is

obtained by the adaptive waveform and the optimal detector in the NP sense. As

expected, simultaneous training provides a comparable detection performance with

the adaptive waveform and clairvoyant detector (also shown in Figure 6.3). In

contrast, when the clutter is non-Gaussian (βtest = 0.25), the optimal detector in

the NP sense is mathematically intractable. Under this scenario, the data-driven

approach is beneficial since it relies on data rather than a model. As observed in the

figure, for non-Gaussian clutter with a shape parameter βtest = 0.25, simultaneous

training outperforms the adaptive waveform and clairvoyant detector.
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6.2.5 Simultaneous training with mixed clutter statistics

The robustness of the trained radar system to the clutter statistics is investigated next.

As discussed previously, model-based design relies on a single clutter model, whereas

data-driven learning depends on a training dataset. The dataset may contain samples

from multiple clutter models. Thus, the system based on data-driven learning may be

robustified by drawing samples from a mixture of clutter models. In the test stage, the

clutter model may not be the same as any of the clutter models used in the training

stage. As shown in Figure 6.6, for simultaneous training, the training dataset contains

clutter samples generated from Equation (6.3) with four different values of shape

parameter βtrain ∈ {0.25, 0.5, 0.75, 1}. The test data is generated with a clutter shape

parameter βtest = 0.3 not included in the training dataset. The end-to-end leaning

radar system trained by mixing clutter samples provides performance gains compared

to a model-based system using an adaptive waveform and clairvoyant detector.

6.2.6 Simultaneous training under PAR constraint

Detection performance with waveforms learned subject to a PAR constraint is shown

in Figure 6.7. The end-to-end system trained with no PAR constraint, i.e., λ = 0,

serves as the reference. It is observed the detection performance degrades as the

value of the penalty parameter λ increases. Moreover, PAR values of waveforms with

different λ are shown in Table 6.2. As shown in Figure 6.7 and Table 6.2, there

is a trade-off between detection performance and PAR level. For instance, given

Pfa = 5× 10−4, training the transmitter with the largest penalty parameter λ = 0.1

yields the lowest Pd = 0.786 with the lowest PAR value 0.47 dB. In contrast, training

the transmitter with no PAR constraint, i.e., λ = 0, yields the best detection with the

largest PAR value 6.02 dB. Figure 6.8 compares the normalized modulus of waveforms

with different values of the penalty parameter λ. As shown in Figure 6.8 and Table
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Figure 6.6 ROC curves for non-Gaussian clutter. To robustify detection
performance, the end-to-end leaning radar system is trained with mixed clutter
statistics, while testing for a clutter model different than used for training.
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Figure 6.7 ROC curves for PAR constraint with different values of the penalty
parameter λ.

6.2, the larger the penalty parameter λ adopted in the simultaneous training, the

smaller the PAR value of the waveform.

Table 6.2 PAR Values of Waveforms with Different Values of Penalty Parameter λ

λ = 0 (reference) λ = 0.01 λ = 0.1

PAR [dB] (4.1) 6.02 2.70 0.47

6.2.7 Simultaneous training under spectral compatibility constraint

ROC curves for spectral compatibility constraint with different values of the penalty

parameter λ are illustrated in Figure 6.9. The shared frequency bands are Γ1 =

[0.3, 0.35] and Γ2 = [0.5, 0.6]. The end-to-end system trained with no spectral
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Figure 6.8 Normalized modulus of transmitted waveforms with different values of
penalty parameter λ.
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Table 6.3 Interfering Energy from Radar Waveforms with Different Values of
Penalty Parameter λ

λ = 0 (reference) λ = 0.5 λ = 5

Interfering energy [dB] (4.4) -5.95 -14.47 -26.40

compatibility constraint, i.e., λ = 0, serves as the reference. Training the transmitter

with a large value of the penalty parameter λ is seen to result in performance

degradation. Interfering energy from radar waveforms trained with different values

of λ are shown in Table 6.3. It is observed that λ plays an important role in

controlling the tradeoff between detection performance and spectral compatibility

of the waveform. For instance, for a fixed Pfa = 5 × 10−4, training the transmitter

with λ = 0 yields Pd = 0.79 with an amount of interfering energy −5.95 dB on the

shared frequency bands, while training the transmitter with λ = 5 creates notches

in the spectrum of the transmitted waveform at the shared frequency bands. Energy

spectral densities of transmitted waveforms with different values of λ are illustrated in

Figure 6.10. A larger the penalty parameter λ results in a lower amount of interfering

energy in the prescribed frequency shared regions. Note, for instance, that the nulls

of the energy spectrum density of the waveform for λ = 5 are much deeper than their

counterparts for λ = 0.5.
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Figure 6.9 ROC curves for spectral compatibility constraint with different values
of penalty parameter λ.

44



Figure 6.10 Energy spectral density of waveforms with different values of penalty
parameter λ.
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CHAPTER 7

END NOTES

In this dissertation, we have formulated the radar design problem as end-to-end

learning of waveform generation and detection. We have developed two training

algorithms, both of which are able to incorporate various waveform constraints into

the system design. Training may be implemented either as simultaneous supervised

training of the receiver and RL-based training of the transmitter, or as alternating

between training of the receiver and of the transmitter. Both training algorithms

have similar performance. We have also robustified the detection performance by

training the system with mixed clutter statistics. Numerical results have shown

that the proposed end-to-end learning approaches are beneficial under non-Gaussian

clutter, and successfully learn the transmitted waveform to adapt to actual statistics

of environmental conditions, while satisfying operational constraints.
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APPENDIX A

GRADIENT OF PENALTY FUNCTIONS

In this appendix, the respective gradients of the penalty functions (4.1) and (4.4)

are derived with respect to the transmitter parameter vector θT . To facilitate the

presentation, let yθT
represent a 2K×1 real vector comprising the real and imaginary

parts of the waveform yθT , i.e., yθT
=
[
<(yθT ),=(yθT )

]T
.

Gradient of PAR Penalty Function As discussed in Section 4.1, the transmitted

power is normalized such that ||yθT ||2 = ||yθT
||2 = 1. Let subscript “max” represent

the chip index associated with the PAR value (4.1). By leveraging the chain rule, the

gradient of Equation (4.1) with respect to θT is written

∇θT JPAR(θT ) = ∇θTyθT
· gPAR, (A.1)

where gPAR represents the gradient of the PAR penalty function JPAR(θT ) with respect

to yθT
, and is given by

gPAR =

 [0, . . . , 0, 2K<(yθT ,max), 0, . . . , 0]T

[0, . . . , 0, 2K=(yθT ,max), 0, . . . , 0]T

 . (A.2)

Gradient of Spectral Compatibility Penalty Function According to the chain

rule, the gradient of Equation (4.4) with respect to θT is expressed

∇θT Jspectrum(θT ) = ∇θTyθT
· gspectrum, (A.3)
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where gspectrum denotes the gradient of the spectral compatibility penalty function

Jspectrum(θT ) with respect to yθT
, and is given by

gspectrum =

 2<
[
(ΩyθT )∗

]
−2=

[
(ΩyθT )∗

]
 . (A.4)
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APPENDIX B

PROOF OF PROPOSITION 1

This appendix provides the proof of Proposition 1.

Proof. The average loss function of simultaneous training Lπ(θR,θT ) (3.10) could be

expressed

Lπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)

∫
A
π(a|yθT )

∫
Z
`
(
fθR(z), i

)
p(z|a,Hi)dzda. (B.1)

As discussed in Section 2.2, the last layer of the receiver implementation consists of a

sigmoid activation function, which leads to the output of the receiver fθR(z) ∈ (0, 1).

Thus there exists a constant b such that supz,i `
(
fθR(z), i

)
< b < ∞. Furthermore,

for i ∈ {0, 1}, the instantaneous values of the cross-entropy loss `
(
fθR(z), i

)
, the

policy π(a|yθT ), and the likelihood p(z|a,Hi) are continuous in variables a and z.

By leveraging Fubini’s theorem [53] to exchange the order of integration in (B.1), we

have

Lπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)

∫
Z
`
(
fθR(z), i

) ∫
A
p(z|a,Hi)π(a|yθT )dadz. (B.2)

Note that for a waveform yθT and a target state indicator i, the product between the

likelihood p(z|a,Hi) and the policy π(a|yθT ) becomes a joint PDF of two random

variables a and z, namely,

p(z|a,Hi)π(a|yθT ) = p(a, z|yθT ,Hi). (B.3)
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Substituting (B.3) into (B.2), we obtain

Lπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)

∫
Z
`
(
fθR(z), i

) ∫
A
p(a, z|yθT ,Hi)dadz

=
∑
i∈{0,1}

P (Hi)

∫
Z
`
(
fθR(z), i

)
p(z|yθT ,Hi)dz,

(B.4)

where the second equality holds by integrating the joint PDF p(z, a|yθT ,Hi) over the

random variable a, i.e.,
∫
A p(a, z|yθT ,Hi)da = p(z|yθT ,Hi).

Taking the gradient of (B.4) with respect to θR, we have

∇θRLπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)

∫
Z
p(z|yθT ,Hi)∇θR`

(
fθR(z), i

)
dz

= ∇θRLR(θR),

(B.5)

where the second equality holds via Equation (3.3). Thus, the proof of Proposition 1

is completed. �
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APPENDIX C

PROOF OF PROPOSITION 2

In this appendix, the proof of Proposition 2 is provided.

Proof. According to Equation (B.4), the gradient of the average loss function of

simultaneous training with respect to θT is given by

∇θTLπ(θR,θT ) =
∑
i∈{0,1}

P (Hi)

∫
Z
`
(
fθR(z), i

)
∇θT p(z|yθT ,Hi)dz

= ∇θTL(θR,θT ),

(C.1)

where the last equality holds by Equation (5.3). The proof of Proposition 2 is

completed. �
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APPENDIX D

OPTIMAL NP DETECTOR IN GAUSSIAN CLUTTER

In this appendix, the optimal detector in the NP sense is derived for Gaussian clutter,

i.e., when β = 2. Denote the covariance matrices of the target response and the clutter

as Ωs and Ωc, respectively. With the assumptions in Section 6.1, we have covariance

matrix Ωs given by

Ωs = E
[
(αy)(αy)H

]
= σ2

αyyH ,

(D.1)

and covariance matrix Ωc given by

Ωc = E
[
ccH

]
=

K−1∑
g=−K+1

σ2
γgJgyyHJHg .

(D.2)

After applying the logarithm to Equation (2.6) and neglecting the terms that

are independent of the received signal z, the NP decision rule can be expressed as

zH
[
(Ωc + Ωn)−1 − (Ωs + Ωc + Ωn)−1

]
z
H1

≷
H0

T
′

Λ, (D.3)
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where T
′
Λ is a modified threshold. By leveraging the Woodbury matrix inversion

lemma, we have

(Ωs + Ωc + Ωn)−1

= (Ωc + Ωn)−1 − κ(Ωc + Ωn)−1yyH(Ωc + Ωn)−1,

(D.4)

where κ =
[
1/σ2

α + yH(Ωc + Ωn)−1y
]−1

is a positive scalar, which is independent of

the received signal z. Substituting (D.4) into (D.3), we obtain the optimal detector

∣∣zH(Ωc + Ωn)−1y
∣∣2 H1

≷
H0

κ−1T
′

Λ. (D.5)

Note that analytical expressions of the probability of false alarm and probability

of detection are available when the clutter is Gaussian. Let zw = Dz with D =(
Ωc + Ωn

)−1/2
. The binary hypothesis testing problem (2.5) could be equivalently

expressed as


H0 : zw ∼ CN

(
0, IK

)
H1 : zw ∼ CN

(
0, IK + DΩsD

)
.

(D.6)

According to the estimator-correlator theorem [1], the test statistic for (D.6) is given

by

T (zw) = zHwDΩsD(IK + DΩsD)−1zw. (D.7)
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Let VξVH represent the eigenvalue decomposition of DΩsD in Equation (D.7), where

V is a unitary matrix including column eigenvectors, and ξ is a diagonal matrix

containing eigenvalues of DΩsD. Then, the test statistic (D.7) can be written as

T (zw) = zHwVξ(IK + ξ)−1VHzw. (D.8)

By defining r = VHzw, the covariance matrix of the random vector r under H0

hypothesis is given by

E
{
rrH |H0

}
= E

{
VHzwzHwV|H0

}
= VHIKV

= IK ,

(D.9)

and the covariance matrix of the random vector r under H1 hypothesis is given by

E
{
rrH |H1

}
= E

{
VHzwzHwV|H1

}
= VH(IK + DΩsD)V

= IK + ξ.

(D.10)

As indicated in Equation (D.1), the rank of the target covariance matrix Ωs equals

one. Accordingly, we rewrite the test statistic (D.8) as

T (zw) =
ξ

ξ + 1
|r|2, (D.11)

where
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ξ = σ2
αy

H(Ωc + Ωn)−1y (D.12)

is the positive eigenvalue. From Equations (D.9) and (D.10), the binary hypothesis

testing problem (D.6) can be further written as


H0 : r ∼ CN

(
0, 1
)

H1 : r ∼ CN
(
0, 1 + ξ

)
.

(D.13)

In order to characterize the statistics of |r|2 in Equation (D.11), we express |r|2

in terms of the real and imaginary parts of r as follows


H0 : |r|2 =

1

2

{[
<(r)√

1/2

]2

+

[
=(r)√

1/2

]2}
H1 : |r|2 =

1 + ξ

2

{[
<(r)√

(1 + ξ)/2

]2

+

[
=(r)√

(1 + ξ)/2

]2}
.

(D.14)

Thus, we have


H0 : 2|r|2 ∼ X 2

2

H1 :
2

1 + ξ
|r|2 ∼ X 2

2 ,
(D.15)

where X 2
2 represents the chi-square distribution with 2 degrees of freedom. From

Equations (D.11) and (D.15), the detection performance can by found by noting that
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H0 :

2(1 + ξ)

ξ
T (zw) ∼ X 2

2

H1 :
2

ξ
T (zw) ∼ X 2

2 .

(D.16)

Given a threshold T
′′
Λ , the probability of false alarm is therefore

Pfa = Pr{T (zw) > T
′′

Λ |H0}

= Pr

{
2(1 + ξ)

ξ
T (zw) >

2(1 + ξ)

ξ
T

′′

Λ

∣∣∣∣H0

}
= QX 2

2

(
2(1 + ξ)

ξ
T

′′

Λ

)
,

(D.17)

and the probability of detection is given by

Pd = Pr{T (zw) > T
′′

Λ |H1}

= Pr

{
2

ξ
T (zw) >

2

ξ
T

′′

Λ

∣∣∣∣H1

}
= QX 2

2

(
2

ξ
T

′′

Λ

)
,

(D.18)

where QX 2
2
(·) denotes the right-tail probability for a chi-square random variable with

2 degrees of freedom.

From (D.17), the probability of false alarm is

Pfa =

∫ +∞

2(1+ξ)
ξ

T
′′
Λ

1

2
exp−x/2 dx

= exp

{
− 1 + ξ

ξ
T

′′

Λ

}
.

(D.19)
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The threshold setting in terms of Pfa is

T
′′

Λ = − ξ

1 + ξ
lnPfa. (D.20)

From Equation (D.18), the probability of detection is

Pd =

∫ +∞

2
ξ
T

′′
Λ

1

2
exp−x/2 dx

= exp

{
− 1

ξ
T

′′

Λ

}
.

(D.21)

Substituting (D.20) into (D.21), the analytical expression of the detection probability

Pd as a function of the false alarm probability Pfa is given by

Pd = P
1

1+ξ

fa . (D.22)
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APPENDIX E

RADAR WAVEFORM DESIGN FOR TARGET DETECTION

This appendix reviews the radar waveform design for target detection via the

sequential optimization algorithm.

Assume that the received signal z is filtered through h, such that the signal-to-

clutter-plus-noise ratio at the output of the filter is given by

SCNR =
σ2
α|hHy|2

hH(Ωc + Ωn)h
. (E.1)

Thus, the radar waveform y and the receiver filter h can be obtained jointly by solving

the following constrained optimization problem

max
y,h

|hHy|2

hH(Ωc + Ωn)h

s.t. yHy = 1.

(E.2)

Since the optimization problem (E.2) is not convex with a non-convex objective

function and a constant waveform power constraint, it is difficult to obtain a globally

optimal solution. We aim to find a locally optimal solution of the waveform y and

the receiver filter h iteratively. Specifically, at the nth iteration, we optimize the

receiver filter h(n) given the waveform y = y(n−1), attained at the previous iteration;

subsequently, the transmitted waveform is optimized with the receiver filter h(n)

obtained at the previous step. The details of the iterative algorithm are presented

next.
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Given the waveform y = y(n−1), we aim at finding the optimal value of the

receiver filter h(n) for the optimization problem (E.2). At the nth iteration, we

evaluate the receiver filter h(n) by solving the following unconstrained optimization

problem

max
h

|hHy|2

hH(Ωc + Ωn)h
. (E.3)

As discussed in [54], the problem (E.3) may be recast as

min
h

hH(Ωc + Ωn)h

s.t. hHy = 1.

(E.4)

Note that the solution to (E.4) is well-known [55], and is given by

h∗ = µy(Ωc + Ωn)−1y, (E.5)

where µy = [yH(Ωc + Ωn)−1y]−1 is a constant, which is used to ensure the equality

constraint in (E.4). Thus, the optimal value of the receiver filter at the nth iteration

is h(n) = h∗.

Next we aim to optimize the waveform y(n) given the receiver filter h = h(n).

From Equation (E.2), the waveform y(n) is evaluated by solving the following problem

max
y

|hHy|2

hH(Ωc + Ωn)h

s.t. yHy = 1.

(E.6)
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Plugging Equation (D.2) into the objective function of (E.6), we have

|hHy|2

hH(Ωc + Ωn)h
=

|hHy|2

hH
(∑K−1

g=−K+1 σ
2
γgJgyyHJHg + Ωn

)
h

=
|hHy|2∑K−1

g=−K+1 σ
2
γgh

HJgyyHJHg h + hHΩnh · 1
.

(E.7)

Substituting the waveform power constraint into (E.7), the objective function of (E.6)

could be further rewritten

|hHy|2

hH(Ωc + Ωn)h
=

|hHy|2∑K−1
g=−K+1 σ

2
γgh

HJgyyHJHg h + hHΩnh · yHy

=
|hHy|2∑K−1

g=−K+1 σ
2
γgy

HJHg hhHJgy + yH(hHΩnh · IK)y

=
|hHy|2

yH
(∑K−1

g=−K+1 σ
2
γgJ

H
g hhHJg + hHΩnh · IK

)
y

(E.8)

For notational simplicity, let

Ωc,h =
K−1∑

g=−K+1

σ2
γgJ

H
g hhHJg, (E.9)

and

Ωn,h = hHΩnh · IK . (E.10)

Based on (E.8)-(E.10), the optimization problem (E.6) becomes
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max
y

|hHy|2

yH(Ωc,h + Ωn,h)y

s.t. yHy = 1.

(E.11)

According to the Proposition 1 in [54], the above optimization problem could

be relaxed to the following unconstrained problem

max
y

|hHy|2

yH(Ωc,h + Ωn,h)y
. (E.12)

Similar to the problem (E.3), the problem (E.12) could be recast as

min
y

yH(Ωc,h + Ωn,h)y

s.t. hHy = 1.

(E.13)

The solution to (E.13) is well-known [55], and is given by

y∗ = µh(Ωc,h + Ωn,h)
−1h, (E.14)

where µh = [hH(Ωc,h + Ωn,h)
−1h]−1 is a constant, which is used to ensure the

constraint in (E.13). Then, the optimal value of the waveform at the nth iteration is

obtained via y(n) = y∗/||y∗||.

The optimization process is carried out until the improvement of the signal-

to-clutter-plus-noise ratio level (E.1) becomes insignificant. The design of radar

waveform for target detection is summarized in Algorithm 3.
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Algorithm 3: Waveform Optimization for Target Detection

Input: noise covariance matrix Ωn; clutter power {σ2
γg}

K−1
g=−K+1

Output: optimal waveform y

1 initialize waveform y(0) and receiver filter h(0), and set n = 0

2 while stopping criterion not satisfied do

3 calculate Ωc (D.2) with y = y(n−1)

4 find the receiver filter h(n) = h∗ via (E.5)

5 calculate Ωc,h (E.9) and Ωn,h (E.10) with h = h(n)

6 find y∗ via (E.14)

7 update the waveform y(n) = y∗/||y∗||
8 n← n+ 1

9 end
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