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ABSTRACT

CONVERGENCE OF THE BOUNDARY INTEGRAL METHOD FOR
INTERFACIAL STOKES FLOW

by
Keyang Zhang

Boundary integral numerical methods are among the most accurate methods for

interfacial Stokes flow, and are widely applied. They have the advantage that only

the boundary of the domain must be discretized, which reduces the number of

discretization points and allows the treatment of complicated interfaces. Despite

their popularity, there is no analysis of the convergence of these methods for

interfacial Stokes flow. In practice, the stability of discretizations of the boundary

integral formulation can depend sensitively on details of the discretization and on

the application of numerical filters. A convergence analysis of the boundary integral

method for Stokes flow is presented focusing on a variant of the method of [22] for

computing the evolution of an elastic capsule in two dimensional strain and shear

flows. The analysis clarifies the role of numerical filters in practical computations.
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CHAPTER 1

INTRODUCTION

Boundary integral (BI) methods, or BIM, are among the most popular methods for

computing interfacial fluid flow. They have been applied to compute the evolution of

vortex sheets in the Kelvin-Helmholtz and Rayleigh-Taylor instabilities [5],[39],[43],

Hele-Shaw flow [25],[31],[15], water waves [9],[26], and crystal growth [30],[42]. They

have also been extensively applied in Stokes flow to simulate the evolution of drops,

bubbles, elastic capsules and vesicles [44],[36],[22]. The methods only apply in

problems that have a Green’s function formulation. In fluid dynamics, this includes

the important special cases of potential flow and Stokes flow. They also apply

to boundary value problems outside of fluid dynamics, including linear elasticity,

electrostatics, electromagnetic wave propagation (i.e., the Helmholtz equation) and

related areas [14],[19].

The main advantage of boundary integral methods is that they reduce the

dimension of the problem by involving only surface quantities [36], which both

simplifies the handling of complex geometries and reduces the number of discretization

points. Another significant advantage is that they can be made to have high accuracy.

Boundary integral methods use a sharp interface formulation, and in contrast to

so-called interface capturing methods such as the level-set or the immersed boundary

method they do not lose accuracy due to ‘smearing’ of the interface. Spectrally

accurate discretizations of boundary integral formulations have been implemented

for 2D interfacial flow, see [27],[28],[35] and references therein. High order accurate

discretizations of axisymmetric and 3D flow problems, although still a subject of

current research, are increasingly common [41], [47]. As a result, boundary integral

methods are a good choice in problems that demand high accuracy.
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One of the greatest challenges in the practical implementation of boundary

integral methods for time evolution problems is that they are very sensitive

to numerical instabilities. If left uncontrolled, these instabilities will dominate

and adversely affect the accuracy of computations. Numerical instabilities have

been observed in surface and interfacial wave calculations for inviscid fluids by

Longuet-Higgins and Cokelet [32], Baker, Meiron and Orszag [6], and Dold [17]. In

these prior research, the instability was delayed but not completely eliminated by the

application of smoothing techniques.

Computations of interfacial flows with surface or elastic membrane tension are

much more sensitive to numerical instabilities due to the presence of high-order spatial

derivatives. Straightforward discretizations of surface tension terms may lead to

numerical instabilities. Pullin [39] experienced this difficulty first in computations of

inviscid interfacial flow. Utilizing a boundary integral method for two fluid interfacial

flows, Pullin noticed that small-scale corrugations appeared in regions of high

curvature when surface tension is present. Eventually, the appearance of numerical

instability linked with surface tension led to breakdown of the computations.

Linear analysis of discrete equations about equilibrium has identified common

sources of numerical instabilities in BIM. For example, Baker and Nachbin [4] applied

normal mode analysis to several BI schemes to study the linear evolution of periodic

perturbations of a flat vortex sheet. With this linear analysis, they were able

to identify common reasons for numerical instability. However, their research did

account for the influence of nonlinearites and perturbations far from equilibrium.

Another major challenge in numerical simulations of interfacial flows with

surface tension, especially with elastic membranes, is numerical stiffness associated

with the time discretization. Here stiffness means that there is a constraint that the

time-step size must depend on the spatial-step size. The stiffness is due to terms with

high-order derivatives introduced into the interface dynamics by surface tension. This
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kind of numerical stiffness can be removed by utilizing implicit methods, but since the

high derivatives are inside nonlocal operators, this is difficult to implement efficiently.

In [25], Hou, Lowengrub and Shelley, hereafter referred to as HLS, developed an

efficient method to remove the high-order stiffness in computing the motion of fluid

interfaces with surface tension in two-dimensional, irrotational and incompressible

fluids. Their scheme is based on a boundary integral formulation using two natural

variables: the tangent angle θ, and an equal-arclength parameter α, so that ∂s
∂α

is

constant in α (here s(α, t) measures arclength from a reference point at α = 0).

This BI formulation is called the θ − sα formulation. We adapt this formulation to

Stokes flow with elastic surfaces in our work. HLS further reformulate the equations

to isolate the leading order stiff terms in such a way that they can then be treated

implicitly in time discretizations in an efficient way [25], [24].

There are relatively few analyses of the convergence of BI methods. Beale,

Hou and Lowengrub [9], hereafter referred to as BHL, gave a convergence proof of

a BI method for water waves in two dimensions with or without surface tension.

Applying a framework developed in [8] for linearized motion perturbed about an

arbitrary smooth solution, BHL discovered that very delicate balances among terms

in singular integrals and derivatives must be preserved at the discrete level in order

to ensure numerical stability. They also noticed that numerical filtering is necessary

at certain places to prevent the discretization from producing new instabilities in

the high modes. This filtering depends on the particular approach for approximating

spatial derivatives and quadrature rules for singular integrals. Ceniceros and Hou [13]

generalized the analysis of [9] to include two-phase flow and surface tension, using the

θ − sα formulation of [25]. Hou and Zhang [26] generalized the analysis of [9] to 3D.

Ambrose, Liu and Siegel [3] prove convergence of a boundary integral method for 3D

Darcy-law flow with surface tension.

3



Despite the significance of the above mentioned stability and convergence

analysis for boundary integral methods in the water wave problem, there is no

convergence analysis that we are aware of for the important case of interfacial Stokes

flow. In this research, we provide such an analysis. The main difficulty of this analysis,

compared to previous convergence studies for water waves, is a more complicated

boundary integral formulation for the Stokes problem, and the presence of high

derivatives in the boundary condition for an elastic membrane.

In the analyses of the stability of our method, we make significant use of the

stabilizing effects of the highest derivative or leading order terms (so-called parabolic

smoothing) to control lower order terms. In the water wave problem, it was found

that strategically placed numerical filtering was necessary to prevent instabilities due

to aliasing error from growing and destroying the computation. We similarly find

that a targeted application of numerical filtering is necessary to prove stability in

the Stokes-interface problem. This is consistent with numerical implementations of

spectrally accurate methods for the evolution of drops, bubbles and elastic capsules in

Stokes flow [22],[46],[35], which also find the need for some form of numerical filtering

for stability. However, to make use of the parabolic smoothing, we find it important

that numerical filtering not be applied to the leading order or highest derivative terms.

Based on the analysis, we present a numerical scheme that utilizes a minimal amount

of filtering yet is provably stable.

For concreteness, we consider the problem of the evolution of a Hookean elastic

capsule in 2D Stokes flow, for an externally imposed straining or shearing flow. An

elastic capsule is a drop or bubble that is enclosed by a thin, elastic membrane and

suspended in an external liquid. It serves as a simple mechanical model of a cell or

vesicle that is deformed by a fluid flow. Numerical studies of capsules in fluid flow

have been performed with various membrane constitutive laws including Hookean [10],

[22], neo-Hookean or Skalac [16], [45], and inextensible membranes [44]. Pozrikidis
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[38] gives an overview of some of the early numerical studies of capsules in fluid flow,

while a more recent review is provided by Barthes-Biesel [7].

In this research, we adapt a spectrally accurate numerical method for the

evolution of a capsule in an extensional flow that was developed in [22]. The method

of [22] was developed for the special case of an inviscid interior fluid and zero bending

stress on the membrane surface. We generalize the method to include both a nonzero

membrane bending stress and a viscous interior fluid, and analyze its convergence.

For the closely related problem of: (i) an inviscid bubble or viscous drop, or (ii)

an inextensible vesicle membrane evolving in an extensional Stokes flow, nonstiff

BI methods have been by developed by Xu et al. [46], Veerapaneni et al. [44],

and Sohn et al. [40] and extensively used in simulations. The nonstiff method

for elastic capsules analyzed in this research is adapted from the method for drops

in Xu et al. [46] to include Hookean membrane tension and interfacial bending

stresses. We utilize the arclength-angle formulation of [25],[46],[27] to remove the

numerical stiffness. Our reformulation makes use of a complex-variable description

of the problem known as the Sherman−Lauricella formulation. Nonlocal convolution

integrals in this formulation can be computed using spectrally accurate alternate

point trapezoidal rule [23].

The governing equations for our problem are presented in Chapter 2. The BI

formulation is presented in Chapter 3. For our BI formulation, we present in Chapter 4

a spectrally accurate numerical discretization. Several preliminary lemmas are stated

and proven in Chapter 5 which provide error estimates on numerical differentiation,

integration, and filtering operators. We then prove consistency of our numerical

method in Chapter 6. The statement of the main convergence theorem, Theorem

7.0.2, is given in Chapter 7. Some preliminary estimates used in the proof of stability

are given Chapters 8 and 9. Evolution equations for the errors are presented in

Chapter 10, and energy estimates and the final proof of stability and Theorem 7.0.2
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are given in Chapter 11. Concluding remarks are provided in Chapter 12. A proof

of a critical lemma and estimates of nonlinear terms in the variation are given in the

Appendix.
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CHAPTER 2

PROBLEM FORMULATION

We present the governing equations for a single elastic capsule in 2D Stokes flow. The

exterior fluid domain is denoted by Ω, and we use a superscript i for variables and

parameters in the inner fluid, and the membrane surface is given by ∂Ω = γ.

The drop and exterior fluid are assumed to have the same density, so

gravitational effects are absent. On γ the unit normal vector n points toward the

exterior fluid. The unit tangent t points in the direction such that the interior

fluid is to the right as γ is traversed clockwise. We define an angle θ measured

counterclockwise positive from the positive x−axis to t. The geometry is illustrated

in Figure 2.1. The local curvature of the interface is κ = −∂θ
∂s

and is positive when

Figure 2.1 Fluid drop with viscosity λµ occupying region Ωi is immersed in a fluid
with viscosity µ occupying region Ω
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the shape is convex. Here, s is an arclength parameter that increases as γ is traversed

clockwise.

In dimensionless form, the Stokes equations governing fluid flow are:{
∆u = ∇p, ∇ · u = 0, x ∈ Ω, (2.1)

λ∆ui = ∇pi, ∇ · ui = 0, x ∈ Ωi, (2.2)

where p(x) and u(x) are the pressure and velocity fields and λ = µi

µ
is the viscosity

ratio. The fluid velocity is taken to be continuous across the interface, i.e., u(x) =

ui(x) for x ∈ γ.

The area enclosed by the capsule is conserved, and lengths are nondimension-

alized by the radius R of the circular capsule with the same area. Velocities are

nondimensionalized by U , where U will be specified below. Time is nondimension-

alized by R
U

, and pressure by Uµ
R

. At t = 0 the capsule can have arbitrary shape and

membrane tension.

The no slip condition on the capsule surface is given by

dx

dt
= u(x, t) for x ∈ γ, (2.3)

Equation (2.3) satisfies the kinematic condition that dx
dt
·n = u ·n on γ. The far-field

boundary condition is taken to be a general incompressible linear flow:

lim
|x|→∞

u(x) = u∞(x) =

 Q B + G
2

B − G
2
−Q

x, (2.4)

where the dimensionless parameter (Q,B,G) are equal to their dimensional counterparts

Q∞, etc, times the time scale R
U

; i.e., (Q,B,G) = R
U

(Q∞, B∞, G∞). The far-field flow

is a pure strain if B = G = 0, and a linear shear flow if Q = 0 and G = 2B. At the

elastic membrane interface, we have the additional boundary condition that the total

interfacial stress f is balanced by the jump in fluid stress across the interface:[
T · n

]
= f , (2.5)
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where T = −p+ 2Eij and T i = −pi + 2λEi
ij, and where:

Eij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, (2.6)

is the stress tensor. Here
[
·
]

denotes the jump:

[
g
]

= g − gi for x ∈ γ. (2.7)

An expression for the interfacial stress f on the right hand side of Equation (2.5)

is obtained in [37] by an analysis of interfacial forces and torques, or more specifically,

interfacial tensions and bending moments. The result is given in Equation (3.16) of

[37], which in our notation is:

f = − ∂

∂s

(
St + qBn

)
(2.8)

where S = S(s) is the surface tension, and qB(s) = dmB
ds

with mB = mB(s) the

bending moment. The constitutive equation for the bending moment m is assumed

to be the simple linear relation:

mB(s) = κBκ(s) (2.9)

where κB is the (dimensionless) bending modulus, and κ(s) is the interfacial curvature.

For the sake of simplicity, we consider a membrane with a Hookean or linear elastic

response, for which the dimensional tension is given by [36]:

S̃ = E(η − 1), η =
∂s

∂sR
. (2.10)

Here η is the stretch ratio between arclength s of the membrane at time t, and

arclength sR in a reference configuration in which there is no tension in the membrane.

The tension is nondimensionalized by E, so that in dimensionless form:

S = η − 1. (2.11)

9



We also now define the characteristic velocity which is used for nondimensionalization

as U = E
µ

.
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CHAPTER 3

BOUNDARY INTEGRAL FORMULATION

A boundary integral formulation for an elastic capsule or vesicle in 2D Stokes flow

with an inextensible membrane is given by Veerapaneni et al. [44]. Their formulation

uses a single layer potential S[f ](x) to represent the velocity, where:

S[f ] =

∫
γ

Gs(x,y)f(y)dsy, (3.1)

and where the 2D Stokes free space kernel Gs is given by:

Gs(x,y) =
1

4π

(
− ln ρI +

r⊗ r

ρ2

)
, r = x− y, ρ = ‖r‖2. (3.2)

Because of the log singularity in Gs, Veerapaneni et al. [44] employ a special form

of Gauss−Legendre quadrature due to Alpert [2] to discretize the integral. While

accurate, this quadrature is rather complicated and for this and other reasons an

analysis of the discrete equations for their method is difficult. We instead adapt

the Sherman-Lauricella formulation [29],[27] to the membrane problem. This is a

complex variable formulation, for which the primitive variables are expressed in terms

of integral over a single complex density that is defined on the drop interface and

satisfies a Fredholm second kind equation. It has been used to solve Stokes equations

for fluid flow in [29],[46],[20],[27],[28]. This formulation will be more convenient for

analysis.

A stream function is introduced for each region, so that:

(u1, u2) = (Wx2 ,−Wx1), x ∈ Ω,

(ui1, u
i
2) = (W i

x2
,−W i

x1
), x ∈ Ωi. (3.3)

The formulation for each region is similar, so we focus on the exterior region.
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The curl of Equations (2.1)−(2.2) implies that:

∇4W = 0, x ∈ Ω, (3.4)

i.e., W (x1, x2) = u1(x1, x2) + iu2(x1, x2) is a biharmonic function, and similarly

for W i(x1, x2) = ui1(x1, x2) + iui2(x1, x2). It follows that W (x1, x2) has a Goursat

representation:

W (x1, x2) = Re
(
zf(z) + h(z)

)
, z ∈ Ω, (3.5)

where f(z) and g(z) are analytic functions of the complex variable z = x1 + ix2 on Ω

([15],[11]).

The functions f(z) and g(z) = h′(z) are known as Goursat functions. Similarly,

W i(x1, x2) = Re
(
zf i(z)+hi(z)

)
for z ∈ Ωi, where f i(z) and hi(z), with gi(z) = hi

′
(z),

are analytic in Ωi.

The primitive variables and their spatial derivatives in the exterior and interior

regions can be expressed in terms of the Goursat functions; see, for example, [30]. In

the exterior domain, z ∈ Ω,

−u2 + iu1 = f(z) + zf ′(z) + g(z), (3.6)

q + ip = −4f ′(z), (3.7)

E11 + iE12 = −E22 + iE21 = −i
(
zf”(z) + g′(z)

)
. (3.8)

Here, q is the fluid vorticity, with ω = ∇× u =
(
∂x1u2 − ∂x2u1

)
e3 = qe3. Analogous

expressions hold for the interior domain, with the exception that qi + i
(
pi

λ

)
= 4f i

′
(z)

for z ∈ Ωi.

As shown in [11], the far-field velocity conditions imply that:

f(z) =
G

4
z +H(t) +O(|z|−2),

g(z) = −(B + iQ)z +H(t) +O(|z|−2), (3.9)

12



as |z| → ∞, where H(t) is an as yet arbitrary function of time.

The surface stress exerted on the interface γ by material in the exterior domain,

per Equation (2.5), is −pn + 2E · n = (f1, f2), which has complex counterpart:

f1 + if2 = 2
∂

∂s

{
lim
z→τ+

(
f(z)− zf ′(z)− g(z)

)}
, (3.10)

where the limit indicates that z approaches a point τ on γ from the exterior domain.

A similar expression multiplied by λ holds for the surface stress due to material in

the interior domain. The difference is equal to the total interfacial stress f given in

Equation (2.8). The stress balance condition can be integrated with respect to s to

obtain:

lim
z→τ+

(
f(z)− zf ′(z)− g(z)

)
− λ lim

z→τ−

(
f i(z)− zf i′(z)− gi(z)

)
= −1

2

(
(S + κBκ

2)τs − κBτsss
)
, (3.11)

where S = S(τ, t). The right hand side of (3.11) is the complex counterpart of

Equations (2.8), (2.9). The freedom of choice in specifying the Goursat functions

allows us to set to zero a function of time that results from the integration.

In the Sherman-Lauricella formulation, the Goursat functions are written in

terms of Cauchy-type integrals that contain a single complex density ω(z, t), defined

on the time-evolving interface γ, and where the integrals give the modification to the

imposed far-field flow that is caused by the drop. The representation is such that, if

we introduce:

f o(z) =
1

2πi

∫
γ

ω(ζ, t)

ζ − z
dζ +

Gz

4
+H(t),

go(z) =
1

2πi

∫
γ

−w(ζ, t)dζ + w(ζ, t)dζ

ζ − z
− 1

2πi

∫
γ

ζω(ζ, t)

(ζ − z)2
dζ

− (B + iQ)z −H(t), (3.12)
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then the Goursat functions are given by:

(f(z), g(z)) = (f o(z), go(z)), when z ∈ Ω,

(f i(z), gi(z)) = (f o(z), go(z)), when z ∈ Ωi. (3.13)

Here, z is an arbitrary point in the complex plane away from the interface γ, and ζ

is the variable of integration on the interface contour. In the definitions (Equation

(3.12)),
∫
γ

can denote integration around γ in either the counterclockwise direction,

as is the usual convention in the complex plane, or clockwise; the difference is resolved

by a change in sign of ω(ζ, t), and we choose the clockwise direction.

From the definitions (Equation (3.12)), the Goursat functions are analytic

functions of z except for z on the contour γ. They are also singular as z → ∞

to accommodate the imposed flow. The Sherman−Lauricella integral equation is

constructed when the representation of the Goursat functions in terms of ω of

Equation (3.12) to (3.13) is substituted into the stress-balance boundary condition

(Equation (3.11)). As z approaches a point τ on γ, some of the Cauchy-type integrals

that result have local, simple pole contributions from a neighborhood of z = τ that

can be evaluated by the Plemelj formula [15], and the remaining part of these integrals

is of principal value type. The final form that the equation takes can be written as:

ω(τ, t)+
β

2πi

∫
γ

ω(ζ, t)d ln
(ζ − τ
ζ − τ

)
+

β

2πi

∫
γ

ω(ζ, t)d
ζ − τ
ζ − τ

+ β(B − iQ)τ + 2βH(t) = −χ
2

(
(S + κBκ

2)τs − κBτsss
)
, (3.14)

where β = 1−λ
1+λ

and χ = 1
1+λ

. The apparent singularity at ζ = τ in the two integrals

on the left−hand side is removable. The choice that:

H(t) =
1

2

∫
γ

ω(ζ, t)ds (3.15)
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removes a rank deficiency of the integral equation (3.14) in the limit when λ = 0 of

an inviscid drop (see, for example, [4] and [11]), and H(t) ≡ 0 as a consequence of

the constant area of the interior region Ωi.

The fluid velocity on the interface is found from Equation (3.6) by letting z

approach a point τ on γ from either Ω or Ωi. The representation of the Goursat

functions in terms of ω(z, t) of Equation (3.12) to Equation (3.13) is such that the

local, simple pole contributions to Equation (3.6) from the integrals near z = τ

cancel as z → τ±. The fluid velocity is therefore continuous automatically across the

interface and is given by:

(u1 + iu2)|γ = − 1

2π
P.V.

∫
γ

ω(ζ, t)
( dζ

ζ − τ
+

dζ

ζ − τ

)
+

1

2π

∫
γ

ω(ζ, t)d
ζ − τ
ζ − τ

+ (Q+ iB)τ − iG

2
τ (3.16)

on the interface γ. The apparent singularity for ζ near τ in the second integral is

removable, but in the first integral the P.V. indicates that it is to be interpreted as a

Cauchy principal value integral.

The fluid velocity on the interface, in terms of its normal and tangential

components un and us, is u = unn + ust, where the complex counterparts of the

unit vectors n and t are n and sT with sT = −in = ∂sτ . It follows that:

un = Re
{

(u1 + iu2)|γn
}

and us = −Im
{

(u1 + iu2)|γn
}

, (3.17)

on the interface γ.

For the numerical discretization of Equation (3.14), we introduce an equal

arclength parametrization of the interface γ. This is constructed following Hou,

Lowengrub and Shelley [25], and is an essential component of the method for removing

the stiffness.

The spatial parametrization of the interface is given by α ∈ [0, 2π), and a point

τ on the interface has Cartesian coordinates (x1, x2), so that τ = x1(α, t) + ix2(α, t).
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The unit tangent vector sT and normal n in complex form are sT = ∂τ
∂s

= τα
sα

= exp(iθ)

and n = isT = i exp(iθ). Differentiation with respect to time implies that

ταt = sαte
iθ + sαθtie

iθ. (3.18)

When τ = τm is a material point on the interface its velocity is equal to the local

fluid velocity, per Equation (2.5), so that:

dτm
dt

= unie
iθ + use

iθ, (3.19)

where the subscript m is used to denote material point.

However, the shape of the evolving interface is determined by the normal

velocity component un alone. Although us has physical meaning as the tangential

component of the fluid velocity, if us is replaced by any other smooth function φs(α, t)

in (3.19), then τ still lies on the interface but is no longer a material point, and

the role of φs is simply to implement a specific choice of τ ∈ γ and the interface

parametrization via α, without changing the interface shape or evolution. The

interfacial velocity generated by using φs instead of us is denoted in the complex

form by:

v =
dτ

dt
= unie

iθ + φse
iθ. (3.20)

When this is done, differentiation of (3.20) with respect to α gives a second relation

for ταt,

ταt =
(
(φs)α − unθα

)
eiθ +

(
(un)α + φsθα

)
ieiθ. (3.21)

Equating (3.18) and (3.21), we have:

sαt = (φs)α − unθα, (3.22)

θt =
1

sα

(
(un)α − φsθα

)
, (3.23)
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where γ is now described parametrically by s = s(α, t) and θ = θ(α, t) instead of

x1 = x1(α, t) and x2 = x2(α, t).

The equal arclength frame is chosen by setting sα = sα(t) to be spatially

constant along the interface, so that it varies in time only. Then since sα is always

equal to its mean around γ, it follows from Equation (3.22) that:

sαt = (φs)α − unθα = − 1

2π

∫ 2π

0

unθα′dα
′. (3.24)

Integration of the second of these equations with respect to α implies that:

φs(α, t) = ∂−1
α

(
unθα − 〈unθα〉

)
, (3.25)

where

〈f〉 =
1

2π

∫ 2π

0

f(α′)dα′ (3.26)

is the mean of f , and ∂−1
α is defined for a function f with zero mean as

∂−1
α f =

∞∑
k=−∞
k 6=0

f̂k
ik
eikα. (3.27)

In the above, f̂k are the Fourier coefficients of f . Also, an arbitrary function of time

has been set so that φs(α, t) has zero mean. This gives the required tangential velocity

φs of the equal arc length frame.

When (3.25) is substituted into Equations (3.22) and (3.23), the system by

which the dynamics of the interface is tracked becomes:

sαt = − 1

2π

∫ 2π

0

unθα′dα
′, (3.28)

θt =
1

σ

[
θα∂

−1
α

(
unθα − 〈unθα〉

)
+ (un)α

]
. (3.29)

At each time step (3.28) and (3.29) are integrated forward in time, and (sα, θ)

are mapped to the Cartesian coordinates (x1, x2) of points on γ. The map is given
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by integration of τα = sαe
iθ with respect to α and is:

x1(α, t) = x1c(t) + sα(t)∂−1
α (cos(θ(α′, t))), (3.30)

x2(α, t) = x2c(t) + sα(t)∂−1
α (sin(θ(α′, t))), (3.31)

where (x1c(t), x2c(t)) is the constant Fourier mode of (x1(α, t), x2(α, t)), which is

evolved from Equation (3.20) as:

d

dt
(x1c(t) + ix2c(t)) = v̂0(t) = 〈v〉, (3.32)

where v̂0(t) is the k = 0 Fourier mode of interface velocity v.

Membrane tension:

A formula for the membrane tension S(α, t) in terms of interface shape τ(α, t) and

the initial tension S(α, 0) is required to close the system of Equations (3.14)-(3.17),

(3.25), (3.28)-(3.32). We derive this formula by adapting the presentation in [22].

Recall that τ(α, t) is a general nonmaterial parameterization of the interface

at time t. Introduce a parameterization τ(αp, 0) of the initial profile in terms of a

Lagrangian or material coordinate αp, and denote the location of the same material

point at time t > 0 by τ(αm(αp, t), t); this serves as a definition of a ’forward’ map

αm(αp, t). We also define the ’backward’ map α0(α, t) such that τ(α0(α, t), 0) is the

location at t = 0 of the material point that at time t is located at τ(α, t). It follows

that αm and α0 are one to one and inverses.

We desire a formula for S(α, t) that gives the tension in terms of the initial

state of the membrane. Write s0 for arclength at time t = 0 and note from Equation

(2.11) that for a Hooke’s law membrane,

S(s0, 0) =
∂s0

∂sR
− 1. (3.33)
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Then for t > 0,

S(s, t) =
∂s

∂s0

∂s0

∂sR
− 1 =

∂s

∂s0

(
1 + S(s0, 0)

)
− 1. (3.34)

We determine an equation for the time evolution of ∂s
∂s0

. The arclength at time t is:

s(α, t) =

∫ α

0

sα(α′, t)dα′, (3.35)

and the length of the same material arc at t = 0 is:

s0(α, t) =

∫ α0(α,t)

α0(0,t)

sα(α′, 0)dα′. (3.36)

Hence, in terms of α,

∂s

∂s0

=
sα(α, t)

sα(α0(α, t), 0)α′0(α, t)
, (3.37)

where α′0(α, t) = ∂α0

∂α
(α, t), so (3.34) becomes

S(α, t) =
sα(t)

sα(α0(α, t), 0)α′0(α, t)

(
1 + S(α0(α, 0), 0)

)
− 1, (3.38)

where we have made use of the fact that sα(α, t) = sα(t) is spatially independent.

The formula for the membrane tension therefore requires an equation for the

backward map α0(α, t). First, note that, by definition of αm and αp, the condition

for the motion of a material particle becomes:

d

dt
τ(αm(αp, t), t) = u1 + iu2, (3.39)

that is,

∂τ

∂t

∣∣∣
α

+
∂τ

∂α

∂αm
∂t

∣∣∣
αp

= u1 + iu2, (3.40)

at α = αm(αp, t). An expression for ∂τ
∂t

∣∣∣
α

is given by Equation (3.20), i.e., which

describes the motion of τ(α, t) at a fixed α with normal velocity un and tangential

19



velocity φs. Substitution of Equation (3.20) into Equation (3.40) yields the evolution

equation for the forward map αm(αp, t):

∂αm
∂t

∣∣∣
αp

=
1

τα

[
u1 + iu2 − (unie

iθ + φse
iθ)
]

(3.41)

at α = αm(αp, t).

The evolution of the backward map α0(α, t) is obtained by noting that αm and

α0 are inverses, so that differentiation of the identity α = αm(α0(α, t), t) with respect

to time keeping α fixed implies

∂αm
∂t

∣∣∣
αp

+
∂αp
∂αm

∂α0

∂t

∣∣∣
α

= 0, (3.42)

where we have set αp = α0(α, t) in the first two derivatives. Differentiation of the

same identity with respect to α keeping t fixed gives:

∂αm
∂αp

=
(∂α0

∂α

)−1

. (3.43)

Eliminating αm in favor of α0 in (3.41), (3.42) and (3.43) gives the initial value

problem for the backward map:

∂α0

∂t

∣∣∣
α

=
∂α0

∂α

1

τα

[
unie

iθ + φse
iθ − (u1 + iu2)

]
=
∂α0

∂α

1

τα

[
(φs − us)eiθ

]
, (3.44)

which together with Equation (3.38) is the main result of this subsection.

In summary, the main equations that govern capsule evolution are given by

Equations (3.14)-(3.17), (3.25), (3.28)-(3.32), (3.38), (3.44). A nonstiff numerical

method for solving this system of equations is presented in the next chapter.
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CHAPTER 4

NUMERICAL METHOD

We construct a continuous in time, discrete in space numerical scheme for the inter-

facial evolution equations by providing rules to approximate the spatial derivatives

and singular integrals.

We discretize the spatial variable α by αj = jh, where j = −N
2

+ 1, · · · , N
2

, so

that α is defined on a uniform grid of mesh size h = 2π
N

. We define a discrete Fourier

transform of a periodic function f whose values are known at αj = jh by:

f̂k =
1

N

N
2∑

j=−N
2

+1

f(αj)e
−ikαj , for k = −N

2
+ 1, · · · , N

2
, (4.1)

with the inverse transform given by:

f(αj) =

N
2∑

k=−N
2

+1

f̂ke
ikαj , for j = −N

2
+ 1, · · · , N

2
. (4.2)

We compute spatial derivatives of f with a pseudo-spectral approximation,

which we denote by Shf . Sh is defined by:

(̂Shf)k = ikf̂k, for k = −N
2

+ 1, · · · , N
2

. (4.3)

We denote by θ(αj), ω(αj), ζ(αj) etc. the exact continuous solution evaluated at

grid points αj, and by θj, ωj, ζj etc the discrete approximation. Also, we use σ(t) to

denote the numerical approximation of sα(t).

Sometimes we may need to apply numerical or spectral filtering to our discrete

solution. Indeed, this will be critical for the stability of our method. Our numerical

filtering is defined in Fourier space as follows [9]:

(̂fp)k = ρ(kh)f̂k, (4.4)
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where ρ is a cutoff function with the following properties:

ρ(−x) = ρ(x) ; ρ(x) ≥ 0, (i)

ρ(x) ∈ Cr ; r > 2, (ii)

ρ(±π) = ρ′(±π) = 0, (iii)

ρ(x) = 1 for |x| ≤ µπ, 0 < µ < 1. (iv)

Condition (iv) ensures the spectral accuracy of the filtering. We define a filtered

derivative operator Dh by

(D̂hf)k = ikρ(kh)f̂k, for k = −N
2

+ 1, · · · , N
2

. (4.5)

Before discretizing Equation (3.14), we first parametrize the integrals by α and

rewrite the equation in the equivalent form (supressing time dependence):

ω(α) +
β

2πi

∫ π

−π

{
ω(α′)

( ζα(α′)

ζ(α′)− τ(α)
− ζα(α′)

ζ(α′)− τ(α)

)
+ ω(α′)

( ζα(α′)

ζ(α′)− τ(α)
− (ζ(α′)− τ(α))

(ζ(α′)− τ(α))2
ζα(α′)

)}
dα′

+ β(B − iQ)τ(α) + 2βH(t) = −χ
2

(
S(α)eiθ(α) − κBθαα(α)

s2
α

ieiθ(α)
)

. (4.6)

Here we have written ω(α) for ω(τ(α, t), t), ω(α′) for ω(ζ(α′, t), t), and made use of

the fact that sα = sα(t) depends on time alone. We have also rewritten the right hand

side of Equation (3.14) in terms of θ and sα. Although the apparent singularity ζ = τ

is removable, we shall nonetheless discretize (4.6) using spectrally accurate alternate

point trapezoidal rule [23],∫ π

−π
f(α, α′)dα′ ≈

N
2∑

j=−N
2

+1

(j−i) odd

f(xi, xj)(2h). (4.7)

This quadrature rule is normally used for singular integrals but we shall also apply

it here for smooth kernels. This is done for convenience (it precludes the need for
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analytical kernel evaluations at α = α′), but more importantly, it allows the use of

several important quadrature estimates from [9]. We thus discretize (4.6) as:

ωi +
βh

πi

N
2∑

j=−N
2

+1

(j−i) odd

{
ωpj

(
Shζj
ζj − τi

− Shζj

ζj − τi

)
+ ωpj

(
Shζj

ζj − τi
− ζj − τi

(ζj − τi)2
Shζj

)}

+ β(B − iQ)τi + 2βHd(t) = −χ
2

(
Sieiθi −

κBS
2
hθi

σ2
ieiθi

)
, (4.8)

where

Hd(t) =
h

2

N
2∑

j=−N
2

+1

ωjσ. (4.9)

We note that filtering crucially has been applied to the density ω and its conjugate

in the smooth integrands of (4.8) and Equation (4.12), but not to the leading order

singular term Hω. This targeted application of filtering is found to be necessary to

make use of parabolic smoothing to prove stability of our method.

We next consider the velocity Equation (3.16). To obtain a stable scheme, a

careful treatment of the principal value integrals is required. We first parameterize

the integrals by α, then we add and substract the periodic Hilbert transform

Hω(α) =
1

2π
P.V.

∫ π

−π
ω(α′) cot

(α− α′
2

)
dα′, (4.10)

from the first integral in Equation (3.16) to obtain:

(u1 + iu2)|γ

=Hω(α)− 1

2π

∫ π

−π

{
ω(α′)

[
ζα′(α

′)

ζ(α′)− τ(α)
+

ζα′(α′)

ζ(α′)− τ(α)
+ cot

(α− α′
2

)]
− ω(α′)

[
ζα′(α

′)

ζ(α′)− τ(α)
− ζ(α′)− τ(α)

(ζ(α′)− τ(α))2
ζα′(α′)

]}
dα′

+ (Q+ iB)τ − iG

2
τ . (4.11)
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It is easy to see that the integrand (in curly brackets) in Equation (4.11) is a smooth

function of α and α′. This is due to the substraction of the leading order singular

part Hω. The singular integral Hω and integral with smooth integrand in Equation

(4.11) will be treated differently with regard to filtering, which will be essential in

our design of a stable scheme.

The velocity Equation (4.11) can be discretized using alternate point trapezoidal

rule as:

ui =
(
u1 + iu2

)
i

=
h

π

N
2∑

j=−N
2

+1

(j−i) odd

{
ωj cot

(αi − αj
2

)

− ωpjG
(1)
ij + ωpjG

(2)
ij

}
+ (Q+ iB)τ i −

iGτi
2

, (4.12)

where

G
(1)
ij =

Shζj
ζj − τi

+
Shζj

ζj − τi
+ cot

(αi − αj
2

)
, (4.13)

and

G
(2)
ij =

Shζj

ζj − τi
− ζj − τi

(ζj − τi)2
Shζj. (4.14)

In the discrete equations, Shτi can be replaced by σeiθi , and similar for Shζj, (i.e., the

application of Sh is not needed here), but for notational convenience, we will continue

to use Shτi to represent the discrete version of τα. In our method, we need the discrete

normal and tangential velocities,

(un)i = −Im
{
uie

iθi
}

,(us)i = Re
{
uie
−iθi
}

, (4.15)

which follow from Equation (3.17) with ni = ieiθi . Care must be made in the

discretization of uie
iθi , for reasons which will become apparent later. We compute

uie
iθi in the following way. Decompose ui = Hhωi + (uR)i, where Hhωi is the leading
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order part, and from Equation (4.12)

(uR)i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

{
− ωpjG

(1)
ij + ωpjG

(2)
ij

}
+ (Q+ iB)τ i −

iGτi
2

, (4.16)

is the ’remainder’. Then we discretize

uie
−iθi = Hh(ωie

−iθi)−
[
Hh, e

−iθi
]
(ωpi ) + (uR)ie

−iθi , (4.17)

where
[
Hh, e

−iθi
]
(ωpi ) is the commutator, defined by

[
Hh, e

iθi
]
(ωpi ) = Hh

(
eiθiωpi

)
− eiθiHh

(
ωpi
)
. (4.18)

It is illustrative to consider the important special case of viscosity matched

fluids, for which β = 0 and χ = 1
2
. Then the integral or nonlocal term in Equation

(4.8) drops out, leading to a considerable simplification. Henceforth, we focus our

analysis on this special case, and later generalize for the full problem for arbitrary

0 ≤ χ ≤ 1 and −1 ≤ β ≤ 1. Taking β = 0 and χ = 1
2

in the discrete equation for ωi

(Equation (4.8)), we see that:

ωie
−iθi = −1

2

(
Si − i

κB
σ2
S2
hθi

)
. (4.19)

Inserting this into (4.17) and taking the imaginary part per Equation (9.46) gives:

(un)i =
κB
2σ2
Hh(S

2
hθi) + Im

{
−
[
Hh, e

−iθi
]
(ωpi ) + (uR)ie

−iθi
}

. (4.20)

The significance of the decomposition (4.17) is now apparent: by moving e−iθi into

the argument of discrete Hilbert transform, the leading order term of the normal

velocity, namely κB
2σ2H(S2

hθi), is linear in θi with a spatially constant coefficient that

has the right sign to take advantage of parabolic smoothing. This will be critical

in energy estimates. We similarly decompose the tangential velocity. Recall that
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(us)i = Re
{
uie

iθi
}

, then insert Equation (4.19) into Equation (4.17), and take the

real part to obtain:

(us)i = −χ
2
Hh

(
Si
)

+ Re
{
− [Hh, e

−iθi ]ωpi + (uR)ie
−iθi
}

. (4.21)

We next consider the discretization of the θ and σ equations. The semi-discrete

(continuous in time, discrete in space) equations for θ, σ are:

(
θt
)
i

=
1

σ

(
Sh(un)i + (φs)iShθi

)
, (4.22)

σt = −〈unShθ〉h, (4.23)

where:

〈f〉h =
1

N

N
2∑

j=−N
2

+1

fj, (4.24)

is the discrete mean computed using trapezoid rule. In order to recover the interface

location from θi and σ, we need to introduce the pseudo-spectral antiderivative

operator defined in Fourier space on functions f of mean zero by:

̂(S−1
h f

)
k

=


1
ik
f̂k for k 6= 0,

0 for k = 0.

(4.25)

Then the discretization of Equations (3.30), (3.31) can be written:

τi = τc + S−1
h

(
σeiθ − 〈σeiθ〉h

)
i
, (4.26)

where τc is the zero (constant) Fourier mode of τi, and is evolved from Equation (3.32)

as

dτc
dt

= v̂0 = 〈v〉h, (4.27)
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where v̂0 is the zero Fourier mode of the discrete velocity vi. Similarly, Equation

(3.25) is discretized as:

(
φs
)
i

= S−1
h

(
unShθ − 〈unShθ〉h

)
i
, (4.28)

and the surface tension Equation (3.38) is:

Si =
σ

σ0Dhα0i

(
1 + S0i

)
− 1, (4.29)

where S0i is the discrete initial tension, and σ0 is the initial value of sα. The semi-

discrete equation for α0i is obtained from Equation (3.44) as:

(α0t)i =
Dhα0i

σeiθi

(
(φs − us)eiθ

)
i
. (4.30)

In summary, the principal equations for discrete scheme are Equations (4.8), (4.20),

(4.21), (4.22)-(4.23), (4.26)-(4.30), and are the main result of this chapter.

An example numerical calculation from Higley et al. [22] is shown in Figure

4.1. Their BIM is similar, but not identical to, that described in this chapter. In

particular, the BIM given in this chapter generalizes that of [22] to include nonzero

interior viscosity and membrane bending stress. Numerical results using the method

given in this chapter will be presented in later work.

Figure 4.1 The time evolution of a capsule in (a) a pure strain flow and (b) a simple
shear flow with S0 = 1. The capsule profiles are shown at intervals of (a) ∆t = 1.0
and (b) ∆t = 0.5.
Source [22].
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CHAPTER 5

PRELIMINARY LEMMAS

We define the Sobolev norm in a general region Ω ⊂ Rd as follows:

‖u‖Wm,p(Ω) =

( ∑
|α|≤m

‖Dαu‖pLp(Ω)

) 1
p

. (5.1)

Another equivalent definition, with respect to the Fourier transform F , is:

‖u‖Wm,p(Ω) =
∥∥∥F−1

[(
1 + |k|2

)m
2 F(u)

]∥∥∥
Lp(Ω)

. (5.2)

A particular Sobolev space, which we use in this paper is Hs = W s,2, defined by the

following:

‖f‖s =

( ∞∑
k=−∞

(
1 + |k|2

)s|f̂k|2) 1
2

. (5.3)

The subsequent analysis makes use of the Sobolev embedding theorem:

Theorem 5.0.1. If m ≥ l and m− d
p
≥ l − d

q
, then Wm,p(Ω) ⊂ W l,q(Ω).

This theorem can be found in [1].

The first lemma gives the accuracy of the pseudo spectral derivative.

Lemma 5.0.2. (see [18]) Let f(α) be a periodic Cs+1[−π, π] function. Then:

|Shf(αi)− fα(αi)| ≤ chs−
1
2‖f‖s+1. (5.4)

The same inequality holds for Dh in place of Sh.

Proof. Let f̂ ek to be the exact Fourier coefficient of f . Then:

f̂k = f̂ ek +
∑
j 6=0

f̂ ek+Nj, for k = −N
2

+ 1, · · · , N
2

, (5.5)
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(see [18], section 5) is the computed coefficient from Equation (4.3), where the sum

represents ‘high wave numbers’ modes (i.e., those with |k| > N
2

) that are aliased to

k ∈
[
− N

2
+ 1, N

2

]
. Introduce the notation |k| ≤ N ′

2
defined as

{
k : −N

2
+ 1 ≤ k ≤ N

2

}
and similarly the notation |k| > N ′

2
is defined as

{
k : N

2
< k or k ≤ −N

2

}
. Then we

have the estimate

|Shf(αi)− fα(αi)| =

∣∣∣∣∣ ∑
|k|≤N′

2

((
f̂α
)
k
−
(
f̂α
)e
k

)
eikαi −

∑
|k|>N′

2

(
f̂α
)e
k
eikαi

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
|k|≤N′

2

k(f̂k − f̂ ek)eikαi

∣∣∣∣∣+

∣∣∣∣∣ ∑
|k|>N′

2

kf̂ eke
ikαi

∣∣∣∣∣
≤
∑
|k|≤N′

2

|k||f̂k − f̂ ek |+
∑
|k|>N′

2

|k||f̂ ek |. (5.6)

The first term on the right hand of (5.6) is the aliasing error, and the second term is

the truncation error. We use Equation (5.5) to bound the aliasing error as follows:

∑
|k|≤N′

2

|k||f̂k − f̂ ek | =
∑
|k|≤N′

2

|k|

∣∣∣∣∣∑
j 6=0

f̂ ek+Nj

∣∣∣∣∣
≤
∑
|k|≤N

′
2

j 6=0

|k + jN ||f̂ ek+Nj| ≤
∑
|k̃|≥N

2

|k̃||f̂ e
k̃
|, (5.7)

where k̃ = k + jN , with j 6= 0. The last line of (5.7) follows from

|k̃| = |k + jN | ≥
∣∣|k| − j|N |∣∣ ≥ ∣∣∣N

2
−N

∣∣∣ ≥ N

2
. (5.8)
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Then this aliasing error is further bounded by (dropping the tilde):∑
|k|≥N

2

|k||f̂ ek | ≤
∑
|k|≥N

2

|k|s+1

|k|s
|f̂ ek |,

≤
( ∑
|k|≥N

2

|k|2(s+1)|f̂ ek |2
) 1

2

( ∑
|k|≥N

2

1

|k|2s

) 1
2

, using Cauchy-Schwartz

≤ c‖f‖Hs+1

(
N−2s+1

) 1
2 ,

≤ chs−
1
2‖f‖s+1, using h =

2π

N
. (5.9)

Here we have used the bound: ∑
|k|≥N

2

1

|k|2s
< cN−2s+1, (5.10)

which follow from the integral test:∫ ∞
N
2

x−2sdx ∼
( x−2s+1

−2s+ 1

)∣∣∣∞
N
2

= cN−2s+1. (5.11)

The truncation error term is bounded as (starting from Equation (5.6)):∑
|k|>N′

2

|k||f̂ ek | =
∑
|k|>N′

2

|k|s+1

|k|s
|f̂ ek |,

≤
( ∑
|k|>N′

2

|k|2(s+1)|f̂ ek |2
) 1

2
( ∑
|k|>N′

2

|k|−2s
) 1

2
, by Cauchy-Schwartz

≤ chs−
1
2‖f‖s+1. (5.12)

Combine the estimates of aliasing error and truncation error to obtain:

|Shf(αi)− fα(αi)| ≤ chs−
1
2‖f‖s+1. (5.13)

The proof of (5.13) for Dh instead of Sh is similar.

The next lemma is a well-known result on the accuracy of trapezoid rule for

periodic functions.
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Lemma 5.0.3. Let f(α) be as in Lemma 5.0.2. Then:

∣∣∣∣
N
2∑

j=−N
2

+1

f(αj)h−
∫ π

−π
f(α)dα

∣∣∣∣ ≤ chs+1‖f‖s+1. (5.14)

Proof. This is derived from the Euler−Maclaurin formula. For more details, see

[21].

Similarly for the pseudo−spectral integral operator we have:

Lemma 5.0.4. Let f be a periodic, zero−mean, Cs[−π, π] function. Then:

∣∣∂−1
α f(αj)− S−1

h f(αj)
∣∣ ≤ chs−

1
2‖f‖s. (5.15)

Proof. We estimate from Equation (4.25):

∣∣∂−1
α f(αj)− S−1

h f(αj)
∣∣

=

∣∣∣∣ ∞∑
k=−∞

f̂ eke
ikαi

ik
−
∑
|k|≤N′

2

f̂ke
ikαi

ik

∣∣∣∣
=

∣∣∣∣ ∑
|k|>N′

2

f̂ eke
ikαi

ik
−
∑
|k|≤N′

2

∑
j 6=0

f̂ ek+Nje
ikαi

ik

∣∣∣∣
≤
( ∑
|k|>N′

2

|f̂ ek |
|k|

+
∑
|k|≤N′

2

1

|k|
∑
j 6=0

|f̂ ek+jN |
)

, (5.16)

where we have used Equation (5.5) in the second equality. The first term in (5.16)

corresponds to the truncation error, and the second term to the aliasing error.
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Then the aliasing error is bounded by:

∑
|k|≤N′

2

1

|k|
∑
j 6=0

|f̂ ek+jN | ≤
∑
|k|≤N′

2

∑
j 6=0

|f̂ ek+jN |,

≤
∑
|k|≥N

2

|f̂ ek | =
∑
|k|≥N

2

|k|s

|k|s
|f̂ ek |, by Equation (5.8)

≤
( ∑
|k|≥N

2

|k|2s|f̂ ek |2
) 1

2
( ∑
|k|≥N

2

1

|k|2s
) 1

2
, by Cauchy-Schwartz

≤c
( ∑
|k|≥N

2

|k|2s|f̂ ek |2
) 1

2
N
−2s+1

2 ,

≤chs−
1
2‖f‖s, (5.17)

and the truncation error is bounded by:

∑
|k|>N′

2

|f̂ ek |
|k|

=
∑
|k|>N′

2

|k|s

|k|s+1
|f̂ ek |,

≤
( ∑
|k|>N′

2

|k|2s|f̂ ek |2
) 1

2
( ∑
|k|>N′

2

1

|k|2(s+1)

) 1
2
, by Cauchy-Schwartz

≤c
( ∑
|k|>N′

2

|k|2s|f̂ ek |2
) 1

2
N
−2(s+1)+1

2 ,

≤c‖f‖sh
2s+1

2 = chs+
1
2‖f‖s. (5.18)

Thus, the total error is bounded by:

∣∣∂−1
α f(αj)− S−1

h f(αj)
∣∣ ≤ chs−

1
2‖f‖s. (5.19)

The next lemma provides a result on the accuracy of the pseudospectral

smoothing of f .
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Lemma 5.0.5. Let f ∈ Cs[−π, π] be periodic, and let fp be as defined in Equation

(4.4) with conditions (i)−(iv). Then:

|fp(αi)− f(αi)| ≤ chs−
1
2‖f‖s. (5.20)

Proof. The proof is similar to that for Lemma 5.0.2, and is omitted here.

Remark 5.0.6. Due to the asymmetry of the discrete Fourier transform, we will

zero out the k = N
2

mode of (Ŝhf)k. This will be important for utilizing the smoothing

properties of the highest derivative term. It is easy to see that zeroing out this mode

does not affect any of the estimates in this chapter.
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CHAPTER 6

CONSISTENCY

We calculate the error when the exact solution is substituted into the discrete

system of equations. Assume the exact solution is regular enough so that θ(·, t) ∈

Cm+1[−π, π], ω(·, t) ∈ Cm−1[−π, π] and α0(·, t) ∈ Cm+1[−π, π]. We also assume the

initial tension S(·, 0) is in Cm[−π, π]. The different levels of regularity for the different

functions follows from an analysis of the continuous evolution equations. We denote

by uh(αi), (un)h(αi), (φs)h(αi), etc. quantities that are evaluated by substituting the

exact solutions ω(·, t), θ(·, t), sα(t) into the discrete equations. We make repeated use

of the estimate

τh(αi) = τc + S−1
h

(
sαe

iθ − 〈sαeiθ〉h
)
(αi) = τ(αi) + O(hm+ 1

2 ). (6.1)

which follows from Equation (4.26), Lemma 5.0.4, and the assumption on the

regularity of the exact solution.

Consistency of ω equation:

We first assess the smoothness of the integrand in the continuous equation for ω,

Equation (4.6). Let F (α, α′) denote the integrand (terms in brackets) in Equation

(4.6). We note that by Lemma 5.0.5, the filtered density ωp can be replaced by an

unfiltered ω, incurring an O(hm−
3
2 ) error based on the regularity of F (α, α′) (see

Equation (6.3)). Now, the apparent singularity in F (α, α′) is removable, and

lim
α′→α

F (α, α′) = i
(
ω(α)κ(α)sα +

ω(α)κ(α)τ 2
α(α)

sα

)
. (6.2)
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Recalling that ω(·) ∈ Cm−1, τα(·) = sαe
iθ(·) ∈ Cm+1, and that sα is bounded away

from zero, it follows that:

F (α, ·) ∈ Cm−1. (6.3)

Now consider the discrete sum in Equation (4.8) with integrand F = Fh, where the

subscript h denotes its evaluation using τ = τh, ζ = ζh, and the exact ω. By Equation

(6.1), we can replace τh(αi) and ζh(αj) in this sum by τ(αi) (respectively ζ(αj)),

incurring an order O(hm+ 1
2 )
[

min
j

(
ζ(αj) − τ(αi)

)]−1
= O(hm−

1
2 ) error. There is no

error in Sh(ζ(αj)) since the exact solution sαe
iθ(αi) is substituted for this term. We

compute the truncation error of the alternate point trapezoidal rule sum in Equation

(4.8). Let

Jh(αi) =

N
2∑

j=−N
2

+1

Fh(αi, αj)h

=

N
2∑

j=−N
2

+1

F (αi, αj)h+ O(hm−
1
2 ), (6.4)

where we have used the above remarks to replace Fh with F , and define the truncation

error

Jeh(αi) = Jh(αi)−
∫ π

−π
F (αi, α

′)dα′. (6.5)

Then by the error estimate for trapezoidal rule integration (Lemma 5.0.3), we have:

∣∣Jeh(αi)
∣∣ ≤ chm−1‖F (αi, ·)‖m−1 = O(hm−1). (6.6)
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Note that if i is even,

2Jeh(αi)− Je2h(αi)

=2

N
2∑

j=−N
2

+1

Fh(αi, αj)h−
N
4∑

j=−N
4

+1

Fh(αi, α2j)2h−
∫ π

−π
Fh(αi, α

′)dα′,

=

N
2∑

j=−N
2

+1
j odd

Fh(αi, αj)2h−
∫ π

−π
F (αi, α

′)dα′, (6.7)

which together with Equation (6.6) implies:

N
2∑

j=−N
2

+1
j odd

Fh(αi, αj)2h−
∫ π

−π
F (αi, α

′)dα′ = O(hm−1). (6.8)

A similar argument shows that if i is odd

N
2∑

j=−N
2

j even

Fh(αi, αj)2h−
∫ π

−π
F (αi, α

′)dα′ = O(hm−1). (6.9)

Equations (6.8) and (6.9) can be combined into

N
2∑

j=−N
2

+1

(j−i) odd

Fh(αi, αj)2h−
∫ π

−π
F (αi, α

′)dα′ = O(hm−1), (6.10)

which gives the truncation error for the alternate point trapezoidal rule quadrature

in Equation (4.8). Error estimates for other terms in the discrete ω equation are

obtained using Lemma 5.0.2. For example, the last term in Equation (4.8) satisfies:∣∣∣∣S2
hθ(αi)

s2
α

− θαα(αi)

s2
α

∣∣∣∣ = O(hm−
5
2 ), (6.11)
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where we have used that τα(·) is in Cm+1[−π, π]. The other terms are found to have

higher-order error in h. It follows that:

ω(αi) +
β

2πi

N
2∑

j=−N
2

(j−i) odd

Fh(αi, αj)2h+ β(B − iQ)τh(αi) + βh

N∑
j=1

ω(αj)|Shτh(αi)|

+
χ

2

(
Sh(αi)− S(αi)− i

κB
s2
α

(
S2
hθ(αi)− θαα(αi)

))
eiθ(αi) = O(hm−

5
2 ), (6.12)

which shows the consistency of the discrete scheme Equation (4.8).

Remark 6.0.1. When β = 0 and χ = 1
2
, Equation (4.8) provides an expect relation

for ωi in terms of θi, σ and Si. Let ωh(αi) denote the quantity obtained by substituting

the exact solution θ(·, t), sα(t) and S(·, t) into Equation (4.8). Then the above remarks

show that:

ωh(αi) = ω(αi) + O(h
5
2 ) (6.13)

Consistency of velocity :

Let G(α, α′) be the integrand (quantity in curly brackets) in Equation (4.11). We

once again use Lemma 5.0.5 to replace the filtered ωp with unfiltered ω, incurring an

O(hm−
3
2 ) error per the regularity of G given below. Then:

lim
α′→α

G(α, α′) = −ω(α)Re
(ταα
τα

)
+ iω(α)κ(α)

τ 2
α(α)

sα
, (6.14)

and it follows that G(α, ·) ∈ Cm−1. Using the same argument as that which led to

Equation (6.10), we deduce the quadrature error,

N
2∑

j=−N
2

+1

(j−i) odd

Gh(αi, αj)2h−
∫ π

−π
G(αi, α

′)dα′ = O(hm−1), (6.15)
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Let:

Hhω(αi) =
1

2π

N
2∑

j=−N
2

(j−i) odd

ω(αj) cot
(αi − αj

2

)
2h (6.16)

denote the discrete Hilbert transform. Then it is shown in [9] that:∣∣∣∣Hhω(αi)−
1

2π
P.V.

∫ π

−π
ω(α′) cot

(α− α′
2

)
dα′
∣∣∣∣ = O(hm−2). (6.17)

This is a special case of a result proven in Chapter 2 of [9], where it is shown that

the order of accuracy of the quadrature in (6.16) is related to the regularity of ωα(·)

which here is Cm−2. It follows that

uh(αi) = Hhω(αi)−
1

2π

N
2∑

j=−N
2

+1

(j−i) odd

Gh(αi, αj)2h+ (Q+ iB)τh(αi)

− iGτh(αi)

2
= u(αi) + O(hm−2), (6.18)

which shows the consistency of Equation (4.12). From this it is easy to see that,

(us)h(αi) = us(αi) + O(hm−2), and (6.19)

(un)h(αi) = un(αi) + O(hm−2), (6.20)

Sh(un)h(αi) = Sh(un + O(hm−2))(αi) = (un)α(αi) + O(hm−3). (6.21)

We note that a better estimate (i.e., one with higher order error) can be obtained

for (us)h, but (6.19) will be sufficient for our purposes. In addition, from Equation

(4.26),

(φs)h(αi) = S−1
h

(
(un)hShθ − 〈(un)hShθ〉h

)
(αi) = φs(αi) + O(hm−2), (6.22)

with the latter equality follows from Lemmas 5.0.3-5.0.4, (6.20), and un(·) ∈ Cm−1.

In particular, note that the leading source of error in (6.21) and (6.22) comes from
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the O(hm−2) term in Equation (6.20). Combined, the above results show that the

truncation errors for the θ, sα, α0 evolution Equations (4.22)-(4.23), (4.30) are given

by

∂

∂t
θ(αi) =

1

sα

[
Sh(un)h(αi) + Shθ(αi)(φs)h(αi)

]
+ O(hm−3), (6.23)

∂

∂t
sα = −〈(un)h(·)Shθ(·)〉h + O(hm−2), (6.24)

∂α0

∂t
(αi) =

Shα0(αi)

sαeiθ(αi)
(
(un)hie

iθ + (φs)he
iθ − uh

)
(αi) + O(hm−2). (6.25)

We also need to check consistency of the discrete version of kinematic condition

(Equation (3.20)). Differentiate Equation (4.26) with respect to t to obtain:

dτi
dt

=
dτc
dt

+ S−1
h

(dσ
dt
eiθ + iσeiθ

dθ

dt
− 〈dσ

dt
eiθ + iσeiθ

dθ

dt
〉h
)
i
, (6.26)

where from Equation (4.27),

dτc
dt

= 〈v〉h. (6.27)

Then it is easy to see that:

dτ

dt
(αi) =

dτh
dt

(αi) + O(hm−3). (6.28)

Taken together, the above results prove the following consistency result:

Lemma 6.0.2. Under the assumption that θ(·, t) and α0(·, t) are in Cm+1[−π, π],

S0(·) is in Cm[−π, π], and ω(·, t) is in Cm−1[−π, π], the exact solution of the evolution

equations satisfy the discrete equations with a truncation error at most of size

O(hm−3).
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CHAPTER 7

STATEMENT OF MAIN CONVERGENCE THEOREM

To show convergence of the numerical method, we need to establish the stability of

the discrete scheme. We first do this for special case of viscosity matched fluids, for

which β = 0 and χ = 1
2
. Define the errors between the exact and numerical solutions

as:

θ̇j = θj − θ(αj),

ω̇j = ωj − ωh(αj),

u̇j = uj − uh(αj), (7.1)

and so forth. To show stability, we plan to obtain a system of evolution equations for

these errors and perform energy estimates to show they remain bounded for t ≤ T ,

where T is the assumed existence time for an exact solution to the continuous problem.

To illustrate this idea, let us find an equation for θ̇. First, substitute the exact

solution into Equations (6.23)−(6.24) and use the consistency lemma to get:

dθ̇i
dt

=
1

σi

[
Sh(un)i + Shθi(φs)i

]
− 1

σh

[
Sh(un)h(αi) + Shθ(αi)(φs)h(αi)

]
+ O(hm−3)

dσ̇i
dt

= Sh(φs)i + (Shθi)(un)i

−
[
Sh(φs)h(αi) + Shθ(αi)(un)h(αi)

]
+ O(hm−2)

= −〈(un)Sh(θ(·))〉i + 〈(un)h(αi)Sh(θ(αi))〉h + O(hm−2). (7.2)

Now, the right hand side of the above equation can be written in terms of θ̇i, ṡα, and

the variations in velocities:

˙(un)i = (un)i − (un)h(αi), ˙(φs)i = (φs)i − (φs)h(αi). (7.3)
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Therefore, our first task is to estimate quantities such as ˙(un)i and ˙(φs)i in terms

of the errors θ̇i, σ̇i. This can be done by identifying the most singular part in the

variation u̇i = ui − uh(αi) of the complex velocity. The estimates can be separated

into linear and nonlinear terms in θ̇i, σ̇i. The nonlinear terms can be controlled by

the high accuracy of the method for smooth solutions. Thus the leading order error

contribution comes from the linear terms.

Remark 7.0.1. If φ̇ is a scalar quantity, we will sometimes use the notation O(φ̇)

to denote a bounded operator in l2, i.e.,

‖O(φ̇)‖l2 ≤ c|φ̇|. (7.4)

Thus, O(φ̇) is equivalent to A0(φ̇). For example, if f(·) ∈ C[−π, π], then f(αi)(φ̇) =

O(φ̇).

We now state the convergence theorem for our numerical method:

Theorem 7.0.2. Assume that for 0 ≤ t ≤ T , there exist a smooth solution of the

continuous problem (Equations (3.22)−(3.23), (3.20), (4.30)) with θ(·, t), α0(·, t) in

Cm+1[−π, π] and S(·, 0) ∈ Cm[−π, π] for m sufficiently large, and that:

min
0≤t≤T

sα(t) > c, for some c > 0. (7.5)

If σh and θh denote the numerical solution for sα, θ, then for h sufficiently small:

‖σh(t)− sα(t)‖l2 ≤ c(T )hs,

‖θh(t)− θ(·, t)‖l2 ≤ c(T )hs,

‖τh(t)− τ(·, t)‖l2 ≤ c(T )hs,

‖(α0)h(t)− α0(·, t)‖l2 ≤ c(T )hs, (7.6)
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where s = m + 1 − l and 0 ≤ l ≤ m is small positive integer that is independent of

m(i.e., s is near m). Here:

‖u‖l2 = h

N
2∑

j=−N
2

+1

|uj|2. (7.7)
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CHAPTER 8

STABILITY: PRELIMINARIES

Following [13] and [9], we introduce an n-th order smoothing operator A−n which

satisfies:

‖Dk
h(A−n(φ̇j))‖l2 ≤ c‖φ̇‖l2 and ‖A−n(Skh(φ̇j))‖l2 ≤ c‖φ̇‖l2 for 0 ≤ k ≤ n. (8.1)

where Dh is the spectral derivative operator with smoothing. When n = 0, A0(φ̇)

denotes a bounded operator in l2,

‖A0(φ̇j)‖l2 ≤ c‖φ̇‖l2 . (8.2)

Remark 8.0.1. Note that if f(φ̇i) = A0(φ̇i), then hsf(φ̇i) = A−s(φ̇i). However,

f(φ̇i) = A−s(φ̇i) does not imply f = O(hs). An example is f(φ̇i) = 1 + hsφ̇i, which is

an A−s(φ̇i), but not O(hs).

Remark 8.0.2. We use the expression A−s(φ̇i) to denote a generic high−order

smoothing operator. Generally, s will be an integer near m, e.g., m + 1 or m − 1,

where m gives the regularity of the continuous solution (i.e., θ(·, t) ∈ Cm+1, etc.).

Similarly, we use the expression O(hs) to denote a high order discretization error,

again where s is near m. At the end of our proof, we may choose m and s large

enough, so that all the estimates go through.

Remark 8.0.3. Unless otherwise noted, we use the phrase ”smooth function” to

denote a generic function f ∈ Cs[−π, π] with high order regularity.

Remark 8.0.4. We sometimes will use the notation A−s(φ̇i, ψ̇i, . . . , ω̇i) = A−s(φ̇i) +

A−s(ψ̇i) + . . .+ A−s(ω̇i).
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We first recall that we have defined a time:

T ∗ ≡ sup
{
t : 0 ≤ t ≤ T, ‖σ̇‖l2 , ‖θ̇‖l2 , ‖ζ̇‖l2 , ‖α̇0‖l2 ≤ h

7
2

}
. (8.3)

The power of h in the above definition is chosen for convenience, so that the estimates

below easily go through. All the estimates we obtain are valid for t ≤ T ∗. We ”close

the argument” and prove Theorem 7.0.2 by showing at the end that T ∗ = T . We

make repeated use of the inequalities:

‖θ̇‖∞ ≤ h3, ‖σ̇‖∞ ≤ h3, and ‖α̇0‖∞ ≤ h3, for t ≤ T ∗ (8.4)

The above estimate on θ̇ follows from h|θ̇i|2 ≤ ‖θ̇‖2
l2 , for t ≤ T ∗, so that ‖θ̇‖∞ ≤

h−
1
2‖θ̇‖l2 ≤ h3, with similar estimates applying to ‖σ̇‖∞ and ‖α̇0‖∞.

Preliminary Lemmas :

We state a number of preliminary lemmas that will be repeatedly used in the analysis.

First, we will frequently encounter a discrete operator of the form:

Rh(φi) =

N
2∑

j=−N
2

+1

(j−i) odd

f(αi, αj)φj(2h), (8.5)

where f(α, α′) is a smooth periodic function in both variables, and φ is a generic

periodic function. Beale, Hou and Lowengrub [9] prove the following estimate on Rh

applied to a filtered discrete function φpi .

Lemma 8.0.5. Assume f(α, α′) is a smooth periodic function in both α and α′, with

f(·1, ·2) ∈ Cr for r > 2, then Rh defined in Equation (8.5) satisfies:

Rh(φ
p) = A−1(φ). (8.6)
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If, in addition, ρ(x) satisfies ρ′(±π) = 0 and f(·1, ·2) ∈ Cr for r > 3, then:

Rh(φ
p) = A−2(φ). (8.7)

Unless otherwise noted, a superscript p will henceforth denote a filter satisfying

ρ′(±π) = 0. We note that the application of the filter is essential for the results in

Equations (8.6) and (8.7) due to aliasing error. To see this, consider the following

example adapted from [9]. Let g(α) = e2iα and define:

f(α, α′) =
1

2π

(
g(α)− g(α′)

)
cot
(α− α′

2

)
, f(α, α) =

gα(α)

π
, (8.8)

and let φi = eiαi(
N
2
−1). Then from the Lemma 8.0.7 below, and using the fact that

eiαi(
N
2

+1) is aliased to eiαi(−
N
2

+1), we have:

Rh(φi) =
e2iαi

2π

N
2∑

j=−N
2

+1

(j−i) odd

eiαj(
N
2
−1) cot

(αi − αj
2

)
(2h)

− 1

2π

N
2∑

j=−N
2

+1

(j−i) odd

eiαj(−
N
2

+1) cot
(αi − αj

2

)
(2h),

= −i
(
e2iαieiαi(

N
2
−1) + eiαi(−

N
2

+1)
)
,

= −2ieiαi(−
N
2

+1) = −2ig(αi)φi = A0(φi). (8.9)

Remark 8.0.6. If no filtering is applied, then it is easy to see that:

Rh(φ) = A0(φ). (8.10)
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Indeed we note that by the Schwartz inequality,

‖Rh(φ)‖l2 =

(
h

N
2∑

i=−N
2

+1

∣∣∣∣∣
N
2∑

j=−N
2

+1

(j−i) odd

f(αi, αj)φj(2h)

∣∣∣∣∣
2) 1

2

≤ 4h‖φ‖l2
N
2∑

i=−N
2

+1

(
h

N
2∑

j=−N
2

+1

(j−i) odd

|f(αi, αj)|2
)

≤ 4‖f‖l2‖φ‖l2 , (8.11)

where

‖f‖l2 =

(
h2

N
2∑

i=−N
2

+1

N
2∑

j=−N
2

+1

|f(αi, αj)|2
) 1

2

, (8.12)

which gives the result in Equation (8.10).

The Hilbert transform H(ω) is the leading order part (i.e., least regular term)

in velocity expression Equation (4.23). The discrete version of H(ω) is:

Hh(ωi) =
1

2π

N
2∑

j=−N
2

+1

(j−i) odd

ωj cot
(αi − αj

2

)
(2h). (8.13)

This will be seen to play a crucial rule in the stability of our discretization. The

continuous Hilbert transform satisfies:

(̂Hf)k = −isgn(k)f̂k, (8.14)

H(Hf(α)) = −f(α), (8.15)

H(fα)(α) = (Hf)α(α) (8.16)

for a periodic function f . The following lemma from [9] shows that the discrete

transform acts in the same way.

Lemma 8.0.7. Assume that f satisfies f̂0 = f̂N
2

= 0. The discrete Hilbert transform

defined by (8.13) satisfies the following properties:
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(̂Hhf)k = −isgn(k)f̂k, (8.17)

Hh(Hhfi) = −fi, (8.18)

Hh(Shfi) = Sh(Hhfi) =
1

π

∑
(j−i) odd

fi − fj
(αi − αj)2

(2h). (8.19)

where
∑

(j−i) odd

is defined in (8.21) below. The first equality above also implies

‖Hhf‖l2 = ‖f‖l2 .

Proof. We transform the kernel in Equation (8.13) from a representation in the

periodic domain to an equivalent representation in the infinite domain. This involves

application of the formula [34],

1

2
cot(

z

2
) =

1

z
+
∞∑
k=1

2z

z2 − (2kπ)2
, (8.20)

from which it is easy to obtain (see [9] for details):

1

2

N
2∑

j=−N
2

+1

(j−i) odd

f(αj) cot
(αi − αj

2

)
(2h), = lim

M→∞

N(M+ 1
2

)∑
j=−M(N+ 1

2
)+1

(j−i) odd

f(αj)

αi − αj
(2h),

≡
∑

(j−i) odd

f(αj)

αi − αj
(2h). (8.21)

From Equations (8.13) and (8.21) with fj in replace of f(αj), it follows that:

Hh(fi) =
1

π

∑
(j−i) odd

fj
αi − αj

(2h), (8.22)

which is an equivalent form of the discrete Hilbert transform. This form is proven to

satisfy properties (Equations (8.17)-(8.19)) in [9].

We will also need the following lemma on the commutator of the discrete Hilbert

transform and a smooth function, from [9].
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Theorem 8.0.8. Let g(·) ∈ Cr for r > 3, and define the commutator

[
Hh, g

]
(φp) = Hh(g(αi)φ

p)− g(αi)Hh(φ
p
i ). (8.23)

Then
[
Hh, g

]
(φp) ∈ A−1(φp). If in addition ρ(x) satisfies ρ′(±π) = 0 and g(·) ∈ Cr

with r > 4, then
[
Hh, g

]
(φp) ∈ A−2(φp).

Proof. Let:

f(α, α′) =
1

2π

(
g(α)− g(α′)

)
cot
(α− α′

2

)
∈ Cr−1 (8.24)

and apply Lemma 8.0.5. The result follows from noting that for this f ,

Rh(φ
p
i ) = Hh(g(αi)φ

p)− g(αi)Hh(φ
p
i ). (8.25)

We will also need a lemma on the commutator of the filtering operator and a

smooth function. The proof can be found in [12].

Lemma 8.0.9. Let f(αi) ∈ Cr for r ≥ 2, and φ ∈ l2. Define:

Gp
h(φi) =

(
f(αi)φi

)p − f(αi)φ
p
i . (8.26)

Then Gp
h(φi) = hA0(φi).

In our stability analysis, we will need an analogue of the product rule for discrete

derivative operators, proven in [9].

Lemma 8.0.10. Assume f(·) ∈ C3 and w ∈ l2. Then we have:

Dh(f(αi)wi) = f(αi)Dh(wi) + wqi fα(αi) + hA0(wi), (8.27)

where ŵqk = ŵkq(kh) and q(x) = ∂
∂x

(xρ(x)), and A0 is a bounded operator.
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We will apply the following lemmas to obtain expressions for the variation of

velocities and other quantities in our problem. Define the error to be:

ḟi = fi − f(αi). (8.28)

Lemma 8.0.11. Let ḟi, ġi and f(αi), g(αi) be as defined in (8.28). Then
(
figi
)·

=

ḟig(αi) + f(αi)ġi + ḟiġi.

Proof. (
figi
)·

= figi − f(αi)g(αi)

= fig(αi)− f(αi)g(αi) + figi − fig(αi)

= (fi − f(αi))g(αi) + fi(gi − g(αi))

= ḟig(αi) + fiġi

= ḟig(αi) + (f(αi) + ḟi)ġi

= ḟig(αi) + f(αi)ġi + ḟiġi. (8.29)

Note if ḟi is O(hm1), and if ġi has error O(hm2), then
(

˙fg
)
i

is O(hmin{m1,m2}).

The above lemma can be easily extended to product of three or more quantities.

We also have:

Lemma 8.0.12. ( 1

fi

)·
= − ḟi

f 2(αi)
+

ḟ 2
i

f 2(αi)
(
f(αi) + ḟi

) . (8.30)

Proof. ( 1

fi

)·
=

1

fi
− 1

f(αi)
=
f(αi)− fi
fif(αi)

= − ḟi

f(αi)
(
f(αi) + ḟi

) , (8.31)

where in the last equality, we have eliminated fi using fi = f(αi) + ḟi. After

decomposing the right hand side of (8.30) into a sum of linear and nonlinear parts in

ḟi, we obtain the result (8.30).

49



We will need the following results on σ̇ = σ − sα.

Lemma 8.0.13. Let f be a smooth function and 〈f(·)σ〉h = 0. Then:

S−1
h

(
f(·)σ̇

)
i

= σ̇S−1
h

(
f(·)

)
i

= A−s(σ̇i), (8.32)

where A−s(σ̇i) is here interpreted for the spatially independent σ̇ as

A−s(σ̇i) = σ̇g(αi) (8.33)

for some smooth function g.

Proof. The relation (Equation (8.32)) follows from the spatial independence of σ̇.

The second equality follows from the smoothness of f .

Similarly we have:

Lemma 8.0.14. Let f be a smooth function. Then:

Sh
(
f(·)σ̇

)
i

= fα(αi)σ̇ = A−s(σ̇i) + O(hs), (8.34)

and the same is true for Dh instead of Sh.

Proof. We have

Sh
(
f(·)σ̇

)
i

= σ̇Shf(αi) = σ̇fα(αi) + O(hs), (8.35)

and (8.34) immediately follows.

We will make repeated use of the following result from [13]:

Lemma 8.0.15. For θ̇, σ̇ satisfying ‖θ̇‖∞ ≤ h3, ‖σ̇‖∞ < h3, then:

(
σeiθ

)·
i

= isαe
iθ(αi)θ̇i + eiθ(αi)σ̇i + A−3(θ̇i) = O(h3). (8.36)
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Proof. We have:

(
σeiθ

)·
i

= σeiθi − sαeiθ(αi),

= sαe
iθ(αi)

(
eiθ̇i − 1

)
+
(
σ − sα

)
eiθ(αi)eiθ̇i ,

= sαe
iθ(αi)

(
iθ̇i + r(θ̇i)

)
+ σ̇ie

iθ(αi)
(
1 + iθ̇i + r(θ̇i)

)
, (8.37)

where ‖r(θ̇)‖l2 ≤ ‖θ̇2‖l2 ≤ h3‖θ̇‖l2 . The first equality in Equation (8.36) follows by

using ‖σ̇‖∞ ≤ h3 and the above estimate on ‖r(θ̇)‖l2 to show that the nonlinear terms

in the variation are A−3(θ̇). The second equality in Equation (8.36) readily follows

from Equation (8.37) and the bounds ‖θ̇‖∞ ≤ h3, ‖σ̇‖∞ < h3, and the above estimate

on ‖r(θ̇)‖l2 .

Lemma 8.0.16. Let ζi represent the discretized interface. Then:

ζ̇i = iS−1
h

(
σeiθ(·)θ̇

)
i
+ A−3(θ̇i) + A−s(σ̇) + ζ̇c. (8.38)

It will also be shown later that ζ̇c = O(h
5
2 ).

Proof. Recall that

ζi = S−1
h

(
σeiθ − 〈σeiθ〉h

)
i
+ ζc, (8.39)

where ζc = ζ̂0 is the time dependent k = 0 Fourier mode of ζi. Taking the variation,

we have:

ζ̇i = S−1
h

(
(σeiθ)·i − 〈(σeiθ)·〉h

)
+ ζ̇c. (8.40)

We now substitute the first equality in Equation (8.36) and use Lemma 8.0.19 below,

which states that for f ∈ Cs and an arbitrary variation φ̇, 〈f(·)φ̇〉h = A−s(φ̇). Hence,

ζ̇i = iS−1
h

(
σeiθ(·)θ̇

)
i
+ S−1

h

(
eiθ(·)σ̇

)
+ ζ̇c + A−3(θ̇) + A−s(σ̇). (8.41)
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Finally, from Lemma 8.0.14, the second term on the right hand side of the above

relation is A−s(σ̇), which proves the result.

Remark 8.0.17. Evidentally, we also have from Equation (8.40):

Shζ̇i =
(
(σeiθ)·i − 〈(σeiθ)·i〉h

)
, (8.42)

and following the same reasoning as in the proof of Lemma 8.0.16:

Shζ̇i = isαe
iθ(αi)θ̇i + A−3(θ̇i) + A−s(σ̇)

= A0(θ̇i) + A−s(σ̇). (8.43)

Since ‖θ̇‖l2 ≤ h
7
2 , ‖σ̇‖l2 < h

7
2 and ‖θ̇‖∞ ≤ h3, ‖σ̇‖∞ < h3, we see from this analysis

that ‖Shζ̇‖l2 ≤ h
7
2 and ‖Shζ̇‖∞ ≤ h3.

In estimating the variations, we will make use of the discrete Parseval equality.

First, recall that we may write the l2 inner product as:

(
f, g
)
h

= h

N
2∑

i=−N
2

+1

figi, (8.44)

for f, g ∈ l2. Then, we have:

Lemma 8.0.18. (Discrete Parseval’s equality). Let f, g ∈ l2. Then:

(
f, g
)
h

= 2π

N
2∑

k=−N
2

+1

f̂kĝk. (8.45)

In particular, when gi = fi:

‖f‖2
l2 = 2π

N
2∑

k=−N
2

+1

|f̂k|2. (8.46)

A simple consequence of Parseval’s equality is that derivatives can be trans-

formed to a smooth function, similar to integration by parts.
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Lemma 8.0.19. Let f(·) ∈ Cs+1 and g ∈ l2, then:(
f(·), Shg

)
h

= −
(
Shf(·), g

)
h
∈ A−s(g). (8.47)

The same result holds for the discrete average:

〈f(·)Shg〉h = −〈gShf(·)〉h ∈ A−s(g). (8.48)

Thus, when considered as an operator Q on g,

Q(g) ≡ 〈f(·)g〉h ∈ A−(s+1)(g). (8.49)

Proof. By Parseval’s equality:

(
f(·), Shg

)
h

= 2π

N
2∑

k=−N
2

+1

f̂k(ik)ĝk

= 2π

N
2∑

k=−N
2

+1

(−ik)f̂kĝk

= −
(
Sh(f(·)), g

)
h
. (8.50)

The result on discrete average follows from:

〈f(·)g〉h =
1

2π

(
f, g
)
h
. (8.51)

Note these results also hold for Dh. We will also make use of the fact that S−1
h (f(·)φ)i

is a smoothing operator on φ. The proof of this includes, as a by product, an

’integration by parts’ formula for S−1
h .

Lemma 8.0.20. Let f ∈ C3, φ ∈ l2, and assume f(·)φi has zero mean, i.e.,

〈f(·)φ〉h ≡ 0. Then:

S−1
h (f(·)Shφ)i = −S−1

h (Shf(·)φ)i + f(·)φi + A0(φi), (8.52)
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and hence:

S−1
h (f(·)φ)i = A−1(φi). (8.53)

The proof of Lemma 8.0.20 is technical and relegated to the appendix.
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CHAPTER 9

ESTIMATES FOR THE VARIATION OF VELOCITIES

The discrete equation for velocity is given by Equation (4.12). We rewrite the equation

as ui = U1,i + U2,i + U3,i + U4,i, where:

U1,i = Hhωi = −h
π

N
2∑

j=−N
2

+1

(j−i) odd

ωpj

(
2Re

( Shζj
ζj − τi

)
+ cot

(αi − αj
2

))
, (9.1)

U2,i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

ωpjShζj

ζj − τi
, (9.2)

U3,i = −h
π

N
2∑

j=−N
2

+1

(j−i) odd

ωpj(ζj − τi)Shζj
(ζj − τi)2

, (9.3)

U4,i = (Q+ iB)τi −
iGτi

2
, (9.4)

for i = −N
2

+ 1, · · · , N
2

. Note that Hh(ωi) has been substituted for the sum with

cotangent kernel in Equation (4.12).

Variations of the Ul,i, l = 1, 2, · · · , 4 are calculated using Lemmas 8.0.11 and

8.0.12. We represent these variations as the sum of linear and nonlinear quantities in

the variation, so that:

U̇1,i = Hhω̇i −
h

π

N
2∑

j=−N
2

+1

(j−i) odd

ω̇pj

(
2Re

( Shζh(αj)

ζh(αj)− τh(αi)

)
+ cot

(αi − αj
2

))

− h

π

N
2∑

j=−N
2

+1

(j−i) odd

(
ωp(αj)2Re

( Shζ̇j
ζh(αj)− τh(αi)

− Shζh(αj)

(ζh(αj)− τh(αi))2
(ζ̇j − τ̇i)

))

+ U̇NL
1,i , (9.5)
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where:

U̇NL
1,i = −h

π

N
2∑

j=−N
2

+1

(j−i) odd

{
ω̇pj

(
2Re

( Shζj
ζj − τi

)·)
+ ωp(αj)

[
2Re

(
Shζ̇j

( 1

ζj − τi

)·)]

+ ωp(αj)2Re

(
Shζh(αj)

(
ζ̇j − τ̇i

)2

[ζh(αj)− τh(αi)]2
(
ζh(αj)− τh(αi) + (ζ̇)j − (τ̇)i

))}. (9.6)

Note that the third term within brackets the above comes from the nonlinear term

in the variation of
(

1
ζj−τi

)·
, via Equation (8.30). Similarly,

U̇2,i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

[
ω̇pjShζh(αj) + ωp(αj)Shζ̇j

ζh(αj)− τh(αi)
−
(
ζ̇j − τ̇i

) ωh(αj)Shζh(αj)
[ζh(αj)− τh(αi)]2

]

+ U̇NL
2,i , (9.7)

To compactly represent the nonlinear term, introduce the notation:

[fi, gi, hi]
· = ḟiġih(αi) + ḟig(αi)ḣi + f(αi)ġiḣi, (9.8)

which gives the nonlinear terms in the variation of the product fgh. A similar

notation is used for the nonlinear terms in the variation of a product with four or

more functions. Then,

U̇NL
2,i =

h

π

N
2∑

j=−N
2

+1

(j−i) odd

{[
ωpj , Shζj,

1

ζj − τi

]·

+
ωh(αj)Shζh(αj)

(
ζ̇j − τ̇i

)2

[ζh(αj)− τh(αi)]2
(
ζh(αj)− τh(αi) + ζ̇pj − τ̇

p
i

)
}

, (9.9)
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where for example in
[
ωpj , Shζj,

1
ζj−τi

]·
, if gj = Shζj, then g(αj) = Shζh(αj).

Continuing,

U̇3,i = −h
π

N
2∑

j=−N
2

+1

(j−i) odd

[(
ω̇pj
[
ζh(αj)− τh(αi)

]
Shζh(αj) + ωp(αj)

[
ζ̇j − τ̇i

]
Shζh(αj)

+ ωp(αj)
[
ζh(αj)− τh(αi)

]
Shζ̇j

)( 1

ζh(αj)− τh(αi)

)2

−
2ωp(αj)

[
ζh(αj)− τh(αi)

]
Shζh(αj)

[
ζ̇j − τ̇i

][
ζh(αj)− τh(αi)

]3
]

+ U̇NL
3,i , (9.10)

where,

U̇NL
3,i = −h

π

N
2∑

j=−N
2

+1

(j−i) odd

{[
ωpj , ζj − τi, Shζj,

1

ζj − τi
,

1

ζj − τi

]·

+
ωp(αj)

[
ζh(αj)− τh(αi)

]
Shζh(αj)

[
ζ̇j − τ̇i

]2
[ζh(αj)− τh(αi)]2

(
ζh(αj)− τh(αi) + ζ̇j − τ̇i

)
}

. (9.11)

Finally,

U̇4,i = (Q+ iB)τ̇i −
iGτ̇i

2
. (9.12)

In the next section, we compute the leading order contribution to the variation

in the velocity. This computation uses the following integral estimates.

Lemma 9.0.1. Let q̇ ∈ l2 be a variation of some quantity, and let:

Ihq̇i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

f(αj)q̇j
ζ(αj)− ζ(αi)

, (9.13)
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with f(α) and ζ(α) smooth, and ζα(α) 6= 0. Define:

K1h[f, ζ](q̇i) =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

q̇j

[ f(αj)

ζ(αj)− ζ(αi)
− f(αi)

2ζα(αi)
cot
(αj − αi

2

)]
. (9.14)

Then:

Ihq̇i = − f(αi)

2ζα(αi)
Hhq̇i +K1h[f, ζ](q̇i), (9.15)

and K1h[f, ζ](q̇pi ) = A−2(q̇pi ), when filtering is applied.

Proof. The decomposition in (9.15) follows from adding and substracting− f(αi)
2ζα(αi)

Hhqi.

The fact that K1h is a smoothing operator on q̇p then follows by noting that the kernel

within brackets in K1h is smooth, and applying Lemma 8.0.5.

Lemma 9.0.2. Under the same assumptions as in Lemma 8.0.18, let:

Jhζ̇i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

f(αj)
(
ζ̇j − ζ̇i

)[
ζ(αj)− ζ(αi)

]2 , (9.16)

and define:

K2h[f, ζ](ζ̇i) =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

(
ζ̇j − ζ̇i

)[ f(αj)[
ζ(αj)− ζ(αi)

]2 − f(αi)

4ζ2
α(αi) sin2

(αj−αi
2

)

−
fα(αi)− ζαα(αi)

ζα(αi)
fα(αi)

2ζ2
α(αi)

cot
(αj − αi

2

)]
. (9.17)

Then:

Jhζ̇i = − f(αi)

2ζ2
α(αi)

Hh(Shζ̇i)−
fα(αi)− ζαα(αi)

ζα(αi)
fα(αi)

2ζ2
α(αi)

Hhζ̇i

+K2h[f, ζ](ζ̇i), (9.18)

and:

K2h[f, ζ](ζ̇pi ) = A−2(ζ̇pi ). (9.19)
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Proof. Write:

h

π

N
2∑

j=−N
2

+1

(j−i) odd

f(αj)
(
ζ̇j − ζ̇i

)[
ζ(αj)− ζ(αi)

]2 =
h

π

[
f(αi)

4ζ2
α(αi)

N
2∑

j=−N
2

+1

(j−i) odd

ζ̇j − ζ̇i
sin2

(αj−αi
2

)

+
fα(αi)− ζαα(αi)

ζα(αi)
fα(αi)

2ζ2
α(αi)

N
2∑

j=−N
2

+1

(j−i) odd

(
ζ̇j − ζ̇i

)
cot
(αj − αi

2

)]

+K2[f, ζ](ζ̇p) (9.20)

by adding and subtracting h
π

times the quantities in brackets. Next use the identity:

1

sin2 z
2

= 4
∞∑

n=−∞

1

(z − 2nπ)2
(9.21)

to write:

N
2∑

j=−N
2

+1

(j−i) odd

ζ̇j − ζ̇i
sin2

(αj−αi
2

) = 4 lim
M→∞

N(M+ 1
2

)∑
j=−N(M+ 1

2
)+1

(j−i) odd

ζ̇j − ζ̇i(
αj − αi

)2 , (9.22)

where we have used the periodicity of ζ̇j. Henceforth, we will use the notation∑
(j−i) odd

= lim
M→∞

N(M+ 1
2

)∑
j=−N(M+ 1

2
)+1

(j−i) odd

. Substitute (9.22) for the first sum within the brackets

in (9.20), and note that:

Hh(Shζ̇i) =
h

π

∑
(j−i) odd

ζ̇i − ζ̇j
(αi − αj)2

, (9.23)

and:

Hhζ̇i = −h
π

N
2∑

j=−N
2

+1

(j−i) odd

(
ζ̇j − ζ̇i

)
cot
(αj − αi

2

)
, (9.24)
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to obtain Equation (9.18). In Equation (9.24) we have used the identity

N
2∑

j=−N
2

+1

(j−i) odd

fi cot
(αj − αi

2

)
= 0 (9.25)

which holds for a generic f . Finally, Equation (9.19) follows from the observation

that the quantity within brackets in the definition of K2h in Equation (9.17), namely,

g(α, α′) =
f(α′)

[ζ(α′)− ζ(α)]2
− f(α)

4ζ2
α(α) sin2

(
α′−α

2

)
−
fα(α)− ζαα(α)

ζα(α)
fα(α)

2ζ2
α(α)

cot
(α′ − α

2

)
(9.26)

is a smooth function of α and α′.

Remark 9.0.3. If filtering is not applied, then it is easy to see that K1h[·, ·]q̇ = A0(q̇)

and K2h[·, ·]ζ̇ = A0(ζ̇). Indeed, this is a consequence of the remark following Lemma

8.0.5.

The following lemmas are derived similarly and are presented without proof.

Lemma 9.0.4. Under the same assumptions as Lemma 8.0.18, let:

Lhq̇i =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

f(αj)
(
ζ(αj)− ζ(αi)

)
q̇j[

ζ(αj)− ζ(αi)
]2 , (9.27)

and define:

K3h[f, ζ](q̇i) =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

q̇j

[(
ζ(αj)− ζ(αi)

)
f(αj)[

ζ(αj)− ζ(αi)
]2 − f(αi)ζα(αi)

2ζ2(αi)
cot
(αi − αj

2

)]
.

(9.28)

Then:

Lhq̇i = −f(αi)ζα(αi)

2ζ2(αi)
Hhq̇i +K3h[f, ζ](q̇i), (9.29)
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and K3h[f, ζ](q̇pi ) = A−2(q̇i).

Lemma 9.0.5. Under the same assumption as Lemma 8.0.18, let:

Mhζ̇ =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

f(αj)
(
ζ(αj)− ζ(αi)

)(
ζ̇j − ζ̇i

)[
ζ(αj)− ζ(αi)

]3 , (9.30)

and define:

K4h[f, ζ](ζ̇j) =
h

π

N
2∑

j=−N
2

+1

(j−i) odd

(
ζ̇j − ζ̇i

)[(ζ(αj)− ζ(αi)
)
f(αj)[

ζ(αj)− ζ(αi)
]2

− f(αi)ζα(αi)

4ζ3
α(αj) sin2

(αj−αi
2

) +
p(αi)

2ζ3
α(αi)

cot
(αj − αi

2

)]
, (9.31)

where:

p(αi) =
ζα(αi)f(αi)

2

(ζαα(αi)

ζα(αi)
− 3ζαα(αi)

ζα(αi)

)
+ ζα(αi)fα(αi). (9.32)

Then:

Mhζ̇i = −fα(αi)ζα(αi)

2ζ3
α(αi)

Hh(Shζ̇i)−
p(αi)

2ζ3
α(αi)

Hhζ̇i +K4h[f, ζ](ζ̇i), (9.33)

and K4h[f, ζ](ζ̇pi ) = A−2(ζ̇pi ).

9.1 Leading Order Velocity Variations

We identify the most singular part in the variation u̇i of the complex velocity. First,

note that in Equations (9.5)-(9.7), we can replace ζh with ζ and Shζh with ζα, incurring

by consistency an O(hs) error. (Recall that the expression O(hs) is used to denote

a generic high-order discretization error). Now, consider U̇1 in Equation (9.5). We

denote first sum in Equation (9.5) by K0h(ω̇
p
i ), and apply Lemmas 9.0.1 and 9.0.2 to
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find,

U̇1,i = Hh(ω̇i)−K0h(ω̇
p
i )−K1h[ω

p, ζ](Shζ̇i)−K1h[ω
p, ζ](Shζ̇i)

− ωpα(αi)
( Hhζ̇i

2ζα(αi)
+ c.c.

)
+K2h[ωζα, ζ](ζ̇i) +K2h[ωζα, ζ](ζ̇i)

+ U̇NL
1,i + O(hs), (9.34)

where c.c. denote the complex conjugate of the previous term. The leading order

contribution to U̇2,i in Equation (9.7) is determined from Lemmas 9.0.1 and 9.0.2 as

U̇2,i = −1

2

ζα(αi)

ζα(αi)
Hhω̇

p
i +K1h[ζα, ζ](ω̇pi )−

ωp(αi)

2ζα(αi)
Hh(Shζ̇i) +K1h[ωp, ζ](Shζ̇i)

+
ωp(αi)ζα(αi)

2ζ
2

α(αi)
Hh(Shζ̇i) +

1

2ζ
2

α(αi)

(
(ωpζα)α(αi)− ωp(αi)ζα(αi)ζαα(αi)

)
Hh(ζ̇i)

−K2h[ω
pζα, ζ](ζ̇i) + U̇NL

2,i + O(hs), (9.35)

Similarly, we find from Equation (9.11) and Lemmas 9.0.2, 9.0.4 and 9.0.5 that

U̇3,i =
ζα(αi)

2ζα(αi)
Hhω̇

p
i −K3h[ζα, ζ](ω̇pi ) +

ωp(αi)

2ζα(αi)
Hh(Shζ̇i) +

ωp(αi)

2ζα(αi)
Hhζ̇i

−K2h[ωpζα, ζ](ζ̇i)−
ωp(αi)ζα(αi)

2ζ2
α(αi)

Hh(Shζ̇i)−K3h[ωp, ζ](Shζ̇i)−
p(αi)

2ζ
3

α(αi)
Hh(ζ̇i)

+K4h[2ωpζα, ζ](ζ̇i) + U̇NL
3,i + O(hs), (9.36)

where:

p(αi) = ωp(αi)
(
ζαα(αi)ζα(αi)− 3ζαα(αi)ζα(αi)

)
+ 2ζα(αi)(ωζα)α(αi). (9.37)

Finally, U̇4,i is easily seen to consist only of low order terms, i.e., involving smoothing

operators. A more precise statement is given in the summary below.

9.2 Summary of Velocity Variation

The leading order contribution to the velocity variation is the sum of the contributions

from U̇l for l = 1, · · · , 4. We anticipate the leading order contribution will come from

62



Hhω̇i in Equation (9.34) (the equation for ω̇ is derived and analyzed below). The

leading order Hhω̇
p
i term in the sum of U̇2,i + U̇3,i cancels out. This is related to the

fact that the sum of the variation U̇2,i + U̇3,i comes from the discretization of the

integral ∫
γ

ω(ζ, t)d
ζ − τ
ζ − τ

, (9.38)

for which the kernel is smooth, i.e., the integrand is a smoothing operator on ω.

Surprisingly, the next order terms in U̇2,i + U̇3,i containing HhShζ̇i and its conjugate,

also cancel out. This is expected to have important consequences in the stability

of the discrete equations in the drop problem, i.e., with S = constant and κB = 0;

although this is beyond scope of current thesis.

To identify lower order terms in the velocity variation, we first use the Remark

8.0.17 to see that Shζ̇i = A0(θ̇i) + A−s(σ̇i). Therefore, applying Remark 8.0.6, we

have:

K·h[·, ·](Shζ̇) = A0(θ̇i) + A−s(σ̇). (9.39)

and similarly

K·h[·, ·](ζ̇) = A0(θ̇i) + A−s(σ̇). (9.40)

Lemma 8.0.5 implies that:

K1h[·, ·](ω̇p) = A−2(ω̇p), (9.41)

and

K2h[·, ·](ω̇p) = A−2(ω̇p). (9.42)
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We also need to estimate U̇4 defined in Equation (9.12). From Lemma 8.0.16, we

immediately see that:

U̇4,i = A−1(θ̇i) + A−s(σ̇) + O(ζ̇c). (9.43)

Note that U4 is the only velocity term in which ζc(t) appear. The other terms in our

velocity decomposition, U1, · · · , U3 depend only on the difference ζj − τi, for which ζc

cancels out. In the appendix, we show that the nonlinear term satisfies

u̇NLi =
4∑

n=1

U̇NL
n,i = A0(θ̇) + A−s(σ̇) + O(hs). (9.44)

Putting all the above facts together, we find from Equations (9.12),(9.34),(9.35),(9.36),

and (9.43) that

u̇i =
4∑
l=1

U̇l,i = Hhω̇i + A−2(ω̇pi ) + A0(θ̇i) + A−s(σ̇i) + O(|ζ̇c|) + O(hs), (9.45)

which is the main result of this section. Estimates on ω̇, which are combined with

(9.45) to give u̇i in terms of θ̇, σ̇ and α̇0 are provided in Section 9.3 below.

9.3 Tangential And Normal Velocity Variations

The discrete normal velocity is given by:

(un)i = Re
{
uini

}
= Im

{
uie
−iθi
}

, (9.46)

using ni = ieiθi . We need the variation u̇ni. From Equation (4.20), this is:

(u̇n)i =
κB
4s2

α

Hh(S
2
hθ̇i) +

κB
4

( 1

2σ2

)·
Hh(θαα(αi)) + Im

{
−
[
H, e−iθ(αi)

]
(ω̇pi )

−
[
Hh, (e

−iθ)·i
]
(ωp(αi)) + (u̇R)ie

−iθ(αi) + uR(αi)(e
−iθ)·i

}
+ (u̇n)NLi + O(hs), (9.47)
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where (u̇n)NLi represents the nonlinear terms. It is straight forward to estimate each

of the terms in Equation (9.47). Clearly,

κB
4

( 1

σ2

)·
Hh(θαα(αi)) = A−s(σ̇i), (9.48)

(see e.g., Lemma 8.0.14). By Theorem 8.0.8,

[
H, e−iθ(αi)

]
(ω̇pi ) = A−2(ωpi ). (9.49)

It is also easy to see by following the same steps as the proof to Lemma 8.0.15 that

(e−iθ)·i = −ie−iθ(αi)θ̇i + A−3(θ̇i), = O(h3), (9.50)

and the first equality combined with Remark 8.0.6 show that

[
Hh, (e

−iθ)·i
]
(ωp(αi)) = A0(θ̇). (9.51)

Indeed, we can write

[
Hh, (e

−iθ)·i
]
(ωp(αi)) = Hh

(
(e−iθ)·i(ω

p(αi))
)
− ωp(αi)Hh

(
(eiθ)·i

)
+ωp(αi)Hh

(
(eiθ)·i

)
−(eiθ)·iHh(ω

p(αi)), (9.52)

and note that the first two terms combine to form an integral operator with a smooth

kernel on the (unfiltered) (eiθ)·i, and similar for the latter two terms. Remark 8.0.6

then implies (9.51). Furthermore, it is easy to see from Equation (4.16) that

(u̇R)i = A−2(ω̇p) + A0(θ̇) + A−s(σ̇) + O(ζ̇c) + O(hs). (9.53)

Finally, it is straightforward to show using the second equality in (9.50) and the

previous estimate that

‖u̇nNL‖l2 = h3
(
A−2(ω̇p) + A0(θ̇) + A−s(σ̇) + O(ζ̇c) + O(hs)

)
, (9.54)
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which we write as

(u̇n)NLi = A−5(ω̇p) + A−3(θ̇) + A−s(σ̇) + O(h3ζ̇c) + O(hs). (9.55)

Therefore, we have shown that

(u̇n)i =
κB
4s2

α

Hh(S
2
hθ̇i) + A−2(ω̇pi ) + A0(θ̇i) + A−s(σ̇) + O(ζ̇c) + O(hs). (9.56)

We will also need the variation in the tangential velocity u̇s, since this appears in

the evolution equation for α̇0. We leave it to the reader to show, using the same

arguments as for ˙(un)i, that:

˙(us)i = −χ
2
Hh

(
Ṡi
)

+ A−2(ω̇pi ) + A0(θ̇i) + A−s(σ̇)

+ O(ζ̇c) + O(hs). (9.57)

Expressions for Ṡi and ω̇i are given in Equations (9.62) and (9.74) below. These

imply Ṡ in Equation (9.57) can be replaced by −f̃(αi)Dhα0 + A−1(α̇0), where f̃(α)

is defined in Equation (9.63) and A−2(ω̇p) in Equations (9.56) and (9.74) replaced by

A−1(α̇0).

Summarizing, we have shown that

(u̇n)i =
κB
4s2

α

Hh(S
2
hθ̇i) + A0(θ̇) + A−s(σ̇) + A−1(α̇0) + O(ζ̇c) + O(hs), (9.58)

˙(us)i =
χ

2
Hh(f̃(αi)Dhα̇0i) + A0(θ̇i) + A−s(σ̇)

+ O(ζ̇c) + O(hs), (9.59)

which give the variation of the normal and tangential velocities in terms of θ̇, σ̇, α̇0

and ζ̇c, and is the main result of the section.

We next consider the variation of the surface tension Ṡ. It is easily seen from

Equation (4.29) and Lemmas 8.0.11 and 8.0.12, that

Ṡi =
1 + S0(αi)

s0αα0α(αi)
σ̇ − sα(1 + S0(αi))

s0αα2
0α(αi)

Dhα̇0 + ṠNLi + O(hs), (9.60)
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where we have assumed Ṡ0 = 0, i.e., the initial tension S0i is exactly S0(αi), and

similarly σ̇0 = 0. An estimate for ṠNLi is obtained by noting that

ṠNLi = O(σ̇2 + (Dhα̇0)2),

= h3A−s(σ̇) + h2A0(Dhα̇0),

= A−s(σ̇) + A−1(α̇0), (9.61)

where we have used ‖σ̇‖∞, ‖σ̇0‖∞ ≤ h3 and ‖Dh(α̇0)‖∞ ≤ ch2. It follows that

Equation (9.60) can be written as

Ṡi = A−s(σ̇)− f̃(αi)Dhα̇0 + O(hs), (9.62)

where

f̃(α) =
sα(1 + S0(α))

s0αα2
0α(α)

(9.63)

is a smooth, real and positive function. The positivity the f̃(α) will be seen to be

critical. Indeed, it is found to be necessary for the well-posedness of the continuous

equations. We note that f̃(αi)Dhα̇0 = A0(Dhα̇0), but for later use we retain the

specific form in (9.62).

The next quantity we need to estimate is the variation of φs. Recall the discrete

equation for φs given by Equation (4.28). Taking the variation of this equation, we

find

(φ̇s)i = S−1
h

(
u̇nθα(·) + un(·)Shθ̇ − 〈u̇nθα(·) + un(·)Shθ̇〉h

)
i

+ O(hs) + (φ̇NLs )i, (9.64)

where

(φ̇NLs )i = S−1
h

(
u̇nShθ̇ − 〈u̇nShθ̇〉h

)
, (9.65)
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and recall the O(hs) term comes from, e.g., replacing unh(·) with un(·). We readily

obtain from Lemma 8.0.19, Lemma 8.0.20 and Equation (9.58), the estimate

(φ̇s)i = A0(Shθ̇i) + A−2(α̇0i) + A−s(σ̇) + O(ζ̇c) + O(hs). (9.66)

In obtaining this estimate, we have used A−1(S2
hθ̇) = A0(Shθ̇), and the nonlinear

terms have been estimated using ‖Shθ̇‖∞ ≤ 1
h
‖θ̇‖∞ ≤ h2 and Equation (9.58), and

are found to be smoother than terms already present in (9.66).

In order to complete the estimates, an estimate of ω̇ is required.

9.4 Leading Order Variation Of ω

For the case of viscosity matched fluids, in which β = 0 and χ = 1
2
, the integral term

in the continuous equation for ω (or equivalently the alternate point trapezoidal rule

sum in the discrete equation) drops out, and the equation localizes. From Equation

(4.8) with β = 0 and χ = 1
2
, it is easy to see that

ω̇i = −1

4

(
Ṡieiθ(αi) + S(αi)(e

iθ)·i
)

+
κB
4s2

α

[
iθαα(αi)(e

iθ)·i + ieiθ(αi)S2
hθ̇i
]

+
κB
2sα

ieiθ(αi)θαα(αi)
( 1

σ

)·
i

+ ω̇NLi , (9.67)

where ω̇NLi contains nonlinear terms in the variations
(

1
σ

)·
i
, (eiθ)·i, Ṡi, and discrete

derivatives Shθ̇ and S2
hθ̇. We now give estimates for each of the terms in (9.67).

Lemma 8.0.15 will provides the estimate (taking σ as one),

(eiθ)·i = ieiθ(αi)θ̇i + A−3(θ̇). (9.68)

The variation Ṡ is given in Equation (9.60). An estimate on the nonlinear term,

ω̇NLi = A−1(θ̇) + A−s(σ̇) + O(h2ζ̇c) + O(hs) (9.69)
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is derived below. We also need the following estimate for
(

1
σ

)·
i
.

Lemma 9.4.1. Assume that ‖σ̇‖l2 ≤ h
7
2 and sα > a > 0 for some positive constant

a. Then ( 1

σ

)·
= − σ̇

s2
α

+
σ̇2

s2
α

(
sα + σ̇

) , (9.70)

We also have ( 1

σ

)·
= O(h3), (9.71)

and

f(αi)
( 1

σ

)·
= A−s(σ̇) for smooth f . (9.72)

Proof. We have from Lemma 8.0.12,( 1

σ

)·
= − σ̇

s2
α

+
σ̇2

s2
α

(
sα + σ̇

) , (9.73)

which gives (9.70). Relation (9.71) follows from (9.70) the boundedness sα away from

zero, and ‖σ̇‖∞ < h3.

Together, Equations (9.67), (9.69), (9.60) and the above comments tell us that

ω̇i = κB
ieiθ(αi)

4s2
α

S2
hθ̇i + A0(θ̇i) + A−s(σ̇) +

1

4
eiθ(αi)f̃(αi)(Shα̇0)i + O(h2ζ̇c) + O(hs),

(9.74)

where f̃(α) is given by Equation (9.63). This further implies that:

A−2(ω̇) = A0(θ̇) + A−s(θ̇) + A−1(α̇0) + h2ζ̇c + O(hs), (9.75)

and therefore A−2(ω̇p) can be replaced with A−1(α̇0) in Equations (9.45), (9.56),

(9.57), which leads to Equations (9.58), (9.59). We note that there are no A0(Shθ̇)
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terms in Equation (9.74), since these have canceled out. This will lead to an important

simplification in the energy estimates developed later.

We complete the derivation of Equation (9.74) by giving details of the estimate

(Equation (9.69)) for the nonlinear term ω̇NL
i . This term contains products of the

form (e−iθ)·iṠi, (e−iθ)·iS
p
hθ̇i for p = 1, 2, (Shθ̇i)

2,
˙( 1
σ

)
(Shθ̇i), etc. We use (e−iθ)·i = O(h3)

(see Lemma 8.0.15) to obtain

(e−iθ)·iS
p
hθ̇i = h3A0(Sphθ̇i) = Ap−3(θ̇) (9.76)

for p = 1, 2. Similarly, from Equation (9.62),

(e−iθ)·iṠi = A−s(σ̇i) + A−2(α̇0) + O(hs), (9.77)

and using Shθ̇ = O(h2),

(Shθ̇i)
2 = A−1(θ̇i). (9.78)

Also, from Equation (9.71),

( 1

σ

)·
i
Shθ̇i = A−2(θ̇i). (9.79)

where the latter equality we have used Equation (9.72). The estimate Equation (9.69)

readily follows. This verifies Equation (9.74) which is the main result of this section.
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CHAPTER 10

EVOLUTION EQUATIONS FOR THE ERROR

An evolution equation for θ̇ is formed by first substituting the exact solution sα, θ(αi)

into Equation (4.22), using consistency, and substracting the result from Equation

(4.22). This gives

dθ̇i
dt

=
1

σ

[
Sh(un)i + (φs)iShθi

]
− 1

sα

[
Sh(un)h(αi) + (φs)h(αi)Shθ(αi)

]
+ O(hs)

=
1

sα

(
Sh ˙(un)i + φs(αi)Sh(θ̇i) + θα(αi) ˙(φs)i

)
+

1

σ̇

(
(un)α(αi) + φs(αi)θα(αi)

)
+ ΘNL

i + O(hs), (10.1)

where the nonlinear term ΘNL
i contains products of the variations. In (10.1), we

have also used consistency to replace, for example, Sh(θ(αi)) with θα(αi), incurring

an O(hs) error. It is easy to see from Equations (9.59), (9.66) and Lemma 9.4.1 that

the nonlinear terms satisfies

Θ̇NL
i = A0(θ̇) + A−s(σ̇) + O(h3ζ̇c) + O(hs), (10.2)

where for the leading order part, we have used the estimate

( 1

σ

)·
i
(Sh(un))·i = O(h3)

(
ShA0(S2

hθ̇) + A−s(σ̇) + O(ζ̇c) + O(hs)
)

= A0(θ̇) + A−s(σ̇) + O(h3ζ̇c) + O(hs). (10.3)
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The relation (Equation (10.1)) can be further simplified using Equations (9.58), (9.66)

and Lemma 9.4.1, which give

dθ̇i
dt

=
κB
4s3

α

Hh(S
3
hθ̇i) + ShA0(θ̇i) + A0(Shθ̇i) + ShA−1(α̇0i)

+ A−s(σ̇) + O(ζ̇c) + O(hs), (10.4)

In deriving Equation (10.4), we have made use of the fact that ζ̇c is spatially

independent and can be pulled outside of a spatial operator.

The evolution equation for σ̇ is derived similarly. We substitute the exact

solution into Equation (4.23), use consistency, and substract the result from Equation

(4.23) to obtain

dσ̇

dt
= −〈unShθ〉h + 〈(un)h(·)Shθ(·)〉+ O(hs)

= −〈 ˙(un)θα(·)〉h − 〈un(·)Shθ̇〉h − 〈 ˙(un)Shθ̇〉h + O(hs). (10.5)

The nonlinear term is estimated as

〈 ˙(un)Shθ̇〉h = A0(θ̇) + A−s(σ̇) + O(h2ζ̇c) + O(hs), (10.6)

using Equation (9.56) and the bound ‖Shθ̇‖l2 ≤ h2. Equation (10.5) can be further

simplified using Lemmas 8.0.14−8.0.16, which together with (10.6) gives

dσ̇i
dt

= A0(θ̇) + A−s(σ̇) + O(ζ̇c) + O(hs). (10.7)

We also need the variation of the evolution Equation (4.30) for α̇0. Let

ut(α) = (φs(α)− us(α))eiθ(α) (10.8)
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be the difference between the tangential interface velocity at a fixed α and the

tangential fluid velocity at τ(α). Taking the variation of Equation (4.30) gives(dα̇0

dt

)
i

=
ut(αi)

sαeiθ(αi)
(Dhα̇0)i −

α0α(αi)ut(αi)

s2
αe

iθ(αi)
σ̇ − α0α(αi)ut(αi)

sα(eiθ(αi))2
(eiθi)·

+
α0α(αi)

sαeiθ(αi)
(u̇t)i + (α̇0

NL)i + O(hs), (10.9)

where α̇0
NL contains the nonlinear terms, which can be compactly represented as

α̇0
NL
i = O

(
(Shα̇0)2 + σ̇2 + (eiθ)·2 + (u̇t)

2
)
i

(10.10)

From Equations (9.59) and (9.66), we have (taking χ = 1
2
),

(ut)
·
i = −e

−iθ(αi)

4
Hh

(
f̃(αi)Dhα̇0i

)
+ A0(Shθ̇i) + A−s(σ̇) + A−1(α̇0i)

+ O(ζ̇c) + O(hs), (10.11)

where we have also used Lemma 8.0.15. Define the smooth functions

f̃1(α) =
ut(α)

sαeiθ(α)
and f̃2(α) =

f̃(α)(α0)α(α)

4sα
, (10.12)

where importantly α0α(α) and hence f̃2(α) are both positive functions. We note that

α0α(α) = 1 at t = 0, and the positive definiteness of α0α is a consequence of α0(α)

being a one-to-one mapping, which is related to the physical property that material

fluid points cannot overlap. Using (10.11) and (10.12), Equation (10.9) can be written(dα̇0

dt

)
i

= f̃1(αi)(Dhα̇0)i − f̃2(αi)HhDhα̇0i + A0(Shθ̇i)

+ A−s(σ̇) + A−1(α̇0i) + O(ζ̇c) + O(hs). (10.13)

The nonlinear terms are smoother or smaller than terms that are already present in

(10.13), as is easily verified by reader.

Next, we derive the evolution equation for ζ̇c. We have defined ζc as the k = 0

Fourier mode of the discrete interface ζi. Recall the evolution equation for ζc is
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Equation (4.27),

dζc
dt

∣∣∣
α

= v̂0. (10.14)

It immediately follows that

dζ̇c
dt

∣∣∣
α

= ˆ̇v0 (10.15)

is the evolution equation for ζ̇c. Equations (10.4), (10.7), (10.13), and (10.15) are the

main results of the chapter.
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CHAPTER 11

ENERGY ESTIMATES

We first recall that we have defined a time:

T ∗ ≡ sup
{
t : 0 ≤ t ≤ T, ‖σ̇‖l2 , ‖θ̇‖l2 , ‖ζ̇‖l2 , ‖α̇0‖l2 ≤ h

7
2

}
. (11.1)

The power of h in the above definition is chosen for convenience, so that the estimates

below easily go through. All the estimates we obtain are valid for t ≤ T ∗. We ”close

the argument” and prove Theorem 7.0.2 by showing at the end that T ∗ = T . Define

the energy

E(t) = σ̇2 +
(
θ̇, θ̇
)
h

+
(
α̇0, α̇0

)
h

+ |ζ̇c|2, (11.2)

where we recall (f, g)h is the inner product h

N
2∑

k=−N
2

+1

figi. Take the time derivative of

E and use Equations (10.4), (10.7) to obtain

1

2

dE

dt
= σ̇σ̇t +

(
θ̇, θ̇t

)
h

+
(
α̇0, α̇0t

)
h

+ 2Re
(
ζ̇cζ̇ct

)
,

= σ̇
(
A0(θ̇) + A−s(σ̇) + O(|ζ̇c|) + O(hs)

)
+
(
θ̇,
κB
4s3

α

Hh(S
3
hθ̇) + ShA0(θ̇) + A0(Shθ̇)

+ A−s(σ̇) + O(ζ̇c) + O(hs)
)
h

+
(
α̇0, α̇0t

)
h

+ 2Re
(
ζ̇cζ̇ct

)
. (11.3)

The first product on the right side of (11.3) is readily bounded using Young’s

inequality:

σ̇
(
A0(θ̇) + A−s(σ̇) + O(|ζ̇c|) + O(hs)

)
≤ cE + O(hs). (11.4)
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We bound the inner product in Equation (11.3) by making use of parabolic smoothing.

The first term in this inner product is evaluated as(
θ̇,
κB
4s3

α

Hh(S
3
hθ̇i)
)
h

= − κB
4s3

α

N
2
−1∑

k=−N
2

+1

|k|3| ˆ̇θk|3, (11.5)

where we have used the discrete Parseval’s equality (Lemma 8.0.18), Equation (8.17),

and the real valuedness of θ̇ (so that | ˆ̇θk| = | ˆ̇θ−k|). The sum extends to k = N
2
− 1, in

view of zeroing out the N
2

mode of Shθ̇. The next term is bounded using Parseval’s

equality and Young’s inequality:∣∣(θ̇, Sh(A0(θ̇))
)
h

∣∣ =
∣∣(Shθ̇, A0(θ̇)

)
h

∣∣
≤

N
2
−1∑

k=−N
2

+1

|k|| ˆ̇θk|| ̂(A0(θ̇))k|,

≤ 1

2

[ N
2
−1∑

k=−N
2

+1

(
k2| ˆ̇θk|2 + | ̂(A0(θ̇))k|

2
)]

,

≤ c

(
E +

N
2
−1∑

k=−N
2

+1

k2| ˆ̇θk|2
)

, (11.6)

for a constant c. In the last inequality, we have used
N
2
−1∑

k=−N
2

+1

| ̂(A0(θ̇))k|
2 ≤ ‖A0(θ̇)‖2

l2 ≤ c‖θ̇‖2
l2 = c

N
2
−1∑

k=−N
2

+1

| ˆ̇θk|2. ≤ cE (11.7)

We similarly bound

∣∣(θ̇, A0(Shθ̇)
)
h

∣∣ ≤ N
2
−1∑

k=−N
2

+1

| ˆ̇θk|| ̂(A0(Shθ̇))k|

≤ 1

2

[ N
2
−1∑

k=−N
2

+1

(
| ˆ̇θk|2 + | ̂(A0(Shθ̇))k|

2
)]

≤ c

(
E +

N
2
−1∑

k=−N
2

+1

k2| ˆ̇θk|2
)

, (11.8)
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where c > 0 and the last inequality follows from the bound

N
2
−1∑

k=−N
2

+1

| ̂(A0(Shθ̇))k|
2 ≤ ‖A0(Shθ̇)‖2

l2 ≤ c‖Shθ̇‖2
l2 = c

N
2
−1∑

k=−N
2

+1

k2| ˆ̇θk|2. (11.9)

For the next three terms in Equation (11.3), we use the bound∣∣(θ̇, A−s(σ̇) + O(ζ̇c) + O(hs)
)
h

∣∣ ≤ cE + O(hs). (11.10)

Next, we estimate the inner product (α̇0t, α̇0)h in Equation (11.3). We substitute

Equation (10.13) for α̇0t to obtain(
α̇0t, α̇0

)
h

=
(
f̃1(·)Dhα̇0, α̇0

)
h
−
(
f̃2(·)Hh(Dhα̇0), α̇0

)
h

+
(
A0(Shθ̇)

+ A−s(σ̇) + A−1(α̇0) + O(ζ̇c), α̇0

)
h

+ O(hs). (11.11)

The first inner product on the right hand side of (11.11), which can be written(
f̃1(·)α̇0, Dhα̇0

)
h
, is estimated using the discrete Parseval’s equality and Lemma 8.0.10

as (
f̃1(·)α̇0, Dhα̇0

)
h

= −
(
Dh(f̃1(·)α̇0), α̇0

)
h

= −
(
f̃1(·)Dhα̇0 + α̇q0f̃1α(·) + hA0(α̇0), α̇0

)
h
. (11.12)

Move the first inner product on the right hand side of (11.12) to the left hand side

(also moving the real function f̃1 to the other side of the inner product) to obtain

2
(
f̃1(·)α̇0, Dhα̇0

)
h

= −
(
α̇q0f̃1α(·) + hA0(α̇0), α̇0

)
h
. (11.13)

This shows that the inner product is bounded by the energy, i.e.,∣∣(f̃1(·)α̇0, Dhα̇0

)
h

∣∣ ≤ cE. (11.14)

The second inner product on the right hand side of (11.11) can be written

−
(
Λp
hα̇0, f̃2(·)α̇0

)
h
, where we have defined Λp

h = HhDh. To bound this inner product,
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we make essential use of the positive definiteness of f̃2. We first write:

−
(
Λp
hα̇0, f̃2(·)α̇0

)
h

= −
(√

f̃2(·)Λp
hα̇0,

√
f̃2(·)α̇0

)
h
, (11.15)

then move
√
f̃2(·) inside the argument of the operator Λp

h, which by Lemma 8.0.8 and

the discrete product rule Lemma 8.0.10 introduces a commutator and other terms

whose inner product with α0 can be bounded by energy. If we define ˙̃α0 =
√
f̃2(·)α̇0,

then the preceding statements imply that

−
(√

f̃2(·)Λp
hα̇0,

√
f̃2(·)α̇0

)
h

= −
(
Λp
h

˙̃α0, ˙̃α0

)
h

+ r (11.16)

where r ∈ R satisfies |r| < cE. The inner product on the right hand side of (11.16)

satisfies (
Λp
h

˙̃α0, ˙̃α0

)
h

=

N
2∑

k=−N
2

+1

|k|ρ(kh)| ˙̃α0|2 > 0. (11.17)

Combining (11.15)-(11.17) shows that(
Λp
hα̇0, f̃2(·)α̇0

)
h
≤ cE, (11.18)

which gives the desired estimate on the second inner product in Equation (11.11).

The third inner product that we need to estimate is
(
A0(Shθ̇), α̇0

)
h
. This is

bounded using Young’s inequality as∣∣(A0(Shθ̇), α̇0

)
h

∣∣ ≤ 1

2

(
‖A0(Shθ̇)‖2

l2 + ‖α̇0‖2
l2

)
,

≤ c
(
‖Shθ̇‖2

l2 + ‖α̇0‖2
l2

)
,

≤ c
( N

2
−1∑

k=−N
2

+1

|k|2| ˆ̇θk|2 + E
)

. (11.19)

The first sum above will be controlled by parabolic smoothing (i.e., by the dominant

contribution from the leading order term Equation (11.5)). The second sum above is

bounded by the energy.
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The other inner products in Equation (11.11) are clearly bounded by cE.

Putting these estimates together, we have obtained the bound

(
α̇0t, α̇0

)
h
≤ c
( N

2
−1∑

k=−N
2

+1

|k|2| ˆ̇θk|2 + E
)

+ O(hs). (11.20)

The final term in Equation (11.3) is estimated using Equation (10.15) and

Young’s inequality as

2|Re
(
ζ̇cζ̇ct

)
| ≤ 2|ζ̇c||ζ̇ct|,

≤ 2|ζ̇c|| ̂̇v0|,

≤ |ζ̇c|2 + | ̂̇v0|2,

≤ |ζ̇c|2 + ‖̂̇v‖2
l2 . (11.21)

where we recall that v̇ =
(
unie

iθ + φse
iθ
)·

. From expressions for u̇n and φ̇s given in

Equations (9.58) and (9.66), it is easy to see that

‖v̇‖2
l2 ≤ c

(
‖Shθ̇‖2

l2 + ‖A−2(α̇0)‖2
l2 + |ζ̇c|2 + ‖A0(θ̇)‖2

l2

+ ‖A−s(σ̇)‖2
l2 + O(hs)

)
. (11.22)

Therefore,

2|Re
(
ζ̇cζ̇ct

)
| ≤ c

( N
2
−1∑

k=−N
2

+1

|k|2| ˆ̇θk|2 + cE + O(hs)
)

, (11.23)

which gives the desired bound on the last term Equation (11.3).

We now put these estimates together. First, set

d1 = min
0≤t≤T

κB
2sα

, (11.24)

and note by assumptions on sα that 0 < c1 < d1 <∞, so in particular d1 is bounded

away from zero. Then from Equations (11.5), (11.6), (11.7), (11.8), and (11.23), there
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exists positive constants d2, d3, such that Equation (11.3) can be bounded as

dE

dt
≤

N
2
−1∑

k=−N
2

+1

(
− d1|k|3 + d2k

2
)
| ˆ̇θk|2 + d3E + O(hs). (11.25)

Let 0 < ε < d1 be fixed. Then (11.25) can be written as

dE

dt
≤

N
2
−1∑

k=−N
2

+1

d4| ˆ̇θk|2 + d3E + O(hs), (11.26)

where

d4 = max
−N

2
+1≤k≤N

2

(
− d1|k|3 + d2k

2
)
, (11.27)

(Note that 0 < d4 < ∞). It readily follows that there exists a positive constant c

such that

dE

dt
≤ cE + O(hs), with E(0) = 0 (11.28)

for t ≤ T ∗, which is the main result of this chapter.

Stability and convergence of our numerical method now follows from (11.28).

Application of Gronwall’s inequality to (11.28) gives

E(t) ≤ chst(1 + et) for t ≤ T ∗, (11.29)

or

E(t) ≤ c(T ∗)hs, (11.30)

It follows that

‖σ̇‖2
l2 , ‖θ̇‖2

l2 , ‖α̇0‖2
l2 , ‖ζ̇‖2

l2 ≤ c(T ∗)hs, (11.31)
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where we have used ‖ζ̇‖2
l2 ≤ cE, which follows from Lemma 8.0.16 and ‖ζ̇c‖2

l2 ≤ cE.

We choose m large enough, so that s can be picked to satisfy s ≥ 8. (Recall that m

characterizes the smoothness of the continuous solution, and s is near m). Then

‖σ̇‖l2 , ‖θ̇‖l2 , ‖α̇0‖l2 , ‖ζ̇‖l2 ≤ c(T ∗)h
s
2 < h

7
2 (11.32)

for h small enough. We can therefore extend T ∗ to T ∗ = T , so that the bounds (11.32)

are valid throughout the entire interval 0 ≤ t ≤ T in which a smooth continuous

solution exists. This completes the proof of the convergence of our method for β = 0,

χ = 1
2

and κB > 0.
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CHAPTER 12

CONCLUSIONS

A convergence proof has been presented for a boundary integral method for interfacial

Stokes flow. While previous convergence analyses of the boundary integral method

exist for interfacial potential flow, this is the first analysis that we are aware of for

the important case of interfacial Stokes flow. Our analysis has focused on a spectrally

accurate numerical method, adapted in this research from [22], for a Hookean elastic

capsule with membrane bending stress evolving in an externally applied strain or shear

flow. The method is based on an arclength-angle parametrization of the interface

which was introduced in [25] to remove numerical stiffness in an efficient manner.

The main task in the proof is to estimate the variations or errors θ̇ = θi− θ(αi),

σ̇ = σ − sα between the discrete and exact solutions at time t. This is done by

estimating the most singular terms in the variations, and seperating into linear and

nonlinear terms in θ̇, σ̇. The nonlinear terms are controlled by the high (spectral)

accuracy of the method for smooth solutions, and thus the crux of the proof is show

the stability of the linear terms in the variation, which is done with the aid of energy

estimates.

The presence of high derivatives due to the bending forces requires a substan-

tially different analysis from previous proofs of the convergence of the boundary

integral method for potential flow. In particular, our energy estimate make significant

use of the smoothing properties of the highest derivative term, or so-called ’parabolic

smoothing’, to control lower order derivatives. This allows us to close the energy

estimates and prove stability of the method.

The proof also clarifies the role of numerical filtering in the particular boundary

integral method analyzed in this research. We find that targeted filtering is necessary
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to control the potentially destabilizing effect of aliasing errors and prove stability

of the method. Crucially, however, our analysis shows that the filter should not be

applied to the highest derivative term coming from the membrane bending stress, so

that the smoothing properties of this term can utilized.

In future work, we shall consider the convergence analysis of the boundary

integral method for drops and bubbles without a surrounding elastic membrane. In

this case, the interfacial tension S is constant in space and the bending stress κB is

zero. We may also consider the convergence analysis for an inextensible membrane, in

which S is determined by enforcing the surface divergence of the interfacial velocity

to be zero, i.e.,

xs · us(x) = 0, for x ∈ γ (12.1)

In other future work, we may also consider the convergence of recent algorithms, e.g.,

[33], in which artificial contact forces are introduced to prevent fluid drops or vesicles

from coming into close contact. Since the contact forces act over a small region that

scales with the grid size, it is expected that methods utilizing these forces converge

to solutions of the continuous equations (without contact forces). However, no proof

or demonstration of convergence currently exists.
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APPENDIX A

PROOF OF LEMMAS

Proof. Proof of Lemma 8.0.20 Define:

f̂k =
1

2π

∫ π

−π
f(α)e−ikαdα, (A.1)

and let:

F̂k =
∞∑

m=−∞

f̂k+mN for − N

2
+ 1 ≤ k ≤ N

2
(A.2)

denote the discrete Fourier coefficients of f , taking aliasing into account. Thus:

f(αi) =

N
2∑

k=−N
2

+1

F̂ke
ikαi , (A.3)

φi =

N
2∑

k=−N
2

+1

φ̂ke
ikαi . (A.4)

(A.5)

Our interest is in obtaining an estimate for:

S−1
h (f(·)Shφ)i =

N
2∑

k=−N
2

+1
k 6=0

1

ik
̂(fShφ)ke

ikαi , (A.6)

where ̂(fShφ)k denotes the discrete Fourier coefficients of the product fShφ.
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As a preliminary, we shall need an expression for the Fourier coefficients of the

product of a smooth function with a discrete function. For a given k, define the sets:

In,k =
{
n ∈ Z : −N

2
+ 1 ≤ k − n ≤ N

2

}
,

Jn,k =
{
n ∈ Z : −N

2
+ 1 ≤ k +N − n ≤ N

2

}
,

Kn,k =
{
n ∈ Z : −N

2
+ 1 ≤ k −N − n ≤ N

2

}
. (A.7)

Using Equations (A.3) and (A.4), the product f(αi)φi can be written as:

f(αi)φi =

( −N
2∑

k=−N+2

+

N
2∑

k=−N
2

+1

+
N∑

k=N
2

+1

) ∑
n∈In,k

F̂k−nφ̂ne
ikαi , (A.8)

where we use the notation
∑
n∈In,k

to represent

N
2∑

n=−N
2

+1
n∈In,k

. Equivalently, φ̂n is set to zero

for n outside the range [−N
2

+ 1, N
2

] (this is known as ’zero padding’). The wave

numbers in the first and third sums in parenthesis are aliased to k ∈ [−N
2

+ 1, N
2

].

Rewriting these two sums by replacing k with k − N and k + N , respectively, we

obtain the equivalent representation:

f(αi)φi =

N
2∑

k=−N
2

+1

( ∑
n∈In,k

F̂k−nφ̂n +
∑
n∈Jn,k

F̂k+N−nφ̂n

+
∑

n∈Kn,k

F̂k−N−nφ̂n

)
eikαi , (A.9)

where the requirement n ∈ Jn,k in the second double sum of (A.9) and n ∈ Kn,k in

the third has allowed us to replace
0∑

k=−N
2

+1

and

N
2∑

k=2

, respectively, with

N
2∑

k=−N
2

+1

. For
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Equation (A.9), we therefore have for −N
2

+ 1 ≤ k ≤ N
2

:

̂(fShφ)k =
∑
n∈In,k

inF̂k−nφ̂n +
∑
n∈Jn,k

inF̂k+N−nφ̂n

+
∑

n∈Kn,k

inF̂k−N−nφ̂n. (A.10)

and similarly,

̂(φShf)k =
∑
n∈In,k

i(k − n)F̂k−nφ̂n +
∑
n∈Jn,k

i(k +N − n)F̂k+N−nφ̂n

+
∑

n∈Kn,k

i(k −N − n)F̂k−N−nφ̂n. (A.11)

Combining Equation (A.10) with the negative of Equation (A.11) gives for −N
2

+ 1 ≤

k ≤ N
2

:

̂(fShφ)k = −̂(φShf)k +
∑
n∈In,k

ikF̂k−nφ̂n

+
∑
n∈Jn,k

i(k +N)F̂k+N−nφ̂n +
∑

n∈Kn,k

i(k −N)F̂k−N−nφ̂n. (A.12)

We next recognize from Equation (A.9) that:

(̂fφ)k =
∑
n∈In,k

F̂k−nφ̂n +
∑
n∈Jn,k

F̂k+N−nφ̂n

+
∑

n∈Kn,k

F̂k−N−nφ̂n, (A.13)

and combining this with Equation (A.11) shows that the Fourier coefficients in

Equation (A.6) can be written as:

̂(fShφ)k
ik

= −
̂(φShf)k
ik

+ (̂fφ)k

+
∑
n∈Jn,k

N

k
F̂k+N−nφ̂n −

∑
n∈Kn,k

N

k
F̂k−N−nφ̂n, (A.14)
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for −N
2

+ 1 ≤ k ≤ N
2

with k 6= 0. The first three terms in Equation (A.14) are the

Fourier coefficients of the first three terms in Equation (8.52). To finish the derivation

of Equation (8.52), we simply need to estimate the two sums on the right hand side

of Equation (A.14). The main difficulty is to overcome the large factor of N .

Each of the two sums in Equation (A.14) is a discrete convolution which

represents the k-th Fourier coefficient of the product a smooth function with φi.

Denoting the smooth functions by f1 and f2, we form the l2-norm of the products

with the aid of the discrete Parseval equality (Lemma 8.0.18),

‖f1(·)φ‖l2 =

(
2π

N
2∑

k=−N
2

+1

( ∑
n∈Jn,k

N

k
F̂k+N−nφ̂n

)2
) 1

2

, (A.15)

and

‖f2(·)φ‖l2 =

(
2π

N
2∑

k=−N
2

+1

( ∑
n∈Kn,k

N

k
F̂k−N−nφ̂n

)2
) 1

2

. (A.16)

We estimate these l2-norms by decomposing the wavenumber range into

κ1 =
{
k :

N

4
≤ |k| ≤ N

2

}
, (A.17)

and

κ2 =
{
k : 0 < |k| < N

4

}
. (A.18)
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The sum over k ∈ κ1 is bounded using |N
k
| ≤ 4. For example,[

2π
∑
k∈κ1

(
N

k

∑
n∈Jn,k

F̂k+N−nφ̂n

)2
] 1

2

≤4

[
2π
∑
k∈κ1

( ∑
n∈Jn,k

F̂k+N−nφ̂n

)2
] 1

2

≤4

[
2π

N
2∑

k=−N
2

+1

( ∑
n∈Jn,k

F̂k+N−nφ̂n

)2
] 1

2

, (A.19)

=4

[
2π

N∑
k=N

2
+1

∑
n∈In,k

(
F̂k−nφ̂n

)2

] 1
2

, (A.20)

where in the latter equality we have first replaced

N
2∑

k=−N
2

+1

in (A.19) with
0∑

κ=−N
2

+1

(per the comment following Equation (A.9)) and then substituted k −N for k. The

expression in (A.20) is clearly bounded by a constant times the extended l2 norm of

Equation (A.8),

‖f(·)φ‖l2ext ≡

[
2π

N∑
k=−N+2

( ∑
n∈In,k

F̂k−nφ̂n

)2
] 1

2

, (A.21)

for which:

‖f(·)φ‖l2ext ≤ ‖f‖∞‖φ‖l2ext = ‖f‖∞‖φ‖l2 , (A.22)

(where ‖φ‖l2ext is defined by zero padding).

Hence, in Equation (A.15) (and similarly in Equation (A.16)), the sum over

k ∈ κ1 is bounded by c‖φ‖l2 .

The sum over k ∈ κ2 (see Equation (A.18)) requires different estimate. For

example, consider Equation (A.15). For k ∈ κ2, we have:

k +N − n ≥ N

4
when n ∈

[
− N

2
+ 1,

N

2

]
. (A.23)
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Moreover, f̂k (the Fourier coefficients of f) decay like O(k−s), where s is the number

of continuous derivatives of f , and it is easily seen that when s > 1, F̂k also decays

like O(k−s).

Hence,

|F̂k+N−n| ≤ c|k +N − n|−s ≤ c
(N

4

)−s
, (A.24)

per Equation (A.23). It follows that the sum over k ∈ κ2 satisfies the bound:[
2π
∑
k∈κ2

( ∑
n∈Jn,k

N

k
F̂k+N−nφ̂n

)2
] 1

2

≤cN−s+1

[ ∑
|k|≤N

4

( ∑
n∈Jn,k

φ̂n

)2
] 1

2

≤cN−s+2

[ ∑
|k|≤N

4

∑
n∈Jn,k

φ̂2
n

] 1
2

≤cN−s+
5
2‖φ‖l2 . (A.25)

Here we have used Equation (A.24) in the first inequality,

(∑
n

φn

)2

≤ N2
∑
n

φ2
n (A.26)

in the second, and replaced
∑
|k|≤N

4

by N
4

in the third. It follows that when s ≥

5
2
, the sum over k ∈ κ2 in Equation (A.15) is bounded by c‖φ‖l2 . The sum over

k ∈ κ2 in Equation (A.16) is bounded similarly. Thus, both Equation (A.15) and

Equation (A.16) are bounded by c‖φ‖l2 , which finishes our estimate for the two sums

in Equation (A.14). This completes the derivation of Equation (8.52).

Equation (8.53) readily follows by nothing that both DhS
−1
h (f(·)φ)i and

S−1
h (f(·)Shφ)i are A0(φ) operators. The latter is a consequence of Equation (8.52)
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and the estimate

‖S−1
h (f(·)φ)i‖l2 =

( N
2∑

k=−N
2

+1

(̂fφ)
2

k

|k|2
) 1

2

≤
( N

2∑
k=−N

2
+1

(̂fφ)
2

k

) 1
2

= ‖fφ‖l2

≤ ‖f‖∞‖φ‖l2 , (A.27)

where (̂fφ)k is given by Equation (A.13).
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APPENDIX B

ESTIMATES FOR THE NONLINEAR TERMS IN THE VELOCITY
VARIATION

We estimate the nonlinear terms (Equations (9.6), (9.9) and (9.11)) in the velocity

variation. Consider first the expression Equation (9.6) for U̇1
NL

. We expand some of

the variations in this expression using Lemmas 8.0.11 and 8.0.12, for example,( Shζj
ζj − τi

)·
= − ζα(αj)

(ζ(αj)− τ(αi))2

(
ζ̇j − τ̇i

)
+

Shζ̇j
ζ(αj)− τ(αi)

+
ζα(αj)(ζ̇j − τ̇i)2

(ζ(αj)− τ(αi))2(ζ(αj)− τ(αi) + ζ̇j − τ̇i)

+ O(hs). (B.1)

To estimate the terms involving differences in (B.1), we make use of the Fourier series

representation

ζ̇j − τ̇i
αj − αi

=

N
2∑

k=−N
2

+1

ˆ̇ζk
eikαj − eikαi
αj − αi

, (B.2)

so that ∥∥∥ ζ̇j − τ̇i
αj − αi

∥∥∥2

l2
≤

N
2∑

k=−N
2

+1

| ˆ̇ζk|2
∣∣∣∣eikαj − eikαiαj − αi

∣∣∣∣2

≤
N
2∑

k=−N
2

+1

| ˆ̇ζk|2k2

= ‖Shζ̇‖2
l2 . (B.3)

The first term on the right hand side of (B.1) is estimated by multiplying and dividing

by
(
αj − αi

)2
, and using (B.3) to obtain,∥∥∥∥ ζα(αj)(ζ̇j − τ̇i)

(ζ(αj)− τ(αi))2

∥∥∥∥
l2
≤ c

h
‖Shζ̇‖l2 , (B.4)
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The extra factor 1
h

comes from an extra factor of 1
αj−αi . It is easy to see that the

second term in Equation (B.1) is also bounded by c
h
‖Shζ̇‖l2 , and the third term is

similarly bounded by c
h
‖Shζ̇‖2

l2 .

Returning the expression for U̇1
NL

in Equation (9.6), it follows from Equation

(B.4) that the first sum of the right hand side of Equation (9.6) is bounded by

c

h
‖ω̇‖∞‖Shζ̇‖l2 + O(hs) ≤ c

(
‖θ̇‖l2 + ‖σ̇‖l2

)
+ O(hs), (B.5)

where the latter inequality is a consequence of Equation (8.43), and the fact that

‖ω̇‖∞ ≤ ch, which in turn readily follows from Equation (9.74) and the assumptions

(Equation (8.4)). The second sum on the right hand side of Equation (9.6) is similarly

bounded by c
(
‖θ̇‖l2 + ‖σ̇‖l2

)
+ O(hs). For the third term on the right hand side of

Equation (9.6), we multiply and divide by (αj − αi)3 inside the summation and use

the estimate ∥∥∥ (ζ̇j − τ̇i)2

(αj − αi)3

∥∥∥
l2
≤ c

h
‖Shζ̇‖2

l2 ,

≤ ch
5
2‖Shζ̇‖l2 ,

≤ ch
5
2

(
‖θ̇‖2

l2 + ‖σ̇‖2
l2

)
(B.6)

in view of Shζ̇ = O(h
7
5 ) (see Remark 8.0.17 and Equation (8.43)). Putting this

estimates together, we have shown that

U̇1
NL

= A0(θ̇) + A−s(σ̇) + O(hs), (B.7)

(using σ̇ = A−s(σ̇)). Estimates for U̇2
NL

and U̇3
NL

are performed similarly to U̇1
NL

,

and verify that

u̇NL = A0(θ̇) + A−s(σ̇) + O(hs). (B.8)
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